
OPERATION MANUAL
Function Blocks/
Structured Text

Cat. No. W447-E1-15

SYSMAC
CX-Programmer Ver. 9.@
CXONE-AL@@D-V4

Copyrights
Microsoft product screen shots reprinted with permission from Microsoft Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior
written permission of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because
OMRON is constantly striving to improve its high-quality products, the information contained in this manual is
subject to change without notice. Every precaution has been taken in the preparation of this manual. Neverthe-
less, OMRON assumes no responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained in this publication.

NOTE

• Microsoft, and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United
States and other countries.

Other company names and product names in this document are the trademarks or registered trademarks of their
respective companies.

Trademarks

SYSMAC

CX-Programmer Ver. 9.@
CXONE-AL@@D-V4

Operation Manual
Function Blocks/Structured Text
Revised April 2016

iv

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

!DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury. Additionally, there may be severe property damage.

!WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury. Additionally, there may be severe property damage.

!Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers to
an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PLC” means Programmable Controller. “PC” is used, however, in some Program-
ming Device displays to mean Programmable Controller.

Visual Aids
The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient opera-
tion of the product.

1,2,3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.
v

vi

Part 1: Function Block

Part 2: Structured Text

SECTION 1 Introduction to Function Blocks
SECTION 2 Function Block Specifications
SECTION 3 Creating Function Blocks

SECTION 4 Introduction to Structured Text
SECTION 5 Structured Text (ST) Language Specifica-
tions
SECTION 6 Creating ST Programs

Appendices

TABLE OF CONTENTS

PRECAUTIONS . xix

1 Intended Audience . xx
2 General Precautions . xx
3 Safety Precautions . xx
4 Application Precautions. xxi

Part 1:
Function Blocks

SECTION 1
Introduction to Function Blocks . 3

1-1 Introducing the Function Blocks . 4
1-2 Function Blocks . 11
1-3 Variables . 18
1-4 Converting Function Block Definitions to Library Files. 23
1-5 Usage Procedures. 23
1-6 Version Upgrade Information . 25

SECTION 2
Function Block Specifications . 31

2-1 Function Block Specifications. 32
2-2 Data Types Supported in Function Blocks . 43
2-3 Instance Specifications . 44
2-4 Programming Restrictions . 53
2-5 Function Block Applications Guidelines. 58
2-6 Precautions for Instructions with Operands Specifying the First or Last of Multiple Words 67
2-7 Instruction Support and Operand Restrictions. 70
2-8 CPU Unit Function Block Specifications . 71
2-9 Number of Function Block Program Steps and Instance Execution Time 78

SECTION 3
Creating Function Blocks. 81

3-1 Procedural Flow. 82
3-2 Procedures . 84
ix

TABLE OF CONTENTS

Part 2:
Structured Text (ST)

SECTION 4
Introduction to Structured Text . 133

4-1 ST Language . 134
4-2 CX-Programmer Specifications. 135

SECTION 5
Structured Text (ST) Language Specifications 137

5-1 Structured Text Language Specifications . 138
5-2 Data Types Used in ST Programs . 139
5-3 Inputting ST Programs. 140
5-4 ST Language Configuration . 144
5-5 Statement Descriptions . 155
5-6 ST-language Program Example . 173
5-7 Restrictions . 174

SECTION 6
Creating ST Programs . 177

6-1 Procedures . 178

Appendices
A System-defined external variables supported in function blocks . 191
B Structured Text Errors . 193
C Function Descriptions . 197

Index. 223

Revision History . 225
x

About this Manual:

This manual describes the CX-Programmer operations that are related to the function block functions
and Structured Text (ST) functions. The function block and structure text functionality of CX-Program-
mer is supported by CJ2H, CJ2M CPU Units, by CS1-H, CJ1-H, and CJ1M CPU Units with unit version
3.0 or later, by CP-series CPU Units, and by NSJ-series and FQM1-series Controllers.

Some function block and structure text functionality, however, is supported only by CJ2H CPU Units, by
CS1-H, CJ1-H, and CJ1M CPU Units with unit version 4.0 or later.

For details, refer to 1-6 Version Upgrade Information.

For information on functionality other than function blocks and structure text, refer to the following man-
uals.

• CX-Programmer

: CX-Programmer Operation Manual (W446) and CX-Programmer Operation Manual: SFC (W469)

• CPU Unit

: The operation manuals for the CS-series, CJ-series, CP-series, and NSJ-series Controllers

CX-Programmer Ver. 9.@ Manuals
Name Cat. No. Contents

CXONE-AL@@D-V4
CX-Programmer Operation Manual
Function Blocks/Structured Text

W447
(this
manual)

Explains how to use the CX-Programmer software’s function
block and structured text functions. For explanations of other
shared CX-Programmer functions, refer to the CX-Program-
mer Operation Manual (W446).

CXONE-AL@@D-V4
CX-Programmer Operation Manual

W446 Provides information on how to use the CX-Programmer for
all functionality except for function blocks.

CXONE-AL@@D-V4
CX-Programmer Operation Manual: SFC

W469 Explains how to use the SFC programming functions. For
explanations of other shared CX-Programmer functions, refer
to the CX-Programmer Operation Manual (W446).

CX-Net Operation Manual W362 Information on setting up networks, such as setting data links,
routing tables, and unit settings.

CXONE-AL@@D-V4
CX-Integrator Operation Manual

W464 Describes the operating procedures for the CX-Integrator.
xi

CJ2H, CJ2M, CS1-H, CJ1-H, and CJ1M CPU Unit Manuals
Name Cat. No. Contents

SYSMAC CJ Series
CJ2H-CPU6@-EIP, CJ2H-CPU6@
CJ2M-CPU1@, CJ2M-CPU3@
Programmable Controllers
Hardware User's Manual

W472 Provides an outline of and describes the design, installation,
maintenance, and other basic operations for the CJ-series
CJ2 CPU Units.

The following information is included:
Overview and features
System configuration
Installation and wiring
Troubleshooting

Use this manual together with the W473.

SYSMAC CJ Series
CJ2H-CPU6@-EIP, CJ2H-CPU6@
CJ2M-CPU1@, CJ2M-CPU3@
Programmable Controllers
Software User's Manual

W473 Describes programming and other methods to use the func-
tions of the CJ2 CPU Units.

The following information is included:
CPU Unit operation
Internal memory areas
Programming
Tasks
CPU Unit built-in functions

Use this manual together with the W472.

SYSMAC CS/CJ Series
CS1G/H-CPU@@ -EV1, CS1G/H-CPU@@H,
CS1D-CPU@@H, CS1D-CPU@@S,
CJ2H-CPU6@-EIP, CJ2H-CPU6@,
CJ2M-CPU1@, CJ2M-CPU3@
CJ1H-CPU@@H-R
CJ1G-CPU@@, CJ1G/H-CPU@@H,
CJ1G-CPU@@P, CJ1M-CPU@@
SYSMAC One NSJ Series
NSJ@-@@@@(B)-G5D
NSJ@-@@@@(B)-M3D
Programmable Controllers
Instructions Reference Manual

W474 Describes the ladder diagram programming instructions sup-
ported by CS/CJ-series or NSJ-series PLCs.

When programming, use this manual together with the Oper-
ation Manual or Hardware User's Manual (CS1: W339, CJ1:
W393,or CJ2:W472) and Programming Manual or Software
User's Manual (CS1/CJ1:W394 or CJ2:W473).

SYSMAC CS Series
CS1G/H-CPU@@H
Programmable Controllers
Operation Manual

W339 Provides an outline of and describes the design, installation,
maintenance, and other basic operations for the CS-series
PLCs.

The following information is included:
An overview and features
The system configuration
Installation and wiring
I/O memory allocation
Troubleshooting

Use this manual together with the W394.

SYSMAC CJ Series
CJ1G-CPU@@, CJ1G/H-CPU@@H,
CJ1H-CPU@@H-R, CJ1G-CPU@@P,
CJ1M-CPU@@
Programmable Controllers
Operation Manual

W393 Provides an outline of and describes the design, installation,
maintenance, and other basic operations for the CJ-series
PLCs.

The following information is included:
An overview and features
The system configuration
Installation and wiring
I/O memory allocation
Troubleshooting

Use this manual together with the W394.
xii

NSJ-series NSJ Controller Manual
Refer to the following manual for NSJ-series NSJ Controller specifications and handling methods not
given in this manual.

SYSMAC CS/CJ Series
CS1G/H-CPU@@-EV1, CS1G/H-CPU@@H,
CS1D-CPU@@H, CS1D-CPU@@S,
CJ1G-CPU@@, CJ1G/H-CPU@@H,
CJ1H-CPU@@H-R, CJ1G-CPU@@P,
CJ1M-CPU@@, NSJ@-@@@@(B)-G5D,
NSJ@-@@@@(B)-M3D
Programmable Controllers
Programming Manual

W394 Describes programming and other methods to use the func-
tions of the CS/CJ-series and NSJ-series PLCs.

The following information is included:
Programming
Tasks
File memory
Other functions
Use this manual together with the W339 or W393.

SYSMAC CS/CJ Series
CS1G/H-CPU@@-EV1, CS1G/H-CPU@@H,
CS1D-CPU@@H, CS1D-CPU@@S,
CJ1G-CPU@@, CJ1G/H-CPU@@H,
CJ1H-CPU@@H-R, CJ1G-CPU@@P,
CJ1M-CPU@@, NSJ@-@@@@(B)-G5D,
NSJ@-@@@@(B)-M3D
Programmable Controllers
Instructions Reference Manual

W340 Describes the ladder diagram programming instructions sup-
ported by CS/CJ-series and NSJ-series PLCs.

When programming, use this manual together with the Oper-
ation Manual (CS1: W339 or CJ1: W393) and Programming
Manual (W394).

CS1G/H-CPU@@-EV1, CS1G/H-CPU@@H
CS1D-CPU@@H, CS1D-CPU@@S,
CJ1H-CPU@@H-R, CJ1G-CPU@@,
CJ1M-CPU@@, CJ1G-CPU@@P,
CJ1G/H-CPU@@H, CJ2H-CPU6@-EIP,
CJ2H-CPU6@, CJ2M-CPU@@,
CS1W-SCU@@-V1, CS1W-SCB@@-V1,
CJ1W-SCU@@-V1, CP1H-X@@@@-@,
CP1H-XA@@@@-@, CP1H-Y@@@@-@,
CP1L-M/L@@@-@, CP1E-N@@D@-@
NSJ@-@@@@(B)-G5D, NSJ@-@@@@(B)-M3D
SYSMAC CS/CJ Series Communications
Commands Reference Manual

W342 Describes the communications commands that can be
addressed to CS/CJ-series CPU Units.

The following information is included:
C-series (Host Link) commands
FINS commands

Note: This manual describes commands that can be sent to
the CPU Unit without regard for the communications path,
which can be through a serial communications port on the
CPU Unit, a communications port on a Serial Communica-
tions Unit/Board, or a port on any other Communications
Unit.

Cat. No. Models Name Description

W452 NSJ5-TQ@@(B)-G5D
NSJ5-SQ@@(B)-G5D
NSJ8-TV@@(B)-G5D
NSJ10-TV@@(B)-G5D
NSJ12-TS@@(B)-G5D
NSJ5-TQ@@(B)-M3D
NSJ5-SQ@@(B)-M3D
NSJ8-TV@@(B)-M3D
NSJW-ETN21
NSJW-CLK21-V1
NSJW-IC101

NSJ Series
Operation
Manual

Provides the following information about the NSJ-series NSJ Con-
trollers:

Overview and features
Designing the system configuration

Installation and wiring

I/O memory allocations
Troubleshooting and maintenance

Use this manual in combination with the following manuals: SYS-
MAC CS Series Operation Manual (W339), SYSMAC CJ Series
Operation Manual (W393), SYSMAC CS/CJ Series Programming
Manual (W394), and NS-V1/-V2 Series Setup Manual (V083)

Name Cat. No. Contents
xiii

FQM1 Series Manuals (Unit Version 3.0 or Later)
Refer to the following manuals for specifications and handling methods not given in this manual for
FQM1 Series unit version 3.0 (FQM1-CM002/MMP22/MMA22).

CP-series PLC Unit Manuals
Refer to the following manuals for specifications and handling methods not given in this manual for CP-
series CPU Units.

Installation from CX-One
For details on procedures for installing the CX-Programmer from CX-One FA Integrated Tool Package,
refer to the CX-One Ver. 3.0 Setup Manual provided with CX-One.

Cat. No. Models Name Description

O012 FQM1-CM002
FQM1-MMP22
FQM1-MMA22

FQM1 Series
Operation Manual

Provides the following information about the FQM1-series Modules
(unit version 3.0):
Overview and features

Designing the system configuration

Installation and wiring
I/O memory allocations

Troubleshooting and maintenance

O013 FQM1-CM002
FQM1-MMP22
FQM1-MMA22

FQM1 Series
Instructions
Reference Manual

Individually describes the instructions used to program the FQM1.
Use this manual in combination with the FQM1 Series
Operation Manual (O012) when programming.

Cat. No. Models Name Description

W450 CP1H-X@@@@-@
CP1H-XA@@@@-@
CP1H-Y@@@@-@

SYSMAC CP Series
CP1H CPU Unit
Operation Manual

Provides the following information on the CP-series CP1H PLCs:

• Overview/Features
• System configuration
• Mounting and wiring
• I/O memory allocation
• Troubleshooting

Use this manual together with the CP1H/CP1L Programmable
Controllers Programming Manual (W451).

W462 CP1L-M@@@@-@
CP1L-L@@@@-@

SYSMAC CP Series
CP1L CPU Unit Oper-
ation Manual

Provides the following information on the CP-series CP1L PLCs:
• Overview/Features
• System configuration
• Mounting and wiring
• I/O memory allocation
• Troubleshooting

Use this manual together with the CP1H Programmable Control-
lers Programming Manual (W451).

W451 CP1H-X@@@@-@
CP1H-XA@@@@-@
CP1H-Y@@@@-@
CP1L-M@@@@-@
CP1L-L@@@@-@

SYSMAC CP Series
CP1H/CP1L CPU
Unit Programming
Manual

Provides the following information on the CP-series CP1H and
CP1L PLCs:

• Programming instructions
• Programming methods
• Tasks

Use this manual together with the CP1H/CP1L Programmable
Controllers Operation Manual (W450).

Cat. No. Model Manual name Contents

W463 CXONE-AL@@D-V4/
CXONE-LT@@@-V4

CX-One Setup Manual Installation and overview of CX-One FA
Integrated Tool Package.
xiv

Overview of Contents
Precautions provides general precautions for using the CX-Programmer.

Part 1

Part 1 contains the following sections.

Section 1 introduces the function block functionality of the CX-Programmer and explains the features
that are not contained in the non-function block version of CX-Programmer.

Section 2 provides specifications for reference when using function blocks, including specifications on
function blocks, instances, and compatible PLCs, as well as usage precautions and guidelines.

Section 3 describes the procedures for creating function blocks on the CX-Programmer.

Part 2

Part 2 contains the following sections.

Section 4 introduces the structure text programming functionality of the CX-Programmer and explains
the features that are not contained in the non-structured text version of CX-Programmer.

Section 5 provides specifications for reference when using structured text programming, as well as
programming examples and restrictions.

Section 6 explains how to create ST programs.

Appendices provide information on structured text errors and ST function descriptions.

!WARNING Failure to read and understand the information provided in this manual may result in per-
sonal injury or death, damage to the product, or product failure. Please read each section
in its entirety and be sure you understand the information provided in the section and
related sections before attempting any of the procedures or operations given.
xv

xvi

Terms and Conditions Agreement

WARRANTY
• The warranty period for the Software is one year from the date of purchase,

unless otherwise specifically agreed.

• If the User discovers defect of the Software (substantial non-conformity with
the manual), and return it to OMRON within the above warranty period,
OMRON will replace the Software without charge by offering media or
download from OMRON’s website. And if the User discovers defect of
media which is attributable to OMRON and return it to OMRON within the
above warranty period, OMRON will replace defective media without
charge. If OMRON is unable to replace defective media or correct the
Software, the liability of OMRON and the User’s remedy shall be limited to
the refund of the license fee paid to OMRON for the Software.

LIMITATION OF LIABILITY
• THE ABOVE WARRANTY SHALL CONSTITUTE THE USER’S SOLE AND

EXCLUSIVE REMEDIES AGAINST OMRON AND THERE ARE NO
OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT
NOT LIMITED TO, WARRANTY OF MERCHANTABILITY OR FITNESS
FOR PARTICULAR PURPOSE. IN NO EVENT, OMRON WILL BE LIABLE
FOR ANY LOST PROFITS OR OTHER INDIRECT, INCIDENTAL,
SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF USE OF
THE SOFTWARE.

• OMRON SHALL HAVE NO LIABILITY FOR DEFECT OF THE SOFTWARE
BASED ON MODIFICATION OR ALTERNATION TO THE SOFTWARE BY
THE USER OR ANY THIRD PARTY.

• OMRON SHALL HAVE NO LIABILITY FOR SOFTWARE DEVELOPED BY
THE USER OR ANY THIRD PARTY BASED ON THE SOFTWARE OR
ANY CONSEQUENCE THEREOF.

APPLICABLE CONDITIONS
USER SHALL NOT USE THE SOFTWARE FOR THE PURPOSE THAT IS
NOT PROVIDED IN THE ATTACHED USER MANUAL.

CHANGE IN SPECIFICATION
The software specifications and accessories may be changed at any time
based on improvements and other reasons.

ERRORS AND OMISSIONS
The information in this manual has been carefully checked and is believed to
be accurate; however, no responsibility is assumed for clerical, typographical,
or proofreading errors, or omissions.
xvii

xviii

PRECAUTIONS

This section provides general precautions for using the CX-Programmer and the Programmable Logic Controller.
The information contained in this section is important for the safe and reliable application of the CX-Programmer
and Programmable Controller. You must read this section and understand the information contained before
attempting to set up or operate the CX-Programmer and Programmable Controller.

1 Intended Audience . xx
2 General Precautions . xx
3 Safety Precautions. xx
4 Application Precautions . xxi
xix

Intended Audience 1
1 Intended Audience
This manual is intended for the following personnel, who must also have
knowledge of electrical systems (an electrical engineer or the equivalent).

• Personnel in charge of installing FA systems.

• Personnel in charge of designing FA systems.

• Personnel in charge of managing FA systems and facilities.

2 General Precautions
The user must operate the product according to the performance specifica-
tions described in the operation manuals.

Before using the product under conditions which are not described in the
manual or applying the product to nuclear control systems, railroad systems,
aviation systems, vehicles, combustion systems, medical equipment, amuse-
ment machines, safety equipment, and other systems, machines, and equip-
ment that may have a serious influence on lives and property if used
improperly, consult your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide
the systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the product.
Be sure to read this manual before attempting to use the product and keep
this manual close at hand for reference during operation.

!WARNING It is extremely important that a PLC and all PLC Units be used for the speci-
fied purpose and under the specified conditions, especially in applications that
can directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PLC System to the above-mentioned appli-
cations.

3 Safety Precautions

!WARNING Confirm safety sufficiently before transferring I/O memory area status from the
CX-Programmer to the actual CPU Unit. The devices connected to Output
Units may malfunction, regardless of the operating mode of the CPU Unit.
Caution is required in respect to the following functions.

• Transferring from the CX-Programmer to real I/O (CIO Area) in the CPU
Unit using the PLC Memory Window.

• Transferring from file memory to real I/O (CIO Area) in the CPU Unit using
the Memory Card Window.

!Caution Variables must be specified either with AT settings (or external variables), or
the variables must be the same size as the data size to be processed by the
instruction when specifying the first or last address of multiple words in the
instruction operand.

1. If a non-array variable with a different data size and without an AT setting
is specified, the CX-Programmer will output an error when compiling.

2. Array Variable Specifications
xx

Application Precautions 4
• When the size to be processed by the instruction operand is fixed:
The number of array elements must be the same as the number of ele-
ments to be processed by the instruction. Otherwise, the CX-Programmer
will output an error when compiling.

• When the size to be processed by the instruction operand is not fixed:
The number of array elements must be greater than or the same as the
size specified in the other operands.

• If the other operand specifying a size is a constant, the CX-Program-
mer will output an error when compiling.

• If the other operand specifying a size is a variable, the CX-Programmer
will not output an error when compiling, even if the size of the array
variable is not the same as that specified by the other operand (vari-
able). A warning message, however, will be displayed. In particular, if
the number of array elements is less than the size specified by the oth-
er operand (e.g., the size of the instruction operand is 16, and the num-
ber of elements registered in the actual variable table is 10), the
instruction will execute read/write processing for the area that exceeds
the number of elements. For example, read/write processing will be ex-
ecuted for the 6 words following those for the number of elements reg-
istered in the actual variable table. If these words are used for other
instructions (including internal variable allocations), unexpected oper-
ation will occur, which may result in serious accidents.
Check that the system will not be adversely affected if the size of the
variable specified in the operand is less than the size in the operand
definition before starting PLC operations.

!Caution Confirm safety at the destination node before transferring a program to
another node or changing contents of the I/O memory area. Doing either of
these without confirming safety may result in injury.

!Caution Execute online editing only after confirming that no adverse effects will be
caused by extending the cycle time. Otherwise, the input signals may not be
readable.

!Caution If synchronous unit operation is being used, perform online editing only after
confirming that an increased synchronous processing time will not affect the
operation of the main and slave axes.

!Caution Confirm safety sufficiently before monitoring power flow and present value
status in the Ladder Section Window or when monitoring present values in the
Watch Window. If force-set/reset or set/reset operations are inadvertently per-
formed by pressing short-cut keys, the devices connected to Output Units
may malfunction, regardless of the operating mode of the CPU Unit.

4 Application Precautions
Observe the following precautions when using the CX-Programmer.

• User programs cannot be uploaded to the CX-Programmer.

• Observe the following precautions before starting the CX-Programmer.

• Exit all applications not directly related to the CX-Programmer. Partic-
ularly exit any software such as screen savers, virus checkers, E-mail
or other communications software, and schedulers or other applica-
tions that start up periodically or automatically.
xxi

Application Precautions 4
• Disable sharing hard disks, printers, or other devices with other com-
puters on any network.

• With some notebook computers, the RS-232C port is allocated to a
modem or an infrared line by default. Following the instructions in doc-
umentation for your computer and enable using the RS-232C port as
a normal serial port.

• With some notebook computers, the default settings for saving energy
do not supply the rated power to the RS-232C, USB and Ethernet port.
There may be both Windows settings for saving energy, as well as set-
ting for specific computer utilities and the BIOS. Following the instruc-
tions in documentation for your computer, disable all energy saving
settings.

• Do not turn OFF the power supply to the PLC or disconnect the connect-
ing cable while the CX-Programmer is online with the PLC. The computer
may malfunction.

• Confirm that no adverse effects will occur in the system before attempting
any of the following. Not doing so may result in an unexpected operation.

• Changing the operating mode of the PLC.

• Force-setting/force-resetting any bit in memory.

• Changing the present value of any word or any set value in memory.

• Check the user program for proper execution before actually running it on
the Unit. Not checking the program may result in an unexpected opera-
tion.

• When online editing is performed, the user program and parameter area
data in CJ2, CS1-H, CJ1-H, CJ1M, and CP1H CPU Units is backed up in
the built-in flash memory. The BKUP indicator will light on the front of the
CPU Unit when the backup operation is in progress. Do not turn OFF the
power supply to the CPU Unit when the BKUP indicator is lit. The data will
not be backed up if power is turned OFF. To display the status of writing to
flash memory on the CX-Programmer, select Display dialog to show PLC
Memory Backup Status in the PLC properties and then select Windows -
PLC Memory Backup Status from the View Menu.

• Programs including function blocks (ladder programming language or
structured text (ST) language) can be downloaded or uploaded in the
same way as standard programs that do not contain function blocks.
Tasks including function blocks, however, cannot be downloaded in task
units (uploading is possible).

• If a user program containing function blocks created on the CX-Program-
mer Ver. 5.0 or later is downloaded to a CPU Unit that does not support
function blocks (CS/CJ-series CPU Units with unit version 2.0 or earlier),
all instances will be treated as illegal commands and it will not be possible
to edit or execute the user program.

• If the input variable data is not in boolean format, and numerical values
only (e.g., 20) are input in the parameters, the actual value in the CIO
Area address (e.g., 0020) will be passed. Therefore, be sure to include an
&, #, or +, - prefix before inputting the numerical value.

• Addresses can be set in input parameters, but an address itself cannot be
passed as an input variable. (Even if an address is set as an input param-
eter, the value passed to the function block will be that for the size of data
of the input variable.) Therefore, an input variable cannot be used as the
operand of an instruction in the function block when the operand specifies
the first or last of multiple words. With CX-Programmer version 7.0, use
xxii

Application Precautions 4
an input-output variable specified as an array variable (with the first
address set for the input parameter) and specify the first or last element of
the array variable, or, with any version of CX-Programmer, use an internal
variable with an AT setting. Alternatively, specify the first or last element in
an internal variable specified as an array variable.

• Values are passed in a batch from the input parameters to the input vari-
ables or input-output variables before algorithm execution (not at the
same time as the instructions in the algorithm are executed). Therefore, to
pass the value from a parameter to an input variable or input-output vari-
able when an instruction in the function block algorithm is executed, use
an internal variable or external variable instead of an input variable or
input-output variable. The same applies to the timing for writing values to
the parameters from output variables.

• Always use internal variables with AT settings in the following cases.

• The addresses allocated to Basic I/O Units, Special I/O Units, and
CPU Bus Units cannot be registered to global symbols, and these vari-
ables cannot be specified as external variables (e.g., the data set for
global variables may not be stable).

• Use internal variables when Auxiliary Area bits other than those pre-
registered to external variables are registered to global symbols and
these variables are not specified as external variables.

• Use internal variables when specifying PLC addresses for another
node on the network: For example, the first destination word at the re-
mote node for SEND(090) and the first source word at the remote node
for RECV(098).

• Use internal variables when the first or last of multiple words is speci-
fied by an instruction operand and the operand cannot be specified as
an array variable (e.g., the number of array elements cannot be spec-
ified).
xxiii

Application Precautions 4
xxiv

Part 1:
Function Blocks

SECTION 1
Introduction to Function Blocks

This section introduces the function block functionality of the CX-Programmer and explains the features that are not
contained in the non-function block version of CX-Programmer.

1-1 Introducing the Function Blocks. 4
1-1-1 Overview and Features . 4
1-1-2 Function Block Specifications . 5
1-1-3 Files Created with CX-Programmer Ver. 6.0 or Later 8
1-1-4 Function Block Menus in CX-Programmer Ver. 5.0

(and later Versions) . 8
1-2 Function Blocks . 11

1-2-1 Outline . 11
1-2-2 Advantages of Function Blocks . 12
1-2-3 Function Block Structure . 13

1-3 Variables . 18
1-3-1 Introduction. 18
1-3-2 Variable Usage and Properties . 19
1-3-3 Variable Properties . 19
1-3-4 Variable Properties and Variable Usage . 20
1-3-5 Internal Allocation of Variable Addresses . 21

1-4 Converting Function Block Definitions to Library Files 23
1-5 Usage Procedures . 23

1-5-1 Creating Function Blocks and Executing Instances 23
1-5-2 Reusing Function Blocks . 24

1-6 Version Upgrade Information . 25
3

Introducing the Function Blocks Section 1-1
1-1 Introducing the Function Blocks

1-1-1 Overview and Features
The CX-Programmer Ver. 5.0 (and later versions) is a Programming Device
that can use standard IEC 61131-3 function blocks. The CX-Programmer
function block function is supported for CJ2 CPU Units, CP1H CPU Units,
NSJ-series NSJ Controllers, and FQM1 Flexible Motion Controllers as well as
CS/CJ-series CPU Units with unit version 3.0 or later and has the following
features.

• User-defined processes can be converted to block format by using func-
tion blocks.

• Function block algorithms can be written in the ladder programming lan-
guage or in the structured text (ST) language. (See note.)

• When ladder programming is used, ladder programs created with non-
CX-Programmer Ver. 4.0 or earlier can be reused by copying and past-
ing.

• When ST language is used, it is easy to program mathematical pro-
cesses that would be difficult to enter with ladder programming.

Note The ST language is an advanced language for industrial control
(primarily Programmable Logic Controllers) that is described in IEC
61131-3. The ST language supported by CX-Programmer con-
forms to the IEC 61131-3 standard.

• Function blocks can be created easily because variables do not have to
be declared in text. They are registered in variable tables.
A variable can be registered automatically when it is entered in a ladder or
ST program. Registered variables can also be entered in ladder programs
after they have been registered in the variable table.

• A single function block can be converted to a library function as a single
file, making it easy to reuse function blocks for standard processing.

• A program check can be performed on a single function block to easily
confirm the function block’s reliability as a library function.

• Programs containing function blocks (ladder programming language or
structured text (ST) language) can be downloaded or uploaded in the
same way as standard programs that do not contain function blocks.
Tasks containing function blocks, however, cannot be downloaded in task
units (uploading is possible).

• One-dimensional array variables are supported, so data handling is eas-
ier for many applications.

Note The IEC 61131 standard was defined by the International Electro-
technical Commission (IEC) as an international programmable log-
ic controller (PLC) standard. The standard is divided into 7 parts.
Specifications related to PLC programming are defined in Part 3
Textual Languages (IEC 61131-3).

• A function block (ladder programming language or structured text (ST)
language) can be called from another function block (ladder programming
language or structured text (ST) language). Function blocks can be
nested up to 8 levels and ladder/ST language function blocks can be com-
bined freely.
4

Introducing the Function Blocks Section 1-1
1-1-2 Function Block Specifications
For specifications that are not listed in the following table, refer to the CX-Pro-
grammer Operation Manual (W446).

Item Specifications

Model number CXONE-AL@@D-V4

Setup Select the CX-Programmer from the CX-One setup disk.

Compatible CPU Units (PLC models)

Note The function block and structured
text functions supported by CS/
CJ-series CPU Units with unit ver-
sion 4.0 or later can not be used
in CS/CJ-series CPU Units with
unit version 3.0 or earlier, CP-
series PLCs, NSJ-series PLCs, or
FQM1-series PLCs.
For details, refer to 1-6 Version
Upgrade Information.

CS/CJ-series CS1-H, CJ1-H, and CJ1M CPU Units with unit version 3.0 or later
are compatible.

Device Type CPU Type

• CJ2H CJ2H-CPU68/67/66/65/64/68-EIP/67-EIP/66-EIP/65-EIP
/64-EIP

• CJ2M CJ2M-CPU11/12/13/14/15/31/32/33/34/35
• CS1G-H CS1G-CPU42H/43H/44H/45H
• CS1H-H CS1H-CPU63H/64H/65H/66H/67H
• CJ1G-H CJ1G-CPU42H/43H/44H/45H
• CJ1H-H CJ1H-CPU65H/66H/67H/64H-R/65H-R/66H-R/67H-R
• CJ1M CJ1M-CPU11/12/13/21/22/23

The following CP-series CPU Units are compatible.

• CP1H CP1H-X/XA/Y
• CP1L CP1L-M/L

Note If a user program containing function blocks created on the CX-Program-
mer Ver. 5.0 or later is downloaded to a CPU Unit that does not support
function blocks (CS/CJ-series CPU Units with unit version 2.0 or earlier),
all instances will be treated as illegal commands and it will not be possi-
ble to edit or execute the user program.

• NSJ G5D (Used for the NSJ5-TQ0@-G5D, NSJ5-SQ0@-G5D, NSJ8
-TV0@-G5D, NSJ10-TV0@-G5D, and NSJ12-TS0@-G5D)
M3D (Used for the NSJ5-TQ0@-M3D, NSJ5-SQ0@-M3D, and
NSJ8-TV0@-M3D)

• FQM1-CM FQM1-CM002
• FQM1-MMA FQM1-MMA22
• FQM1-MMP FQM1-MMP22

CS/CJ/CP Series Function Restrictions

• Instructions Not Supported in Function Block Definitions
Block Program Instructions (BPRG and BEND), Subroutine Instructions (SBS,
GSBS, RET, MCRO, and SBN), Jump Instructions (JMP, CJP, and CJPN),
Step Ladder Instructions (STEP and SNXT), Immediate Refresh Instructions
(!), I/O REFRESH (IORF), ONE-MS TIMER (TMHH and TMHHX) (These tim-
ers can be used with CJ1-H-R CPU Units.)

Note For details and other restrictions, refer to 2-4 Programming Restrictions.
5

Introducing the Function Blocks Section 1-1
Functions not
supported by
CX-Program-
mer Ver. 4.0
or earlier.

Defining
and creat-
ing func-
tion blocks

Number of
function
block defini-
tions

CJ2H Units:
• CJ2H-CPU6@(-EIP): 2,048 max. per CPU Unit

CJ2M CPU Units:

• CJ2M-CPU@1/@2/@3: 256 max. per CPU Unit
• CJ2M-CPU@4/@5: 2,048 max. per CPU Unit

CS1-H/CJ1-H CPU Units:

• Suffix -CPU44H/45H/64H/65H/66H/67H/64H-R/65H-R/66H-R/67H-R: 1,024
max. per CPU Unit

• Suffix -CPU42H/43H/63H: 128 max. per CPU Unit
CJ1M CPU Units:

• CJ1M-CPU11/12/13/21/22/23: 128 max. per CPU Unit

CP1H CPU Units:
• All models: 128 max. per CPU Unit

CP1L CPU Units:

• CP1L-M/L: 128 max. per CPU Unit
NSJ Controllers:

• NSJ@-@@@@-G5D: 1,024 max. per Controller;
NSJ@-@@@@-M3D: 128 max. per Controller

FQM1 Flexible Motion Controllers:

• FQM1-CM002/MMA22/MMP22: 128 max. per Controller

Function
block
names

64 characters max.

Item Specifications
6

Introducing the Function Blocks Section 1-1
Functions not
supported by
CX-Program-
mer Ver. 4.0
or earlier.

Defining
and creat-
ing func-
tion blocks

Variables Variable names 30,000 characters max.

Variable types Input variables (Inputs), output variables (Out-
puts), input-output variables (In Out), internal
variables (Internals), and external variables
(Externals)

Number of variables used in
a function block

(not including internal vari-
ables, external variables,
EN, and EN0)

Maximum number of variables per function block
definition

• Input-output variables: 16 max.
• Input variables + input-output variables: 64 max.
• Output variables + input-output variables: 64

max.

Allocation of addresses
used by variables

Automatic allocation (The allocation range can be
set by the user.)

Actual address specification Supported

Array specifications Supported (one-dimensional arrays only and only
for internal variables and input-output variables)

Language Function blocks can be created in ladder programming language or structured
text (ST, see note).

Creating
instances

Number of
instances

CJ2H CPU Units:
• CJ2H-CPU6@(-EIP): 2,048 max. per CPU Unit

CJ2M CPU Units:

• CJ2M-CPU@1/@2/@3: 256 max. per CPU Unit

• CJ2M-CPU@4/@5: 2,048 max. per CPU Unit

CS1-H/CJ1-H CPU Units:

• Suffix -CPU44H/45H/64H/65H/66H/67H/64H-R/65H-R/66H-R/67H-R: 2,048
max. per CPU Unit

• Suffix -CPU42H/43H/63H: 256 max. per CPU Unit

CJ1M CPU Units:

• CJ1M-CPU11/12/13/21/22/23: 256 max. per CPU Unit

CP1H CPU Units:

• All models: 256 max. per CPU Unit
CP1L CPU Units:

• CP1L-M/L: 256 max. per CPU Unit

NSJ Controllers:
• SJ@-@@@@-G5D: 2,048 max. per Controller;

NSJ@-@@@@-M3D: 256 max. per Controller

FQM1 Flexible Motion Controllers:
• FQM1-CM002/MMA22/MMP22: 256 max. per Controller

Instance
names

15,000 characters max.

Storing
function
blocks as
files

Project files The project file (.cxp/cxt) Includes function block definitions and instances.

Program
files

The file memory program file (*.obj) includes function block definitions and
instances.

Function
block library
files

Each function block definition can be stored as a single file (.cxf) for reuse in
other projects.

Item Specifications
7

Introducing the Function Blocks Section 1-1
Note The structured text (ST language) conforms to the IEC 61131-3 standard, but
CX-Programmer Ver. 5.0 supports only assignment statements, selection
statements (CASE and IF statements), iteration statements (FOR, WHILE,
REPEAT, and EXIT statements), RETURN statements, arithmetic operators,
logical operators, comparison functions, numeric functions, standard string
functions, numeric string functions, OMRON expansion functions, and com-
ments. For details, refer to SECTION 5 Structured Text (ST) Language Speci-
fications in Part 2: Structured Text (ST).

1-1-3 Files Created with CX-Programmer Ver. 6.0 or Later
Project Files (*.cxp) and
File Memory Program
Files (*.obj)

Projects created using CX-Programmer that contain function block definitions
and projects with instances are saved in the same standard project files
(*.cxp) and file memory program files (*.obj).

The following diagram shows the contents of a project. The function block def-
initions are created at the same directory level as the program within the rele-
vant PLC directory.

Function Block Library
Files (*.cxf)

A function block definition created in a project with CX-Programmer Ver. 6.0
can be saved as a file (1 definition = 1 file), enabling definitions to be loaded
into other programs and reused.

Note When function blocks are nested, all of the nested (destination) function block
definitions are included in this function block library file (.cxf).

Project Text Files
Containing Function
Blocks (*.cxt)

Data equivalent to that in project files created with CX-Programmer Ver. 6.0
(*.cxp) can be saved as CXT text files (*.cxt).

1-1-4 Function Block Menus in CX-Programmer Ver. 5.0 (and later
Versions)

The following tables list menus related to function blocks in CX-Programmer
Ver. 5.0 and later versions. For details on all menus, refer to the CX-Program-
mer Operation Manual (W446).

FunctionBlock1

FunctionBlock2

Project file (.cxp)

PLC1

PLC2

Global symbol table

I/O table

PLC Setup

PLC memory table

Program (with rung comments)

Local symbol table

Section 1 (with instances)

Section 2 (with instances)

END section (with instances)

Function block definitions

Each function block can be
stored in a separate
definition file (.cxf).

Instances created
in program
sections.
8

Introducing the Function Blocks Section 1-1
Main Menu
Main
menu

Submenu Shortcut Function

File Function Block Load Function
Block from File

--- Reads the saved function block library files (*.cxf).

Save Function
Block to File

--- Saves the created function block definitions to a file ([func-
tion block library file]*.cxf).

Edit Update Function Block --- When a function block definition’s input variables, output
variables, or input-output variables have been changed
after the instance was created, an error will be indicated by
displaying the instance’s left bus bar in red. This command
updates the instance with the new information and clears
the error.

To Lower Layer --- Jumps to the function block definition for the selected
instance.

Function Block (ladder) generation --- Generates a ladder-programmed function block for the
selected program section while automatically determining
address application conditions.

View Monitor FB Instance --- When monitoring the program online, monitors ST variable
status as well as I/O bit and word status (I/O bit monitor) of
the ladder diagram in the instance.

(Supported by CX-Programmer Ver. 6.1 and later only).

To Lower Layer --- Displays on the right side the contents of the function block
definition of the selected instance. (Supported by CX-Pro-
grammer Ver. 6.0 and later only.)

To Upper Layer --- Returns to the calling instance (ladder diagram or ST).
(Supported by CX-Programmer Ver. 6.0 and later only.)

Window FB Instance
Viewer

--- Displays the FB Instance Viewer. (When nesting, the dis-
play shows details such as the relationship between
instance nesting levels and allocated variable addresses in
the instances.)

Insert Function Block Invocation F Creates an instance in the program (section) at the present
cursor location.

Function Block Parameter P When the cursor is located to the left of an input variable or
the right of an output variable, sets the variable’s input or
output parameter.

PLC Memory
Alloca-
tion

Function
Block/
SFC
Memory

Function Block
/SFC Memory
Allocation

--- Sets the range of addresses (function block instance areas)
internally allocated to the selected instance’s variables.

Function Block
/SFC Memory
Statistics

--- Checks the status of the addresses internally allocated to
the selected instance’s variables.

Function Block
Instance
Address

--- Checks the addresses internally allocated to each variable
in the selected instance.

Optimize Func-
tion Block/SFC
Memory

--- Optimizes the allocation of addresses internally allocated to
variables.

Program Online Edit Begin --- Starts online editing of a function block.

Send Change --- Transfers changes made during online editing of a function
block.

Cancel --- Cancels changes made to a function block being edited
online.

Transfer FB
Source

--- Transfers only the function block source.

Release FB
Online Edit
Access Rights

--- Forcefully releases the access rights for function block,
SFC, and ST online editing held by another user.
9

Introducing the Function Blocks Section 1-1
Main Pop-up Menus

Pop-up Menu for Function Block Definitions

Pop-up Menu for Inserted Function Blocks

Tools Simulation Break Point |
Set/Clear
Break Point

--- Sets or clears a break point.

Break Point |
Clear All Break
Point

--- Clears all break points.

Mode | Run
(Monitor Mode)

--- Executes continuous scanning. (Sets the ladder execution
engine’s run mode to MONITOR mode.)

Mode | Stop
(Program
Mode)

--- Sets the simulator’s operation mode to PROGRAM mode.

Mode | Pause --- Pauses simulator operation.

Step Run --- Executes just one step of the simulator’s program.

Step Run |
Step In

--- When there is a function block call instruction, this com-
mand moves to execution of the internal program step.

Step Run |
Step Out

--- When a function block’s internal program step is being exe-
cuted, this command returns to the next higher level (call
source) and pauses execution.

Step Run |
Continuous
Step Run

--- Executes steps continuously for a fixed length of time.

Step Run |
Scan Run

--- Executes for one cycle and pauses execution.

Always Display
Current Execu-
tion Point

--- Used with the Step Run or Continuous Step Run com-
mands to automatically scroll the display and always show
the pause point.

Break Point List --- Displays a list of the break points that have been set.
(Operation can be jumped to a specified point.)

Change Input mode Smart Input
Mode

--- The Smart Input Mode can be used to automatically display
candidates for instructions and addresses.

Classic Mode --- The Classic Mode is the input mode that is used previous
version of CX-Programmer.

Pop-up menu Function

Insert Function Block Ladder Creates a function block definition with a ladder programming language algo-
rithm.

Structured Text Creates a function block definition with an ST language algorithm.

From file Reads a function block definition from a function block library file (*.cxf).

Pop-up menu Function

Open Displays the contents of the selected function block definition on the right side
of the window.

Save Function Block File Saves the selected function block definition in a file.

Compile Compiles the selected function block definition.

FB online Edit Begin Starts online editing of a function block.

Send Change Transfers changes made during online editing of a function block.

Cancel Cancels changes made to a function block being edited online.

Transfer FB Source Transfers only the function block source.

Release FB Online
Edit Access Rights

Forcefully releases the access rights for function block online editing held by
another user.

Main
menu

Submenu Shortcut Function
10

Function Blocks Section 1-2
Pop-up Menu for Function Block Variable Tables

Pop-up Menu for Instances

Shortcut Keys

F Key: Pasting Function
Block Definitions in
Program

Move the cursor to the position at which to create the copied function block
instance in the Ladder Section Window, and press the F Key. This operation is
the same as selecting Insert - Function Block Invocation.

Enter Key: Inputting
Parameters

Position the cursor at the left of the input variable or input-output variable, or
at the right of the output variable and press the Enter Key. This operation is
the same as selecting Insert - Function Block Parameter.

1-2 Function Blocks

1-2-1 Outline
A function block is a basic program element containing a standard processing
function that has been defined in advance. Once the function block has been
defined, the user just has to insert the function block in the program and set
the I/O in order to use the function.

As a standard processing function, a function block does not contain actual
addresses, but variables. The user sets addresses or constants in those vari-
ables. These address or constants are called parameters. The addresses
used by the variables themselves are allocated automatically by the CX-Pro-
grammer for each program.

Pop-up menu Function

Edit Edits the variable.

Insert Variable Adds a variable to the last line.

Insert Variable Above Inserts the variable above the current cursor position.

Below Inserts the variable below the current cursor position.

Cut Cuts the variable.

Copy Copies the variable.

Paste Pastes the variable.

Find Searches for the variable. Variable names, variable comments, or all (text strings) can
be searched.

Replace Replaces the variable.

Delete Deletes the variable.

Rename Changes only the name of the variable.

Pop-up menu Function

Edit Changes the instance name.

Update Invocation When a function block definition’s input variables, output variables, or input-output vari-
ables have been changed after the instance was created, an error will be indicated by
displaying the instance’s left bus bar in red. This command updates the instance with
the new information and clears the error.

Monitor FB Ladder Instance When monitoring the program online, monitors I/O bit and word status (I/O bit monitor)
of the ladder diagram in the instance.

(Supported by CX-Programmer Ver. 6.0 and later only).

Monitor FB Instance When monitoring the program online, monitors ST variable status as well as I/O bit and
word status (I/O bit monitor) of the ladder diagram in the instance.
(Supported by CX-Programmer Ver. 6.1 and later only).

Register in Watch Window Displays the FB variables registration Dialog Box in order to register a variable from the
selected instance to the Watch Window.

Function Block Definition Displays the selected instance’s function block definition on the right side of the window.
11

Function Blocks Section 1-2
With the CX-Programmer, a single function block can be saved as a single file
and reused in other PLC programs, so standard processing functions can be
made into libraries.

1-2-2 Advantages of Function Blocks
Function blocks allow complex programming units to be reused easily. Once
standard programming is created in a function block and saved in a file, it can
be reused just by placing the function block in a program and setting the
parameters for the function block’s I/O. The ability to reuse existing function
blocks will save significant time when creating/debugging programs, reduce
coding errors, and make the program easier to understand.

Structured
Programming

Structured programs created with function blocks have better design quality
and require less development time.

Easy-to-read “Black Box”
Design

The I/O operands are displayed as variable names in the program, so the pro-
gram is like a “black box” when entering or reading the program and no extra
time is wasted trying to understand the internal algorithm.

Use One Function Block
for Multiple Processes

Many different processes can be created easily from a single function block by
using the parameters in the standard process as input variables (such as
timer SVs, control constants, speed settings, and travel distances).

Reduce Coding Errors Coding mistakes can be reduced because blocks that have already been
debugged can be reused.

Black-boxing Know-how Read-protection can be set for function blocks to prevent programming know-
how from being disclosed.

Data Protection The variables in the function block cannot be accessed directly from the out-
side, so the data can be protected. (Data cannot be changed unintentionally.)

Improved Reusability with
Variable Programming

The function block’s I/O is entered as variables, so it isn’t necessary to change
data addresses in a block when reusing it.

Creating Libraries Processes that are independent and reusable (such as processes for individ-
ual steps, machinery, equipment, or control systems) can be saved as func-
tion block definitions and converted to library functions.

Input Output

Input Output

Output

Function block A

Save function
block as a file.

Program 2

Copy of function block A

Copy of function block A

Copy of function block A

Convert to
library function.

Function
block A

Define in advance.

Insert in
program.

Reuse.
To another PLC program

Variable

Variable Variable

Set Set

Variable Variable

Program 1

Standard
program section
written with
variables
12

Function Blocks Section 1-2
The function blocks are created with variable names that are not tied to actual
addresses, so new programs can be developed easily just by reading the def-
initions from the file and placing them in a new program.

Supports Nesting and
Multiple Languages

Mathematical expressions can be entered in structured text (ST) language.

With CX-Programmer Ver. 6.0 and later versions, function blocks can be
nested. The function block nesting function allows just special processing to
be performed in a ST-language function block nested within a ladder-lan-
guage function block.

1-2-3 Function Block Structure
Function blocks consist of function block definitions that are created in
advance and function block instances that are inserted in the program.

Function Block
Definitions

Function block definitions are the programs contained in function blocks. Each
function block definition contains the algorithm and variable definitions, as
shown in the following diagram.

1. Algorithm

Standardized programming is written with variable names rather than real I/O
memory addresses. In the CX-Programmer, algorithms can be written in
either ladder programming or structured text.

2. Variable Definitions

The variable table lists each variable’s usage (input, output, input-output, or
internal) and properties (data type, etc.). For details, refer to 1-3 Variables.

Number of Function Block
Definitions

The maximum number of function block definitions that can be created for one
CPU Unit is either 128 or 1,024 depending on the CPU Unit model.

Function block (ladder language)

Call (Nesting)

Function block (ST language)

tim_a TIMER
tim_b TIMER
ON_TIME INT
OFF_TIME INT

TIMX tim_a OFF_TIME
tim_b

TIMX tim_b ON_TIME
tim_a

ENO

Name Type
Internal

Internal
Input
Input

Function Block Definition
Example: CLOCK PULSE

Algorithm

Example: CLOCK PULSE

1. Algorithm

2. Variable Definitions

Variable definitions

Usage
13

Function Blocks Section 1-2
Instances To use an actual function block definition in a program, create a copy of the
function block diagram and insert it in the program. Each function block defini-
tion that is inserted in the program is called an “instance” or “function block
instance.” Each instance is assigned an identifier called an “instance name.”

By generating instances, a single function block definition can be used to pro-
cess different I/O data with the same function.

Note Instances are managed by names. More than one instance with the same
name can also be inserted in the program. If two or more instances have the
same name, they will use the same internal variables. Instances with different
names will have different internal variables.

For example, consider multiple function blocks that use a timer as an internal
variable. In this case all instances will have to be given different names. If
more than one instance uses the same name, the same timer would be used
in multiple locations, resulting in duplicated use of the timer.

If, however, internal variables are not used or they are used only temporarily
and initialized the next time an instance is executed, the same instance name
can be used to save memory.

Number of Instances Multiple instances can be created from a single function block definition. Up to
either 256 or 2,048 instances can be created for a single CPU Unit depending
on the CPU Unit model. The allowed number of instances is not related to the
number of function block definitions and the number of tasks in which the
instances are inserted.

a b

c

a b

c

Not yet in program
and memory not yet
allocated
(abstract).

1. Algorithm

Function Block Definition FB1

2. Parameters

Standard
program unit
with variable
names a, b, c,
etc.

Program Instance

Block instance in program with memory
allocated. (object)

Instance FB1_1 of function block definition FB1 Memory
used

Input
data Output data

Output data

Automatic
allocation

Automatic
allocation

Memory
for FB1_1

Memory
for FB1_2

Different I/O data
can be processed
with the same
function.

Instance FB1_2 of function block definition FB1

Input
data Output data

Output data

Insert in
program.

Insert in
program.

Table defining usage
and properties of
variables a, b, c, etc.

TIMER_FB

TIMER_FB

TIMER_FB

instance_A

instance_A

instance_B

Function Block Definition
TIMER_FB

Variable Definitions
Internal variable: WORK_NUM Use same internal variables.

Use different internal variables.
14

Function Blocks Section 1-2
Parameters Each time an instance is created, set the real I/O memory addresses or con-
stants for input variables, output variables, and input-output variables used to
pass input data values to instances and obtain output data values from
instances. These addresses and constants are called parameters.

Using Input Variables and Output Variables

With input variables and output variables, it is not the input source address
itself, but the contents at the input address in the form and size specified by
the variable data type that is passed to the function block. In a similar fashion,
it is not the output destination address itself, but the contents for the output
address in the form and size specified by the variable data type that is passed
from the function block.

Even if an input source address (i.e., an input parameter) or an output desti-
nation address (i.e., an output parameter) is a word address, the data that is
passed will be the data in the form and size specified by the variable data type
starting from the specified word address.

Note (1) Only addresses in the following areas can be used as parameters: CIO
Area, Auxiliary Area, DM Area, EM Area (banks 0 to C), Holding Area,
and Work Area.
The following cannot be used: Index and Data Registers (both direct and
indirect specifications) and indirect addresses to the DM Area and EM
Area (both in binary and BCD mode).

(2) Local and global symbols in the user program can also be specified as
parameters. To do so, however, the data size of the local or global symbol
must be the same as the data size of the function block variable.

(3) When an instance is executed, input values are passed from parameters
to input variables before the algorithm is processed. Output values are

a b

c

Input 0.00

Instance of Function Block Definition A

Input 3.00

Output 2.00

Set the constants or
input source addresses
from which to pass data.

Set the constant or
output destination
address to which to pass
data.

m k

n

Examples:
If m is type WORD, one word of data from D100 will be passed to the
variable.
If n is type DWORD, two words of data from D200 and D201 will be
passed to the variable.
If k is type LWORD, four words of data from the variable will be passed
to the D300 to D303.

Program

Input D100

Instance of Function Block Definition A

Output D300

Input D200
15

Function Blocks Section 1-2
passed from output variables to parameters just after processing the al-
gorithm. If it is necessary to read or write a value within the execution cy-
cle of the algorithm, do not pass the value to or from a parameter. Assign
the value to an internal variable and use an AT setting (specified address-
es).

!Caution If an address is specified in an input parameter, the values in the address are
passed to the input variable. The actual address data itself cannot be passed.

!Caution Parameters cannot be used to read or write values within the execution cycle
of the algorithm. Use an internal variable with an AT setting (specified
addresses). Alternatively, reference a global symbol as an external variable.

Using Input-Output Variables (In Out)

When using an input-output variable, set the address for the input parameter.
A constant cannot be set. The address set for the input parameter will be
passed to the function block. If processing is performed inside the function
block using the input-output variable, the results will be written to I/O starting
at the address set for the size of the variable.

Note Input-output variables are specified in a CX-Programmer variable table by
selecting “In Out” for the variable usage.

D200 D200 a a

D200
D201

Processing is performed inside the function block using variable
“a.” The resulting value is written to I/O memory for the size of
variable “a” starting at address D200.

Program

Instance of function block definition A

Input

Address passed.

Automatically set.

Output

Address passed.

“a” changed by function
block processing.

Variable “a”
16

Function Blocks Section 1-2
n Reference Information

A variety of processes can be created easily from a single function block by
using parameter-like elements (such as fixed values) as input variables and
changing the values passed to the input variables for each instance.

Example: Creating 3 Instances from 1 Function Block Definition

If internal variables are not used, if processing will not be affected, or if the
internal variables are used in other locations, the same instance name can be
used at multiple locations in the program.

Some precautions are required when using the same memory area. For
example, if the same instance containing a timer instruction is used in more
than one program location, the same timer number will be used causing coil
duplication, and the timer will not function properly if both instructions are exe-
cuted.

P_On 1.0

&10

CONTROL
EN ENO

ON_TIME

OFF_TIME

&20

CASCADE_01

P_On 1.1

&10

CONTROL
EN ENO

ON_TIME

OFF_TIME

&15

CASCADE_02

P_On 1.2

&8

CONTROL
EN ENO

ON_TIME

OFF_TIME

&7

CASCADE_03

Function Block Definition

Example: CONTROL

Algorithm

Variables

Instance
CASCADE_02

Algorithm

Internal and I/O
variables

Instance
CASCADE_01

Algorithm

Internal and I/O
variables

Instance
CASCADE_03

Algorithm

Internal and I/O
variables

Cyclic task 0

Cyclic task 1

Example:
There are 3 FB
instances and each
has its own I/O and
internal variables.

P_On 1.0

&130

CONTROL
EN ENO

PARA_1

PARA_2

&100

CASCADE

P_On 1.1

&150

CONTROL
EN ENO

PARA_1

PARA_2

&50

CASCADE

P_On 1.2

&200

CONTROL
EN ENO

PARA_1

PARA_2

&100

CASCADE

Function block definition

Example: CONTROL

Algorithm

Variables

Instance
CASCADE

Algorithm
Internal and I/O
variables

Cyclic task 0

Cyclic task 1

The same instance can be
used at multiple locations.
17

Variables Section 1-3
Registration of Instances Each instance name is registered in the global symbol table as a file name.

1-3 Variables

1-3-1 Introduction
In a function block, the addresses (see note) are not entered as real I/O mem-
ory addresses, they are all entered as variable names. Each time an instance
is created, the actual addresses used by the variable are allocated automati-
cally in the specified I/O memory areas by the CX-Programmer. Conse-
quently, it isn’t necessary for the user to know the real I/O memory addresses
used in the function block, just as it isn’t necessary to know the actual mem-
ory allocations in a computer. A function block differs from a subroutine in this
respect, i.e., the function block uses variables and the addresses are like
“black boxes.”

Example:

Note Constants are not registered as variables. Enter constants directly in instruc-
tion operands.

a b

c

sample FB [FunctionBlock1] N/A[Auto]

Program

Instance (sample) of function block definition A

The instance is registered in the
global symbol table with the instance
name as the symbol name.

Name Data type Address/
value

The function block definition
name is registered after FB in
square parentheses [].Instance name

a b

c

MOV

a

c

b

Name Type AT Initial Value Retained

a BOOL
c BOOL

Name Type AT Initial Value Retained
b BOOL

0.00 a1 1

3.00 c0 0

2.00b 11

Input 0.00

Instance of function block definition A

Input 3.00

Output 2.00

Function block definition A

Standard program section with
variable names a, b, c, etc.

Insert in
program.

Specify inputs and outputs
at the same time.

Table indicating usage and
properties of variables a, b, c, etc.

Usage: Inputs

Properties:

Usage: Outputs

Properties:

Status of 0.00 (1 or 0) is
passed to a.

Status of b (1 or 0) is
passed to 2.00.

Status of 3.00 (1 or 0) is
passed to c.

Program

The system automatically allocates the
addresses used by variables a, b, and c. For
example, when W100 to W120 is set as the
system’s non-retained memory area, bit
addresses such as a = W10000, b = W10001,
and c = W10002 will be allocated.
18

Variables Section 1-3
• Ladder programming language: Enter hexadecimal numerical values
after the # and decimal values after the &.

• Structured text (ST language): Enter hexadecimal numerical values af-
ter 16# and enter decimal numerical values as is.

Exception: Enter directly or indirectly specified addresses for Index Registers
IR0 to IR15 and Data Registers DR0 to DR15 directly into the instruction
operand.

1-3-2 Variable Usage and Properties
Variable Usage The following variable types (usages) are supported.

Internals: Internal variables are used only within an instance. They cannot
be used pass data directly to or from I/O parameters.

Inputs: Input variables can input data from input parameters outside of
the instance. The default input variable is an EN (Enable) vari-
able, which passes input condition data.

Outputs: Output variables can output data to output parameters outside of
the instance. The default output variable is an ENO (Enable Out)
variable, which passes the instance’s execution status.

In Out: Input-output variables can input data from input parameters out-
side of the instance and can return the results of processing in a
function block instance to external parameters.

Externals: External variables are either system-defined variables registered
in advance with the CX-Programmer, such as the Condition Flags
and some Auxiliary Area bits, or user-defined global symbols for
use within instances.

For details on variable usage, refer to the section on Variable Type (Usage)
under Variable Definitions in 2-1-2 Function Block Elements.

The following table shows the number of variables that can be used and the
kind of variable that is created by default for each of the variable usages.

1-3-3 Variable Properties
Variables have the following properties.

Variable Name The variable name is used to identify the variable in the function block. It
doesn’t matter if the same name is used in other function blocks.

Note The variable name can be up to 30,000 characters long, but must not begin
with a number. Also, the name cannot contain two underscore characters in a
row. The character string cannot be the same as that of a an index register
such as in IR0 to IR15. For details on other restrictions, refer to Variable Defi-
nitions in 2-1-2 Function Block Elements.

Data Type Select one of the following data types for the variable:

BOOL, INT, UINT, DINT, UDINT, LINT, ULINT, WORD, DWORD, LWORD,
REAL, LREAL, TIMER, COUNTER, and STRING

For details on variable data types, refer to Variable Definitions in 2-1-2 Func-
tion Block Elements.

AT Settings (Allocation to
an Actual Addresses)

It is possible to set a variable to a particular I/O memory address rather than
having it allocated automatically by the system. To specify a particular
address, the user can input the desired I/O memory address in this property.
This property can be set for internal variables only. Even if a specific address
is set, the variable name must still be used in the algorithm.
19

Variables Section 1-3
Refer to Variable Definitions in 2-1-2 Function Block Elements for details on
AT settings and 2-5-3 AT Settings for Internal Variables for details on using AT
settings.

Array Settings A variable can be treated as a single array of data with the same properties.
To convert a variable to an array, specify that it is an array and specify the
maximum number of elements.

This property can be set for internal variables and input-output variables only.
Only one-dimensional arrays are supported by the CX-Programmer Ver. 5.0
and later versions.

• Setting Procedure
Click the Advanced Button, select the Array Variable option, and input the
maximum number of elements.

• When entering an array variable name in the algorithm in a function block
definition, enter the array index number in square brackets after the vari-
able number.

For details on array settings, refer to Variable Definitions in 2-1-2 Function
Block Elements.

Initial Value This is the initial value set in a variable before the instance is executed for the
first time. Afterwards, the value may be changed as the instance is executed.

For example, set a boolean (BOOL) variable (bit) to either 1 (TRUE) or 0
(FALSE). Set a WORD variable to a value between 0 and 65,535 (between
0000 and FFFF hex).

If an initial value is not set, the variable will be set to 0. For example, a bool-
ean variable would be 0 (FALSE) and a WORD variable would be 0000 hex.

Retain Select the Retain Option if you want a variable’s data to be retained when the
PLC is turned ON again and when the PLC starts operating.

• Setting Procedure
Select the Retain Option.

Size When a STRING variable is used, the size required to store the text string can
be set to between 1 and 255 characters.

1-3-4 Variable Properties and Variable Usage
The following table shows which properties must be set, can be set, and can-
not be set, based on the variable usage.

(1) The value of the input parameter will be given.

(2) Valid only for STRING variables.

Property Variable usage

Internals Inputs Outputs In Out

Name Must be set. Must be set. Must be set. Must be set.

Data Type Must be set. Must be set. Must be set. Must be set.

AT (specified
address)

Can be set. Cannot be set. Cannot be set. Cannot be set.

Array specification Must be set. Cannot be set. Cannot be set. Must be set.

Initial Value Can be set. Cannot be set.
(See note 1.)

Can be set. Cannot be set.

Retained Can be set. Cannot be set.
(See note 1.)

Can be set. Cannot be set.

Size Can be set.
(See note 2.)

Cannot be set. Cannot be set. Cannot be set.
20

Variables Section 1-3
1-3-5 Internal Allocation of Variable Addresses
When an instance is created from a function block definition, the CX-Program-
mer internally allocates addresses to the variables. Addresses are allocated
to all of the variables registered in the function block definition except for vari-
ables that have been assigned actual addresses with the AT Settings prop-
erty.

Setting Internal Allocation
Areas for Variables

The user sets the function block instance areas in which addresses are allo-
cated internally by the system. The variables are allocated automatically by
the system to the appropriate instance area set by the user.

Setting Procedure

Select Function Block/SFC Memory - Function Block/SFC Memory Allo-
cation from the PLC Menu. Set the areas in the Function Block/SFC Memory
Allocation Dialog Box.

a b

15 0

15 0

t

Name Type AT Initial Value Retained

a BOOL

Name Type AT

b YES

t TIMER

2000.00
Name Type Initial Value

c 2000.00

Initial Value Retained

RetainedAT

BOOL

BOOL

Input 0.00

Instance of function block definition A

Output 2.00

Output 5.00

Note: Variable c is an internal
variable, so it is not displayed.

Usage: Inputs
Properties:

Usage: Outputs
Properties:

Usage: Internals
Properties:

Automatic allocation of
addresses by system

Manual allocation of address to
variable in FB by AT Settings option.

Program FB instance areas

Size (words)

Non-retained area

Retained area

Starting address

Starting address

Starting address

Starting
address

Timer area

Counter area

CIO, H, W,
D, or E Area

H, D, or E
Area

T Area

C Area

Size (words)

Size (Completion
Flags)

Size (Completion
Flags)

Example
21

Variables Section 1-3
Function Block Instance Areas

CJ2-series CPU Units

Note Force-setting/resetting is enabled when the following EM banks are specified:

CS/CJ-series CPU Units Ver. 3.0 or Later, and NSJ Controllers

FQM1 Flexible Motion Controllers

CP-series CPU Units

Note DM area of CP1L-L

FB Instance
Area

Default value Applicable memory
areasStart address End address Size

Non Retain H512 H1407 896 CIO, WR, HR, DM,
EM (See note.)

Retain H1408 H1535 128 HR, DM, EM (See note.)

Timers T3072 T4095 1024 TIM

Counters C3072 C4095 1024 CNT

CJ2H-CPU64(-EIP)/-CPU65(-EIP) EM bank 3

CJ2H-CPU66(-EIP) EM banks 6 to 9

CJ2H-CPU67(-EIP) EM banks 7 to E

CJ2H-CPU68(-EIP) EM banks 11 to 18

FB Instance
Area

Default value Applicable memory
areasStart address End address Size

Non Retain H512 H1407 896 CIO, WR, HR, DM, EM

Retain H1408 H1535 128 HR, DM, EM

Timers T3072 T4095 1024 TIM

Counters C3072 C4095 1024 CNT

FB Instance
Area

Default value Applicable memory
areasStart address End address Size

Non Retain 5000 5999 1000 CIO, WR, DM

Retain None

Timers T206 T255 50 TIM

Counters C206 C255 50 CNT

FB Instance
Area

Default value Applicable memory
areasStart address End address Size

Non Retain H512 H1407 896 CIO, WR, HR, DM (See
note.)

Retain H1408 H1535 128 HR, DM (See note.)

Timers T3072 T4095 1024 TIM

Counters C3072 C4095 1024 CNT

Address CP1L-L

D0000 to D9999 Provided

D10000 to D31999 Not Provided

D32000 to D32767 Provided
22

Converting Function Block Definitions to Library Files Section 1-4
Function Block Holding
Area Words (H512 to
H1535)

The Function Block Holding Area words are allocated from H512 to H1535.
These words are different to the standard Holding Area used for programs
(H000 to H511) and are used only for the function block instance area (inter-
nally allocated variable area). These words cannot be specified as instruction
operands. They are displayed in red if input when a function block is not being
created. Although the words can be input when creating a function block, an
error will occur when the program is checked. If this area is specified not to be
retained in the Function Block Memory Allocation Dialog Box, turn the power
ON/OFF or clear the area without retaining the values when starting opera-
tion.

1-4 Converting Function Block Definitions to Library Files
A function block definition created using the CX-Programmer can be stored as
a single file known as a function block definition file with filename extension
*.cxf. These files can be reused in other projects (PLCs).

1-5 Usage Procedures
Once a function block definition has been created and an instance of the algo-
rithm has been created, the instance is used by calling it when it is time to
execute it. Also, the function block definition that was created can be saved in
a file so that it can be reused in other projects (PLCs).

1-5-1 Creating Function Blocks and Executing Instances
The following procedure outlines the steps required to create and execute a
function block.

1,2,3... 1. First, create the function block definition including the algorithm and vari-
able definitions in ladder program or ST language. Alternatively, insert a
function block library file that has been prepared in advance.

Note (a) Create the algorithm entirely with variable names.

(b) When entering the algorithm in ladder programming language,
project files created with versions of CX-Programmer earlier than
Ver. 5.0 can be reused by reading the project file into CX-Pro-
grammer Ver. 5.0 or higher and copying and pasting useful parts.

(c) Existing ladder programming can be automatically turned into a
function block using Edit - Function Block (ladder) generation.

2. When creating the program, insert copies of the completed function block
definition. This step creates instances of the function block.

3. Enter an instance name for each instance.

tim_b

tim_a

ENO

TIMX tim_a OFF_TIME
tim_b

TIMX tim_b ON_TIME
tim_a

ENO

Project Project

Save Read

Function block definition
Example: CLOCK_PULSE

Function block definition
Example: CLOCK_PULSE

1. Algorithm
1. Algorithm

Function block
definition file (.cxf)

TIMX tim_a OFF_TIME

TIMX tim_b ON_TIME

tim_a TIMER
tim_b TIMER
ON_TIME INT
OFF_TIME INT

Name Type
Internal

Internal
Input
Input

2. Variable Definitions
Usage tim_a TIMER

tim_b TIMER
ON_TIME INT
OFF_TIME INT

Name Type
Internal

Internal
Input
Input

2. Variable Definitions
Usage
23

Usage Procedures Section 1-5
4. Set the variables’ input source addresses and/or constants and output
destination addresses and/or constants as the parameters to pass data for
each instance.

5. Select the created instance, select Function Block Memory - Function
Block Memory Allocation from the PLC Menu, and set the internal data
area for each type of variable.

6. Transfer the program to the CPU Unit.

7. Start program execution in the CPU Unit and the instance will be called and
executed if their input conditions are ON.

1-5-2 Reusing Function Blocks
Use the following procedure to save a function block definition as a file and
use it in a program for another PLCs.

1,2,3... 1. Select the function block that you want to save and save it as a function
block definition file (*.cxf).

2. Open the other PLC’s project and open/read the function block definition
file (*.cxf) that was saved.

3. Insert the function block definition in the program when creating the new
program.

Note In the CX-Programmer Ver. 5.0, each function block definition can be com-
piled and checked as a program. We recommend compiling to perform a pro-
gram check on each function block definition file before saving or reusing the
file.

a b

c

1. Algorithm

2. Variables

Standard
program section
with variable
names a, b, c,
etc.

Table defining usage
and properties of
variables a, b, c, etc.

Input 0.00

Function block definition A Program

Insert in
program.

Input
condition

The instance is
executed if the input
condition is established. 3. Input instance name

Output 2.00

Output 3.00

Instance of function block definition A
5. The system automatically allocates
the addresses used by these
variables. Set the data area in
which these addresses are allocated.

4. Specify the input source and
output destination addresses.

a b

c

1. Algorithm

2. Variables

Standard
program section
with variable
names a, b, c,
etc.

Table defining usage
and properties of
variables a, b, c, etc.

Input 1.00

Function block definition A

Program

Input
condition

Output 5.00

Output 6.00

Instance of function block definition A

Save

Read and
insert.

Function
block
definition
A

Function block
definition file (*.cxf)
24

Version Upgrade Information Section 1-6
1-6 Version Upgrade Information
Refer to the CX-Programmer Operation Manual (W446) for information on
upgraded functions other than those for function blocks and structure text.

Improvements were made in protection with password entry.

Ver. 9.5 to 9.6 Upgrade Information

Functionality Improved
from Version 9.5 to 9.6

Compatible PLC Models

The following unit versions of CPU Units are supported. Read protection with
extended passwords has been enabled.

CJ2H unit version 1.5, CJ2M unit version 2.1, CS1G-H unit version 4.1,
CS1H-H unit version 4.1, CJ1G-H unit version 4.1, CS1D-H unit version 1.4,
CS1D-S unit version 2.1, CP1H unit version 1.3, CP1L unit version 1.1, CP1L-
L unit version 1.1, and CP1E unit version 1.3

Read Protection with Passwords

Read protection using longer passwords was added. Read protection with
extended passwords provides stronger protection for the design assets of the
user.

Ver. 9.2 to 9.3 Upgrade Information

Changed ST Editor View • Added the indication of line numbers on the ST Editor View. And you can
also specify a line number to jump there.

• Functions and registered Symbols are selectable from Word Lists.

• When you press the Tab key while the start function of a Control State-
ment is selected, you can enter the frame of the Control Statement very
easily.

• Red wavy lines indicate ST syntax errors in a program. No programming
check is required.

Smart input on FB Ladder
View

You can use the Smart Input Mode on the FB Ladder View in the same way as
on the Task Ladder View.

Ver. 9.1 to 9.2 Upgrade Information

Improvements on
Structures

For the CJ2 CPU Units, the available range of structures is expanded.

• Structures (structure variables, structure member variables, and structure
array variables) are made available in ST (Structured Text) programs.

• You can register and use structure variables as an external variable of FB
(Function Block) ladder and ST.

Support of Structure Variables - Comparison with Previous Versions

Usage Version 9.1 or earlier Version 9.2 or higher

Global symbol table Yes Yes

Ladder program Local symbol table Yes Yes

Section view Yes Yes

ST program Local symbol table No Yes

ST editor No Yes
25

Version Upgrade Information Section 1-6
SFC program Local symbol table No Yes

SFC chart view No No

Sub-chart view No No

Sub-chart symbol table No Yes

Action ladder view No Yes

Action ST view No Yes

Transition ladder view No Yes

Transition ST view No Yes

FB ladder Variables Internal variables Yes Yes

Input variables No No

Output variables No No

Input-Output variables Yes Yes

External variables No Yes

FBST Variables Internal variables No Yes

Input variables No No

Output variables No No

Input-Output variables No Yes

External variables No Yes

Usage Version 9.1 or earlier Version 9.2 or higher
26

Version Upgrade Information Section 1-6
Improvements on TIMER/
COUNTER Type Variables

For the CJ2 CPU Units, the available range of TIMER/COUNTER type vari-
ables is expanded.

• The TIMER/COUNTER type variables are made available in ST pro-
grams. You can use the timer/counter completion flags and the timer/
counter present values in ST programs.

• In the ST program, you can start and stop the timers/counters.

• You can register and use TIMER/COUNTER type variables as an external
variable of FB.

Support of TIMER/COUNTER Type Variables - Comparison with Previous Versions

Version 9.0 to 9.1 Upgrade Information
The new CPU Unit models of CJ2M-CPU@@ supporting function blocks and
structured text are now supported.

When the PLC model is set to the CJ2M, FB Program Area usage can be dis-
played using the memory view function.

Version 8.3 to 9.0 Upgrade Information

Data Structures Supported as Symbol Data Types

Version 8.0 to 8.1 Upgrade Information
The new PLC models of CJ2H-CPU6@ supporting function blocks and struc-
tured text are now supported.

Usage Version 9.1 or earlier Version 9.2 or higher

Global symbol table Yes Yes

Ladder program Local symbol table Yes Yes

Section view Yes Yes

ST program Local symbol table Yes Yes

ST editor No Yes

SFC program Local symbol table Yes Yes

SFC chart view No No

Sub-chart view No No

Sub-chart symbol table Yes Yes

Action ladder view Yes Yes

Action ST view No Yes

Transition ladder view Yes Yes

Transition ST view No Yes

FB ladder Variables Internal variables Yes Yes

Input variables No No

Output variables No No

Input-Output variables No No

External variables No Yes

FBST Variables Internal variables No Yes

Input variables No No

Output variables No No

Input-Output variables No No

External variables No Yes

Version 8.3 Version 9.0

Data structures are not supported. CJ2 CPU Units now support data structures as symbol data type.
27

Version Upgrade Information Section 1-6
Version 7.2 to 8.0 Upgrade Information
The new PLC models of CJ2H-CPU6@-EIP supporting function blocks and
structured text are now supported.

Version 7.0 to 7.2 Upgrade Information

Improved Support for
Function Blocks and
Structured Text

For details on the other improvements to CX-Programmer functions in this
upgrade, refer to the CX-Programmer Operation Manual (W446).

n IEC61131-3 Language Improvements

Support has been improved for the structured text and SFC languages, which
are IEC61131-3 languages. Ladder, structured text (ST), and SFC program-
ming can be combined freely, so that the best language for each process can
be used, which reduces program development time and makes the program
easier to understand.

Support for ST Language in the Program (Task Allocation)

Comparison of Function Block Definitions and ST Programs

Version 6.1 to 7.0 Upgrade Information

Convenient Functions to Convert Ladder Diagrams to Function Blocks

Online Function Block Editing

Version 7.0 Version 7.2

The ST language could be used only in function
blocks.

The ST language can be used in programs (task allocation) other than
function blocks. (ST programs can be allocated to tasks.)
Other programming languages can be combined freely in a single user
program. With this capability, numerical calculations can be written as
ST programs, and other processing can be written as ladder or SFC
programs.

Note Structured text is supported only by CS/CJ-series CPU Units with
unit version 4.0 or later. It is not supported by CP-series CPU
Units.

Version 7.0 Version 7.2

Function block definitions could not be com-
pared.

• Function block definitions can be compared. With this capability, it is
easy to check for differences in function block definitions in programs.

• ST programs can also be compared.

Version 6.1 Version 7.0

Ladder programming can be copied into a func-
tion block definition to create a function block.
The symbols and addresses in the ladder pro-
gramming, however, have to be checked and
input variables, internal variables, and output
variables have to be identified and manually reg-
istered.

One or more program sections can be selected from the program and
then Function Block (ladder) generation selected from the menu to
automatically create a function block definition and automatically allo-
cate variables according to symbols and addresses in the program sec-
tions. (Allocations can later be changed as required.) This enables
legacy programming to be easily converted to function blocks.

Version 6.1 Version 7.0

Function block definitions (i.e., the algorithms
and variable tables) cannot be changed online
when the PLC is running. (Only I/O parameters
for function block instances can be changed.)

The algorithms and variables tables for function blocks can be changed
while the PLC is operation. (See note.) This enables debugging and
changing function block definitions in systems that cannot be stopped,
such as systems that operate 24 hours a day.

Operation: Right-click the function block definition in the Work Space
and select FB Online Edit - Begin from the pop-up menu.

Note Function block instances cannot be added.

Note This function cannot be used for simulations on CX-Simulator.
28

Version Upgrade Information Section 1-6
Support for STRING Data Type and Processing Functions in Standard Text Programs

Support for Input-Output Variables

Version 6.0 to 6.1 Upgrade Information

Support for NSJ-series
NSJ Controllers

The PLC model (“device type”) can be set to “NSJ” and the CPU type can be
set to the G5D.

Support for FQM1 Unit
Version 3.0

The new models of the FQM1 Flexible Motion Controller are now supported
(i.e., the FQM1-CM002 Coordinator Module and the FQM1-MMA22/MMP22
Motion Control Modules).

Instance ST/Ladder Program Simulation Function

Improved Function Block Functions

Monitoring ST Programs in Function Blocks

Version 6.1 Version 7.0

• The STRING data type (text) cannot be used in
ST programming. (See note.)

• There are no text processing functions sup-
ported for ST programming.

• Even in a ladder program, the user has to con-
sider the ASCII code and code size of text for
display messages and no-protocol communica-
tions (see note) when executing string process-
ing instructions, data conversion instructions,
and serial communications instructions.

Note The user can use the PLC memory func-
tion of the CX-Programmer to input text
strings in I/O memory. The data size in I/O
memory, however, must be considered.

• The STRING data type (text) can be used in ST programming. This
enables, for example, substituting a text string for a variable (e.g., a :=
'@READ';) to easily set a variable containing text (i.e., ASCII charac-
ters). In doing this, the user does not have to be concerned with the
ASCII code or code size.

• Text processing functions are supported for ST programming, includ-
ing text extraction, concatenation, and searching. This enables easily
processing text strings and display messages in ST programming
inside function blocks.

• Functions are also supported for sending and receiving text strings.
This enables easily processing no-protocol communications using ST
programming in functions blocks without being concerned with ASCII
codes.

Version 6.1 Version 7.0

• Input-output variables cannot be used in func-
tion blocks. (Only input variables, internal vari-
ables, and output variables can be used.)

• Arrays cannot be specified for input variables.
• Values are passed from input parameters to

input variables.

• Input-output variables can be used in function blocks.
• Input-output variables can be specified as arrays.
• Addresses are passed from input parameters to input variables

instead of values. This enables using input-output variable arrays
inside function blocks to enable easily passing large amounts of data
to function blocks using the input parameters.

Previous version (Ver. 6.0) New version (Ver. 6.1)

The CX-Simulator could be used to execute a
ladder program step (Step Run), execute steps
continuously (Continuous Step Run), execute a
single cycle (Scan Run), and set I/O break point
conditions.

The Step Run, Continuous Step Run, Scan Run, and Set/Clear Break
Point functions can be executed as CX-Programmer functions.
All of these functions can be used with ladder programs and ladder/ST
programs in function blocks.

Note The CX-Simulator Ver. 1.6 (sold separately) must be installed in
order to use these functions.

Note I/O break conditions cannot be set.

Previous version (Ver. 6.0) New version (Ver. 6.1)

The operation of ST programs within function
block instances could not be monitored while
monitoring the program online.

(It was possible to check the contents of a func-
tion block definition’s program and monitor the I/
O status of a function block instance’s ladder
diagram.)

The status of a function block instance’s ST program can be monitored
while monitoring the program.
To monitor the ST program’s status, either double-click the function
block instance or right-click the instance and select Monitor FB
Instance from the pop-up menu. At this point, it will be possible to
change PVs and force-set/reset bits.

Note Online editing is not supported.
29

Version Upgrade Information Section 1-6
Password Protection of Function Blocks

Version 5.0 to 6.0 Upgrade Information

Nesting Function Blocks

I/O Bit Monitor Support for Ladder Programs in Function Blocks

Registering and Monitoring Function Block Instance Variables in a Watch Window

Other Function Block Improvements
• The cross-reference pop-up function is supported in ladder programs

within function blocks.

• The ST language help program can be started from the pop-up menu in
ST Editor.

• A function block’s definitions can be opened just by double-clicking the
function block instance.

• The cursor automatically moves down after a function block instance’s
parameter input is confirmed.

Previous version (Ver. 6.0) New version (Ver. 6.1)

The function block properties could be set to
prevent the display of a function block defini-
tion’s program.

The following two kinds of password protection can be set.

• Password protection restricting both reading and writing.
• Password protection restricting writing only.

Previous version (Ver. 5.0) New version (Ver. 6.0)

A function block could not be called from another
function block. (Nesting not supported.)

A function block can be called from another function block (nested). Up
to 8 nesting levels are supported.

The languages of the calling function block and called function block
can be either ladder language or ST language.

The nesting level relationship between function blocks can be displayed
in a directory tree format. When function blocks are nested, just one
Function Block Library file (.cxf extension) is stored for the calling func-
tion block and its called (nested) function block definitions.

Previous version (Ver. 5.0) New version (Ver. 6.0)

The I/O status of a function block instance’s lad-
der diagram could not be monitored while moni-
toring the program online.

(It was only possible to check the program in the
function block definition.)

The I/O status of a function block instance’s ladder diagram can be
monitored while monitoring the program online.

To monitor the I/O status, either double-click the function block instance
or right-click the instance and select Monitor FB Ladder Instance
from the pop-up menu. At this point, it will be possible to monitor the
status of I/O bits and the content of words, change PVs, force-set/reset
bits, and monitor differentiation (ON/OFF transitions) of bits.

Note Online editing is not supported and timer/counter SVs cannot be
changed.

Previous version (Ver. 5.0) New version (Ver. 6.0)

To register a function block instance’s variable in
a Watch Window, it was necessary to display the
Watch Window, double-click the window, and
select the desired variable from a pull-down list.

Multiple variables in a function block instance can be easily registered
together in the Watch Window. The FB variables registration Dialog Box
can be displayed with any of the following methods and the variables
can be registered together in that Dialog Box.
• Right-click the function block instance and select Register in Watch

Window from the pop-up menu.
• Select the desired function block instance in the program or variable

table and either copy/paste or drag/drop the instance into the Watch
Window.

• Move the cursor to an empty line in the Watch Window and select
Register in Watch Window from the pop-up menu.
30

SECTION 2
Function Block Specifications

This section provides specifications for reference when using function blocks, including specifications on function blocks,
instances, and compatible PLCs, as well as usage precautions and guidelines.

2-1 Function Block Specifications . 32
2-1-1 Function Block Specifications . 32
2-1-2 Function Block Elements . 33

2-2 Data Types Supported in Function Blocks . 43
2-2-1 Basic Data Types . 43
2-2-2 Derivative Data Types . 43

2-3 Instance Specifications . 44
2-3-1 Composition of an Instance . 44
2-3-2 Parameter Specifications . 49
2-3-3 Operating Specifications. 51

2-4 Programming Restrictions. 53
2-4-1 Ladder Programming Restrictions . 53
2-4-2 ST Programming Restrictions. 55
2-4-3 Programming Restrictions . 56

2-5 Function Block Applications Guidelines . 58
2-5-1 Deciding on Variable Data Types . 58
2-5-2 Determining Variable Types

(Inputs, Outputs, In Out, Externals, and Internals). 59
2-5-3 AT Settings for Internal Variables. 61
2-5-4 Array Settings for Input-Output Variables and Internal Variables . . 61
2-5-5 Specifying Addresses Allocated to Special I/O Units 63
2-5-6 Using Index Registers. 64

2-6 Precautions for Instructions with Operands Specifying the First
or Last of Multiple Words . 67

2-7 Instruction Support and Operand Restrictions . 70
2-8 CPU Unit Function Block Specifications . 71

2-8-1 Specifications . 71
2-8-2 Operation of Timer Instructions . 77

2-9 Number of Function Block Program Steps and Instance Execution Time . . . 78
2-9-1 Number of Function Block Program Steps. 78
2-9-2 Function Block Instance Execution Time. 79
31

Function Block Specifications Section 2-1
2-1 Function Block Specifications

2-1-1 Function Block Specifications
Item Description

Number of function
block definitions

CJ2H CPU Units:
• CJ2H-CPU6@(-EIP): 2,048 max. per CPU Unit

CJ2M CPU Units:

• CJ2M-CPU@1/@2/@3: 256 max. per CPU Unit
• CJ2M-CPU@4/@5: 2,048 max. per CPU Unit
CS1-H/CJ1-H CPU Units:

• Suffix -CPU44H/45H/64H/65H/66H/67H/64H-R/65H-R/
66H-R/67H-R: 1,024 max. per CPU Unit

• Suffix -CPU42H/43H/63H: 128 max. per CPU Unit
CJ1M CPU Units:

• CJ1M-CPU11/12/13/21/22/23: 128 max. per CPU Unit

CP1H CPU Units:

• CP1H-XA/X/Y: 128 max. per CPU Unit
CP1L CPU Units:

• CP1L-M/L: 128 max. per CPU Unit

NSJ Controllers:
• All models: 1,024 max. per Controller

FQM1 Flexible Motion Controllers:

• FQM1-CM002/MMA22/MMP22: 128 max. per Controller

Number of instances CJ2H CPU Units:
• CJ2H-CPU6@(-EIP): 2,048 max. per CPU Unit

CJ2M CPU Units:

• CJ2M-CPU@1/@2/@3: 256 max. per CPU Unit
• CJ2M-CPU@4/@5: 2,048 max. per CPU Unit
CS1-H/CJ1-H CPU Units:

• Suffix -CPU44H/45H/64H/65H/66H/67H/64H-R/65H-R/
66H-R/67H-R: 2,048 max. per CPU Unit

• Suffix -CPU42H/43H/63H: 256 max. per CPU Unit
CJ1M CPU Units:

• CJ1M-CPU11/12/13/21/22/23: 256 max. per CPU Unit

CP1H CPU Units:
• CP1H-XA/X/Y: 256 max. per CPU Unit

CP1L CPU Units:

• CP1L-M/L: 256 max. per CPU Unit
NSJ Controllers:

• All models: 2,048 max. per Controller

FQM1 Flexible Motion Controllers:
• FQM1-CM002/MMA22/MMP22: 256 max. per Controller

Number of instance
nesting levels

• CX-Programmer Ver. 5.0:
Nesting is not supported.

• CX-Programmer Ver. 6.0 and later versions:
Supports nesting up to 8 levels. (The instance called from
the program is counted as one nesting level.)

Number of variables
used in a function block
(not including internal
variables, external vari-
ables, EN, and EN0)

Maximum number of variables per function block definition

• Input-output variables: 16 max.
• Input variables + input-output variables: 64 max.
• Output variables + input-output variables: 64 max.
32

Function Block Specifications Section 2-1
2-1-2 Function Block Elements
The following table shows the items that must be entered by the user when
defining function blocks.

Function Block
Definition Name

Each function block definition has a name. The names can be up to 64 char-
acters long and there are no prohibited characters. The default function block
name is FunctionBlock@, where @ is a number (assigned in order).

Language Select either ladder programming language or structured text (ST language).

Note (1) For details on ST language, refer to SECTION 5 Structured Text (ST)
Language Specifications in Part 2: Structured Text (ST).

(2) When nesting, function blocks using ST language and ladder language
can be combined freely (version 6.0 and higher only).

Variable Definitions Define the operands and variables used in the function block definition.

Variable Names • Variable names can be up to 30,000 characters long.

• Variables name cannot contain spaces or any of the following characters:
! “ # $ % & ‘ () = - ~ ^ \ | ‘ @ { [+ ; * : }] < , > . ? /

• Variable names cannot start with a number (0 to 9).

• Variable names cannot contain two underscore characters in a row.

• The following characters cannot be used to indicate addresses in I/O
memory.

A, W, H (or HR), D (or DM), E (or EM), T (or TIM), C (or CNT) followed
by the numeric value (word address)

Item Description

Function block
definition name

The name of the function block definition

Language The programming language used in the function block defini-
tion. Select ladder programming or structured text

Variable definitions Variable settings, such as operands and return values,
required when the function block is executed
• Type (usage) of the variable
• Name of the variable
• Data type of the variable
• Initial value of the variable

Algorithm Enter the programming logic in ladder or structured text.
• Enter the programming logic using variables.
• Input constants directly without registering in variables.

Comment Function blocks can have comments.

CLOCK PULSE
EN ENO
(BOOL) (BOOL)
ON_TIME
(INT)

OFF_TIME
(INT)

Function block definition name
33

Function Block Specifications Section 2-1
Variable Notation

Variable Type (Usage)

Note (1) For details on Externals, refer to Appendix A System-defined external
variables supported in function blocks.

(2) The value of the input parameter will be given.

(3) Structure variables and TIMER/COUNTER type variables can be used
only for the following variables:
Structure variables: Internal variables, input-output variables, and exter-
nal variables
TIMER/COUNTER type variables: Internal variables and external vari-
ables

CLOCK PULSE
EN

 ENO
(BOOL) (BOOL)

ON_TIME
 (INT)
OFF_TIME
(INT)

TIMX tim_a OFF_TIME
tim_b

TIMX tim_b OFF_TIME
tim_a

ENO

tim_a TIMER
tim_b TIMER
ON_TIME INT
OFF_TIME INT

Input variables
Output variables

Internal
variables

Variable table

Name
Internal
Internal
Input
Input

TypeUsage

Item
(See note 3.)

Variable type

Inputs Outputs In Out Internals Externals
(See note 1.)

Definition Operands to the
instance

Return values from
the instance

Variables used to
pass data to and
from instances
using addresses

Variables used
only within
instance

Global symbols reg-
istered as variables
beforehand with the
CX-Programmer or
user-defined global
symbols.

Status of value
at next execu-
tion

The value of the
input parameter
will be given.

The value is
passed on to the
next execution.

The value of the
external parameter

The value is
passed on to the
next execution.

The value of the
variable registered
externally

Display Displayed on the
left side of the
instance.

Displayed on the
right side of the
instance.

Displayed on the
left and right sides
of the instance.

Not displayed. Not displayed.

Number allowed 64 max. per func-
tion block (exclud-
ing EN)

64 max. per func-
tion block (exclud-
ing ENO)

16 max. per func-
tion block

Unlimited Unlimited

AT setting No No No Supported No

Array setting No No Supported Supported No

Retain setting Supported
(See note 2.)

Supported No Supported No

Variables cre-
ated by default

EN (Enable):
Receives an input
condition.

ENO (Enable Out-
put):
Outputs the func-
tion block’s execu-
tion status.

None None Pre-defined sym-
bols registered in
advance as vari-
ables in the CX-
Programmer, such
as Condition Flags
and some Auxil-
iary Area bits.
34

Function Block Specifications Section 2-1
n Input Variables

Input variables pass external operands to the instance. The input variables
are displayed on the left side of the instance.

The value of the input source (data contained in the specified parameter just
before the instance was called) will be passed to the input variable.

Example

Note 1. The same name cannot be assigned to an input variable and output vari-
able. If it is necessary to receive a value from an external variable, change
the variable inside the function block, and then return the result to the ex-
ternal variable, use an input-output variable.

2. When the instance is executed, input values are passed from parameters
to input variables before the algorithm is processed. Consequently, values
cannot be read from parameters to input variables within the algorithm. If
it is necessary to read a value within the execution cycle of the algorithm,
do not pass the value from a parameter. Assign the value to an internal
variable and use an AT setting (specified addresses). Alternatively, refer-
ence the global symbol as external variables.

Initial Value

Initial values can be set for input variables, but the value of the input parame-
ter will be enabled (the input parameter value will be set when the parameter
for input variable EN goes ON and the instance is executed).

Note The input parameter setting cannot be omitted when using the CX-
Programmer.

EN (Enable) Variable

When an input variable is created, the default input variable is the EN variable.
The instance will be executed when the parameter for input variable EN is ON.

n Output Variables

Output variables pass return values from the instance to external applications.
The output variables are displayed on the right side of the instance.

P_On 1.0
FB

EN
ENO

PV CV

D0 D100

The value of the parameter specified as the input (value of D0)
is passed to the instance’s input variable (PV).

D1000

0.0 10.0

D200

ADD_INT_DINT

EN ENO

IN16 OUT32

IN32

D100

tmp DINT
EN BOOL
IN16 INT
IN32 DINT
ENO BOOL
OUT32 DINT

SIGN IN16 tmp
P_On

+L IN32 tmp OUT32

IN16 is an INT variable, so the content of D100 is used.

IN32 is a DINT variable, so the content of D200 and
D201 is used.

Algorithm (Body)

Variable table
Name

Internal
Input
Input
Input
Output
Output

TypeUsage
35

Function Block Specifications Section 2-1
After the instance is executed, the value of the output variable is passed to the
specified parameter.

Example

Like internal variables, the values of output variables are retained until the
next time the instance is executed (i.e., when EN turns OFF, the value of the
output variable is retained).

Example:
In the following example, the value of output variable CV will be retained until
the next time the instance is executed.

Note 1. The same name cannot be assigned to an input variable and output vari-
able. If it is necessary to receive a value from an external variable, change
the variable inside the function block, and then return the result to the ex-
ternal variable, use an input-output variable.

2. When the instance is executed, output variables are passed to the corre-
sponding parameters after the algorithm is processed. Consequently, val-
ues cannot be written from output variables to parameters within the
algorithm. If it is necessary to write a value within the execution cycle of the
algorithm, do not write the value to a parameter. Assign the value to an in-
ternal variable and use an AT setting (specified addresses).

Initial Value

An initial value can be set for an output variable that is not being retained, i.e.,
when the Retain Option is not selected. An initial value cannot be set for an
output variable if the Retain Option is selected.
The initial value will not be written to the output variable if the IOM Hold Bit
(A50012) is ON.

P_On FB
EN ENO

PV CVD0 D100

1.0

The value of the output variable (CV) is passed to the parameter
specified as the output destination, which is D100 in this case.

D1000

0.0 10.0

D200

ADD_INT_DINT
EN ENO

IN16 OUT32

IN32

D100

tmp DINT
EN BOOL
IN16 INT
IN32 DINT
ENO BOOL
OUT32 DINT

SIGN IN16 tmp
EN

+L IN32 tmp OUT32

OUT32 is a DINT variable, so
the variable's value is passed
to D1000 and D1001.

Algorithm (Body)

Variable table
Name

Internal
Input
Input
Input
Output
Output

Data typeUsage

CTD
CD Q

LD

PV CV D150

Product A counter

Auxiliary Area control bit Initial value

IOM Hold Bit (A50012) ON The initial value will not be set.
36

Function Block Specifications Section 2-1
ENO (Enable Output) Variable

The ENO variable is created as the default output variable. The ENO output
variable will be turned ON when the instance is called. The user can change
this value. The ENO output variable can be used as a flag to check whether or
not instance execution has been completed normally.

Input-Output Variables

Input-output variables use addresses to pass data to and from a function
block instance. An input-output variable is displayed on both the left and right
side of the instance. The value of the input-output variable immediately after
the instance is executed is not stored in the addresses internally allocated to
the input-output variable by the system, but rather the value is stored in the
address (and following addresses depending on the data size) of the parame-
ter used to pass data to and from the input-output variable.

Note Input-output variables are specified a CX-Programmer variable table by
selecting “In Out” for the variable usage.

n Internal Variables

Internal variables are used within an instance. These variables are hidden
within each instance. They cannot be referenced from outside of the instance
and are not displayed in the instance.

The values of internal variables are retained until the next time the instance is
executed (i.e., when EN turns OFF, the value of the internal variable is
retained). Consequently, even if instances of the same function block defini-
tion are executed with the same I/O parameters, the result will not necessarily
be the same.

Example:

The internal variable tim_a in instance Pulse_2sON_1sOFF is different from
internal variable tim_a in instance Pulse_4sON_1sOFF, so the instances can-
not reference and will not affect each other’s tim_a value.

1.0
FB

EN ENO

CAL CAL

P_ON

D200 D200

Address D200 is passed to the input-output variable CAL.
Inside the function block, the specified data size of I/O
memory starting from D200 is processed, and changes are
thus passed outside the function block instance.

P_On 1.0

&10

CLOCK PULSE
EN ENO

ON_TIME

OFF_TIME

&20

Pulse_2sON_1sOFF

P_On 1.1

&10

CLOCK PULSE
EN ENO

ON_TIME

OFF_TIME

&40

Pulse_4sON_1sOFF

tim_a TIMER
tim_b TIMER
ON_TIME INT
OFF_TIME INT

Variable table
Name

Internal
Internal
Input
Input

Data typeUsage
37

Function Block Specifications Section 2-1
Retain Data through Power Interruptions and Start of Operation

Internal variables retain the value from the last time that the instance was
called. In addition, the Retain Option can be selected so that an internal vari-
able will also retains its value when the power is interrupted or operation
starts (the mode is switched from PROGRAM to RUN or MONITOR mode).

When the Retain Option is selected, the value of the variable is retained when
the power is interrupted or operation starts unless the CPU Unit does not
have a backup battery. If the CPU Unit does not have a good battery, the value
will be unstable.

When the Retain Option is not selected, the value of the variable will not be
held when the power is interrupted or operation starts. Even variables not set
to be retained, however, can be held at the start of operation by turning ON
the IOM Hold Bit (A50012) and can be held during power interruptions by set-
ting the PLC Setup, as shown in the following table.

Note The IOM Hold Bit (A50012) is supported for compatibility with previous mod-
els. To hold the values of variables in function blocks, however, use the Retain
Option and not the IOM Hold Bit.

Initial Value

An initial value can be set for an internal variable that is not being retained
(i.e., when the Retain Option not selected). An initial value cannot be set for
an internal variable if the Retain Option is selected.
Internal variables that are not being retained will be initialized to 0.
The initial value will not be written to the internal variable if the IOM Hold Bit
(A50012) is ON.

Variables Condition Status

Variables set to Retain Start of operation Retained

Power ON Retained

SIGN IN16 tmp
EN

+L IN32 tmp OUT32

tmp DINT
EN BOOL
IN16 INT
IN32 DINT
ENO BOOL
OUT32 DINT

D1000

0.0 10.0

D200

ADD_INT_DINT
EN ENO

IN16 OUT32

IN32

D100

Internal variable tmp
is not displayed.

Algorithm (Body)

Variable table
Name

Internal
Input
Input
Input
Output
Output

Type

Variables Condition IOM Hold Bit (A50012) setting

OFF ON

IOM Hold Bit Status at Startup
(PLC Setup) selected

IOM Hold Bit Status at Startup
(PLC Setup) not selected

Variables not
set to Retain

Start of operation Not retained Retained Retained

Power ON Not retained Retained Not retained

Auxiliary Area control bit Initial value

IOM Hold Bit (A50012) ON The initial value will not be set.

OFF The initial value will be set.
38

Function Block Specifications Section 2-1
n External Variables

External variables are either system-defined variables that have been regis-
tered in CX-Programmer before hand, or variables that externally reference
user-defined variables in the global symbol table.

• For details on system-defined variables, refer to Appendix A System-
defined external variables supported in function blocks.

• To externally reference user-defined variables in the global symbol table,
the variables of the same name and data type must be registered as an
external variable.
However, it is impossible to externally reference the variables user-
defined as a network symbol.

Variable Properties Variable Name

The variable name is used to identify the variable in the function block. The
name can be up to 30,000 characters long. The same name can be used in
other function blocks.

Note A variable name must be input for variables, even ones with AT settings (spec-
ified address).

Data Type

Any of the following types may be used.

Note (1) The TIMER data type is used to enter variables for timer numbers (0 to
4095) in the operands for TIMER instructions (TIM, TIMH, etc.). When
this variable is used in another instruction, the Timer Completion Flag (1
bit) or the timer present value (16 bits) is specified (depending on the in-
struction operand).

(2) The COUNTER data type is used to enter variables for counter numbers
(0 to 4095) in the operands for COUNTER instructions (CNT, CNTR,
etc.). When this variable is used in another instruction, the Counter Com-
pletion Flag (1 bit) or the counter present value (16 bits) is specified (de-
pending on the instruction operand).

Data type Content Size Inputs Outputs In Out Internals Externals

BOOL Bit data 1 bit OK OK OK OK OK

INT Integer 16 bits OK OK OK OK OK

UNIT Unsigned integer 16 bits OK OK OK OK OK

DINT Double integer 32 bits OK OK OK OK OK

UDINT Unsigned double integer 32 bits OK OK OK OK OK

LINT Long (4-word) integer 64 bits OK OK OK OK OK

ULINT Unsigned long (4-word) integer 64 bits OK OK OK OK OK

WORD 16-bit data 16 bits OK OK OK OK OK

DWORD 32-bit data 32 bits OK OK OK OK OK

LWORD 64-bit data 64 bits OK OK OK OK OK

REAL Real number 32 bits OK OK OK OK OK

LREAL Long real number 64 bits OK OK OK OK OK

TIMER Timer (See note 1.) Flag: 1 bit
PV: 16 bits

Not sup-
ported

Not sup-
ported

Not sup-
ported

OK OK

COUNTER Counter (See note 2.) Flag: 1 bit
PV: 16 bits

Not sup-
ported

Not sup-
ported

Not sup-
ported

OK OK

STRING Text string data Variable Not sup-
ported

Not sup-
ported

OK OK Not sup-
ported

STRUCT User-defined data type Variable Not sup-
ported

Not sup-
ported

OK OK OK
39

Function Block Specifications Section 2-1
AT Settings (Allocation to Actual Addresses)

With internal variables, it is possible to set the variable to a particular I/O
memory address rather than having it allocated automatically by the system.
To specify a particular address, the user can input the desired I/O memory
address in this property. It is still necessary to use variable name in program-
ming even if a particular address is specified.

Note (1) The AT property can be set for internal variables only.

(2) AT settings can be used only with the CIO (Core I/O Area), A (Auxiliary
Area), D (Data Memory Area), E (Extended Memory Area, H (Holding
Relay Area), W (Internal Relay Area).
The AT property cannot be set in the following memory areas:

• Index Register and Data Register Areas (directly/indirectly specified)

• Indirectly specified DM/EM (: binary mode, *:BCD mode)

(3) AT settings can be used for the following allocations.

• Addresses for Basic I/O Units, CPU Bus Units, or Special I/O Units

• Auxiliary Area bits not registered as external variables in advance

• PLC addresses for other nodes in the network

Example:
If the READ DATA FILE instruction (FREAD) is being used in the function
block definition and it is necessary to check the File Memory Operation Flag
(A34313), use an internal variable and specify the flag’s address in the AT set-
ting.

Register an internal variable, select the AT setting option, and specify A34313
as the address. The status of the File Memory Operation Flag can be checked
through this internal variable.

When the AT setting is used, the function block loses its flexibility. This func-
tion should thus be used only when necessary.

Array Setting

With internal variables and input-output variables, a variable can be defined
as an array.

Note Only one-dimensional arrays are supported by the CX-Programmer.

With the array setting, a large number of variables with the same properties
can be used by registering just one variable.

• An array set for an internal variable can have from 1 to 32,000 array ele-
ments. An array set for an input-output variable can have the number of
elements given in the following table.

Address A34313 is allocated to a
boolean internal variable named
NOW_CARD_ACCESS.

Data type Number of elements

BOOL 2,048

INT/UINT/WORD 2,048
40

Function Block Specifications Section 2-1
• An array can be set only for internal variables or input-output variables.

• Any data type except for STRING can be specified for an array variable,
as long as it is an internal variable.

• When entering an array variable name in the algorithm of a function block
definition, enter the array index number in square brackets after the vari-
able name. The following three methods can be used to specify the index.
(In this case the array variable is a[].)

• Directly with numbers (for ladder or ST language programming)
Example: a[2]

• With a variable (for ladder or ST language programming)
Example: a[n], where n is a variable

Note INT, DINT, LINT, UINT, UDINT, or ULINT can be used as the vari-
able data type.

• With an equation (for ST language programming only)
Example: a[b+c], where b and c are variables

Note Equations can contain only arithmetic operators (+, −, *, and /).

An array is a collection of data elements that are the same type of data. Each
array element is specified with the same variable name and a unique index.
(The index indicates the location of the element in the array.)

A one-dimensional array is an array with just one index number.

Example: When an internal variable named SCL is set as an array variable
with 10 elements, the following 10 variables can be used:
SCL[0], SCL[1], SCL[2], SCL[3], SCL[4], SCL[5], SCL[6], SCL[7], SCL[8], and
SCL[9]

Note Use an array variable when specifying the first or last of multiple words in an
instruction operand to enable reusing the function block if an internal variable
with a AT property cannot be set for the operand and an external variable can-
not be set. When using an array setting for an input-output variable, specify
the address of the first word for the input parameter (CX-Programmer version
7.0 or higher). When using an array setting for an internal variable, prepare an
array variable with the number of elements for the required size, and after set-

DINT/UDINT/DWORD 1,024

LINT/ULINT/LWORD 512

Data type Number of elements

SCL

0

1

2

3

4

5

6

7

8

9

Specify SCL[3] to access this data element.

WORD variable

WORD variable

WORD variable

WORD variable

WORD variable

WORD variable

WORD variable

WORD variable

WORD variable

WORD variable

Settings for variable SCL as an array
variable with element numbers 0 to 9.
41

Function Block Specifications Section 2-1
ting the data in each array element, specify the first or last element in the
array variable for the operand.

Example:

Note For details, refer to 2-6 Precautions for Instructions with Operands Specifying
the First or Last of Multiple Words.

Initial Values

When an instance is executed the first time, initial values can be set for input
variables, internal variables, and output variables. For details, refer to Initial
Value under the preceding descriptions of input variables, internal variables,
and output variables.

Retaining Data through Power Interruptions and Start of Operation

The values of internal variables can be retained through power interruptions
and the start of operation. When the Retain Option is selected, the variable
will be allocated to a region of memory that is retained when the power is
interrupted and PLC operation starts.

Algorithm Enter the logic programming using the registered variables.

Operand Input
Restrictions

Addresses cannot be directly input into instruction operands within function
blocks. Addresses that are directly input will be treated as variable names.

Note Exception: Input directly or indirectly specified addresses for Index Registers
IR0 to IR15 and Data Registers DR0 to DR15 directly into the instruction
operand. Do not input variables.

Input constants directly into instruction operands.

• Ladder programming: Enter decimal values after the &, and enter
hexadecimal numerical values after the #.

S D
100

0 #0000

1 &0

2 #0300

3 &4000

Function block definition Instance

Variable

Algorithm

SCL WORD[10]

SCL-BODY

LD P_On

MOV #0000 SCL[0]
MOV &0SCL[1]
MOV #0300 SCL[2]
MOV &4000 SCL[3]

SCL S SCL[0] D

SCL

SCL
EN ENO

Write the operand data
to the array variables.

Specifying this array element in
the SCL instruction is the same
as specifying the first address.

Specify the beginning of the
array in the SCL instruction.
42

Data Types Supported in Function Blocks Section 2-2
• Structured text (ST language): Enter decimal numerical values as is
and enter hexadecimal numerical values after 16#.

Comment A comment of up to 30,000 characters long can be entered.

2-2 Data Types Supported in Function Blocks

2-2-1 Basic Data Types

2-2-2 Derivative Data Types

Data type Content Size Range of values

BOOL Bit data 1 0 (FALSE), 1 (TRUE)

INT Integer 16 −32,768 to +32,767

DINT Double integer 32 −2,147,483,648 to +2,147,483,647

LINT Long (8-byte) integer 64 −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

UINT Unsigned integer 16 &0 to 65,535

UDINT Unsigned double integer 32 &0 to 4,294,967,295

ULINT Unsigned long (8-byte)
integer

64 &0 to 18,446,744,073,709,551,615

REAL Real number 32 −3.402823 × 1038 to −1.175494 × 10−38, 0,
+1.175494 × 10−38 to +3.402823 × 1038

LREAL Long real number 64 −1.79769313486232 × 10308 to −2.22507385850720 × 10−308, 0,
2.22507385850720 × 10−308 to 1.79769313486232 × 10308

WORD 16-bit data 16 #0000 to FFFF or &0 to 65,535

DWORD 32-bit data 32 #00000000 to FFFFFFFF or &0 to 4,294,967,295

LWORD 64-bit data 64 #0000000000000000 to FFFFFFFFFFFFFFFF or
&0 to 18,446,744,073,709,551,615

STRING Text string Variable 1 to 255 ASCII characters

TIMER Timer Flag: 1 bit
PV: 16 bits

Timer number: 0 to 4095
Completion Flag: 0 or 1
Timer PV: 0 to 9999 (BCD), 0 to 65535 (binary)

COUNTER Counter Flag: 1 bit
PV: 16 bits

Counter number: 0 to 4095
Completion Flag: 0 or 1
Counter PV: 0 to 9999 (BCD), 0 to 65535 (binary)

FUNCTION
BLOCK

Function block instance --- ---

Data type Content

Array 1-dimensional array; 32,000 elements max.

Structure User-defined data type
43

Instance Specifications Section 2-3
2-3 Instance Specifications

2-3-1 Composition of an Instance
The following table lists the items that the user must set when registering an
instance.

Instance Name This is the name of the instance.

• Instance names can be up to 30,000 characters long.

• Instance names cannot contain spaces or any of the following characters:
! “ # $ % & ‘ () = - ~ ^ \ | ‘ @ { [+ ; * : }] < , > . ? /

• Instance names cannot start with a number (0 to 9).

There are no other restrictions.

The instance name is displayed above the instance in the diagram.

Function Block
Instance Areas

To use a function block, the system requires memory to store the instance’s
internal variables, input variables, output variables, and input-output variables.
These areas are known as the function block instance areas and the user
must specify the first addresses and sizes of these areas. The first addresses
and area sizes can be specified in 1-word units.

When the CX-Programmer compiles the function, it will output an error if there
are any instructions in the user program that access words in these areas.

Item Description

Instance name Name of the instance

Language
Variable definitions

The programming and variables are the same as in
the function block definition.

Function block instance areas The ranges of addresses used by the variables

Comments A comment can be entered for each instance.

CLOCK PULSE
EN
ENO

ON_TIME

OFF_TIME

Pulse_2sON_2sOFF

Instance name

&20

&10
44

Instance Specifications Section 2-3
CJ2-series CPU Units

Note Force-setting/resetting is enabled when the following EM banks are specified:

CS/CJ-series CPU Units Ver. 3.0 or Later, and NSJ Controllers

FQM1 Flexible Motion Controllers

CP-series CPU Units

Note DM area of CP1L-L

FB Instance
Area

Default value Applicable memory
areasStart address End address Size

Non Retain H512 H1407 896 CIO, WR, HR, DM,
EM (See note.)

Retain H1408 H1535 128 HR, DM, EM (See note.)

Timers T3072 T4095 1024 TIM

Counters C3072 C4095 1024 CNT

CJ2H-CPU64(-EIP)/-CPU65(-EIP) EM bank 3

CJ2H-CPU66(-EIP) EM banks 6 to 9

CJ2H-CPU67(-EIP) EM banks 7 to E

CJ2H-CPU68(-EIP) EM banks 11 to 18

FB Instance
Area

Default value Applicable memory
areasStart address End address Size

Non Retain H512 H1407 896 CIO, WR, HR, DM, EM

Retain H1408 H1535 128 HR, DM, EM

Timers T3072 T4095 1024 TIM

Counters C3072 C4095 1024 CNT

FB Instance
Area

Default value Applicable memory
areasStart address End address Size

Non Retain 5000 5999 1000 CIO, WR, DM

Retain None

Timers T206 T255 50 TIM

Counters C206 C255 50 CNT

FB Instance
Area

Default value Applicable memory
areasStart address End address Size

Non Retain H512 H1407 896 CIO, WR, HR, DM (See
note.)

Retain H1408 H1535 128 HR, DM (See note.)

Timers T3072 T4095 1024 TIM

Counters C3072 C4095 1024 CNT

Address CP1L-L

D0000 to D9999 Provided

D10000 to D31999 Not Provided

D32000 to D32767 Provided
45

Instance Specifications Section 2-3
Function Block Instance
Area Types

The following settings are made in the function block instance area:

CS/CJ-series CPU Units Ver. 3.0 or Later, CP-series PLCs, and NSJ
Controllers

Non-retained Areas

Note (1) Except when the data type is set to TIMER or COUNTER.

(2) Bit data can be accessed even if the DM or EM Area is specified for the
non-retained area or retained area.

(3) The same bank number cannot be specified as the current bank in the
user program if the EM Area is specified for the non-retained area or re-
tained area.

Retained Area

Note (1) Except when the data type is set to TIMER or COUNTER.

(2) Bit data can be accessed even if the DM or EM Area is specified for the
non-retained area or retained area.

(3) The same bank number cannot be specified as the current bank in the
user program if the EM Area is specified for the non-retained area or re-
tained area.

Timer Area

Counter Area

Item Contents

Allocated variables Variables for which the retain property for power OFF and
operation start is set as non-retained (See note 1.)

Applicable areas H (Function block Special Holding Area), I/O (CIO Area), H
(Holding Area), W (Internal Relay Area), D (Data Memory
Area) (see note 2), E (Extended Data Memory Area) (See
notes 2 and 3.)

Setting unit Set in words

Allocated words
(default)

H512 to H1407

Item Contents

Allocated variables Variables for which the retain property for power OFF and
operation start is set as retained (See note 1.)

Applicable areas H (Function block Special Holding Area), H (Holding Area), D
(Data Memory Area) (see note 1), E (Extended Data Memory
Area) (See notes 2 and 3.)

Setting unit Set in words

Allocated words
(default)

H1408 to H1535

Item Contents

Allocated variables Variables with TIMER set as the data type.

Applicable areas T (Timer Area) Timer Flag (1 bit) or timer PVs (16 bits)

Allocated words
(default)

T3072 to T4095 Timer Flag (1 bit) or timer PVs (16 bits)

Item Contents

Allocated variables Variables with COUNTER set as the data type.

Applicable areas C (Counter Area) Counter Flag (1 bit) or counter PVs (16 bits)

Allocated words
(default)

C3072 to C4095 Counter Flag (1 bit) or counter PVs (16 bits)
46

Instance Specifications Section 2-3
Function Block Holding Area (H512 to H1535)

The default allocation of Function Block Holding Area words set as retained
and non-retained words is H512 to H1535. These words are different to the
standard Holding Area used for programs (H000 to H511), and are used only
for the function block instance area (internally allocated variable area).

• These words cannot be specified in AT settings for internal variables.

• These words cannot be specified as instruction operands.

• These words are displayed in red if they are input when a function
block is not being created.

• Although the words can be input when creating a function block, an
error will occur when the program is checked.

• If this area is specified as non-retained, turn the power ON/OFF or clear
the area without retaining the values when starting operation.

Note To prevent overlapping of instance area addresses with addresses used in the
program, set H512 to H1535 (Function Block Holding Area words) for the non-
retained area and retained area. If there are not sufficient words, use words in
areas not used by the user program.

FQM1 Flexible Motion controller

Non-retained Areas

Note (1) Except when the data type is set to TIMER or COUNTER.

(2) Bit data can be accessed even if the DM Area is specified for the non-re-
tained area.

Retained Area

None

Timer Area

Counter Area

FB Instance
Area

Default value Applicable memory
areasStart address End address Size

Non Retain 5000 5999 1000 CIO, WR, DM

Retain None

Timers T206 T255 50 TIM

Counters C206 C255 50 CNT

Item Contents

Allocated variables Variables for which the retain property for power OFF and
operation start is set as retained. (See note 1.)

Applicable areas I/O (CIO), W (Work Area), and D (DM Area) (See note 2.)

Setting unit Set in words

Allocated words
(default)

CIO 5000 to CIO 5999

Item Contents

Allocated variables Variables with TIMER set as the data type.

Applicable areas T (Timer Area) Timer Flag (1 bit) or timer PVs (16 bits)

Allocated words
(default)

T206 to T255 Timer Flag (1 bit) or timer PVs (16 bits)

Item Contents

Allocated variables Variables with COUNTER set as the data type.
47

Instance Specifications Section 2-3
Accessing Function Block
Instance Area from the
User Program

If the user program contains an instruction to access the function block
instance area, an error will be displayed in the Compile Tab of the Output Win-
dow of CX-Programmer if the following operations are attempted.

• Attempting to write during online editing (writing not possible)

• Executing program check (Selecting Compile from the Program Menu or
Compile All PLC Programs from the PLC Menu)

Example: If W0 to W511 is specified as the non-retained area of the function
block instance area and W0.00 is used in the ladder program, an error will
occur when compiling and be displayed as “ERROR: [omitted]...- Address -
W0.00 is reserved for Function Block use].

Note The allocations in the function block instance area for variables are automati-
cally reallocated when a variable is added or deleted. A single instance
requires addresses in sequence, however, so if addresses in sequence can-
not be obtained, all variables will be allocated different addresses. As a result,
unused areas will be created. If this occurs, execute the optimization opera-
tion to effectively use the allocated areas and remove the unused areas.

Comments A comment of up to 30,000 characters long can be entered.

Creating Multiple
Instances

Calling the Same Instance A single instance can be called from multiple locations. In this case, the inter-
nal variables will be shared.

Making Multiple Instances Multiple instances can be created from a single function block definition. In
this case, the values of internal variables will be different in each instance.

Example: Counting Product A and Product B

Prepare a function block definition called Down Counter (CTD) and set up
counters for product A and product B. There are two types of programs, one
for automatic operation and another for manual operation. The user can
switch to the appropriate mode of operation.

In this case, multiple instances will be created from a single function block.
The same instance must be called from multiple locations.

Applicable areas C (Counter Area) Counter Flag (1 bit) or counter PVs (16 bits)

Allocated words
(default)

C206 to C255 Counter Flag (1 bit) or counter PVs (16 bits)

Item Contents

FB
EN ENO

1.0P_Off

3.0W0.00

W0 512

Program

Compile error

Instance data area

Non Retain
Retain
Timers
Counters

Start
address

Size
48

Instance Specifications Section 2-3
2-3-2 Parameter Specifications
The data that can be set by the user in the input parameters and output
parameters is as follows:

Note (1) The following table shows the methods for inputting values in parameters.

CTD
CD Q

LD

PV CV D100

CTD
CD Q

LD

PV CV D200

CTD
CD Q

LD

PV CV D150

FB

FB

FB

Program 1 (automatic operation) Program 2 (manual operation)

Product A counter Product B counter

Product B counter

Program 1
Instance A

Instance B

Program 2
Instance A

Reading the same product’s counter
value at different locations

Reading different products’ counter values
(Algorithm calculating counter value is the same.)

Use the same internal variables

Use different internal variables

Instance A

Instance B

I/O variables,
Internal
variables

Body

I/O variables,
Internal
variables

Body

FB definition

Variable
definitions

Body

Item Applicable data

Input parameters Values (See note 1.), addresses, and program symbols (glo-
bal symbols and local symbols) (See note 2.)

Note The data that is passed to the input variable from the
parameter is the actual value of the size of the input
variable data. (An address itself will not be passed even
if an address is set in the parameter.)

Note Input parameters must be set. If even one input param-
eter has not been set, a fatal error will occur and the
input parameters will not be transferred to the actual
PLC.

Output parameters Addresses, program symbols (global symbols, local symbols)
(See note 2.)

Input-output parame-
ters

Addresses, program symbols (global symbols, local symbols)

Input
variable

data type

Contents Size Parameter value input
method

Setting range

BOOL Bit data 1 bit P_Off, P_On 0 (FALSE), 1 (TRUE)
49

Instance Specifications Section 2-3
(2) The size of function block input variables and output variables must
match the size of program symbols (global and local), as shown in the fol-
lowing table.

Note The program symbol NUMBER can be set only in the input param-
eters. The value that is input must be within the size range for the
function block variable data type.

INT Integer 16 bits Positive value: & or + followed
by integer

Negative value: − followed by
integer

−32,768 to 32,767

DINT Double integer 32 bits −2,147,483,648 to 2,147,483,647

LINT Long (8-byte) integer 64 bits −9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

UINT Unsigned integer 16 bits Positive value: & or + followed
by integer

&0 to 65,535

UDINT Unsigned double integer 32 bits &0 to 4,294,967,295

ULINT Unsigned long (8-byte)
integer

64 bits &0 to 18,446,744,073,709,551,615

REAL Real number 32 bits Positive value: & or + followed
by real number (with decimal
point)

Negative value: − followed by
real number (with decimal
point)

−3.402823 × 1038 to −1.175494 ×
10−38, 0, 1.175494 × 10−38 to
3.402823 × 1038

LREAL Long real number 64 bits −1.79769313486232 × 10308 to
−2.22507385850720 × 10−308, 0,
2.22507385850720 × 10−308,
1.79769313486232 × 10308

WORD 16-bit data 16 bits # followed by hexadecimal
number (4 digits max.)

& or + followed by decimal
number

#0000 to FFFF or &0 to 65,535

DWORD 32-bit data 32 bits # followed by hexadecimal
number (8 digits max.)

& or + followed by decimal
number

#00000000 to FFFFFFFF or &0 to
4,294,967,295

LWORD 64-bit data 64 bits # followed by hexadecimal
number (16 digits max.)

& or + followed by decimal
number

#0000000000000000 to
FFFFFFFFFFFFFFFF or &0 to
18,446,744,073,709,551,615

Input
variable

data type

Contents Size Parameter value input
method

Setting range

Size Function block variable data
type

Program symbol (global, local)
data type

1 bit BOOL BOOL

16 bits INT, UINT, WORD INT, UINT, UINT BCD, WORD

32 bits DINT, UDINT, REAL, DWORD DINT, UDINT, UDINT BCD, REAL,
DWORD

64 bits LINT, ULINT, LREAL, LWORD LINT, ULINT, ULINT BCD, LREAL,
LWORD

More than 1
bit

Non-boolean CHANNEL, NUMBER (see note)
50

Instance Specifications Section 2-3
2-3-3 Operating Specifications
Calling Instances The user can call an instance from any location. The instance will be executed

when the input to EN is ON.

Operation when the
Instance Is Executed

The system calls a function block when the input to the function block’s EN
input variable is ON. When the function block is called, the system generates
the instance’s variables and copies the algorithm registered in the function
block. The instance is then executed.

The order of execution is as follows:

1. Read data from parameters to input variables.

2. Execute the algorithm.

3. Write data from output variables to parameters.

Data cannot be exchanged with parameters in the algorithm itself.
In addition, if an output variable is not changed by the execution of the algo-
rithm, the output parameter will retain its previous value.

0.0 1.0

D10

EN ENO

A B
D0

Instance

In this case, the input to EN is bit 0.0 at the left of the diagram.

• When the input to EN is ON, the instance is executed and
the execution results are reflected in bit 1.0 and word D10.

• When the input to EN is OFF, the instance is not executed,
bit 1.0 is turned OFF, and the content of D10 is not changed.

P_On 1.0

&10

CLOCK PULSE
EN ENO

ON_TIME

OFF_TIME

&20

Pulse_2sON_1sOFF

&20
&10

TIMX tim_a OFF_TIME
tim_b

TIMX tim_b ON_TIME
tim_a

ENO

1. The FB is called.

2. The system generates the instance
variables and copies the algorithm.

FB instance (Pulse_2sON_1sOFF)

Algorithm (Body)

Name
Internal
Internal
Input

Input

Value
200-100ms_PULSE_tim_a
200-100ms_PULSE_tim_b
200-100ms_PULSE_ON_TIME
200-100ms_PULSE_OFF_TIME

3. The contents of the
instance are executed.Algorithm (Image)

Pulse_2sON_1sOFF tim_a Pulse_2sON_1sOFF OFF_TIME

Pulse_2sON_1sOFF tim_b Pulse_2sON_1sOFF ON_TIME

Pulse_2sON_1sOFF ENO

Pulse_2sON_1sOFF tim_b

Pulse_2sON_1sOFF tim_a

Usage

Input to EN is ON.

Parameters 1. Read values from parameters
to input variables.

2. Execute the algorithm.

3. Write values from output
variables to parameters.

Parameters
51

Instance Specifications Section 2-3
Operation when the
Instance Is Not Executed

When the input to the function block’s EN input variable is OFF, the function
block is not called, so the internal variables of the instance do not change (val-
ues are retained). In the same way the output variables do not change when
EN is OFF (values are retained).

!Caution An instance will not be executed while its EN input variable is OFF, so Differ-
entiation and Timer instructions will not be initialized while EN is OFF. If you
use Differentiation or Timer instructions inside a function block, use the
Always ON Flag (P_On) for the EN input condition. Also, make sure that the
Always ON Flag is not made ineffective by interlock instructions, jump instruc-
tions, or subroutine instructions.

Nesting With CX-Programmer Ver. 6.0 and later versions, a function block can be
called from another function block, i.e., nesting is supported. Function blocks
can be nested up to 8 levels (including the function block called from the pro-
gram).

The calling function block and called function block can be either ST lan-
guage, ladder language, or either combination of the two.

The function block nesting levels can also be displayed in a directory tree for-
mat with the FB Instance Viewer function.

The nested function blocks’ function block definitions are included in the func-
tion block library file (.cxf) containing the calling function block’s definitions.

FB
EN ENO

1.0P_Off
P_On

ENO

1.0P_Off P_On

Program FB definition

Body

Execution results:
Output variable 1.0 is turned OFF, but
internal variable a retains its previous value.

If the programming were entered
directly into the program instead of in a
function block definition, both bit 1.0
and variable a would be turned OFF.

Program

Internal
variable a

Internal
variable a

FB0

INSTANCE_FB0

FB1

FB0 (ST)

Example:
INSTANCE_FB1 (A:=FB1__OUT1,B=:>FB1_IN1)

;

INSTANCE_FB1

FB2

INSTANCE_FB2

FB8

INSTANCE_FB8

7th

FB1 (ST)

Example:
INSTANCE_FB2 (...,..)

FB7 (ST)

Example:
INSTANCE_FB8 (...,..)

8th

FB8 (ST)

Example:

Program FB0: Ladder diagram FB1: Ladder diagram FB7: Ladder diagram FB8: Ladder diagram

1st
2nd

"INSTANCE_FB1," "INSTANCE_FB2," etc., are the FUNCTION BLOCK data type instance names.
Note: Any combination of ladder diagrams and structured text programming can be used between the called and the calling function block.
52

Programming Restrictions Section 2-4
2-4 Programming Restrictions

2-4-1 Ladder Programming Restrictions
There are some restrictions on instructions used in ladder programs.

Instructions Prohibited in
Function Block Definitions

Refer to the Programmable Controllers Instructions Reference Manual (Cat.
No. W474)

AT Setting Restrictions
(Unsupported Data Areas)

Addresses in the following areas cannot be used for AT settings.

• Index Registers (neither indirect nor direct addressing is supported) and
Data Registers

Note Input the address directly, not the AT setting.

• Indirect addressing of DM or EM Area addresses (Neither binary-mode
nor BCD-mode indirect addressing is supported.)

Direct Addressing of I/O
Memory in Instruction
Operands

• Addresses, not variables, can be directly input in Index Registers (both
indirect and direct addressing) and Data Registers.
The following values can be input in instruction operands:
Direct addressing: IR0 to IR15; Indirect addressing: ,IR0 to ,IR15; Con-
stant offset (example): +5,IR0; DR offset: DR0,IR0; Auto-increment:
,IR0++; Auto-decrement: --,IR0

• Direct addressing in instruction operands is not supported for any other
areas in I/O memory.

Restrictions for Input
Variables, Output
Variables, and Input-
Output Variables
(Unsupported Data Areas)

Addresses in the following data areas cannot be used as parameters for input
variables, output variables, and input-output variables.

• Index Registers (neither indirect nor direct addressing is supported) and
Data Registers

• Indirect addressing of DM or EM Area addresses (Neither binary-mode
nor BCD-mode indirect addressing is supported.)

Interlock Restrictions When a function block is called from an interlocked program section, the con-
tents of the function block definition will not be executed. The interlocked func-
tion block will behave just like an interlocked subroutine.

Differentiation
Instructions in Function
Block Definitions

An instance will not be executed while its EN input variable is OFF, so the fol-
lowing precautions are essential when using a Differentiation Instruction in a
function block definition. (Differentiation Instructions include DIFU, DIFD, and
any instruction with an @ or % prefix.)

• As long as the instance’s EN input variable is OFF, the execution condition
will retain its previous status (the last status when the EN input variable
was ON) and the Differentiation Instruction will not operate.

FB

IL

P_Off

ILC

FB_BODY

Interlocked Interlock will not
affect instructions in
the function block
definition.
53

Programming Restrictions Section 2-4
• When the instance’s EN input variable goes ON, the present execution
condition status will not be compared to the last cycle’s status. The
present execution condition will be compared to the last condition when
the EN input variable was ON, so the Differentiation Instruction will not
operate properly. (If the EN input variable remains ON, the Differentiation
Instruction will operate properly when the next rising edge or falling edge
occurs.)

Example:

If Differentiation Instructions are being used, always use the Always ON Flag
(P_On) for the EN input condition and include the instruction’s input condition
within the function block definition.

• Input a decimal numerical value after “#” when specifying the first operand
of the following instructions.
MILH(517), MILR(518), MILC(519), DIM(631), MSKS(690), MSKR(692),
CLI(691), FAL(006), FALS(007), TKON(820), TKOF(821)

Note “&” is not supported.

• CNR(545), CNRX(547) (RESET TIMER/COUNTER) instructions cannot
be used to reset multiple timers and counters within a function block at the
same time.
Always specify the same variable for the first operand (timer/counter num-
ber 1) and second operand (timer/counter number 2). Different variables
cannot be specified for the first and second operand.

Timer Instructions in
Function Block Definitions

An instance will not be executed while its EN input variable is OFF, so the fol-
lowing precautions are essential when using a Timer Instruction in a function
block definition.

The Timer Instruction will not be initialized even though the instance’s EN
input variable goes OFF. Consequently, the timer’s Completion Flag will not be
turned OFF if the EN input variable goes OFF after the timer started operat-
ing.

FB1
EN ENO

IN1 OUT1

0.0

LD EN
OR IN1

SET OUT1

These Differentiation Instructions do not
operate when input condition 0.00 goes
from OFF to ON the first time.
The instructions do not operate while
input condition 0.00 is OFF.

Body

FB1
EN ENO

a O UT1

IN1

P_On

LD a
OR IN1

SET OUT10.00

The EN input condition is always ON, so
these Differentiation Instructions operate
normally.

Body
54

Programming Restrictions Section 2-4
If Timer Instructions are being used, always use the Always ON Flag (P_On)
for the EN input condition and include the instruction’s input condition within
the function block definition.

• If the same instance containing a timer is used in multiple locations at the
same time, the timer will be duplicated.

2-4-2 ST Programming Restrictions

Restrictions when
Using ST Language in
Function Blocks

• Only the following statements and operators are supported.

• Assignment statements

• Selection statements (CASE and IF statements)

• Iteration statements (FOR, WHILE, REPEAT, and EXIT statements)

• RETURN statements

• Function block calling statements

• Arithmetic operators

• Logical operators

• Comparison operators

• Numerical functions

• Arithmetic functions

• Standard text string functions

• Numeric text string functions

• OMRON expansion functions

• Comments

For further details, refer to SECTION 5 Structured Text (ST) Language Speci-
fications in Part 2: Structured Text (ST).

FB1
EN ENO

 U P

LD EN
TIM t im UP

0.00

The timer’s Completion Flag (UP)
will not be turned OFF even though
input condition 0.00 goes OFF.

Body

FB1
EN ENO

a U P

P_On

LD a
TIM t im UP

0.00

The timer’s completion flag (UP) is turned
OFF when input condition a (0.00) goes OFF.

Body
55

Programming Restrictions Section 2-4
2-4-3 Programming Restrictions

Restrictions in Locating Function Block Instances

No Branches to the Left of
the Instance

Branches are not allowed on the left side of the instance. Branches are
allowed on the right side.

Only One Instance per
Rung

A program rung cannot have more than one instance.

No Function Block
Connections

A function block’s input cannot be connected to another function block’s out-
put. In this case, a variable must be registered to transfer the execution status
from the first function block’s output to the second function blocks input.

Downloading in Task
Units

Tasks including function blocks cannot be downloaded in task units, but
uploading is possible.

Programming
Console Displays

When a user program created with the CX-Programmer is downloaded to the
CPU Unit and read by a Programming Console, the instances will all be dis-
played as question marks. (The instance names will not be displayed.)

Online Editing
Restrictions

The following online editing operations cannot be performed on the user pro-
gram in the CPU Unit.

• Changing or deleting function block definitions (variable table or algo-
rithm)

• Inserting instances or changing instance names

Note The instance’s I/O parameters can be changed, instances can be
deleted, and instructions outside of an instance can be changed.

FB FB

Incorrect Correct

Instruction

Instruction

FB

FB FB

Incorrect Correct

FB1
EN

XOUT

FB2
XIN1

XIN2D100

0.0
FB1

EN
XOUT

FB2
EN

XIN1

XIN2D100

0.0

D3000

D3000

0.0

Temporary variables
transfer the value from
FB1 to FB2.
56

Programming Restrictions Section 2-4
Error-related
Restrictions

If a fatal error occurs in the CPU Unit while a function block definition is being
executed, ladder program execution will stop at the point where the error
occurred.

In this case, the MOV AAA BBB instruction will not be executed and output
variable D200 will retain the same value that it had before the function block
was executed.

Prohibiting Access to
FB Instance Areas

To use a function block, the system requires memory areas to store the
instance’s internal variables, input variables, output variables, and input-out-
put variables.

CJ2-series CPU Units

Note Force-setting/resetting is enabled when the following EM banks are specified:

CS/CJ-series CPU Units Ver. 3.0 or Later, and NSJ Controllers

FQM1 Flexible Motion Controllers

FB
EN ENO

AAA BBB D200D100

0.0 LD P_On
++ AAA

MOV AAA BBB

10.0

Program FB definition

BodyInstance name

Fatal error occurs here.

Function block instance
area

Initial value of
start address

Initial value
of size

Allowed data areas

Non-retained H512 896 CIO, WR, HR, DM,
EM (See note.)

Retained H1408 128 HR, DM, EM (See
note.)

Timer T3072 1024 TIM

Counter C3072 1024 CNT

CJ2H-CPU64(-EIP)/-CPU65(-EIP) EM bank 3

CJ2H-CPU66(-EIP) EM banks 6 to 9

CJ2H-CPU67(-EIP) EM banks 7 to E

CJ2H-CPU68(-EIP) EM banks 11 to 18

Function block instance
area

Initial value of
start address

Initial value
of size

Allowed data areas

Non-retained H512 896 CIO, WR, HR, DM, EM

Retained H1408 128 HR, DM, EM

Timer T3072 1,024 TIM

Counter C3072 1,024 CNT

FB Instance
Area

Default value Applicable memory
areasStart address End address Size

Non Retain 5000 5999 1000 CIO, WR, DM

Retain None

Timers T206 T255 50 TIM

Counters C206 C255 50 CNT
57

Function Block Applications Guidelines Section 2-5
CP-series CPU Units

Note DM area of CP1L-L

If there is an instruction in the user program that accesses an address in an
FB instance area, the CX-Programmer will output an error in the following
cases.

• When a program check is performed by the user by selecting Program -
Compile from the Program Menu or Compile All Programs from the
PLC Menu.

• When attempting to write the program through online editing (writing is
not possible).

Restriction on Specifying Data Structures as Parameters When Nesting Function
Blocks

When calling another function block from within a function block (i.e., when
nesting function blocks), you cannot specify individual members of the data
structure as parameters for the nested function block. You must specify the
entire data structure.

Restriction on the
Address Incremental Copy
Function

When a function block is used in the selected section, the Address Incremen-
tal Copy function cannot be used.

2-5 Function Block Applications Guidelines
This section provides guidelines for using function blocks with the CX-Pro-
grammer.

2-5-1 Deciding on Variable Data Types
Integer Data Types
(1, 2, or 4-word Data)

Use the following data types when handling single numbers in 1, 2, or 4-word
units.

• INT and UINT

• DINT and DINT

• LINT and ULINT

Note Use signed integers if the numbers being used will fit in the range.

Function block instance
area

Initial value of
start address

Initial value
of size

Allowed data areas

Non-retained H512 896 CIO, WR, HR, DM
(See note.)

Retained H1408 128 HR, DM (See note.)

Timer T3072 1024 TIM

Counter C3072 1024 CNT

Address CP1L-L

D0000 to D9999 Provided

D10000 to D31999 Not Provided

D32000 to D32767 Provided
58

Function Block Applications Guidelines Section 2-5
Word Data Types
(1, 2, or 4-word Data)

Use the following data types when handling groups of data (non-numeric
data) in 1, 2, or 4-word units.

• WORD

• DWORD

• LWORD

Text String Data Use the following data type for text string data.

• STRING

2-5-2 Determining Variable Types (Inputs, Outputs, In Out, Externals,
and Internals)

Using Input Variable to
Change Passed Values

To paste a function block into the program and then change the value (not the
address itself) to be passed to the function block for each instance, use an
input variable.

The following two restrictions apply.

• An address can be set in an input parameter, but an address itself cannot
be passed to an input variable (even if an address is set in the input
parameter, the value for the size of the input variable data type is passed
to the function block). Therefore, when the first or last of multiple words is
specified in the instruction operand within the function block, an input vari-
able cannot be used for the operand. Specify either to use internal vari-
ables with AT settings, specify the first or last element in an input-output
array variable (set the input parameter to the first address) (CX-Program-
mer version 7.0 or higher), specify the first or last element in an internal
array variable, or use an external variable (as described in 2-5-4 Array
Settings for Input-Output Variables and Internal Variables).

• Values are passed in a batch from the input parameters to the input vari-
ables before algorithm execution (not at the same time as the instruction
in the algorithm is executed). Therefore, to pass the value from a parame-
ter to an input variable when the instruction in the function block algorithm
is executed, use an internal variable or external variable instead of an
input variable.

&3 Unit No.

PARA&50

Program

Instance for function block definition A
The value itself is
passed

Changing the pass value to an input variable.

D00100 DATA_1

 W500
XFER
&10
DATA_1
DATA_2

DATA_2

Program
Instance for function block definition A

The actual value is
passed If the size of the data type in

DATA_1 is 1 word, the value
for the word D00100 is
passed.

If the size of the data type in
DATA_2 is 2 words, the value
for the 2 words W500 and
W501 is passed.

An input variable cannot be used to specify
the address of an operand that specifies
the first (or last) address of multiple words.
For example, the XFER (BLOCK
TRANSFER) instruction cannot be used to
transfer 10 words from the address
beginning with DATA_1 to the address
beginning with DATA_2.

The address can be specified, but the address itself is not passed.
59

Function Block Applications Guidelines Section 2-5
Passing Values from or
Monitoring Output
Variables

To paste into the program and then pass values outside (the program) from
the function block for each instance, or monitor values, use output variables.

The following restrictions apply.

• Values are passed from output variables to output parameters all at once
after algorithm execution.

Input-Output Variables to
Return FB Processing
Results from Values
Passed from Input
Parameters to Output
Parameters

An input-output variable can be used to implement the functionality of both
input and output parameters. Internal operation involves passing the address
set for the parameter to the input-output variable, but the use of the input-out-
put variable inside the function block is the same as that of other variables.

Input-Output Array
Variables to Pass Large
Amounts of Data

Input-output variables can be set as arrays (which is not possible for input
variables and output variables). If an input-output array variable is used, a
range of addresses of the specified size starting from the address set for the
input parameter can be used inside the FB. Input-output variables should thus
be used when it’s necessary to pass large quantities of data to a function
block.

W0.00 OK_Flag

NG_Flag W0.01

Program

Instance for function block definition A.

The actual value is
passed.

Variable for passing a value outside or monitoring:
Use an output variable.

D100 a a

D100 a

D100

Program Section

Instance of FB definition A

Specify an address for the input parameter;
the address will be passed to the FB.

D100 can be used
in the rest of the
program after being
changed in the FB.

Use an input-output variable to implement
both input and output variable functions
while changing the value in the FB.

Contents can be changed in the FB.

This address
is passed. (Example: WORD data type)

"a" indicates D100.

D200 Data Data

D200
D201

D209

Data

D200

Program Section

Instance of FB definition A

Specify an address for the input parameter;
the address will be passed to the FB.

D200 to D2009 can
be used in the rest
of the program after
being changed in
the FB. Use an input-output variable to pass large

quantities of data to the FB (only the first
address is actually passed).

Contents can be changed in the FB.

This address
is passed. WORD data

Array setting
10 elements

"Data[0]" indicates D200.
"Data [1]" indicates D201
Etc.
60

Function Block Applications Guidelines Section 2-5
External Variables:
Condition Flags, Clock
Pulses, Auxiliary Area
Bits, Global Symbols in
Program

Condition Flags (e.g., Always ON Flag, Equals Flag), Clock Pulses (e.g., 1.0
second clock pulse bit), pre-registered Auxiliary Area Bits (e.g., First Cycle
Flag), and global symbols used in the program are all external variables
defined by the system.

Internal Variables:
Internally Allocated
Variables and Variables
Requiring AT Settings

Variables that are not specified as Inputs, Outputs, In Out, or Externals are
Internals. Internal variables include variables with internally allocated
addresses and variables requiring addresses with AT settings (e.g., I/O alloca-
tion addresses, addresses specially allocated for Special I/O Units). Variables
requiring array settings include input-output variables and internal variables.
For details on conditions requiring AT settings or array settings, refer to 2-5-3
AT Settings for Internal Variables, and 2-5-4 Array Settings for Input-Output
Variables and Internal Variables.

2-5-3 AT Settings for Internal Variables
Always specify AT settings for internal variables under the following condi-
tions.

• When addresses allocated to Basic I/O Units, Special I/O Units, or CPU
Bus Units are used and these addresses are registered to global symbols
that cannot be specified as external variables (e.g., data set for global
symbols is unstable).

Note The method for specifying Index Registers for Special I/O Unit allo-
cation addresses requires AT settings to be specified for the first
address of the allocation area. (For details, refer to 2-5-5 Specifying
Addresses Allocated to Special I/O Units.)

• When Auxiliary Area bits that are not pre-registered to external variables
are used, and these bits are registered to global symbols that are not
specified as external variables.

• When setting the first destination word at the remote node for SEND(090)
and the first source word at the local node for RECV(098).

• When the instruction operand specifies the first or last of multiple words,
and an array variable cannot be specified for the operand (e.g., the num-
ber of array elements cannot be specified).

2-5-4 Array Settings for Input-Output Variables and Internal Variables
Using Array Variables
to Specify First or Last
Word in Multiword
Operands

When specifying the first or last of a range of words in an instruction operand
(see note), the instruction operates according to the address after AT specifi-
cation or internal allocation. (Therefore, the variable data type and number of
elements for the variable are unrelated to the operation of the instruction.) Al-
ways specify a variable with an AT setting or an array variable with a number
of elements that matches the data size to be processed by the instruction.

Note Some examples are the first source word or first destination word of the
XFER(070) (BLOCK TRANSFER) instruction, the first source word for
SEND(090), or control data for applicable instructions.

For details, refer to 2-6 Precautions for Instructions with Operands Specifying
the First or Last of Multiple Words. Use the following method to specify an array
variable.
When using input-output variables, set the input parameter to the first address
of multiple words.
Use the following procedure for internal variables.

1,2,3... 1. Prepare an internal array variable with the required number of elements.
61

Function Block Applications Guidelines Section 2-5
Note Make sure that the data size to be processed by the instruction is
the same as the number of elements. For details on the data sizes
processed by each instruction, refer to 2-7 Instruction Support and
Operand Restrictions.

2. Set the data in each of the array elements using the MOV instruction in the
function block definition.

3. Specify the first (or last) element of the array variable for the operand. This
enables specification of the first (or last) address in a range of words.

Examples are provided below.

Handling a Single String of Data in Multiple Words

In this example, an array contains the directory and filename (operand S2) for
an FREAD instruction.

• Variable Table
Input-output variable or internal variable, data type = WORD, array setting
with 10 elements, variable names = filename[0] to filename[9]

• Data Settings and Internal Function Block Processing

• Input-output variables:
Set the input parameter to the address of the first word in the data (ex-
ample: D100). The data (#5C31, #3233, #0000, etc.) is set in D100 to
D109 in advance from the main user program.

• Internal variables:
Use ladder programming within the function block to set data into the
array.

Handling Control Data in Multiple Words

In this example, an array contains the number of words and first source word
(operand S1) for an FREAD instruction.

• Variable table
Input-output variable or internal variable, data type = DINT, array setting
with 3 elements, variable names = read_num[0] to read_num[9]

• Data Settings and Internal Function Block Processing

• Input-output variables:
Set the input parameter to the address of the first word in the data (ex-
ample: D200). The data is set in D200 to D205 in advance from the
main user program.

• Internal variables:
Use ladder programming within the function block to set data into the
array.

• Ladder Programming

Specify the first element of the array
in the instruction operand.

FREAD (omitted) (omitted) read_num[0] (omitted)

Set data in each array element.

Specify the first element
of the array in the instruction
operand.

FREAD (omitted) (omitted) file_name[0] (omitted)
MOV #0000 file_name[2])
MOV #3233 file_name[1]
MOV #5C31 file_name[0]

Specify the first element of the array
in the instruction operand.

FREAD (omitted) read_num[0] (omitted) (omitted)

Set data in each array element.

Specify the first element of the array
in the instruction operand.FREAD (omitted) read_num[0] (omitted) (omitted)

MOVL &100 read_num[0] (No._of_words)
MOVL &0 read_num[1] (1st_source_word)
62

Function Block Applications Guidelines Section 2-5
Handling a Block of Read Data in Multiple Words

The allowed amount of read data must be determined in advance and an
array must be prepared that can handle the maximum amount of data. In this
example, an array receives the FREAD instruction’s read data (operand D).

• Variable table
Input-output variable or internal variable, data type = WORD, array setting
with 100 elements, variable names = read_data[0] to read_data[99]

• Data Settings and Internal Function Block Processing

• Input-output variables:
Set the input parameter to the address of the first word in the read data
(example: D200).

• Internal variables:

Division Using Integer
Array Variables (Ladder
Programming Only)

A two-element array can be used to store the result from a ladder program’s
SIGNED BINARY DIVIDE (/) instruction. The result from the instruction is D
(quotient) and D+1 (remainder). This method can be used to obtain the remain-
der from a division operation in ladder programming.

Note When ST language is used, it isn’t necessary to use an array to receive the
result of a division operation. Also, the remainder can’t be calculated directly
in ST language. The remainder must be calculated as follows:
Remainder = Dividend − (Divisor × Quotient)

2-5-5 Specifying Addresses Allocated to Special I/O Units
Use Index Registers IR0 to IR15 (indirectly specified constant offset) to spec-
ify addresses allocated to Special I/O Units based on the value passed for the
unit number as an input parameter within the function block definition as
shown in the following examples.

Note For details on using Index Registers in function blocks, refer to 2-5-6 Using
Index Registers.

Examples

Example 1: Specifying the CIO Area within a Function Block (Same for DM
Area)

Special I/O Units

Variables: Use the unit number as an input variable, and specifying the first
allocation address as an internal variable with the AT set to CIO 2000.

Programs: Use the following procedure.

1,2,3... 1. Multiply the unit number (input variable) by &10, and create the unit num-
ber offset (internal variable, DINT data type).

2. Use the MOVR(560) (MOVE TO REGISTER) instruction to store the real I/
O memory address for the first allocation address (internal variable, AT =
CIO 2000) in the Index Register (e.g., IR0).

3. Add the unit number offset to the real I/O memory address within the Index
Register (e.g., IR0).

Example 2: Specifying the Designated Bit in the CIO Area (e.g., CIO Word
n+a, Bit b)

Programs: Use either of the following methods.

FREAD (omitted) (omitted) (omitted) read_data[0]

FREAD (omitted) (omitted) (omitted) read_data[0]
63

Function Block Applications Guidelines Section 2-5
• Word addresses: Specify the constant offset of the Index Register using
an indirect specification (e.g., +a,IR0).

• Bit addresses: Specify an instruction that can specify a bit address within
a word (e.g., &b in second operand of SETB instruction when writing and
TST instruction when reading).

Example: Special I/O Units

2-5-6 Using Index Registers
Index Registers IR0 to IR15 function as pointers for specifying I/O memory
addresses. These Index Registers can be used within function blocks to
directly specify addresses using IR0 to IR15 and not the variable names
(Index Register direct specification: IR0 to IR15; Index Register indirect speci-
fication: ,IR0 to ,IR15)

Note After storing the real I/O memory addresses in the Index Registers using the
MOVR(560) instruction, Index Registers can be indirectly specified using gen-
eral instructions. This enables all I/O memory areas to be specified dynami-
cally.

&3 Unit No.

&10
Unit No.

Offset

MOVR
Relay

IR0

+L
IR0

Offset
IR0

SETB
+1,IR0

&2

Instance for function block definition A.
1) Specify the first CIO Area word n (n = CIO 2000 + unit number × 10)

Used constants:
Unit number (input variable, INT data type)
Offset (internal variable, DINT data type)
Relay (internal variable, WORD data type, 400 array elements, AT
setting = 2000)

Multiplies unit number by
&10 and stores in offset.

Stores the real I/O memory
address for the relay in IR0.

Adds offset to IR0.

2) Specify the designated bit in the CIO
Area (e.g., CIO word n+1, bit 02)

Turns ON CIO word n+1,
bit 02.
64

Function Block Applications Guidelines Section 2-5
Note (1) When Index Registers IR0 to IR15 are used within function blocks, using
the same Index Register within other function blocks or in the program
outside of function blocks will create competition between the two in-
stances and the program will not execute properly. Therefore, when using
Index Registers (IR0 to IR15), always save the value of the Index Register
at the point when the function block starts (or before the Index Register
is used), and when the function block is completed (or after the Index
Register has been used), incorporate processing in the program to return
the Index Register to the saved value.

(2) Always set the value before using Index Registers. Operation will not be
stable if Index Registers are used without the values being set.

IR@

IR0

+5,IR0

a

MOVR(560)

Pointer All I/O memory
areas

Index Register

I/O memory

Example: Specifying +5,IR0 using
constant offset specification, not
variable name

Function block

Instruction

Indirect
specifi-
cation

Specify address
in IR0

+5 offset

Specify ad-
dress at +5
offset from
IR0.

Value A

IR0

IR0

IR0

Value A

Value A

Value A

Value B

Value A

Example: Starting function block (or before using Index Register):
1. Save the value of IR (e.g., A).

Within function block:
2.Use IR.

At start of function block (or before Index Register is used):
3. Return IR to saved value (e.g., A)
65

Function Block Applications Guidelines Section 2-5
Application Examples The following examples are for using Index Registers IR0 to IR15 within func-
tion blocks.

Example Details

Saving the Index Register Value before Using Index Register When Index Registers are used within this
function block, processing to save the Index
Register value is performed when the func-
tion starts (or before the Index Register is
used) to enable the value to be returned to
the original Index Register value after the
function block is completed (or after the
Index Register is used).
Example: Save the contents of Index Regis-
ter IR0 by storing it in SaveIR[0] (internal
variable, data type DINT, 1 array element).

Using Index Registers
1) Setting the value in the Index Register. (Stores the real I/O memory

address for first CIO Area word n.)

Example: The real I/O memory address for
the first word of CIO 1500 + unit number ×
25 allocated in the CPU Bus Unit allocation
area based on the CPU Bus Unit’s unit
number (&0 to &15) passed from the func-
tion block is stored in IR0.

Procedure:
Assumes that unit numbers &0 to &15 have
already been input (from outside the func-
tion block) in UnitNo (input variables, INT
data type).
1. Multiple UnitNo by &25, and store in Off-

set (internal variable, DINT data type)
2. Store the real I/O memory address for

SCPU_Relay (internal variable, WORD
data type, (if required, specify the array as
400 elements (see note), AT setting =
1500)) in Index Register IR0.

Note Specifying an array for SCPU_relay,
such as SCPU_relay [2], for example,
enables the address CIO 1500 +
(UnitNo × &25) + 2 to be specified.
This also applies in example 2 below.

3. Increment the real I/O memory address
in Index Register IR0 by the value for the
variable Offset (variable UnitNo × &25).

Store IR0 temporarily in backup buffer

Calculate offset address from unit number
66

Precautions for Instructions with Operands Specifying the First or Last of Multiple Words Section 2-6
2-6 Precautions for Instructions with Operands Specifying the
First or Last of Multiple Words

When using ladder programming to create function blocks with instruction
operands specifying the first or last of a range of words, the following precau-
tions apply when specifying variables for the operand.

When the operand specifies the first or last word of multiple words, the
instruction operates according to the internally allocated address for AT set-
ting (or external variable setting). Therefore, the variable data type and num-
ber of array elements are unrelated to the operation of the instruction. Either
specify a variable with an AT setting, or an array variable with a size that
matches the data size to be processed by the instruction.

Note To specify the first or last of multiple words in an instruction operand, always
specify a variable with AT setting (or an external variable), or a variable with
the same size as the data size to be processed in the instruction. The follow-
ing precautions apply.

1,2,3... 1. If a non-array variable is specified without AT setting and without a match-
ing data size, the CX-Programmer will output an error when compiling.

2. The following precautions apply to when an array variable is specified.

Size to Be Processed in the Instruction Operand Is Fixed

Make sure that the number of elements in the array is the same as size to be
processed by the instruction. Otherwise, the CX-Programmer will output an
error when compiling.

2) Specifying constant offset of Index Register (Specifying a bit between
CIO n+0 to n+24)

The real I/O memory address for CIO 1500
+ (UnitNo × &25) is stored in Index Register
IR0 by the processing in step 1 above.
Therefore the word address is specified
using the constant offset from IR0.

For example, specifying +2,IR0 will specify
CIO 1500 + (UnitNo × &25) + 2.

Note CIO 1500 + (UnitNo × &25) + 2 can
also by specified by specifying
SCPU_relay [2] using the array set-
ting with SCPU_relay.

Specify bit addresses using instructions that
can specify bit addresses within words
(e.g., second operand of TST(350/351)/
SETB(532) instructions).

Example: Variable NodeSelf_OK turns ON
when NetCheck_OK (internal variable,
BOOL data type) is ON and bit 15 of the
word at the +6 offset from IR0 (CIO 1500 +
UnitNo × &25 +6) is ON.

Returning the Index Register to the Prior Value The Index Register returns to the original
value after this function block is completed
(or after the Index Register has been used).
Example: The value for variable SaveIR[0]
that was saved is stored in Index Register
IR0, and the value is returned to the con-
tents from when this function started (or
prior to using the Index Register).

Example Details

Check local node data link participation

Restore data to IR0 from temporary backup buffer
67

Precautions for Instructions with Operands Specifying the First or Last of Multiple Words Section 2-6
Size to Be Processed in the Instruction Operand Is Not Fixed

Make sure that the number of elements in the array is the same or greater
than the size specified by another operand.

Other Operand Specifying Size: Constant

The CX-Programmer outputs an error when compiling.

Other Operand Specifying Size: Variable

The CX-Programmer will not output an error when compiling (a warning mes-
sage will be displayed) even if the number of elements in the array does not
match the size specified in another operand (variable).

In particular, when the number of elements in the array is less than the size
specified by another operand, (for example, when instruction processing size
is 16 and the number of elements actually registered in the variable table is
10), the instruction will execute read/write processing in the areas exceeding
the number of elements. (In this example, read/write processing will be exe-
cuted for the next 6 words after the number of elements registered in the
actual variable table.) If the same area is being used by another instruction
(including internal variable allocations), unexpected operation may occur,
which may result in a serious accident.

Do not use variables with a size that does not match the data size to be pro-
cessed by the instruction in the operand specifying the first address (or last
address) for a range of words. Always use either non-array variables data type
with a size that is the same as the data size required by the instruction or
array variable with the number of elements that is the same as the data size
required by the instruction. Otherwise, the following errors will occur.

Non-array Variables
without Matching Data
Size and without AT
Setting

If the operand specifying the first address (or last address) of multiple words
uses a non-array variable data type with a size that does not match the data
size required by the instruction and an AT setting is also not used, the CX-Pro-
grammer will output a compile error.

Example: BLOCK TRANSFER(070) instruction: XFER W S D
(W: Number of words, S: First source word; D: First destination word)
When &10 is specified in W, variable a with data type WORD is specified in S,
and variable b with data type WORD is specified in D: XFER &10 a b
The XFER(070) instruction will transfer the data in the 10 words beginning from
the automatically allocated address in variable a to the 10 words beginning
with the automatically allocated address in variable b. Therefore, the CX-Pro-
grammer will output a compile error.

Array Variables The result depends on the following conditions.

Example: XFER &10 a b
(variables a and b are WORD data types)

Internally allocated address Internally allocated address

Example: H700 Example: H7@@ Variable b (1 word)Variable a (1 word)
10 words are
transferred regard-
less of the size of
variable a.

This area will be overwritten,
so the CX-Programmer will
output a compile error.
68

Precautions for Instructions with Operands Specifying the First or Last of Multiple Section 2-6
Size to Be Processed by Instruction Is Fixed

If the size to be processed by the instruction is a fixed operand, and this size
does not match the number of array elements, the CX-Programmer will output
a compile error.

Example: LINE TO COLUMN(064) instruction; COLM S D N

(S: Bit number, D: First destination word, N: Source word)

 E.g., COLM a b[0] c

If an array for a WORD data type with 10 array elements is specified in D
when it should be for 16 array elements, the CX-Programmer will output an
error when compiling.

Size to Be Processed by Instruction Is Not Fixed

When the operand size to be processed by the instruction is not fixed (when
the size is specified by another operand in the instruction), make sure that the
number of array elements is the same or greater than the size specified in the
other operand (i.e., size to be processed by the instruction).

Other Operand Specifying Size: Constant

The CX-Programmer will output an error when compiling.

Example: BLOCK TRANSFER: XFER W S D

(W: Number of words, S: First source word; D: First destination word)

When &20 is specified in W, array variable a with data type WORD and 10
elements is specified in S, and array variable b with data type WORD and 10
elements is specified in D:

XFER &20 a[0] b[0]

Even though the array variables a[0] and b[0] are both 10 words, the
XFER(070) instruction will execute transfer processing for the 20 words spec-
ified in W. As a result, the XFER(070) instruction will perform read/write pro-
cessing for the I/O memory area following the number of array elements that
was allocated, as shown in the following diagram.

Therefore, if a[10 elements] is internally allocated words (e.g., H700 to H709),
and b[10 elements] is internally allocated words (e.g., H800 to H809),
XFER(070) will transfer data in words H700 to H719 to words H800 to H819.
In this operation, if another internally allocated variable (e.g., c), is allocated
words in H810 to H819, the words will be overwritten, causing unexpected
operation to occur. To transfer 20 words, make sure that the number of ele-
ments is specified as 20 elements for both array variable a and b.

XFER &20 a[0] b[0]
Using a WORD data type with 10 elements for both variables a and b:
To transfer 20 words, be sure to specify 20 elements for both array variables a and b.

Internally allocated address Internally allocated address

Example: H700

10 words

Example: H710

Example: H719

Array variable
a (10 words)

20 words

Example: H810

20 words will be
transferred regard-
less of the size of ar-
ray variables a and b.

Example: H819

10 words
Array variable
a (10 words)

The variables allocated in this area
(H810 to H819 in this example) are
overwritten. The data is variable-
length data, so the CX-Programmer
will not output a compile error.
69

Instruction Support and Operand Restrictions Section 2-7
Other Operand Specifying Size: Variable

Even if the number of array elements does not match the size (i.e., size to be
processed by the instruction) specified in another operand (variable), the CX-
Programmer will not output an error when compiling. The instruction will be
executed according to the size specified by the operand, regardless of the
number of elements in the array variable.

Particularly if the number of elements in the array is less than the size (i.e.,
size to be processed by the instruction) specified by another operand (vari-
able), other variables will be affected and unexpected operation may occur.

2-7 Instruction Support and Operand Restrictions
Instruction Support Refer to the instruction help of the CX-Programmer or the command reference

manual of your PLC for whether or not each instruction of the CS/CJ/NSJ-
series CPU Units, CP-series CPU Units, and FQM1-series Units can be used.

Restrictions on Operands • When you use any instruction that has operands specifying the first or last
of multiple words, be sure to read the Section 2-6 Precautions for Instruc-
tions with Operands Specifying the First or Last of Multiple Words before
using the instruction.

• When specifying the first or last word of multiple words in an instruction
operand, input parameters cannot be used to pass data to or from vari-
ables. Use an AT setting or an input-output or internal variable array set-
ting.

• When you use an input-output variable array setting, set the first word
for the input parameter.

• When you use an internal variable array setting, prepare an array vari-
able with the required number of elements, set the array data in the
function block definition, and then specify the first or last element in the
array variable for the operand.

• Use an AT setting variable for the operands for which an I/O memory
address on a remote node in the network must be specified.
70

CPU Unit Function Block Specifications Section 2-8
2-8 CPU Unit Function Block Specifications
The specifications of the functions blocks used in CS/CJ-series and CP-series
CPU Units are given in the following tables. Refer to the other operation man-
uals for the CS/CJ Series and CP Series for other specifications.

2-8-1 Specifications
CJ2H CPU Units

Note There is no restriction on the memory capacity by the stored data.
The total capacity of source and comment areas is 3.5 MB.

CJ2M CPU Units

Note There is no restriction on the memory capacity by the stored data.
The total capacity of source and comment areas is 1 MB.

Item Specification

Model CJ2H-CPU68
(-EIP)

CJ2H-CPU67
(-EIP)

CJ2H-CPU66
(-EIP)

CJ2H-CPU65
(-EIP)

CJ2H-CPU64
(-EIP)

I/O points 2,560

Program capacity (steps) 400K 250K 150K 100K 50K

Data memory 32K words (The DM and EM areas can be accessed in bit-units.)

Extended Data Memory 32K words × 25
banks
E0_00000 to
E18_32767

32K words × 15
banks
E0_00000 to
EE_32767

32K words × 10
banks
E0_00000 to
E9_32767

32K words × 4
banks
E0_00000 to
E3_32767

32K words × 4
banks
E0_00000 to
E3_32767

Force-set/
reset enabled
area

EM 11 to EM 18 EM 7 to EM E EM 6 to EM9 EM3 EM3

Function
blocks

Maximum
number of def-
initions

1,024

Maximum
number of
instances

2,048

Source/
Com-
ment
areas

Symbol tables/
comments/
program
indexes

3.5MB (See note.)

Item Specification

Model CJ2M-CPU11/
31

CJ2M-CPU12/
32

CJ2M-CPU13/
33

CJ2M-CPU14/
34

CJ2M-CPU15/
35

I/O points 2,560

Program capacity (steps) 5 K 10 K 20 K 30 K 60 K

Data memory 32K words

Extended Data Memory 32K words × 1 bank

E0_00000 to E0_32767

32K words × 4 banks

E0_00000 to E3_32767

Function
blocks

Maximum number
of definitions

256 2,048

Maximum number
of instances

256 2,048

Source/
Com-
ment
areas

Symbol tables/
comments/ pro-
gram indexes

1MB (See note.)
71

CPU Unit Function Block Specifications Section 2-8
Area Used for
Function Blocks

The area used for function blocks for CJ2 CPU Units depends on the model of
the CPU Unit, as shown in the following table. CJ2M CPU Units have a special
area for function blocks called the FB Program Area. The CJ2H CPU Units do
not have this area.

CS1-H CPU Units

CPU Unit Model Area used for function blocks

CJ2H CJ2H-CPU6@-EIP
CJ2H-CPU6@

Function blocks use memory in the user pro-
gram area.

CJ2M CJ2M-CPU3@
CJ2M-CPU1@

Function blocks use memory in the FB Program
Area. If the capacity of the FB Program Area is
exceeded, the user program area is used.

Item Specification

Model CS1H-
CPU67H

CS1H-
CPU66H

CS1H-
CPU65H

CS1H-
CPU64H

CS1H-
CPU63H

CS1G-
CPU45H

CS1G-
CPU44H

CS1G-
CPU43H

CS1G-
CPU42H

I/O points 5,120 1,280 960

Program capacity
(steps)

250K 120K 60K 30K 20K 60K 30K 20K 10K

Data memory 32K words

Extended Data
Memory

32K
words ×
13 banks
E0_00000
to
EC_32767

32K
words ×
7 banks
E0_00000
to
E6_32767

32K
words ×
3 banks
E0_00000
to
E2_32767

32K words × 1 bank

E0_00000 to
E0_32767

32K
words ×
3 banks
E0_00000
to
E2_32767

32K words × 1 bank

E0_00000 to E0_32767

Function
blocks

Maxi-
mum
number of
definitions

1,024 1,024 1,024 1,024 128 1,024 1,024 128 128

Maxi-
mum
number of
instances

2,048 2,048 2,048 2,048 256 2,048 2,048 256 256

Com-
ment
Memory
Unit (ver.
4.0 or
later)

Total for
all files
(Kbytes)

2,048 2,048 1,280 1,280 1,280 1,280 704 704 704

Inside
com-
ment
memory
(ver. 3.0
or later)

Function
block pro-
gram
memory
(Kbytes)

1,664 1,664 1,024 512 512 1,024 512 512 512

Com-
ment files
(Kbytes)

128 128 64 64 64 64 64 64 64

Program
index files
(Kbytes)

128 128 64 64 64 64 64 64 64

Variable
tables
(Kbytes)

128 128 128 64 64 128 64 64 64
72

CPU Unit Function Block Specifications Section 2-8
CJ1-H CPU Units

CJ1M CPU Units

Item Specification

Model CJ1H-
CPU67H/
CPU67H-
R

CJ1H-
CPU66H/
CPU66H-
R

CJ1H-
CPU65H/
CPU65H-
R

CPU64H-
R

CJ1G-
CPU45H

CJ1G-
CPU44H

CJ1G-
CPU43H

CJ1G-
CPU42H

I/O points 2,560 1,280 960

Program capacity
(steps)

250K 120K 60K 30K 60K 30K 20K 10K

Data memory 32K words

Extended Data
Memory

32K words
× 13
banks
E0_00000
to
EC_32767

32K words
× 7 banks

E0_00000
to
E6_32767

32K words
× 3 banks

E0_00000
to
E2_32767

32K words
× 1 bank

E0_00000
to
E2_32767

32K words
× 3 banks

E0_00000
to
E2_32767

32K words × 1 bank

E0_00000 to E0_32767

Function
blocks

Maxi-
mum
number of
definitions

1,024 1,024 1,024 1,024 1,024 1,024 128 128

Maxi-
mum
number of
instances

2,048 2,048 2,048 2,048 2,048 2,048 256 256

Com-
ment
Memory
Unit (ver.
4.0 or
later)

Total for
all files
(Kbytes)

2,048 2,048 1,280 1,280 1,280 1,280 1,280 704

Inside
com-
ment
memory
(ver. 3.0
or later)

Function
block pro-
gram
memory
(Kbytes)

1,664 1,664 1,024 512 1,024 512 512 512

Com-
ment files
(Kbytes)

128 128 64 64 64 64 64 64

Program
index files
(Kbytes)

128 128 64 64 64 64 64 64

Variable
tables
(Kbytes)

128 128 128 64 128 64 64 64

Item Specification

Units with internal I/O functions Units without internal I/O functions

Model CJ1M-CPU23 CJ1M-CPU22 CJ1M-CPU21 CJ1M-CPU13 CJ1M-CPU12 CJ1M-CPU11

I/O points 640 320 160 640 320 160

Program capacity
(steps)

20K 10K 5K 20K 10K 5K

Number of Expan-
sion Racks

1 max. Expansion not supported 1 max. Expansion not supported

Data memory 32K words

Extended Data
Memory

None
73

CPU Unit Function Block Specifications Section 2-8
CP1H CPU Units

Pulse start times 46 µs (without acceleration/
deceleration)
70 µs (with acceleration/decel-
eration)

63 µs (without
acceleration/
deceleration)
100 µs (with
acceleration/
deceleration)

Number of sched-
uled interrupts

2 1 2 1

PWM outputs 2 1 None

Maximum value of
subroutine number

1,024 256 1,024 256

Maximum value of
jump number in JMP
instruction

1,024 256 1,024 256

Internal inputs 10 points
• 4 interrupt inputs (pulse catch)
• 2 high-speed counter inputs (50-kHz phase dif-

ference or 100-kHz single-phase)

Internal outputs 6 points

• 2 pulse outputs (100 kHz)
• 2 PWM outputs

6 points

• 2 pulse out-
puts
(100 kHz)

• 1 PWM out-
put

Function
blocks

Maxi-
mum
number of
definitions

128

Maxi-
mum
number of
instances

256

Com-
ment
Memory
Unit (ver.
4.0 or
later)

Total for
all files
(Kbytes)

704

Inside
com-
ment
memory
(ver. 3.0
or later)

Function
block pro-
gram
memory
(Kbytes)

256

Com-
ment files
(Kbytes)

64

Program
index files
(Kbytes)

64

Variable
tables
(Kbytes)

64

Item Specification

Units with internal I/O functions Units without internal I/O functions
74

CPU Unit Function Block Specifications Section 2-8
Item X models XA models Y models

Model CP1H-X40DR-A
CP1H-X40DT-D
CP1H-X40DT1-D

CP1H-XA40DR-A
CP1H-XA40DT-D
CP1H-XA40DT1-D

CP1H-Y20DT-D

Max. number of I/O points 320 points (40 built-in points + 40 points/Expansion
Rack x 7 Racks)

300 points (20 built-in
points + 40 points/Expan-
sion Rack x 7 Racks)

Program capacity (steps) 20K

Data memory 32K words

Number of connectable Expan-
sion Units and Expansion I/O Units

7 Units (CP-series Expansion Units and Expansion I/O Units)

Function blocks Maximum num-
ber of definitions

128

Maximum num-
ber of instances

256

Inside comment
memory

Function block
program mem-
ory (Kbytes)

256

Comment files
(Kbytes)

64

Program index
files (Kbytes)

64

Variable tables
(Kbytes)

64
75

CPU Unit Function Block Specifications Section 2-8
CP1L CPU Units

NSJ-series NSJ Controllers

Item M models L models

Model CP1L-
M60D@-@

CP1L-
M40D@-@

CP1L-
M30D@-@

CP1L-
L20D@-@

CP1L-
L14D@-@

CP1L-
L10D@-@

Max. number of I/O points 180 points
(60 built-in
points + 40
points/
Expansion
Rack x 3
Racks)

160 points
(40 built-in
points + 40
points/
Expansion
Rack x 3
Racks)

150 points
(30 built-in
points + 40
points/
Expansion
Rack x 3
Racks)

60 points
(20 built-in
points + 40
points/
Expansion
Rack x 1
Rack)

54 points
(14 built-in
points + 40
points/
Expansion
Rack x 1
Racks)

10 points

Program capacity (steps) 10K 5K

Data memory 32K words (D00000 to D32767) 10K words (D00000 to D09999, and
D32000 to D32767)

Number of connectable Expan-
sion Units and Expansion I/O Units

3 Units (CP-series Expansion Units and
Expansion I/O Units)

1 Unit (CP-series Expan-
sion Unit or Expansion I/O
Unit)

None

Function blocks Maximum num-
ber of definitions

128

Maximum num-
ber of instances

256

Inside comment
memory

Function block
program mem-
ory (Kbytes)

256

Comment files
(Kbytes)

64

Program index
files (Kbytes)

64

Variable tables
(Kbytes)

64

Model NSJ5-TQ0@-G5D, NSJ5-SQ0@-G5D,
NSJ8-TV0@-G5D, NSJ10-TV0@-G5D,

NSJ12-TS0@-G5D,

NSJ5-TQ0@-M3D, NSJ5-SQ0@-M3D,
NSJ8-TV0@-M3D

Max. number of I/O points 1,280 640

Program capacity (steps) 60K 20K

Data memory 32K words

Extended data memory 32K words × 3 banks

E0_00000 to E2_32767

None

Function blocks Maximum num-
ber of definitions

1,024 128

Maximum num-
ber of instances

2,048 256

Inside comment
memory

Function block
program mem-
ory (Kbytes)

1,024 256

Comment files
(Kbytes)

64 64

Program index
files (Kbytes)

64 64

Variable tables
(Kbytes)

128 64
76

CPU Unit Function Block Specifications Section 2-8
FQM1 Flexible Motion Controllers

2-8-2 Operation of Timer Instructions
There is an option called Apply the same spec as T0-2047 to T2048-4095 in
the PLC properties. This setting affects the operation of timers as described in
this section.

Selecting the Option If this option is selected, all timers will operate the same regardless of timer
number, as shown in the following table.

Timer Operation for Timer Numbers T0000 to T4095

Not Selecting the
Option (Default)

If this option is not selected, the refreshing of timer instructions with timer
numbers T0000 to T2047 will be different from those with timer numbers
T2048 to T4095, as given below. This behavior is the same for CPU Units that
do not support function blocks. (Refer to the descriptions of individual instruc-
tion in the CS/CJ Series Instruction Reference for details.)

Item Coordinator Module Motion Control Modules

Model FQM1-CM002 FQM1-MMA22 FQM1-MMP22

Max. number of I/O points 344 points (24 built-in
points + 320 points on
Basic I/O Units)

20 built-in points

Program capacity (steps) 10K

Data memory 32K words

Function blocks Maximum num-
ber of definitions

128

Maximum num-
ber of instances

256

Inside comment
memory

Function block
program mem-
ory (Kbytes)

256

Comment files
(Kbytes)

64

Program index
files (Kbytes)

64

Variable tables
(Kbytes)

64

Refresh Description

When instruction is
executed

The PV is refreshed each time the instruction is executed.

If the PV is 0, the Completion Flag is turned ON. If it is not 0,
the Completion Flag is turned OFF.

When execution of all
tasks is completed

All PV are refreshed once each cycle.

Every 80 ms If the cycle time exceeds 80 ms, all PV are refreshed once
every 80 ms.
77

Number of Function Block Program Steps and Instance Execution Time Section 2-9
Timer Operation for Timer Numbers T0000 to T2047

Timer Operation for Timer Numbers T2048 to T4095

Select the Apply the same spec as TO-2047 to T2048-4095 Option to ensure
consistent operation when using the timer numbers allocated by default to
function block variables (T3072 to T4095).

2-9 Number of Function Block Program Steps and Instance
Execution Time

2-9-1 Number of Function Block Program Steps

Number of Steps
Used for Function
Blocks

When function blocks are used, program memory (steps) is used for the fol-
lowing two items.

1. Function block definitions

2. Instances of function block definitions created in programs

Therefore, the more instances of function block definitions that you create, the
more memory (steps) will be used.

Guide for Number of
Program Steps When
Using Function
Blocks

This section applies only to CP-series CPU Units with unit version Ver. 1.0 or
later and CS/CJ-series CPU Units with unit version Ver. 3.0 or later, NSJ Con-
trollers, and FQM1 Flexible Motion Controllers.

Use the following equation to calculate the approximate number of program
steps when function block definitions have been created and the instances
copied into the user program of the CPU Unit.

Note The number of instruction steps in the function block definition (p) will not be
diminished in subsequence instances when the same function block definition
is copied to multiple locations (i.e., for multiple instances). Therefore, in the
above equation, the number of instances is not multiplied by the number of
instruction steps in the function block definition (p).

Refresh Description

When instruction is
executed

The PV is refreshed each time the instruction is executed.

If the PV is 0, the Completion Flag is turned ON. If it is not 0,
the Completion Flag is turned OFF.

When execution of all
tasks is completed

All PV are refreshed once each cycle.

Every 80 ms If the cycle time exceeds 80 ms, all PV are refreshed once
every 80 ms.

Refresh Description

When instruction is
executed

The PV is refreshed each time the instruction is executed.
If the PV is 0, the Completion Flag is turned ON. If it is not 0,
the Completion Flag is turned OFF

When execution of all
tasks is completed

PV are not updated.

Every 80 ms PV are not updated even if the cycle time exceeds 80 ms.

Number of steps
= Number of instances × (Call part size m + I/O parameter transfer part size n × Num-
ber of parameters) + Number of instruction steps in the function block definition p
(See note.)
78

Number of Function Block Program Steps and Instance Execution Time Section 2-9
The following table applies only to CP-series CPU Units with unit version Ver.
1.0 or later and CS/CJ-series CPU Units with unit version Ver. 3.0 or later,
NSJ Controllers, and FQM1 Flexible Motion Controllers.

Example:
Input variables with a 1-word data type (INT): 5
Output variables with a 1-word data type (INT): 5
Function block definition section: 100 steps
Number of steps for 1 instance = 57 + (5 + 5) × 6 steps + 100 steps + 27 steps
= 244 steps

When the program is written in ST language, the actual number of steps can-
not be calculated. The number of instruction steps in each function block defi-
nition can be found in the function block definition’s properties.

2-9-2 Function Block Instance Execution Time
This section applies only to CP-series CPU Units with unit version Ver. 1.0 or
later and CS/CJ-series CPU Units with unit version Ver. 3.0 or later, NSJ Con-
trollers, and FQM1 Flexible Motion Controllers.

Use the following equation to calculate the effect of instance execution on the
cycle time when function block definitions have been created and the
instances copied into the CPU Unit’s user program.

Contents Number of steps

m Call part --- 57 steps

n I/O parameter
transfer part

The data type is
shown in parenthe-
ses.

1-bit (BOOL) input vari-
able or output variable

6 steps

1-word (INT, UINT, or
WORD) input variable or
output variable

6 steps

2-word (DINT, UDINT,
DWORD, or REAL) input
variable or output variable

6 steps

4-word (LINT, ULINT,
LWORD, or LREAL) input
variable or output variable

18 steps

Input-output variables 6 steps

p Number of instruc-
tion steps in func-
tion block definition

The total number of instruction steps (same as standard
user program) + 27 steps.

Effect of Instance Execution on Cycle Time
= Startup time (A)
 + I/O parameter transfer processing time (B)
 + Execution time of instructions in function block definition (C)
79

Number of Function Block Program Steps and Instance Execution Time Section 2-9
The following table shows the length of time for A, B, and C.

Example: CJ1H-CPU67H-R
Input variables with a 1-word data type (INT): 3
Output variables with a 1-word data type (INT): 2
Total instruction processing time in function block definition section: 10 µs
Execution time for 1 instance = 3.3 µs + (3 + 2) × 0.19 µs + 10 µs = 14.25 µs

Note The execution time is increased according to the number of multiple instances
when the same function block definition has been copied to multiple locations.

Operation CPU Unit model

CJ1H-
CPU6@H-R

CJ2H-
CPU6@(-EIP)

CJ2M-
CPU@@

CS1H-
CPU6@H

CJ1H-
CPU6@H

CS1G-
CPU4@H

CJ1G-
CPU4@H

NSJ

CJ1M-
CPU@@

CP1H-
X@@@-@

CP1H-
XA@@@-@

CP1H-
Y@@@-@

CP1L-
M@@@-@

CP1L-
L@@@-@

A Startup time Startup time not
including I/O
parameter trans-
fer

3.3 µs 7.4 µs 6.8 µs 8.8 µs 15.0 µs 15.0 µs 320.4 µs

B I/O parameter
transfer pro-
cessing time

The data type
is indicated in
parentheses.

1-bit input vari-
able or output
variable (BOOL)

0.24 µs 0.88 µs 0.4 µs 0.7 µs 1.0 µs 1.0 µs 59.52 µs

1-word input
variable or out-
put variable (INT,
UINT, WORD)

0.19 µs 0.88 µs 0.3 µs 0.6 µs 0.8 µs 0.8µs 13.16 µs

2-word input
variable or out-
put variable
(DINT, UDINT,
DWORD, REAL)

0.19 µs 1.2 µs 0.5 µs 0.8 µs 1.1 µs 1.1 µs 15.08 µs

4-word input
variable or out-
put variable
(LINT, ULINT,
LWORD, LREAL)

0.38 µs 2.96 µs 1.0 µs 1.6 µs 2.2 µs 2.2 µs 30.16 µs

Input-output vari-
able

0.114 µs 0.4 µs 0.4 µs 0.5 µs 1.2 µs (Not sup-
ported)

(Not sup-
ported)

C Function block
definition
instruction
execution time

Total instruction processing time (same as standard user program)
80

SECTION 3
Creating Function Blocks

This section describes the procedures for creating function blocks on the CX-Programmer.

3-1 Procedural Flow . 82
3-2 Procedures . 84

3-2-1 Creating a Project . 84
3-2-2 Creating a New Function Block Definition 84
3-2-3 Defining Function Blocks Created by User 87
3-2-4 Creating Instances from Function Block Definitions 99
3-2-5 Setting Function Block Parameters Using the Enter Key. 101
3-2-6 Setting the FB Instance Areas. 104
3-2-7 Checking Internal Address Allocations for Variables 106
3-2-8 Copying and Editing Function Block Definitions 108
3-2-9 Checking the Source Function Block Definition from an Instance . 108
3-2-10 Checking Instance Information such as Nesting Levels. 108
3-2-11 Checking Function Block Usage . 109
3-2-12 Compiling Function Block Definitions (Checking Program). 110
3-2-13 Printing Function Block Definition . 110
3-2-14 Password Protection of Function Block Definitions 111
3-2-15 Comparing Function Blocks . 114
3-2-16 Saving and Reusing Function Block Definition Files 114
3-2-17 Downloading/Uploading Programs to the Actual CPU Unit 115
3-2-18 Monitoring and Debugging Function Blocks 116
3-2-19 Online Editing Function Block Definitions 124
81

Procedural Flow Section 3-1
3-1 Procedural Flow
The following procedures are used to create function blocks, save them in
files, transfer them to the CPU Unit, monitor them, and debug them.

Creating Function Blocks

Create a Project Refer to 3-2-1 Creating a Project for details.

n Creating a New Project

1,2,3... 1. Start the CX-Programmer and select New from the File Menu.

2. Select a Device type: CS1G-H, CS1H-H, CJ1G-H, CJ1H-H, CJ1M, or
CP1H, CP1L, NSJ, or FQM1-CM (MMA/MMP).

n Reusing an Existing CX-Programmer Project

1,2,3... 1. Start the CX-Programmer, and read the existing project file (.cxp) created
using CX-Programmer Ver. 4.0 or earlier by selecting the file from the File
Menu.

2. Select a Device type: CS1H-H, CS1G-H, CJ1G-H, CJ1H-H, CJ1M, or
CP1H, CP1L, NSJ, or FQM1-CM (MMA/MMP).

Create a Function Block
Definition

Refer to 3-2-2 Creating a New Function Block Definition for details.

1,2,3... 1. Select Function Blocks in the project workspace and right-click.

2. Select Insert Function Block - Ladder or Insert Function Blocks -
Structured Text from the pop-up menu.

Define the Function Block Refer to 3-2-3 Defining Function Blocks Created by User for details.

n Registering Variables before Inputting the Ladder Program or ST Program

1,2,3... 1. Register variables in the variable table.

2. Create the ladder program or ST program.

n Registering Variables as Necessary while Inputting the Ladder Program
or ST Program

1,2,3... 1. Create the ladder program or ST program.

2. Register a variable in the variable table whenever required.

Create an Instance from
the Function Block
Definition

Refer to 3-2-4 Creating Instances from Function Block Definitions for details.

n Inserting Instances in the Ladder Section Window and then Inputting the
Instance Name

1,2,3... 1. Place the cursor at the location at which to create an instance (i.e., a copy)
of the function block and press the F Key.

2. Input the name of the instance.

3. Select the function block definition to be copied.

n Registering Instance Names in the Global Symbol Table and then
Selecting the Instance Name when Inserting

1,2,3... 1. Select Function Block as the data type for the variable in the global symbol
table.

2. Press the F Key in the Ladder Section Window.
82

Procedural Flow Section 3-1
3. Select the name of the instance that was registered from the pull-down
menu on the FB Instance Field.

Allocate External I/O to
the Function Block

Refer to 3-2-5 Setting Function Block Parameters Using the Enter Key for
details.

1,2,3... 1. Place the cursor at the position of the input variable or output variable and
press the P Key.

2. Input the source address for the input variable or the destination address
for the output variable.

Set the Function Block
Memory Allocations
(Instance Areas)

Refer to 3-2-6 Setting the FB Instance Areas for details.

1,2,3... 1. Select the instance and select Function Block/SFC Memory - Function
Block/SFC Memory Allocation from the PLC Menu.

2. Set the function block memory allocations.

Printing, Saving, and Reusing Function Block Files

Compile the Function
Block Definition and Save
It as a Library File

Refer to 3-2-12 Compiling Function Block Definitions (Checking Program) and
3-2-16 Saving and Reusing Function Block Definition Files for details.

1,2,3... 1. Compile the function block that has been saved.

2. Print the function block.

3. Save the function block as a function block definition file (.cxf).

4. Read the file into another PLC project.

Transferring the Program to the PLC
Refer to 3-2-17 Downloading/Uploading Programs to the Actual CPU Unit.

Monitoring and Debugging the Function Block
Refer to 3-2-18 Monitoring and Debugging Function Blocks.
83

Procedures Section 3-2
3-2 Procedures

3-2-1 Creating a Project
Creating New Projects
with CX-Programmer

1,2,3... 1. Start the CX-Programmer and select New from the File Menu.

2. In the Change PLC Window, select a Device Type that supports function
blocks. These are listed in the following table.

3. Press the Settings Button and select the CPU Type. For details on other
settings, refer to the CX-Programmer Operation Manual (W446).

3-2-2 Creating a New Function Block Definition
1,2,3... 1. When a project is created, a Function Blocks icon will appear in the project

workspace as shown below.

2. Function block definitions are created by inserting function block defini-
tions after the Function Blocks icon.

Creating Function Block
Definitions

Function blocks can be defined by the user using either ladder programming
or structured text.

Device CPU

CJ2H CPU68/67/66/65/64/68-EIP/67-EIP/66-EIP/65-EIP/64-EIP

CJ2M CPU11/12/13/14/15/31/32/33/34/35

CS1G-H CPU42H/43H/44H/45H

CS1H-H CPU63H/64H/65H/66H/67H

CJ1G-H CPU42H/43H/44H/45H

CJ1H-H CPU65H/66H/67H/64H-R/65H-R/66H-R/67H-R

CJ1M CPU11/12/13/21/22/23

CP1H CP1H-XA/X/Y

CP1L CP1L-M/L

NSJ G5D (Used for the NSJ5-TQ0@-G5D, NSJ5-SQ0@-G5D, NSJ8-
TV0@-G5D, NSJ10-TV0@-G5D, and NSJ12-TS0@-G5D)
M3D (Used for the NSJ5-TQ0@-M3D, NSJ5-SQ0@-M3D, and
NSJ8-TV0@-M3D)

FQM1-CM FQM1-CM002

FQM1-MMA FQM1-MMA22

FQM1-MMP FQM1-MMP22

Function Blocks will appear under the PLC.
84

Procedures Section 3-2
Creating (Inserting) Function Block Definitions with Ladders

1. Select Function Blocks in the project workspace, right-click, and select
Insert Function Blocks - Ladder from the pop-up menu. (Or select Func-
tion Block - Ladder from the Insert Menu.)

Creating (Inserting) Function Block Definitions with Structured Text

1. Select Function Blocks in the project workspace, right-click, and select
Insert Function Blocks - Structured Text from the pop-up menu. (Or se-
lect Function Block - Structured Text from the Insert Menu.)

2. A function block called FunctionBlock1 will be automatically inserted either
after the for ladder programming language (default) or the for ST
language. This icon contains the definitions for the newly created (insert-
ed) function block.

3. Whenever a function block definition is created, the name FunctionBlock@
will be assigned automatically, where @ is a serial number. These names
can be changed. All names must contain no more than 64 characters.

Using OMRON FB Library Files
Use the following procedure to insert OMRON FB Library files (.cxf).

1. Select Function Blocks in the project workspace, right-click, and select
Insert Function Blocks - Library File from the pop-up menu. (Or select
Function Block - Library File from the Insert Menu.)

2. The following Select Function Block Library File Dialog Box will be dis-
played.

Note To specify the default folder (file location) in the Function Block Li-
brary File Dialog Box, select Tools - Options, click the General
Tab and the select the default file in the OMRON FB library storage
location field.

3. Specify the folder in which the OMRON FB Library file is located, select the
library file, and click the Open Button. The library file will be inserted as a

function block definition after the .

FunctionBlock1 is displayed as the Icon
under the Function Blocks Icon ().
85

Procedures Section 3-2
Function Block Definitions

Creating Function Block
Definitions

One of the following windows will be displayed when the newly created Func-
tion Block 1 icon is double-clicked (or if it is right-clicked and Open is selected
from the pop-up menu). A variable table for the variables used in the function
block is displayed on top and an input area for the ladder program or struc-
tured text is displayed on the bottom.

Ladder Program

Structured Text

As shown, a function block definition consists of a variable table that serves
as an interface and a ladder program or structured text that serves as an algo-
rithm.

Variable Table as an Interface

At this point, the variable table is empty because there are no variables allo-
cated for I/O memory addresses in the PLC.

Ladder Program or Structure Text as an Algorithm

• With some exceptions, the ladder program for the function block can con-
tain any of the instructions used in the normal program. Refer to 2-4 Pro-
gramming Restrictions for restrictions on the instructions that can be
used.

• Structured text can be input according to the ST language defined in
IEC61131-3.

Using OMRON FB Library
Files

Double-click the inserted function block library (or right-click and select Open
from the pop-up menu) to display the variable table that has finished being
created at the top right window, and the ladder program that has finished
being created in the bottom right window. Both windows are displayed in gray
and cannot be edited.

Variable table

Ladder input area

Variable table

ST input area
86

Procedures Section 3-2
Note Function block definitions are not displayed in the default settings for OMRON
FB Library files (.cxf). To display definitions, select the Display the inside of
FB option in the function block properties. (Select the OMRON FB Library file
in the project workspace, right-click, select Properties, and select the Dis-
play the inside of FB option in the General Tab.)

3-2-3 Defining Function Blocks Created by User
A function block is defined by registering variables and creating an algorithm.
There are two ways to do this.

• Register the variables first and then input the ladder program or structure
text.

• Register variables as they are required while inputting input the ladder
program or structure text.

Registering Variables First

Registering Variables in
the Variable Table

The variables are divided by type into five sheets in the variable table: Inter-
nals, Inputs, Outputs, Input-Output, and Externals.

These sheets must be switched while registering or displaying the variables.

1,2,3... 1. Make the sheet for the type of variable to be registered active in the vari-
able table. (See note.) Place the cursor in the sheet, right-click, and per-
form either of the following operations:

• To add a variable to the last line, select Insert Variable from the pop-
up menu.

• To add the variable to the line above or below a line within the list, se-
lect Insert Variable - Above or Below from the pop-up menu.

Note The sheet where a variable is registered can also be switched
when inserting a variable by setting the usage (N: Internals, I: In-
puts, O: Outputs, E: Externals, P: In Out).

The New Variable Dialog Box shown below will be displayed.

• Name: Input the name of the variable.

• Data Type: Select the data type.

• Usage: Select the variable type.

• Initial Value: Select the initial value of the variable at the start of oper-
ation.

• Retain: Select if the value of the variable is to be maintained when the
power is turned ON or when the operating mode is changed from
PROGRAM or MONITOR mode to RUN mode. The value will be
cleared at these times if Retain is not selected.

Variable table

Ladder program
87

Procedures Section 3-2
Note (a) For user-defined external variables, the global symbol table can
be browsed by registering the same variable name in the global
symbol table.

(b) External variables defined by the system are registered in the ex-
ternal variable table in advance.

2. For example, input “aaa” as the variable name and click the OK Button.

As shown below, a BOOL variable called aaa will be created on the Inputs
Sheet of the Variable Table.

Note (1) After a variable is added, it can be selected to display in reverse video,
then moved to another line by dragging and dropping. To select a variable
for dragging and dropping, select the variable in any of the columns ex-
cept the Name field.

(2) After inputting a variable, the sheet where the variable is registered can
be changed by double-clicking and changing the setting in the Usage field
(N: Internals, I: Inputs, O: Outputs, E: Externals, P: In Out). The variable
can also be copied or moved between the sheets for internal, external, in-
put, output, and input-output variables. Select the variable, right-click,
and select Copy or Cut from the pop-up menu, and then select Paste.

(3) Variable names must also be input for variables specified with AT (allocat-
ing actual address) settings.

(4) The following text is used to indicate I/O memory addresses in the PLC
and thus cannot be input as variable names in the function block variable
table.

• A, W, H, HR, D, DM, E, EM, T, TIM, C, or CNT followed by a numeric
value

Input the name of the
function block variable The default data type is BOOL.

 Change as required.

Type of variable to register
(i.e., the sheet)
Initial value

Select to maintain value for
power interruptions.

BOOL variable called aaa
created on Inputs Sheet.
88

Procedures Section 3-2
Creating the Algorithm Using a Ladder Program

1,2,3... 1. Press the C Key and select aaa registered earlier from the pull-down menu
in the New Contact Dialog Box.

2. Click the OK Button. A contact will be entered with the function block inter-
nal variable aaa as the operand (variable type: internal).

The rest of the ladder program is input in exactly the same way as for stan-
dard programs with CX-Programmer.

Note Addresses cannot be directly input for instruction operands within function
blocks. Only Index Registers (IR) and Data Registers (DR) can be input
directly as follows (not as variables): Addresses DR0 to DR5, direct specifica-
tions IR0 to IR15, and indirect specifications ,IR0 to ,IR15.

Using Structured Text

An ST language program (see note) can either be input directly into the ST
input area or a program input into a general-purpose text editor can be copied
and then pasted into the ST input area using the Paste Command on the Edit
Menu.

Note The ST language conforms to IEC61131-3. For details, refer to SECTION 5
Structured Text (ST) Language Specifications in Part 2: Structured Text (ST).

Press the C Key and select aaa registered earlier
from the pull-down menu in the New Contact Dialog Box.

Contact entered with function block
internal variable aaa as operand.
89

Procedures Section 3-2
Note (1) Tabs or spaces can be input to create indents. They will not affect the al-
gorithm.

(2) When an ST language program is input or pasted into the ST input area,
syntax keywords reserved words will be automatically displayed in blue,
comments in green, errors in red, and everything else in black.

(3) To change the font size or colors, select Options from the Tools Menu
and then click the ST Font Button on the Appearance Tab Page. The font
names, font size (default is 8 point) and color can be changed.

(4) For details on structured text specifications, refer to SECTION 5 Struc-
tured Text (ST) Language Specifications in Part 2: Structured Text (ST).

Registering Variables as Required
The ladder program or structured text program can be input first and variable
registered as they are required.

Using a Ladder Program When using a ladder diagram, a dialog box will be displayed to register the
variable whenever a variable name that has not been registered is input. The
variable is registered at that time.

Use the following procedure.

1,2,3... 1. Press the C Key and input a variable name that has not been registered,
such as aaa, in the New Contact Dialog Box.

Note Addresses cannot be directly input for instruction operands within
function blocks. Only Index Registers (IR) and Data Registers (DR)
can be input directly as follows (not as variables): Addresses DR0
to DR5, direct specifications IR0 to IR15, and indirect specifications
,IR0 to ,IR15.

2. Click the OK Button. The New Variable Dialog Box will be displayed. With
special instructions, a New Variable Dialog Box will be display for each op-
erand in the instruction.

The properties for all input variables will initially be displayed as follows:

• Usage: Internal

ST program input directly or pasted from one created in a text editor.

Set the data type and other
properties other than the name.
90

Procedures Section 3-2
• Data Type: BOOL for contacts and WORD for channel (word)

• Initial Value: The default for the data type.

• Retain: Not selected.

3. Make any required changes and click the OK Button.

4. As shown below, the variable that was registered will be displayed in the
variable table above the program.

5. If the type or properties of a variable that was input are not correct, double-
click the variable in the variable table and make the required corrections.

n Reference Information

AT Settings (Specified Address)

AT settings can be made in the variable properties to specify allocation
addresses for Basic I/O Units, Special I/O Units, or CPU Bus Units, or Auxil-
iary Area addresses not registered using the CX-Programmer. A variable
name is required to achieve this. Use the following procedure to specify an
address.

1,2,3... 1. After inputting the variable name in the New Variable Dialog Box, click the
Advanced Button. The Advanced Settings Dialog Box will be displayed.

2. Select AT (Specified Address) under AT Settings and input the desired ad-
dress.

The variable name is used to enter variables into the algorithm in the func-
tion block definition even when they have an address specified for the AT
settings (the same as for variables without a specified address).
For example, if a variable named Restart has an address of A50100 spec-
ified for the AT settings, Restart is specified for the instruction operand.

Array Settings

An array can be specified to use the same data properties for more than one
variable and manage the variables as a group.

Use the following procedure to set an array.

1,2,3... 1. After inputting the variable name in the New Variable Dialog Box, click the
Advanced Button. The Advanced Settings Dialog Box will be displayed.

Instruction input. Function block internal variable registered.

Select AT. Input address.
91

Procedures Section 3-2
2. Select Array Variable in the Array Settings and input the maximum number
of elements in the array.

When the name of an array variable is entered in the algorithm in the func-
tion block definition, square brackets surrounding the index will appear af-
ter the array name.

For example, if you create a variable named PV with a maximum of 3 ele-
ments, PV[0], PV[1], and PV[2] could be specified as instruction operands.

There are three ways to specify indices.

• Directly with numbers, e.g., PV[1] in the above example (for ladder pro-
gramming or ST language programming)

• With a variable, e.g., PV[a] in the above example, where “a” is the
name of a variable with a data type of INT (for ladder programming or
ST language programming)

• With an equation, e.g., PV[a+b] or PV[a+1} in the above example,
where “a” and “b” are the names of variables with a data type of INT
(for ST language programming only)

Using Structured Text When using structured text, a dialog box will not be displayed to register the
variable whenever a variable name that has not been registered is input. Be
sure to always register variables used in standard text programming in the
variable table, either as you need them or after completing the program.
(Place the cursor in the tab page on which to register the variable, right-click,
and select Insert Variable from the pop-up menu.

Note For details on structured text specifications, refer to SECTION 5 Structured
Text (ST) Language Specifications in Part 2: Structured Text (ST).

Copying User Program Circuits and Pasting in Ladder Programming of Function
Block Definitions

A single circuit or multiple circuits in the user program can be copied and
pasted in the ladder programming of function block definitions. This operation,
however, is subject to the following restrictions.

Source Instruction
Operand: Address Only

Addresses are not registered in the function block definition variable tables.
After pasting, the addresses will be displayed in the operand in red. Double-
click on the instruction and input the variable name into the operand.

Note Index Registers (IR) and Data Registers (DR), however, do not require modifi-
cation after pasting and function in the operand as is.

Source Instruction
Operand: Address and I/O
Comment

Automatically generate symbol name Option Selected in Symbols Tab
under Options in Tools Menu

The user program symbol names (in the global symbol table only) will be gen-
erated automatically as AutoGen_ + Address (if the option is deselected, the
symbol names will be removed).

Select Array Variable. Input the number of elements.
92

Procedures Section 3-2
Example 1: For address 100.01, the symbol name will be displayed as
AutoGen_100_01.

Example 2: For address D0, the symbol name will be displayed as
AutoGen_D0.

If circuits in the user program are copied and pasted into the function block
definition program as is, the symbols will be registered automatically in the
function block definition symbol table (at the same time as copying the cir-
cuits) as the symbol name AutoGen_Address and I/O comments as Com-
ment. This function enables programmed circuits to be easily reused in
function blocks as addresses and I/O comments.

Note The prefix AutoGen_ is not added to Index Registers (IR) and Global Data
Registers (DR), and they cannot be registered in the original global symbol
table.

Automatically generate symbol name Option Not Selected in Symbols
Tab under Options in Tools Menu

Addresses and I/O comments are not registered in the function block defini-
tion variable tables. Addresses are displayed in the operand in red. I/O com-
ments will be lost. Double-click on the instruction and input the symbol name
into the operand.

Index Registers (IR) and Data Registers (DR), however, do not require modifi-
cation after pasting and function in the operand as is.

Source Instruction
Operand: Symbol

The user program symbol is automatically registered in the internal variables
of the function block definition variable table. This operation, however, is sub-
ject to the following restrictions.

Addresses

Symbol addresses are not registered. Use AT settings to specify the same
address.

Symbol Data Types

The symbol data types are converted when pasted from the user program into
the function block definition, as shown in the following table.

Symbol data types CHANNEL, NUMBER, UINT BCD, UDINT BCD, or ULINT
BCD, however, cannot be copied from the symbol table (not the program) and
then pasted into the variable table in the function block definition.

Note Symbols with automatically generated symbol names (AutoGen_ + Address)
cannot be copied from a global symbol table and pasted into the function
block definition symbol table.

Generating Function Block Definitions from Existing Ladder Programming
One or more program circuits in a user program can be converted to the lad-
der programming in a function block definition.

Symbol data type in user program → Variable data type after pasting in
function block program

CHANNEL → WORD

NUMBER → The variable will not be registered,
and the value (number) will be pasted
directly into the operand as a con-
stant.

UINT BCD → WORD

UDINT BCD → DWORD

ULINT BCD → LWORD
93

Procedures Section 3-2
Note This function is designed to help you create function block definitions based
on existing ladder programming. It does not automatically generate finish def-
initions. After generating a function block definition with this function, always
check the warning messages in the FB Variable Allocation Dialog Box and
Output Window and check the program that was generated, and be sure to
make any required changes.

1,2,3... 1. Right-click one or more program circuits in the user program and select
Function Block (ladder) generation from the pop-up menu.

Note When any structure definitions exist on the data type view, the Function Block
(ladder) generation cannot be selected from the menu.

2. The following FB Variable Allocation Dialog Box will be displayed.

The addresses of the operands used in the instructions in the selected pro-
gram circuits will be automatically allocated as listed below depending on
application conditions.

Application
outside selected
program circuits

Application inside selected program circuits

Not used Used in
input

section

Used in
output
section

Used in input
and output
sections

Not used
(See note.)

--- Internal vari-
able

Internal vari-
able

Internal variable

Used --- Input variable Output vari-
able

Input-output vari-
able
94

Procedures Section 3-2
Note Even if an address is allocated to I/O, it will be considered to be “not
used” and converted to an internal variable if it is not used outside
the selected circuits (no matter where it is used inside the selected
circuits).

Note Names will be automatically set for addresses without symbol names as fol-
lows: AutoGen_address. AT specifications will be automatically removed.

3. Change the allocations to internal, input, output, or input-output variables
as required. Right-click the variable and select the desired variable type
from the Change usage Menu.

If necessary, double-click any variable in the variable list and change the
name or comment. The array and AT settings can also be changed.

4. Click the OK Button. The following Function Block (Ladder) Generation Di-
alog Box will be displayed.

Input the FB definition name and comment, and then click the OK Button.

5. The function block definition will be generated based on the settings and
will appear under the function blocks in the Workspace.

6. The following dialog box will be displayed asking if you want to insert an
instance of the function block definition below the original program circuits.

7. Click the Yes Button to insert an instance and click the No Button to not
insert an instance.

Function Blocks
FunctionBlock1
95

Procedures Section 3-2
8. The following New Function Block Invocation Dialog Box will appear if the
Yes Button was clicked.

Enter the function block instance name and click the OK Button. An in-
stance of the function block definition will be inserted below the original
program circuits as shown below.

9. Enter the input conditions and parameters for the instance that was insert-
ed.

Note The function block definition generation function is convenient for converting
existing ladder programming that has been proven in actual operation into
function blocks. The application of addresses within the selected program cir-
cuits is analyzed both inside and outside the selection to allocate internal,
input, output, and input-output variables as accurately as possible. Program
circuits that contain operands that are only symbols (i.e., that are not
addresses) cannot be converted. To create function blocks from program cir-
cuits that contain operands that are only symbols, copy and past the program
circuits into a function block definition. Refer to Copying User Program Cir-
cuits and Pasting in Ladder Programming of Function Block Definitions on
page 92 for details.
96

Procedures Section 3-2
Program Circuits That
Must Be Altered before
Generating a Function
Block Definition

In the following case, the program circuits must be altered before a function
block definition can be automatically generated.

Addresses Used Both as Bits and Words

The bit and word addresses will be registered as different variables. The pro-
gram can be altered in advance to avoid this.

Example: MOV(021) for W0 and SET for W0.02

↓
Here, the instruction can be changed to specify a word instead of a bit. As
shown below, W0 is used both for MOV(021) and SETB(532), and the bit
number for SETB(532) is specified using &2.

Program Circuits That
Must Be Altered after
Generating a Function
Block Definition

In the following cases, operand specifications must be changed using array
settings after generating the function block definition.

Instructions with Multiword Operands, Some of Which Are Changed by
Another Instruction in the Program Circuits

Example: D0 Specified as the First Word for MOVL(498) and D1 Specified for
MOV(021)
97

Procedures Section 3-2
↓
As shown below, the variables must be changed to specify the first word in an
array and a specific word in the same array after the function block definition
has been generated.

Example: DT_WORD is set as a WORD array variable with 2 elements.
DT_WORD[0] is specified for MOVL(498) and DT_WORD[1] is specified for
MOV(021).

Instructions with Two Operands Specifying Starting and Ending Words

Example: D0 to D9 Specified for BSET(071)

↓
As shown below, the variables must be changed to specify the first word in an
array and a specific word in the same array after the function block definition
has been generated.
Example: DT_WORD is set as a WORD array variable with 10 elements.
DT_WORD[0] is specified for the first operand and DT_WORD[9] is specified
for the second operand of BSET(071).
98

Procedures Section 3-2
Operands with Sizes Affected by Other Operands

Example: Five Transfer Words, D0 Specified for the First Source Word, and
D100 Specified for the First Destination Word for XFER(070)

↓
As shown below, the variables must be changed to set the first elements in
two different arrays after the function block definition has been generated.

Example: DT_WORD1 and DT_WORD2 are set as WORD array variables
with 5 elements each. DT_WORD1[0] is specified for the first word for the first
operand and DT_WORD2[0] is specified for first word for the second operand
of XFER(070).

3-2-4 Creating Instances from Function Block Definitions
If a function block definition is registered in the global symbol table, either of
the following methods can be used to create instances.

Method 1:Select the function block definition, insert it into the program, and
input a new instance name. The instance will automatically be registered in
the global symbol table.

Method 2: Set the data type in the global symbol table to “FUNCTION
BLOCK,” specify the function block definition to use, and input the instance
name to register it.

Note When using ST language, a function block can be called by select-
ing “FUNCTION BLOCK” as the variable’s data type, using the de-
sired instance name, and entering a function block call statement.
99

Procedures Section 3-2
n Method 1: Using the F Key in the Ladder Section Window and Inputting
the Instance Name

1,2,3... 1. In the Ladder Section Window, place the cursor in the program where the
instance is to be inserted and press the F Key. (Alternately, select Func-
tion Block Invocation from the Insert Menu.) The New Function Block In-
vocation Dialog Box will be displayed.

When using ST language, a function block can be called by selecting
“FUNCTION BLOCK” as the variable’s data type, using the desired in-
stance name, and entering the following function block call statement.
Specify arguments in parentheses after the instance name (to pass input
variable values from the calling function block to input variables in the
called function block) and also specify return values (to receive output vari-
able values from the called function block to output variables in the calling
function block). The instance name can be set to any internal variable with
the “FUNCTION BLOCK” data type.

2. Input the instance name, select the function block from which to create an
instance, and click the OK Button.

3. As an example, set the instance name in the FB Instance Field to sample,
set the function block in the FB Definition Field to FunctionBlock1, and
click the OK Button. As shown below, a copy of the function block definition
called FunctionBlock1 will be created with an instance name of sample.

The instance will be automatically registered in the global symbol table
with an instance name of sample and a data type of FUNCTION BLOCK.

n Method 2: Registering the Instance Name in the Global Symbol Table in
Advance and Then Selecting the Instance Name

If the instance name is registered in the global symbol table in advance, the
instance name can be selected from the global symbol table to create other
instances.

Press F Key with cursor here.

Input the instance name.

Select the function block from
which to create an instance.

Following dialog
box is displayed.

Instance name
Function block definition

An instance called sample
is created from the function
block definition called
FunctionBlock1.
100

Procedures Section 3-2
1,2,3... 1. For a ladder diagram, select a data type of Function block in the global
symbol table, input the instance name, and registered the instance.

For ST, select a data type of Function block, use the instance name, and
use a call statement for the function block as follows to call the function
block:
Input the instance name (any internal variable name with a function block
data type) followed by the arguments in parentheses (i.e., specify the input
variable values of the calling function block to pass to the input variables of
the called function block). Also include the return values (i.e., specify the
output variable values of the called function block to pass back to the out-
put variables of the calling function block).

2. Press the F Key in the Ladder Section Window. The Function Block Invo-
cation Dialog Box will be displayed.

3. Select the instance name that was previously registered from the pulldown
menu on the FB Instance Field. The instance will be created.

Restrictions
Observe the following restrictions when creating instances. Refer to 2-4 Pro-
gramming Restrictions for details.

• No more than one function block can be created in each program circuit.

• The rung cannot be branched to the left of an instance.

• Instances cannot be connected directly to the left bus bar, i.e., an EN
must always be inserted.

Note If changes are made in the I/O variables in a variable table for a function block
definition, the bus bar to the left of all instances that have been created from
that function block definition will be displayed in red to indicate an error. When
this happens, select the function block, right-click, and select Update Invoca-
tion. The instance will be updated for any changes that have been made in
the function block definition and the red bus bar display indicating an error will
be cleared.

3-2-5 Setting Function Block Parameters Using the Enter Key
After an instance of a function block has been created, input parameters must
be set for input variables and output parameters must be set for output vari-
ables to enable external I/O.

• Values, addresses, and program symbols (global symbols and local sym-
bols) can be set in input parameters. (See note a.)

• Addresses and program symbols (global symbols and local symbols) can
be set in output parameters. (See note b.)

Note (a) The function block’s input variable data size and the program’s
symbol data size must match.

(b) The function block’s output variable data size and the program’s
symbol data size must match.

1,2,3... 1. Inputs are located on the left of the instance and outputs on the right. Place
the cursor where the parameter is to be set and press the Enter Key. (Al-
ternately, select Function Block Parameter from the Insert Menu.) The
New Parameter Dialog Box will be displayed as shown below.
101

Procedures Section 3-2
2. Set the source address from which to pass the address data to the input
variable. Also set the destination address to which the address data will be
passed from the output variable.

Note Set the data in all the input parameters. If even a single input parameter
remains blank, the left bus bar for the instance will be displayed in red to indi-
cate an error. If this happens, the program cannot be transferred to the CPU
Unit.

Inputting Values in Parameters
The following table lists the methods for inputting values in parameters.

Instance name

Function block definition

Press the P Key with the cursor on the left
of the instance. The New Parameter
Dialog Box will be displayed.

Input the address from which to pass data
to the input variable.

The value of 001 is passed to input
variable aaa.

Input variable data
type

Content Size Input method Setting range

BOOL Bit data 1 bit P_Off, P_On 0 (FALSE), 1 (TRUE)

INT Integer 16 bits Positive value: & or + followed
by integer

Negative value: − followed by
integer

−32768 to +32767

DINT Double integer 32 bits −2147483648 to +2147483647

LINT Long (4-word) inte-
ger

64 bits −9223372036854775808 to
+9223372036854775807

UINT Unsigned integer 16 bits Positive value: & or + followed
by integer

&0 to 65535

UDINT Unsigned double
integer

32 bits &0 to 4294967295

ULINT Unsigned long (4-
word) integer

64 bits &0 to 18446744073709551615
102

Procedures Section 3-2
Note If a non-boolean data type is used for the input variable and only a numerical
value (e.g., 20) is input, the value for the CIO Area address (e.g, CIO 0020)
will be passed, and not the numerical value. To set a numerical value, always
insert an &, #, + or − prefix before inputting the numerical value.

Example Programs:

If the input variable data type is boolean and a numerical value only (e.g.,
0 or 1) is input in the parameter, the value for CIO 000000 (0.00) or
CIO 000001 (0.01) will be passed. Always input P_Off for 0 (OFF) and
P_On for 1 (ON).

REAL Real number 32 bits Positive value: & or + followed
by real number (with decimal
point)

Negative value: − followed by
real number (with decimal
point)

−3.402823 × 1038 to −1.175494

× 10−38, 0, +1.175494 × 10−38

to +3.402823 × 1038

LREAL Long real number 64 bits −1.79769313486232 × 10308 to

−2.22507385850720 × 10−308,

0, +2.22507385850720 × 10−308

to +1.79769313486232 × 10308

WORD 16-bit data 16 bits # followed by hexadecimal
number (4 digits max.)

& or + followed by decimal
number

#0000 to FFFF or &0 to 65535

DWORD 32-bit data 32 bits # followed by hexadecimal
number (8 digits max.)

& or + followed by decimal
number

#00000000 to FFFFFFFF or &0
to 4294967295

LWORD 64-bit data 64 bits # followed by hexadecimal
number (16 digits max.)

& or + followed by decimal
number

#0000000000000000 to
FFFFFFFFFFFFFFFF or &0 to
18446744073709551615

Input variable data
type

Content Size Input method Setting range

10 DATA_1

&10 DATA_1

(INT)

(INT)

Instance for function block definition A

If the data format for DATA_1 is INT, and "10" is input,
the value for CIO 0010 will be passed.

Instance for function block definition A

If the data format for DATA_1 is INT, and the prefix &
is added so that "&10" is input, the numerical value
will be passed.
103

Procedures Section 3-2
3-2-6 Setting the FB Instance Areas
The areas where addresses for variables used in function blocks are allocated
can be set. These areas are called the function block instance areas.

1,2,3... 1. Select the instance in the Ladder Section Window or in the global symbol
table, and then select Function Block/SFC Memory - Function
Block/SFC Memory Allocation from the PLC Menu.

The Function Block/SFC Memory Allocation Dialog shown below will ap-
pear.

2. Set the FB instance areas.

The non-retained and retained areas are set in words. The timer and
counter areas are set by time and counter numbers.

The default values are as follows:

CJ2-series CPU Units

Note Force-setting/resetting is enabled when the following EM banks are specified:

CS/CJ-series CPU Units Ver. 3.0 or Later, and NSJ Controllers

Note (1) Bit data can be accessed even if the DM or EM Area is specified for the
non-retained area or retained area.

FB Instance
Area

Default value Applicable memory
areasStart address End address Size

Non Retain H512 H1407 896 CIO, WR, HR, DM,
EM (See note.)

Retain H1408 H1535 128 HR, DM, EM (See note.)

Timers T3072 T4095 1024 TIM

Counters C3072 C4095 1024 CNT

Non-retained area

Retained area

Counter area

Timer area

First
address

Last
address

Size

CJ2H-CPU64(-EIP)/-CPU65(-EIP) EM bank 3

CJ2H-CPU66(-EIP) EM banks 6 to 9

CJ2H-CPU67(-EIP) EM banks 7 to E

CJ2H-CPU68(-EIP) EM banks 11 to 18

FB Instance
Area

Default value Applicable memory
areasStart address End address Size

Non Retain
(See notes 1
and 3.)

H512 (See
note 2.)

H1407 (See
note 2.)

896 CIO, WR, HR, DM, EM

Retain (See
note 1.)

H1408 (See
note 2.)

H1535 (See
note 2.)

128 HR, DM, EM

Timers T3072 T4095 1024 TIM

Counters C3072 C4095 1024 CNT
104

Procedures Section 3-2
(2) The Function Block Holding Area words are allocated in H512 to H1535.
These words cannot be specified in instruction operands in the user pro-
gram. These words can also not be specified in the internal variable’s AT
settings.

(3) Words H512 to H1535 are contained in the Holding Area, but the ad-
dresses set as non-retained will be cleared when the power is turned
OFF and ON again or when operation is started.

(4) To prevent overlapping of instance area addresses and addresses used
in the program, set H512 to H1535 (Function Block Holding Area words)
for the non-retained area and retained area. If there are not sufficient
words, use words in areas not used by the user program. If another area
is set, the addresses may overlap with addresses that are used in the
user program.
If the addresses in the function block instance areas overlap with any of
the addresses used in the user program, an error will occur when compil-
ing. This error will also occur when a program is downloaded, edited on-
line, or checked by the user.

If addresses are duplicated and an error occurs, either change the function
block instance areas or the addresses used in the user program.

FQM1 Flexible Motion Controllers

Note Bit data can be accessed even if the DM Area is specified for the non-retained
area.

CP-series CPU Units

FB Instance
Area

Default value Applicable memory
areasStart address End address Size

Non Retain
(See note.)

5000 5999 1000 CIO, WR, DM

Retain None

Timers T206 T255 50 TIM

Counters C206 C255 50 CNT

Work Area Addresses
used in the user
program overlap with
the instance areas.

FB Instance
Area

Default value Applicable memory
areasStart address End address Size

Non Retain H512 H1407 896 CIO, WR, HR, DM (See
note.)

Retain H1408 H1535 128 HR, DM (See note.)

Timers T3072 T4095 1024 TIM

Counters C3072 C4095 1024 CNT
105

Procedures Section 3-2
Note DM area of CP1L-L

3-2-7 Checking Internal Address Allocations for Variables
The following procedure can be used to check the I/O memory addresses
internally allocated to variables.

1,2,3... 1. Select View - Symbols - Global.

2. Select the instance in the global symbol table, right-click, and select Func-
tion Block/SFC Memory Address from the pop-up menu. (Alternately,
select Memory Allocation - Function Block/SFC Memory - Function
Block/SFC Memory Address from the PLC Menu.)

3. The FB Interface Memory Dialog Box will be displayed. Check the I/O
memory addresses internally allocated to variables here.

Address CP1L-L

D0000 to D9999 Provided

D10000 to D31999 Not Provided

D32000 to D32767 Provided

Example: Instance name displayed in global variable table (automatically registered)

Right-click on the instance name and select Function Block Instance Address.

Example: Addresses used internally
for the input variables.
106

Procedures Section 3-2
Method Used for Checking Addresses Internally Allocated to Variables

Checking the Status of
Addresses Internally
Allocated to Variables

The following procedure can be used to check the number of addresses allo-
cated to variables and the number still available for allocation in the function
block instance areas.

1,2,3... 1. Select the instance in the Ladder Section Window, right-click, and select
Memory Allocation - Function Block/SFC Memory - Function
Block/SFC Memory Statistics from the PLC Menu.

2. The Function Block/SFC Memory Statistics Dialog Box will be displayed as
shown below. Check address usage here.

Optimizing Function
Memory

When a variable is added or deleted, addresses are automatically re-allocated
in the variables’ instance area. Consecutive addresses are required for each
instance, so all of the variables will be allocated to a different block of
addresses if the original block of addresses cannot accommodate the change
in variables. This will result in an unused block of addresses. The following
procedure can be used to eliminate the unused areas in memory so that
memory is used more efficiently.

1,2,3... 1. Select the instance in the Ladder Section Window, right-click, and select
Memory Allocation - Function Block/SFC Memory - Optimize Func-
tion/SFC Memory from the PLC Menu.

The following dialog box will be displayed.

a b

c

sample FB [FunctionBlock1] N/A [Auto] a BOOL W400.00

b BOOL W401.00
c BOOL W401.02

Instance registered in global
symbol table under instance name.

Name Address/
ValueType Name AddressType

Name AddressType

Inputs

Outputs

FM Instance Memory Dialog Box

Instance name

Addresses used for function
block internal variables

Right-click and select Function
Block Memory Address.

Instance of function block definition A,
instance name: sample

Program

The total number
of words in each
interface area.

The number
of words
already used.

The number of
words still available.
107

Procedures Section 3-2
2. Click the OK Button. Allocations to the function block instance areas will
be optimized.

3-2-8 Copying and Editing Function Block Definitions
Use the following operation to copy and edit the function block definition that
has been created.

1. Select the function block to copy, right-click, and select Copy from the pop-
up menu.

2. Position the cursor over the function block item under the PLC in the
project directory, right-click and select Paste from the pop-up menu.

3. The function block definition will be copied (“copy” is indicated before the
name of the function block definition at the copy source).

4. To change the function block name, left-click or right-click and select Re-
name from the pop-up menu.

5. Double-click the function block definition to edit it.

3-2-9 Checking the Source Function Block Definition from an Instance
Use the following procedure to check the function block definition from which
an instance was created.

Either double-click the instance or right-click the instance and select To
Lower Layer from the pop-up menu. The function block definition will be dis-
played.

3-2-10 Checking Instance Information such as Nesting Levels
When function blocks are nested in the created program, the structure of the
nesting levels can be checked by selecting Windows - FB Instance Viewer
from the View Menu. The function block relationships will be shown in a direc-
tory tree format, with the calling function blocks at the higher level and the
called function blocks at the lower level.

The FB Instance Viewer Window will provide other information, such as the
array variables being used and internal addresses allocated to the variables,
as shown in the following diagram. Variables can be registered in the Watch
Window just by dragging the variable from the list of variables used in the
instance and dropping the variable in the Watch Window.
108

Procedures Section 3-2
3-2-11 Checking Function Block Usage
The following memory areas are used when you use function blocks.

n User Memory Area (UM)

The object code for function blocks is stored in this area.

n FB Source Memory

The function block source code is stored in this area so that the function block
definitions and function block variable table can be displayed on the CX-Pro-
grammer.

The CX-Programmer can be used to check memory usage for function blocks.
The procedure is as follows:

1. Select Memory View from the View Menu.

When nesting, this area shows
the nesting level relationship
between instances (function block
definition names in parentheses).
The higher-level is the calling
block and the lower-level is the
called block.
Also, if there are array variables
or timer/counter variables, they
are displayed just below the
instance.

The variable names, data types,
addresses (allocated internal
addresses), and comments are
displayed for variables used in
the active instance selected in
the directory tree in the area on
the left.

FB Instance Viewer

Note: Variables can be
registered by dragging and
dropping them in the Watch
Window.
109

Procedures Section 3-2
2. The Memory View Dialog Box will be displayed as shown below.

Example: CJ2H-CPU68

• The Memory View Dialog Box varies with the PLC model. For details,
refer to information on the memory view function in the CX-Programmer
Operation Manual (Cat. No. W446).

• For information on calculating the number of program steps used for the
function block object code, refer to 2-9 Number of Function Block Program
Steps and Instance Execution Time.

3-2-12 Compiling Function Block Definitions (Checking Program)
A function block definition can be compiled to perform a program check on it.
Use the following procedure.

1,2,3... Select the function block definition, right-click, and select Compile from the
pop-up menu. (Alternately, press the Ctrl + F7 Keys.)

The function block will be compiled and the results of the program check will
be automatically displayed on the Compile Table Page of the Output Window.

3-2-13 Printing Function Block Definition
Use the following procedure to print function block definitions.

1,2,3... 1. Double-click the function block definition to be printed, and with the vari-
able table and algorithm displayed, select Print from the File Menu. The
following Target Print Rung Dialog Box will be displayed.

Results of program check displayed.
110

Procedures Section 3-2
2. Select the All Rung or Select Rung option. When the Select Rung option
is selected, specify the start rung and end rung numbers. When a page
number has been specified in the header and footer fields in File - Page
Setup, the first page number can be specified.

3. Select either of the following options for the function block printing range.

• Symbol table and program (default)

• Symbol table

• Program

4. Click the OK Button, and display the Print Dialog Box. After setting the
printer, number of items to print and the paper setting, click the OK button.

5. The following variable table followed by the algorithm (e.g, ladder program-
ming language) will be printed.

Note For details on print settings, refer to the section on printing in the CX-Pro-
grammer Operation Manual (W446).

3-2-14 Password Protection of Function Block Definitions

Overview
Function block definitions in a project can be protected by setting a password
to restrict access. The following two levels of password protection that can be
set, depending on the application.

Password Protection on
both Writing and Reading

This password protection level restricts both writing (changing) and displaying
the contents of the function block definition.
111

Procedures Section 3-2
To set read/write protection, select Prohibit writing and display as the Protec-
tion type in the function block’s properties. This level of protection prevents
unintended program changes/modifications and also protects against misap-
propriation of program materials.

Password Protection on
Writing Only

This password protection level restricts writing (changing) the contents of the
function block definition.

To set write protection, select Prohibit writing as the Protection type in the
function block’s properties. This level of protection prevents unintentional pro-
gram changes/modifications.

Setting Password Protection
This operation can be performed offline only.

Password protection can be applied to individual function block definitions or
multiple function block definitions together.

Protecting an Individual
Function Block Definition

Use the following procedure to set the password protection for an individual
function block definition.

1,2,3... 1. In the project workspace, select the function block definition, right-click,
and select Properties from the pop-up menu. (Alternately, select Proper-
ties from the View Menu.)

2. The Function Block Properties Dialog Box will be displayed. Click the Pro-
tection Tab and click the Set Button.

3. The Function Block Protect Setting Dialog Box will be displayed. Select the
protection level in the Protection Type Field.
112

Procedures Section 3-2
The following table shows the functions restricted in each protection level.

4. Input the password in the Password Field of the Function Block Protect
Setting Dialog Box. Input the same password again in the confirmation
field to verify the password and click the Set Button.
The password can be up to 8 characters long and only alphanumeric char-
acters can be used.

5. When a function block definition has been password protected, the func-
tion block definition’s icon will change to indicate that it is protected. The
icon also indicates the protection level, as shown below.

: Prohibit writing and display (same for ladder and ST)

: Prohibit writing (ladder)

: Prohibit writing (ST)

Protecting Multiple
Function Block Definitions

Use the following procedure to set the password protection for two or more
function block definitions at the same time.

1,2,3... 1. Select Function Blocks in the project workspace, right-click, and select
Function Block Protection - Set from the pop-up menu.

2. The Function Block Protection Collective Setting Dialog Box will be dis-
played. Select the names of the function blocks that you want to protect,
select the Protection Type (protection level), input the password, and click
the Set Button.

3. The selected function block definitions will be password protected.

Function Protect Type

Prohibit writing and
display

Prohibit writing

Displaying function block contents Prohibited Allowed

Printing function block contents

Editing function block contents Prohibited

Saving/loading to function block
library files

Allowed Allowed
113

Procedures Section 3-2
Clearing Password Protection
This operation can be performed offline only.

Password protection can be cleared from an individual function block defini-
tion or multiple function block definitions together.

Clearing Password
Protection on an
Individual Function Block

Use the following procedure to clear the password protection on an individual
function block definition.

1,2,3... 1. In the project workspace, select the function block definition, right-click,
and select Properties from the pop-up menu. (Alternately, select Proper-
ties from the View Menu.)

2. The Function Block Properties Dialog Box will be displayed. Click the Pro-
tection Tab and click the Release Button.

3. The Function Block Protection Release Dialog Box will be displayed. Input
the password in the Password Field and click the Release Button.

4. If the password was correct, the protection will be cleared and the function
block definition’s icon will change to a normal icon in the project work-
space.

Clearing Password
Protection on Multiple
Function Blocks

Use the following procedure to clear the password protection on two or more
function block definitions at the same time.

1,2,3... 1. Select Function Blocks in the project workspace, right-click, and select
Function Block Protection - Release from the pop-up menu.

2. The Function Block Protection Collective Release Dialog Box will be dis-
played. Select the names of the function blocks that you want to be unpro-
tected, input the password, and click the Release Button.

3. If the password input matches the selected function blocks’ passwords, the
protection will be cleared for all of the function block definitions at once.

3-2-15 Comparing Function Blocks
It is possible to compare the edited function block with a function block in the
actual PLC or another project file to check whether the two function blocks are
identical. For details on comparing programs, refer to the CX-Programmer
Operation Manual (W446).

3-2-16 Saving and Reusing Function Block Definition Files
The function block definition that has been created can be saved indepen-
dently as a function block library file (*.cxf) to enable reusing it in other
projects.

Note (1) Before saving to file, or reusing in another project, compile the function
block definition and perform a program check.

(2) When function blocks are being nested, the function block definition of the
called (nested) function blocks are included and saved in the function
block library file.

Saving a Function Block
Library File

Use the following procedure to save a function block definition to a function
block library file.

1,2,3... 1. Select the function block definition, right-click, and select Save Function
Block to File from the pop-up menu. (Alternately, select Function Block
- Save Function Block to File from the File Menu.)
114

Procedures Section 3-2
2. The following dialog box will be displayed. Input the file name. Function
Block Library Files (*.cxf) should be selected as the file type.

Reading Function Block
Library Files into Other
Projects

Use the following procedure to read a function block library file (*.cxf) into a
project.

1,2,3... 1. Select the function block definition item under the PLC directory in the
Project Workspace, right-click, and select Insert Function Block - From
File from the pop-up menu (or select File - Function Block - Load Func-
tion Block from File).

2. The following dialog box will be displayed. Select a function block library
file (*.cxf) and click the Open Button.

3. A function block called FunctionBlock1 will be automatically inserted after
the Function Blocks icon. This icon contains the definition of the function
block.

4. Double-click the FunctionBlock1 Icon. The variable table and algorithm
will be display.

3-2-17 Downloading/Uploading Programs to the Actual CPU Unit
After a program containing function blocks has been created, it can be down-
loaded from the CX-Programmer to an actual CPU Unit that it is connected to
online. Programs can also be uploaded from the actual CPU Unit. It is also
possible to check if the programs on the CX-Programmer (personal computer)
and in the actual CPU Unit are the same. When the program contains function
blocks, however, downloading in task units is not possible (uploading is possi-
ble).
115

Procedures Section 3-2
3-2-18 Monitoring and Debugging Function Blocks
The following procedures can be used to monitor programs containing func-
tion blocks.

Monitoring I/O in Ladder
Programs within
Instances

With the CX-Programmer Ver. 6.0 and later versions, it is possible to monitor
the status of bits and content of words in a ladder program within an instance
when monitoring the program. To monitor I/O bits and words (I/O Bit Monitor),
either double-click the instance or right-click the instance and select Monitor
FB Ladder Instance from the pop-up menu. At this point, it is possible to
monitor bits and words, change PVs, force-set/reset bits, and perform differ-
entiation monitoring.

Note (1) It is not possible to change timer/counter SVs.

(2) Changing PVs and force-setting/resetting bits is not possible for input-
output variables. Also, if data structures are used as input-output vari-
ables, you cannot display forced-set/reset information (key icons) for any
BOOL members of those data structures.

(3) If an array variable is used in a function block and a symbol is used for the
array variable’s arguments, the present value cannot be monitored if that
array variable is used as the operand of an input condition or special in-
struction. In this case, the input condition or instruction will be displayed
in red.

Double-click I/O values can be
monitored in the
algorithm within the
function block.
116

Procedures Section 3-2
Monitoring Variables of ST
Programs within
Instances

With the CX-Programmer Ver. 6.1 and later versions, it is possible to monitor
the ST programs within an instance when monitoring the program. To monitor
I/O bits and words (I/O Bit Monitor), either double-click the instance or right-
click the instance and select Monitor FB Instance from the pop-up menu.

To return to the original instance, right-click in the ST program monitor window
and select To Upper Layer from the pop-up menu.

The ST program is displayed in the left side of the window (called the ST pro-
gram monitor window).

The values of variables used in the ST program are displayed in the right side
of the window (called the ST variable monitor window).

At this point, it is possible to monitor variable values, change PVs, force-set or
force-reset bits, and copy/paste variables in the Watch Window. (These oper-
ations are described below.)

Left side:
ST program monitor window

Right side:
ST variable monitor window

Right-click and select
To Upper Layer.

Double-click
the instance.

The ST program and variable
monitoring areas are displayed.

The variable’s PV is displayed
in blue characters.
117

Procedures Section 3-2
Monitoring Variables

Variable values are displayed in blue in the ST variable monitor window.

Note (1) With a CJ2 CPU Unit, you cannot obtain the present value of the TIMER
type variable argument of the TENTH-MS TIMER or HUNDREDTH-MS
TIMER instruction. Therefore, "-" is displayed for the present value on the
ST monitor view.

(2) When you use the present value of the TIMER type variable argument of
the TENTH-MS TIMER or HUNDREDTH-MS TIMER instruction in any
item other than timer instructions, the present value cannot be displayed
correctly (i.e. the value is undependable.). When the present value is as-
signed to a different variable, its present value is also undependable.

Changing PVs

To change a PV, select the desired variable in the ST variable monitor window
(displayed in reverse video when selected), right-click, and select Set - Value
from the pop-up menu.

The Set New Value Dialog Box will be displayed. Input the new value in the
Value field.

Force-setting and Force-resetting Bits

To force-set, force-reset, or clear the forced status, select the desired variable
in the ST variable monitor window (displayed in reverse video when selected),
right-click, and select Force - On, Force - Off, Force - Cancel, or Force -
Cancel All Forces from the pop-up menu.

Select the variable.
118

Procedures Section 3-2
Copying and Pasting in the Watch Window

1,2,3... 1. To copy a variable to the Watch Window, select the desired variable in the
ST variable monitor window (displayed in reverse video when selected),
right-click, and select Copy from the pop-up menu.

2. Right-click in the Watch Window and select Paste from the pop-up menu.

Select the variable in the ST
variable monitor window,
right-click, and select Copy.

Right-click in the Watch
Window and select Paste.
119

Procedures Section 3-2
Checking Programs within
Function Block Definitions

Use the following procedure to check the program in the function block defini-
tion for an instance during monitoring.

1,2,3... Right-click the instance and select To Lower Layer from the pop-up menu.
The function block definition will be displayed.

Monitoring Instance
Variables in the Watch
Window

Use the following procedure to monitor instance variables.

1,2,3... 1. Select View - Window - Watch.

A Watch Window will be displayed.

2. Use any one of the three following methods to display the FB variables reg-
istration Dialog Box.

a. Right-click the instance and select Register in Watch Windows from
the pop-up menu.

b. Copy the instance and paste it in the Watch Window.

c. Right-click an empty row in the Watch Window and select Register in
Watch Windows from the pop-up menu.

3. Select Usage - Data Type. The FB Instance setting can also be selected.
The default Usage is N: Internal and the other available selections are I:
Input, O: Output, and E: External.

The default Data Type is A: All. Special data types BOOL and INT can also
be selected.

4. Click the OK Button. The selected variable will be registered in the Watch
Window and the value will be displayed as shown below.
120

Procedures Section 3-2
Monitoring Input Variables
and Output Variables in
Instances

The present values of input variables and output variables (parameters) are
displayed below the parameters.

Simulation of Ladder/ST
Programs in Instances

The CX-One Ver 1.1 (CX-Programmer Ver. 6.1) and later versions have a sim-
ulation function that can simulate the operation of a ladder program or ST pro-
gram within a function block instance. Both step execution and break point
operation are supported.

To return to the original instance, right-click in the ST program monitor window
and select To Upper Layer from the pop-up menu.

n Enabling the Simulation Function

Use the following procedure to enable the simulation function.

1,2,3... 1. Open the program containing the instance to be debugged.

2. Select View - Toolbars and select the Simulator Debug Option in the Tool-
bars Tab.

3. Select Work Online Simulator from the CX-Programmer’s PLC Menu and
transfer the program to the CX-Simulator in the computer.

Note Steps 2 and 3 can be done in the opposite order.

n Step Execution (Step Run)

Executes the program in step (instruction) increments. When the instance is
stopped, this function can move to the first step (instruction) of the ladder or
ST program in that instance.

The program in the instance can be executed with the Step Run or Continu-
ous Step Run method (see note).

Click the OK Button
to register.

Select Register in Watch
Windows.
or
Copy the instance and
paste it in the Watch
Window.
or
Right-click an empty row in
the Watch Window and
select Register in Watch
Windows.

PV of parameter for I/O variable.
121

Procedures Section 3-2
Note Set the duration of the step execution for Continuous Step Run operation by
selecting the CX-Programmer’s Tools - Options command and setting the
Continuous Step Interval on the PLCs Tab Page.

Step In

Use the following procedure to begin step execution of a ladder/ST program
within an instance (called Step Run operation).

1,2,3... 1. Pause execution of the instance. (See note.)

2. Click the Step In Icon or select Tools - Simulation - Mode - Step In.

Example: Step In from Instance to Internal Ladder Program

Example: Step In from ST Program to Internal Ladder Program

Note When the program is being executed at a point outside of the function block
instance, the processing is the same as normal Step Run operation.

Step Out

Use the following procedure to pause step execution of a ladder/ST program
within an instance (Step Run operation) and return to one level higher in the
program (the program or instance that was the source of the call).

1,2,3... 1. During Step Run operation, move the cursor to any stopping point in the
instance.

2. Click the Step Out Icon or select Tools - Simulation - Mode - Step Out.

Stopped here.

Moves to here.

Click the Step In Icon to
start Step In execution.

Stopped here.
Moves to here.

With an ST program, an
arrow is displayed to the left
of the stopped position.

Click the Step In Icon to
start Step In execution.
122

Procedures Section 3-2
Example:
Returning from an ST Program to the Calling Program or Instance

Note The Step Out command can be executed only in a ladder/ST program within
an instance.

n Display when Operation is Paused by the Simulation Function

The color of the cursor (or arrow in an ST program) indicates whether an
operation has been paused in the Simulation Function Window, as well as
which operation has been paused.

Note (1) When Tools - Simulation - Always Display Current Execution Point
has been selected, the Simulator automatically scrolls the display to show
the paused point in the instance when performing Step Run or Continu-
ous Step Run operation.

(2) The color of the cursor (or arrow in an ST program), which indicates when
an operation has been paused in the Simulation Function Window, can
be changed from its default color.
To change the color, select Tools - Options and click the Appearance
Tab. Select Pause Simulator, Simulator Instruction Break, or Simulator IO
Break, and change the color for that condition.

n Break Point Operation in an Instance

Execution can be paused automatically at the preset break point in the
instance. (In this case, the Step In operation cannot be used.)

Note When a break point is set for an instance, the break point is valid for that
instance only. (The break point is not valid for other instances created from
the same function block definition.)

Stopped here.
Moves to here.

Click the Step Out Icon to
return to the calling program.

Debug
operation

Color (default) Program execution
status

Details

Step Run or
Continuous
Step Run

Pink Simulator paused
status

Paused by Step Run
operation or the Pause
Button

Regular color Not executed due to
interlock or other
function.

Step is not being exe-
cuted because of an
instruction such as IL,
MILR/MILH, JMP0, or
FOR/BREAK.

Break point Blue Simulator instruction
break

Paused (break status) by
a break point.
123

Procedures Section 3-2
3-2-19 Online Editing Function Block Definitions
Ladder diagrams for ST programs in function block definitions can be edited
even when the CPU Unit is operating in MONITOR mode. This enables
debugging or changing function block definitions even in systems that cannot
be shut down, such as systems that operate 24 hours a day.

To edit function block definitions online, you must use CX-Programmer version
7.0 or higher (i.e., CX-One version 2.0 or higher) and a CS/CJ-series CPU
Unit with unit version 4.0 or later (See note.) or a CJ2-series CPU Unit.

This function cannot be used for simulations on CX-Simulator.

Note With CS/CJ-series CPU Units with unit version 3.0, online editing
can be used to change peripheral aspects of function block instanc-
es.

• Parameters passing data to/from instances can be changed, in-
structions not in instances can be changed, and instances can be
deleted.

• Instances cannot be added, instance names cannot be changed,
and changes cannot be made to variable tables or algorithms in
function block definitions.

Editing Reserved Memory to Add an Internal Variable with Online Editing
To add an internal variable to the variable table in a function block definition,
the memory required for the size of the variable being added must be
reserved in advance. This memory is separate from the internally allocated
range for the variable in the function block instance area. Use the following
procedure to reserve memory before starting online editing of the function
block.

1,2,3... 1. In the Workspace, right-click the function block definition to be edited and
select Properties from the pop-up menu.

2. Click the Memory Tab, right-click the area for which to reserve memory,
and select Online edit reserved memory from the pop-up menu.

3. Enter the size of memory to reserve in each field in the Memory Size Edit
for FB Online Edit Dialog Box.
124

Procedures Section 3-2
Editing and Transferring a Function Block Definition

1,2,3... 1. While online with the PLC, right-click a function block definition in the
Workspace (see note) and select FB online Edit - Begin from the pop-up
menu.

Note Online editing can also be started from the Function Block Defini-
tion Window, the Instance Ladder/ST Monitor Window, or a function
block call instruction (from the normal ladder program or from a lad-
der program in a function block).

The following dialog box will be displayed before the FB Online Editor is
started.

At the same time, a list of instances that will be affected is displayed in the
Output Window.

Note Affect of Function Block Definition Changes on Instances
When a function block definition is changed, the contents of all in-
stances that call that function block definition will also be changed.
This is illustrated below.

Change function block definitions only after considering the affect
of the change on overall program operation.

2. Click the Yes Button. The contents of the function block definition will be
displayed and can be edited.

User ProgramFunction Block Definition FB1

Instance calling FB1

Affected

Programming
changed.

Affected

Instance calling FB1

Example

A list of instances that will
be affected is displayed in
the Output Window.
125

Procedures Section 3-2
3. After editing the contents of the function block definition, select FB online
Edit - Send Changes. The following FB Online Edit - Transfer Dialog Box
will be displayed.

4. Select one of the following transfer modes and click the Yes Button.

• Normal Mode

• Quick Mode

Refer to Transfer Modes on page 127 and Selecting a Transfer Mode on
page 128 for details on the transfer modes.
126

Procedures Section 3-2
The new function block definition will be transferred to the buffer memory
in the CPU Unit and the progress of the transfer will be displayed in a dialog
box.

(At this point, the CPU Unit will still be operating with the previous function
block definition.)

The following dialog box will appear when the transfer has been complet-
ed.

(At this point, the CPU Unit will still be operating with the previous function
block definition.)

5. Click the Yes Button. The user program in the CPU Unit will be updated
with the new function block definition from the buffer memory of the CPU
Unit. (If the No Button is click, the new function block definition in the buffer
memory will be discarded and the program will not be changed.)

In either case, the program will return to the status in which function block
definitions cannot be edited. To edit another function block definition, se-
lect FB online Edit - Begin and begin the online editing procedure from
the beginning.

Transfer Modes Normal Mode

In Normal Mode, both the source code and object code are transferred to the
CPU Unit. Some time may be required for Normal Mode transfers because of
the quantity of data that must be sent. Other editing or transfer operations
cannot be performed until the transfer has been completed.

Note The Display confirmation of FB online edit changes Option can be
selected to display a confirmation dialog box after the source code
has been transferred but just before updating the user memory in
the CPU Unit.

Quick Mode

In Quick Mode, only the object code is transferred to the CPU Unit. The
source code is not transferred, making Quick Mode faster than Normal Mode.
After transferring the object code either 1) select Program - Transfer FB
Source to transfer the source code or 2) transfer the source code according
to instructions displayed in a dialog box when you go offline.

After transferring the object code, “FB Source” will be displayed in yellow at
the bottom of the window to indicate that the source code has not yet been
transferred. This message will disappear when the source code is transferred.
127

Procedures Section 3-2
Selecting a Transfer Mode As a rule, use Normal Mode to transfer function block definition changes. If
too much time is required, increase the baud rate as much as possible before
the transfer. If too much time is still required and debugging efficiency is hin-
dered by continuous online editing, use Quick Mode as an exception, but be
sure you understand the restrictions given in the following note (Mode Restric-
tions in Quick Mode).

Guidelines for transfer times are given below for eight function block defini-
tions with a source code totaling 8 Kbytes for all 8 definitions and all
instances.

Note Restrictions in Quick Mode
A program containing function blocks cannot be uploaded correctly to the CX-
Programmer unless the source code for all function block definitions has been
transferred to the CPU Unit. Whenever using Quick Mode to transfer changes
to function block definitions, always select Program - Transfer FB Source
later to transfer the source code as well. Even if the source code is not trans-
ferred, it will be automatically transferred when you go offline unless the com-
puter or CX-Programmer crashes before the source code can be transferred.
In that happens, it may be impossible to upload the program. (See note.)

Note It may be still be possible to transfer the source code even if the
above problem occurs.

a. The following dialog box will be displayed the next time the CX-Pro-
grammer is started.

b. Click the OK Button.

c. Go online with the CPU Unit to which a transfer was made using Quick
Mode.

d. When you go online, the CXP project automatically backed up in the
computer will be started and the following dialog box will be displayed.

e. Click the Yes Button and then following the instructions provided in the
dialog boxes. The source code automatically backed up in the comput-
er can be compared to the object code in the CPU Unit and if they
match, the source code can be transferred.

Normal Mode Quick Mode

At 115.2 kbps: 5 s 1 s

At 19.2 kbps: 10 s 2 s
128

Procedures Section 3-2
Note Source Code and Object Code
Before transferring a program, the CX-Programmer normally compiles the
source code into object code so that the CPU Unit can execute it and then
transfers both the source code and object code to the CPU Unit. The CPU
Unit stores the source code and object code in user memory and built-in flash
memory. Only when both the source code and object code exist in the CPU
Unit can the CX-Programmer transfer and restore the program for the upload
operation.

Canceling Changes to Function Block Definitions
Select FB online Edit - Cancel to discard any changes made to a function
block definition. The function block definition will not be transferred to the CPU
Unit and the original definition will be restored.

Effects on CPU Unit Operation
The following will occur if online editing is performed with the CPU Unit oper-
ating in MONITOR mode: 1) The cycle time of the CPU Unit will be extended
by several cycle times when the program in the CPU Unit is rewritten and 2)
The cycle time will again be extended when the results of online editing are
backed up to built-in flash memory. (At this time, the BKUP indicator on the
front of the CPU Unit will flash and the progress will be displayed on the CX-
Programmer.)

Maximum Cycle Time
Extensions for Online
Editing

The maximum extensions to the cycle time are given in the following table.

Note Cycle Time Monitor Time
Be sure that the cycle time monitor time set in the PLC Setup is not exceeded
when the program is rewritten as a result of online editing in MONITOR mode.
If the monitor time is exceeded, a cycle time exceeded error will occur and
CPU Unit operation will stop. If this occurs, switch to PROGRAM mode and
then to MONITOR or RUN mode to restart operation.

!Caution If synchronous unit operation is being used, an increase in the synchronous
processing time caused by online editing may result in unexpected operation
timing. Perform online editing only after confirming that an increased synchro-
nous processing time will not affect the operation of the main and slave axes.

Restrictions in Online Editing of Function Block Definitions
The following restrictions apply to online editing of function block definitions.

• Online editing is not possible for function block definitions that exceed
4 Ksteps. (except for CJ2-series CPU Units)

• A maximum of 0.5 Ksteps can be added to or deleted from a function
block definition during one online editing operation. (except for CJ2-series
CPU Units)

• Input variables, output variables, and input-output variables cannot be
added or deleted.

• New function block instances cannot be added.

• Instance names cannot be changed.

During online editing During backup

12 ms max. 4% of cycle time
129

Procedures Section 3-2
• Internal variables can be added, internal variable comments can be
changed, and internal variables can be deleted from the variable table in
the function block definition. To add an internal variable, however, memory
must be reserved in advance. Refer to Editing Reserved Memory to Add
an Internal Variable with Online Editing on page 124 for details.

• The previous status flags for all differentiated instructions (DIFU(013), @
instructions, DIFD(014), and % instructions) will be initialized (i.e., turned
OFF) when online editing is finished.

• After performing online editing, do not turn OFF the power supply to the
PLC until the CPU Unit has finished backing up data to the built-in flash
memory (i.e., until the BKUP indicator stops flashing). If the power supply
is turned OFF before the data is backed up, the data will not be backed up
and the program will return to the status it had before online editing was
performed.
130

Part 2:
Structured Text (ST)

SECTION 4
Introduction to Structured Text

This section introduces the structure text programming functionality of the CX-Programmer and explains the features that
are not contained in the non-structured text version of CX-Programmer.

4-1 ST Language . 134
4-1-1 Overview. 134

4-2 CX-Programmer Specifications . 135
4-2-1 PLC Models Compatible with ST Programs (ST Tasks) 135
4-2-2 Specifications . 135
133

ST Language Section 4-1
4-1 ST Language
This section explains the specifications and operating procedures for ST pro-
grams directly allocated to CX-Programmer tasks (ST tasks). Refer to the fol-
lowing sections for information on functions and operations specific to ST
programs used in other programs (function blocks or SFC).

• ST programs used in function block instances:
Refer to Part 1: Function Blocks in this manual.

• ST programs used in SFC:
Refer to the CX-Programmer Operation Manual: SFC (W469).

4-1-1 Overview
The ST (Structured Text) language is a high-level language code for industrial
controls (mainly PLCs) defined by the IEC 61131-3 standard. The standard
control statements, operators, and functions make the ST language ideal for
mathematical processing that is difficult to write in ladder programming. (The
ST language does not support all of the processing that can be written in lad-
der language.)

The ST language supported by CX-Programmer Ver. 7.2 or higher conforms
with the IEC 61131-3 standard, and these ST-language programs can be allo-
cated to tasks.

The PLC must be a CS/CJ-series CPU Unit with unit version 4.0 or later, or a
CJ2-series CPU Unit.

The following list shows the features of the ST language.

• There are many control statements available, such as loop statements
and IF-THEN-ELSE statements, many operators such as arithmetic oper-
ators, comparison operators, and AND/OR operators, as well as many
mathematical functions, string extract and merge functions, Memory Card
processing functions, string transfer functions, and trigonometric func-
tions.

• Programs can be written like high-level languages such as C, and com-
ments can be included to make the program easy to read.

• ST programs can be uploaded and downloaded just like ordinary pro-
grams, but ST program tasks cannot be uploaded and downloaded in task
units.

• Function blocks (ladder or ST language) can be called in ST programs.

ST Program
IF score > setover THEN (*If score>setover*)

underNG := FALSE; (*Turn OFF underNG*)
OK := FALSE; (*Turn OFF OK*)
overNG := TRUE; (*Turn ON overNG*)

ELSIF score < setunder THEN (*If score=<setover and score < setunder*)
overNG := FALSE; (*Turn ON overNG*)
OK := FALSE; (*Turn OFF OK*)
underNG := TRUE; (*Turn ON underNG*)

ELSE (*If setover>score>setunder*)
underNG := FALSE; (*Turn OFF underNG*)
overNG := FALSE; (*Turn OFF overNG*)
OK := TRUE; (*Turn OFF OK*)

END_IF; (*End of IF statement*)
134

CX-Programmer Specifications Section 4-2
• One-dimensional array variables are supported for easier data handling in
applications.

4-2 CX-Programmer Specifications
This section describes the operating environment for CX-Programmer ST pro-
grams (ST tasks). For details on the basic CX-Programmer operating environ-
ment, refer to the CX-Programmer Operation Manual (W446).

• For details on the CX-Programmer operating environment used with other
programs (function block or SFC), refer to Part 1: Function Blocks in this
manual, or the CX-Programmer Operation Manual: SFC (W469).

4-2-1 PLC Models Compatible with ST Programs (ST Tasks)
The following PLC models support ST tasks.

4-2-2 Specifications

PLC model CPU Unit model

CJ2H CJ2H-CPU68/67/66/65/64/68-EIP/67-EIP/66-EIP
/65-EIP/64-EIP

CJ2M CJ2M-CPU11/12/13/14/15/31/32/33/34/35

CS1G-H with unit version 4.0 CS1G-CPU45H/44H/43H/42H

CS1H-H with unit version 4.0 CS1H-CPU67H/66H/65H/64H/63H

CJ1G-H with unit version 4.0 CJ1G-CPU45H/44H/43H/42H

CJ1H-H with unit version 4.0 CJ1H-CPU67H/66H/65H/67H-R/66H-R/65H-R/64H-R

CJ1M with unit version 4.0 CJ1M-CPU23/22/21/13/12/11

Item Specification

Program languages that can
be allocated to tasks

SFC, ladder, or ST (These programs can be combined
freely.)

ST program units Task units
Up to 288 tasks (32 cyclic tasks, and 256 extra cyclic
tasks)

Tasks to which ST programs
can be allocated

Cyclic tasks and extra cyclic tasks

Online editing ST chart editing

Note The user can select standard mode (ST source
code included in transfer) or quick mode (ST
source code not included in transfer).

Array variables Array variables can be used in SFC, ladder, and ST
programs.
135

CX-Programmer Specifications Section 4-2
136

SECTION 5
Structured Text (ST) Language Specifications

This section provides specifications for reference when using structured text programming, as well as programming
examples and restrictions.

5-1 Structured Text Language Specifications . 138
5-1-1 Overview of the Structured Text Language 138

5-2 Data Types Used in ST Programs . 139
5-2-1 Basic Data Types . 139
5-2-2 Derivative Data Types . 140

5-3 Inputting ST Programs . 140
5-3-1 Syntax Rules . 140
5-3-2 CX-Programmer's ST Input Screen Display. 143

5-4 ST Language Configuration . 144
5-4-1 Statements. 144
5-4-2 Variables . 145
5-4-3 Inputting Constants. 145
5-4-4 Operators. 145
5-4-5 Standard Functions . 146
5-4-6 OMRON Expansion Functions. 152

5-5 Statement Descriptions . 155
5-5-1 Assignment . 155
5-5-2 Control Statements . 155

5-6 ST-language Program Example. 173
5-6-1 Using an ST Program in a Function Block. 173

5-7 Restrictions . 174
5-7-1 Restrictions . 174
5-7-2 Commonly Asked Questions . 175
137

Structured Text Language Specifications Section 5-1
5-1 Structured Text Language Specifications

5-1-1 Overview of the Structured Text Language
Structured text is a high-level textual language that has selection and iteration
structures, and is similar to PASCAL.

ST Language
Configuration

ST Language Configuration

An ST language program is composed from statements. There are two kinds
of statements: assignment and control.

• Assignment statement: This statement uses an equation to store a calcu-
lation result in a variable.

• Control statement: Includes statements such as selection statements and
iteration statements.

For details on each kind of statement, refer to 5-4 ST Language Configura-
tion.

Statement Contents

Statements are composed of the following elements.

• Variables (Refer to 5-4-2 Variables.)

• Constants (Refer to 5-4-3 Inputting Constants.)

• Operators (Refer to 5-4-4 Operators.)

• Functions (Refer to 5-4-5 Standard Functions and 5-4-6 OMRON Expan-
sion Functions.)

Example of a Control Statement

Note In an ST program, addresses are not input as actual I/O memory addresses.
Variable names are used for all address inputs. The addresses that use vari-
ables are set by the user.
For details on variable specifications and setting methods, refer to the CX-
Programmer Operation Manual (W446).

CASE COLOR OF

1: NofRed := NofRed + 1;

2: NofBlue := NofBlue+1;

ELSE NofOther := NofOther+1;

END CASE;

IF NofRed > 100 OR NofBlue >100 THEN

STOP:=TRUE

END IF;

Statement (e.g., CASE):
Configured using variables,
equations, etc.

Equation: Configured using
operators and operands.

(*Variable COLOR value is...*)
(*1: Increment variable NofRed by 1*)
(*2: Increment variable NofBlue by 1*)
(*Neither 1 or 2: Increment variable NofOther by 1*)

(* When NofRed or NofBlue exceeds 100*)

(*Assign TRUE for variable STOP*)

Statement (e.g., IF):
Configured using variables,
equations, etc.

Comment:
A comment can be attached to a statement.
Configured using (* before the
comment and *) after the comment.

Variable Constant
138

Data Types Used in ST Programs Section 5-2
5-2 Data Types Used in ST Programs
The following tables show the data types used in ST programs. For details on
the data types that can be used in ST programs within function blocks, refer to
Part 1: Function Blocks in this manual.

5-2-1 Basic Data Types

Note (1) In ST programs, these data types are recognized as the following data
types.

• UNIT BCD is recognized as WORD.

• UDINT BCD is recognized as DWORD.

• ULINT BCD is recognized as LWORD.

• CHANNEL is recognized as WORD.

(2) This data type cannot be used in an ST program. A program error will oc-
cur if this data type is specified.

(3) Refer to the Section 5-3 Inputting ST Programs for the input method.

Data type Content Size Range of values

BOOL Bit data 1 0 (FALSE), 1 (TRUE)

INT Integer 16 −32,768 to +32,767

DINT Double integer 32 −2,147,483,648 to +2,147,483,647

LINT Long (8-byte) integer 64 −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

UINT Unsigned integer 16 &0 to 65,535

UINT BCD Unsigned BCD integer --- (See note 1.)

UDINT Unsigned double integer 32 &0 to 4,294,967,295

UDINT BCD Unsigned double BCD
integer

--- (See note 1.)

ULINT Unsigned long (8-byte)
integer

64 &0 to 18,446,744,073,709,551,615

ULINT BCD Unsigned long (8-byte)
BCD integer

--- (See note 1.)

REAL Real number 32 −3.402823 × 1038 to −1.175494 × 10−38, 0,
+1.175494 × 10−38 to +3.402823 × 1038

LREAL Long real number 64 −1.79769313486232 × 10308 to −2.22507385850720 × 10−308, 0,
2.22507385850720 × 10−308 to 1.79769313486232 × 10308

WORD 16-bit data 16 #0000 to FFFF or &0 to 65,535

DWORD 32-bit data 32 #00000000 to FFFFFFFF or &0 to 4,294,967,295

LWORD 64-bit data 64 #0000000000000000 to FFFFFFFFFFFFFFFF or
&0 to 18,446,744,073,709,551,615

STRING (See
note 3.)

Text string Variable ---

FUNCTION
BLOCK

Function block instance --- ---

CHANNEL Word --- (See note 1.)

NUMBER Constant or number --- (See note 2.)

TIMER Timer Comple-
tion flag: 1

Present
value: 16

Timer No.: 0 to 4095

Timer completion flag: 0, 1

Timer PV: 0 to 9999 (BCD), 0 to 65535 (Binary)

COUNTER Counter Comple-
tion flag: 1

Present
value: 6

Counter No.: 0 to 4095

Counter completion flag: 0, 1

Counter PV: 0 to 9999 (BCD), 0 to 65535 (Binary)
139

Inputting ST Programs Section 5-3
5-2-2 Derivative Data Types

5-3 Inputting ST Programs

5-3-1 Syntax Rules
Statement Delimiters • Statements (assignment and control statements) must always end in a

semicolon (;). The statement cannot be completed by simply using a car-
riage return.

• Do not use a semicolon (;) as a delimiter within a statement such as fol-
lowing reserved words, values, or equations. Inserting a semicolon within
a statement, except at the end of a statement, will result in a syntax error.

Comments • Comments are enclosed in parentheses and asterisks, i.e., (*comment*).
Any characters except parentheses and asterisks can be used within a
comment. Nesting within comments is not supported.

Notation Example

(*comment*) (*this is the comment*)

Note Nesting in comments is not possible, i.e.,
(*(*this type of nesting is not supported*)*)

Spaces, Carriage Returns,
Tabs

• Any number of spaces, carriage returns, and tabs, or combinations of
these can be used anywhere within statements. Therefore, use spaces,
carriage returns, and tabs between reserved words and equations to
make them easier to read.

• Spaces, carriage returns, and tabs cannot be used between the following
tokens (the smallest meaningful unit for compiling), in which case they are
referred to as token separators.
Tokens: Reserved words, variable names, special characters, constants
(numerical values)

Reserved words (upper or lower case): AND, CASE, DO, ELSE, FOR,
IT, NOT, OF, OR, REPEAT,
THEN, TO, UNTIL, WHILE,
XOR, TRUE, FALSE, ELSIF,
BY, EXIT, RETURN

Variable names: Any text that is not a reserved
word will be recognized as a
variable name.

Special characters: <=, >=, <>, :=, .., &, (*, *)

Constants (numerical values): • Numerical value only for
decimal numbers

• 16# followed by numerical
value for hexadecimal
numbers

• 2# followed by numerical
value for binary numbers

• 8# followed by numerical
value for octal numbers

Data type Content

Array 1-dimensional array; 32,000 elements max.

Structure User-defined data type
140

Inputting ST Programs Section 5-3
If a space, carriage return, or tab is used between any of the above tokens,
the parts of the token on either side will be treated as separate tokens.
Therefore, make sure that spaces, carriage returns, or tabs are not used
within a single token.

• Always use a space, carriage return, tab, or other token separator
between reserved words and variable names. Using token separators
between other token combinations is optional.
In the following example, the box (@) indicates where a space, carriage
return, tab, or other token separator is required.

Upper and Lower Case • Reserved words and variable names do not distinguish between upper
and lower case (either can be used).

Prohibited Characters for
Variable Names

• The following characters enclosed in square brackets cannot be used in
variable names.

• [!], ["], [#], [$], [%], [&], [`], [(],, [)], [-], [=], [^], [~], [\], [|], [@], [`], [[], [{], [;],
[+], [:], [*], []], [}], [,], [<], [.], [>], [/], [?]

• The numbers 0 to 9 cannot be used as the first character of variable
names.

• An underscore cannot be followed immediately by another underscore in
variable names.

• Spaces cannot be used in variable names.

An error message will occur if any of these characters are used in this way.

Operator Priority • Consider the operator priority in the structured text syntax, or enclose
operations requiring priority in parentheses.

Example: AND takes priority over OR. Therefore, in the example X OR Y
AND Z, priority will be given to Y AND Z.

STRING Data Type • The following text strings are supported:
Strings with up to 255 alphanumeric characters
The text strings are not case sensitive.

• Text strings defined in the ST language are stored in PLC memory as fol-
lows:

• Place text strings inside signal quotation marks.

IF@A>0THEN@X=10;
ELSE@
 X:=0;
END_IF;

Notation Description

‘A’ Indicates the text string “A” (ASCII 41).

‘ ’ Indicates a text string containing a single space (ASCII 20).

‘’ Indicates an empty text string.

n

n+1

31 32

33 34

35 36

00 00

n+2

n+3

Data for the Text String "123456"

The null code (00) is stored
at the end of the text string.
141

Inputting ST Programs Section 5-3
• Two hexadecimal digits following a dollar sign ($) are interpreted as hexa-
decimal values.

• Certain alphabet characters following a dollar sign ($) are interpreted as
listed in the following table.

• When a text string is being stored from the ladder program in an ST func-
tion block’s STRING variable, append a NULL character (#00) to the end
of the text string.
Example: Passing string data to the function block STRING variable StrX:

About TIMER and
COUNTER Data Types

Describe the TIMER and COUNTER type variables as shown below.

1) How to describe the TIMER type variables in the structured text.

Timer completion flag: TIMER_type_variable_name.CF

Timer PV: TIMER_type_variable_name.PV

(Example) Timer completion flag: Timer1.CF

Timer PV: Timer1.PV

2) How to describe the COUNTER type variables

Counter completion flag: COUNTER_type_variable_name.CF

Counter PV: COUNTER_type_variable_name.PV

(Example) Counter completion flag:Counter1.CF

Counter PV: Counter1.PV

The completion flags are read only. Writing is not allowed.
The present values can be read/written.

Notation Description

‘$02’ The hexadecimal number 02 (start code)

‘$03’ The hexadecimal number 03 (end code)

Notation Description

‘$$’ The dollar sign (ASCII 24)

‘$’’ A single quotation mark (ASCII 27)

‘$L’ or ‘$l’ Line feed (ASCII 0A)

‘$N’ or ‘$n’ Carriage return + line feed (ASCII 0D 0A)

‘$P’ or ‘$p’ New page (ASCII 0C)

‘$R’ or ‘$r’ Carriage return (ASCII 0D)

‘$T’ or ‘$t’ Tab (ASCII 09)

Ladder program that stores "123456" in STRING variable StrX:

MOV #3132 D100

MOV #3334 D101

MOV #3536 D102

MOV #0000 D103

STRING data is stored to the function block by the ladder program above.

(STRING)
StrX

(STRING)
StrX

D100 D100

Attach a NULL character (#00) at the end.
142

Inputting ST Programs Section 5-3
5-3-2 CX-Programmer's ST Input Screen Display

Text Display Color The CX-Programmer automatically displays text in the following colors when it
is input or pasted in the ST Input Screen.

• Text keywords (reserved words): Blue

• Comments: Green

• Errors: Red

• Other: Black

Changing Fonts To change font sizes or display colors, select Tools - Options, click the
Appearance Tab, and then click the ST Font Button. The font name, font size
(default is 8 point), and color can be changed.
143

ST Language Configuration Section 5-4
5-4 ST Language Configuration

5-4-1 Statements
Statement Function Example

End of statement Ends the statement ;

Comment All text between (* and *) is treated as
a comment.

(*comment*)

Assign-
ment state-
ment

Assignment Substitutes the results of the expres-
sion, variable, or value on the right for
the variable on the left.

A:=B;

Control
statements

IF, THEN, ELSIF, ELSE,
END_IF

Evaluates an expression when the
condition for it is true.

IF (condition_1) THEN
(expression 1);

ELSIF (condition_2) THEN
(expression 2);

ELSE
(expression 3);

END_IF;

CASE, ELSE, END_CASE Evaluates an express based on the
value of a variable.

CASE (variable) OF
1: (expression 1);
2: (expression 2);
3: (expression 3);

ELSE
(expression 4);

END_CASE;

FOR, TO, BY, DO,
END_FOR

Repeatedly evaluates an expression
according to the initial value, final
value, and increment.

FOR (identifier) := (initial_value) TO
(final_value) BY (increment) DO

(expression);
END_FOR;

WHILE, DO, END_WHILE Repeatedly evaluates an expression
as long as a condition is true.

WHILE (condition) DO
(expression);

END_WHILE;

REPEAT, UNTIL,
END_REPEAT

Repeatedly evaluates an expression
until a condition is true.

REPEAT
(expression);

UNTIL (condition)
END_REPEAT;

EXIT Stops repeated processing. EXIT;

RETURN ST program:
Ends the ST task that is being exe-
cuted, and executes the next task.

ST used in SFC:
Ends the SFC action program that is
being executed, and executes the
next action program.

ST used in a function block:
Returns from the called program to
the point in the calling program
where the call occurred.

RETURN;

Function block instance call Calls a function block definition. When used in a function block:
Variable name with FUNCTION
BLOCK data type (called function
block definition’s input variable name
:= calling function block definition’s
variable name or constant, ..., called
function block definition’s output vari-
able name or constant => calling func-
tion block definition’s output variable
name, ...);
144

ST Language Configuration Section 5-4
5-4-2 Variables
For details on variable specifications and setting methods, refer to the CX-
Programmer Operation Manual (W469).

5-4-3 Inputting Constants
Numerical values can be expressed in decimal, hexadecimal, octal, or binary,
as shown in the following examples.

Notation Method Example
(for the decimal value 12)

Decimal: Numerical value only 12

Hexadecimal: 16# followed by numerical value 16#C

Octal: 8# followed by numerical value 8#14

Binary: 2# followed by numerical value 2#1100

Text string: Place in single quotation marks ‘Hello world’

Note Negative hexadecimal, octal, and binary numbers are expressed as 2’s com-
plements.
The valid range of INT data is -32,768 to 32,767 in decimal, but 0000 to FFFF
in hexadecimal, so the 2’s complement is used for negative integers. For
example, when a value of -10 decimal is set in an INT variable, it will be
expressed as 16#FFF6 in hexadecimal.

5-4-4 Operators
Operation Symbol Data types supported by operator Priority

1: Lowest
11: Highest

Parentheses and
brackets

(expression),
array[index]

1

Function evaluation identifier Depends on the function (refer to Appendix C Func-
tion Descriptions)

2

Exponential ∗∗ Base: REAL, LREAL

Exponent: INT, DINT, LINT, UINT, UDINT, ULINT,
REAL, LREAL

3

Complement NOT BOOL, WORD, DWORD, LWORD 4

Multiplication ∗ INT, DINT, LINT, UINT, UDINT, ULINT, REAL, LREAL 5

Division / INT, DINT, LINT, UINT, UDINT, ULINT, REAL, LREAL 5

Addition + INT, DINT, LINT, UINT, UDINT, ULINT, REAL,
LREAL, STRING

6

Subtraction − INT, DINT, LINT, UINT, UDINT, ULINT, REAL, LREAL 6

Comparisons <, >, <=, >= BOOL, INT, DINT, LINT, UINT, UDINT, ULINT,

WORD, DWORD, LWORD, REAL, LREAL, STRING

7

Equality = BOOL, INT, DINT, LINT, UINT, UDINT, ULINT,
WORD, DWORD, LWORD, REAL, LREAL, STRING

8

Non-equality <> BOOL, INT, DINT, LINT, UINT, UDINT, ULINT,

WORD, DWORD, LWORD, REAL, LREAL, STRING

8

Boolean AND & BOOL, WORD, DWORD, LWORD 9

Boolean AND AND BOOL, WORD, DWORD, LWORD 9

Boolean exclusive
OR

XOR BOOL, WORD, DWORD, LWORD 10

Boolean OR OR BOOL, WORD, DWORD, LWORD 11
145

ST Language Configuration Section 5-4
Note Operations are performed according to the data type.
Therefore, the addition result for INT data, for example, must be a variable
using the INT data type. Particularly care is required when a carry or borrow
occurs in an operation for integer type variables. For example, using integer
type variables A=3 and B= 2, if the operation (A/B)*2 is performed, the result
of A/B is 1 (1.5 with the value below the decimal discarded), so (A/B)*2 = 2.

5-4-5 Standard Functions

Numerical Functions

Function type Syntax

Numerical Functions Absolute values, trigonometric functions, etc.

Arithmetic Functions Exponential (EXPT)

Data Type Conversion Functions Source_data_type_TO_New_data_type (Variable_name)

Number-String Conversion Functions Source_data_type_TO_STRING (Variable_name)

STRING_TO_New_data_type (Variable_name)

Data Shift Functions Bitwise shift (SHL and SHR), bitwise rotation (ROL and ROR),
etc.

Data Control Functions Upper/lower limit control (LIMIT), etc.

Data Selection Functions Data selection (SEL), maximum value (MAX), minimum value
(MIN), multiplexer (MUX), etc.

Function Argument data type Return value
data type

Description Example

ABS (argument) INT, DINT, LINT,
UINT, UDINT, ULINT,
REAL, LREAL

INT, DINT, LINT,
UINT, UDINT,
ULINT, REAL,
LREAL

Absolute value [argu-
ment]

a: = ABS (b)

(*absolute value of variable
b stored in variable a*)

SQRT (argument) REAL, LREAL REAL, LREAL Square root:
√ argument

a: = SQRT (b)

(*square root of variable b
stored in variable a*)

LN (argument) REAL, LREAL REAL, LREAL Natural logarithm: LOGe
argument

a: = LN (b)

(*natural logarithm of vari-
able b stored in variable a*)

LOG (argument) REAL, LREAL REAL, LREAL Common logarithm:
LOG10 argument

a: = LOG (b)
(*common logarithm of vari-
able b stored in variable a*)

EXP (argument) REAL, LREAL REAL, LREAL Natural exponential: ear-

gument

a: = EXP (b)

(*natural exponential of vari-
able b stored in variable a*)

SIN (argument) REAL, LREAL REAL, LREAL Sine: SIN argument a: = SIN (b)

(*sine of variable b stored in
variable a*)

COS (argument) REAL, LREAL REAL, LREAL Cosine: COS argument a: = COS (b)
(*cosine of variable b stored
in variable a*)

TAN (argument) REAL, LREAL REAL, LREAL Tangent: TAN argument a: = TAN (b)

(*tangent of variable b stored
in variable a*)

ASIN (argument) REAL, LREAL REAL, LREAL
Arc sine: SIN−1 argument

a: = ASIN (b)

(*arc sine of variable b
stored in variable a*)

ACOS (argument) REAL, LREAL REAL, LREAL Arc cosine: COS−1 argu-
ment

a: = ACOS (b)
(*arc cosine of variable b
stored in variable a*)
146

ST Language Configuration Section 5-4
Note The data type returned for numerical functions is the same as that used in the
argument. Therefore, variables substituted for function return values must be
the same data type as the argument.

Text String Functions The following functions can be used with CS/CJ-series CPU Units with unit
version 4.0 or later, or CJ2-series CPU Units.

ATAN (argument) REAL, LREAL REAL, LREAL
Arc tangent: TAN−1 argu-
ment

a: = ATAN (b)

(*arc tangent of variable b
stored in variable a*)

EXPT (base, expo-
nent)

Base REAL,
LREAL

REAL, LREAL Exponential: Baseexponent a: = EXPT (b, c)
(*Exponential with variable b
as the base and variable c
as the exponent is stored in
variable a*)

Exponent INT,
DINT,
LINT,
UINT,
UDINT,
ULINT,
REAL,
LREAL

MOD (dividend data,
divisor)

Dividend
data

INT,
UINT,
UDINT,
ULINT,
DINT,
LINT

INT, UINT,
UDINT, ULINT,
DINT, LINT

Remainder a := MOD(b, c)

(* Remainder found by divid-
ing variable b by variable c is
stored in variable a*)

Divisor INT,
UINT,
UDINT,
ULINT,
DINT,
LINT

Function Argument data type Return value
data type

Description Example

Function Argument data type Return
value

data type

Description Example

LEN(String) String STRING INT Detects the length
of a text string.

a: = LEN (b)

(*number of characters in string
b stored in variable a*)

LEFT(<Source_string>,
<Number_of_characters>)

Source_
string

STRING STRING Extracts charac-
ters from a text
string starting from
the left.

a: = LEFT (b,c)
(*number of characters specified
by variable c extracted from the
left of text string b and stored in
variable a*)

Number_of_
characters

INT,
UINT

RIGHT(<Source_string>,
<Number_of_characters>)

Source_
string

STRING STRING Extracts charac-
ters from a text
string starting from
the right.

a: = RIGHT (b,c)

(*number of characters specified
by variable c extracted from the
eight of text string b and stored
in variable a*)

Number_of_
characters

INT,
UINT

MID(<Source_string>,
<Number_of_characters>,
<Position>)

Source_
string

STRING STRING Extracts charac-
ters from a text
string.

a: = MID (b,c,d)

(*number of characters specified
by variable c extracted from text
string b starting at position spec-
ified by variable d and stored in
variable a*)

Number_of_
characters

INT,
UINT

Position INT,
UINT
147

ST Language Configuration Section 5-4
Data Type Conversion
Functions

The following data type conversion functions can be used in structured text.

Syntax Source_data_type_TO_New_data_type (Variable_name)

Example: REAL_TO_INT (C)

In this example, the data type for variable C will be changed from REAL to
INT.

The fractional part of the value of variable C is rounded off to the closest inte-
ger. The following table shows how values are rounded.

Data Type Combinations The combinations of data types that can be converted are given in the follow-
ing table.

CON-
CAT(<Source_string_1>,<S
ource_string_2>,...) *Up to
32 source strings.*

Source_
string

STRING STRING Concatenates text
strings.

a: = CONCAT (b,c...)

(*text strings b, c... are joined
and stored in variable a*)

INSERT(<Source_string>,
<Insert_string>,<Position>)

Source_
string

STRING STRING Insert one text
string into another.

a: = INSERT (b,c,d)

(*text string c inserted into text
string b at position specified by
variable d and resulting string
stored in variable a*)

Insert_
string

STRING

Position INT,
UINT

DELETE(<Source_string>,
<Number_of_characters>,
<Position>)

Source_
string

STRING STRING Deletes characters
from a text string.

a: = DELETE (b,c,d)

(*number of characters specified
by variable c deleted from text
string b starting from position
specified by variable d and
resulting string stored in variable
a*)

Number_of_
characters

INT,
UINT

Position INT,
UINT

REPLACE(<Source_string
>,<Replace_string>,
<Number_of_characters>,
<Position>)

Source_
string

STRING STRING Replaces charac-
ters in a text string.

a: = REPLACE (b,c,d,e)

(*number of characters specified
by variable d in source string b
replaced with text string c start-
ing from position specified by
variable e and resulting string
stored in variable a*)

Replace_
string

STRING

Number_of_
characters

INT,
UINT

Position INT,
UINT

FIND(<Source_string>,
<Find_string>)

Source_
string

STRING INT Finds characters
within a text string.

a: = FIND (b,c)

(*first occurrence of text string c
found in text string b and posi-
tion stored in variable a; 0 stored
if text string c is not found.*)

Find_string STRING

Function Argument data type Return
value

data type

Description Example

Value of fractional
part

Treatment Examples

Less than 0.5 The fractional part is truncated. 1.49 → 1 −1.49 → −1

0.5 If the ones digit is an even number,
the fractional part is truncated.
 If the ones digit is an odd number,
the fractional part is rounded up.

0.5 → 0

1.5 → 2
2.5 → 2

3.5 → 4

−0.5 → 0

−1.5 → −2
−2.5 → −2

−3.5 → −4

Greater than 0.5 The fractional part is rounded up. 1.51 → 2 −1.51 → −2
148

ST Language Configuration Section 5-4
(YES = Conversion possible, No = Conversion not possible)

Number-String
Conversion Functions

The following number-string conversion functions can be used in structured
text.

Syntax Source_data_type_TO_STRING (Variable_name)

Example: INT_TO_STRING (C)

In this example, the integer variable C will be changed to a STRING vari-
able.

STRING_TO_New_data_type (Variable_name)

Example: STRING_TO_INT (C)

In this example, the STRING variable C will be changed to an integer.

Data Type Combinations The combinations of data types that can be converted are given in the follow-
ing table.

(YES = Conversion possible, No = Conversion not possible)

FROM TO

BOOL INT DINT LINT UINT UDINT ULINT WORD DWORD LWORD REAL LREAL BCD_
WORD

BCD_
DWORD

BOOL No No No No No No No No No No No No No No

INT No No YES YES YES YES YES YES YES YES YES YES YES YES

DINT No YES No YES YES YES YES YES YES YES YES YES YES YES

LINT No YES YES No YES YES YES YES YES YES YES YES No No

UINT No YES YES YES No YES YES YES YES YES YES YES YES YES

UDINT No YES YES YES YES No YES YES YES YES YES YES YES YES

ULINT No YES YES YES YES YES No YES YES YES YES YES No No

WORD No YES YES YES YES YES YES No YES YES No No No No

DWORD No YES YES YES YES YES YES YES No YES No No No No

LWORD No YES YES YES YES YES YES YES YES No No No No No

REAL No YES YES YES YES YES YES No No No No YES No No

LREAL No YES YES YES YES YES YES No No No YES No No No

WORD_
BCD

No YES YES No YES YES No No No No No No No No

DWORD_
BCD

No YES YES No YES YES No No No No No No No No

FROM TO

BOOL INT DINT LINT UINT UDINT ULINT WORD DWORD LWORD REAL LREAL STRING

BOOL No No No No No No No No No No No No No

INT No No YES YES YES YES YES YES YES YES YES YES YES

DINT No YES No YES YES YES YES YES YES YES YES YES YES

LINT No YES YES No YES YES YES YES YES YES YES YES No

UINT No YES YES YES No YES YES YES YES YES YES YES YES

UDINT No YES YES YES YES No YES YES YES YES YES YES YES

ULINT No YES YES YES YES YES No YES YES YES YES YES No

WORD No YES YES YES YES YES YES No YES YES No No YES

DWORD No YES YES YES YES YES YES YES No YES No No YES

LWORD No YES YES YES YES YES YES YES YES No No No No

REAL No YES YES YES YES YES YES YES YES YES No No No

LREAL No YES YES YES YES YES YES YES YES YES No No No

STRING No YES YES No YES YES No YES YES No No No No
149

ST Language Configuration Section 5-4
Data Shift Functions

Data Control
Functions

Function 1st
argument
data type

2nd
argument
data type

Return
value data

type

Description Example

SHL(<Shift_target_data>,
<Number_of_bits>)

BOOL,
WORD,
DWORD,
LWORD

INT,
UINT,
UDINT,
ULINT,
DINT,
LINT

BOOL,
WORD,
DWORD,
LWORD

Shifts a bit string to the
left by n bits.

When shifted, zeros are
entered on the right
side of the bit string.

a := SHL(b,c)

(* Result of shifting bit
string b to the left by c
bits is stored in a*)

SHR(<Shift_target_data>,
<Number_of_bits>)

BOOL,
WORD,
DWORD,
LWORD

INT,
UINT,
UDINT,
ULINT,
DINT,
LINT

BOOL,
WORD,
DWORD,
LWORD

Shifts a bit string to the
right by n bits.

When shifted, zeros are
entered on the left side
of the bit string.

a := SHR(b,c)
(* Result of shifting bit
string b to the right by c
bits is stored in a*)

ROL(<Rotation_target_dat
a>, <Number_of_bits>)

BOOL,
WORD,
DWORD,
LWORD

INT,
UINT,
UDINT,
ULINT,
DINT,
LINT

BOOL,
WORD,
DWORD,
LWORD

Rotates a bit string to
the left by n bits.

a := ROL(b,c)

(* Result of rotating bit
string b to the left by c
bits is stored in a*)

ROR(<Rotation_target_dat
a>, <Number_of_bits>)

BOOL,
WORD,
DWORD,
LWORD

INT,
UINT,
UDINT,
ULINT,
DINT,
LINT

BOOL,
WORD,
DWORD,
LWORD

Rotates a bit string to
the right by n bits.

a := ROR(b, c)

(* Result of rotating bit
string b to the right by c
bits is stored in a*)

Function 1st
argument
data type

2nd
argument
data type

3rd
argument
data type

Return
value data

type

Description Example

LIMIT

(<Lower_limit_data>,
<Input_data>,
<Upper_limit_data>)

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

Controls the
output data
depending on
whether the
input data is
within the range
between the
upper and lower
limits.

a := LIMIT(b,c,d)

(*When c<b, b is
stored in a.

When b≤c≤d, c
is stored in a.
When d<c, d is
stored in a.*)
150

ST Language Configuration Section 5-4
Data Selection
Functions

Note (1) For MUX, the arguments can be specified up to 31st argument (i.e. 30
extraction target data at the maximum).

(2) For MAX and MIN, the target data can be specified from 1st argument up
to 31st argument (i.e. 31 target data at the maximum).

Function 1st
argument
data type

2nd
argument
data type

3rd
argument
data type

Return
value data

type

Description Example

SEL(<Selection_condition>,
<Selection_target_data1>,
<Selection_target_data2>)

BOOL BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

Selects one of
two data
according to the
selection condi-
tion.

a := SEL(b,c,d)

(*When b is
FALSE, c is
stored in a.

When b is
TRUE, d is
stored in a.*)

MUX(<Extraction_condition>,
<Extraction_target_data1>,
<Extraction_target_data2>,
...)

INT,
UINT,
UDINT,
ULINT,
DINT,
LINT

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

Selects a speci-
fied data from a
maximum of 30
data according
to the extraction
condition.

a :=
MUX(b,c,d,...)

(*The (b+1)th
data is stored in
a.*)

MAX(<Target_data1>,
<Target_data2>,
<Target_data3>, ...)
*2

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

Selects the
maximum value
from a maxi-
mum of 31 data.

a := MAX(b,c,d,
...)

(* The maximum
value of c, d, ...
is stored in a.*)

MIN(<Target_data1>,
<Target_data2>,
<Target_data3>, ...)

*2

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

Selects the min-
imum value from
a maximum of
31 data.

a := MIN(b,c,d,
...)

(* The minimum
value of c, d, ...
is stored in a.*)
151

ST Language Configuration Section 5-4
5-4-6 OMRON Expansion Functions

Memory Card
Functions

The following functions can be used with CS/CJ-series CPU Units with unit
version 4.0 or later, or CJ2-series CPU Units.

Communications
Functions

The following functions can be used with CS/CJ-series CPU Units with unit
version 4.0 or later, or CJ2-series CPU Units.

Function type Description

Memory Card Functions Functions that write data to Memory Cards

Communications Functions Functions that send and received text strings

Angle Conversion Functions Functions that convert between degrees and radians.

Timer/Counter Functions Functions that execute various types of timers/
counters.

Function Argument data type Return
value

data type

Description Example

WRITE_TEXT(<Write_string>,
<Directory_name_and_file_
name>,<Delimiter>,<Parame-
ter>)

Write_string STRING --- Writes a text
string to a
Memory
Card.

WRITE_TEXT(a,b,c,d)

(*text string a is written to a file
with the file name and directory
specified by variable b; if variable
d is 0, the text string is added to
the file along with delimiter speci-
fied by variable c; if variable d is 1,
a new file is created*)

Directory_
name_and_
file_name

STRING

Delimiter STRING

Parameter INT,
UINT,
WORD

Function Argument data type Return
value

data type

Description Example

TXD_CPU(<Send_string>) Send_string STRING --- Sends a text string to
the RS-232C port on
the CPU Unit.

TXD_CPU(a)

(*text string a is sent from
the RS-232C port on the
CPU Unit*)

TXD_SCB(<Send_string>,
<Serial_port>)

Send_string STRING --- Sends a text string to
the serial port on a
Serial Communica-
tions Board.

TXD_SCB(a,b)

(*text string a is sent from
the serial port specified by
variable b on the Serial
Communications Board*)

Serial_port INT,
UINT,
WORD

TXD_SCU(<Send_string>,
<SCU_unit_number>,
<Serial_port>,<Internal_
logic_port>)

Send_string STRING --- Sends a text string to a
serial port on a Serial
Communications Unit.

TXD_SCU(a,b,c,d)
(*text string a is sent from
the serial port specified by
variable c on the Serial
Communications Unit speci-
fied by variable b using the
internal logic port specified
by variable d*. The variable
d indicates the internal logic
port number.)

SCU_unit_
number

INT,
UINT,
WORD

Serial_port INT,
UINT,
WORD

Internal_logic
_port

INT,
UINT,
WORD

RXD_CPU(<Storage_
location>,<Number_of_
characters>)

Storage_
location

STRING --- Receives a text string
from the RS-232C port
on the CPU Unit.

RXD_CPU(a,b)
(*number of characters
specified by variable b are
received from the RS-232C
port on the CPU Unit and
stored in variable a*)

Number_of_
characters

INT,
UINT,
WORD
152

ST Language Configuration Section 5-4
Angle Conversion
Instructions

The following functions can be used with CS/CJ-series CPU Units with unit
version 4.0 or later, or CJ2-series CPU Units.

Timer/Counter
Functions

The following functions can be used with CJ2-series CPU Units.

RXD_SCB(<Storage_
location>,<Number_of_
characters>,<Serial_port>)

Storage_
location

STRING --- Receives a text string
from the serial port on
a Serial Communica-
tions Board.

RXD_SCB(a,b,c)

(*number of characters
specified by variable b are
received from the serial port
specified by variable c on
the Serial Communications
Board and stored in variable
a*)

Number_of_
characters

INT,
UINT,
WORD

Serial_port INT,
UINT,
WORD

RXD_SCU(<Storage_
location>,<Number_of_
characters>,<SCU_unit_
number>,<Serial_port>,
<Internal_logic_port>)

Storage_
location

STRING --- Receives a text string
from a serial port on a
Serial Communica-
tions Unit.

RXD_SCU(a,b,c,d,e)

(*number of characters
specified by variable b are
received from the serial port
specified by variable d on
the Serial Communications
Unit specified by variable c
using the internal logic port
specified by variable e and
stored in variable a*. The
variable e indicates the
internal logic port number.)

Number_of_
characters

INT,
UINT,
WORD

SCU_unit_
number

INT,
UINT,
WORD

Serial_port INT,
UINT,
WORD

Internal_logic
_port

INT,
UINT,
WORD

Function Argument data type Return
value

data type

Description Example

Function Argument
data type

Return value
data type

Description Example

DEG_TO_RAD(argument) REAL, LREAL REAL, LREAL Converts an angle from
degrees to radians.

a:=DEG_TO_RAD(b)
(*an angle in degrees in variable
b is converted to radians and
stored in variable a*)

RAD_TO_DEG (argu-
ment)

REAL, LREAL REAL, LREAL Converts an angle from
radians to degrees.

a:=RAD_TO_DEG(b)
(*an angle in radians in variable
b is converted to degrees and
stored in variable a*)

Function Argument data type Return
value

data type

Description Example

TIMX
(<Execution_condition>,
<Timer_address>,
<Timer_set_value>)

Execution_
condition

BOOL None Name:
HUNDRED-MS TIMER

Operation:
Operates a decrement-
ing timer with units of
100 ms.

TIMX(a,b,c)

(*When execution condi-
tion a is satisfied, the
TIMX timer set to timer
set value c in timer
address b is started.*)

Timer_address TIMER

Timer_set_value UINT

TIMHX
(<Execution_condition>,
<Timer_address>,
<Timer_set_value>)

Execution_
condition

BOOL None Name:
TEN-MS TIMER

Operation:
Operates a decrement-
ing timer with units of 10
ms.

TIMHX(a,b,c)
(*When execution condi-
tion a is satisfied, the
TIMHX timer set to timer
set value c in timer
address b is started.*)

Timer_address TIMER

Timer_set_value UINT
153

ST Language Configuration Section 5-4
TMHHX
(<Execution_condition>,
<Timer_address>,
<Timer_set_value>)

Execution_
condition

BOOL None Name:
ONE-MS TIMER
Operation:
Operates a decrement-
ing timer with units of 1
ms.

TMHHX(a,b,c)

(*When execution condi-
tion a is satisfied, the
TMHHX timer set to
timer set value c in timer
address b is started.*)

Timer_address TIMER

Timer_set_value UINT

TIMUX
(<Execution_condition>,
<Timer_address>,
<Timer_set_value>)

Execution_
condition

BOOL None Name:
TENTH-MS TIMER

Operation:
Operates a decrement-
ing timer with units of 0.1
ms.

TIMUX(a,b,c)

(*When execution condi-
tion a is satisfied, the
TIMUX timer set to timer
set value c in timer
address b is started.*)

Timer_address TIMER

Timer_set_value UINT

TMUHX
(<Execution_condition>,
<Timer_address>,
<Timer_set_value>)

Execution_
condition

BOOL None Name:
HUNDREDTH-MS
TIMER

Operation:
Operates a decrement-
ing timer with units of
0.01 ms.

TMUHX(a,b,c)
(*When execution condi-
tion a is satisfied, the
TMUHX timer set to
timer set value c in timer
address b is started.*)

Timer_address TIMER

Timer_set_value UINT

TTIMX
(<Execution_condition>,
<Reset_input>,
<Timer_address>,
<Timer_set_value>)

Execution_
condition

BOOL None Name:
ACCUMULATIVE
TIMER

Operation:
Operates an increment-
ing timer with units of 0.1
s.

TTIMX(a,b,c,d)
(*While execution condi-
tion a is satisfied, the
TTIMX timer set to timer
set value d in timer
address c is started.
When the reset input b is
ON, the timer's PV and
completion flag are
reset.*)

Reset_input BOOL

Timer_address TIMER

Timer_set_value UINT

CNTX(<Count_input>,
<Reset_input>,
<Counter_address>,
<Counter_set_value>)

Count_input BOOL None Name:
COUNTER
Operation:
Operates a decrement-
ing counter.

CNTX(a,b,c,d)

(*The CNTX counter set to
counter set value d in
counter address c is exe-
cuted every time count
input a is turned ON.
When the reset input b is
ON, the counter's PV and
completion flag are reset.*)

Reset_input BOOL

Counter_address COUNT
ER

Counter_set_
value

UINT

CNTRX
(<Increment_count>,
<Decrement_count>,
<Reset_input>,
<Counter_address>,
<Counter_set_value>)

Increment_count BOOL None Name:
REVERSIBLE
COUNTER
Operation:
Operates an increment-
ing / decrementing
counter.

CNTRX(a,b,c,d,e)

(*The CNTRX counter
set to counter set value e
in counter address d is
executed.

The PV is incremented
when increment count
input a is turned ON and
decremented when dec-
rement count input b is
turned ON.

When the reset input c is
ON, the counter's PV
and completion flag are
reset.*)

Decrement_count BOOL

Reset_input BOOL

Counter_address COUNT
ER

Counter_set_
value

UINT

TRSET
(<Execution_condition>,
<Timer_address>)

Execution_
condition

BOOL None Name:
TIMER RESET

Operation:
Resets the specified
timer.

TRSET(a,b)
(*When execution condi-
tion a is satisfied, the
timer in timer address b
is reset.*)

Timer_address TIMER

Function Argument data type Return
value

data type

Description Example
154

Statement Descriptions Section 5-5
5-5 Statement Descriptions

5-5-1 Assignment
Summary

The left side of the statement (variable) is substituted with the right side of the
statement (equation, variable, or constant).

Reserved Words

:=

Combination of colon (:) and equals sign (=).

Statement Syntax

Variable: = Equation, variable, or constant;

Usage

Use assignment statements for inputting values in variables. This is a basic
statement for use before or within control statements. This statement can be
used for setting initial values, storing calculation results, and incrementing or
decrementing variables.

Description

Substitutes (stores) an equation, variable, or constant for the variable.

Examples

Example 1: Substitute variable A with the result of the equation X+1.

A:=X+1;

Example 2: Substitute variable A with the value of variable B.

A:=B;

Example 3: Substitute variable A with the constant 10.

A:=10;

Precautions

The data type of the equation, variable, or constant to be assigned must be
the same as the data type of the variable to be substituted. Otherwise, a syn-
tax error will occur.

5-5-2 Control Statements
IF Statement (Single
Condition)

Summary

This statement is used to execute an expression when a specified condition is
met. If the condition is not met, a different expression is executed.

Reserved Words

IF, THEN, (ELSE), END_IF

Note ELSE can be omitted.

Statement Syntax

IF <condition> THEN
 <expression_1>;
ELSE
 <expression_2>;
END_IF;
155

Statement Descriptions Section 5-5
Process Flow Diagram

Usage

Use the IF statement to perform a different operation depending on whether a
single condition (condition equation) is met.

Description

Condition = If true, execute expression_1

Condition = If false, execute expression_2

Precautions

• IF must be used together with END_IF.

• The condition must include a true or false equation for the evaluation
result.
Example: IF(A>10)
The condition can also be specified as a boolean variable only rather than
an equation. As a result, the variable value is 1 (ON) = True result, 0
(OFF) = False result.

• Statements that can be used in expression_1 and expression_2 are
assignment statements, IF, CASE, FOR, WHILE, or REPEAT.

 Example:

IF <condition_1> THEN
 IF <condition_2> THEN
 <expression_1>;
 ELSE
 <expression_2>:
 END_IF;
END_IF;

The processing flow diagram is as follows:

Condition
False

True

Expression 1 Expression 2

Condition 1

Condition 2

False

True

False

True

Expression 1 Expression 1
156

Statement Descriptions Section 5-5
ELSE corresponds to THEN immediately before it, as shown in the above
diagram.

• Multiple statements can be executed within expression_1 and
expression_2. Be sure to use a semicolon (;) delimiter between multiple
statements in an expression.

• The ELSE statement can be omitted. When ELSE is omitted, no opera-
tion is executed if the result of the condition equation is false.

Processing Flow Diagram

Examples

Example 1: If variable A>0 is true, variable X will be substituted with numerical
value 10. If A>0 is false, variable X will be substituted with numerical value 0.

IF A>0 THEN
 X:=10;
ELSE
 X:=0;
END_IF;

Example 2: If variable A>0 and variable B>1 are both true, variable X will be
substituted with numerical value 10, and variable Y will be substituted with
numerical value 20. If variable A>0 and variable B>1 are both false, variable X
and variable Y will both be substituted with numerical value 0.

IF A>0 AND B>1 THEN
 X:=10; Y:=20;
ELSE
 X:=0; Y:=0;
END_IF;

Example 3: If the boolean (BOOL data type) variable A=1(ON), variable X will
be substituted with numerical value 10. If variable A=0(OFF), variable X will
be substituted with numerical value 0.

IF A THEN X:=10;
ELSE X:=0;
END_IF;

IF Statement (Multiple
Conditions)

Summary

This statement is used to execute an expression when a specified condition is
met. If the first condition is not met, but another condition is met, a corre-
sponding expression is executed. If none of the conditions is met, a different
expression is executed.

Reserved Words

IF, THEN, ELSIF, (ELSE), END_IF

Condition
False

True

Expression
157

Statement Descriptions Section 5-5
Note ELSE can be omitted.

Statement Syntax IF <condition_1> THEN <expression_1>;
 ELSIF <condition_2> THEN <expression_2>;
 ELSIF <condition_3> THEN <expression_3>;

...
 ELSIF <condition_n> THEN <expression_n>;
ELSE <expression_m>;
END_IF;

Processing Flow Chart

Usage

Use the IF statement to perform different operations depending which of mul-
tiple conditions (condition equation) is met.

Description

Condition 1 = If true, execute expression 1

Condition 1 = If false,

Condition 2 = If true, execute expression 2

Condition 2 = If false,

Condition 3 = If true, execute expression 3

etc.

Condition n = If true, execute expression n

If none of these conditions are met, condition m is executed.

Precautions

• IF must be used together with END_IF.

• Condition_@ contains the true or false result of the equation (e.g.,
IF(A>10)).
A boolean (BOOL data type) variable only can also be specified as the
condition rather than an equation. For boolean conditions, the result is
true when the variable value is 1 (ON) and false when it is 0 (OFF).

• Statements that can be used in expression_@ are assignment state-
ments, IF, CASE, FOR, WHILE, or REPEAT.

Condition 1

Condition 2

Condition 3

False

False

False

True

True

True

Expression 1

Expression 2

Expression 3

Expression m
158

Statement Descriptions Section 5-5
• Multiple statements can be executed in expression_@. Be sure to use a
semicolon (;) delimiter between multiple statements in an expression.

• The ELSE statement can be omitted. When ELSE is omitted, no opera-
tion is executed if the result of any condition equation is false.

Examples

Example 1: If variable A>0 is true, variable X will be substituted with numerical
value 10.
If A>0 is false, but variable B=1, variable X will be substituted with numerical
value 1.
If A>0 is false, but variable B=2, variable X will be substituted with numerical
value 2.
If either of these conditions is met, variable X will be substituted with numeri-
cal value 0.

IF A>0 THEN X:=10;
 ELSIF B=1 THEN X:=1;
 ELSIF B=2 THEN X:=2;
ELSE X:=0;
END_IF;

CASE Statement

Summary

This statement executes an expression containing a selected integer that
matches the value from an integer equation. If the selected integer value is
not the same, either no expression or a specified expression is executed.

Reserved Word

CASE

Statement Syntax

CASE <integer_equation> OF
 <integer_equation_value_1 >:<expression_1>;
 <integer_equation_value_2>:<expression_2>;

...
 <integer_equation_value_n>:<expression_n>;
ELSE <expression_m>;
END_CASE;
159

Statement Descriptions Section 5-5
Processing Flow Chart

Usage

Use the CASE statement to execute different operations depending on speci-
fied integer values.

Description

If the integer_equation matches integer_equation_value_n, expression_n is
executed.
if the integer_equation does not match any of integer_equation_value_n,
expression_m is executed.

Precautions

• CASE must be used together with END_CASE.

• The result of the integer_equation must be in integer format (INT, DINT,
LINT, UINT, UDINT, or ULINT).

• Statements that can be used in expression_@ are assignment state-
ments, IF, CASE, FOR, WHILE, or REPEAT.

• Multiple statements can be executed in expression_@. Be sure to use a
semicolon (;) delimiter between multiple statements in an expression.

• Variables in integer format (INT, DINT, LINT, UINT, UDINT, or ULINT), or
equations that return integer values can be specified in the
integer_equation.

• When OR logic is used for multiple integers in the
integer_equation_value_n, separate the numerical value using a comma
delimiter. To specify a sequence of integers, use two periods (..) as delim-
iters between the first and last integers.

Yes

Yes

Yes

No

No

No

Expression m Expression n Expression 2 Expression 1

Same as
selected
value 1?

Same as
selected
value 2?

Same as
selected
value n?
160

Statement Descriptions Section 5-5
Examples

Example 1: If variable A is 1, variable X is substituted with numerical value 1.
If variable A is 2, variable X is substituted with numerical value 2. If variable A
is 3, variable X is substituted with numerical value 3. If neither of these cases
matches, variable Y will be substituted with 0.

CASE A OF
 1:X:=1;
 2:X:=2;
 3:X:=3;
ELSE Y:=0;
END_CASE;

Example 2: If variable A is 1, variable X is substituted with numerical value 1.
If variable A is 2 or 5, variable X is substituted with numerical value 2. If vari-
able A is a value between 6 and 10, variable X is substituted with numerical
value 3. If variable A is 11, 12, or a value between 15 and 20, variable X is
substituted with numerical value 4. If neither of these cases matches, variable
Y will be substituted with 0.

CASE A OF
1:X:=1;
2,5:X:=2;
6..10:X:=3;
11,12,15..20:X:=4;
ELSE Y:=0;
END_CASE;

FOR Statement

Summary

This statement is used to execute a specified expression repeatedly until a
variable (referred to here as an iteration variable) reaches a specified value.

Reserved Words

FOR, TO, (BY), DO, END_FOR

Note BY can be omitted.

Statement Syntax

FOR <iteration_variable>:= <initial_value> TO <final_value_equation> BY
<increment_value_equation>
DO
 <expression>;
END_FOR;
161

Statement Descriptions Section 5-5
Processing Flow Chart

Usage

Use the FOR statement when the number of iterations has been determined
beforehand. FOR is particularly useful when switching the number of ele-
ments in an array variable according to the value of a specified iteration vari-
able.

Description

When the iteration_variable is the initial_value, the expression is executed.
After execution, the value obtained from the increment_equation is added to
the iteration_variable, and if the iteration_variable ≤ final_value_equation (see
note 1), the expression is executed. After execution, the value obtained from
the increment_equation is added to the iteration_variable, and if the
iteration_variable ≤ final_value_equation value (see note 1), the expression is
executed. This process is repeated.
If the iteration_variable > final_value_equation (see note 2), the processing
ends.

Note (1) If the value from the increment_equation is negative, the condition is
iteration_variable ≥ final_value_equation value.

(2) If the value from the increment_equation is negative, the condition is
iteration_variable < final_value_equation.

Precautions

• A negative value can be specified in the increment_equation

• FOR must be used in combination with END_FOR.

• The initial_value, final_value_equation, and final_value_equation must be
an integer data type (INT, DINT, LINT, UINT, UDINT, or ULINT).

• After processing is executed with the final value, the iteration value is
incremented to the final value + 1 and iteration processing ends.
Example: In the following structured text, the value of “a” becomes TRUE.

Iteration variable = Initial

True

False

Expression

End

Iteration

Iteration variable + Increment value

Iteration
variable >

Final value?
162

Statement Descriptions Section 5-5
FOR i:=0 TO 100 DO
 DATA[i]:=0;
END_FOR;

IF i=101 THEN
 a:=TRUE;
ELSE
 a:=FALSE;
END_IF;

• Do not use a FOR statement in which an iteration variable is changed
directly. Doing so may result in unexpected operations.
Example:

FOR i:=0 TO 100 BY 1 DO
 DATA[i]:=0;
 i:=i+5;
END_FOR;

• Statements that can be used in the expression are assignment state-
ments, IF, CASE, FOR, WHILE, or REPEAT.

• Multiple statements can be executed in the expression. Be sure to use a
semicolon (;) delimiter between multiple statements in an expression.

• BY increment_equation can be omitted. When omitted, BY is taken as 1.

• Variables with integer data types (INT, DINT, LINT, UINT, UDINT, or
ULINT), or equations that return integer values can be specified in the
initial_value, final_value_equation, and increment_equation.

Example 1: The iteration is performed when the iteration variable n = 0 to
50 in increments of 5, and the array variable SP[n] is substituted with 100.

FOR n:=0 TO 50 BY 5 DO
 SP[n]:=100;
END_FOR;

Example 2: The total value of elements DATA[1] to DATA[50] of array vari-
able DATA[n] is calculated, and substituted for the variable SUM.

FOR n:=0 TO 50 BY 1 DO
 SUM:=SUM+DATA[n];
END_FOR;

Example 3: The maximum and minimum values from elements DATA[1] to
DATA[50] of array variable DATA[n] are detected. The maximum value is
substituted for variable MAX and the minimum value is substituted for vari-
able MIN. The value for DATA[n] is between 0 and 1000.

MAX:=0;
MIN:=1000;
FOR n:=1 TO 50 BY 1 DO
 IF DATA[n]>MAX THEN
 MAX:=DATA[n];
 END IF;
 IF DATA[n]<MIN THEN
 MIN:=DATA[n];
 END IF;
END_FOR;

WHILE Statement

Summary

This statement is used to execute a specified expression repeatedly for as
long as a specified condition is true.
163

Statement Descriptions Section 5-5
Reserved Words

WHILE, DO, END_WHILE

Statement Syntax

WHILE <condition> DO
 <expression>;
END_WHILE;

Processing Flow Chart

Usage

Use the WHILE statement when the number of iterations has not been deter-
mined beforehand (depends on the condition being met) to repeat specified
processing for the duration that the condition is met. This statement can be
used to execute processing while the condition equation is true only (pretest
loop).

Description

Before the expression is executed, the condition is evaluated.
If the condition is true, the expression is executed. Afterwards, the condition is
evaluated again. This process is repeated. If the condition is false, the expres-
sion is not executed and the condition evaluation ends.

Precautions

• WHILE must be used in combination with END_WHILE.

• Before executing the expression, if the condition equation is false, the pro-
cess will end without executing the expression.

• Statements that can be used in the expression are assignment state-
ments, IF, CASE, FOR, WHILE, or REPEAT.

• Multiple statements can be executed in the expression. Be sure to use a
semicolon (;) delimiter between multiple statements in an expression.

• The condition can also be specified as a boolean variable (BOOL data
type) only rather than an equation.

Examples

Example 1: The value exceeding 1000 in increments of 7 is calculated and
substituted for variable A.

A:=0;
WHILE A<=1000 DO
 A:=A+7;
END_WHILE;

Iteration

Condition

Expression

False

True

End
164

Statement Descriptions Section 5-5
Example 2: While X<3000, the value of X is doubled, and the value is substi-
tuted for the array variable DATA[1]. The value of X is then multiplied by 2
again, and the value is substituted for the array variable DATA[2]. This process
is repeated.

n:=1’
WHILE X<3000 DO
 X:=X*2;
 DATA[n]:=X;
 n:=n+1;
END_WHIE;

REPEAT Statement

Summary

This statement is used to repeatedly execute an expression until a specified
condition is true.

Reserved Words

REPEAT, UNTIL, END_REPEAT

Statement Syntax

REPEAT
 <expression>;
UNTIL <condition>
END_REPEAT

Processing Flow Chart

Usage

Use the REPEAT statement to repeat processing for as long as a condition is
met after specified processing, when the number of iterations is undetermined
beforehand (depends on whether the condition is met). This statement can be
used to determine whether to repeat processing according to the results of
specified processing execution (post-test loop).

n Description

The expression will execute the first time without a condition. Thereafter, the
condition equation will be evaluated. If the condition is false, the expression
will be executed again. If the condition is true, processing will end without exe-
cuting the expression.

Precautions

• REPEAT must be used together with END_REPEAT.

• Even if the condition equation is true before the expression has been exe-
cuted, the expression will be executed.

Expression

False

Iteration

True

End

Condition
165

Statement Descriptions Section 5-5
• Statements that can be used in the expression are assignment state-
ments, IF, CASE, FOR, WHILE, or REPEAT.

• Multiple statements can be executed in the expression. Be sure to use a
semicolon (;) delimiter between multiple statements in an expression.

• The condition can also be specified as a boolean variable (BOOL data
type) only rather than an equation.

Examples

Example 1: Numeric values from 1 through 10 are incremented and the total
is substituted for the variable TOTAL.

A:=1;
TOTAL:=0;
REPEAT
 TOTAL:=TOTAL+A;
 A:=A+1;
UNTIL A>10
END_REPEAT;

EXIT Statement

Summary

This statement is used within iteration statements (FOR, WHILE, REPEAT)
only to force an iteration statement to end. This statement can also be used
within an IF statement to force an iteration statement to end when a specified
condition is met.

Reserved Words

EXIT

Statement Syntax (Example: Using within IF Statement)

FOR (WHILE, REPEAT) expression
...

IF <condition> THEN EXIT;
END_IF;

...
END_FOR (WHILE, REPEAT);

Usage

Use the EXIT statement to force iteration processing to end before the end
condition is met.

Description (Example: Using within IF Statement)

When the condition equation is true, the iteration statement (FOR, WHILE,
REPEAT) is forced to end, and any statements after EXIT will not be exe-
cuted.

Note (1) The condition can also be specified as a boolean variable (BOOL data
type) only rather than an equation.

(2) Even if the condition equation is true before the expression has been ex-
ecuted, the expression will be executed.

Example

Processing is repeated from when variable n = 1 until 50 in increments of 1
and n is added to array variable DATA[n]. If DATA[n] exceeds 100, however,
processing will end.
166

Statement Descriptions Section 5-5
FOR n:=1; TO 50 BY 1 DO
 DATA[n]:=DATA[n]+n;
 IF DATA[n]>100 THEN EXIT;
 END_IF;
END_FOR;

RETURN Statement

Summary

The function of the RETURN statement depends on the type of program in
which ST is used.

• ST program:
Forcibly ends the ST task that is being executed, and executes the next
task.

• ST used in SFC:
Forcibly ends the action program that is being executed, and executes the
next action program or transition program.

• ST used in a function block:
Forcibly ends the ST-language function block containing the RETURN
statement, returns to the place in the calling function block instance where
the call occurred, and executes the next instruction.

Reserved Words

RETURN

Statement Syntax

RETURN

Usage

Use the RETURN statement to forcibly end an SFC program and function
block that is executing an ST task.

Function Block Call
Statement

Summary

This statement calls a function block definition.

Reserved Words

None

Statement Syntax

Enter the arguments (specified variable values that are passed to the called
function block’s input variables) and return value (specified variable that
receives the function block’s output variable value) in parentheses after the
instance name (see note). The two methods (entry method 1 and entry
method 2) that can be used to enter these parameters are described in the fol-
lowing paragraphs.

Note The data type is any of the function block’s internal variable names (when ST
is used in the function block’s instance) or global variable names (when ST is
used in an ST task or SFC action program).

Entry Method 1

Use this method to enter both the argument specification (called function
block definition’s variable name) and return value specification.

A(B:=C, ,D=>E)
167

Statement Descriptions Section 5-5
A: Instance name

B: Called function block definition’s input variable name

C: One of the following values, depending on the ST program being used

• Calling function block’s input variable or a constant (when ST is being
used in the function block’s instance)

• Global variable or local variable name (when ST is being used in an
ST task or SFC action program)

D: Called function block definition’s output variable name or constant

E: One of the following values, depending on the ST program being used

• Calling function block’s output variable or constant (when ST is being
used in the function block’s instance)

• Global variable or local variable name (when ST is being used in an
ST task or SFC action program)

Note Delimit all of the “B:=C” type assignments with commas.
Delimit only the required number of “D=>E” type assignments with commas.

Entry Method 2

Use this method to enter just the return value specification, and omit the argu-
ment specification (called function block definition’s variable name).

A(C, ,E)

A: Instance name

B: Omitted (called function block definition’s input variable name)

C: One of the following values, depending on the ST program being used

• Calling function block’s input variable or a constant (when ST is being
used in the function block’s instance)

• Global variable or local variable name (when ST is being used in an
ST task or SFC action program)

D: Omitted (called function block definition’s output variable name or constant)

E: One of the following values, depending on the ST program being used

• Calling function block’s output variable or constant (when ST is being
used in the function block’s instance)

• Global variable or local variable name (when ST is being used in an
ST task or SFC action program)

Note When B and D are omitted, as shown above, C is moved to the B position and
passed automatically in the order that values are registered in that variable
table. In contrast, the values from the D position are automatically received at
E in the order that values are registered in that variable table.

Usage

Use the function block call statement to call a function block definition (ST or
ladder language) from an ST-language program.

Description

1. The following instance is registered in the internal or global variables in the
variable table.

Internal variable element Content Example

Name Any instance name Calcu_execute

Data type FUNCTION BLOCK FUNCTION BLOCK

FB definition Selects the called func-
tion block definition.

Calculation
168

Statement Descriptions Section 5-5
2. The values that will be passed between variables are specified within pa-
rentheses after the instance name registered in step 1 (Calcu_execute in
this example), and a semi-colon marks the end of the statement, as shown
in the following example.

Calcu_execute (A:=B,C=>D) ;

The value of B is passed to A, and at the same time the value of C is re-
ceived at D.

A: Called function block definition’s input variable name

B: One of the following values, depending on the ST program being used

• Calling function block’s input variable or a constant (when ST is being
used in the function block’s instance)

• Global variable or local variable name (when ST is being used in an
ST task or SFC action program)

C: Called function block definition’s output variable name or constant

D: One of the following values, depending on the ST program being used

• Calling function block’s output variable or constant (when ST is being
used in the function block’s instance)

• Global variable or local variable name (when ST is being used in an
ST task or SFC action program)

Examples Showing Additional Details

The following two examples show how to actually use an ST program to call a
function block.

Example 1:

These examples show how to call a function block from each kind of source
program (ST task, SFC, and function block).

• Conditions:
A function block is called.
The called function block is written in ladder language or ST language.

Call Details

a. Calling a function block from an ST task or SFC program

(ST)
Example) ...
Instance_FB(...,...);

INSTANCE_FB is an instance name of
data type FUNCTIONBLOCK.

(ST)
Example) ...

(Ladder diagram)

Function block (FB)ST task

Function block (FB)

(ST)
Example) ...
Instance_FB(...,...);

SFC

N Stepn aaa

Action program
169

Statement Descriptions Section 5-5
b. Calling a function block from another function block

Variable Settings

• Setting the variables of the ST program and SFC program (call source)

The ST program and SFC program have the following variables, and the
following values are passed with the called function block.

• Function block (call source) variable settings

The function block (call source) has the following variables, and the follow-
ing values are passed with the called function block.

Variable name in ST task/
SFC program

Values passed to (or received from) variables in
the called function block

IN1 Passed to FB_IN1 (input variable).

IN2 Passed to FB_IN2 (input variable).

IN3 Passed to FB_IN3 (input variable).

OUT1 Received from FB_OUT1 (output variable).

OUT2 Received from FB_OUT2 (output variable).

OUT3 Received from FB_OUT3 (output variable).

A

Note Data type: BOOL

Passed to EN (internal variable).

B

Note Data type: BOOL

Received from ENO (internal variable).

Instance_FB

Note Data type: FUNC-
TIONBLOCK

Calling function block definition: Function block

Variable type Function block (call
source) variable name

Values passed to (or received
from) variables in the called

function block

Input variables IN1 Passed to FB2_IN1.

IN2 Passed to FB2_IN2.

IN3 Passed to FB2_IN3.

Output variables OUT1 Received from FB2_OUT1.

OUT2 Received from FB2_OUT2.

OUT3 Received from FB2_OUT3.

Program

ST

Instance_ST
(ST)

Example) ...
Instance_FB(...,...);

INSTANCE_FB is an instance name of data type FUNCTIONBLOCK.

(ST)
Example) ...

(Ladder diagram)

Function block (ST)

Function block (FB)

Function block (FB)
170

Statement Descriptions Section 5-5
• Function block (call destination) variable settings

The function block (call destination) has the following variables, and
the following values are passed with the call source (ST program, SFC
program, or call source function block).

Examples

Example of Entry Method 1

Instance_FB(EN:=A,FB_IN1:=IN1,FB_IN2:=IN2,FB_IN3:= IN3,
FB_OUT1=>OUT1,FB_OUT2=> OUT2,FB_OUT3=> OUT3,ENO=>B)

• It is all right for the arguments and return values to be listed in irregular
order.

• The input variables' arguments must be at the beginning of the list, or just
after the EN variable if the EN variable is listed.

• Output variables may be omitted if the data is not used.

• Specification method 2 cannot be used together with specification method
A in the same function block call statement.

Examples of other Entry Formats

• EN not entered:

Instance_FB(FB_IN1:=IN1,FB_IN2:=IN2,FB_IN3:= IN3,
FB_OUT1=>OUT1,FB_OUT2=> OUT2,FB_OUT3=> OUT3,ENO=>B)

• EN and ENO not entered:

Instance_FB(FB_IN1:=IN1,FB_IN2:=IN2,FB_IN3:= IN3,
FB_OUT1=>OUT1,FB_OUT2=> OUT2,FB_OUT3=> OUT3)

• ENO not entered:

Instance_FB(EN:=A,FB_IN1:=IN1,FB_IN2:=IN2,FB_IN3:=IN3,
FB_OUT1=>OUT1,FB_OUT2=>OUT2,FB_OUT3=>OUT3)

• FB_OUT2 data not required:

Instance_FB(EN:=A,FB_IN1:=IN1,FB_IN2:=IN2,FB_IN3:=IN3,
FB_OUT1=>OUT1,FB_OUT3=>OUT3,ENO=>B)

Internal variables A

Note Data type: BOOL

Passed to EN.

B

Note Data type: BOOL

Received from ENO.

Internal variables
(instance)

Instance_FB

Note Data type: FUNC-
TIONBLOCK

Calling function block definition:
Function block 2

Variable type Function block (call
destination) variable name

Values received from (or
passed to) variables in the

calling function block

Input variables FB_IN1 Received from IN1.

FB_IN2 Received from IN2.

FB_IN3 Received from IN3.

Output variables FB_OUT1 Passed to OUT1.

FB_OUT2 Passed to OUT2.

FB_OUT3 Passed to OUT3.

Variable type Function block (call
source) variable name

Values passed to (or received
from) variables in the called

function block
171

Statement Descriptions Section 5-5
Instance_FB(FB_IN1:=IN1,FB_IN2:=IN2,FB_IN3:=IN3,
FB_OUT1=>OUT1,FB_OUT3=>OUT3)

• Different order of entry:

Instance_FB(EN:=A,FB_IN1:=IN1,FB_OUT1=> OUT1,FB_IN2:=IN2,
FB_OUT2=>OUT2,FB_IN3:= IN3,FB_OUT3=> OUT3,ENO=>B)

Example of Entry Method 2

In this example, only parameter variables (including constants) of a new
instance are entered.

Instance_FB(IN1, IN2, IN3, OUT1, OUT2, OUT3)

Instance_FB(IN1, IN2, IN3, OUT1)

• The arguments and return values must be listed in a fixed order.
Input variable 1, Input variable 2, ..., Output variable 1, Output variable 2,
...

• The input variables’ arguments must be at the beginning of the list, or just
after the EN variable if the EN variable is listed.

• An output variable can be omitted if the data is not actually being used
and the output variable is not in the middle of the list of output variables.

Example: Instance_FB(IN1, IN2, IN3, OUT1, OUT3)

In this case, the OUT3 at the end of the list would return the value from
FB_OUT2.

• The EN and ENO data cannot be entered as an argument or return value.

• Specification method 1 cannot be used together with specification method
B in the same function block call statement.

Example 2

In the following example, function block 1 calls function block 2, which calcu-
late the average value by calling a function block from within a function block.

Function Block 1

• Variable Table

FB1

Instance_FB1
FB1 (ST)

FB2 (ST)
average := (input1 + input2 + input3) / 3 ;

Program

Average_FB(input1 := data1, input2 := data2,
input3 := data3, average => AVG);

The data1, data2, and data3 values are
passed to input1, input2, and input3.

The average value is
returned in AVG.

Average_FB is an instance name with data type FUNCTION BLOCK.

Variable type Variable name Data type Passage to/from FB2

Input variable EN BOOL ---

Input variable data1 INT Passed to input1

Input variable data2 INT Passed to input2

Input variable data3 INT Passed to input3

Input variable bCheck BOOL ---

Output variable ENO BOOL ---

Output variable AVG INT Received from average

Internal variable Average_FB FUNCTION BLOCK

Called function block definition:
Function block 2

172

ST-language Program Example Section 5-6
• ST-language Algorithm

If bCheck is true, function block 2 is called to calculate the average value.
The 3 values data1, data2, and data3 are passed to function block 2 input
variables input1, input2, and input3 respectively. The result of the calcula-
tion (average) is returned to AVG.

Note The following diagram shows the Average_FB function block called
with specification method A (both function block’s variables listed).

IF bCheck = TRUE THEN
Average(input1:=data1,input2:=data2,input3:=data3,aver-

age=>AVG);

ELSE

RETURN;

END_IF;

Function Block 2

• Variable Table

• ST-language Algorithm

Calculates the average value of input1, input2, and input3 and stores the
result in average.

average:=(input1+input2+input3)/3;

5-6 ST-language Program Example

5-6-1 Using an ST Program in a Function Block

Converting an Integer
to BCD and
Outputting It as a Text
String

Input Variable

INT Input_Num;

Input-Output Variable

STRING Output_String;

Internal Variable

WORD Num_BCD;

(*Check Input_BCD input parameter (BCD data)*)

IF(Input_BCDNum>=0 & Input_BCD<=16#Num<=9999) THEN

Variable type Variable name Data type Passage to/from FB1

Input variable EN BOOL ---

Input variable input1 INT Received from data1

Input variable input2 INT Received from data2

Input variable input3 INT Received from data3

Output variable ENO BOOL ---

Output variable average INT Passed to AVG

FB
(BOOL)
EN

(BOOL)
ENO

(INT)
Input_Num
(STRING) (STRING)
Output_String−Output_String
173

Restrictions Section 5-7
 ENO:=true;

ELSE

 ENO:=false;

 RETURN;

END_IF;

Num_BCD:=INT_TO_BCD_WORD(Input_Num);

 (*For example, if Num is 100 (16#0064), it is converted to BCD 0100*)

Output_String:=WORD_TO_STRING(Num_BCD);

 (*Convert BCD 0100 to text string*)

5-7 Restrictions

5-7-1 Restrictions
Nesting

• There is no restriction on the number of nests that can be used in IF,
CASE, FOR, WHILE, or REPEAT statements.

Data Type Restrictions

• Integers can only be allocated to variables with data types WORD,
DWORD, INT, DINT, UINT, UDINT, or ULINT. For example, if A is an INT
data type, A:=1; it possible. If the value is not an integer data type, a syn-
tax error will occur. For example, if A is an INT data type, a syntax error
will occur for A:=2.5;.

• If a real number (floating point decimal data) can only be allocated to vari-
ables with data types REAL and UREAL. For example, if A is a REAL data
type, A:=1.5; is possible. If the value is not an real data type, a syntax
error will occur. For example, if A is a REAL data type, a syntax error will
occur for A:=2;. Use A:=2.0;.

• Bits (TRUE, FALSE) can only be allocated to variables with the BOOL
data type. For example, if A is a BOOL data type, A:=FALSE; is possible.
If a BOOL data type is not used, a syntax error will occur. For example, if
A is an INT data type, a syntax error will occur for A:=FALSE;.

• Data types must all be consistent within the structured text. For example,
if A, B, and C are INT data types, A:=B+C; is possible. If, however, A and
B are INT data types, but C is a REAL data type or LINT data type, a syn-
tax error will occur for A:=B+C;.

• In the structured text, the following cannot be used:
P_CY, P_EQ, P_ER, P_N, P_GE, P_GT, P_LE, P_LT, P_NE, P_OF, and
P_UF

Monitor Restrictions

• There are following restrictions on monitoring timer functions:
When you use a TIMER type variable in a TENTH-MS TIMER or HUN-
DREDTH-MS TIMER, the present value of the TIMER type variable of the
timer function is not displayed on the ST monitor view. In this case, "-" is
displayed for the present value.
When the present value of the TIMER type variable is used in another
place on the ST editor or assigned to a different variable, their present val-
ues are undependable.
174

Restrictions Section 5-7
• There are following restrictions on using 2-byte characters in variable
names:
When you use any 2-byte characters in a variable name, insert a single-
byte space between the variable and the operator. Without the space, the
present value of the variable may not be monitored correctly.

5-7-2 Commonly Asked Questions
Q: How is a hexadecimal value expressed?

A: Add “16#” before the value, e.g., 16#123F.
The prefixes 8# and 2# can also be added to express octal numbers and
binary numbers, respectively. Numbers without these prefixes will be inter-
preted as decimal numbers.

Q: How many times can FOR be used?

A: In the following example, the contents of the FOR statement is executed
101 times. The loop processing ends when the value of “i” is equal to 101.

FOR i:=0 TO 100 BY 1 DO
 a:=a+1;
END_FOR;

Q: What occurs when the array subscript is exceeded?

A: For the array variable INT[10] with 10 elements, an error will not be
detected for the following type of statement. Operation will be unstable when
this statement is executed.

i:=15;
INT[i]:=10;

Q: Are the variables in the structured text editor automatically registered
in the variable tables?

A: No. Register the variables in the variable table before using them.

Q: Can ladder programming instructions be called directly?

A: No.
175

Restrictions Section 5-7
176

SECTION 6
Creating ST Programs

This section explains how to create ST programs.

6-1 Procedures . 178
6-1-1 Creating a Project . 178
6-1-2 Creating a New ST Program. 178
6-1-3 Allocating the ST Program to a Task . 179
6-1-4 Creating the ST Program . 180
6-1-5 Compiling the ST Program (Checking Program) 184
6-1-6 Downloading/Uploading Programs to the Actual CPU Unit 184
6-1-7 Comparing ST Programs . 184
6-1-8 Monitoring and Debugging the ST Program 185
6-1-9 Online Editing of ST Programs . 186
177

Procedures Section 6-1
6-1 Procedures
This section explains how to create ST programs. For details on creating a
function block with ST language, refer to SECTION 3 Creating Function
Blocks in Part 1: Function Blocks of this manual.

6-1-1 Creating a Project
1,2,3... 1. Start the CX-Programmer and select File -New.

2. In the Change PLC Dialog Box, select a PLC model that supports ST pro-
grams from the Device Type list. Refer to 4-2-1 PLC Models Compatible
with ST Programs (ST Tasks) for a table of the PLC models that support
ST programs.

3. Click the Settings Button, and select the CPU Type. For details on other
settings, refer to the CX-Programmer Operation Manual (W446).

6-1-2 Creating a New ST Program
Use the following procedure to create an ST program in a project.

1,2,3... 1. Right-click the Programs Item in the project workspace to display the pop-
up menu.

2. Select Insert Program - ST from the pop-up menu.

An ST program will be inserted in the project workspace, and the ST Editor
will be displayed on the right side of the workspace.

Note (1) Ladder and SFC programs can also be created. To create these pro-
grams, right-click the Programs Item in the project workspace to display
the pop-up menu, and select Insert Program - Ladder or Insert Pro-
gram - SFC.
For details on ladder programming, refer to the CX-Programmer Opera-
tion Manual (W446).
For details on SFC programming, refer to the CX-Programmer Operation
Manual: SFC (W469).
178

Procedures Section 6-1
(2) When a new project has been created, ST programs can be set as the
PLC’s initial program type. Select Tools - Options and click the PLCs
Tab to set this option.

6-1-3 Allocating the ST Program to a Task
The ST program that was inserted in the project must be allocated to a task as
an execution unit. If a program has not been allocated to a task, there will be a
check mark over that program’s icon in the project workspace.

Note The following procedure, which allocates a program to a task, can be per-
formed after the program has been created, but always allocate the programs
before transferring the user program to the PLC.

Use the following procedure to allocate a program to a task.

1,2,3... 1. Right-click the inserted ST program item in the project workspace, and se-
lect Properties from the pop-up menu.

Select the ST Option.
179

Procedures Section 6-1
2. Click the General Tab in the displayed Program Properties Dialog box, and
select the task from the Task Type List. To set a program name, input the
program name in the Name Text Box in this tab page.

3. Click the Close Button to close the Program Properties Dialog Box.

4. When the program is allocated to a task, the check mark over the ST pro-
gram’s icon will be deleted. The allocated task number will be shown in pa-
rentheses after the program name.

6-1-4 Creating the ST Program
There are two ways to create the ST program’s content.

• Input the ST language after registering the variables.

• Register the variables as you input the ST language.

Inputting the ST
Language after
Registering Variables

There are two kinds of variables: global variables and local variables. This
section explains how to set local variables. For details on setting global vari-
ables, refer to the CX-Programmer Operation Manual (W446).

1. Registering Variables (with Local Addresses)

1,2,3... 1. Double-click the inserted ST program’s Symbols in the project workspace.

2. The symbol table will be displayed. Right-click to display the pop-up menu,
and select Insert Symbol from the pop-up menu.
(It is also possible to select Insert - Symbol.)

3. The New Symbol Dialog Box will be displayed. Set the following items, and
click the OK Button.
180

Procedures Section 6-1
• Name: Input the variable name.

• Data type: Select the data type.

• Address or Value: Input the address.

4. The variables set in the symbol table will be registered.

Note When variables are being registered without specifying addresses, the CX-
Programmer can be set to allocate addresses automatically. For details on
Automatic Allocation, refer to the CX-Programmer Operation Manual (W446).

2. Creating the ST Program

1,2,3... 1. The ST language can be input directly in the ST Editor Window, or the ST
data can be created in a text editor and then pasted in the ST Editor Win-
dow by selecting Edit - Paste.

If the symbol table with the registered variables is displayed while inputting
the ST program, it is easy to reference the variable names for program-
ming.

Note (1) Tabs or spaces can be input to create indents. They will not affect the al-
gorithm.

(2) When an ST language program is input or pasted into the ST input area,
syntax keywords reserved words will be automatically displayed in blue,
comments in green, text strings in brown, errors in red, and everything
else in black.

Input the name.

The default is BOOL.
Change the data type if required.

Input the address.

Symbol table

ST Programming Editor
181

Procedures Section 6-1
(3) To change the font size or colors, select Options from the Tools Menu
and then click the ST Font Button on the Appearance Tab Page. The font
names, font size (default is 8 point) and color can be changed.

(4) For details on ST language specifications, refer to SECTION 5 Structured
Text (ST) Language Specifications in Part 2: Structured Text (ST) in this
manual.

Registering Variables
While Using
Structured Text

When using structured text, a dialog box will not be displayed to register the
variable whenever a variable name that has not been registered is input. Be
sure to always register variables used in standard text programming in the
variable table, either as you need them or after completing the program.

Entering Functions and
Variables

1,2,3... 1. Enter the first letter of a function or a registered variable on the ST Program
Editor to display the keyword list.

You can identify whether each keyword is a function or a variable by the
icon on the left side of the keyword.

2. Select a function or a variable to enter on the list and press the Enter,
Space, or Tab key. The selection is entered and reflected onto the ST Pro-
gram Editor.

Note (a) To cancel the selection on the keyword list, press the Esc key.

(b) You can directly enter functions and variables on the ST Program
Editor without selecting from the keyword list.

Registering Variables
While Entering ST
Language

When you use unregistered variables in writing ST language, the dialog that
asks you to register the variables to the symbol table will not appear while you
enter the ST language.

1,2,3... 1. When you press the Enter key after writing a line, a double underline is at-
tached to each unregistered variable.

Icon Keyword Type

Function

Elements of ST statements

Global symbol

Local symbol
Function block symbol

Function

Global symbol
Local symbol
182

Procedures Section 6-1
2. When you place the mouse cursor on the double underline, a button will be
displayed.

3. Press this button to display a dialog for registering new variables. Set each
item on the dialog and click the OK button.

Entry Assistance Function
on ST Editor

1) Entering a control statement

You can easily enter a control statement frame in the following two ways.

1,2,3... 1. Select Insert Code Snippets from the pop-up menu and select one from
the following list.

2. Select and enter the first element of the control statement from the key-
word list and press the Tab key.

Note For each expression and variable, you need to enter the execution condition
of the control statement.

Keyword Control Statement Frame

IF

FOR

CASE

REPEAT

WHILE
183

Procedures Section 6-1
2) The content of the keyword selected on the list is displayed by a tool tip.
You can select the most appropriate item while confirming the operation of
the keyword function and the comments for the variable.

3) The indent of each line can be increased and decreased by a menu item or
a tool button.

4) Whether to handle the selected line as a comment or a part of the program
can be switched by a menu item or a tool button.

6-1-5 Compiling the ST Program (Checking Program)
The ST program can be compiled to perform a program check on it. Use the
following procedure.

1,2,3... 1. Select the ST program, right-click, and select Compile from the pop-up
menu. (Alternately, press the Ctrl + F7 Keys.)

2. The ST program will be compiled and the results of the program check will
be automatically displayed on the Compile Table Page of the Output Win-
dow.

6-1-6 Downloading/Uploading Programs to the Actual CPU Unit
After a program containing the ST programs has been created, the CX-Pro-
grammer can be connected online to the actual PLC, and the program down-
loaded to the actual PLC. Conversely, the program can be uploaded from an
actual PLC.

Program tasks cannot be downloaded or uploaded individually in task units.

6-1-7 Comparing ST Programs
It is possible to compare the edited ST program with an ST program block in
the actual PLC or another project file to check whether the two ST programs
are identical. For details on comparing programs, refer to the CX-Programmer
Operation Manual (W446).

Results of program check
displayed.
184

Procedures Section 6-1
6-1-8 Monitoring and Debugging the ST Program

Monitoring the ST
Program’s Variables

The ST program can be monitored.

The ST program is displayed in the left side of the window (called the ST pro-
gram monitor window).

The values of variables used in the ST program are displayed in the right side
of the window (called the ST variable monitor window).

At this point, it is possible to monitor variable values, change PVs, force-set or
force-reset bits, and copy/paste variables in the Watch Window. (These oper-
ations are described below.)

n Monitoring Variables

Variable values are displayed in blue in the ST variable monitor window.

Note When you use a TIMER type variable in a TENTH-MS TIMER or HUN-
DREDTH-MS TIMER, "-" is displayed for the present value of the TIMER type
variable. Refer to the Section 5-7 Restrictions for details.

n Changing PVs

To change a PV, select the desired variable in the ST variable monitor window
(displayed in reverse video when selected), right-click, and select Set - Value
from the pop-up menu.

The Set New Value Dialog Box will be displayed. Input the new value in the
Value field.

n Force-setting and Force-resetting Bits

To force-set, force-reset, or clear the forced status, select the desired variable
in the ST variable monitor window (displayed in reverse video when selected),
right-click, and select Force - On, Force - Off, Force - Cancel, or Force -
Cancel All Forces from the pop-up menu.

n Copying and Pasting in the Watch Window

1,2,3... 1. To copy a variable to the Watch Window, select the desired variable in the
ST variable monitor window (displayed in reverse video when selected),
right-click, and select Copy from the pop-up menu.

Select the variable.
185

Procedures Section 6-1
2. Right-click in the Watch Window and select Paste from the pop-up menu.

ST Program
Simulation Function

The ST program can be connected to a simulator and monitored.

6-1-9 Online Editing of ST Programs
ST programs can be edited even when the PLC (CPU Unit) is operating. This
allows ST programs to be debugged or changed in systems that cannot be
shut down, such as systems that operate 24 hours/day.

ST programs can be edited online when the PLC is in an operating mode
other than RUN mode.

This function cannot be used with the simulator.

Starting Online
Editing

1,2,3... 1. Start monitoring.

2. Select the desired ST program in the project workspace, and display it in
program view.

3. Select Program - Online Edit - Begin. At this point, it will be possible to
edit the ST program.

4. Start editing the ST program.

Right-click in the Watch
Window and select Paste.

Select the variable in the
ST variable monitor
window, right-click,
and select Copy.
186

Procedures Section 6-1
Transferring the
Changes

1,2,3... 1. After editing is completed, select Program - Online Edit - Send Changes.
The Send Changes Dialog Box will be displayed.

2. Select the desired transfer mode and click the OK Button. The edited ST
program will be transferred to the PLC.
For details on the transfer modes, refer to Transfer Modes on page 187 and
Selecting a Transfer Mode on page 187.

3. After the transfer is completed, the ST program will return to its previous
status in which the ST program cannot be edited. If further editing is nec-
essary, resume the online editing procedure from the beginning of the pro-
cedure (Starting Online Editing).

Cancelling the
Changes

To discard the changes made to the ST program, select Program - Online
Edit - Cancel. The edited ST program will not be sent to the PLC, and the ST
program will revert to the original status before online editing was started.

Transfer Modes

Standard Mode In Standard Mode, both the ST program’s source code and object code are
transferred to the CPU Unit. Some time may be required for Standard Mode
transfers because of the quantity of data that must be sent. Other editing or
transfer operations cannot be performed until the transfer has been com-
pleted.

Quick Mode In Quick Mode, only the ST program’s object code is transferred to the CPU
Unit. The ST source code is not transferred, making Quick Mode faster than
Normal Mode. After transferring the object code in Quick Mode, either 1)
select Program - Transfer SFC/ST Source to PLC to transfer the source
code or 2) transfer the source code according to instructions displayed in a
dialog box when you go offline.

After transferring the object code, a yellow mark will be displayed at the bot-
tom of the window until offline status is entered to indicate that the source
code has not yet been transferred. This yellow mark will disappear when the
source code is transferred.

Selecting a Transfer
Mode

As a rule, use Standard Mode to transfer ST program changes, unless online
editing is performed frequently. If too much time is required, increase the baud
rate as much as possible before the transfer. If too much time is still required
and debugging efficiency is hindered by continuous online editing, use Quick
Mode as an exception, but be sure you understand the restrictions given in
the following note (Mode Restrictions in Quick Mode).

!Caution Restrictions in Quick Mode (ST Source Code Not Transferred)
When the ST program’s ST source code is not being transferred, the CX-Pro-
grammer cannot upload the program correctly the next time.
Consequently, after the ST program’s online editing changes have been trans-
ferred in Quick Mode, it may be impossible to upload the program later (see
note) if the computer or CX-Programmer crashes before the source code can
be transferred.

Note It may be still be possible to transfer the source code with the following proce-
dure, even if the above problem occurs.
187

Procedures Section 6-1
Transferring Source Code
from a Backup Project

1,2,3... 1. Start the CX-Programmer.

2. The following dialog box will be displayed if a project’s ST source code was
being transferred in Quick Mode and the transfer failed.

3. Click the OK Button. the CX-Programmer will start the backup project from
the previous Quick Mode transfer.

4. Connect online with the PLC that was the destination of the Quick Mode
transfer. The following dialog box will be displayed.

5. Click the Yes Button.
If the PLC is not in RUN mode, the program will be compared between the
project and PLC, and the ST source code will be transferred if the pro-
grams match.
If the PLC is in RUN mode, switch the operating mode to another mode,
and execute the ST source code transfer from the CX-Programmer menu.

Manually Transferring the
ST Source Code

1,2,3... 1. Start the CX-Programmer, and open the project file with the ST source
code to be transferred.

2. Connect online with the PLC that was the destination of the Quick Mode
transfer. The flashing yellow message Src, Fail will be displayed in the CX-
Programmer’s status bar

3. Select Program - Online Edit - Transfer SFC/ST Source to PLC. The ST
source code transfer dialog box will be displayed.

4. Click the OK Button.
The ST source code that was automatically backed up in the computer will
be compared with the object code in the actual PLC, and the ST source
code can be transferred if the code matches.

Note Before transferring a program, the CX-Programmer normally compiles the
program code (ST source code) into object code, which can be executed in
the CPU Unit, and then transfers both the source code and object code to the
CPU Unit. The CPU Unit stores the programs ST source code and object
code in user memory and built-in flash memory. Only when both the source
code and object code exist in the CPU Unit can the CX-Programmer transfer
and restore the program for the upload operation.

Restrictions in Online Editing of ST Programs
The following restrictions apply to online editing of ST programs.
188

Procedures Section 6-1
• For CJ2-series CPU Units, there is no restriction on the number of steps
that can be added to or deleted from a function block definition during one
online editing operation.

• Online editing is not possible for ST programs that exceed 4 Ksteps
(except for CJ2-series CPU Units).

• A maximum of 0.5 Ksteps can be added to or deleted from an ST program
during one online editing operation (except for CJ2-series CPU Units).

• After performing online editing, do not turn OFF the power supply to the
PLC until the CPU Unit has finished backing up data to the built-in flash
memory (i.e., until the BKUP indicator goes OFF). If the power supply is
turned OFF before the data is backed up, the data will not be backed up
and the program will return to the status it had before online editing was
performed.
189

Procedures Section 6-1
190

Appendix A
System-defined external variables supported

in function blocks

Note These words are external variables for the OMRON FB Library. Do not use these words for creating
function blocks.

Classification Name External variable in
CX-Programmer

Data type Address

Conditions Flags Greater Than or Equals (GE) Flag P_GE BOOL CF00

Not Equals (NE) Flag P_NE BOOL CF001

Less Than or Equals (LE) Flag P_LE BOOL CF002

Instruction Execution Error (ER) Flag P_ER BOOL CF003

Carry (CY) Flag P_CY BOOL CF004

Greater Than (GT) Flag P_GT BOOL CF005

Equals (EQ) Flag P_EQ BOOL CF006

Less Than (LT) Flag P_LT BOOL CF007

Negative (N) Flag P_N BOOL CF008

Overflow (OF) Flag P_OF BOOL CF009

Underflow (UF) Flag P_UF BOOL CF010

Access Error Flag P_AER BOOL CF011

Always OFF Flag P_Off BOOL CF114

Always ON Flag P_On BOOL CF113

Clock Pulses 0.02 second clock pulse bit P_0_02s BOOL CF103

0.1 second clock pulse bit P_0_1s BOOL CF100

0.2 second clock pulse bit P_0_2s BOOL CF101

1 minute clock pulse bit P_1mim BOOL CF104

1.0 second clock pulse bit P_1s BOOL CF102

Auxiliary Area Flags/
Bits

First Cycle Flag P_First_Cycle BOOL A200.11

Step Flag P_Step BOOL A200.12

First Task Execution Flag P_First_Cycle_Task BOOL A200.15

Maximum Cycle Time P_Max_Cycle_Time UDINT A262

Present Scan Time P_Cycle_Time_Value UDINT A264

Cycle Time Error Flag P_Cycle_Time_Error BOOL A401.08

Low Battery Flag P_Low_Battery BOOL A402.04

I/O VerIFication Error Flag P_IO_Verify_Error BOOL A402.09

Output OFF Bit P_Output_Off_Bit BOOL A500.15

OMRON FB Library
words (see note)

CIO Area specification P_CIO WORD A450

HR Area specification P_HR WORD A452

WR Area specification P_WR WORD A451

DM Area specification P_DM WORD A460

EM0 to C Area specification P_EM0 to P_EMC WORD A461 to
A473
191

System-defined external variables supported in function blocks Appendix A
192

Appendix B
Structured Text Errors

Error Messages
Error Message Cause of error Example

%s' Input variables cannot be
assigned a value

A value was substituted for an
input variable.

%s' operator not supported by
%s data type

A numerical value or variable
for a data type that is not sup-
ported by the operator was
used.

A:=B+1; (*A and B are WORD type variables*))

%s' variable had a read only
memory AT Address and can-
not be assigned a value

A value was substituted for a
variable allocated to a read-
only memory address (read-
only Auxiliary Area address or
Condition Flag).

Array index out of range An array index larger than the
array size was specified.

Array[100]:=10; (*Array is an array variable with an array
size of 100*)

Conversion cannot convert
from %s to %s

A numeric equation in which
the data type of the operation
result does not match the vari-
able at the substitution desti-
nation and a variable that is
different from the data type
was substituted.

Y:=ABS(X); (*X is an INT type variable, Y is a UINT type
variable*)

Division by Zero The numeric expression con-
tains division by 0.

End of comment not found The comment does not have a
closing parenthesis and aster-
isk “*)” corresponding to the
opening parenthesis and
asterisk “(*” of the comment.

(*comment

Invalid Literal Format '%s' The numeric format is illegal. X:=123_; (*There is no numeral after underscore*)

X:=1__23; (*The underscore is followed immediately by
another underscore*)
X:=2#301; Y:=8#90; (*A numeral that cannot be used with
binary or octal values has been used*)

Note The underscore can be inserted between numerals
to make them easier to read. Placing 2#, 8#, and
16# at the beginning of the numeral expresses the
numerals as binary, octal, and hexadecimal values,
respectively.

Invalid Literal Value The numeric value is illegal. X:=1e2; (*an index was used for a numeric value that was
not a REAL data type*)

Note “e” indicates an exponent of 10.

Invalid array index A numeric equation with a
non-integer type operation
result or a non-integer vari-
able has been specified in the
array index.

Array[Index]:=10; (*Index is a WORD type variable*)
193

Structured Text Errors Appendix B
Invalid constant A numeric equation with a
non-integer type operation
result, or a non-integer vari-
able or numeric value has
been specified in the integer
equation of a CASE state-
ment.

CASE A OF (*A is a REAL type variable*)
1: X:=1;

2: X:=2;

END_CASE;

Invalid expression The numeric equation is ille-
gal. For example, the integer
equation or condition equation
is illegal or has not been spec-
ified in the syntax (IF, WHILE,
REPEAT, FOR, CASE).

WHILE DO (*The WHILE statement does not contain a
condition equation*)

 X:=X+1;

END_WHILE;

Invalid parameter in FOR loop
declaration

A variable with data type other
than INT, DINT, LINT, UINT,
UDINT, or ULINT has been
used for variables in a FOR
statement.

FOR I:=1 TO 100 DO (*I is a WORD type variable*)

 X:=X+1;
END_FOR;

Invalid statement The statement is illegal. E.g.,
The statement (IF, WHILE,
REPEAT, FOR, CASE,
REPEAT) does not contain an
IF, WHILE, REPEAT, FOR,
CASE, or REPEAT in the syn-
tax, respectively.

X:=X+1; (*There is no REPEAT in the syntax*)
UNTIL X>10

END_REPEAT;

Invalid variable for Function
output

The specified variable for the
function output is illegal (A
non-boolean (BOOL) variable
or numeral has been specified
as the ENO transfer destina-
tion.)

Y:=SIN(X1, ENO=>1);

Missing (The call for a data format con-
version instruction or function
does not contain a “(“ (open-
ing parenthesis).

Y:=INT_TO_DINT X);

Missing) The operator parentheses or
the call for a data format con-
version instruction or function
does not contain a “)“ (closing
parenthesis) corresponding to
“(“ (opening parenthesis).

Y:=(X1+X2/2

Missing : The integer equation in the
CASE statement is not fol-
lowed by a “:” (colon).

CASE A OF
1 X:=1;

END_CASE;

Missing := “:=” is not included in the
assignment equation.

Missing ; The statement is not con-
cluded by a “;” (semicolon).

Missing DO “DO” is not provided in the
FOR or WHILE statement.

Missing END_CASE “END_CASE” is not provided
at the end of the CASE state-
ment.

Missing END_FOR “END_FOR” is not provided at
the end of the FOR statement.

Missing END_IF “END_IF” is not provided at
the end of the IF statement.

Missing END_REPEAT “END_REPEAT” is not pro-
vided at the end of the
REPEAT statement.

Error Message Cause of error Example
194

Structured Text Errors Appendix B
Missing END_WHILE “END_WHILE” is not pro-
vided at the end of the WHILE
statement.

Missing Input Parameter. All
input variables must be set.

The function argument is not
specified or is insufficient.

Y:=EXPT(X);

Missing OF “OF” is not included in CASE
statement.

Missing THEN “THEN” is not included in IF
statement.

Missing TO “TO” is not included in FOR
statement.

Missing UNTIL “UNTIL” is not included in
REPEAT statement.

Missing [The array index for the array
variable has not been speci-
fied.

X:=Array; (*Array is an array variable*)

Missing] The array index for the array
variable has not been speci-
fied.

X:=Array[2; (*Array is an array variable*)

Missing constant A constant is not provided in
the integer equation of the
CASE statement.

CASE A OF

2..: X:=1;
2,: X:=2;

END_CASE;

NOT operation not supported
on a literal number

The NOT operator was used
for a numeric value.

Result:=NOT 1;

Negation not supported by %s
data type

A minus symbol was used
before a variable with a data
type that does not support
negative values (UINT,
UDINT, ULINT).

Y:=-X; (*X is an UINT type variable, Y is an INT type vari-
able*)

There must be one line of
valid code (excluding com-
ments)

There is no line of valid code
(excluding comments).

Too many variables specified
for Function

Too many parameter settings
are specified for the function.

Y:=SIN(X1,X2);

Undefined identifier '%s' A variable that is not defined
in the variable table has been
used.

Unexpected syntax '%s' A keyword (reserved word) or
variable has been used ille-
gally.

FOR I:=1 TO 100 DO BY -1 (*The DO position is illegal*)

 X:=X+1;
END_FOR;

Usage mismatch in Function
variable

The function parameter has
been used illegally.

Y:=SIN(X1,EN=>BOOL1); (*The input parameter EN has
been used as an output parameter*)

Value out of range A value outside the range for
the variable data type has
been substituted in the vari-
able.

X:=32768; (*X is an INT type variable*)

Variable '%s' is not a Function
parameter

A variable that cannot be
specified in the function
parameter has been specified
in the parameter.

Y:=SIN(Z:=X); (*X and Y are REAL type variables, and Z
is not a SIN function parameter *)

Error Message Cause of error Example
195

Structured Text Errors Appendix B
Warning Messages
Warning message Cause of warning Example

Keyword '%s' is redundant The keyword has been used
in an invalid location. For
example, use of the EXIT
statement outside a loop syn-
tax.

Conversion from '%s' to '%s',
possible loss of data

Data may be lost due to con-
version of a data type with a
large data size to a data type
with a small data size.

Y:=DINT_TO_INT(X); (*X is a DINT type variable, Y is an
INT type variable*)
196

Appendix C
Function Descriptions

Standard Functions

Text String Functions

LEN: Detect String Length
• Function

Finds the length of a specified text string.

• Application

Return_value := LEN(string);

• Arguments and Return Values

• Example

LEFT: Extract Characters from Left
• Function

Extracts the specified number of characters from the left of the specified text string.

• Application

Return_value := LEFT(Source_string, Number_of_characters);

• Arguments and Return Values

• Example

RIGHT: Extract Characters from Right
• Function

Extracts the specified number of characters from the right of the specified text string.

• Application

Return_value := RIGHT(Source_string, Number_of_characters);

Variable name Data type Description

String STRING Specifies the text string for
which to find the length.

Return_value INT Returns the size of the speci-
fied text string.

Variable name Data type Description

Source_string STRING Specifies the text string from which to
extract characters.

Number_of_characters INT, UINT Specifies the number of characters to
extract.

Return_value STRING Returns the extracted characters.

A B C D E F G H
Variables
 STRING Message
 INT Result

Message

Result:=LEN(Message);

→ "8" is stored in Result variable.

A B C D E F G H Message
Variables
 STRING Message
 STRING Result

Result:=LEFT(Message,3);
→ "ABC" is stored in the Result variable.
197

Function Descriptions Appendix C
• Arguments and Return Values

• Example

MID: Extract Characters from Middle
• Function

Extracts the specified number of characters starting from the specified position of the specified text
string.

• Application

Return_value := MID (Source_string, Number_of_characters, Position);

• Arguments and Return Values

• Example

CONCAT: Concatenate Strings
• Function

Joins the specified text strings.
Up to 31 text strings can be specified.

• Application

Return_value := CONCAT(Source_string_1, Source_string_2, …);

• Arguments and Return Values

Variable name Data type Description

Source_string STRING Specifies the text string from
which to extract characters.

Number_of_characters INT, UINT Specifies the number of char-
acters to extract.

Return_value STRING Returns the extracted charac-
ters.

Variable name Data type Description

Source_string STRING Specifies the text string from which to
extract characters.

Number_of_characters INT, UINT Specifies the number of characters to
extract.

Position INT, UINT Specifies the position from which to start
extracting characters. The first character is
position “1” (e.g., position 1 is “A” in mes-
sage 1 in the following illustration).

Return_value STRING Returns the extracted characters.

Variable name Data type Description

Source_string_1 STRING Specifies a text string to be joined.

Source_string_2 STRING Specifies a text string to be joined.

:

Return_value STRING Returns the joined text strings.

A B C D E F G HMessage
Variables
 STRING Message
 STRING Result

Result:=RIGHT(Message,3);
→ "FGH" is stored in the Result variable.

MessageVariables
 STRING Message
 STRING Result

Result:=MID(Message,3,2);
→ "BCD" is stored in the Result variable.

A B C D E F G H
198

Function Descriptions Appendix C
• Example

INSERT: Insert Characters
• Function

Inserts the specified characters into a text string.

• Application

Return_value := INSERT(Source_string, Insert_string, Position);

• Arguments and Return Values

• Example

DELETE: Delete Characters
• Function

Deletes the specified number of characters starting from the specified position of the specified text
string.

• Application

Return_value := DEL (Source_string, Number_of_characters, Position);

• Arguments and Return Values

Variable name Data type Description

Source_string STRING Specifies the text string into which to insert char-
acters.

Insert_string STRING Specifies the text string to be inserted.

Position INT, UINT Specifies the position at which to insert charac-
ters. The first character is position “1” (e.g., posi-
tion 1 is “A” in message 1 in the following
illustration).

Return_value STRING Returns the text string with the characters
inserted.

Variable name Data type Description

Source_string STRING Specifies the text string from which to delete
characters.

Number_of_characters INT, UINT Specifies the number of characters to delete.

Position INT, UINT Specifies the position from which to delete
characters. The first character is position “1”
(e.g., position 1 is “A” in message 1 in the fol-
lowing illustration).

Return_value STRING Returns the text string with the specified
number of characters deleted.

Message 1
Variables
 STRING Message1
 STRING Message2
 STRING Message3
 STRING Result

Result:=CONCAT(Message1,Message2,Message3);
→ "ABCDEFGH" is stored in the Result variable.

A B C D E F G H

A B C D E F G H

Message 2 Message 3

Result

Message 1Variables
 STRING Message1
 STRING Message2
 STRING Result Result := INSERT(Message1, Message2, 2);

→ "ABEFGHC" is stored in the Result variable.

Message 2

Result

A B C D E F G H

A B C DE F G H

199

Function Descriptions Appendix C
• Example

REPLACE: Replace Characters
• Function

Replaces the specified number of characters starting from the specified position of the specified text
string.

• Application

Return_value := REPLACE(Source_string, Replace_string, Number_of_characters, Position);

• Arguments and Return Values

• Example

FIND: Find Characters
• Function

Finds the first occurrence of the specified text string in another text string and returns the position.
If the text string is not found, 0 is returned.

• Application

Return_value := FIND(Source_string, Find_string);

• Arguments and Return Values

Variable name Data type Description

Source_string STRING Specifies the text string in which to replace
characters.

Replace_string STRING Specifies the replace text string.

Number_of_characters INT, UINT Specifies the number of characters to be
replaced.

Position INT, UINT Specifies the position from which to
replace characters. The first character is
position “1” (e.g., position 1 is “A” in mes-
sage 1 in the following illustration).

Return_value STRING Returns the text string with the characters
replaced.

Variable name Data type Description

Source_string STRING Specifies the text string to search.

Find_string STRING Specifies the text string to find.

Return_value INT Returns the position of the first occurrence of
the find text string. The first character is position
“1” (e.g., position 1 is “A” in message 1 in the fol-
lowing illustration).

MessageVariables
 STRING Message1
 STRING Result

Result:=DEL(Message1,4,2);
→ "AFGH" is stored in the Result variable.

Result

A B C D E F G H

A F G H

Message 1
Variables
 STRING Message1
 STRING Message2
 STRING Result

Result:=REPLACE(Message1,Message2,2,3);
→ "ABXYEFGH" is stored in the Result variable.

Result

A B C D E F G H

A B X Y E F G H

X Y Z

Message 2
200

Function Descriptions Appendix C
• Example

Data Shift Functions

SHL: Bitwise Shift Left
• Function

Shifts a bit string to the left by n bits.
When shifted, zeros are entered on the right side of the bit string.

• Application

Return_value := SHL (Shift_target_data, Number_of_bits);

• Arguments and Return Values

• Note

The same data type must be set for the 1st argument and the return value.

• Example

SHR: Bitwise Shift Right
• Function

Shifts a bit string to the right by n bits.
When shifted, zeros are entered on the left side of the bit string.

• Application

Return_value := SHR (Shift_target_data, Number_of_bits);

• Arguments and Return Values

Variable name Data type Description

Shift_target_data (S1) BOOL, WORD, DWORD,
LWORD

Specifies the data to be shifted

Number_of_bits (n) INT, UINT, UDINT, ULINT,
DINT, LINT

Specifies the number of bits by which the
bit string is to be shifted

Return_value BOOL, WORD, DWORD,
LWORD

Returns the output data

Variable name Data type Description

Shift_target_data (S1) BOOL, WORD, DWORD,
LWORD

Specifies the data to be shifted

Number_of_bits (n) INT, UINT, UDINT, ULINT,
DINT, LINT

Specifies the number of bits by which the
bit string is to be shifted

Return_value BOOL, WORD, DWORD,
LWORD

Returns the output data

Message 1Variables
 STRING Message1
 STRING Message2
 INT Result Result:=FIND(Message1,Message3);

→ "2" is stored in the Result variable.

Message 2A B C D E C D E C D E

1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0

0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 0

Data1

Result

Result := SHL(Data1,N);
 → '64DC' is stored in the Result variable.

Data1 = B26E (hex) → 1011 0010 0110 1110 (binary)
N = 1 (decimal)

[Variables]

 WORD Data1

 INT N

 WORD Result
201

Function Descriptions Appendix C
• Note

The same data type must be set for the 1st argument and the return value.

• Example

ROL: Bitwise Rotate Left
• Function

Rotates a bit string to the left by n bits.

• Application

Return_value := ROL (Rotation_target_data, Number_of_bits);

• Arguments and Return Values

• Note

The same data type must be set for the 1st argument and the return value.

• Example

ROR: Bitwise Rotate Right
• Function

Rotates a bit string to the right by n bits.

• Application

Return_value := ROR (Rotation_target_data, Number_of_bits);

Variable name Data type Description

Rotation_target_data
(S1)

BOOL, WORD, DWORD,
LWORD

Specifies the data to be rotated

Number_of_bits (n) INT, UINT, UDINT, ULINT,
DINT, LINT

Specifies the number of bits by which the
bit string is to be rotated

Return_value BOOL, WORD, DWORD,
LWORD

Returns the output data

1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0

0 1 0 1 1 0 0 1 0 0 1 1 0 1 1 1

Data 1

Result

Result := SHR(Data1,N);

 → '5937' is stored in the Result variable.

Data1 = B26E (hex) → 1011 0010 0110 1110 (binary)
N = 1 (decimal)

[Variables]

 WORD Data1

 INT N

 WORD Result

1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0

0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1

Data 1

Result

Result := ROL(Data1,N);

 → '64DD' is stored in the Result variable.

Data1 = B26E (hex) → 1011 0010 0110 1110 (binary)
N = 1 (decimal)

[Variables]

 WORD Data1

 INT N

 WORD Result
202

Function Descriptions Appendix C
• Arguments and Return Values

• Note

The same data type must be set for the 1st argument and the return value.

• Example

Data Control Functions

LIMIT: Upper/Lower Limit Control
• Function

Controls the output data depending on whether the input data is within the range between the upper
and lower limits.

• Application

Return_value := LIMIT (Lower_limit_data, Input_data, Upper_limit_data);

• Arguments and Return Values

Variable name Data type Description

Rotation_target_data
(S1)

BOOL, WORD, DWORD,
LWORD

Specifies the data to be rotated

Number_of_bits (n) INT, UINT, UDINT, ULINT,
DINT, LINT

Specifies the number of bits by which the
bit string is to be rotated

Return_value BOOL, WORD, DWORD,
LWORD

Returns the output data

Variable name Data type Description

Lower_limit_data BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Specifies the lower limit.

Input_data BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Specifies the input data.

Upper_limit_data BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Specifies the upper limit.

Return_value BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Returns the output data.

1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0

0 1 0 1 1 0 0 1 0 0 1 1 0 1 1 1

Data 1

Result

Result := ROR(Data1,N);

 → '5937' is stored in the Result variable.

Data1 = B26E (hex) → 1011 0010 0110 1110 (binary)
N = 1 (decimal)

[Variables]

 WORD Data1

 INT N

 WORD Result
203

Function Descriptions Appendix C
• Note

When the input data is smaller than the lower limit data, the value of the lower limit data is returned as
the result.
When the input data is bigger than the upper limit data, the value of the upper limit data is returned as
the result.
When the input data is a value between the upper limit data and lower limit data, the value of the input
data is returned as the result.
The same data type must be set for the arguments and the return value.

• Example

Data Selection Functions

SEL: Data Selection
• Function

Selects one of two data according to the selection condition.

• Application

Return_value := SEL (Selection_condition, Selection_target_data1, Selection_target_data2);

• Arguments and Return Values

• Note

The same data type must be set for both Selection_target_data arguments.

Variable name Data type Description

Selection_condition
(g)

BOOL Selects S2, if the selection condition g is
TRUE (= 1).
Selects S1, if it is FALSE (= 0).

Selection_target_dat
a1 (S1)

BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Specifies the selection target data.

Selection_target_dat
a2 (S2)

BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Specifies the selection target data.

Return_value BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Returns the output data.

Data1

Lower limit: MN

Upper limit: MX

Result

[Variables]

 INT MN

 INT Data1

 INT MX

 INT Result

MN = 123 Data1 = 456 MX = 789

Result := LIMIT(MN,Data1,MX);

 →'456' is stored in the Result variable.
204

Function Descriptions Appendix C
• Example

MUX: Multiplexer
• Function

Extracts a specified data according to the extraction condition.
Up to 30 data can be specified as extraction targets.

• Application

Return_value := MUX (Extraction_condition, Extraction_target_data1, Extraction_target_data2, ...);

• Arguments and Return Values

• Note

Return_value := MUX(Selection_condition, Extraction_target_data1, Extraction_target_data2, ...);
The same data type must be set for the return value and all arguments except for 1st one
(Extraction_condition).
When any value other than 0 to 29 is specified for the extraction condition, the value stored in the
Result becomes undependable.

• Example

Variable name Data type Description

Extraction_condition
(n)

INT, UINT, UDINT, ULINT,
DINT, LINT

Specifies the data to be extracted.
Extraction condition n = 0, 1, 2, ..., 29

When n = 0, extraction target data1 S1 is output.

When n = 1, extraction target data2 S2 is output.
 : :

When n = n, extraction target data(n+1) S(n+1) is output.

Extraction_target_da
ta1 (S1)

BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Specifies the extraction target data.

Extraction_target_da
ta2 (S2)

BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Specifies the extraction target data.

:

Return_value BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Returns the output data.

Result := SEL(G,Data1,Data2);

 → ‘456’ is stored in the Result variable.

[Variables]

 BOOL G

 INT Data1

 INT Data2

 INT Result

G = 1

Data1 = 123 Data2 = 456

G =

123 456

0 1

Result

[Variables]

 INT N

 INT Data1

 INT Data2

 INT Data3

 INT Result

N = 0

Data1 = 123 Data2 = 456 Data3 = 789

N =

789123 456

0 21

Result

Result := MUX(N,Data1,Data2,Data3);

 → '123' is stored in the Result variable.
205

Function Descriptions Appendix C
MAX: Maximum Value
• Function

Selects the maximum value from the target data.
Up to 31 data can be specified as target data.

• Application

Return_value := MAX (Target_data1, Target_data2, Target_data3, ..., Target_data31);

• Arguments and Return Values

• Note

Return_value := MAX(Target_data1, Target_data2, Target_data3, ..., Target_data31);
The same data type must be set for all arguments and the return value.

• Example

MIN: Minimum Value
• Function

Selects the minimum value from the target data.
Up to 31 data can be specified as target data.

• Application

Return_value := MIN (Target_data1, Target_data2, Target_data3, ..., Target_data31);

Variable name Data type Description

Target_data1 (S1) BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Specifies the target data.

Target_data2 (S2) BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Specifies the target data.

Target_data3 (S3) BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Specifies the target data.

:

Target_data31 (S31) BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Specifies the target data.

Return_value BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Returns the output data.

Result := MAX(Data1,Data2,Data3);

 → '789' is stored in the Result variable.

[Variables]

 INT Data1

 INT Data2

 INT Data3

 INT Result

Data1 = 123 Data2 = 456 Data3 = 789

789123 456

Result
206

Function Descriptions Appendix C
• Arguments and Return Values

• Note

Return_value := MIN(Target_data1, Target_data2, Target_data3, ..., Target_data31);
The same data type must be set for all arguments and the return value.

• Example

Variable name Data type Description

Target_data1 (S1) BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Specifies the target data.

Target_data2 (S2) BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Specifies the target data.

Target_data3 (S3) BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Specifies the target data.

:

Target_data31 (S31) BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Specifies the target data.

Return_value BOOL, INT, UINT, UDINT,
ULINT, DINT, LINT, WORD,
DWORD, LWORD, REAL,
LREAL

Returns the output data.

[Variables]

 INT Data1

 INT Data2

 INT Data3

 INT Result

Data1 = 123 Data2 = 456 Data3 = 789

789123 456

Result

Result := MIN(Data1,Data2,Data3);

 →'123' is stored in the Result variable.
207

Function Descriptions Appendix C
OMRON Expansion Function

Memory Card Functions

WRITE_TEXT: Create Text File
• Function

Writes the specified text sting into the specified file in the Memory Card.

• Application

Write_Text (Write_string, Directory_name_and_file_name, Delimiter, Parameter);

• Arguments and Return Values

Variable name Data type Description

Write_string STRING Specifies the text string to write to a file.

Directory_name_and
_file_name

STRING Specifies the directory and file name, including the root direc-
tory(\). The file name must be 8 characters or less. The file
name extension is always TXT. For example, the following file
name creates a file named LINE_A.TXT in the root directory:
\LINE_A.

Delimiter STRING '': Empty character
',': Comma

“$L” or “$l”: Line feed (ASCII 0A)

“$N” or “$n”: Carriage return + line feed (ASCII 0D 0A)
“$P” or “$p”: New page (ASCII 0C)

“$R” or “$r”: Carriage return (ASCII 0D)

“$T” or “$t”: Tab (ASCII 09)

Parameter INT, UINT, WORD 0: Append

1: Create new file
208

Function Descriptions Appendix C
• Example

For further information and precautions on related Auxiliary Area flags, refer to the section on the FWRIT File
Memory Instruction in the CS/CJ-series Instruction Reference Manual.

Communications Functions

TXD_CPU: Send String via CPU Unit RS-232C Port
• Function

Sends a text string from the RS-232C port on the CPU Unit.

• Application

TXD_CPU (Send_string);

• Conditions

The serial communications mode of the RS-232C port must be set to no-protocol communications.

• Arguments and Return Values

Related Auxiliary
Area Flag

Address Description

File Memory Opera-
tion Flag

A343.13 ON when any of the following conditions exists:

• CMND instruction sending a FINS command to the local
CPU Unit.

• File Memory Instruction being executed.
• Program replacement using the control bit in the Auxiliary

Area.
• Easy backup operation.

Memory Card
Detected Flag

A343.15 ON when a Memory Card has been detected.

Variable name Data type Description

Send_string STRING Specifies the text string to send.

Variables

BOOL P_MemCardBusyFlag (* File Memory Operation Flag *) AT A343.13
BOOL P_MemCardAskFlag (* Memory Card Detected Flag *) AT A343.15
STRING FileName (* File name *)
INT LogData1 2 3 (* Log number *)
STRING FiledStrl1 2 3 (* Log number text string *)
STRING CsvLineStr (* CSV-format log, 1-line text string *)

FileName := '\LOGFILE';
LogData1 := 12;
LogData2 := 345;
LogData3 := 6789;

(* Output data to text file if Memory Card write conditions are met. *)
IF (P_MemCardAckFlag AND (NOT P_MemCardBusyFlag)) THEN

 (* Convert from number to text string *)
 FieldStr1 := INT_TO_STRING(LogData1);
 FieldStr2 := INT_TO_STRING(LogData2);
 FieldStr3 := INT_TO_STRING(LogData3);
 (* Create 1-row CSV-format numeric value text string *)
 CsvLineStr := FieldStr1 + ',' + FieldStr2 + ',' + FieldStr3;
 (* Output one line of numeric data to file *)
 WRITE_TEXT(CsvLineStr, FileName, '$n', 0);
END_IF;

12,345,6789

LOGFILE.TXT

Contents of output file
209

Function Descriptions Appendix C
• Example

For further information and precautions on related Auxiliary Area flags, refer to the section on TXD Serial Com-
munications Instruction in the CS/CJ-series Instruction Reference Manual.

TXD_SCB: Send String via Serial Port on Serial Communications Board
• Function

Sends a text string from a serial port on a Serial Communications Board (SCB).

• Application

TXD_SCB (Send_string, Serial_port);

• Conditions

The serial communications mode of the serial port must be set to no-protocol communications.

• Arguments and Return Values

Related Auxiliary
Area Flag

Address Description

RS-232C Port Send
Ready Flag

A392.05 ON when sending is enabled in no-protocol mode.

Variable name Data type Description

Send_string STRING Specifies the text string to send.

Serial_port INT, UINT, WORD Specifies the number of the serial port.

1: Serial port 1

2: Serial port 2

Variables
BOOL DoSendData (* Variable to control send function *)
INT iProcess (* Process number *)
STRING Message (* Send message *)
BOOL SendEnableCPUPort (* Send Ready Flag *) AT A392.05

2: (* Execute send function if sending is enabled *)
 IF SendEnableCPUPort = TRUE THEN
 TXD_CPU(Message);
 iProcess := 3;
 END_IF;

(* Send data when DoSendData is ON and iProcess is 0 *)
IF (DoSendData = TRUE) AND (iProcess = 0) THEN

END_IF;
(* Execute send processing according to process number *)
CASE iProcess OF

iProcess := 1;
DoSendData := FALSE;

 1: (* Create send text data *)
 Message := '@READ';
 iProcess := 2;

CPU Unit

Barcode Reader

3: (* Sending is finished if Send Ready Flag is ON *)
 IF SendEnableCPUPort = TRUE THEN
 iProcess := 0;
 END_IF;
END_CASE;

Get Scene Number
command: @READ

RS-232C
port
210

Function Descriptions Appendix C
• Example

For further information and precautions on related Auxiliary Area flags, refer to the section on TXD Serial Com-
munications Instruction in the CS/CJ-series Instruction Reference Manual.

TXD_SCU: Send String via Serial Port on Serial Communications Unit
• Function

Sends a text string from a serial port on a Serial Communications Unit (SCU).

• Application

TXD_SCU (Send_string, SCU_unit_number, Serial_port, Internal_logic_port);

• Conditions

The serial communications mode of the serial port must be set to no-protocol communications.

Related Auxiliary
Area Flag

Address Description

Port 1 Send Ready
Flag

A356.05 ON when sending is enabled in no-protocol mode.

Port 2 Send Ready
Flag

A356.13 ON when sending is enabled in no-protocol mode.

Variables
BOOL P_DoSendData (* Variable to control send function *)
INT iProcess (* Process number *)
STRING Message (* Send message *)
BOOL P_SendEnableSCBPort1 (* Send Ready Flag *) AT A356.05
 Serial port 1 used.

(* Use serial port number 1 *)

(*Send data when P_DoSendData is ON and iProcess is 0 *)
IF (P_DoSendData = TRUE) AND (iProcess = 0) THEN
 iProcess := 1;
 P_DoSendData := FALSE;
END_IF;

(* Execute send processing according to process number *)
CASE iProcess OF
 1: (* Create send text data *)
 Message := '@READ';
 iProcess := 2;
 2: (* Execute send function if sending is enabled *)
 IF P_SendEnableSCBPort1 = TRUE THEN
 TXD_SCB(Message, 1);
 iProcess := 3;
 END_IF;
 3: (* Sending is finished if Send Ready Flag is ON *)
 IF P_SendEnableSCBPort1 = TRUE THEN
 iProcess := 0;
 END_IF;
END_CASE;

CPU Unit

Barcode Reader

Serial
Communi-
cations
Board
(SCB) Get Scene Number

command: @READ

Serial
port 1
211

Function Descriptions Appendix C
• Arguments and Return Values

• Example

Variable name Data type Description

Send_string STRING Specifies the text string to send.

SCU_unit_number INT, UINT, WORD Specifies the number of the Serial Communi-
cations Unit.

Serial_port INT, UINT, WORD 1: Serial port 1

2: Serial port 2

Internal_logic_port INT, UINT, WORD 0 to 7: Internal logic port number specified
16#F: Automatic internal logic port allocation

CPU Unit

Barcode reader

Get Scene Number
Command: @READ

Serial
Communications
Unit (SCU)
Unit No. : 0

Serial
port 2

Get Scene Number
command: @READ

Variables

BOOL P_DoSendData (* Variable to control send function *)
INT iProcess (* Process number *)
STRING Message (* Send message *)
BOOL P_TXDU_Exe (* TXDU Execution Flag *) AT 1519.05 Unit number 0,
 Use serial port 2.
BOOL P_ComInstEnable (* Communications Port Enable Flag*) AT A202.07 Use port 7.

(* Use the following: Unit number: 0, Serial port number: 2, Logical port number: 7 *)

(* Send data when P_DoSendData is ON and iProcess is 0 *)
IF (P_DoSendData = TRUE) AND (iProcess = 0) THEN
 iProcess := 1;
 P_DoSendData := FALSE;
END_IF;

(* Execute send processing according to process number *)
CASE iProcess OF
 1: (* Create send text data *)
 Message := '@READ';
 iProcess := 2;
 2: (* Execute send function if Communications Port Enable Flag and TXDU Execution Flag are ON *)
 IF (P_ComInstEnable = TRUE) AND (P_TXDU_Exe = FALSE) THEN
 TXD_SCU(Message, 0, 2, 7);
 iProcess := 3;
 END_IF;
 3: (* Sending has been completed if Communications Port Enable Flag is ON *)
 IF P_ComInstEnable = TRUE THEN
 iProcess := 0;
 END_IF;
END_CASE;
212

Function Descriptions Appendix C
For further information and precautions on related Auxiliary Area flags, refer to the section on TXDU Serial
Communications Instruction in the CS/CJ-series Instruction Reference Manual.

RXD_CPU: Receive String via CPU Unit RS-232C Port
• Function

Receives a text string from the RS-232C port on the CPU Unit.

• Application

RXD_CPU (Storage_location, Number_of_characters)

• Conditions

The serial communications mode of the RS-232C port must be set to no-protocol communications.

• Arguments and Return Values

Related Auxiliary
Area Flag

Address

Communications
Instruction Enable
Flags

A202.00 to A202.07 ON when network communications can be executed. The bit
numbers correspond directly to the internal logic port numbers
Bits 00 to 07: Internal logic ports 0 to 7

Related CPU Bus
Unit Area bits

Bit

n = CIO 150 + 25 x
unit number

Port 1: n+9
Port 2: n+19

05 ON when TXDU is being executed.

Variable name Data type Description

Storage_location STRING Specifies the storage location for the received
text string.

Number_of_characters INT, UINT, WORD Specifies the number of characters to receive.
0 to 255
213

Function Descriptions Appendix C
• Example

For further information and precautions on related Auxiliary Area flags, refer to the section on RXD Serial Com-
munications Instruction in the CS/CJ-series Instruction Reference Manual.

RXD_SCB: Receive String via Serial Port on Serial Communications Board
• Function

Receives a text string from a serial port on a Serial Communications Board (SCB).

• Application

RXD_SCB (Storage_location, Number_of_characters, Serial_port)

• Conditions

The serial communications mode of the serial port must be set to no-protocol communications.

• Arguments and Return Values

Related Auxiliary
Area Flag

Address Description

RS-232C Port
Reception Com-
pleted Flag

A392.06 ON when reception has been completed in no-protocol mode.

RS-232C Port
Reception Overflow
Flag

A392.07 ON when a data overflow occurred during reception in no-pro-
tocol mode.

RS-232C Port
Reception Counter

A393 Contains the number of characters received in no-protocol
mode.

Variable name Data type Description

Storage_location STRING Specifies the storage location for the received
text string.

Number_of_characters INT, UINT, WORD Specifies the number of characters to receive.

0 to 255

Serial_port INT, UINT, WORD Specifies the number of the serial port.

1: Serial port 1
2: Serial port 2

Variables

BOOL P_DoRecvData (* Variable to control receive function *)
STRING Message (* Variable to store received message *)
BOOL P_EndRecvCPUPort (* Reception Completed Flag *) AT A392.06

(* Receive data when P_DoRecvData is ON and reception has been completed*)

IF (P_DoRecvData = TRUE) AND (P_EndRecvCPUPort = TRUE) THEN
 (* Get 16 characters *)
 RXD_CPU(Message, 16);
 P_DoRecvData := FALSE;
END_IF;

Barcode reader

CPU Unit

RS-232C
port

Message → Value to read
214

Function Descriptions Appendix C
• Example

For further information and precautions on related Auxiliary Area flags, refer to the section on RXD Serial Com-
munications Instruction in the CS/CJ-series Instruction Reference Manual.

RXD_SCU: Receive String via Serial Port on Serial Communications Unit
• Function

Receives a text string from a serial port on a Serial Communications Unit (SCU).

• Application

RXD_SCU (Storage_location, Number_of_characters, SCU_unit_number, Serial_port,
Internal_logic_port);

• Conditions

The serial communications mode of the serial port must be set to no-protocol communications.

Related Auxiliary
Area Flag

Address Description

Port 1 Reception
Completed Flag

A356.06 ON when reception has been completed in no-protocol mode.

Port 1 Reception
Overflow Flag

A356.07 ON when a data overflow occurred during reception in no-pro-
tocol mode.

Port 1 Reception
Counter

A357 Contains the number of characters received in no-protocol
mode.

Port 2 Reception
Completed Flag

A356.14 ON when reception has been completed in no-protocol mode.

Port 2 Reception
Overflow Flag

A356.15 ON when a data overflow occurred during reception in no-pro-
tocol mode.

Port 2 Reception
Counter

A358 Contains the number of characters received in no-protocol
mode.

Variables

BOOL P_DoRecvData (* Variable to control receive function *)
STRING Message (* Variable to store received message *)
BOOL P_EndRecvSCBPort1 (* Reception Completed Flag *) AT A356.06
 Use serial port 1

(* Use serial port number 1 *)
(* Receive data when P_DoRecvData is ON and reception has been completed*)
IF (P_DoRecvData = TRUE) AND (P_EndRecvSCBPort1 = TRUE) THEN
 (* Get 16 characters *)
 RXD_SCB(Message, 16, 1);
 P_DoRecvData := FALSE;
END_IF;

Barcode reader

CPU Unit

Serial
Commu-
nications
Board
(SCB)

Serial
port 1

Message → Value to read
215

Function Descriptions Appendix C
• Arguments and Return Values

• Example

Variable name Data type Description

Storage_location STRING Specifies the storage location for the received text
string.

Number_of_characters INT, UINT, WORD Specifies the number of characters to receive.

0 to 255

SCU_unit_number INT, UINT, WORD Specifies the number of the Serial Communica-
tions Unit.

Serial_port INT, UINT, WORD 1: Serial port 1

2: Serial port 2

Internal_logic_port INT, UINT, WORD 0 to 7: Internal logic port number specified

16#F: Automatic internal logic port allocation

Barcode reader

CPU Unit

Serial
Communications
Unit (SCU)
Unit No.: 0

Message → Value to read

Serial
port 2

Variables

BOOL P_DoRecvData (* Variable to control receive function *)
INT iProcess (* Process number *)
STRING Message (* Variable to store received message *)
BOOL P_RXDU_Recv (* Status of Serial Communications Unit *) AT 1519.06 Unit No. 0
 Use serial port 2
BOOL P_ComInstEnable (* Communications Port Enable Flag *)*) AT A202.07 Use port 7

(* Use the following: Unit number: 0, Serial port number: 2, Logical port number: 7 *)
(* Receive data when P_DoRecvData is ON and iProcess is 0 *)
IF (P_DoRecvData = TRUE) AND (iProcess = 0) THEN
 iProcess := 1;
 P_DoRecvData := FALSE;
END_IF;

(* Execute receive processing according to process number *)
CASE iProcess OF
 1: (* Reception function executed if Communications Enabled Flag and Reception Completed
 Flag are ON. *);
 IF (P_ComInstEnable = TRUE) AND (P_RXDU_Recv = TRUE) THEN
 RXD_SCU(Message, 16, 0, 2, 7);
 iProcess := 2;
 END_IF;
 2: (* Reception has been completed if Communications Port Enable Flag is ON *)
 IF P_ComInstEnable = TRUE THEN
 iProcess := 0;
 END_IF;
END_CASE;
216

Function Descriptions Appendix C
For further information and precautions on related Auxiliary Area flags, refer to the section on RXDU Serial
Communications Instruction in the CS/CJ-series Instruction Reference Manual.

Angle Conversion Functions

DEG_TO_RAD: Convert Degrees to Radians
• Function

Converts an angle in degrees to radians.

• Application

Return_value := DEG_TO_RAD (argument)

• Arguments and Return Values

RAD_TO_DEG: Convert Radians to Degrees
• Function

Converts an angle in radians to degrees.

• Application

Return_value := RAD_TO_DEG (argument)

• Arguments and Return Values

Timer/Counter Functions

TIMX: HUNDRED-MS TIMER
• Function

Operates a decrementing timer with units of 100 ms.
(Equivalent to the TIMX (550) ladder instruction)

• When the execution condition goes from FALSE to TRUE, the timer specified in the timer address is
started and the present value is decremented by one starting from the value specified in the timer set
value once every 100 ms.

Related Auxiliary Area Flag Address

Communications Instruction
Enable Flag

A202.00 to
A202.07

ON when network communications can be executed. The bit
numbers correspond directly to the internal logic port numbers

Bits 00 to 07: Internal logic ports 0 to 7

Related CPU Bus Unit Area bits Bit

n = CIO 150 + 25 x unit number
Port 1: n+9

Port 2: n+19

06 ON when reception has been completed in no-protocol mode.

n = CIO 150 + 25 x unit number

Port 1: n+9
Port 2: n+19

07 ON when a data overflow occurred during reception in no-pro-
tocol mode.

n = CIO 150 + 25 x unit number

Port 1: n+10

Port 2: n+20

--- Contains the number of characters received in no-protocol
mode.

Variable name Data type Description

Argument REAL, LREAL Specifies an angle in degrees.

Return_value REAL, LREAL Returns an angle in radians.

Variable name Data type Description

Argument REAL, LREAL Specifies an angle in radians.

Return_value REAL, LREAL Returns an angle in degrees.
217

Function Descriptions Appendix C
• The present value will continue timing down as long as the execution condition remains TRUE. When
the present value reaches 0, the timer completion flag of the specified timer address will be turned
ON. If the present value is not zero, the timer completion flag is OFF.

• While the execution condition is FALSE, the timer set value is set in the present value of the timer
address and the timer completion flag is OFF.

• Application

TIMX(Execution_condition, Timer_address, Timer_set_value);

• Arguments

• Note

• Only when the Apply the same spec. as T0-2047 to T2048-4095 option is selected in the PLC's
property setting, the present value is updated when all cyclic tasks are completed and also once
every 80 ms.

• When the timer completion flag is referenced from the user program, the reflection of the status
change may be delayed by one cycle depending on the access timing.

TIMHX: TEN-MS TIMER
• Function

Operates a decrementing timer with units of 10 ms.
(Equivalent to the TIMHX (551) ladder instruction)

• When the execution condition goes from FALSE to TRUE, the timer specified in the timer address is
started and the present value is decremented by one starting from the value specified in the timer
set value once every 10 ms.

• The present value will continue timing down as long as the execution condition remains TRUE.
When the present value reaches 0, the timer completion flag of the specified timer address will be
turned ON. If the present value is not zero, the timer completion flag is OFF.

• While the execution condition is FALSE, the timer set value is set in the present value of the timer
address and the timer completion flag is OFF.

• Application

TIMHX(Execution_condition, Timer_address, Timer_set_value);

• Arguments

• Note

• Only when the Apply the same spec. as T0-2047 to T2048-4095 option is selected in the PLC's
property setting, the present value is updated when all cyclic tasks are completed and also once
every 80 ms.

• When the timer PV is referenced from the user program, the timer present values may be different
between timer numbers 0 to 255, 256 to 2047, and 2048 to 4095 due to different refresh timing.

Variable name Data type Description

Execution_condition BOOL Executes the timer operation while this execution condition is
TRUE.

Timer_address TIMER Specifies the timer address (T0 to T4095) variable to use.

Timer_set_value UINT Specifies the delay time in units of 100 ms.

(&0 to &65535, #0 to #FFFF)

Variable name Data type Description

Execution_condition BOOL Executes the timer operation while this execution condition is
TRUE.

Timer_address TIMER Specifies the timer address (T0 to T4095) variable to use.

Timer_set_value UINT Specifies the delay time in units of 10 ms.

(&0 to &65535, #0 to #FFFF)
218

Function Descriptions Appendix C
• When the timer completion flag is referenced from the user program, the reflection of the status
change may be delayed by one cycle depending on the access timing.

TMHHX: ONE-MS TIMER
• Function

Operates a decrementing timer with units of 1 ms.
(Equivalent to the TMHHX (552) ladder instruction)

• When the execution condition goes from FALSE to TRUE, the timer specified in the timer address is
started and the present value is decremented by one starting from the value specified in the timer
set value once every 1 ms.

• The present value will continue timing down as long as the execution condition remains TRUE.
When the present value reaches 0, the timer completion flag of the specified timer address will be
turned ON. If the present value is not zero, the timer completion flag is OFF.

• While the execution condition is FALSE, the timer set value is set in the present value of the timer
address and the timer completion flag is OFF.

• Application

TMHHX(Execution_condition, Timer_address, Timer_set_value);

• Arguments

• Note

• Only when the Apply the same spec. as T0-2047 to T2048-4095 option is selected in the PLC's
property setting, the present value is updated when all cyclic tasks are completed.

• When the timer PV is referenced from the user program, the obtained timer present value of timer
numbers 16 and later may be different from that of timer numbers 0 to 15. The present value of the
timer numbers 16 and later is refreshed only when the instruction is executed. On the other hand,
the present value of the timer numbers 0 to 15 is updated once every 1 ms.

• When the timer completion flag is referenced from the user program, the reflection of the status
change may be delayed by one cycle depending on the access timing.

TIMUX: TENTH-MS TIMER
• Function

Operates a decrementing timer with units of 0.1 ms.
(Equivalent to the TIMUX (556) ladder instruction)

• When the execution condition goes from FALSE to TRUE, the timer specified in the timer address is
started and the present value is decremented by one starting from the value specified in the timer
set value once every 0.1 ms.

• The present value will continue timing down as long as the execution condition remains TRUE.
When the present value reaches 0, the timer completion flag of the specified timer address will be
turned ON. If the present value is not zero, the timer completion flag is OFF.

• While the execution condition is FALSE, the timer set value is set in the present value of the timer
address and the timer completion flag is OFF.

• Application

TIMUX(Execution_condition, Timer_address, Timer_set_value);

Variable name Data type Description

Execution_condition BOOL Executes the timer operation while this execution condition is
TRUE.

Timer_address TIMER Specifies the timer address (T0 to T4095) variable to use.

Timer_set_value UINT Specifies the delay time in units of 1 ms.

(&0 to &65535, #0 to #FFFF)
219

Function Descriptions Appendix C
• Argument

• Note

• This timer may not operate properly when the cycle time is 100 ms or longer.

• When the timer PV is referenced from the user program, the present value may be different by one
cycle from the actual value depending on the access timing.

• When the timer completion flag is referenced from the user program, the reflection of status change
may be delayed by one cycle depending on the access timing.

TMUHX: HUNDREDTH-MS TIMER
• Function

Operates a decrementing timer with units of 0.01 ms.
(Equivalent to the TMUHX (557) ladder instruction)

• When the execution condition goes from FALSE to TRUE, the timer specified in the timer address is
started and the present value is decremented by one starting from the value specified in the timer
set value once every 0.01 ms.

• The present value will continue timing down as long as the execution condition remains TRUE.
When the present value reaches 0, the timer completion flag of the specified timer address will be
turned ON. If the present value is not zero, the timer completion flag is OFF.

• While the execution condition is FALSE, the timer set value is set in the present value of the timer
address and the timer completion flag is OFF.

• Application

TMUHX(Execution_condition, Timer_address, Timer_set_value);

• Arguments

• Note

• This timer may not operate properly when the cycle time is 10 ms or longer.

• When the timer PV is referenced from the user program, the present value may be different by one
cycle from the actual value depending on the access timing.

• When the timer completion flag is referenced from the user program, the reflection of status change
may be delayed by one cycle depending on the access timing.

TTIMX: ACCUMULATIVE TIMER
• Function

Operates an incrementing timer with units of 0.1 s.
(Equivalent to the TTIMX (555) ladder instruction)

• As long as the execution condition is TRUE, the present value is incremented (accumulated).

Variable name Data type Description

Execution_condition BOOL Executes the timer operation while this execution condition is
TRUE.

Timer_address TIMER Specifies the timer address (T0 to T4095) variable to use.

Timer_set_value UINT Specifies the delay time in units of 0.1 ms.

(&0 to &65535, #0 to #FFFF)

Variable name Data type Description

Execution_condition BOOL Executes the timer operation while this execution condition is
TRUE.

Timer_address TIMER Specifies the timer address (T0 to T4095) variable to use.

Timer_set_value UINT Specifies the delay time in units of 0.01 ms.

(&0 to &65535, #0 to #FFFF)
220

Function Descriptions Appendix C
• When the execution condition goes FALSE, the timer will stop incrementing the present value, but
the present value will retain its value. When the execution condition goes TRUE again, it will resume
incrementing the present value.

• When the present value reaches the timer set value, the timer completion flag will be turned ON.

• The timer present value and the status of the timer completion flag will be maintained after the timer
times out.

• When the reset input is turned ON, the timer will be reset.

• Application

TTIMX(Execution_condition, Reset_input, Timer_address, Timer_set_value);

• Arguments

• Note

• Because the present value is incremented only when the instruction is executed, this timer may not
operate properly if the cycle time is 100 ms or longer.

• When the timer completion flag is referenced from the user program, the reflection of status change
may be delayed by one cycle depending on the access timing.

CNTX: COUNTER
• Function

Operates a decrementing counter.
(Equivalent to the CNTX (546) ladder instruction)

• The counter present value is decremented by one every time the count input is turned ON.
The counter completion flag is turned ON when the present value reaches 0.

• When the reset input is ON, the counter will be reset and the present value will become equal to the
counter set value. Also, the counter completion flag is turned OFF and the count input is made
invalid.

• Application

CNTX(Count_input, Reset_input, Counter_address, Counter_set_value);

• Arguments

CNTRX: REVERSIBLE COUNTER
• Function

Operates an incrementing/decrementing counter.
(Equivalent to the CNTRX (548) ladder instruction)

Variable name Data type Description

Execution_condition BOOL Increments (accumulates) the present value while the execu-
tion condition is TRUE.

Reset_input BOOL Resets the timer's PV and completion flag when the reset
input is ON.

Timer_address TIMER Specifies the timer address (T0 to T4095) variable to use.

Timer_set_value UINT Specifies the delay time in units of 0.1 s.

(&0 to &65535, #0 to #FFFF)

Variable name Data type Description

Count_input BOOL The counter present value is decremented every time the
count input is turned ON.

Reset_input BOOL When the reset input is ON, the counter's PV and completion
flag are reset.

Counter_address COUNTER Specifies the counter address (C0 to C4095) variable to use.

Counter_set_value UINT Specifies the default value from which the counter value is
decremented.

(&0 to &65535, #0 to #FFFF)
221

Function Descriptions Appendix C
• When the increment input is turned ON, the value is incremented.

• When the decrement input is turned ON, the value is decremented.

• When incrementing, the counter completion flag will be turned ON when the present value is incre-
mented from the set value back to 0 and it will be turned OFF again when the present value is incre-
mented from 0 to 1.

• When decrementing, the counter completion flag will be turned ON when the present value is decre-
mented from 0 up to the set value and it will be turned OFF again when the present value is decre-
mented by one from the set value.

• The present value will not be changed if the increment and decrement inputs both go from OFF to
ON at the same time.

• When the reset input is ON, the counter present value will become 0 and the count input is made
invalid.

• Application

CNTRX(Increment_count, Decrement_count, Reset_input, Counter_address, Counter_set_value);

• Arguments

TRSET: TIMER RESET
• Function

Resets the specified timer.
(Equivalent to the TRSET (549) ladder instruction)

• Application

TRSET(Execution_condition, Timer_address);

• Arguments

Variable name Data type Description

Increment_count BOOL The counter present value is incremented every time the incre-
ment input is turned ON.

Decrement_count BOOL The counter present value is decremented every time the dec-
rement input is turned ON.

Reset_input BOOL When the reset input is ON, the counter's PV and completion
flag are reset.

Counter_address COUNTER Specifies the counter address (C0 to C4095) variable to use.

Counter set value UINT Specifies the default value from which the counter value is
decremented.

(&0 to &65535, #0 to #FFFF)

Variable name Data type Description

Execution_condition BOOL The timer is reset when the execution condition is turned ON.

Timer_address TIMER Specifies the timer address (T0 to T4095) variable to use.
222

Index

A
addresses

allocation areas, 44
checking internal allocations, 106
setting allocation areas, 104

algorithm
creating, 89

applications
precautions, xxi

array settings, 20, 40, 61, 91

AT settings, 19, 40, 91
restrictions, 53

automatically generating function block definitions, 93

C
compiling, 110

D
data types, 19, 39

determining, 58

debugging function blocks, 116

differentiation
restrictions, 53

E
errors

function blocks, 57

external variables, 39

externals, 19

F
features, 4
files

function block definitions, 114
library, 8
project text files, 8

function block definitions, 13
checking for an instance, 108
compiling, 110
creating, 84
saving to files, 114

function blocks

advantages, 12
application guidelines, 58
creating, 23
debugging, 116
defining, 87
elements, 33
errors, 57
monitoring, 116
operating specifications, 51
outline, 11
restrictions, 53
reusing, 24
setting parameters, 101
specifications, 6, 7, 32
structure, 13

functions, 4
function blocks, 6, 7
restrictions, 5

G
global symbol table, 18

I
IEC 61131-3, 4, 8
input variables, 35

input-output variables, 37

inputs, 19

instance areas, 21, 44
setting, 21, 104

instances
creating, 23, 99
multiple, 48
number of, 14
outline, 14
registering in global symbol table, 18
specifications, 44

internal variables, 37

internals, 19

L
ladder programming

function block definition, 86
restrictions in function blocks, 53
223

Index
M
menus, 8

main, 9
popup, 10

monitoring function blocks, 116

O
online editing

function block definitions, 124
restrictions, 56

output variables, 35

outputs, 19

P
parameters

outline, 15

precautions, xix
applications, xxi
general, xx
safety, xx

Programming Consoles, 56

projects
creating, 84

S
safety precautions, xx

specifications
CX-Programmer Ver. 5.0, 5
function block operation, 51
instances, 44

structured text
function block definition, 86
restrictions, 55

symbol name
automatically generating, 92

T
timer instructions

operation, 77
restrictions, 54

V
variable names, 19

variables
address allocations, 21
checking address allocations, 106
creating as needed, 90
definitions, 33
introduction, 18
properties, 19, 39
registering in advance, 87
restrictions, 53
setting allocation areas, 21
usage, 19, 34
224

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision
code

Date Revised content

01 February 2005 Original production

02 November 2005 Added Ver. 6.1 upgrade information, such as information on the Simulation functions and
ST program variable monitoring.

03 July 2006 Added Ver. 7.0 upgrade information.

04 January 2007 Pages 17 and 18: Changed “can” to “cannot” in table (two locations) and changed note.
Page 29: Changed text in “inputs” cell for the status of value at next execution.
Page 213: Changed illustration.
Pages 214, 216 to 218, and 202: Changed illustration and changed code.
Pages 215 and 219: Changed text in bottom right cell.

05 July 2007 Added upgrade information from Ver. 7.0 to Ver. 7.2.

07 June 2008 Added upgrade information from Ver. 7.2 to Ver. 8.0.

08 February 2009 Added upgrade information from Ver. 8.0 to Ver. 8.1.

09 December 2009 Added upgrade information from Ver. 8.3 to Ver. 9.0.

10 February 2010 Added upgrade information from Ver. 9.0 to Ver. 9.1.

11 October 2010 Added upgrade information from Ver. 9.1 to Ver. 9.2.

12 January 2011 Added upgrade information from Ver. 9.2 to Ver. 9.3.

13 August 2012 Page xi: Changed catalog number from W445 to W464.
Pages xii and xiii: Changed manual names for W339, W394, W340, and W342.
Page xiii and xiv: Added model numbers for W452 and W463.
Page xxiv: Modified the description of the third paragraph from the top.
Page 52: Modified the description of the caution in the middle of the page.
Page 142: Changed notations in top two tables.
Page 145: Changed data types for "Exponential."
Page 147: Changed data types for "Exponent."
Page 148: Added information on rounding the fractional part of variable C.
Page 151: Reversed "TRUE" and "FALSE" in the example column for SEL.

14 October 2015 Added upgrade information from Ver. 9.5 to Ver. 9.6 and corrected mistakes.

15 April 2016 Revisions accompanying change in CX-One model number.

Cat. No. W447-E1-15

Revision code
225

Revision History
226

Authorized Distributor:

In the interest of product improvement,
specifications are subject to change without notice.

Cat. No. W447-E1-15 0416

 © OMRON Corporation 2005-2016 All Rights Reserved.

OMRON Corporation Industrial Automation Company

OMRON ELECTRONICS LLC
2895 Greenspoint Parkway, Suite 200
Hoffman Estates, IL 60169 U.S.A.
Tel: (1) 847-843-7900/Fax: (1) 847-843-7787

Regional Headquarters
OMRON EUROPE B.V.
Wegalaan 67-69, 2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388

 Contact: www.ia.omron.com
Kyoto, JAPAN

OMRON ASIA PACIFIC PTE. LTD.
No. 438A Alexandra Road # 05-05/08 (Lobby 2),
Alexandra Technopark,
Singapore 119967
Tel: (65) 6835-3011/Fax: (65) 6835-2711

OMRON (CHINA) CO., LTD.
Room 2211, Bank of China Tower,
200 Yin Cheng Zhong Road,
PuDong New Area, Shanghai, 200120, China
Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200

	SYSMAC CX-Programmer Ver. 9._ Operation Manual Function Blocks/Structures Text
	Notice:
	About this Manual:
	Terms and Conditions Agreement

	TABLE OF CONTENTS
	PRECAUTIONS
	1 Intended Audience
	2 General Precautions
	3 Safety Precautions
	4 Application Precautions

	Part 1: Function Blocks
	SECTION 1 Introduction to Function Blocks
	1-1 Introducing the Function Blocks
	1-1-1 Overview and Features
	1-1-2 Function Block Specifications
	1-1-3 Files Created with CX-Programmer Ver. 6.0 or Later
	1-1-4 Function Block Menus in CX-Programmer Ver. 5.0 (and later Versions)

	1-2 Function Blocks
	1-2-1 Outline
	1-2-2 Advantages of Function Blocks
	1-2-3 Function Block Structure

	1-3 Variables
	1-3-1 Introduction
	1-3-2 Variable Usage and Properties
	1-3-3 Variable Properties
	1-3-4 Variable Properties and Variable Usage
	1-3-5 Internal Allocation of Variable Addresses

	1-4 Converting Function Block Definitions to Library Files
	1-5 Usage Procedures
	1-5-1 Creating Function Blocks and Executing Instances
	1-5-2 Reusing Function Blocks

	1-6 Version Upgrade Information

	SECTION 2 Function Block Specifications
	2-1 Function Block Specifications
	2-1-1 Function Block Specifications
	2-1-2 Function Block Elements

	2-2 Data Types Supported in Function Blocks
	2-2-1 Basic Data Types
	2-2-2 Derivative Data Types

	2-3 Instance Specifications
	2-3-1 Composition of an Instance
	2-3-2 Parameter Specifications
	2-3-3 Operating Specifications

	2-4 Programming Restrictions
	2-4-1 Ladder Programming Restrictions
	2-4-2 ST Programming Restrictions
	2-4-3 Programming Restrictions

	2-5 Function Block Applications Guidelines
	2-5-1 Deciding on Variable Data Types
	2-5-2 Determining Variable Types (Inputs, Outputs, In Out, Externals, and Internals)
	2-5-3 AT Settings for Internal Variables
	2-5-4 Array Settings for Input-Output Variables and Internal Variables
	2-5-5 Specifying Addresses Allocated to Special I/O Units
	2-5-6 Using Index Registers

	2-6 Precautions for Instructions with Operands Specifying the First or Last of Multiple Words
	2-7 Instruction Support and Operand Restrictions
	2-8 CPU Unit Function Block Specifications
	2-8-1 Specifications
	2-8-2 Operation of Timer Instructions

	2-9 Number of Function Block Program Steps and Instance Execution Time
	2-9-1 Number of Function Block Program Steps
	2-9-2 Function Block Instance Execution Time

	SECTION 3 Creating Function Blocks
	3-1 Procedural Flow
	3-2 Procedures
	3-2-1 Creating a Project
	3-2-2 Creating a New Function Block Definition
	3-2-3 Defining Function Blocks Created by User
	3-2-4 Creating Instances from Function Block Definitions
	3-2-5 Setting Function Block Parameters Using the Enter Key
	3-2-6 Setting the FB Instance Areas
	3-2-7 Checking Internal Address Allocations for Variables
	3-2-8 Copying and Editing Function Block Definitions
	3-2-9 Checking the Source Function Block Definition from an Instance
	3-2-10 Checking Instance Information such as Nesting Levels
	3-2-11 Checking Function Block Usage
	3-2-12 Compiling Function Block Definitions (Checking Program)
	3-2-13 Printing Function Block Definition
	3-2-14 Password Protection of Function Block Definitions
	3-2-15 Comparing Function Blocks
	3-2-16 Saving and Reusing Function Block Definition Files
	3-2-17 Downloading/Uploading Programs to the Actual CPU Unit
	3-2-18 Monitoring and Debugging Function Blocks
	3-2-19 Online Editing Function Block Definitions

	Part 2: Structured Text (ST)
	SECTION 4 Introduction to Structured Text
	4-1 ST Language
	4-1-1 Overview

	4-2 CX-Programmer Specifications
	4-2-1 PLC Models Compatible with ST Programs (ST Tasks)
	4-2-2 Specifications

	SECTION 5 Structured Text (ST) Language Specifications
	5-1 Structured Text Language Specifications
	5-1-1 Overview of the Structured Text Language

	5-2 Data Types Used in ST Programs
	5-2-1 Basic Data Types
	5-2-2 Derivative Data Types

	5-3 Inputting ST Programs
	5-3-1 Syntax Rules
	5-3-2 CX-Programmer's ST Input Screen Display

	5-4 ST Language Configuration
	5-4-1 Statements
	5-4-2 Variables
	5-4-3 Inputting Constants
	5-4-4 Operators
	5-4-5 Standard Functions
	5-4-6 OMRON Expansion Functions

	5-5 Statement Descriptions
	5-5-1 Assignment
	5-5-2 Control Statements

	5-6 ST-language Program Example
	5-6-1 Using an ST Program in a Function Block

	5-7 Restrictions
	5-7-1 Restrictions
	5-7-2 Commonly Asked Questions

	SECTION 6 Creating ST Programs
	6-1 Procedures
	6-1-1 Creating a Project
	6-1-2 Creating a New ST Program
	6-1-3 Allocating the ST Program to a Task
	6-1-4 Creating the ST Program
	6-1-5 Compiling the ST Program (Checking Program)
	6-1-6 Downloading/Uploading Programs to the Actual CPU Unit
	6-1-7 Comparing ST Programs
	6-1-8 Monitoring and Debugging the ST Program
	6-1-9 Online Editing of ST Programs

	Appendices
	Appendix A System-defined external variables supported in function blocks
	Appendix B Structured Text Errors
	Appendix C Function Descriptions

	Index
	Revision History

