K3TS Intelligent Signal Processor Operation Manual

Revised August 1997

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator and only for the purposes described in this manual.
The following conventions are used to indicate and classify warnings in this manual. Always heed the information provided with them.

DANGER! Indicates information that, if not heeded, could result in loss of life or serious injury.

Caution Indicates information that, if not heeded, could result in minor injury or damage to the product.

OMRON Product References

All OMRON products are capitalized in this manual. The word "Unit" is also capitalized when it refers to an OMRON product, regardless of whether or not it appears in the proper name of the product.
The abbreviation "Ch," which appears in some displays and on some OMRON products, often means "word" and is abbreviated "Wd" in documentation in this sense.

The abbreviation "PC" means Programmable Controller and is not used as an abbreviation for anything else.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of information.

Note Indicates information of particular interest for efficient and convenient operation of the product.
1, 2, 3... Indicates lists of one sort or another, such as procedures, precautions, etc.

© OMRON, 1991

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication.

TABLE OF CONTENTS

SECTION 1
Features 1
SECTION 2
Front Panel: Nomenclature and Functions 5
2-1 K3TS-SD $\square \square \mathrm{B}-\square \square$ (with Set Value LED Display) 6
2-2 K3TS-SD1 $\square \mathrm{D}-\square \square$ (with Thumbwheel Switches) 8
SECTION 3
Terminals: Nomenclature and Functions 11
3-1 Inputs 12
3-2 Outputs 14
SECTION 4
Mounting 15
4-1 Dimensions 16
4-2 Panel Mounting 16
SECTION 5
Connectable Sensors 17
5-1 Linear Sensors 18
5-2 Timing Sensors 18
SECTION 6
Parameter Setting and Operation 19
6-1 Before Setting the Parameters 20
6-2 Parameter Setting 25
6-3 Operations 49
6-4 Display Shift Function Setting Menu 61
SECTION 7
Comparative Output Response Time 63
7-1 Sampling and Delay in Comparative Outputs 64
SECTION 8
Application Examples 69
8-1 Height Measurement/Discrimination of Objects 70
8-2 Measurement of Discs 72
8-3 Measurement of Plate Thickness 74
8-4 Checking Height Differences 76
8-5 Detection of the Protruding Portion of Cylindrical Objects 78
8-6 Examples for Forced Zero RAM Models 79
8-7 Examples for Display Shift Function Models 80
SECTION 9
Troubleshooting 81
Troubleshooting Guide 82
Appendices 85
A. Standard Models 83
B. Sensor Models 85
C. Specifications 89
Index 93
Revision History 97

About this Manual:

Section 1 introduces the basic features of the K3TS Intelligent Signal Processor.
Section 2 identifies all the major features of the front panel and gives a brief description of each function.
Section 3 identifies all the input and output features of the terminals and gives a brief description of each terminal.

Section 4 provides the dimensions and environmental conditions needed for mounting the K3TS Intelligent Signal Processor.
Section 5 briefly describes the sensors that can be connected to the K3TS Intelligent Signal Processor.

Section 6 gives comprehensive descriptions on setting the parameters and the operation of the K3TS Intelligent Signal Processor.
Section 7 describes the K3TS Unit's comparative output response (sampling) times under various settings and operating parameters.
Section 8 illustrates some application examples.
Section 9 provides a troubleshooting guide for possible errors during operation and the corrective actions to be taken.
Appendix A provides a list of standard models and options (special specifications).
Appendix B provides a list of sensor models.
Appendix \boldsymbol{C} provides lists of specifications, ratings, and factory-set parameters.

SECTION 1 Features

This section deals with the basic features of the K3TS Intelligent Signal Processor. A brief description is given of each major feature.

Operating Parameters

Prescale Value

Forced Zero (Zero-shift)

Display Refresh Period

Set Values

Bank Selection With the Intelligent Signal Processor, the set value can be altered without key operation via the selection of an another bank when making a level change. The K3TS has 8 banks; each bank can output HH, H, L, and LL set values.

The set value includes a hysteresis setting to prevent the comparative output status indicators from turning ON/OFF when it should not if the measured value fluctuates in the vicinity of the set value.

With the Set Value LED and Thumbwheel Switches Models, the set values can be checked, or changed in RUN mode. Protection of set values is not possible with the Thumbwheel Switches Models.

The Intelligent Signal Processor outputs a linear voltage or current in proportion to the changes in the measured value.

The K constant is used in operating parameter 1 to convert the outputs of the displacement sensors into actual figures.

The number of process values to be averaged can be selected.
With the TIMING-delay function, the time immediately after the TIMING input is turned ON until the start of pulse counting operation can be set within a range of 0.00 to 1.99 s .

The OFF-delay can be set within a range of 0.00 to 1.99 s .

Maximum/Minimum Values The maximum and minimum of the values measured since power application or RESET signal input up to the present point are retained. When the RESET signal turns ON , both the maximum and minimum values are reset to the present value. Even though the maximum and minimum values are retained in memory, the comparative output and BCD output are output in accordance with changes in the measured value, regardless of the display or even if the RESET signal is OFF, except as controlled by the HOLD input (see next feature).

When the HOLD input is turned ON during RUN mode, measurement stops and the input measured just before the HOLD input turned ON is held. The displayed value, comparative output, BCD data, etc., are also held.

This function is convenient for checking a system to which the Intelligent Signal Processor is connected, especially when some inputs cannot be operated. The Intelligent Signal Processor simulates an input, changing the display and output conditions.

This function allows the measured values, comparative outputs, and linear output range to be set as set values while actual measurement is being carried out. This function is useful for setting parameters while checking the operating status of the Intelligent Signal Processor.

Input Range
Input ranges of 4 to $20 \mathrm{~mA}, 1$ to 5 V , or $\pm 9.999 \mathrm{VDC}$ can be selected.

SECTION 2

Front Panel: Nomenclature and Functions

This section gives a general description of the Intelligent Signal Processor's front panel.
2-1 K3TS-SD $\square \square$ B- $\square \square$ (with Set Value LED Display) 6
2-2 K3TS-SD1 $\square \mathrm{D}-\square \square$ (with Thumbwheel Switches) 8

2-1 K3TS-SD $\square \square \mathrm{B}-\square \square$ (with Set Value LED Display)

The following diagram identifies the major features found on the K3TS with Set Value LED Display front panel. The table gives a brief description of the function of each front panel feature.

No.	Name		Functions
1	PV (process value) display		Displays the process, maximum, and minimum values. Displays characters indicating the set mode and set values. Displays an error message when an error occurs.
2	SV (set value) display		Displays the set value of a comparative output. In setting mode, displays the set parameter.
3	Comparative output status indicators	HH	Is lit when HH comparative output status is ON. HH comparative output status turns ON when the measured value exceeds the HH set value.
		H	Is lit when H comparative output status is ON . H comparative output status turns ON when the measured value exceeds the H set value.
		L	Is lit when L comparative output status is ON. L comparative output status turns ON when the measured value falls below the L set value.
		LL	Is lit when LL comparative output status is ON. LL comparative output status turns ON when the measured value falls below the LL set value.
		PASS	Is lit when PASS comparative output status is ON. PASS comparative output status turns ON when all HH, H, L, and LL comparative output status are OFF.
4	PV display status indicators	HOLD	Is lit when HOLD input is ON. By turning ON the HOLD terminal on the rear panel, the hold function can be effected.
		TIMING	Is lit when the TIMING input is ON. By turning ON the TIMING terminal on the rear panel, the TIMING hold function can be effected.
		Min	Indicates that the value displayed on the PV display is the minimum value. To display the minimum value, use the DATA TEACH Key.
		Max	Indicates that the value displayed on the PV display is the maximum value. To display the maximum value, use the DATA TEACH Key.
		ZERO	Is lit when ZERO shift status is ON. By turning ON the ZERO terminal on the rear panel, the ZERO shift function can be effected. The ZERO indicator is lit when the display value is shifted if the model has a display shift function.
5	SV display status indicators		Indicates whether the displayed set value on the SV display is HH and LL or H and L . The SV display is lit when the set values are HH and LL and not lit when the set values are H and L .

No.	Name		Functions
6	Bank indicators		To alter the set value without key operation, select another bank when making a level change. The K3TS has eight banks; each bank can output HH, H, L, and LL set values. The selected bank is displayed in the binary system.
7	Unit		Attach the appropriate label (use the labels supplied as accessories).
8	Operation Keys	Level Key	Selects the setting mode, in which the setting levels can be changed. For details on the setting levels, refer to 6-1 Before Setting the Parameters.
		Display Key	Displays a set value on the SV display. In the setting mode, after a parameter is selected with the Shift Key, the selected setting is enabled or disabled or the set value is written to memory with this key.
		》 Shift Key	Shifts the digit where the set value is to be changed. Selects a parameter at each setting level. For details on the setting parameter, refer to Section 6 Parameter Setting and Operation.
			Increases the value of the current digit in the set value by one.
		 DATA TEACH Key	Selects the process value, possible display shift status (*1), maximum value (*2), or minimum value (*2). *1: Available only if the model incorporates a shift function. *2: Available only when operating parameter 3 is in the normal setting. In the setting mode, effects the teaching function. With this function, the comparison value, scaling value, and linear output range are set by means of actual input. For details on the teaching function, refer to 6-3-2 Special Functions.

2-2 K3TS-SD1 $\square \mathrm{D}-\square \square$ (with Thumbwheel Switches)

The following diagram identifies the major features found on the K3TS with Thumbwheel Switches front panel. The table gives a brief description of the function of each front panel feature.

No.	Name		Functions
1	$\begin{aligned} & \text { PV (process value) } \\ & \text { display } \end{aligned}$		Displays the process, maximum, and minimum values. Displays characters indicating the set mode and set values. Displays an error message when an error occurs.
2	Comparative output status indicators	H	Is lit when H comparative output status is ON. H comparative output status turns ON when the measured value exceeds the H set value.
		L	Is lit when L comparative output status is ON. L comparative output status turns ON when the measured value falls below the L set value.
		PASS	Is lit when PASS comparative output status is ON. PASS comparative output status turns ON when all $\mathrm{HH}, \mathrm{H}, \mathrm{L}$, and LL comparative output status are OFF.
3	$\begin{array}{\|l} \hline \begin{array}{l} \text { PV display } \\ \text { status } \\ \text { indicators } \end{array} \\ \hline \end{array}$	HOLD	Is lit when HOLD input is ON. By turning ON the HOLD terminal on the rear panel, the hold function can be effected.
		TIMING	Is lit when the TIMING input is ON. By turning ON the TIMING terminal on the rear panel, the TIMING hold function can be effected.
		Min	Indicates that the value displayed on the PV display is the minimum value. To display the minimum value, use the DATA TEACH Key.
		Max	Indicates that the value displayed on the PV display is the maximum value. To display the maximum value, use the DATA TEACH Key.
		ZERO	Is lit when ZERO shift status is ON. By turning ON the ZERO terminal on the rear panel, the ZERO shiff function can be effected.
4	Thumbwheel switches		Set H and L set values. The set values can be changed at any time regardless of the RUN or setting mode.
5	Unit		Attach the appropriate label (use the labels supplied as accessories).

No.	Name		Functions
6	Operation Keys		Selects the setting mode, in which the set levels can be changed. For details on the set levels, refer to 6-1 Before Setting the Parameters.
			This key has no function in RUN mode. In the setting mode, after a parameter is selected with the Shift Key, the selected setting is enabled or disabled or the set value is written to memory with this key.
			Shifts the digit where the set value is to be changed. Selects a parameter at each setting level. For details on the setting parameter, refer to Section 6 Parameter Setting and Operation.
		$\begin{array}{\|l\|} \hline \text { 图 } \\ \text { Up Key } \end{array}$	Increases the value of the current digit in the set value by one.
			Displays the process, maximum, or minimum value. (Operating parameter 3: Only in the normal setting.) In the setting mode, effects the teaching function. With this function, the set values, prescale values and linear output range are set by means of actual input. For details on the teaching function, refer to 6-3-2 Special Functions.

SECTION 3

Terminals: Nomenclature and Functions

This section gives a general description of the K3TS Intelligent Signal Processor's terminals.
3-1 Inputs 12
3-2 Outputs 14

3-1 Inputs

The K3TS Intelligent Signal Processor's terminal inputs are described in the following diagram and table. The table identifies each terminal and briefly describes its input function.

3-2 Outputs

Depending upon the requirements of the output device, the K3TS Intelligent Signal Processor can use one of the following outputs.

K31-C1: Relay (3 Outputs)

K31-C5: Relay (5 Outputs)

K31-T2: Transistor (PNP Open Collector)

K31-L4, L5, L6: Linear + Transistor*

K31-S5: RS-485 + Transistor*

K31-C2: Relay (5 Outputs)

K31-T1: Transistor (NPN Open Collector)

K31-B4: BCD + Transistor* (NPN Open Collector)

COMMON

K31-S6: RS-422 + Transistor*

D-sub 37P Connectors for BCD output (enclosed)
Plug: \quad XM2A- 3701
Hood: XM2S-3711

D-sub 9P Connectors for RS-422 output (order separately)
Plug: XM2A-0901 or XM4A-0921
Hood: XM2S-0911

* Only with model with special specifications.

SECTION 4
 Mounting

This section provides the dimensions and instructions required for mounting the K3TS Intelligent Signal Processor. Mounting conditions for the Unit are also given.
4-1 Dimensions 16
4-2 Panel Mounting 16

4-1 Dimensions

All dimensions are in millimeters.

4-2 Panel Mounting

The mounting dimensions of the Intelligent Signal Processor conform to DIN 43700. Recommended panel thickness is 1 to 3.2 mm . Attach the mounting brackets supplied as accessories to the Intelligent Signal Processor from behind and tighten the mounting screws of the brackets to a torque of $5 \mathrm{kgf} \$$ $\mathrm{cm}(0.49 \mathrm{~N} \mathrm{~m}$).
Whenever possible, keep the Intelligent Signal Processor horizontal. Do not install the Intelligent Signal Processor where it will be exposed to corrosive gases (especially sulfurized gas and ammonia gas). Do not install the Intelligent Signal Processor where it will be subject to vibration, shock, dust, or high humidity. The ambient temperature of the installation site must be within -10° to $55^{\circ} \mathrm{C}$.

Note: Attach mounting bracket before wiring the terminals. When removing the Intelligent Signal Processor, first disconnect the wiring, then remove the mounting bracket.

SECTION 5
 Connectable Sensors

This section gives a brief description on the sensors that can be connected to the K3TS Intelligent Signal Processor.
5-1 Linear Sensors 18
5-2 Timing Sensors 18

5-1 Linear Sensors

The K3TS incorporates a current input terminal and a voltage input terminal, thus corresponding to a wide variety of linear sensors.

Terminal	
Linear sensor output	
Current input	4 to 20 mA DC
Voltage input	1 to 5 VDC
	$\pm 9.999 \mathrm{VDC}$

Displacement sensors, pressure sensors, and flow sensors with an output range of ± 9.999 VDC can be used as linear sensors.

5-2 Timing Sensors

Photoelectric sensors and proximity sensors with the following specifications can be used:

Residual voltage when sensor is on	3 V max.
Current leakage when sensor is off	1.5 mA max.
Load current	For smooth switching operation, switching capacity should be at least 20 mA with a load current of no more than 5 mA.

The TIMING input must be via an open collector.

- Without external power supply -

- With external power supply -

Short-circuit the TIMING and GND terminals for contact input operation.
Note Use an external power supply with a supply voltage of 12 to 24 VDC if the operating voltage of the sensor is other than 12 VDC or if the total power consumption exceeds 80 mA .
Short-circuit the TIMING IN and GND terminals for contact input operation.

SECTION 6 Parameter Setting and Operation

This section provides instructions for the operation of the K3TS Intelligent Signal Processor. Each operational procedure is described with the aid of tables and diagrams.
6-1 Before Setting the Parameters 20
6-1-1 Level of Setting Mode and Parameters 20
6-1-2 Parameter Setting Procedure 22
6-1-3 List of Parameters for Each Model 22
6-2 Parameter Setting 25
6-2-1 Operating Parameter 1 (2-Input) 25
6-2-2 Operating Parameter 2 (Previous Average Value Comparison) 27
6-2-3 Operating Parameter 3 29
6-2-4 Input Range 32
6-2-5 Number of Process Values to Average 33
6-2-6 TIMING-delay 35
6-2-7 Parameters for Display 36
6-2-8 Parameters for Output 40
6-3 Operations 49
6-3-1 Operations in RUN Mode 49
6-3-2 Special Functions 55
6-4 Display Shift Function Setting Menu 61

6-1 Before Setting the Parameters

6-1-1 Level of Setting Mode and Parameters

The Intelligent Signal Processor is used mainly in two modes: the RUN mode and the setting mode. In these two modes, the various parameters of the Intelligent Signal Processor can be set. The setting mode has three levels, in each of which one or more parameters can be used. To set the parameters, therefore, first select the setting mode, then select the level and parameter required, from which the necessary parameters can be set. The following diagram illustrates how this is done.

When setting mode is selected, measurement is stopped. Some parameters may not be displayed (i.e., cannot be selected or set), depending on the operating parameter selected and whether the Model is a Display Model or Output Model. For details, refer to the list of valid parameters by operating parameter see 6-1-3 List of Parameters for Each Model.

During operation, if you are unsure of the present status (such as the level or parameter with which the setting has been made), press the Level Key for one second to go one level lower. Be sure to write the set value again on that level. The following list and accompanying diagrams describe how to set levels in step-by-step fashion.

Setting Level Diagram

Setting Procedure

1. Press the Level Key or Level and Up Keys to go to the desired level.
2. Use the Shift Key to find the desired parameter.
3. Press the Display Key to access the parameter.
4. Use the Up or Shift Keys to input the desired value.
5. Leave the level you are in with the Display Key.
6. Return to the beginning with the Level Key or the Level and Up Keys.

6-1-2 Parameter Setting Procedure

First, set operating parameters on setting level 3 . Then set an input range on setting level 2 . Some parameters will not be displayed when the parameter is changed for another one during operation. When a new input range is selected during operation, all parameters on setting levels 1 and 2 are reset to initial values.

The setting procedure is as follows:
1, 2, 3... 1. Operating parameter 1 (setting level 3)
2. Operating parameter 2 (setting level 3)
3. Operating parameter 3 (setting level 3)
4. Input range (setting level 2)
5. Other parameters

Parameters other than the operating parameters and the input range can be set in any order.

6-1-3 List of Parameters for Each Model

The following tables indicate which parameters are available for each Model.
Set Value LED Display Models: K3TS-SD $\square \square \mathrm{B}-\square \square$

Level	Parameter		Display	Output				
			C2/5,T1/2	B4	L4/5/6	S5/6		
1	Bank 0 set values			[560	Yes	Yes	Yes	Yes
	Bank 1 set values		[5t :	Yes	Yes	Yes	Yes	
	Bank 2 set values		-5tz	Yes	Yes	Yes	Yes	
	Bank 3 set values		[513	Yes	Yes	Yes	Yes	
	Bank 4 set values		[5t4	Yes	Yes	Yes	Yes	
	Bank 5 set values		[515	Yes	Yes	Yes	Yes	
	Bank 6 set values		[515	Yes	Yes	Yes	Yes	
	Bank 7 set values		[5t 7	Yes	Yes	Yes	Yes	
	Hysteresis		Hリ5	Yes	Yes	Yes	Yes	
	Prescale value		51.81	Yes	Yes	Yes	Yes	
	Display shift	Shift value	-n05	Yes	---	---	---	
		Shift protect	P-D5	Yes	---	---	---	
	K constant		$\mu \mathrm{HEL}$	Yes	Yes	Yes	Yes	
	Linear output range		L5EL	---	---	Yes	---	
	Set value protect		Prot	Yes	Yes	Yes	Yes	
2	Input range		\square	Yes	Yes	Yes	Yes	
	Display refresh period		disp	Yes	Yes	Yes	Yes	
	Process values averaging		RuF	Yes	Yes	Yes	Yes	
	TIMING-delay		tロa	Yes	Yes	Yes	Yes	
	OFF-delay		arba'	Yes	Yes	Yes	Yes	
	Communications unit no.			---	---	---	Yes	
	Baud rate		b-5	---	---	---	Yes	
3	Operating parameter 1		Flin i	Yes	Yes	Yes	Yes	
	Operating parameter 2		Flinc	Yes	Yes	Yes	Yes	
	Operating parameter 3		Fibn	Yes	Yes	Yes	Yes	

Thumbwheel Switches Models: K3TS-SD1 \square D- $\square \square$

Level	Parameter		Display	Output		
			C1,T1/2	B4		
1	Bank 0 set values			[560]	---	---
	Bank 1 set values		[5t :	---	--	
	Bank 2 set values		-5te	---	---	
	Bank 3 set values		[5t3	---	---	
	Bank 4 set values		[5t4	---	---	
	Bank 5 set values		[5t5	---	---	
	Bank 6 set values		[5t5	---	---	
	Bank 7 set values		[5t 7	---	---	
	Hysteresis		435	Yes	Yes	
	Prescale value		5LRL	Yes	Yes	
	Display shift	Shift value	-n-75	---	---	
		Shift protect	Pr-05	---	---	
	K constant		H5EL	Yes	Yes	
	Linear output range		L5Et	---	---	
	Set value protect		Prot	---	---	
2	Input range		-n	Yes	Yes	
	Display refresh period		disp	Yes	Yes	
	Process values averaging		RuE	Yes	Yes	
	TIMING-delay		tロa	Yes	Yes	
	OFF-delay		$\overline{\square F D}$	Yes	Yes	
	Communications unit no.		Una	---	---	
	Baud rate		brs	---	---	
3	Operating parameter 1		Fin i	Yes	Yes	
	Operating parameter 2		FiMnE	Yes	Yes	
	Operating parameter 3		Fin 3	Yes	Yes	

List of Valid Parameters by Operating Parameter

The following parameters are not available with all Models．For further infor－ mation，refer to 6－1－3 List of Parameters for Each Model．

If FLinヨ is set to närñ：

Level	Parameter		Display	Fibin						
			\square	品	F口1	トロ品	－bir	bif		
1	Set values			［56，to 7	Yes	Yes	Yes	Yes	Yes	Yes
	Hysteresis		H゙ら5	Yes	Yes	Yes	Yes	Yes	Yes	
	Prescale value		5LRIL	Yes	Yes	Yes	Yes	Yes	Yes	
	Display shift	Shift value	－nロ5	Yes	Yes	Yes	Yes	Yes	Yes	
		Shift protect	Pr－D5	Yes	Yes	Yes	Yes	Yes	Yes	
	K constant		HSEL	－－－	－－	－－－	Yes	－－－	－－－	
	Linear output range		L5Et	Yes	Yes	Yes	Yes	Yes	Yes	
	Set value protect		Prot	Yes	Yes	Yes	Yes	Yes	Yes	
2	Input range		－n	Yes	Yes	Yes	Yes	Yes	Yes	
	Display refresh period		disp	Yes	Yes	Yes	Yes	Yes	Yes	
	Process values averaging		RuE	Yes	Yes	Yes	Yes	Yes	Yes	
	TIMING－delay		tロa＇	－－－	－－－	－－－	－－	－－－	－－－	
	OFF－delay		arba	Yes	Yes	Yes	Yes	Yes	Yes	
	Communications unit no．		Unпa	Yes	Yes	Yes	Yes	Yes	Yes	
	Baud rate		bib	Yes	Yes	Yes	Yes	Yes	Yes	
3	Operating parameter 2		Func	Yes	Yes	Yes	Yes	Yes	Yes	

Level	Parameter		Display	FiUn 1						
			\square	96	F凧	－194	－ 19	口 in		
1	Set values			［560 to 7	Yes	Yes	Yes	Yes	Yes	Yes
	Hysteresis		H35	－－－	－－－	－－－	－－－	－－－	－－－	
	Prescale value		5CAL	Yes	Yes	Yes	Yes	Yes	Yes	
	Display shift	Shift value	－r－b5	Yes	Yes	Yes	Yes	Yes	Yes	
		Shift protect	Pr－D5	Yes	Yes	Yes	Yes	Yes	Yes	
	K constant		HSEL	－－－	－－－	－－－	Yes	－－－	－－－	
	Linear output range		LSEt	Yes	Yes	Yes	Yes	Yes	Yes	
	Set value protect		Prot	Yes	Yes	Yes	Yes	Yes	Yes	
2	Input range		－n	Yes	Yes	Yes	Yes	Yes	Yes	
	Display refresh period		disp	－－－	－－－	－－－	－－－	－－－	－－－	
	Process values averaging		RuE	Yes	Yes	Yes	Yes	Yes	Yes	
	TIMING－delay		t－ba	Yes	Yes	Yes	Yes	Yes	Yes	
	OFF－delay		arba＇	－－－	－－－	－－－	－－－	－－－	－－－	
	Communications unit no．		Una	Yes	Yes	Yes	Yes	Yes	Yes	
	Baud rate		brs	Yes	Yes	Yes	Yes	Yes	Yes	
3	Operating parameter 2		FiUnc	Yes	Yes	Yes	Yes	Yes	Yes	

6－2 Parameter Setting

6－2－1 Operating Parameter 1 （2－Input）

Operating parameter 1 can convert outputs into actual figures．Set operating parameter 1 according to the following instructions outlined in the table and the flow diagram：

Setting	
A	月
A＋B	Fb
A－B	朋口
$K-(A+B)$	－
$(1-B / A) \times 100$	－bir
$B / A \times 100$	口 if

If $(1-B / A) \times 100$ or $B / A \times 100$ is selected in the 2 -input operation mode, there is no difference in scaling operation between input A and input B and the decimal point will be always between the two rightmost digits and two leftmost digits. Therefore, the operation result will be displayed in a range between -99.99 and 99.99.

6-2-2 Operating Parameter 2 (Previous Average Value Comparison)

When the K3TS is set to on in operating parameter 2, the K3TS detects only values fluctuating rapidly, dismissing slowly fluctuating ones such as values caused by the decentering of a sensing object or the sagging of a belt conveyor.
Concept of Previous Average Value Comparison

Number of measuring operations	Input value	Displayed value	Compared with present value
1	V_{1}	$V_{1}-V_{1}=0$	$C_{1}=V_{1}$
2	V_{2}	$V_{2}-C_{1}$	$C_{2}=1 / 2\left(C_{1}+V_{2}\right)=1 / 2\left(V_{1}+V_{2}\right)$
3	V_{3}	$V_{3}-C_{2}$	$C_{3}=1 / 2\left(C_{2}+V_{3}\right)=1 / 4\left(V_{1}+V_{2}\right)+1 / 2 V_{3}$
4	V_{4}	$V_{4}-C_{3}$	$C_{4}=1 / 2\left(C_{3}+V_{4}\right)=1 / 8\left(V_{1}+V_{2}\right)+1 / 4 V_{3}+1 / 2 V_{4}$
n	V_{n}	$V_{n}-C_{n-1}$	$1 / 2^{n-1}\left(V_{1}+V_{2}\right)+1 / 2^{n-2}+\ldots+1 / 2 V_{n}$

Example of Previous Average Value Comparison when selecting Sampling hold

Number of measuring operations	Input value	Displayed value	Compared with present value
1	4.0	$4.0-4.0=0$	4.0
2	3.0	$3.0-4.0=-1.0$	$1 / 2(4.0+3.0)=3.5$
3	4.5	$4.5-3.5=1.0$	$1 / 2(3.5+4.5)=4.0$
4	3.0	$3.0-4.0=-1.0$	$1 / 2(4.0+3.0)=3.5$
5	8.5	$8.5-3.5=5.0$	$1 / 2(3.5+8.5)=6.0$

Set operating parameter 2 according to the following instructions outlined in the table and the flow diagram:

Average comparison	ON	an
	OFF	aFF

6-2-3 Operating Parameter 3

Holding Data (TIMING Input)

Normal

When the K3TS is set to nor- in on operating parameter 3, the TIMING input is not effective, and the K3TS continues data sampling.

Sampling Hold

When the K3TS is set to 5DH on operating parameter 3, the K3TS retrieves the data on the rising edge of the TIMING input and holds the data until the rising edge of the next TIMING input signal.

Maximum Hold

When the K3TS is set to $P[H$ on operating parameter 3, the K3TS continues data sampling while the TIMING input is ON. When the TIMING input is OFF, the K3TS displays the maximum value of the data that has been sampled and holds the value until the next TIMING input signal is OFF.

When the K3TS is set to $5 \square H$ on operating parameter 3, the K3TS continues data sampling while the TIMING input is ON. When the TIMING input is OFF, the K3TS displays the minimum value of the data that has been sampled and holds the value until the next TIMING input signal is OFF.

Peak-to-Peak Hold

When the K3TS is set to $\mathrm{Pr} H$ on operating parameter 3, the K3TS continues data sampling while the TIMING input is ON. When the TIMING input is OFF, the K3TS displays the peak-to-peak value (the difference between the maximum value and the minimum value) of the data that has been sampled and holds the value until the next TIMING input signal is OFF.

To cancel hold status, the RESET input must be ON.
Set operating parameter 3 according to the following instructions outlined in the table and the flow diagram:

Settings	
Normal	narn
Sampling HOLD	$5 \square H$
Maximum HOLD	FDH
Minimum HOLD	$5 \square H$
Peak-to-peak HOLD	FRDH

6－2－4 Input Range

Set input range according to the following instructions outlined in the table and the flow diagram：

Setting	
4 to 20 mA	$4 \square \mathrm{I}$
1 to 5 V	105
$\pm 9.999 \mathrm{~V}$	9.999

$44-20 \stackrel{\text { 园 }}{\rightarrow}:-5 \xrightarrow{\text { 园 }} 9939 \xrightarrow{\text { 图 }}$

6-2-5 Number of Process Values to Average

Set the number of process values to average according to the following tables and flow diagram. The setting range available for averaging is shown below.

Setting period			
1	;	128	129
2	2	256	255
4	4	512	$5: 3$
8	8	1024	1024
16	15	2048	20418
32	32	4096	4195
64	54	8192	-192

Given a setting, the time required for sampling is shown below.

Sampling period			
1	3.1 ms	128	130 ms
2	4.2 ms	256	270 ms
4	6.2 ms	512	530 ms
8	10 ms	1024	1.1 s
16	19 ms	2048	2.1 s
32	35 ms	4096	4.2 s
64	68 ms	8192	8.4 s

6-2-6 TIMING-delay

The TIMING-delay function is available only when the K3TS is set to 5DH, Pl H , $\mathrm{a}[\mathrm{H}$, or PPD H on operating parameter 3 . With the TIMING-delay function, the time immediately after the TIMING input is turned ON until the start of pulse counting operation can be freely set within a range of 0.00 to 1.99 s . The following diagram illustrates the procedure for TIMING-delay time setting:

Setting range
0.010 to 1.99

6-2-7 Parameters for Display

Prescaling

Set prescaling data to convert an input value into a desired displayed value. Prescaling data can be freely set within a range of -9999 to 9999 .
$X_{2}-Y_{2}$ and $X_{1}-Y_{1}$ must be input (X : Input value, Y : Corresponding displayed value). When the 2 -input operation mode is selected, the X and Y input values must be values resulting from 2-input operation. X_{1} or Y_{1} can be either larger or smaller than X_{2} or Y_{2}. If $X_{1}=X_{2}$, it is assumed that $X_{2}=X_{1}+$ 1.

For example, in the case of adding A and B using two sensors, each of which has an output of 1 to 5 V , input value X should not be set from 2 to 10 V but from 2 to 5 V (0% to 50% input) for easier scaling. X_{2} or X_{1} cannot be be set if the total sum of X_{2} and X_{1} exceeds $\pm 9.999 \mathrm{~V}$ or 99.99 mA .

If $(1-B / A) \times 100$ and $B / A \times 100$ are selected, there will be no difference in scaling between input A and input B, and the position of the decimal point will be fixed between the second and third digits (i.e., 00.00). Consequently, the result of operation will be displayed in a range of -99.99 to 99.99.

For the B / A of operating parameter 1 , the operation of $1-(B / A)$ is required. Scaling is possible.

The operation for the scaling result of the actual input value is as follows.
Example in the case of 4 - to $20-\mathrm{mA}$ input:
INA = $20 \mathrm{~mA}, \mathrm{INB}=12 \mathrm{~mA}$
Scaling: $X_{2}=20 \mathrm{~mA}, Y_{2}=100, X_{1}=4 \mathrm{~mA}$, and $Y_{1}=0$
Then INA = 100 and $I N B=50$
Therefore, $B / A \times 100=50 / 100 \times 100=0.5 \times 100=50 \%$

K Constant

The K constant is used to convert the outputs of the displacement sensors into actual figures. The setting of K constant is available only when the K3TS is set to μ 阴 on operating parameter 1 .

Display Refresh Period

The alteration of the display refresh period does not change the sampling range. The comparative outputs and BCD data are updated in synchronization with the sampling range. The display refresh period parameter will not appear when the sampling hold, maximum hold, minimum hold, or peak-topeak hold parameter is set on operating parameter 3.

Setting	
Refreshed every 0.1 s	FR5L
Refreshed every 1.0 s	\ddots
Refreshed every 2.0 s	2
Refreshed every 3.0 s	3
Refreshed every 4.0 s	4

6-2-8 Parameters for Output

Set Values

To establish whether the measured values are within a given range or criteria, they are regularly compared with set values. In order to establish set values, follow the instructions outlined in the flow diagram (the example is for the setting of set values on Bank 0). Operate likewise for the setting of set values on Banks 1 to 7 after executing (1) to display [5t] to 7 . The decimal is displayed at the position set in the prescale parameter. Any one of $\mathrm{HH}, \mathrm{H}, \mathrm{L}$, and LL can be larger or smaller than the others. No parameter settings for set values are available for the Thumbwheel Switches Models. Establish set values with the front panel's thumbwheel switches. The values are registered 1.5 s after the values have been set.

Setting range	09999 to 9999

Hysteresis

The established set value includes a hysteresis to prevent the comparative output status from tuning ON/OFF when it should not if the process value (displayed value) fluctuates in the vicinity of the established set value.

Setting range	101 to 999

Logically, 0 cannot be set as a hysteresis value. If 0 is set, the K3TS takes the hysteresis value as 1 . If sampling hold, maximum hold, minimum hold, peak-to-peak hold values are set on operating parameter 3 (on setting level 3), no hysteresis setting is available.

OFF-delay

The OFF-delay function is available only when the K3TS is set to marin on operating parameter 3. With the OFF-delay function, the comparative output OFF-delay time can be freely set within a range of 0.00 to 1.99 s . The following diagram illustrates the procedure for setting the OFF-delay time:

Setting range	0.01 .9 to 1.99

Protecting Set Values

With the Set Value LED Display Models, the set values can be changed in the RUN mode. However, this feature can be disabled to protect the set values. In order to protect them, follow the instructions outlined in the flow diagram. Protection of set values is not possible with the Thumbwheel Switches Models. Therefore no parameter settings for set value protection appears.

Linear Output Range

This setting is only for Models with 4 to $20 \mathrm{~mA}, 1$ to 5 V linear output.

For operating parameters 1 through 3, the Intelligent Signal Processor outputs a linear voltage or current in proportion to the changes in the measured value. In the example above, a displayed value corresponding to the L_{H} maximum output value (20 mA or 5 V) and a displayed value corresponding to the L_{L} minimum output value (4 mA or 1 V) is set.
The decimal is displayed at the position set in the prescale parameter. Note that neither L_{H} nor L_{L} shift if the position of the decimal is changed after L_{H} and L_{L} have been set.

Do not set $L_{L}=L_{H}$; otherwise, it is assumed that $L_{L}+1$ digit $=L_{H}$.
This function is not provided on the $\mathrm{mV} /$ digit Output Models on which regardless of the position of the decimal, 1 mVDC is output per digit displayed. (For example, if the displayed value is 150.0 , the output is 1500 mV .) A linear output range cannot be set with Thumbwheel Switches Models.
In order to set the linear output range, follow the instructions outlined in the flow diagram and operate the Intelligent Signal Processor as follows:

Communications Unit Number

The communications unit number is an identification number by which the host computer to which the Intelligent Signal Processor is connected identifies the Intelligent Signal Processor. The Thumbwheel Switches Models are not provided with the communications output function; therefore, communications unit number setting is not required. For details, refer to the K3TS Communication Operation Manual.

In order to set the communications unit number, follow the instructions outlined on the flow diagram (after the table) and set within the following range:

Setting range	00 to 99

Baud Rate

The Thumbwheel Switches Models are not provided with a communications output function; therefore, setting of the baud rate is not required. For details, refer to the K3TS Communication Operation Manual.
In order to set the baud rate, follow the instructions outlined in the flow diagram (after the table) and set within the following range:

Display	Meaning
3013	300 bps
5010	600 bps
12010	1,200 bps
2400	2,400 bps
48001	4,800 bps
96001	9,600 bps
19.24	19.2k bps
38.41'	38.4 k bps

6-3 Operations

In order to perform operations in RUN mode and other special functions, graphs and flow diagrams are given as explanations.

6-3-1 Operations in RUN Mode

Checking Set Values

The Intelligent Signal Processor allows set values to be checked even in RUN mode. The set values of only the bank selected can be checked.

Set Value LED Display Models

LL and HH or L and H are always displayed on the SV display.
In order to check the set values on the LED Models, follow the instructions outlined in the flow diagram:

Thumbwheel Switches Models

Changing Set Values

Set Value LED Display Models

Set values can be changed even in RUN mode. The values, however, cannot be changed when the protect input is ON .

In order to change the set values on the Set Value LED Display Models, follow the instructions outlined on the flow diagram, which shows how to change set value H from 50.0 to 55.0 :

Thumbwheel Switches Models

With the Thumbwheel Switches Models, set values can be changed at any time with the thumbwheel switches. The set values are registered 1.5 sec onds after the values have been set with the thumbwheel switches and the Intelligent Signal Processor operates according to the new set values.

Retaining, Resetting Maximum/Minimum Values

The following is for when the K3TS is set to 3 nirin on operating parameter 3.
Operate as shown below:
The maximum displayed (process) value and the minimum displayed (process) value recorded since power was applied or the RESET input turned ON are retained. Press DATA/TEACH once to display the maximum value on the PV display; press again to display the minimum value; and press again to display the process value. When the RESET input is turned ON, both the maximum and minimum values are cleared. While the RESET input is ON, " Cl C " is displayed.

While the K3TS is holding the maximum and minimum values, output data such as comparative outputs and BCD data are output according to the process value without being retained.
Both the maximum and minimum values re cleared, when the K3TS goes into the setting mode or when the power is switched off.

Hold Measured Value

The following is for when the K3TS is set to main.
When the HOLD input is turned ON, measurement stops and the input value measured just before the HOLD input is turned ON is held. The displayed value, comparative outputs, and BCD data are also held while the HOLD input is ON. When the HOLD input is turned OFF, the held data is released.
If power is switched ON while the HOLD input is ON, the reset state is regarded as the input value. "질" is displayed in this case. Make sure the HOLD input is OFF before applying power. The following graph illustrates the effect of this operation.

Forced Zero (Zero-shift)

With the ZERO input ON (by short-circuiting the ZERO input), the process value can be shifted to zero. This condition is held until the next ZERO input signal is turned ON.

The value is calibrated to zero at the rising edge of the ZERO input.
The ZERO indicator on the front panel is lit.

The K3TS retains the value calibrated to zero even if the K3TS is turned off.
To cancel zero-shift state, change the prescaling value (if the prescaling value should not be changed, go to the prescaling menu to reconfirm the X_{2}, Y_{2}, Y_{1} values, and the position of the decimal point using the Display Key and then return to the RUN mode) or the input range. Check that the ZERO indicator is OFF when zero-shift state is canceled.

To input a ZERO input signal from a transistor such as a sensor, use an open collector configuration with a transistor that has a minimum collector current of 5 mA or less.

Difference between K3TS with Forced Zero RAM Specifications and Standard K3TS

The zero-shift value of the K3TS with forced zero RAM specifications will be lost when the K3TS is turned off.

Each time forced zero is turned ON on the standard K3TS, the shifted value will be written to the internal non-volatile memory (EEPROM). The data will not be lost even if the K3TS has a power failure. The EEPROM can be overwritten approximately 100,000 times. For applications in which the forced zero function is used more frequently, please use the K3TS-SD21B- \square with forced zero RAM.

When the process value is shifted to zero on the K3TS with a display shift function, the calibrated value will be set in the display shift menu as the shift value. For example, if a process value of 100 is shifted to zero, 0010 will be displayed as the shift value.

To cancel zero-shift state, change the input range or set the display shift value to 010 , at which time make sure that the ZERO indicator is lit.

> | Each time forced zero is turned ON on |
| :--- |
| the standard K3TS, the shifted value |
| will be written to the internal non-volatile |
| memory (EEPROM). The data will not |
| be lost even if the K3TS has a power |
| failure. The EEPROM can be overwrit- |
| ten approximately 100,000 times. For |
| applications in which the forced zero |
| function is used more frequently, please |
| use the K3TS-SD21B- \square with forced |
| zero RAM. |

6-3-2 Special Functions

The K3TS Intelligent Signal Processor is provided with two special functions: test mode and teaching function.

1. Test function: This function is convenient for checking a system to which the Intelligent Signal Processor is connected, especially when some inputs cannot be operated. The Intelligent Signal Processor simulates the input, changing the display and output conditions.
2. Teaching function: This function allows the measured values to be retrieved and set as comparative outputs and as a linear output range while actual measurement is being carried out. This function is useful for setting parameters while checking the operating status of the Intelligent Signal Processor.

Test Function

The Intelligent Signal Processor is provided with a test function in which simulated signals can be input. When a simulated input signal is applied, an actual corresponding output signal is issued. Confirm the status of the equipment connected to the output side of the Intelligent Signal Processor.

In order to perform this operation, follow the instructions outlined in the flow diagram:

Teaching Function

Set Values

The teaching function of the K3TS can be set only when nar-n is set using operating parameter 3 .

The Intelligent Signal Processor is provided with a teaching function that can set an actual measured value as a set value. The Thumbwheel Switches Models are not provided with this function.

In order to perform this operation, follow the instructions outlined in the flow diagram, which shows how to change set value HH on Bank 0 from to 102:
1017 -> TEACH -> 102

The teaching function of the K3TS can be set only when noroperating parameter 3 . With the teaching function, a prescaling value can be set as a set value. In order to perform this operation, follow the instructions outlined in the flow diagram which show how to change set value X_{2} from 20.00 to 19.010.

With the teaching function, it is possible to retrieve the actual measured values and set them as a linear output range. The Thumbwheel Switches Models do not incorporate a teaching function.

In order to perform this operation, follow the instructions outlined in the flow diagram which show how to change set value L_{H} from to

6-4 Display Shift Function Setting Menu

Display Shift Setting

The display shift function calibrates the displayed value and shifts the displayed value to any value between -9999 and 9999 for all control operations. If the input value changes, the calibrated value will follow the change by retaining the shift value.

Shift value setting range	09999 to 9999

The process value can be shifted in the RUN mode if the shift protect is not turned ON. Refer to the following example to shift the process value.
In this example, the displayed value is changed from 45 to 50 .

Note The K3TS with a thumbwheel switch does not incorporate a display shift function or shift protect function.

Shift Protect Setting

It is possible to change the shift value of the K3TS in the RUN mode if the K3TS incorporates a display shift function. It is, however, possible to prohibit shift value change with the shift protect function of the K3TS.

Note The K3TS with a thumbwheel switch does not incorporate a display shift function or shift protect function.

Comparative Output Response Time

This section describes the K3TS Unit's comparative output response (sampling) times under various settings and operating parameters.

[^0]
7-1 Sampling and Delay in Comparative Outputs

The sampling time or comparative output response time varies with the setting of the number of process values to be averaged or the operating parameters (2-input or holding data).
The K3TS repeats operation A (input retrieval operation) and B (arithmetic processing and discrimination output operation) as shown in the figure below. While operation B is executed, the comparative output transistor operates.

Arithmetic processing and discrimination output (includ-
ing transistor response time)
Input retrieval (sampling time x number of times process value averaged)
If the comparative output is a relay output, the response time (C in the figure) of the relay is added to the comparative output response time.

The data processing time and comparative output response time vary with the setting condition of each operating parameter as follows below. They do not vary in operating parameter 2 (average value comparison).
Differences in Data Processing Time in Operating Parameter 1 (2-input)
*n: number of process values to be averaged.

Operating parameter 1 (2-input)	(input retrieval)	\mathbf{B} (arithmetic processing and determination)	\mathbf{C} (relay response time)
\mathbf{A} only	$1.04 \times \mathrm{n}^{*}(\mathrm{~ms})$	2.08 ms	10 ms
$\mathbf{A}+\mathbf{B}, \mathbf{A}-\mathbf{B}, \mathrm{K}-\mathbf{(A + B)}$	$2.08 \times \mathrm{n}^{*}(\mathrm{~ms})$	4.16 ms	10 ms
$\mathbf{B} / \mathbf{A} \times \mathbf{1 0 0},(\mathbf{1 - B} / \mathbf{A} \times \mathbf{1 0 0})$	$2.08 \times \mathrm{n}^{*}(\mathrm{~ms})$	5.20 ms	10 ms

Differences in Delay in Comparative Outputs in Operating Parameter 3 (Holding Data)

Operating parameter 3 (holding data)	Definition of delay	Delay in comparative outputs
Normal	The time required between output transistor operation and input value change.	Min.: A $+\mathrm{B}(\mathrm{ms})$ Max.: (A +B$) \times 2(\mathrm{~ms})$
Sampling hold	The time required between output transistor operation and timing signal rise.	Min.: $1.04+\mathrm{A}+\mathrm{B}(\mathrm{ms})$ Max.: $2.08+\mathrm{A}+\mathrm{B}(\mathrm{ms})$
Maximum hold, minimum hold,, peak-to-peak hold	The time required between output transistor operation and timing signal fall.	Min.: B (ms) Max.: A $+\mathrm{B}(\mathrm{ms})$

Timing Charts (Examples)

Example 1

The following timing chart shows the operating timing with the setting specified in the table.

Operating parameter 1 (2-input)	A only
Operating parameter 3 (holding data)	Normal
Number of process values to be averaged	1
Delay in comparative outputs	3.12 to 6.24 ms

	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04

Example 2

The following timing chart shows the operating timing with the setting specified in the table.

Operating parameter $\mathbf{1}$ (2-input)	$\mathrm{A}+\mathrm{B}$
Operating parameter 3 (holding data)	Normal
Number of process value averaging operations	1
Delay in comparative outputs	6.24 to 12.48 ms

Example 3

The following timing chart shows the operating timing with the setting specified in the table.

Operating parameter $\mathbf{1}$ (2-input)	A only
Operating parameter 3 (holding data)	Sampling hold
Number of process value averaging operations	1
Delay in comparative outputs	4.16 to 5.20 ms

	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04

Example 4

The following timing chart shows the operating timing with the setting specified in the table.

Operating parameter $\mathbf{1}$ (2-input)	A only
Operating parameter 3 (holding data)	Sampling hold
Number of process value averaging operations	8
Delay in comparative outputs	11.44 to 12.48 ms

Example 5

The following timing chart shows the operating timing with the setting specified in the table.

Operating parameter 1 (2-input)	A only
Operating parameter 3 (holding data)	Maximum hold
Number of process value averaging operations	1
Delay in comparative outputs	2.08 to 3.12 ms

1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04

SECTION 8

 Application ExamplesThis section provides 5 application examples of K3TS use.
8-1 Height Measurement/Discrimination of Objects 70
8-2 Measurement of Discs 72
8-3 Measurement of Plate Thickness 74
8-4 Checking Height Differences 76
8-5 Detection of the Protruding Portion of Cylindrical Objects. 78
8-6 Examples for Forced Zero RAM Models 79
8-7 Examples for Display Shift Function Models 80

8－1 Height Measurement／Discrimination of Objects

The following operations are possible with K3TS：
－With a synchronous sensor，the sampling hold function makes it possible to display the height of an object and hold its value．
－The eight switchable banks make it possible for the K3TS to measure differ－ ent kinds of objects smoothly．
－With the forced zero function，zero calibration can be done with ease．

Settings

Level 3

FLin i：\quad（A only）
FLinE：GFF（No previous average comparison）
FLinヨ：5［H（Sampling hold）

Level 2

ㄷn：$\quad 4000$（ 4 to 20 mA ）
di5p：－－－
RuE：\quad a
เロ： 0 ロu
aFD：－－－

Level 1

［5t：0 to［5t 7：

（Example：Checks if the deviations in the objects are within a range of ± 0.1
mm ．）
$H_{H}=1.50$
$H=0.10$
$1=00.10$
L $1=0: 50$
（Adjust according to the object）
Hリ5＝－－－
5CR1：If $X_{2}=20.00, Y_{2}=-4.00$
If $X_{1}=4.00, Y_{1}=4.00$
Proz：（set to on if necessary，after all setting operations have been com－ pleted．）
＂－－－＂indicates parameters that are not displayed．

Dimensional Check of Molding Parts

The K3TS can be used to check the dimensions of molding components and the height of each component after processing．

Dimensional Check after Mounting Objects

8－2 Measurement of Discs

The following operations are possible with K3TS：
－The output signal of the linear sensor varies continuously．The peak－to－peak hold function makes it possible to measure the difference be－ tween the maximum value and minimum value of the signal in order to measure the decentering of disc－shaped objects．
－The measuring operation is carried on while the TIMING input（a push switch in this example）is ON．When the TIMING input is OFF，the K3TS will hold the final result．

Settings

Level 3

Fim：\quad（A only）
FLinz：\quad GFF（No previous average comparison）
Fin 3：PPDH（Peak－to－peak hold）

Level 2

드：$\quad 4001$ to 20 mA ）
の－5P：－－－
RuE：\quad a
比の：
－Fロロ：－－－
Level 1
［5t］to $55 t 7$ ：（When the comparative output is used，set $\mathrm{HH}, \mathrm{H}, \mathrm{L}$ ，and LL．）
H15 = ---

5IRI：If $X_{2}=20.00, Y_{2}=20.00$

$$
\text { If } X_{1}=4.00, Y_{1}=4.00
$$

Prozt：（set to on if necessary，after all setting operations have been com－ pleted．）
＂－－－＂indicates parameters that are not displayed．
The decentering of the shafts of objects can be measured．If they are not metal objects，use an optical displacement sensor or a supersonic displace－ ment sensor．

8－3 Measurement of Plate Thickness

The following operations are possible with the K3TS：
－Using two displacement sensors，the plate thickness can be measured by setting operating parameter to $\mathrm{K}-(\mathrm{A}+\mathrm{B})$ and by converting the outputs of the displacement sensors into actual figures（the thickness of the plates）．
－With the forced zero function，object thickness can be compared with that of a standard object and the deviation can be measured with ease．

Settings

Level 3

FLin：\quad HRb $(\mathrm{K}-(\mathrm{A}+\mathrm{B}))$
FLine：IFF（No previous average comparison）

Level 2
En： 4020 （ 4 to 20 mA ）
di5p：FR5L
RuE： 1
とロに－－－
GFD： 0.010

Level 1

［5tD to［5t 7：（Example：Checks if the objects are within a thickness of 20 （standard thickness）$\pm 0.5 \mathrm{~mm}$ ．）
HH＝ 23.010
$H=20.50$
$1=19.50$
$12=19010$
（Adjust according to the object）
H45＝ 0101
5CRL：If $X_{2}=8.00, Y_{2}=42.00$
If $X_{1}=40.00, Y_{1}=58.00$
（Input the results of operation for X and Y ．）
$\mu 5 E t:$（Set the standard sensor distance in mm．）
Prot：（set to in if necessary，after all setting operations terminate．）
＂－－－＂stands for a parameter that is not displayed．

8-4 Checking Height Differences

The following operations are possible with the K3TS:

- Using two displacement sensors, the difference in the level of an object surface can be measured by setting operating parameter to A - B.
- With the forced zero function, the difference in the level of an object surface can be compared with that of a standard object.

Settings

Level 3

Fun : 跴 ($\mathrm{A}-\mathrm{B}$)
FLine: \quad IFF (No previous average comparison)
Fing: 50H (Sampling hold)
Level 2
nํ: $4[00$ (4 to 20 mA)
di5p: ---
RuE: \quad a
tDa: 0.010
$\overline{F F D}$
Level 1
[5ta to $55 t 7:$ (Example: Checks if the objects are within a thickness of 3 (standard thickness) $\pm 0.1 \mathrm{~mm}$.)
$H H^{2}=4.00$
$H=3.10$
$1=2.90$
U = 2.00
(Adjust according to the object)
H'H5 = ---
5c.f1: If $\mathrm{X}_{2}=0.00, \mathrm{Y}_{2}=0.00$
If $X_{1}=16.00, Y_{1}=8.00$
(Input the results of operation for X and Y .)
Prozt: (set to a п if necessary, after all setting operations have been completed.)
"---" indicates parameters that are not displayed.
This method can be applied to an ordinary dimensional checking operation. By measuring the distance between the upper surface of the object and the belt conveyor, the dimension of the object will be measured accurately even if the belt is not evenly flat.

Dimensional Check of Molding Parts

8－5 Detection of the Protruding Portion of Cylindrical Objects

The deflection of cylindrical objects does not influence the detecting opera－ tion．Therefore the objects can be rolled．
For example，the burr or a protruding part of a rubber roller or a molded ob－ ject can be detected．
The following operations are possible with the K3TS：
－With the previous average comparison value function，only a rapid change in value will be checked，and a slow change in value（such as a change due to the deflection of the cylindrical sensing object）will be dismissed．

Settings

Level 3

Flin ：\quad（A only）
FLine：an（Previous average comparison）
Flinヨ：mãrī（Normal）
Level 2
In：$\quad 9.999(\pm 9.999 \mathrm{~V})$
dL5P：Fa5t
RuE：\quad a
にロ：－－－

Level 1
［5t0 to［5L 7：
$H=5.010$
$L=0100$
（Take the rolling speed and the burr of the objects into consideration before setting．）
If $X_{2}=9.999, Y_{2}=9.999$
If $X_{1}=-9.999, Y_{1}=-9.999$
Prot：（set to an if necessary，after all setting operations have been com－ pleted．）
＂－－－＂indicates parameters that are not displayed．

8-6 Examples for Forced Zero RAM Models

In the following applications, the zero value is changed repeatedly for measurement purposes.

Standard Height Change

Height Difference Measurement of Each Object

8-7 Examples for Display Shift Function Models

In the following applications, errors are corrected.

Correction of the Sensor Mounting Position

Correction of Height Measurement Values

Correction of sensor errors caused by object colors, materials, and angles.

SECTION 9
 Troubleshooting

If an error message appears while using the K3TS Intelligent Signal Processor, the problem may originate from either the incorrect use of the Intelligent Signal Processor or from external sources such as a faulty sensor. This troubleshooting section suggests some possible sources of error and the corrective actions to be taken.

Troubleshooting Guide
82

Troubleshooting Guide

The following table shows possible errors during the K3TS Intelligent Signal Processor operation and corrective actions to be taken.

Item	Condition	Error message	Output status				Corrective action
			Comparative outputs	BCD output	Linear output	Communications	
Device failure	CPU RAM error, external memory error, memory data error.	Erar	OFF	OFF	OFF	OFF	Turn the power OFF and then ON again once. If the error persists, contact OMRON.
	Corrupted data.	[5L5	OFF	OFF	OFF	OFF	Turn the power OFF and then ON again once. If the error persists, press the mode key and set all parameters again.
Sensor failure	Disconnection or short-circuiting of sensor A.	-	OFF	OFF	OFF	OFF	Check for disconnection, short-circuiting, or wiring of sensor A and repair if necessary.
	Disconnection or short-circuiting of sensor B.	70.6	OFF	OFF	OFF	OFF	Check for disconnection, short-circuiting, or wiring of sensor B and repair if necessary.
Reset	Reset the K3TS.	पडाप	OFF	OFF	OFF	OFF	Check the RESET input. If the K3TS is set to TIMING HOLD state, check the TIMING input.
Overflow, underflow	Input value or display value outside range.	$\begin{array}{\|l\|} 9999 \\ \text { Blinks } \end{array}$	Continues	Continues OVER ON	Continues	Continues OVER ON	Keep the input value and display value within the range.
Output type change	When output type has changed.	[二口)	OFF	OFF	OFF	OFF	Check the output type. If correct, press the mode key. At this time, the parameters are initialized; therefore, set the parameters again. If the error persists, contact OMRON.
Output type error	Output type other than specified.	Er-Da	OFF	OFF	OFF	OFF	Turn the power OFF and then ON again once. If the error persists, contact OMRON.

Appendix A
 Standard Models

The K3TS Intelligent Signal Processor is suited to essentially any application. The following lists the standard models available:

1, 2: Input Sensors Codes
SD: DC voltage/current inputs
3: Series number
1: Standard Specifications
2: Forced zero RAM
3: Display shift function

4: Power supply voltage
1: 100 to 240 VAC
2: 12 to 24 VDC
5: Type of display
B: Set value LED display
D: Thumbwheel switches (See note 4)
6, 7: Output Type Codes
C1: 3 comparative relay contact outputs (See note 1)
(H, PASS, L: SPDT)
C2: 5 comparative relay contact outputs (See note 2)
(HH, H, L, LL: SPST-NO; PASS: SPDT)
C5: 5 comparative relay contact outputs (See note 2)
(HH, H, L, LL: SPST-NC; PASS: SPDT)
T1: 5 transistor outputs (See note 3)
(NPN open collector)
T2: 5 transistor outputs (See note 3)
(PNP open collector)
Note 1. Thumbwheel Switches Models only.
2. Set Value LED Display Models only.
3. Thumbwheel switches models have the following transistor outputs only: $\mathrm{H}, \mathrm{PASS}$, and L .
4. Thumbwheel switches models have standard specifications only.

Optional Output Types

Processors with the following outputs are also available:

Set value LED display	Thumb- wheel switches	Option output type codes/output configuration
Yes	Yes	B4: BCD output + 5 transistor outputs (NPN open collector) (See note)
Yes	---	L4: 4 to $20 \mathrm{~mA}+5$ transistor outputs (NPN open collector)
Yes	---	L5: 1 to $5 \mathrm{~V}+5$ transistor outputs (NPN open collector)
Yes	---	L6: mV/digit + 5 transistor outputs (NPN open collector)
Yes	---	S5: RS-485 + 5 transistor outputs (NPN open collector)
Yes	---	S6: RS-422 + 5 transistor outputs (NPN open collector)

Note
Thumbwheel Switches Models have the following transistor outputs only: H, PASS, and L.

Appendix B
 Sensor Models

The following lists the applicable sensor models that can be used with the K3TS Intelligent Signal Processor along with the K3TS factory-set parameters associated with the use of these sensors. Examples of prescaling settings are also given.

Applicable Sensors

The following list provides some typical examples of connectable OMRON Sensors. For further details, please refer to the OMRON sensor catalog.

Linear Sensors

Sold separately.

Displacement Sensors

Sensor	Model	in	$5[81$					5LGL description
			X_{1}	Y_{1}	X_{2}	Y_{2}	Decimal	
LED displacement sensor	Z4W-V25R	420	51510	E 110	2001	29010	00.00	21 to 29 mm ($25 \pm 4 \mathrm{~mm}$)
Laser displacement sensor	Z4W-A2	4200	240	45010	2000	5500	00.00	$\begin{aligned} & 45 \text { to } 55 \mathrm{~mm} \\ & (50 \pm 5 \mathrm{~mm}) \end{aligned}$
Laser displacement meters	3Z4M-J1001- \square	4200	24010	3010	2010	5000	00.00	30 to 50 mm ($40 \pm 10 \mathrm{~mm}$)
	$\begin{aligned} & \text { 3Z4M-J2001- } \\ & \text { (See note) } \end{aligned}$	9999	75000	35010	5010	4500	00.00	30 to 50 mm ($40 \pm 10 \mathrm{~mm}$)
	3Z4M-J1222-■	4520	24010	7010	20010	13010	000.0	70 to 130 mm ($100 \pm 30 \mathrm{~mm}$)
	$\begin{array}{\|l} \hline \text { 3Z4M-J2222- } \square \\ \text { (See note) } \end{array}$	9999	05000	85010	5000	$1: 50$	000.0	70 to 130 mm ($100 \pm 30 \mathrm{~mm}$)
Laser displacement sensors	Z4M-W40	9999	-41010	30010	4010	5000	00.00	30 to 50 mm ($40 \pm 10 \mathrm{~mm}$)
	Z4M-W100	9999	-41010	06010	4010	14010	000.0	60 to 140 mm ($100 \pm 40 \mathrm{~mm}$)
Parallel-beam linear sensor	Z4LA-1030	i5	10100	10101	5000	0000	00.00	0 to 10 mm (sensing width)
Ultrasonic displacement sensors	E4DA-LS E4DA-WL1C (See note)	4200	24010	30010	2010	70010	00.00	30 to 70 mm ($50 \pm 20 \mathrm{~mm}$)

Note The maximum output range of the $3 Z 4 \mathrm{M}-\mathrm{J} 2$ is $\pm 10 \mathrm{~V}$. However, since the input range for K3TS scaling is $\pm 9.999 \mathrm{~V}$, the output range of the $3 Z 4 \mathrm{M}-\mathrm{J} 2$ is set to $\pm 5.000 \mathrm{~V}$ (50% output). Yet there is no scaling error, even if the output range exceeds 50%.

Linear Proximity Sensors

Sensor	Amplifier	-n	$5[$ git					5[RIL description
			X_{1}	Y_{1}	X_{2}	Y_{2}	Decimal	
E2CA-XISRAA	$\begin{aligned} & \text { E2CA-AN4C } \\ & \text { E2CA-AL4C } \end{aligned}$	$\begin{array}{\|l\|} \hline 4 D 20 \\ 4 D 20 \end{array}$	$\begin{aligned} & 104107 \\ & 040107 \end{aligned}$	$\begin{aligned} & 10301 \\ & 13010 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 2010 \\ 2010 \end{array}$	$\begin{array}{\|l\|l\|} \hline 15010 \\ 15010 \end{array}$	$\begin{array}{\|l\|l} \hline 0.00 .0 \\ \hline 0.0 \end{array}$	$\begin{aligned} & 0.3 \text { to } 1.5 \mathrm{~mm} \\ & (8 \times 8 \times 1 \mathrm{~mm}) \end{aligned}$
E2CA-X2A	$\begin{aligned} & \text { E2CA-AN4D } \\ & \text { E2CA-AL4D } \end{aligned}$	$\begin{aligned} & 4020 \\ & 4 D 20 \end{aligned}$	$\begin{aligned} & \hline 1010101 \\ & 04010 \end{aligned}$	$\begin{aligned} & \hline 14010 \\ & 04017 \end{aligned}$	$\begin{aligned} & 2010 \\ & 201010 \end{aligned}$	$\begin{array}{\|l\|l\|l\|} \hline 20010 \\ 2010 \end{array}$	טוםם.0.0.0	0.4 to 2.0 mm ($12 \times 12 \times 1 \mathrm{~mm}$)
E2CA-X5A	E2CA-AN4E E2CA-AL4E	$\begin{aligned} & 4020 \\ & 4020 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 14010 \\ & 14010 \\ & \hline \end{aligned}$	$\begin{aligned} & 1000 \\ & 10001 \end{aligned}$	$\begin{aligned} & \hline 2010 \\ & 2010 \end{aligned}$	$\begin{aligned} & \hline 5001 \\ & 501010 \\ & \hline \end{aligned}$	$\text { \| } \begin{aligned} & 0.0000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 1.0 \text { to } 5.0 \mathrm{~mm} \\ & (18 \times 18 \times 1 \mathrm{~mm}) \end{aligned}$
E2CA-X10A	E2CA-AN4F E2CA-AL4F	$\begin{aligned} & 4020 \\ & 4 D 20 \end{aligned}$	$\begin{aligned} & \hline 141010 \\ & 104010 \end{aligned}$	$\begin{aligned} & \hline 10001 \\ & 02000 \end{aligned}$	$\begin{aligned} & \hline 201010 \\ & 2010 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 101010 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.00 .00 \\ & \hline 0.0 \\ & \hline \end{aligned}$	2.0 to 10.0 mm $(30 \times 30 \times 1 \mathrm{~mm})$

Contact Linear Sensors

Sensor	Amplifier	in	$5 ¢ 8 \mathrm{LL}$					SCRL description
			X_{1}	Y_{1}	X_{2}	Y_{2}	Decimal	
Contact linear sensors	D5M-5 \square ■	4020	0400	0000	2000	5000	0.000	0 to 5 mm
	D5M-10П口	4020	04100	0000	2000	1000	00.00	0 to 10 mm

Pressure Sensors

Model	in	$5 C \cdot \underline{L}$					5[RIL description
		X_{1}	Y_{1}	X_{2}	Y_{2}	Decimal	
E8CA-R8	4020	0400	060 (Q 7 g 010$)$	2000	$\begin{aligned} & \hline 0800 \\ & (70010) \end{aligned}$	$\left(\begin{array}{l} 0.000 \\ (0,00) \end{array}\right.$	$\begin{aligned} & -0.8 \text { to } 0.8 \mathrm{kgf/cm}{ }^{2} \\ & (-78 \text { to } 78 \mathrm{kpa}) \end{aligned}$
E8AA-M05	4020	0400		2000	$\begin{aligned} & \hline 5000 \\ & (4900) \end{aligned}$	$\left(\begin{array}{l} 0.000 \\ (0,0.0) \end{array}\right.$	0 to $5 \mathrm{kgf} / \mathrm{cm}^{2}$ (0 to 490 kpa)
E8AA-M10	4020	0400		2000	$\begin{array}{\|l\|} \hline 1000 \\ (9000) \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline 0.00 \\ (000.0) \end{array}$	$\begin{array}{\|l} \hline 0 \text { to } 10 \mathrm{~kg} / \mathrm{cm}^{2} \\ (0 \text { to } 980 \mathrm{kpa}) \\ \hline \end{array}$

Timing Sensors

Sold separately.

Photoelectric Sensors

Classification		Model	Specifications			
		Power supply voltage	Control output	Residual voltage		
3-wire DC	NPN		E3XR- \square E4 \square E3S-X3 E3L E3HF E3HS E3HT E3HC	12 to 24 VDC $\pm 10 \%$ Ripple (p-p) 10\% max.	80 mA max.	0.75 V max. at 10 mA
		$\begin{aligned} & \text { E3C-GE4 } \\ & \text { E3C-WE4 } \end{aligned}$				
		E3XR-CC4 E3X E3S- \square G4 \square E3S-LS5C4 E3S-LS20C4 E3C-JC4(P)	100 mA max.		0.7 V max. at 10 mA	
		E3C-WH4F				
		E3N	200 mA max.		1 V max. at 10 mA	
		E3ML	80 mA max.			
		E3S-LS3C1D	$\begin{array}{\|l} 5 \text { to } 12 \text { VDC } \\ \text { Ripple (p-p) 10\% max. } \end{array}$	30 mA max.		
		E3S-A/B	$\begin{aligned} & 10 \text { to } 30 \text { VDC } \\ & \text { Ripple (p-p) 10\% max. } \end{aligned}$	100 mA max.	0.4 V max. at 16 mA	

Proximity Sensors

Classification		Model	Specifications			
		Power supply voltage	Control output	Residual voltage		
3-wire DC	NPN		$\begin{array}{\|l} \hline \text { TL-X-E } \\ \text { TL-X-L (DC) } \end{array}$	12 to 24 VDC	200 mA max.	1 V max. at 10 mA
		E2EC	5 to 24 VDC	100 mA max.	0.5 V max. at 10 mA	
		TL-X $\square \mathrm{C}$	12 to 24 VDC	50 mA max.		
		E2C-JC4A E2E- \square C TL-W $\square \mathrm{MC}$ TL-T $\square \mathrm{E}$ E2EV E2K-F $\square C$		100 mA max.		
		$\begin{aligned} & \text { E2C-GE4 } \\ & \text { TL-N } \square \mathrm{E} \\ & \text { TL-F } \square \mathrm{E} \\ & \text { TL-H } \square \mathrm{E} \end{aligned}$				
		$\begin{aligned} & \text { E2E-X } \square \mathrm{E}(-\mathrm{P} 1) \\ & \text { E2F-X } \square \mathrm{E} \\ & \text { TL-W5E } \\ & \text { E2K-C } \square \mathrm{E} \end{aligned}$		200 mA max.		
		$\begin{aligned} & \text { E2C-AM4A } \\ & \text { E2C-WH4A } \\ & \text { E2Q-N } \square \text { E3 } \end{aligned}$				
		TL-X $\square \mathrm{E}$			1 V max. at 10 mA	
		E2M- $\square \mathrm{P}$	24 VDC $\pm 15 \%$		0.5 V max. at 10 mA	

Appendix C
 Specifications

Specifications and Ratings

The following lists the ratings and characteristics of the K3TS Intelligent Signal Processor:

Ratings

Supply voltage	100 to 240 VAC ($50 / 60 \mathrm{~Hz}$); 12 to 24 VDC
Operating voltage range	85% to 110% of supply voltage
Power consumption	15 VA max. (max. AC load); 10 W max. (max. DC load)
Insulation resistance	10 MW min. (at 500 VDC) between external terminal and case
Dielectric withstand voltage	2,000 VAC min. for 1 min between external terminal and case
Noise immunity	$+1,500 \mathrm{~V}$ on power supply terminals in normal or common mode $+1 \mathrm{~ms}, 100 \mathrm{~ns}$ for square-wave noise with 1-ns rise
Vibration resistance	Malfunction: 10 to $55 \mathrm{~Hz}, 0.5-\mathrm{mm}$ for 10 min each in X, Y, and Z directions Destruction: 10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ for 2 hrs each in X, Y, and Z directions
Shock resistance	Malfunction: $100 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 10G) for 3 times each in X, Y, and Z directions Destruction: $300 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 30G) for 3 times each in X, Y, and Z directions
Ambient temperature	Operating: -10% to 55% C (with no icing) Storage: $\quad-20 \%$ to $65 \% \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 35\% to 85\% (with no condensation)
Ambient atmosphere	Must be free of corrosive gas

Characteristics

Input signal	DC voltage/current (4 to 20 mA , 1 to $5 \mathrm{~V},+9.999 \mathrm{~V}$) 2 channels
A/D conversion method	Sequential conversion system
Sampling time	1.04 ms
Display refresh period	0.1/1.0/2.0/3.0/4.0 s (switch selectable)
Max. displayed digits	4 digits (+9999)
Display	7-segment LED
Polarity display	"-" is displayed automatically with a negative input signal.
Zero display	Leading zeroes are not displayed
Scaling function	Programmable with front-panel key inputs (range of display: +9999 with a decimal position of 10^{-1} to 10^{-3})
Display shift function	With front key input in a range between -9999 and 9999, applicable to models incorporating a display shift function.
2-input operation function	$A, A+B, A-B, K-(A+B),(1-B / A) \times 100, B / A \times 100$
HOLD function	Sampling hold (The data at the rising edge of the TIMING input is held.) Maximum hold (The maximum data while TIMING input is ON is held.) Minimum hold (The minimum data while TIMING input is ON is held.) Peak-to-peak hold (The difference between the maximum value and the minimum value of the data while TIMING input is ON is held.)
External controls	TIMING: (TIMING input) HOLD: (Process value held) RESET: (Maximum/minimum data reset, measurement reset) ZERO: (Forced zero) BANK: (Selection of one bank out of 8 banks of set values)
Comparative output hysteresis setting	Programmable with front-panel key inputs (001 to 999 digits).
Timing delay	1.99 s max.
Output OFF delay	1.99 s max.
Other functions	Set values protect, average value comparison mode, setting of number of process values to average ($1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192$)
Output configuration	Relay contact outputs (5 or 3 outputs), Transistor outputs (NPN open collector) (BCD, linear, and communications models are available by special order)
Delay in comparative outputs	Normal parameter: 6.24 ms Sampling HOLD parameter: 5.20 ms
Enclosure rating	Front panel: IEC IP50 Rear case: IEC IP20 Terminals: IEC IPOO
Memory protection	Non-volatile memory (EEPROM)

Measuring Ranges

Input range	Measuring range	Input impedance	Reliability (at 25\%+5\%C)	Instantaneous overload
$\mathbf{4}$ to $\mathbf{2 0}$	2.40 to 26.00 mA	10 W	1 1-ch. input: $+0.1 \% \mathrm{FS}+1$ digit max. 2-ch input: $+0.2 \% \mathrm{FS}+1$ digit max.	+200 mA
$\mathbf{1}$ to $\mathbf{5}$	0.600 to 6.500 V	1 MW	+200 V	
9.999	+9.999 V	1 MW		+200 V

List of Factory－set Parameters

Setting level	Parameter		Displayed characters		Initial value	
Level 1	Set value		［5ta to 7	HH	9999	
			H	9999		
			L	09999		
			LL	09999		
	Hysteresis			Hリ5	－－－	ก10
	Prescaling			5 CRIL	X_{2}	2000
			Y_{2}		200	
			X_{1}		410	
			Y_{1}		410	
			Decimal		01010	
	Display shift	Shift value		－n－75	－－－	01000
		Shift protect	Pr－05	－－－	FFF	
	K constant		H5EL	－－－	01010	
	Linear output range		LSEL	LH	5999	
			LL	प9999		
	Set value protect			Prot	－－－	IFF
Level 2	Input range		－n	－－－	4 CO	
	Display refresh period		dicp	－－－	FFSL	
	Process values averaging		RuE	－－	\square	
	TIMING－delay		tロa＇	－－－	0.00	
	OFF－delay		arba＇	－－	0.00	
	Unit no．		Una	－－－	00	
	Baud rate		bis	－－－	9600	
Level 3	Operating parameter 1		FLin i	－－－	8	
	Operating parameter 2		Flinc＇	－－	arF	
	Operating parameter 3		F！in	－－－	пロース	

Index

A

```
application examples
    checking height differences,76
    detection of the protruding portion of cylindrical objects, 78
    Display Shift Function Models, 78
    Forced Zero RAM Models, }7
    height measurement/discrimination of objects, 70
    measurement of discs,72
    measurement of plate thickness,74
```

averaging, number of process values to average, 2,33

B

bank indicators, K3TS with Set Value LED Display, 6
bank selection, 2, 13
baud rate, 47

C

COM, 12
common input terminals, 12
communications unit number, 46
comparative output response time
relay output, 64
setting parameters, 64
comparative output status indicators
K3TS with Set Value LED Display, 6
K3TS with Thumbwheel Switches, 8

D

DATA TEACH key

K3TS with Set Value LED Display, 7
K3TS with Thumbwheel Switches, 9
device failure, 82
dimensions, 16
Display Key
K3TS with Set Value LED Display, 7
K3TS with Thumbwheel Switches, 9
display refresh period, 2, 39
display shift function
setting shift protect, 62
settings. See setting

F

factory-set parameters list, 91
features, 1
forced zero, 2,53
front panel nomenclature and functions K3TS with Set Value LED Display, 6 K3TS with Thumbwheel Switches, 8

H

HOLD, 13, 53
hold measured value, 3
hysteresis, 2
setting, 41

I

input range, 3, 32
inputs, 12
bank selection, 13
COM, 12
common input terminals, 12
HOLD, 13
power, 12
RESET, 12
TIMING, 13
timing sensor power supply, 12
ZERO, 13

K constant, 2, 38

L

Level Key
K3TS with Set Value LED Display, 7
K3TS with Thumbwheel Switches, 9
linear output range, 44

M

maximum/minimum values
resetting, 3, 51
retaining, 3, 51
models
options, 83
sensors, 85
standard, 83

0

OFF-delay, 2, 42
operating parameter 1, 2-input, 25
operating parameter 2 , previous average value comparison, 27
operating parameter 3, holding data (TIMING input), 29
operating parameters, 2
operation keys
DATA TEACH key, 7, 9
Display Key, 7, 9
K3TS with Set Value LED Display, 7
K3TS with Thumbwheel Switches, 9
Level Key, 7, 9
Shift Key, 7, 9
Up Key, 7, 9
operations
RUN mode, 49
special functions, 55
operations in RUN mode
changing set values, 50
checking set values, 49
forced zero, 53
HOLD, 53
resetting maximum/minimum values, 51
retaining maximum/minimum values, 51
output type change, 82
output type error, 82
outputs, 14
overflow, 82

P

panel mounting, 16
parameter
before setting the parameters, 20
operations, 49
setting, 25
setting procedure, 22
parameters
for display, 36
for output, 40
parameters by functions, 24
parameters for each model
Set Value LED Display Model, 22
Thumbwheel Switches Models, 23
power, 12
prescale value, 2
prescaling, 36
process value display
K3TS with Set Value LED Display, 6
K3TS with Thumbwheel Switches, 8
protecting set values, 43

PV display
K3TS with Set Value LED Display, 6
K3TS with Thumbwheel Switches, 8
PV display status indicators
K3TS with Set Value LED Display, 6
K3TS with Thumbwheel Switches, 8

R

ratings, 89
RESET, 12
RUN mode, 49

S

sampling time. See comparative output response time
sensors, 85
linear, 18,85
displacement, 85
linear proximity, 86
pressure, 86
timing, 18, 86
photoelectric, 87
proximity, 87
set value display, K3TS with Set Value LED Display, 6
set values, 2, 40
changing, 2,50
checking, 2, 49
protecting, 2,43
setting, 2
baud rate, 47
communications unit number, 46
display refresh period, 39
display shift function, 61
for display, 36
for each model, 22
for output, 40
hysteresis, 41
K constant, 38
linear output range, 2,44
OFF-delay, 42
prescaling, 36
set values, 40
setting procedure, 21
setting the parameters, level of setting mode and parameters, 20
Shift Key
K3TS with Set Value LED Display, 7
K3TS with Thumbwheel Switches, 9
special functions, 55
teaching function, 57
test function, 55
specifications, 89
SV display, K3TS with Set Value LED Display, 6
SV display status indicator, K3TS with Set Value LED Display, 6

Index

T	U
teaching function, 3, 57	underflow, 82 unit
test function, 55	K3TR with Set Value LED Display, 7 K3TS with Thumbwheel Switches, 8
test mode, 3 thumbwheel switches, K3TS with Thumbwheel Switches, 8	Up Key K3TS with Set Value LED Display, 7 K3TS with Thumbwheel Switches, 9
TIMING input, 13	
timing sensor power supply, 12	Z
TIMING-delay, 2 , 35 troubleshooting guide, 82	ZERO, 13 zero-shift, 2, 53

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.
Cat. No. Z79-E1-2A

> Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the previous version.

Revision code	Date	Revised content
1	October 1991	Original production
1A	June 1992	Page 67: Z4W-VS changed to Z4W-V and KSET $=20.00$ changed to $\mathrm{KSET}=$ 70.00 in the bottom diagram. Page 82: The information in "Delay in comparative inputs" of the Characteristics table has been replaced.
1B	November 1992	Page 18: Information about short-circuiting terminals has been added after the diagrams in 5-2 Timing Sensors.
2	October 1993	Page 6: Information added to PV display status indicator row in table. Page 7: DATA TEACH key row corrected. Page 12: INB- corrected to INB+ for the terminal configuration. Open collector configuration for the common input terminals corrected. Page 13: Circuit diagram in table corrected. Page 18: Information added after the note. Page 20: Setting level 1 column in diagram corrected. Pages 22 to 24: Model numbers added to table. Prescale value row added to table. Page 24: Prescale value row in table corrected. Page 26: Information added after graphic. Page 36: Information added after second paragraph. Page 37: Decimal points in display graphic added. Pages 53, 54: Forced Zero operation information corrected. Pages 57, 59: First sentence was rewritten. Page 59: Decimal point in display graphic added. Page 61,62: New subsection added. Page 63 to 67: New section added. Page 70: Last sentence rewritten. Page 70: Level 2 data corrected. Page 71: Application examples added. Page 75: Series number information corrected. Note 4 added. Pages 77, 78: Sensor models added to the lists. Page 82: Sampling period changed to sampling time and data for it corrected. Page 83: Display shift rows added. Page 85: Table replaced. Page 87: Information corrected in table. Page 90: Display shift function row added.
2A	August 1997	Page 54: Paragraph added to Difference between K3TS with Forced Zero RAM Specifications and Standard K3TS.

[^0]: 7-1 Sampling and Delay in Comparative Outputs 64

