Cat. No. W447-E1-09

CX-Programmer Ver. 9
WS02-CXPC1-V9

OPERATION MANUAL

Function Blocks/

CX-Programmer

Ver. 9.0]
WS02-CXPC1-V9

Operation Manual
Function Blocks/Structured Text

Revised December 2009

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

&DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury. Additionally, there may be severe property damage.

&WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury. Additionally, there may be severe property damage.

&Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References

All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers to
an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PLC” means Programmable Controller. “PC” is used, however, in some Program-
ming Device displays to mean Programmable Controller.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient opera-
tion of the product.

1,2,3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

© OMRON, 2008

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or
by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of
OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is con-
stantly striving to improve its high-quality products, the information contained in this manual is subject to change without
notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility
for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in
this publication.

Part 1: Function Block
SECTION 1 Introduction to Function Blocks

SECTION 2 Function Block Specifications

SECTION 3 Creating Function Blocks

Part 2: Structured Text

SECTION 4 Introduction to Structured Text

SECTION 5 Structured Text (ST) Language Specifica-
tions

SECTION 6 Creating ST Programs

Appendices

TABLE OF CONTENTS
PRECAUTIONS ..ttt ittt ittt eeseasensensenseases Xxi

1 Intended AUdIiencCe. it XXii
2 General Precautions. e xXii
3 Safety Precautionst XXii
4 Application Precautions.t XXiii

Part 1:
Function Blocks

SECTION 1
Introduction to Function Blocksccivveieiennn. 3

1-1 Introducing the Function Blocks e 4
1-2 Function BIocks. 11
1-3 0 Variables 18
1-4 Converting Function Block Definitions to Library Files. 23
1-5 Usage Procedures.ot e 23
1-6 Version Upgrade Information i 25

SECTION 2
Function Block Specificationsc000e. 29

2-1 Function Block Specifications. i 30
2-2 Data Types Supported in Function Blocks 41
2-3 Instance SpecifiCationsttt 42
2-4 Programming RestriCtions. e 51
2-5 Function Block Applications Guidelines. 56
2-6 Precautions for Instructions with Operands Specifying the First or Last of Multiple Words 65
2-7 Instruction Support and Operand Restrictions., 68
2-8 CPU Unit Function Block Specifications 70
2-9 Number of Function Block Program Steps and Instance Execution Time 76

SECTION 3

Creating FunctionBlocks.ccivvvveeees 79
3-1 Procedural FIow. 80
3-2 0 Procedureso 82

ix

TABLE OF CONTENTS

Part 2:

Structured Text (ST)

SECTION 4

Introduction to Structured Text 131
4-1 ST LANGUAZE . . o . ottt et e e e e 132
4-2 CX-Programmer Specifications.ttt 133

SECTION 5

Structured Text (ST) Language Specifications 135
5-1 Structured Text Language Specificationsttt ennenen.. 136
5-2 Data Types Used in ST Programs it 137
5-3 Inputting ST Programs.t e 138
5-4 ST Language Configurationuuiutntntnrenentneininennenenn. 141
5-5 Statement DesCriptionsottt e 148
5-6 ST-language Program Example. i 166
5-T RESIHCHONS . .« oottt e e e e e e 167

SECTION 6

Creating STProgramsccciviievennneeeess 169
6-1 Procedures 170

Appendices
A System-defined external variables supported in function blocks 181
B Structured Text Errorsot 183
C Function Descriptionsottt 187

INdeX. .o viiiiiitiitiitieeeeeeeeenennonnensensensss 201

Revision Historyccciiiiiiiinnnnnnnnnnnneeee. 203

About this Manual:

This manual describes the CX-Programmer operations that are related to the function block functions
and Structured Text (ST) functions. The function block and structure text functionality of CX-Program-
mer is supported by CJ2H CPU Units, by CS1-H, CJ1-H, and CJ1M CPU Units with unit version 3.0 or
later, by CP-series CPU Units, and by NSJ-series and FQM1-series Controllers.

Some function block and structure text functionality, however, is supported only by CJ2H CPU Units, by
CS1-H, CJ1-H, and CJ1M CPU Units with unit version 4.0 or later.

For details, refer to 71-6 Version Upgrade Information.

For information on functionality other than function blocks and structure text, refer to the following man-

uals.
* CX-Programmer

: CX-Programmer Operation Manual (W446) and CX-Programmer Operation Manual: SFC (W469)

e CPU Unit

: The operation manuals for the CS-series, CJ-series, CP-series, and NSJ-series Controllers

CX-Programmer Ver. 9.[] Manuals

Name Cat. No. Contents

SYSMAC WS02-CXPC1-V9 W447 | Explains how to use the CX-Programmer software’s function

CX-Programmer Operation Manual (this block and structured text functions. For explanations of other

Function Blocks/Structured Text manual) | shared CX-Programmer functions, refer to the CX-Program-
mer Operation Manual (W446).

SYSMAC WS02-CXPC1-V9 W446 | Provides information on how to use the CX-Programmer for

CX-Programmer Operation Manual all functionality except for function blocks.

SYSMAC WS02-CXPC1-V9 W469 | Explains how to use the SFC programming functions. For

CX-Programmer Operation Manual: SFC explanations of other shared CX-Programmer functions, refer
to the CX-Programmer Operation Manual (W446).

CX-Net Operation Manual W362 Information on setting up networks, such as setting data links,
routing tables, and unit settings.

SYSMAC CXONE-ALLILIC-v4 W445 | Describes the operating procedures for the CX-Integrator.

SYSMAC CXONE-ALLICID-V4
CX-Integrator Operation Manual

xi

CS1-H, CJ1-H, and CJ1M CPU Unit Manuals

CJ1G-CPULIL], CJ1G/H-CPULILH,
CJ1H-CPULILIH-R, CJ1G-CPULILIP,
CJ1M-CPULI]

Programmable Controllers
Operation Manual

Name Cat. No. Contents

SYSMAC CJ Series w472 Provides an outline of and describes the design, installation,
CJ2H-CPU6LI-EIP, CJ2H-CPU6L] maintenance, and other basic operations for the CJ-series
Programmable Controllers CJ2 CPU Units.
Hardware User's Manual The following information is included:

Overview and features

System configuration

Installation and wiring

Troubleshooting

Use this manual together with the W473.
SYSMAC CJ Series W473 | Describes programming and other methods to use the func-
CJ2H-CPUBLI-EIP, CJ2H-CPU6L] tions of the CJ2 CPU Units.
Programmable Controllers The following information is included:
Software User's Manual CPU Unit operation

Internal memory areas

Programming

Tasks

CPU Unit built-in functions

Use this manual together with the W472.
SYSMAC CS/CJ Series W474 | Describes the ladder diagram programming instructions sup-
CS1G/H-CPULI] -EV1, CS1G/H-CPULILH, ported by CS/CJ-series or NSJ-series PLCs.
CS1D-CPULILIH, CS1D-CPULLLIS, When programming, use this manual together with the Oper-
CJ2H-CPU6L-EIP, CJ2H-CPU6L], ation Manual or Hardware User's Manual (CS1: W339, CJ1:
CJ1H-CPULILH-R W393,0r CJ2:W472) and Programming Manual or Software
CJ1G-CPULILI, CJ1G/H-CPULILIH, User's Manual (CS1/CJ1:W394 or CJ2:W473).
CJ1G-CPULILIP, CJ1M-CPULIT]
SYSMAC One NSJ Series
NSJO-0J000(B)-G5D
NSJ-0J000(B)-M3D
Programmable Controllers
Instructions Reference Manual
SYSMAC CS Series W339 Provides an outline of and describes the design, installation,
CS1G/H-CPULII-EV1, CS1G/H-CPULICH maintenance, and other basic operations for the CS-series
Programmable Controllers PLCs.
Operation Manual The following information is included:

An overview and features

The system configuration

Installation and wiring

1/O memory allocation

Troubleshooting

Use this manual together with the W394.
SYSMAC CJ Series W393 Provides an outline of and describes the design, installation,

maintenance, and other basic operations for the CJ-series
PLCs.

The following information is included:
An overview and features

The system configuration

Installation and wiring

I/O memory allocation
Troubleshooting

Use this manual together with the W394.

xii

Name Cat. No. Contents
SYSMAC CS/CJ Series W394 | Describes programming and other methods to use the func-
CS1G/H-CPULILI-EV1, CS1G/H-CPULILIH, tions of the CS/CJ-series and NSJ-series PLCs.
CJ1G-CPULIL], CJ1G/H-CPULILH, The following information is included:
CJ1H-CPULIH-R, CJ1G-CPULICIR, Programming
CJ1M-CPULI], NSJOI-OICICIC(B)-G5D, Tasks
NSJO-0J000(B)-M3D File memory
Programmable Controllers Other functions
Programming Manual Use this manual together with the W339 or W393.
SYSMAC CS/CJ Series W340 | Describes the ladder diagram programming instructions sup-
CS1G/H-CPULILI-EV1, CS1G/H-CPULILH, ported by CS/CJ-series and NSJ-series PLCs.
CJ1G-CPULILI, CJ1G/H-CPULILIH, When programming, use this manual together with the Oper-
CJ1H-CPULILH-R, CJ1G-CPULILIR, ation Manual (CS1: W339 or CJ1: W393) and Programming
CJ1M-CPULILI, NSJUI-LILILILI(B)-G5D, Manual (W394).
NSJO-0O00(B)-M3D
Programmable Controllers
Instructions Reference Manual
CS1G/H-CPULIL-EVA W342 Describes the communications commands that can be

CS1G/H-CPULLH
CS1W-SCB21-V1/41-V1
CS1W-SCU21/41
CJ2H-CPU6LI-EIP, CJ2H-CPU6LI
CJ1G-CPULI]
CJ1G/H-CPULILH
CJ1G-CPULILIP

CJ1M-CPULI
CJ1W-SCcuU21-V1/41-V1
CP1H-XOOO-
CP1H-XAOOO-
CP1H-YOOIOO-
NSJC-I000(B)-G5D
NSJ-0I000(B)-M3D

SYSMAC CS/CJ Series Communications
Commands Reference Manual

addressed to CS/CJ-series CPU Units.

The following information is included:
C-series (Host Link) commands
FINS commands

Note: This manual describes commands that can be sent to
the CPU Unit without regard for the communications path,
which can be through a serial communications port on the
CPU Unit, a communications port on a Serial Communica-
tions Unit/Board, or a port on any other Communications
Unit.

NSJ-series NSJ Controller Manual

Refer to the following manual for NSJ-series NSJ Controller specifications and handling methods not

given in this manual.

Cat. No. Models Name Description
W452 NSJ5-TQLICI(B)-G5D NSJ Series | Provides the following information about the NSJ-series NSJ Con-
NSJ5-SQUILI(B)-G5D Operation trollers:
NSJ8-TVLI|(B)-GSD Manual Overview and features

NSJ10-TVO(B)-G5D
NSJ12-TSO(B)-G5D

Designing the system configuration
Installation and wiring

I/O memory allocations
Troubleshooting and maintenance

Use this manual in combination with the following manuals: SYS-
MAC CS Series Operation Manual (W339), SYSMAC CJ Series
Operation Manual (W393), SYSMAC CS/CJ Series Programming
Manual (W394), and NS-V1/-V2 Series Setup Manual (V083)

xiii

FQM1 Series Manuals (Unit Version 3.0 or Later)

Refer to the following manuals for specifications and handling methods not given in this manual for
FQM1 Series unit version 3.0 (FQM1-CM002/MMP22/MMA22).

Cat. No. Models Name Description
0012 FQM1-CM002 FQM1 Series Provides the following information about the FQM1-series Modules
FQM1-MMP22 Operation Manual | (unit version 3.0):
FQM1-MMA22 Overview and features
Designing the system configuration
Installation and wiring
I/O memory allocations
Troubleshooting and maintenance
0013 FQM1-CM002 FQM1 Series Individually describes the instructions used to program the FQM1.
FQM1-MMP22 Instructions Use this manual in combination with the FQM1 Series
FQM1-MMA22 Reference Manual | Operation Manual (O012) when programming.

CP-series PLC Unit Manuals

Refer to the following manuals for specifications and handling methods not given in this manual for CP-
series CPU Units.

Cat. No. Models Name Description

W450 CP1H-XJIOICI-L] | SYSMAC CP Series | Provides the following information on the CP-series CP1H PLCs:
CP1H-XALOC-[1 | CP1H CPU Unit « Overview/Features
CP1H-YUOIO-OJ | Operation Manual « System configuration

* Mounting and wiring

*1/0O memory allocation

* Troubleshooting

Use this manual together with the CP1H/CP1L Programmable
Controllers Programming Manual (W451).

W462 CP1L-MOOOC-C0 | SYSMAC CP Series | Provides the following information on the CP-series CP1L PLCs:
CP1L-LUOOO-0 - | CPAL CPU Unit Oper- | « Overview/Features

ation Manual * System configuration

* Mounting and wiring

*1/0 memory allocation

¢ Troubleshooting

Use this manual together with the CP1H Programmable Control-
lers Programming Manual (W451).

W451 CP1H-XUUOOI-L] | SYSMAC CP Series | Provides the following information on the CP-series CP1H and
CP1H-XALILOC- | CP1H/CP1L CPU CP1L PLCs:
CP1H-YULOO-OI - | Unit Programming « Programming instructions

CP1L-MOOOO-O | Manual .
CPAL-LOOIO0-0) * Programming methods

¢ Tasks

Use this manual together with the CP1H/CP1L Programmable
Controllers Operation Manual (W450).

Installation from CX-One

For details on procedures for installing the CX-Programmer from CX-One FA Integrated Tool Package,
refer to the CX-One Ver. 3.0 Setup Manual provided with CX-One.

Cat. No. Model Manual name Contents
W463 CXONE-ALLICIC-V4/ | CX-One Setup Manual Installation and overview of CX-One FA
ALLILID-v4 Integrated Tool Package.

xiv

Overview of Contents

Precautions provides general precautions for using the CX-Programmer.
Part 1
Part 1 contains the following sections.

Section 1 introduces the function block functionality of the CX-Programmer and explains the features
that are not contained in the non-function block version of CX-Programmer.

Section 2 provides specifications for reference when using function blocks, including specifications on
function blocks, instances, and compatible PLCs, as well as usage precautions and guidelines.

Section 3 describes the procedures for creating function blocks on the CX-Programmer.

Part 2
Part 2 contains the following sections.

Section 4 introduces the structure text programming functionality of the CX-Programmer and explains
the features that are not contained in the non-structured text version of CX-Programmer.

Section 5 provides specifications for reference when using structured text programming, as well as
programming examples and restrictions.

Section 6 explains how to create ST programs.
Appendices provide information on structured text errors and ST function descriptions.

&WARNING Failure to read and understand the information provided in this manual may result in per-
sonal injury or death, damage to the product, or product failure. Please read each section
in its entirety and be sure you understand the information provided in the section and
related sections before attempting any of the procedures or operations given.

XV

xvi

Read and Understand this Manual

Please read and understand this manual before using the product. Please consult your OMRON
representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

(1) The warranty period for the Software is one year from either the date of purchase or the date on which
the Software is delivered to the specified location.

(2) If the User discovers a defect in the Software (i.e., substantial non-conformity with the manual), and
returns it to OMRON within the above warranty period, OMRON will replace the Software without charge
by offering media or downloading services from the Internet. And if the User discovers a defect in the
media which is attributable to OMRON and returns the Software to OMRON within the above warranty
period, OMRON will replace the defective media without charge. If OMRON is unable to replace the
defective media or correct the Software, the liability of OMRON and the User's remedy shall be limited to
a refund of the license fee paid to OMRON for the Software.

LIMITATIONS OF LIABILITY

(1) THE ABOVE WARRANTY SHALL CONSTITUTE THE USER'S SOLE AND EXCLUSIVE REMEDIES
AGAINST OMRON AND THERE ARE NO OTHER WARRANTIES, EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL OMRON BE LIABLE FOR ANY LOST PROFITS OR
OTHER INDIRECT, INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
USE OF THE SOFTWARE.

(2) OMRON SHALL ASSUME NO LIABILITY FOR DEFECTS IN THE SOFTWARE BASED ON
MODIFICATION OR ALTERATION OF THE SOFTWARE BY THE USER OR ANY THIRD PARTY.

(3) OMRON SHALL ASSUME NO LIABILITY FOR SOFTWARE DEVELOPED BY THE USER OR ANY
THIRD PARTY BASED ON THE SOFTWARE OR ANY CONSEQUENCE THEREOF.

xvii

Application Considerations

SUITABILITY FOR USE

THE USER SHALL NOT USE THE SOFTWARE FOR A PURPOSE THAT IS NOT DESCRIBED IN THE
ATTACHED USER MANUAL.

Xviii

Disclaimers

CHANGE IN SPECIFICATIONS

The software specifications and accessories may be changed at any time based on improvements or for
other reasons.

EXTENT OF SERVICE

The license fee of the Software does not include service costs, such as dispatching technical staff.

ERRORS AND OMISSIONS

The information in this manual has been carefully checked and is believed to be accurate; however, no
responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

Xix

XX

PRECAUTIONS

This section provides general precautions for using the CX-Programmer and the Programmable Logic Controller.

The information contained in this section is important for the safe and reliable application of the CX-Programmer
and Programmable Controller. You must read this section and understand the information contained before
attempting to set up or operate the CX-Programmer and Programmable Controller.

1 Intended Audience ittt XXii
2 General Precautions i XXii
3 Safety Precautions.t e xxii
4 Application Precautions i xxiii

xxi

Intended Audience

1

2

3

xxii

Intended Audience

This manual is intended for the following personnel, who must also have
knowledge of electrical systems (an electrical engineer or the equivalent).

* Personnel in charge of installing FA systems.
* Personnel in charge of designing FA systems.
* Personnel in charge of managing FA systems and facilities.

General Precautions

/\ WARNING

The user must operate the product according to the performance specifica-
tions described in the operation manuals.

Before using the product under conditions which are not described in the
manual or applying the product to nuclear control systems, railroad systems,
aviation systems, vehicles, combustion systems, medical equipment, amuse-
ment machines, safety equipment, and other systems, machines, and equip-
ment that may have a serious influence on lives and property if used
improperly, consult your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide
the systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the product.
Be sure to read this manual before attempting to use the product and keep
this manual close at hand for reference during operation.

It is extremely important that a PLC and all PLC Units be used for the speci-
fied purpose and under the specified conditions, especially in applications that
can directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PLC System to the above-mentioned appli-
cations.

Safety Precautions

/\ WARNING

& Caution

Confirm safety sufficiently before transferring /O memory area status from the
CX-Programmer to the actual CPU Unit. The devices connected to Output
Units may malfunction, regardless of the operating mode of the CPU Unit.
Caution is required in respect to the following functions.

* Transferring from the CX-Programmer to real /O (CIO Area) in the CPU
Unit using the PLC Memory Window.

* Transferring from file memory to real I/0O (CIO Area) in the CPU Unit using
the Memory Card Window.

Variables must be specified either with AT settings (or external variables), or
the variables must be the same size as the data size to be processed by the
instruction when specifying the first or last address of multiple words in the
instruction operand.

1. If a non-array variable with a different data size and without an AT setting
is specified, the CX-Programmer will output an error when compiling.

2. Array Variable Specifications

Application Precautions

& Caution

& Caution

& Caution

& Caution

* When the size to be processed by the instruction operand is fixed:
The number of array elements must be the same as the number of ele-
ments to be processed by the instruction. Otherwise, the CX-Programmer
will output an error when compiling.

* When the size to be processed by the instruction operand is not fixed:
The number of array elements must be greater than or the same as the
size specified in the other operands.

* If the other operand specifying a size is a constant, the CX-Program-
mer will output an error when compiling.

If the other operand specifying a size is a variable, the CX-Programmer
will not output an error when compiling, even if the size of the array
variable is not the same as that specified by the other operand (vari-
able). A warning message, however, will be displayed. In particular, if
the number of array elements is less than the size specified by the oth-
er operand (e.g., the size of the instruction operand is 16, and the num-
ber of elements registered in the actual variable table is 10), the
instruction will execute read/write processing for the area that exceeds
the number of elements. For example, read/write processing will be ex-
ecuted for the 6 words following those for the number of elements reg-
istered in the actual variable table. If these words are used for other
instructions (including internal variable allocations), unexpected oper-
ation will occur, which may result in serious accidents.

Check that the system will not be adversely affected if the size of the
variable specified in the operand is less than the size in the operand
definition before starting PLC operations.

Confirm safety at the destination node before transferring a program to
another node or changing contents of the I/O memory area. Doing either of
these without confirming safety may result in injury.

Execute online editing only after confirming that no adverse effects will be
caused by extending the cycle time. Otherwise, the input signals may not be
readable.

If synchronous unit operation is being used, perform online editing only after
confirming that an increased synchronous processing time will not affect the
operation of the main and slave axes.

Confirm safety sufficiently before monitoring power flow and present value
status in the Ladder Section Window or when monitoring present values in the
Watch Window. If force-set/reset or set/reset operations are inadvertently per-
formed by pressing short-cut keys, the devices connected to Output Units
may malfunction, regardless of the operating mode of the CPU Unit.

4 Application Precautions

Observe the following precautions when using the CX-Programmer.
» User programs cannot be uploaded to the CX-Programmer.
* Observe the following precautions before starting the CX-Programmer.

* Exit all applications not directly related to the CX-Programmer. Partic-
ularly exit any software such as screen savers, virus checkers, E-mail
or other communications software, and schedulers or other applica-
tions that start up periodically or automatically.

xxiii

Application Precautions

4

xXxiv

* Disable sharing hard disks, printers, or other devices with other com-
puters on any network.

* With some notebook computers, the RS-232C port is allocated to a
modem or an infrared line by default. Following the instructions in doc-
umentation for your computer and enable using the RS-232C port as
a normal serial port.

* With some notebook computers, the default settings for saving energy
do not supply the rated power to the RS-232C port. There may be both
Windows settings for saving energy, as well as setting for specific com-
puter utilities and the BIOS. Following the instructions in documenta-
tion for your computer, disable all energy saving settings.

Do not turn OFF the power supply to the PLC or disconnect the connect-
ing cable while the CX-Programmer is online with the PLC. The computer
may malfunction.

Confirm that no adverse effects will occur in the system before attempting
any of the following. Not doing so may result in an unexpected operation.

* Changing the operating mode of the PLC.
* Force-setting/force-resetting any bit in memory.
* Changing the present value of any word or any set value in memory.

Check the user program for proper execution before actually running it on
the Unit. Not checking the program may result in an unexpected opera-
tion.

When online editing is performed, the user program and parameter area
data in CJ2, CS1-H, CJ1-H, CJ1M, and CP1H CPU Units is backed up in
the built-in flash memory. The BKUP indicator will light on the front of the
CPU Unit when the backup operation is in progress. Do not turn OFF the
power supply to the CPU Unit when the BKUP indicator is lit. The data will
not be backed up if power is turned OFF. To display the status of writing to
flash memory on the CX-Programmer, select Display dialog to show PLC
Memory Backup Status in the PLC properties and then select Windows -
PLC Memory Backup Status from the View Menu.

Programs including function blocks (ladder programming language or
structured text (ST) language) can be downloaded or uploaded in the
same way as standard programs that do not contain function blocks.
Tasks including function blocks, however, cannot be downloaded in task
units (uploading is possible).

If a user program containing function blocks created on the CX-Program-
mer Ver. 5.0 or later is downloaded to a CPU Unit that does not support
function blocks (CS/CJ-series CPU Units with unit version 2.0 or earlier),
all instances will be treated as illegal commands and it will not be possible
to edit or execute the user program.

If the input variable data is not in boolean format, and numerical values
only (e.g., 20) are input in the parameters, the actual value in the CIO
Area address (e.g., 0020) will be passed. Therefore, be sure to include an
&, #, or +, - prefix before inputting the numerical value.

Addresses can be set in input parameters, but an address itself cannot be
passed as an input variable. (Even if an address is set as an input param-
eter, the value passed to the function block will be that for the size of data
of the input variable.) Therefore, an input variable cannot be used as the
operand of an instruction in the function block when the operand specifies
the first or last of multiple words. With CX-Programmer version 7.0, use

Application Precautions

4

an input-output variable specified as an array variable (with the first
address set for the input parameter) and specify the first or last element of
the array variable, or, with any version of CX-Programmer, use an internal
variable with an AT setting. Alternatively, specify the first or last element in
an internal variable specified as an array variable.

Values are passed in a batch from the input parameters to the input vari-
ables or input-output variables before algorithm execution (not at the
same time as the instructions in the algorithm are executed). Therefore, to
pass the value from a parameter to an input variable or input-output vari-
able when an instruction in the function block algorithm is executed, use
an internal variable or external variable instead of an input variable or
input-output variable. The same applies to the timing for writing values to
the parameters from output variables.

Always use internal variables with AT settings in the following cases.

* The addresses allocated to Basic I/O Units, Special I/O Units, and
CPU Bus Units cannot be registered to global symbols, and these vari-
ables cannot be specified as external variables (e.g., the data set for
global variables may not be stable).

¢ Use internal variables when Auxiliary Area bits other than those pre-
registered to external variables are registered to global symbols and
these variables are not specified as external variables.

* Use internal variables when specifying PLC addresses for another
node on the network: For example, the first destination word at the re-
mote node for SEND(090) and the first source word at the remote node
for RECV(098).

* Use internal variables when the first or last of multiple words is speci-
fied by an instruction operand and the operand cannot be specified as
an array variable (e.g., the number of array elements cannot be spec-
ified).

XXV

Application Precautions

XXvi

Part 1:
Function Blocks

SECTION 1
Introduction to Function Blocks

This section introduces the function block functionality of the CX-Programmer and explains the features that are not
contained in the non-function block version of CX-Programmer.

1-1 Introducing the Function Blocks. 4
1-1-1 Overviewand Features 4
1-1-2 Function Block Specifications 5
1-1-3 Files Created with CX-Programmer Ver. 6.0 or Later 8
1-1-4 Function Block Menus in CX-Programmer Ver. 5.0
(and later Versions).ot vttt 8
1-2 FunctionBlocks 11
1-2-1 0 Outline . ..ot e 11
1-2-2 Advantages of Function Blocks 12
1-2-3 Function Block Structure 13
1-3 Variables 18
1-3-1 Introduction.c.iniuninin e 18
1-3-2 Variable Usage and Properties 19
1-3-3 Variable Properties i 19
1-3-4 Variable Properties and Variable Usage 20
1-3-5 Internal Allocation of Variable Addresses 21
1-4 Converting Function Block Definitions to Library Files 23
1-5 Usage Proceduresottt 23
1-5-1 Creating Function Blocks and Executing Instances 23
1-5-2 Reusing FunctionBlocks 24
1-6 Version Upgrade Information 25

Introducing the Function Blocks Section 1-1

1-1
1-1-1

Introducing the Function Blocks

Overview and Features

The CX-Programmer Ver. 5.0 (and later versions) is a Programming Device
that can use standard IEC 61131-3 function blocks. The CX-Programmer
function block function is supported for CJ2H CPU Units, CP1H CPU Units,
NSJ-series NSJ Controllers, and FQM1 Flexible Motion Controllers as well as
CS/CJ-series CPU Units with unit version 3.0 or later and has the following
features.

User-defined processes can be converted to block format by using func-
tion blocks.

Function block algorithms can be written in the ladder programming lan-
guage or in the structured text (ST) language. (See note.)

* When ladder programming is used, ladder programs created with non-
CX-Programmer Ver. 4.0 or earlier can be reused by copying and past-
ing.

* When ST language is used, it is easy to program mathematical pro-
cesses that would be difficult to enter with ladder programming.

Note The ST language is an advanced language for industrial control
(primarily Programmable Logic Controllers) that is described in IEC
61131-3. The ST language supported by CX-Programmer con-
forms to the IEC 61131-3 standard.

Function blocks can be created easily because variables do not have to
be declared in text. They are registered in variable tables.

A variable can be registered automatically when it is entered in a ladder or
ST program. Registered variables can also be entered in ladder programs
after they have been registered in the variable table.

A single function block can be converted to a library function as a single
file, making it easy to reuse function blocks for standard processing.

A program check can be performed on a single function block to easily
confirm the function block’s reliability as a library function.

Programs containing function blocks (ladder programming language or
structured text (ST) language) can be downloaded or uploaded in the
same way as standard programs that do not contain function blocks.
Tasks containing function blocks, however, cannot be downloaded in task
units (uploading is possible).

One-dimensional array variables are supported, so data handling is eas-
ier for many applications.

Note The IEC 61131 standard was defined by the International Electro-
technical Commission (IEC) as an international programmable log-
ic controller (PLC) standard. The standard is divided into 7 parts.
Specifications related to PLC programming are defined in Part 3
Textual Languages (IEC 61131-3).

A function block (ladder programming language or structured text (ST)
language) can be called from another function block (ladder programming
language or structured text (ST) language). Function blocks can be
nested up to 8 levels and ladder/ST language function blocks can be com-
bined freely.

Introducing the Function Blocks

Section 1-1

1-1-2 Function Block Specifications

For specifications that are not listed in the following table, refer to the CX-Pro-
grammer Operation Manual (W446).

Item

Specifications

Model number

WS02-CXPC1-E-V9

Setup disk

CD-ROM

Compatible CPU Units (PLC models)

Note The function block and structured
text functions supported by CS/
CJ-series CPU Units with unit ver-
sion 4.0 or later can not be used
in CS/CJ-series CPU Units with
unit version 3.0 or earlier, CP-
series PLCs, NSJ-series PLCs, or
FQM1-series PLCs.

For details, refer to 7-6 Version
Upgrade Information.

CS/CJ-series CS1-H, CJ1-H, and CJ1M CPU Units with unit version 3.0 or later

are compatible.

Device Type CPU Type

e CJ2H CJ2H-CPU68/67/66/65/64/68-EIP/67-EIP/66-EIP/65-EIP
/64-EIP

*CS1G-H CS1G-CPU42H/43H/44H/45H

¢CS1H-H CS1H-CPU63H/64H/65H/66H/67H

*CJ1G-H CJ1G-CPU42H/43H/44H/45H

*CJ1H-H CJ1H-CPU65H/66H/67H/64H-R/65H-R/66H-R/67H-R
*CJ1M CJ1M-CPU11/12/13/21/22/23

The following CP-series CPU Units are compatible.

*CP1H CP1H-X/XA/Y

*CP1L CP1L-M/L

Note If a user program containing function blocks created on the CX-Program-
mer Ver. 5.0 or later is downloaded to a CPU Unit that does not support
function blocks (CS/CJ-series CPU Units with unit version 2.0 or earlier),
all instances will be treated as illegal commands and it will not be possi-
ble to edit or execute the user program.

*NSJ G5D (Used for the NSJ5-TQOL-G5D, NSJ5-SQO[-G5D, NSJ8
-TVOLI-G5D, NSJ10-TVO[I-G5D, and NSJ12-TS0[-G5D)
M3D (Used for the NSJ5-TQO[J-M3D, NSJ5-SQO[J-M3D, and
NSJ8-TVO[-M3D)

*FQM1-CM FQM1-CM002
*FQM1-MMA FQM1-MMA22
*FQM1-MMP FQM1-MMP22

CS/CJ/CP Series Function Restrictions

¢ Instructions Not Supported in Function Block Definitions
Block Program Instructions (BPRG and BEND), Subroutine Instructions (SBS,
GSBS, RET, MCRO, and SBN), Jump Instructions (JMP, CJP, and CJPN),
Step Ladder Instructions (STEP and SNXT), Immediate Refresh Instructions
(), /O REFRESH (IORF), ONE-MS TIMER (TMHH and TMHHX) (These tim-
ers can be used with CJ1-H-R CPU Units.)

Note For details and other restrictions, refer to 2-4 Programming Restrictions.

Introducing the Function Blocks

Section 1-1

Item

Specifications

Functions not
supported by
CX-Program-
mer Ver. 4.0
or earlier.

Defining
and creat-
ing func-
tion blocks

Number of
function
block defini-
tions

CJ2H Units:
e CJ2H-CPUBLI(-EIP): 2,048 max. per CPU Unit
CS1-H/CJ1-H CPU Units:

* Suffix -CPU44H/45H/64H/65H/66H/67H/64H-R/65H-R/66H-R/67H-R: 1,024

max. per CPU Unit

¢ Suffix -CPU42H/43H/63H: 128 max. per CPU Unit
CJ1M CPU Units:

e CJ1M-CPU11/12/13/21/22/23: 128 max. per CPU Unit
CP1H CPU Units:

¢ All models: 128 max. per CPU Unit
CP1L CPU Units:

e CP1L-M/L: 128 max. per CPU Unit
NSJ Controllers:

e NSJUI-LCIOICI-G5D: 1,024 max. per Controller;
NSJL-LICICIE)-M3D: 128 max. per Controller

FQM1 Flexible Motion Controllers:
* FQM1-CM002/MMA22/MMP22: 128 max. per Controller

Function
block
names

64 characters max.

Introducing the Function Blocks

Section 1-1

Item Specifications
Functions not | Defining | Variables Variable names 30,000 characters max.
supported by _and creat- Variable types Input variables (Inputs), output variables (Out-
CX-Program- | ing func- puts), input-output variables (In Out), internal
mer Ver. 4.0 | tion blocks variables (Internals), and external variables
or earlier. (Externals)
Number of variables used in | Maximum number of variables per function block
a function block definition
(not including internal vari- | ¢ Input-output variables: 16 max.
ables, external variables, |« |nput variables + input-output variables: 64 max.
EN, and ENO) * Output variables + input-output variables: 64
max.
Allocation of addresses Automatic allocation (The allocation range can be
used by variables set by the user.)
Actual address specification | Supported
Array specifications Supported (one-dimensional arrays only and only
for internal variables and input-output variables)
Language | Function blocks can be created in ladder programming language or structured
text (ST, see note).
Creating | Number of | CJ2H Units:
instances | instances e CJ2H-CPUBI(-EIP): 2,048 max. per CPU Unit
CS1-H/CJ1-H CPU Units:
¢ Suffix -CPU44H/45H/64H/65H/66H/67H/64H-R/65H-R/66H-R/67H-R: 2,048
max. per CPU Unit
¢ Suffix -CPU42H/43H/63H: 256 max. per CPU Unit
CJ1M CPU Units:
* CJ1M-CPU11/12/13/21/22/23: 256 max. per CPU Unit
CP1H CPU Units:
¢ All models: 256 max. per CPU Unit
CP1L CPU Units:
e CP1L-M/L: 256 max. per CPU Unit
NSJ Controllers:
e SJUI-LICICICI-G5D: 2,048 max. per Controller;
NSJUI-LICICIC1-M3D: 256 max. per Controller
FQM1 Flexible Motion Controllers:
* FQM1-CM002/MMA22/MMP22: 256 max. per Controller
Instance 15,000 characters max.
names
Storing Project files | The project file (.cxp/cxt) Includes function block definitions and instances.
function I'program The file memory program file (*.obj) includes function block definitions and
]Ei’llg:ks as lfiles instances.
Function Each function block definition can be stored as a single file (.cxf) for reuse in
block library | other projects.
files
Note The structured text (ST language) conforms to the IEC 61131-3 standard, but

CX-Programmer Ver. 5.0 supports only assignment statements, selection
statements (CASE and IF statements), iteration statements (FOR, WHILE,
REPEAT, and EXIT statements), RETURN statements, arithmetic operators,
logical operators, comparison functions, numeric functions, standard string
functions, numeric string functions, OMRON expansion functions, and com-
ments. For details, refer to SECTION 5 Structured Text (ST) Language Spec-
ifications in Part 2: Structured Text (ST).

Introducing the Function Blocks Section 1-1

1-1-3 Files Created with CX-Programmer Ver. 6.0 or Later

Project Files (*.cxp) and
File Memory Program
Files (*.obj)

Function Block Library
Files (*.cxf)

Note

Project Text Files
Containing Function
Blocks (*.cxt)

Projects created using CX-Programmer that contain function block definitions
and projects with instances are saved in the same standard project files
(*.cxp) and file memory program files (*.obj).

The following diagram shows the contents of a project. The function block def-
initions are created at the same directory level as the program within the rele-
vant PLC directory.

Project file (.cxp)

— PLCH — Global symbol table

— /O table

— PLC Setup

— PLC memory table

— Program (with rung comments)

—Local symbol table

— Section 1 (with instances) -

—— Section 2 (with instances) -
i
—— END section (with instances) -#----

— Function block definitions

— FunctionBlock1 \g

Each function block can be
] stored in a separate
— FunctionBlock2 J » definition file (.cxf).

! Instances created
in program
PLC2 sections.

A function block definition created in a project with CX-Programmer Ver. 6.0
can be saved as a file (1 definition = 1 file), enabling definitions to be loaded
into other programs and reused.

When function blocks are nested, all of the nested (destination) function block
definitions are included in this function block library file (.cxf).

Data equivalent to that in project files created with CX-Programmer Ver. 6.0
(*.cxp) can be saved as CXT text files (*.cxt).

1-1-4 Function Block Menus in CX-Programmer Ver. 5.0 (and later

Versions)
The following tables list menus related to function blocks in CX-Programmer
Ver. 5.0 and later versions. For details on all menus, refer to the CX-Program-
mer Operation Manual (W4486).
Main Menu
Main Submenu Shortcut Function
menu
File Function Block Load Function |--- Reads the saved function block library files (*.cxf).
Block from File
Save Function |--- Saves the created function block definitions to a file ([func-
Block to File tion block library file]*.cxf).

Introducing the Function Blocks

Section 1-1

Main Submenu Shortcut Function
menu

Edit Update Function Block --- When a function block definition’s input variables, output
variables, or input-output variables have been changed
after the instance was created, an error will be indicated by
displaying the instance’s left bus bar in red. This command
updates the instance with the new information and clears
the error.

To Lower Layer Jumps to the function block definition for the selected
instance.

Function Block (ladder) generation Generates a ladder-programmed function block for the
selected program section while automatically determining
address application conditions.

View Monitor FB Instance - When monitoring the program online, monitors ST variable
status as well as I/O bit and word status (I/O bit monitor) of
the ladder diagram in the instance.

(Supported by CX-Programmer Ver. 6.1 and later only).

To Lower Layer --- Displays on the right side the contents of the function block
definition of the selected instance. (Supported by CX-Pro-
grammer Ver. 6.0 and later only.)

To Upper Layer Returns to the calling instance (ladder diagram or ST).
(Supported by CX-Programmer Ver. 6.0 and later only.)

Window FB Instance Displays the FB Instance Viewer. (When nesting, the dis-

Viewer play shows details such as the relationship between
instance nesting levels and allocated variable addresses in
the instances.)

Insert Function Block Invocation F Creates an instance in the program (section) at the present
cursor location.

Function Block Parameter P When the cursor is located to the left of an input variable or
the right of an output variable, sets the variable’s input or
output parameter.

PLC Memory | Function |Function Block | --- Sets the range of addresses (function block instance areas)
Alloca- | Block/ /SFC Memory internally allocated to the selected instance’s variables.
tion SFC Allocation

Memory [Fynction Block |- Checks the status of the addresses internally allocated to
/SFC Memory the selected instance’s variables.
Statistics
Function Block | --- Checks the addresses internally allocated to each variable
Instance in the selected instance.
Address
Optimize Func- | --- Optimizes the allocation of addresses internally allocated to
tion Block/SFC variables.
Memory
Program | Online Edit Begin Starts online editing of a function block.

Send Change

Transfers changes made during online editing of a function
block.

Cancel

Cancels changes made to a function block being edited
online.

Transfer FB
Source

Transfers only the function block source.

Release FB
Online Edit
Access Rights

Forcefully releases the access rights for function block,
SFC, and ST online editing held by another user.

Introducing the Function Blocks

Section 1-1

Clear All Break
Point

Main Submenu Shortcut Function
menu
Tools Simulation Break Point | - Sets or clears a break point.
Set/Clear
Break Point
Break Point | Clears all break points.

Mode | Run Executes continuous scanning. (Sets the ladder execution

(Monitor Mode) engine’s run mode to MONITOR mode.)

Mode | Stop Sets the simulator’s operation mode to PROGRAM mode.

(Program

Mode)

Mode | Pause |--- Pauses simulator operation.

Step Run --- Executes just one step of the simulator’s program.

Step Run | - When there is a function block call instruction, this com-

Step In mand moves to execution of the internal program step.

Step Run | - When a function block’s internal program step is being exe-

Step Out cuted, this command returns to the next higher level (call
source) and pauses execution.

Step Run | Executes steps continuously for a fixed length of time.

Continuous

Step Run

Step Run | Executes for one cycle and pauses execution.

Scan Run

Always Display
Current Execu-
tion Point

Used with the Step Run or Continuous Step Run com-
mands to automatically scroll the display and always show
the pause point.

Break Point List

Displays a list of the break points that have been set.
(Operation can be jumped to a specified point.)

Main Pop-up Menus

Pop-up Menu for Function Block Definitions

Pop-up menu

Function

Insert Function Block Ladder

rithm.

Creates a function block definition with a ladder programming language algo-

Structured Text

Creates a function block definition with an ST language algorithm.

From file

Reads a function block definition from a function block library file (*.cxf).

Pop-up Menu for Inserted Function Blocks

Pop-up menu

Function

Open

Displays the contents of the selected function block definition on the right side
of the window.

Save Function Block File

Saves the selected function block definition in a file.

Compile Compiles the selected function block definition.

FB online Edit Begin Starts online editing of a function block.
Send Change Transfers changes made during online editing of a function block.
Cancel Cancels changes made to a function block being edited online.

Transfer FB Source

Transfers only the function block source.

Release FB Online
Edit Access Rights

Forcefully releases the access rights for function block online editing held by
another user.

10

Function Blocks

Section 1-2

Pop-up Menu for Function Block Variable Tables

Pop-up menu

Function

Edit Edits the variable.

Insert Variable Adds a variable to the last line.

Insert Variable |Above Inserts the variable above the current cursor position.
Below Inserts the variable below the current cursor position.

Cut Cuts the variable.

Copy Copies the variable.

Paste Pastes the variable.

Find Searches for the variable. Variable names, variable comments, or all (text strings) can

be searched.

Replace Replaces the variable.

Delete Deletes the variable.

Rename Changes only the name of the variable.

Pop-up Menu for Instances

Pop-up menu

Function

Edit

Changes the instance name.

Update Invocation

When a function block definition’s input variables, output variables, or input-output vari-
ables have been changed after the instance was created, an error will be indicated by
displaying the instance’s left bus bar in red. This command updates the instance with
the new information and clears the error.

Monitor FB Ladder Instance

When monitoring the program online, monitors I/O bit and word status (I/O bit monitor)
of the ladder diagram in the instance.

(Supported by CX-Programmer Ver. 6.0 and later only).

Monitor FB Instance

When monitoring the program online, monitors ST variable status as well as 1/O bit and
word status (I/O bit monitor) of the ladder diagram in the instance.

(Supported by CX-Programmer Ver. 6.1 and later only).

Register in Watch Window

Displays the FB variables registration Dialog Box in order to register a variable from the
selected instance to the Watch Window.

Function Block Definition

Displays the selected instance’s function block definition on the right side of the window.

Shortcut Keys

F Key: Pasting Function
Block Definitions in
Program

Enter Key: Inputting
Parameters

Move the cursor to the position at which to create the copied function block
instance in the Ladder Section Window, and press the F Key. This operation is
the same as selecting Insert - Function Block Invocation.

Position the cursor at the left of the input variable or input-output variable, or
at the right of the output variable and press the Enter Key. This operation is
the same as selecting Insert - Function Block Parameter.

1-2 Function Blocks

1-2-1 Outline

A function block is a basic program element containing a standard processing
function that has been defined in advance. Once the function block has been
defined, the user just has to insert the function block in the program and set
the 1/0O in order to use the function.

As a standard processing function, a function block does not contain actual
addresses, but variables. The user sets addresses or constants in those vari-
ables. These address or constants are called parameters. The addresses
used by the variables themselves are allocated automatically by the CX-Pro-
grammer for each program.

11

Function Blocks

Section 1-2

With the CX-Programmer, a single function block can be saved as a single file
and reused in other PLC programs, so standard processing functions can be
made into libraries.

Program 2
Copy of function block A
Function block A Program 1 y—' '7
i Variable |[— Output
Standard Copy of function block A
program section
written with 4‘ '7
T variables B
Input — Variable Variable [—Output
Define in advance. T T
Insert in
program. Set Set
Copy of function block A
Save function
block as a file. N
fi:;g\r/f?ufcuon, Input — Variable Variable [— Output

Function
block A To another PLC program
Reuse.

1-2-2 Advantages of Function Blocks

Structured
Programming

Easy-to-read “Black Box”
Design

Use One Function Block
for Multiple Processes

Reduce Coding Errors
Black-boxing Know-how
Data Protection

Improved Reusability with
Variable Programming

Creating Libraries

12

Function blocks allow complex programming units to be reused easily. Once
standard programming is created in a function block and saved in a file, it can
be reused just by placing the function block in a program and setting the
parameters for the function block’s I/O. The ability to reuse existing function
blocks will save significant time when creating/debugging programs, reduce
coding errors, and make the program easier to understand.

Structured programs created with function blocks have better design quality
and require less development time.

The I/O operands are displayed as variable names in the program, so the pro-
gram is like a “black box” when entering or reading the program and no extra
time is wasted trying to understand the internal algorithm.

Many different processes can be created easily from a single function block by
using the parameters in the standard process as input variables (such as
timer SVs, control constants, speed settings, and travel distances).

Coding mistakes can be reduced because blocks that have already been
debugged can be reused.

Read-protection can be set for function blocks to prevent programming know-
how from being disclosed.

The variables in the function block cannot be accessed directly from the out-
side, so the data can be protected. (Data cannot be changed unintentionally.)

The function block’s I/O is entered as variables, so it isn’t necessary to change
data addresses in a block when reusing it.

Processes that are independent and reusable (such as processes for individ-
ual steps, machinery, equipment, or control systems) can be saved as func-
tion block definitions and converted to library functions.

Function Blocks

Section 1-2

Supports Nesting and

Multiple Languages

The function blocks are created with variable names that are not tied to actual
addresses, so new programs can be developed easily just by reading the def-
initions from the file and placing them in a new program.

Mathematical expressions can be entered in structured text (ST) language.

With CX-Programmer Ver. 6.0 and later versions, function blocks can be
nested. The function block nesting function allows just special processing to
be performed in a ST-language function block nested within a ladder-lan-
guage function block.

Function block (ladder language)

6 GreenLight

Specisl_Operation

Shoperation
01 B00L) (B00L)
En ENO

input_seta [(REAL) (REALY| result_data
3

RESULT

|

Call (Nesting) L
Function block (ST language)

IF 11 =TRLE THEN
RESULT=SMN(deta);
EMDIF;

1-2-3 Function Block Structure

Function Block
Definitions

Number of Function Block
Definitions

Function blocks consist of function block definitions that are created in
advance and function block instances that are inserted in the program.

Function block definitions are the programs contained in function blocks. Each
function block definition contains the algorithm and variable definitions, as
shown in the following diagram.

- —= Example: CLOCK PULSE
Function Block Definition

Example: CLOCK PULSE i 1. Algorithm i
E tim_b |

E tim_a |

ariable definitions P — !

z O o .

2. Variable Definitions

\ Usage Name Type
Internal | tim_a TIMER

Internal | tim_b TIMER
Input ON_TIME INT
Input OFF_TIME INT

1. Algorithm

Standardized programming is written with variable names rather than real I/O
memory addresses. In the CX-Programmer, algorithms can be written in
either ladder programming or structured text.

2. Variable Definitions

The variable table lists each variable’s usage (input, output, input-output, or
internal) and properties (data type, etc.). For details, refer to 1-3 Variables.

The maximum number of function block definitions that can be created for one
CPU Unit is either 128 or 1,024 depending on the CPU Unit model.

13

Function Blocks

Section 1-2

Instances

Number of Instances

14

Note

To use an actual function block definition in a program, create a copy of the
function block diagram and insert it in the program. Each function block defini-
tion that is inserted in the program is called an “instance” or “function block
instance.” Each instance is assigned an identifier called an “instance name.”

By generating instances, a single function block definition can be used to pro-
cess different I/0 data with the same function.

Not yet in program

a:'lld mtergory not yet Block instance in program with memory
allocate allocated. (object
(abstract). |:> (object)
Function Block Definition FB1 Program Instance
1. Algorithm Instance FB1_1 of function block definition FB1 h"s‘zrgory
Insert in .
Standard program. — B g?gg;ntfg:qc — —
program unit + | ! b L ;\/Ierlgg;y i
with variable npu a L_Tor
names a, b, c, dapta * — Output data —
etc. c
2.P t <0 Automatic JL_ Memory _ |
- arameters allocation ¥ |[__for FB1_2 |
Table defining usage Insert in
and properties of program.
variables a, b, c, etc.

Different I/O data
can be processed

Instance\FB1_2 of function block definition EB1

| with the same
— function.
Idneﬂgt -4 2 b — Output data

o

~ Output data

Instances are managed by names. More than one instance with the same
name can also be inserted in the program. If two or more instances have the
same name, they will use the same internal variables. Instances with different
names will have different internal variables.

For example, consider multiple function blocks that use a timer as an internal
variable. In this case all instances will have to be given different names. If
more than one instance uses the same name, the same timer would be used
in multiple locations, resulting in duplicated use of the timer.

If, however, internal variables are not used or they are used only temporarily
and initialized the next time an instance is executed, the same instance name
can be used to save memory.

instance_A
TIMER_FB
Function Block Definition
TIMER_FB — —
Variable Definitions
Internal variable: WORK_NUM > Use same internal variables.
instance_A \
TIMER_FB
> Use different internal variables.
instance_B
TIMER_FB

Multiple instances can be created from a single function block definition. Up to
either 256 or 2,048 instances can be created for a single CPU Unit depending
on the CPU Unit model. The allowed number of instances is not related to the
number of function block definitions and the number of tasks in which the
instances are inserted.

Function Blocks Section 1-2

Parameters Each time an instance is created, set the real I/O memory addresses or con-
stants for input variables, output variables, and input-output variables used to
pass input data values to instances and obtain output data values from
instances. These addresses and constants are called parameters.

Instance of Function Block Definition A
Input0.00 4 g b [— Output 2.00
NI
Inpuf3.00 4 ¢
NG

Set the constants or Sutput dostmation.
input source addresses address to which to pass
from which to pass data. data.

Using Input Variables and Output Variables

With input variables and output variables, it is not the input source address
itself, but the contents at the input address in the form and size specified by
the variable data type that is passed to the function block. In a similar fashion,
it is not the output destination address itself, but the contents for the output
address in the form and size specified by the variable data type that is passed
from the function block.

Even if an input source address (i.e., an input parameter) or an output desti-
nation address (i.e., an output parameter) is a word address, the data that is
passed will be the data in the form and size specified by the variable data type
starting from the specified word address.

Program
Instance of Function Block Definition A
Input D100 — m k|~ Output D300
Input Dzo()\j n /
Examples:

If m is type WORD, one word of data from D100 will be passed to the
variable.

If n is type DWORD, two words of data from D200 and D201 will be
passed to the variable.

If k is type LWORD, four words of data from the variable will be passed
to the D300 to D303.

Note (1) Only addresses in the following areas can be used as parameters: CIO
Area, Auxiliary Area, DM Area, EM Area (banks 0 to C), Holding Area,
and Work Area.

The following cannot be used: Index and Data Registers (both direct and
indirect specifications) and indirect addresses to the DM Area and EM
Area (both in binary and BCD mode).

(2) Local and global symbols in the user program can also be specified as
parameters. To do so, however, the data size of the local or global symbol
must be the same as the data size of the function block variable.

(3) When an instance is executed, input values are passed from parameters
to input variables before the algorithm is processed. Output values are

15

Function Blocks Section 1-2

passed from output variables to parameters just after processing the al-
gorithm. If it is necessary to read or write a value within the execution cy-
cle of the algorithm, do not pass the value to or from a parameter. Assign
the value to an internal variable and use an AT setting (specified address-
es).

&Caution If an address is specified in an input parameter, the values in the address are
passed to the input variable. The actual address data itself cannot be passed.

&Caution Parameters cannot be used to read or write values within the execution cycle
of the algorithm. Use an internal variable with an AT setting (specified
addresses). Alternatively, reference a global symbol as an external variable.

Using Input-Output Variables (In Out)

When using an input-output variable, set the address for the input parameter.
A constant cannot be set. The address set for the input parameter will be
passed to the function block. If processing is performed inside the function
block using the input-output variable, the results will be written to I/O starting
at the address set for the size of the variable.

Program

Instance of function block definition A

| | Automatically set.

| v
Input D200 7| a —Output D200

T I S O O |

Address passed. \ Address passed.

Q

“a” changed by function
block processing.

Variable “@”

D200 \
D201

Processing is performed inside the function block using variable
“a” The resulting value is written to I/O memory for the size of
variable “a” starting at address D200.

Note Input-output variables are specified in a CX-Programmer variable table by
selecting “In Out” for the variable usage.

16

Function Blocks

Section 1-2

H Reference Information

A variety of processes can be created easily from a single function block by
using parameter-like elements (such as fixed values) as input variables and
changing the values passed to the input variables for each instance.

Example: Creating 3 Instances from 1 Function Block Definition

Function Block Definition
Example: CONTROL

Example:

There are 3 FB
instances and each
has its own I/O and
internal variables.

Algorithm | || "Algorithm

Instance
CASCADE_01
Algorithm

Internal and I/O
variables

Instance
CASCADE_02

Internal and 1/0

<
2
=
=2
9
)

| S

Instance
CASCADE_03
Algorithm

Internal and I/O
variables

Cyclic task 0
CASCADE_01
P_On CONTROL
— F— EN ENO
&20
—_| ON_TIME

&10 | OFF_TIME

e

CASCADE_02

P_On CONTROL
Bl gy |

EN ENO
&15
—| ON_TIME

&1 OFF_TIME

Cyclic task 1

CASCADE_03

P_On CONTROL
EN ENO

&7
— ON_TIME

&8 OFF_TIME

If internal variables are not used, if processing will not be affected, or if the
internal variables are used in other locations, the same instance name can be
used at multiple locations in the program.

Function block definition

The same instance can be
used at multiple locations.,

- Instance
Example: (?ONTHOL CASCADE
Algorithm [Algorithm |
- Internal and 1/O)|

Cyclic task

CASCADE

1.0
CONTROL
EN ENo —()

PARA_1
PARA_2

CASCADE

PARA_2

CONTROL

— en ENO ()

PARA_1

Cyclic ta

Sl??A‘]SCADE

P_0f
&100

— Ef

&200

CONTROL
N~ ENO —()
PARA_1
PARA_2

Some precautions are required when using the same memory area. For
example, if the same instance containing a timer instruction is used in more
than one program location, the same timer number will be used causing coil
duplication, and the timer will not function properly if both instructions are exe-

cuted.

17

Variables

Section 1-3

Registration of Instances

1-3 Variables

1-3-1 Introduction

Note

18

Each instance name is registered in the global symbol table as a file name.

Program
Instance (sample) of function block definition A

L

4 a b |-

}

The instance is registered in the
global symbol table with the instance
name as the symbol name.

Name Data type Address/
value
sample| FB [FunctionBlock1] | N/A[Auto]

The function block definition
name is registered after FB in

Instance name square parentheses [].

In a function block, the addresses (see note) are not entered as real I/O mem-
ory addresses, they are all entered as variable names. Each time an instance
is created, the actual addresses used by the variable are allocated automati-
cally in the specified I/O memory areas by the CX-Programmer. Conse-
quently, it isn’t necessary for the user to know the real I/O memory addresses
used in the function block, just as it isn’t necessary to know the actual mem-
ory allocations in a computer. A function block differs from a subroutine in this
respect, i.e., the function block uses variables and the addresses are like
“black boxes.”

Example:

Program
Function block definition A

Instance of function block definition A
Standard program section with
variable names a, b, ¢, etc. — F——
Insert in
a b program. Aput 0.00 | a b |—Output 2.00
Input 3.00 | ¢
c Specify inputs|/dnd outputs
4| Ii MOV at the same time.

Status of 0.00 (1 or 0) is Status of b (1 or 0) is

Table indicating usage and passed to a. passed to 2.00.
roperties of variables a, b, c, etc.
prop 0.00[4 | a b 2.00
Usage: Inputsl Status of 3.00 (1 or 0) is
Properties: passed to c.
Name| Type | AT |Initial Value|Retained| 3.00 c
a | BOOL '
c BOOL
Usage: Outputs The system automatically allocates the
Properties: addresses used by variables a, b, and c. For
Name Tpe | AT Inital Value, Retained example, when W100 to W120 is set as the
system’s non-retained memory area, bit

addresses such as a = W10000, b = W10001,
and ¢ = W10002 will be allocated.

Constants are not registered as variables. Enter constants directly in instruc-
tion operands.

Variables

Section 1-3

* Ladder programming language: Enter hexadecimal numerical values
after the # and decimal values after the &.

* Structured text (ST language): Enter hexadecimal numerical values af-
ter 16# and enter decimal numerical values as is.

Exception: Enter directly or indirectly specified addresses for Index Registers
IRO to IR15 and Data Registers DRO to DR15 directly into the instruction
operand.

1-3-2 Variable Usage and Properties

Variable Usage

The following variable types (usages) are supported.

Internals: Internal variables are used only within an instance. They cannot
be used pass data directly to or from I/O parameters.

Inputs: Input variables can input data from input parameters outside of
the instance. The default input variable is an EN (Enable) vari-
able, which passes input condition data.

Outputs: Output variables can output data to output parameters outside of
the instance. The default output variable is an ENO (Enable Out)
variable, which passes the instance’s execution status.

In Out: Input-output variables can input data from input parameters out-
side of the instance and can return the results of processing in a
function block instance to external parameters.

Externals: External variables are either system-defined variables registered
in advance with the CX-Programmer, such as the Condition Flags
and some Auxiliary Area bits, or user-defined global symbols for
use within instances.

For details on variable usage, refer to the section on Variable Type (Usage)
under Variable Definitions in 2-1-2 Function Block Elements.

The following table shows the number of variables that can be used and the
kind of variable that is created by default for each of the variable usages.

1-3-3 Variable Properties

Variable Name

Note

Data Type

AT Settings (Allocation to
an Actual Addresses)

Variables have the following properties.

The variable name is used to identify the variable in the function block. It
doesn’t matter if the same name is used in other function blocks.

The variable name can be up to 30,000 characters long, but must not begin
with a number. Also, the name cannot contain two underscore characters in a
row. The character string cannot be the same as that of a an index register
such as in IR0 to IR15. For details on other restrictions, refer to Variable Defi-
nitions in 2-1-2 Function Block Elements.

Select one of the following data types for the variable:

BOOL, INT, UINT, DINT, UDINT, LINT, ULINT, WORD, DWORD, LWORD,
REAL, LREAL, TIMER, COUNTER, and STRING

For details on variable data types, refer to Variable Definitions in 2-1-2 Func-
tion Block Elements.

It is possible to set a variable to a particular I/O memory address rather than
having it allocated automatically by the system. To specify a particular
address, the user can input the desired I/O memory address in this property.
This property can be set for internal variables only. Even if a specific address
is set, the variable name must still be used in the algorithm.

19

Variables Section 1-3

Refer to Variable Definitions in 2-1-2 Function Block Elements for details on
AT settings and 2-5-3 AT Settings for Internal Variables for details on using
AT settings.

Array Settings A variable can be treated as a single array of data with the same properties.
To convert a variable to an array, specify that it is an array and specify the

maximum number of elements.

This property can be set for internal variables and input-output variables only.
Only one-dimensional arrays are supported by the CX-Programmer Ver. 5.0
and later versions.

 Setting Procedure
Click the Advanced Button, select the Array Variable option, and input the
maximum number of elements.

* When entering an array variable name in the algorithm in a function block
definition, enter the array index number in square brackets after the vari-
able number.

For details on array settings, refer to Variable Definitions in 2-1-2 Function
Block Elements.

This is the initial value set in a variable before the instance is executed for the
first time. Afterwards, the value may be changed as the instance is executed.
For example, set a boolean (BOOL) variable (bit) to either 1 (TRUE) or 0
(FALSE). Set a WORD variable to a value between 0 and 65,535 (between
0000 and FFFF hex).

If an initial value is not set, the variable will be set to 0. For example, a bool-
ean variable would be 0 (FALSE) and a WORD variable would be 0000 hex.

Initial Value

Retain Select the Retain Option if you want a variable’s data to be retained when the

PLC is turned ON again and when the PLC starts operating.
e Setting Procedure
Select the Retain Option.

Size When a STRING variable is used, the size required to store the text string can
be set to between 1 and 255 characters.

1-3-4 Variable Properties and Variable Usage

The following table shows which properties must be set, can be set, and can-
not be set, based on the variable usage.

20

Property Variable usage
Internals Inputs Outputs In Out
Name Must be set. | Must be set. | Must be set. | Must be set.
Data Type Must be set. | Must be set. | Must be set. | Must be set.
AT (specified Can be set. Cannot be set. | Cannot be set. | Cannot be set.
address)
Array specification | Must be set. | Cannot be set. | Cannot be set. | Must be set.
Initial Value Can be set. Cannotbe set. | Can be set. Cannot be set.
(See note 1.)
Retained Can be set. Cannot be set. | Can be set. Cannot be set.
(See note 1.)
Size Can be set. Cannot be set. | Cannot be set. | Cannot be set.
(See note 2.)

(1) The value of the input parameter will be given.
(2) Valid only for STRING variables.

Variables Section 1-3

1-3-5 Internal Allocation of Variable Addresses

When an instance is created from a function block definition, the CX-Program-
mer internally allocates addresses to the variables. Addresses are allocated
to all of the variables registered in the function block definition except for vari-
ables that have been assigned actual addresses with the AT Settings prop-
erty.

Program FB instance areas

Instance of function block definition A Non-retained area

Starting address 15 0
THHCIo, H, W,
Input 0.00| a b | Output 2.00 FH D, or E Area 1 Size (words)
t |Output 5.00 Retained area
Note: Variable ¢ is an internal Starting address 15
variable, so it is not displayed. v]
He H.D,orE 4 Size (words)
Usage: Inputs FE Area B
Properties:) .
[Name[Type | AT |[initial Value|Retained] Timer area
e feootl ‘ . Starting address Size (C leti
i ize (Completion
Usage: Outputs - Piags)
Properties:

Name| Type | AT |initial Value|fetained] Counter area

\
} b }?.?fé'ﬁ} } }VES g ﬁ . Starting Size (Completion
Automatic allocation of gddress C Area Flags)
addresses by system
Usage: Internals Example
Properties: > 2000.00 O

[Name] Type | AT | initiaValue[Retained]
[¢ [BooL[2000.00] [

Manual allocation of address to
variable in FB by AT Settings option.

Setting Internal Allocation The user sets the function block instance areas in which addresses are allo-
Areas for Variables cated internally by the system. The variables are allocated automatically by
the system to the appropriate instance area set by the user.

Setting Procedure

Select Function Block/SFC Memory - Function Block/SFC Memory Allo-
cation from the PLC Menu. Set the areas in the Function Block/'SFC Memory
Allocation Dialog Box.

21

Variables

Section 1-3

22

Note

Note

Function Block Instance Areas

CJ2-series CPU Units

FB Instance Default value Applicable memory
Area Start address | End address | Size areas
Non Retain H512 H1407 896 CIO, WR, HR, DM,
EM (See note.)
Retain H1408 H1535 128 HR, DM, EM (See note.)
Timers T3072 T4095 1024 |[TIM
Counters C3072 C4095 1024 |CNT

Force-setting/resetting is enabled when the following EM banks are specified:

CJ2H-CPUB4(-EIP)/-CPU65(-EIP)

EM bank 3

CJ2H-CPU66(-EIP)

EM banks 6 to 9

EM banks 7 to E

(_

(_
CJ2H-CPU67(-EIP)
CJ2H-CPUBS(-EIP)

EM banks 11 to 18

CS/CJ-series CPU Units Ver. 3.0 or Later, and NSJ Controllers

FB Instance Default value Applicable memory
Area Start address | End address | Size areas
Non Retain H512 H1407 896 CIO, WR, HR, DM, EM
Retain H1408 H1535 128 HR, DM, EM
Timers T3072 T4095 1024 |TIM
Counters C3072 C4095 1024 |CNT
FQM1 Flexible Motion Controllers
FB Instance Default value Applicable memory
Area Start address | End address | Size areas
Non Retain 5000 5999 1000 |CIO, WR, DM
Retain None
Timers T206 T255 50 TIM
Counters C206 C255 50 CNT
CP-series CPU Units
FB Instance Default value Applicable memory
Area Start address | End address | Size areas
Non Retain H512 H1407 896 CIO, WR, HR, DM (See
note.)
Retain H1408 H1535 128 HR, DM (See note.)
Timers T3072 T4095 1024 |[TIM
Counters C3072 C4095 1024 |CNT
DM area of CP1L-L
Address CP1L-L
D0000 to D9999 Provided
D10000 to D31999 Not Provided
D32000 to D32767 Provided

Converting Function Block Definitions to Library Files

Section 1-4

Function Block Holding
Area Words (H512 to
H1535)

The Function Block Holding Area words are allocated from H512 to H1535.
These words are different to the standard Holding Area used for programs
(HO00 to H511) and are used only for the function block instance area (inter-
nally allocated variable area). These words cannot be specified as instruction
operands. They are displayed in red if input when a function block is not being
created. Although the words can be input when creating a function block, an
error will occur when the program is checked. If this area is specified not to be
retained in the Function Block Memory Allocation Dialog Box, turn the power
ON/OFF or clear the area without retaining the values when starting opera-
tion.

1-4 Converting Function Block Definitions to Library Files

A function block definition created using the CX-Programmer can be stored as
a single file known as a function block definition file with flename extension
*.cxf. These files can be reused in other projects (PLCs).

Project Project

Function block definition
Example: CLOCK_PULSE

Function block definition
Example: CLOCK_PULSE

: 1. Algorithm
1. Algorithm tim g
i Save Read
tim_a
R = "
. - B . ENO
ENO -

_Type |
TIMER
TIMER

p - INT
put | OFF_TIME INT

Function block
definition file (.cxf)

1-5 Usage Procedures

1-5

1,2,3...

Once a function block definition has been created and an instance of the algo-
rithm has been created, the instance is used by calling it when it is time to
execute it. Also, the function block definition that was created can be saved in
a file so that it can be reused in other projects (PLCs).

1 Creating Function Blocks and Executing Instances

The following procedure outlines the steps required to create and execute a
function block.

1. First, create the function block definition including the algorithm and vari-
able definitions in ladder program or ST language. Alternatively, insert a
function block library file that has been prepared in advance.

Note (a) Create the algorithm entirely with variable names.

(b) When entering the algorithm in ladder programming language,
project files created with versions of CX-Programmer earlier than
Ver. 5.0 can be reused by reading the project file into CX-Pro-
grammer Ver. 5.0 or higher and copying and pasting useful parts.

(c) Existing ladder programming can be automatically turned into a
function block using Edit - Function Block (ladder) generation.

2. When creating the program, insert copies of the completed function block
definition. This step creates instances of the function block.

3. Enter an instance name for each instance.

23

Usage Procedures

Section 1-5

4. Set the variables’ input source addresses and/or constants and output
destination addresses and/or constants as the parameters to pass data for
each instance.

5. Select the created instance, select Function Block Memory - Function
Block Memory Allocation from the PLC Menu, and set the internal data
area for each type of variable.

6. Transfer the program to the CPU Unit.

7. Start program execution in the CPU Unit and the instance will be called and
executed if their input conditions are ON.

The instance is
executed if the input .
condition is established. ~ 3- Input instance name

Function block definition A Program
. Instance of function block definition A
1. Algorithm Input
condition 5. The system automatically allocates
the addresses used by these
Standard variables, Set the data area area in
program section which these addresses are allocated.
with variable Insert in Input 0.00— 4 b *|—Output 2.00
names a, b, c, program.
etc.
¢ |~ Qutput 3.00
2. Variables
Table defining usage
and propelnlie% Léf 9 4. Specify the input source and
variables a, b, ¢, etc. output destination addresses.

1-5-2 Reusing Function Blocks

24

1,2,3...

Note

Use the following procedure to save a function block definition as a file and
use it in a program for another PLCs.

1. Select the function block that you want to save and save it as a function
block definition file (*.cxf).

2. Open the other PLC’s project and open/read the function block definition
file (*.cxf) that was saved.

3. Insert the function block definition in the program when creating the new
program.

Function block definition A

1. Algorithm Program

Input Instance of function block definition A

Standard condition
program section
with variable
names a, b, c,

ete. Input1.00 -| @

o

— Output 5.00

— Output 6.00

o

2. Variables

Table defining usage|
and properties of Read and
variables a, b, c, etc. insert.
Save

Function
block
definition|
A

Function block
definition file (*.cxf)

In the CX-Programmer Ver. 5.0, each function block definition can be com-
piled and checked as a program. We recommend compiling to perform a pro-
gram check on each function block definition file before saving or reusing the
file.

Version Upgrade Information Section 1-6

1-6 Version Upgrade Information

Refer to the CX-Programmer Operation Manual (W446) for information on
upgraded functions other than those for function blocks and structure text.

Version 8.3 to 9.0 Upgrade Information

Data Structures Supported as Symbol Data Types
Version 8.3 Version 9.0
Data structures are not supported. CJ2 CPU Units now support data structures as symbol data type.

Version 8.0 to 8.1 Upgrade Information
The new PLC models of CJ2H-CPU6L] supporting function blocks and struc-
tured text are now supported.

Version 7.2 to 8.0 Upgrade Information

The new PLC models of CJ2H-CPUBLI-EIP supporting function blocks and
structured text are now supported.

Version 7.0 to 7.2 Upgrade Information

Improved Support for For details on the other improvements to CX-Programmer functions in this

Function Blocks and upgrade, refer to the CX-Programmer Operation Manual (W446).
Structured Text

m IEC61131-3 Language Improvements

Support has been improved for the structured text and SFC languages, which
are IEC61131-3 languages. Ladder, structured text (ST), and SFC program-
ming can be combined freely, so that the best language for each process can
be used, which reduces program development time and makes the program
easier to understand.

Support for ST Language in the Program (Task Allocation)

Version 7.0 Version 7.2
The ST language could be used only in function | The ST language can be used in programs (task allocation) other than
blocks. function blocks. (ST programs can be allocated to tasks.)

Other programming languages can be combined freely in a single user
program. With this capability, numerical calculations can be written as
ST programs, and other processing can be written as ladder or SFC
programs.

Note Structured text is supported only by CS/CJ-series CPU Units with
unit version 4.0 or later. It is not supported by CP-series CPU
Units.

Comparison of Function Block Definitions and ST Programs

Version 7.0 Version 7.2
Function block definitions could not be com- * Function block definitions can be compared. With this capability, it is
pared. easy to check for differences in function block definitions in programs.

¢ ST programs can also be compared.

25

Version Upgrade Information

Section 1-6

Version 6.1 to 7.0 Upgrade Information

Convenient Functions to Convert Ladder Diagrams to Function Blocks

Version 6.1

Version 7.0

Ladder programming can be copied into a func-
tion block definition to create a function block.
The symbols and addresses in the ladder pro-
gramming, however, have to be checked and
input variables, internal variables, and output
variables have to be identified and manually reg-
istered.

One or more program sections can be selected from the program and
then Function Block (ladder) generation selected from the menu to
automatically create a function block definition and automatically allo-
cate variables according to symbols and addresses in the program sec-
tions. (Allocations can later be changed as required.) This enables
legacy programming to be easily converted to function blocks.

Online Function Block Editing

Version 6.1

Version 7.0

Function block definitions (i.e., the algorithms
and variable tables) cannot be changed online
when the PLC is running. (Only I/O parameters
for function block instances can be changed.)

The algorithms and variables tables for function blocks can be changed
while the PLC is operation. (See note.) This enables debugging and
changing function block definitions in systems that cannot be stopped,
such as systems that operate 24 hours a day.

Operation: Right-click the function block definition in the Work Space
and select FB Online Edit - Begin from the pop-up menu.

Note Function block instances cannot be added.
Note This function cannot be used for simulations on CX-Simulator.

Support for STRING Data Type and Processing Functions in Standard Text Programs

Version 6.1

Version 7.0

* The STRING data type (text) cannot be used in
ST programming. (See note.)

* There are no text processing functions sup-
ported for ST programming.

e Even in a ladder program, the user has to con-
sider the ASCII code and code size of text for
display messages and no-protocol communica-
tions (see note) when executing string process-
ing instructions, data conversion instructions,
and serial communications instructions.

Note The user can use the PLC memory func-
tion of the CX-Programmer to input text
strings in I/O memory. The data size in I/O
memory, however, must be considered.

* The STRING data type (text) can be used in ST programming. This
enables, for example, substituting a text string for a variable (e.g., a :=
'@READ") to easily set a variable containing text (i.e., ASCIl charac-
ters). In doing this, the user does not have to be concerned with the
ASCII code or code size.

* Text processing functions are supported for ST programming, includ-
ing text extraction, concatenation, and searching. This enables easily
processing text strings and display messages in ST programming
inside function blocks.

* Functions are also supported for sending and receiving text strings.
This enables easily processing no-protocol communications using ST
programming in functions blocks without being concerned with ASCII
codes.

Support for Input-Output Variables

Version 6.1

Version 7.0

¢ Input-output variables cannot be used in func-
tion blocks. (Only input variables, internal vari-
ables, and output variables can be used.)

* Arrays cannot be specified for input variables.

¢ Values are passed from input parameters to
input variables.

¢ Input-output variables can be used in function blocks.

¢ Input-output variables can be specified as arrays.

¢ Addresses are passed from input parameters to input variables
instead of values. This enables using input-output variable arrays
inside function blocks to enable easily passing large amounts of data
to function blocks using the input parameters.

26

Version Upgrade Information

Section 1-6

Version 6.0 to 6.1 Upgrade Information

Support for NSJ-series
NSJ Controllers

Support for FQM1 Unit
Version 3.0

The PLC model (“device type”) can be set to “NSJ” and the CPU type can be
set to the G5D.

The new models of the FQM1 Flexible Motion Controller are now supported
(i.e., the FQM1-CM002 Coordinator Module and the FQM1-MMA22/MMP22

Motion Control Modules).

Instance ST/Ladder Program Simulation Function

Previous version (Ver. 6.0)

New version (Ver. 6.1)

The CX-Simulator could be used to execute a
ladder program step (Step Run), execute steps
continuously (Continuous Step Run), execute a
single cycle (Scan Run), and set I/O break point
conditions.

The Step Run, Continuous Step Run, Scan Run, and Set/Clear Break
Point functions can be executed as CX-Programmer functions.

All of these functions can be used with ladder programs and ladder/ST
programs in function blocks.

Note The CX-Simulator Ver. 1.6 (sold separately) must be installed in
order to use these functions.

Note 1/O break conditions cannot be set.

Improved Function Block Functions

Monitoring ST Programs in Function Blocks

Previous version (Ver. 6.0)

New version (Ver. 6.1)

The operation of ST programs within function
block instances could not be monitored while
monitoring the program online.

(It was possible to check the contents of a func-
tion block definition’s program and monitor the I/
O status of a function block instance’s ladder
diagram.)

The status of a function block instance’s ST program can be monitored
while monitoring the program.

To monitor the ST program’s status, either double-click the function
block instance or right-click the instance and select Monitor FB
Instance from the pop-up menu. At this point, it will be possible to
change PVs and force-set/reset bits.

Note Online editing is not supported.

Password Protection of Function Blocks

Previous version (Ver. 6.0)

New version (Ver. 6.1)

The function block properties could be set to
prevent the display of a function block defini-
tion’s program.

The following two kinds of password protection can be set.
* Password protection restricting both reading and writing.
* Password protection restricting writing only.

27

Version Upgrade Information

Section 1-6

Version 5.0 to 6.0 Upgrade Information

Nesting Function Blocks

Previous version (Ver. 5.0)

New version (Ver. 6.0)

A function block could not be called from another
function block. (Nesting not supported.)

A function block can be called from another function block (nested). Up
to 8 nesting levels are supported.

The languages of the calling function block and called function block
can be either ladder language or ST language.

The nesting level relationship between function blocks can be displayed
in a directory tree format. When function blocks are nested, just one
Function Block Library file (.cxf extension) is stored for the calling func-
tion block and its called (nested) function block definitions.

I/0 Bit Monitor Support for Ladder Programs in Function Blocks

Previous version (Ver. 5.0)

New version (Ver. 6.0)

The I/O status of a function block instance’s lad-
der diagram could not be monitored while moni-
toring the program online.

(It was only possible to check the program in the
function block definition.)

The I/O status of a function block instance’s ladder diagram can be
monitored while monitoring the program online.

To monitor the 1/O status, either double-click the function block instance
or right-click the instance and select Monitor FB Ladder Instance
from the pop-up menu. At this point, it will be possible to monitor the
status of I/0O bits and the content of words, change PVs, force-set/reset
bits, and monitor differentiation (ON/OFF transitions) of bits.

Note Online editing is not supported and timer/counter SVs cannot be
changed.

Registering and Monitoring Function Block Instance Variables in a Watch Window

Previous version (Ver. 5.0)

New version (Ver. 6.0)

To register a function block instance’s variable in
a Watch Window, it was necessary to display the
Watch Window, double-click the window, and

select the desired variable from a pull-down list.

Multiple variables in a function block instance can be easily registered
together in the Watch Window. The FB variables registration Dialog Box
can be displayed with any of the following methods and the variables
can be registered together in that Dialog Box.

* Right-click the function block instance and select Register in Watch
Window from the pop-up menu.

* Select the desired function block instance in the program or variable
table and either copy/paste or drag/drop the instance into the Watch
Window.

* Move the cursor to an empty line in the Watch Window and select
Register in Watch Window from the pop-up menu.

Other Function Block Improvements

* The cross-reference pop-up function is supported in ladder programs
within function blocks.

* The ST language help program can be started from the pop-up menu in
ST Editor.

* A function block’s definitions can be opened just by double-clicking the
function block instance.

* The cursor automatically moves down after a function block instance’s
parameter input is confirmed.

28

SECTION 2
Function Block Specifications

This section provides specifications for reference when using function blocks, including specifications on function blocks,
instances, and compatible PLCs, as well as usage precautions and guidelines.

2-1 Function Block Specifications 30
2-1-1 Function Block Specifications 30
2-1-2 Function Block Elements 31
2-2 Data Types Supported in Function Blocks 41
2-2-1 BasicData Typescvvuvriin i i 41
2-2-2 Derivative Data Types.o vttt 41
2-3 Instance Specificationsttt 42
2-3-1 Compositionof anInstance 42
2-3-2 Parameter Specifications. i 47
2-3-3 Operating Specifications.c..coiiiiiiinn... 49
2-4 Programming Restrictions.ttt 51
2-4-1 Ladder Programming Restrictions 51
2-4-2 ST Programming Restrictions. 53
2-4-3 Programming Restrictions 54
2-5 Function Block Applications Guidelines 56
2-5-1 Deciding on Variable Data Types........................... 56
2-5-2 Determining Variable Types
(Inputs, Outputs, In Out, Externals, and Internals). 57
2-5-3 AT Settings for Internal Variables. 59
2-5-4 Array Settings for Input-Output Variables and Internal Variables . . 59
2-5-5 Specifying Addresses Allocated to Special I/O Units 61
2-5-6 Using Index Registers. i .. 62
2-6 Precautions for Instructions with Operands Specifying the First
or Last of Multiple Words. i 65
2-7 Instruction Support and Operand Restrictions 68
2-8 CPU Unit Function Block Specifications 70
2-8-1 Specificationsottt 70
2-8-2 Operation of Timer Instructions 75
2-9 Number of Function Block Program Steps and Instance Execution Time . . . 76
2-9-1 Number of Function Block Program Steps. 76
2-9-2 Function Block Instance Execution Time. 77

29

Function Block Specifications

Section 2-1

2-1
2-1-1

30

Function Block Specifications

Function Block Specifications

Item

Description

Number of function
block definitions

CJ2H Units:
e CJ2H-CPUBLI(-EIP): 2,048 max. per CPU Unit
CS1-H/CJ1-H CPU Units:

¢ Suffix -CPU44H/45H/64H/65H/66H/67H/64H-R/65H-R/
66H-R/67H-R: 1,024 max. per CPU Unit

e Suffix -CPU42H/43H/63H: 128 max. per CPU Unit
CJ1M CPU Units:

e CJ1M-CPU11/12/13/21/22/23: 128 max. per CPU Unit
CP1H CPU Units:

* CP1H-XA/X/Y: 128 max. per CPU Unit

CP1L CPU Units:

* CP1L-M/L: 128 max. per CPU Unit

NSJ Controllers:

¢ All models: 1,024 max. per Controller

FQM1 Flexible Motion Controllers:

* FQM1-CM002/MMA22/MMP22: 128 max. per Controller

Number of instances

CJ2H Units:
e CJ2H-CPUBLI(-EIP): 2,048 max. per CPU Unit
CS1-H/CJ1-H CPU Units:

¢ Suffix -CPU44H/45H/64H/65H/66H/67H/64H-R/65H-R/
66H-R/67H-R: 2,048 max. per CPU Unit

e Suffix -CPU42H/43H/63H: 256 max. per CPU Unit
CJ1M CPU Units:

* CJ1M-CPU11/12/13/21/22/23: 256 max. per CPU Unit
CP1H CPU Units:

e CP1H-XA/X/Y: 256 max. per CPU Unit

CP1L CPU Units:

¢ CP1L-M/L: 256 max. per CPU Unit

NSJ Controllers:

¢ All models: 2,048 max. per Controller

FQM1 Flexible Motion Controllers:

* FQM1-CM002/MMA22/MMP22: 256 max. per Controller

Number of instance
nesting levels

* CX-Programmer Ver. 5.0:
Nesting is not supported.

¢ CX-Programmer Ver. 6.0 and later versions:
Supports nesting up to 8 levels. (The instance called from
the program is counted as one nesting level.)

Number of variables
used in a function block
(not including internal
variables, external vari-
ables, EN, and ENO)

Maximum number of variables per function block definition
* Input-output variables: 16 max.

¢ Input variables + input-output variables: 64 max.

* Output variables + input-output variables: 64 max.

Function Block Specifications Section 2-1

2-1-2 Function Block Elements

The following table shows the items that must be entered by the user when
defining function blocks.

Item Description
Function block The name of the function block definition
definition name
Language The programming language used in the function block defini-

tion. Select ladder programming or structured text
Variable definitions | Variable settings, such as operands and return values,
required when the function block is executed

* Type (usage) of the variable

* Name of the variable

* Data type of the variable

* Initial value of the variable

Algorithm Enter the programming logic in ladder or structured text.
* Enter the programming logic using variables.

* Input constants directly without registering in variables.

Comment Function blocks can have comments.
Function Block Each function block definition has a name. The names can be up to 64 char-
Definition Name acters long and there are no prohibited characters. The default function block

name is FunctionBlock[], where [1is a number (assigned in order).
Function block definition name

CLOCK PULSE
—— EN ENO
(BOOL) (BOOL)
ON_TIME

(INT)

—| OFF_TIME
(INT)

Language Select either ladder programming language or structured text (ST language).

Note (1) For details on ST language, refer to SECTION 5 Structured Text (ST)
Language Specifications in Part 2: Structured Text (ST).

(2) When nesting, function blocks using ST language and ladder language
can be combined freely (version 6.0 and higher only).

Variable Definitions Define the operands and variables used in the function block definition.
Variable Names * Variable names can be up to 30,000 characters long.
 Variables name cannot contain spaces or any of the following characters:
P #8 % & ()=-~"M\|"@{[+;":}]<,>.72]/

 Variable names cannot start with a number (0 to 9).

* Variable names cannot contain two underscore characters in a row.

* The following characters cannot be used to indicate addresses in I/O
memory.

A, W, H (or HR), D (or DM), E (or EM), T (or TIM), C (or CNT) followed
by the numeric value (word address)

31

Function Block Specifications

Section 2-1

Variable Notation

CLOCK PULSE
EN

ENO
| (BooL) BOOL)
ON_TIME

(INT)

OFF - TIME

[onT)

Variable table
Usage | Name Type
Internal | tim_a TIMER
Internal | tim_b TIMER
Input ON_TIME INT
Input OFF_TIME INT

N\ _A
\ L Output variables

Input variables

llm a

TIMX tlm _a ’)FF TIME

IMX tim_b OFF TIME

Internal /

variables

Variable Type (Usage)
Item Variable type
Inputs Outputs In Out Internals Externals
(See note 1.)
Definition Operands to the Return values from | Variables used to | Variables used Global symbols
instance the instance pass data to and only within registered as vari-
from instances instance ables beforehand
using addresses with the CX-Pro-
grammer or user-
defined global
symbols.
Status of value | The value of the The value is The value of the The value is The value of the

at next execu-

input parameter

passed on to the

external parameter

passed on to the

variable registered

tion will be given. next execution. next execution. externally
Display Displayed on the Displayed on the Displayed on the Not displayed. Not displayed.
left side of the right side of the left and right sides
instance. instance. of the instance.
Number allowed | 64 max. per func- |64 max. per func- |16 max. per func- | Unlimited Unlimited
tion block (exclud- |tion block (exclud- |tion block
ing EN) ing ENO)
AT setting No No No Supported No
Array setting No No Supported Supported No
Retain setting Supported Supported No Supported No
(See note 2.)
Variables cre- EN (Enable): ENO (Enable Out- |None None Pre-defined sym-
ated by default | Receives an input | put): bols registered in
condition. Outputs the func- advance as vari-
tion block’s execu- ables in the CX-
tion status. Programmer, such

as Condition Flags
and some Auxil-
iary Area bits.

32

Note

variables supported in function blocks.

M Input Variables

Input variables pass external operands to the instance. The input variables
are displayed on the left side of the instance.

The value of the input source (data contained in the specified parameter just
before the instance was called) will be passed to the input variable.

(2) The value of the input parameter will be given.

(1) For details on Externals, refer to Appendix A System-defined external

Function Block Specifications

Section 2-1

Note

1.0

e

D100

FB
EN
ENO

P_On
}—
DO |

cv

i

The value of the parameter specified as the input (value of DO)
is passed to the instance’s input variable (PV).

Example

ADD_INT_DINT 100

EN ENO

—qTIN16 D0UT32
D20 ;_N_BD

IN16 is an INT variable, so the content of D100 is used.

IN32 is a DINT variable, so the content of D200 and
D201 is used.

| D1000

Variable table
Usage Name
Internal| tmp
Input [EN
Input | IN16
Input | IN32
Output | ENO
Output | OUT32

Type
DINT,
BOOL
INT
DINT.
BOOL
DINT,

Name I Data Type AT | Inikial Yalue I Retained | iZomment \

iEM BOOL FALSE Controls execution of the Function Block,
NG INT 0
IN32 DINT 1)

Qutputs | Externals |

Internals Inputs I

1. The same name cannot be assigned to an input variable and output vari-
able. If it is necessary to receive a value from an external variable, change
the variable inside the function block, and then return the result to the ex-
ternal variable, use an input-output variable.

2. When the instance is executed, input values are passed from parameters
to input variables before the algorithm is processed. Consequently, values
cannot be read from parameters to input variables within the algorithm. If
it is necessary to read a value within the execution cycle of the algorithm,
do not pass the value from a parameter. Assign the value to an internal
variable and use an AT setting (specified addresses). Alternatively, refer-
ence the global symbol as external variables.

Initial Value

Initial values can be set for input variables, but the value of the input parame-
ter will be enabled (the input parameter value will be set when the parameter
for input variable EN goes ON and the instance is executed).

Note The input parameter setting cannot be omitted when using the CX-
Programmer.
EN (Enable) Variable

When an input variable is created, the default input variable is the EN variable.
The instance will be executed when the parameter for input variable EN is ON.

M Output Variables

Output variables pass return values from the instance to external applications.
The output variables are displayed on the right side of the instance.

After the instance is executed, the value of the output variable is passed to the
specified parameter.

33

Function Block Specifications

Section 2-1

34

Note

P_On FB
EN ENO

DO__| py vy \’/Rw 00

The value of the output variable (CV) is passed to the parameter
specified as the output destination, which is D100 in this case.

Example

EN '
—] SIGN IN16 tmp '

ADD_INT_DINT
EN

D100 D1000 ‘
\ Variable table
. . Usage| Name Data type
OUTSQ is a DINT va_rlable, S0 Internal mp BINT
the variable's value is passed Input [EN BOOL
Input | IN16 INT
to D1000 and D1001. Input [ine2 DINT
QOutput [ENO BOOL
Output [outs2 DINT
MName | Data Type | AT | Initial Yalue | Retained | Comment |
EMO BOOL FALSE Indicates successful execution of the Fun..,

ENO BOOL FALSE

DINT I

Internals | Inputs Cutputs | Externals |

Like internal variables, the values of output variables are retained until the
next time the instance is executed (i.e., when EN turns OFF, the value of the
output variable is retained).

Example:
In the following example, the value of output variable CV will be retained until
the next time the instance is executed.

Product A counter

CTD
CD Q

LD

—1pv cv |-D150

1. The same name cannot be assigned to an input variable and output vari-
able. If it is necessary to receive a value from an external variable, change
the variable inside the function block, and then return the result to the ex-
ternal variable, use an input-output variable.

2. When the instance is executed, output variables are passed to the corre-
sponding parameters after the algorithm is processed. Consequently, val-
ues cannot be written from output variables to parameters within the
algorithm. If it is necessary to write a value within the execution cycle of the
algorithm, do not write the value to a parameter. Assign the value to an in-
ternal variable and use an AT setting (specified addresses).

Initial Value

An initial value can be set for an output variable that is not being retained, i.e.,
when the Retain Option is not selected. An initial value cannot be set for an
output variable if the Retain Option is selected.

The initial value will not be written to the output variable if the IOM Hold Bit
(A50012) is ON.

Auxiliary Area control bit Initial value
IOM Hold Bit (A50012) |ON The initial value will not be set.

Function Block Specifications

Section 2-1

Note

ENO (Enable Output) Variable

The ENO variable is created as the default output variable. The ENO output
variable will be turned ON when the instance is called. The user can change
this value. The ENO output variable can be used as a flag to check whether or
not instance execution has been completed normally.

Input-Output Variables

Input-output variables use addresses to pass data to and from a function
block instance. An input-output variable is displayed on both the left and right
side of the instance. The value of the input-output variable immediately after
the instance is executed is not stored in the addresses internally allocated to
the input-output variable by the system, but rather the value is stored in the
address (and following addresses depending on the data size) of the parame-
ter used to pass data to and from the input-output variable.

P_ON 1.0
- EB

1 en ENO “Q
D200 D200
g T

Address D200 is passed to the input-output variable CAL.
Inside the function block, the specified data size of /0
memory starting from D200 is processed, and changes are
thus passed outside the function block instance.

Input-output variables are specified a CX-Programmer variable table by
selecting “In Out” for the variable usage.

H Internal Variables

Internal variables are used within an instance. These variables are hidden
within each instance. They cannot be referenced from outside of the instance
and are not displayed in the instance.

The values of internal variables are retained until the next time the instance is
executed (i.e., when EN turns OFF, the value of the internal variable is
retained). Consequently, even if instances of the same function block defini-
tion are executed with the same 1/0O parameters, the result will not necessarily
be the same.

Example:

The internal variable tim_a in instance Pulse_2sON_1sOFF is different from
internal variable tim_a in instance Pulse_4sON_1sOFF, so the instances can-
not reference and will not affect each other’s tim_a value.

Variable table
Pulse_2sON_1sOFF

Usage Name Data type
P On CLOCK PULSE 1.0 Internal | tim_a TIMER
— —— En ENO—O Internal | tim_b TIMER
&20 Input ON_TIME INT
— ON_TIME Input OFF_TIME INT

810 | oFF_TIME

Pulse_4sON_1sOFF

P_On CLOCK PULSE
—f — &en ENO—O

&40

—| ON_TIME

&10 OFF_TIME

35

Function Block Specifications

Section 2-1

Mame Data Type AT Initial Yalue Retained | Comment
tmp DINT [
Internals Inputs Cutputs I Externals I
{Algorithm (Body) |
0.0 ADD_INT_DINT 100 goErrl\: m (Body)
— — en ENO ' A :
D100 — SIGN IN16 (tmp '
D1000 — :
— | INt6 ouT32 | !
D200 | IN32 \ +L IN32 tmp OUT32
\ Variable table
Internal variable tmp [Name Type
is not displayed. [Internall tmp DINT
npu EN BOOL
npu IN16 INT
npu IN32 DINT
Output | ENO BOOL
Output [outs2 DINT

Retain Data through Power Interruptions and Start of Operation

Internal variables retain the value from the last time that the instance was
called. In addition, the Retain Option can be selected so that an internal vari-
able will also retains its value when the power is interrupted or operation
starts (the mode is switched from PROGRAM to RUN or MONITOR mode).

When the Retain Option is selected, the value of the variable is retained when
the power is interrupted or operation starts unless the CPU Unit does not
have a backup battery. If the CPU Unit does not have a good battery, the value
will be unstable.

Variables Condition Status
Variables set to Retain Start of operation Retained
Power ON Retained

When the Retain Option is not selected, the value of the variable will not be
held when the power is interrupted or operation starts. Even variables not set
to be retained, however, can be held at the start of operation by turning ON
the IOM Hold Bit (A50012) and can be held during power interruptions by set-
ting the PLC Setup, as shown in the following table.

Variables Condition IOM Hold Bit (A50012) setting
OFF ON
IOM Hold Bit Status at Startup | IOM Hold Bit Status at Startup
(PLC Setup) selected (PLC Setup) not selected
Variables not | Start of operation | Not retained | Retained Retained
setto Retain [poywer ON Not retained |Retained Not retained
Note The IOM Hold Bit (A50012) is supported for compatibility with previous mod-

36

els. To hold the values of variables in function blocks, however, use the Retain
Option and not the IOM Hold Bit.

Initial Value

An initial value can be set for an internal variable that is not being retained
(i.e., when the Retain Option not selected). An initial value cannot be set for
an internal variable if the Retain Option is selected.

Internal variables that are not being retained will be initialized to 0.

The initial value will not be written to the internal variable if the IOM Hold Bit

(A50012) is ON.

Initial value
The initial value will not be set.
The initial value will be set.

Auxiliary Area control bit
IOM Hold Bit (A50012) ON
OFF

Function Block Specifications

Section 2-1

Variable Properties

H External Variables

External variables are either system-defined variables that have been regis-
tered in CX-Programmer before hand, or variables that externally reference
user-defined variables in the global symbol table.

* For details on system-defined variables, refer to Appendix A System-
defined external variables supported in function blocks.

* To externally reference user-defined variables in the global symbol table,
the variables of the same name and data type must be registered as an
external variable.

However, it is impossible to externally reference the variables user-
defined as a network symbol.

Variable Name

The variable name is used to identify the variable in the function block. The
name can be up to 30,000 characters long. The same name can be used in
other function blocks.

Note A variable name must be input for variables, even ones with AT settings (spec-
ified address).
Data Type
Any of the following types may be used.
Data type Content Size Inputs Outputs In Out Internals
BOOL Bit data 1 bit OK OK OK OK
INT Integer 16 bits OK OK OK OK
UNIT Unsigned integer 16 bits OK OK OK OK
DINT Double integer 32 bits OK OK OK OK
UDINT Unsigned double integer 32 bits OK OK OK OK
LINT Long (4-word) integer 64 bits OK OK OK OK
ULINT Unsigned long (4-word) integer 64 bits OK OK OK OK
WORD 16-bit data 16 bits OK OK OK OK
DWORD 32-bit data 32 bits OK OK OK OK
LWORD 64-bit data 64 bits OK OK OK OK
REAL Real number 32 bits OK OK OK OK
LREAL Long real number 64 bits OK OK OK OK
TIMER Timer (See note 1.) Flag: 1 bit Not sup- Not sup- Not sup- OK
PV: 16 bits | ported ported ported

COUNTER Counter (See note 2.) Flag: 1 bit Not sup- Not sup- Not sup- OK
PV: 16 bits | ported ported ported

STRING Text string data Variable Not sup- Not sup- Not sup- OK
ported ported ported

Note

(1) The TIMER data type is used to enter variables for timer numbers (0 to
4095) in the operands for TIMER instructions (TIM, TIMH, etc.). When
this variable is used in another instruction, the Timer Completion Flag (1
bit) or the timer present value (16 bits) is specified (depending on the in-
struction operand). The TIMER data type cannot be used in structured
text function blocks.

(2) The COUNTER data type is used to enter variables for counter numbers
(0 to 4095) in the operands for COUNTER instructions (CNT, CNTR,
etc.). When this variable is used in another instruction, the Counter Com-
pletion Flag (1 bit) or the counter present value (16 bits) is specified (de-
pending on the instruction operand). The COUNTER data type cannot be
used in structured text function blocks.

37

Function Block Specifications Section 2-1

AT Settings (Allocation to Actual Addresses)

With internal variables, it is possible to set the variable to a particular 1/0
memory address rather than having it allocated automatically by the system.
To specify a particular address, the user can input the desired I/O memory
address in this property. It is still necessary to use variable name in program-
ming even if a particular address is specified.

Note (1) The AT property can be set for internal variables only.

(2) AT settings can be used only with the CIO (Core I/O Area), A (Auxiliary
Area), D (Data Memory Area), E (Extended Memory Area, H (Holding
Relay Area), W (Internal Relay Area).

The AT property cannot be set in the following memory areas:
* Index Register and Data Register Areas (directly/indirectly specified)
* Indirectly specified DM/EM (: binary mode, *:BCD mode)
(3) AT settings can be used for the following allocations.

* Addresses for Basic I/0O Units, CPU Bus Units, or Special I/0 Units

* Auxiliary Area bits not registered as external variables in advance

* PLC addresses for other nodes in the network
Example:
If the READ DATA FILE instruction (FREAD) is being used in the function
block definition and it is necessary to check the File Memory Operation Flag
(A34313), use an internal variable and specify the flag’s address in the AT set-
ting.
Register an internal variable, select the AT setting option, and specify A34313

as the address. The status of the File Memory Operation Flag can be checked
through this internal variable.

= Advanced Settings x|

Mo O — ey Settigs
Bt T BOOL ~ ™ Aray Variable el
P P — C ptonnged > frray Size: |5 =
hitsl Ve [FALSE] [Retain AT
Commen t @Addresg)

2 Address ([A3431E >

[Ri«ge pranusats

1

V

Address A34313 is allocated to a
boolean internal variable named
NOW_CARD_ACCESS.

When the AT setting is used, the function block loses its flexibility. This func-
tion should thus be used only when necessary.

Array Setting
With internal variables and input-output variables, a variable can be defined
as an array.

Note Only one-dimensional arrays are supported by the CX-Programmer.
With the array setting, a large number of variables with the same properties

can be used by registering just one variable.

* An array set for an internal variable can have from 1 to 32,000 array ele-
ments. An array set for an input-output variable can have the number of
elements given in the following table.

Data type Number of elements
BOOL 2,048
INT/UINT/WORD 2,048

38

Function Block Specifications

Section 2-1

Note

Data type Number of elements
DINT/UDINT/DWORD 1,024
LINT/ULINT/LWORD 512

* An array can be set only for internal variables or input-output variables.

* Any data type except for STRING can be specified for an array variable,
as long as it is an internal variable.

* When entering an array variable name in the algorithm of a function block
definition, enter the array index number in square brackets after the vari-
able name. The following three methods can be used to specify the index.
(In this case the array variable is a[].)

* Directly with numbers (for ladder or ST language programming)
Example: a[2]

» With a variable (for ladder or ST language programming)
Example: a[n], where n is a variable

Note INT, DINT, LINT, UINT, UDINT, or ULINT can be used as the vari-
able data type.

* With an equation (for ST language programming only)
Example: a[b+c], where b and ¢ are variables

Note Equations can contain only arithmetic operators (+, —, *, and /).

An array is a collection of data elements that are the same type of data. Each
array element is specified with the same variable name and a unique index.
(The index indicates the location of the element in the array.)

A one-dimensional array is an array with just one index number.

Example: When an internal variable named SCL is set as an array variable

with 10 elements, the following 10 variables can be used:

SCL[0], SCL[1], SCL[2], SCL[3], SCL[4], SCL[5], SCL[6], SCL[7], SCL[8], and

SCL[9]

SCL

WORD variable
WORD variable
WORD variable
WORD variable | Specify SCL[3] to access this data element.
WORD variable
WORD variable
WORD variable
WORD variable
WORD variable
WORD variable

0
1
2
3
4
5
6
7
8
9

R — :

Data Type: WORD - Gancel Ol
s — e E—

Usage: Internal ~ fidvanced

Tnitial Value: 0 I Betain AT Set(%gs

Comment I™ AT (Specified Address)

o [—

Rarige:

[

(KIS

1

14
Settings for variable SCL as an array
variable with element numbers 0 to 9.

Use an array variable when specifying the first or last of multiple words in an
instruction operand to enable reusing the function block if an internal variable
with a AT property cannot be set for the operand and an external variable can-
not be set. When using an array setting for an input-output variable, specify
the address of the first word for the input parameter (CX-Programmer version
7.0 or higher). When using an array setting for an internal variable, prepare an
array variable with the number of elements for the required size, and after set-

39

Function Block Specifications

Section 2-1

Algorithm

Operand Input
Restrictions

40

Note

Note

ting the data in each array element, specify the first or last element in the
array variable for the operand.

Example:
Function block definition Instance
Variable SCL
—fF—En ENO
SCL WORDI[10]
s D 7100
Algorithm
SCL-BODY
SCL Specifying this array element in
LD P_On 0 #0000 [the SCL instruction is the same
MOV #0000 SCL[0] 1 &0 as specifying the first address.
MOV &0SCL[1] 2 #0300
MOV #0300 SCL[2] 3 &4000
MOV &4000 SCL[3]
SCL S SCL[0] D Write the operand data
to the array variables.

Specify the beginning of the
array in the SCL instruction.

For details, refer to 2-6 Precautions for Instructions with Operands Specifying
the First or Last of Multiple Words.

Initial Values

When an instance is executed the first time, initial values can be set for input
variables, internal variables, and output variables. For details, refer to Initial
Value under the preceding descriptions of input variables, internal variables,
and output variables.

Mame | Data Type | AT /rInltla\ Value\l Retained | Comme
EM BOOL FALSE Conkre
[as) BOOL FALSE
LD BOOL FALSE
PY¥ LINT 30
Edit Yariable
Mame:
Data Type: |UINT i
Internals Inputs Usage: Input -

" = Initial Value: [30 ™ hietain

Comment:
1

Retaining Data through Power Interruptions and Start of Operation

The values of internal variables can be retained through power interruptions
and the start of operation. When the Retain Option is selected, the variable
will be allocated to a region of memory that is retained when the power is
interrupted and PLC operation starts.

Enter the logic programming using the registered variables.

Addresses cannot be directly input into instruction operands within function
blocks. Addresses that are directly input will be treated as variable names.

Exception: Input directly or indirectly specified addresses for Index Registers
IRO to IR15 and Data Registers DRO to DR15 directly into the instruction
operand. Do not input variables.

Input constants directly into instruction operands.

* Ladder programming: Enter decimal values after the &, and enter
hexadecimal numerical values after the #.

Data Types Supported in Function Blocks

Section 2-2

Comment

* Structured text (ST language): Enter decimal numerical values as is
and enter hexadecimal numerical values after 16#.

A comment of up to 30,000 characters long can be entered.

2-2 Data Types Supported in Function Blocks

2-2-1 Basic Data Types
Data type Content Size Range of values
BOOL Bit data 1 0 (FALSE), 1 (TRUE)
INT Integer 16 -32,768 to +32,767
DINT Double integer 32 -2,147,483,648 to +2,147,483,647
LINT Long (8-byte) integer 64 -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807
UINT Unsigned integer 16 &0 to 65,535
UDINT Unsigned double integer | 32 &0 to 4,294,967,295
ULINT Unsigned long (8-byte) |64 &0 to 18,446,744,073,709,551,615
integer
REAL Real number 32 -3.402823 x 10%8 to —1.175494 x 10738, 0,
+1.175494 x 10738 to +3.402823 x 1038
LREAL Long real number 64 -1.79769313486232 x 10398 t0 —2.22507385850720 x 107308, 0,
2.22507385850720 x 107308 to 1.79769313486232 x 10308
WORD 16-bit data 16 #0000 to FFFF or &0 to 65,535
DWORD 32-bit data 32 #00000000 to FFFFFFFF or &0 to 4,294,967,295
LWORD 64-bit data 64 #0000000000000000 to FFFFFFFFFFFFFFFF or
&0 to 18,446,744,073,709,551,615
STRING Text string (See note.) Variable 1 to 255 ASCII characters
TIMER Timer Flag: 1 bit | Timer number: 0 to 4095
PV: 16 bits | Completion Flag: 0 or 1
Timer PV: 0 to 9999 (BCD), 0 to 65535 (binary)
COUNTER Counter Flag: 1 bit | Counter number: 0 to 4095
PV: 16 bits | Completion Flag: 0 or 1
Counter PV: 0 to 9999 (BCD), 0 to 65535 (binary)
FUNCTION Function block instance |--- ---
BLOCK

Note

tion blocks.

2-2-2 Derivative Data Types

The TIMER and COUNTER data types cannot be used in structured text func-

| Array

| 1-dimensional array; 32,000 elements max.

41

Instance Specifications Section 2-3

2-3 Instance Specifications

2-3-1 Composition of an Instance

The following table lists the items that the user must set when registering an

instance.
Item Description

Instance name Name of the instance

Language The programming and variables are the same as in

Variable definitions the function block definition.

Function block instance areas | The ranges of addresses used by the variables

Comments A comment can be entered for each instance.
Instance Name This is the name of the instance.

* Instance names can be up to 30,000 characters long.
* Instance names cannot contain spaces or any of the following characters:
P“#8 % & ()=-~2M\|"@{[+;":}]<,>.72/
e Instance names cannot start with a number (0 to 9).
There are no other restrictions.
The instance name is displayed above the instance in the diagram.
Instance name

Pulse_2sON_2sOFF

CLOCK PULSE
EN
ENO

&20
ON_TIME

&1()— OFF_TIME
Function Block To use a function block, the system requires memory to store the instance’s
Instance Areas internal variables, input variables, output variables, and input-output variables.

These areas are known as the function block instance areas and the user
must specify the first addresses and sizes of these areas. The first addresses
and area sizes can be specified in 1-word units.

When the CX-Programmer compiles the function, it will output an error if there
are any instructions in the user program that access words in these areas.

Function Block/SFC Memory Allocatiol

x|
Memony Srea | Start Address | End Address | Size ,TI
Rcened |t miss 1 el
Blome DO Los 0o ra_ |
Se e rens_|

Advanced...

W Share SFC with FB temary

42

Instance Specifications

Section 2-3

Note

Note

CJ2-series CPU Units

FB Instance Default value Applicable memory
Area Start address | End address | Size areas
Non Retain H512 H1407 896 CIO, WR, HR, DM,
EM (See note.)
Retain H1408 H1535 128 HR, DM, EM (See note.)
Timers T3072 T4095 1024 |[TIM
Counters C3072 C4095 1024 |CNT

Force-setting/resetting is enabled when the following EM banks are specified:

CJ2H-CPUB4(-EIP)/-CPU65(-EIP)

EM bank 3

CJ2H-CPU66

EIP)

EM banks 6 to 9

EM banks 7 to E

(_

(_
CJ2H-CPU67(-EIP)
CJ2H-CPUBS(-EIP)

EM banks 11 to 18

CS/CJ-series CPU Units Ver. 3.0 or Later, and NSJ Controllers

FB Instance Default value Applicable memory
Area Start address | End address | Size areas
Non Retain H512 H1407 896 CIO, WR, HR, DM, EM
Retain H1408 H1535 128 HR, DM, EM
Timers T3072 T4095 1024 | TIM
Counters C3072 C4095 1024 |CNT
FQM1 Flexible Motion Controllers
FB Instance Default value Applicable memory
Area Start address | End address | Size areas
Non Retain 5000 5999 1000 |CIO, WR, DM
Retain None
Timers T206 T255 50 TIM
Counters C206 C255 50 CNT
CP-series CPU Units
FB Instance Default value Applicable memory
Area Start address | End address | Size areas
Non Retain H512 H1407 896 CIO, WR, HR, DM (See
note.)
Retain H1408 H1535 128 HR, DM (See note.)
Timers T3072 T4095 1024 | TIM
Counters C3072 C4095 1024 |CNT

DM area of CP1L-L

Address

CP1L-L

D0000 to D9999

Provided

D10000 to D31999

Not Provided

D32000 to D32767

Provided

43

Instance Specifications

Section 2-3

Function Block Instance
Area Types

Note

Note

44

The following settings are made in the function block instance area:

CS/CJ-series CPU Units Ver. 3.0 or Later, CP-series PLCs, and NSJ

Controllers

Non-retained Areas

Item

Contents

Allocated variables

Variables for which the retain property for power OFF and
operation start is set as non-retained (See note 1.)

Applicable areas

H (Function block Special Holding Area), I/0 (CIO Area), H
(Holding Area), W (Internal Relay Area), D (Data Memory
Area) (see note 2), E (Extended Data Memory Area) (See
notes 2 and 3.)

Setting unit

Set in words

Allocated words
(default)

H512 to H1407

(1) Except when the data type is set to TIMER or COUNTER.

(2) Bit data can be accessed even if the DM or EM Area is specified for the
non-retained area or retained area.

(8) The same bank number cannot be specified as the current bank in the
user program if the EM Area is specified for the non-retained area or re-

tained area.

Retained Area

Item

Contents

Allocated variables

Variables for which the retain property for power OFF and
operation start is set as retained (See note 1.)

Applicable areas

H (Function block Special Holding Area), H (Holding Area), D
(Data Memory Area) (see note 1), E (Extended Data Memory
Area) (See notes 2 and 3.)

Setting unit

Set in words

Allocated words
(default)

H1408 to H1535

(1) Except when the data type is set to TIMER or COUNTER.

(2) Bit data can be accessed even if the DM or EM Area is specified for the
non-retained area or retained area.

(8) The same bank number cannot be specified as the current bank in the
user program if the EM Area is specified for the non-retained area or re-

tained area.

Timer Area

Item

Contents

Allocated variables

Variables with TIMER set as the data type.

Applicable areas

T (Timer Area) Timer Flag (1 bit) or timer PVs (16 bits)

Allocated words
(default)

T3072 to T4095 Timer Flag (1 bit) or timer PVs (16 bits)

Counter Area

Item

Contents

Allocated variables

Variables with COUNTER set as the data type.

Applicable areas

C (Counter Area) Counter Flag (1 bit) or counter PVs (16 bits)

Allocated words
(default)

C3072 to C4095 Counter Flag (1 bit) or counter PVs (16 bits)

Instance Specifications

Section 2-3

Note

Note

Function Block Holding Area (H512 to H1535)

The default allocation of Function Block Holding Area words set as retained
and non-retained words is H512 to H1535. These words are different to the
standard Holding Area used for programs (H000 to H511), and are used only
for the function block instance area (internally allocated variable area).

» These words cannot be specified in AT settings for internal variables.
* These words cannot be specified as instruction operands.

* These words are displayed in red if they are input when a function
block is not being created.

» Although the words can be input when creating a function block, an
error will occur when the program is checked.

* If this area is specified as non-retained, turn the power ON/OFF or clear
the area without retaining the values when starting operation.

To prevent overlapping of instance area addresses with addresses used in the
program, set H512 to H1535 (Function Block Holding Area words) for the non-
retained area and retained area. If there are not sufficient words, use words in
areas not used by the user program.

FQM1 Flexible Motion controller

FB Instance Default value Applicable memory
Area Start address | End address | Size areas
Non Retain 5000 5999 1000 |CIO, WR, DM
Retain None
Timers T206 T255 50 TIM
Counters C206 C255 50 CNT

Non-retained Areas

Item Contents

Allocated variables | Variables for which the retain property for power OFF and
operation start is set as retained. (See note 1.)

Applicable areas 1/0 (CIO), W (Work Area), and D (DM Area) (See note 2.)
Setting unit Set in words

Allocated words CIO 5000 to CIO 5999

(default)

(1) Except when the data type is set to TIMER or COUNTER.

(2) Bit data can be accessed even if the DM Area is specified for the non-re-
tained area.

Retained Area
None

Timer Area

Item Contents
Allocated variables | Variables with TIMER set as the data type.
Applicable areas T (Timer Area) Timer Flag (1 bit) or timer PVs (16 bits)

Allocated words T206 to T255 Timer Flag (1 bit) or timer PVs (16 bits)
(default)

Counter Area

Item Contents
Allocated variables | Variables with COUNTER set as the data type.

45

Instance Specifications

Section 2-3

Accessing Function Block
Instance Area from the
User Program

Note

Comments

Creating Multiple
Instances

Calling the Same Instance

Making Multiple Instances

46

Item Contents
Applicable areas C (Counter Area) Counter Flag (1 bit) or counter PVs (16 bits)
Allocated words C206 to C255 Counter Flag (1 bit) or counter PVs (16 bits)
(default)

If the user program contains an instruction to access the function block
instance area, an error will be displayed in the Compile Tab of the Output Win-
dow of CX-Programmer if the following operations are attempted.

* Attempting to write during online editing (writing not possible)
* Executing program check (Selecting Compile from the Program Menu or
Compile All PLC Programs from the PLC Menu)

Example: If WO to W511 is specified as the non-retained area of the function
block instance area and WO0.00 is used in the ladder program, an error will
occur when compiling and be displayed as “ERROR: [omitted]...- Address -
WO0.00 is reserved for Function Block use].

Program
p_Off FB 10 I 5
EN ENO tart i
— — 4@ Instance data area b idress Size
Non Retain WO [512 >
Retain /

=
8 Clgt]ﬁ]rt?e rs //

» Compile error

The allocations in the function block instance area for variables are automati-
cally reallocated when a variable is added or deleted. A single instance
requires addresses in sequence, however, so if addresses in sequence can-
not be obtained, all variables will be allocated different addresses. As a result,
unused areas will be created. If this occurs, execute the optimization opera-
tion to effectively use the allocated areas and remove the unused areas.

A comment of up to 30,000 characters long can be entered.

A single instance can be called from multiple locations. In this case, the inter-
nal variables will be shared.

Multiple instances can be created from a single function block definition. In
this case, the values of internal variables will be different in each instance.

Example: Counting Product A and Product B

Prepare a function block definition called Down Counter (CTD) and set up
counters for product A and product B. There are two types of programs, one
for automatic operation and another for manual operation. The user can
switch to the appropriate mode of operation.

In this case, multiple instances will be created from a single function block.
The same instance must be called from multiple locations.

Instance Specifications

Section 2-3

Program 1 (automatic operation)

Product A counter

Product B counter

cTD
cD Q
LD
— pv cv | -DR10o

Program 2 (manual operation)

Product B counter

cTD
cD Q
LD
—1 pv cv |-D150

Reading the same product’s counter
value at different locations

CTD
CD Q
Reading different products’ counter values
LD (Algorithm calculating counter value is the same.)
—1pv cv [D200
Program 1 Instance A
Instance A
1/0 variables,
% FB F~==ae__ Internal
~ variables
FB definition
4
| B / Body Variable
nstance / S definitions
N /
N — Body
N Instance B :
RN
,,’ A 1/0 variables,
/ Internal
P 5 7 variables
rogram ¥
/
Instance A /, Body
H /

2-3-2 Parameter Specifications

The data that can be set by the user in the input parameters and output
parameters is as follows:

Use the same internal variables

Use different internal variables

Item

Applicable data

Input parameters

Values (See note 1.), addresses, and program symbols (glo-
bal symbols and local symbols) (See note 2.)

Note The data that is passed to the input variable from the
parameter is the actual value of the size of the input
variable data. (An address itself will not be passed even
if an address is set in the parameter.)

Note Input parameters must be set. If even one input param-
eter has not been set, a fatal error will occur and the
input parameters will not be transferred to the actual
PLC.

Output parameters

Addresses, program symbols (global symbols, local symbols)
(See note 2.)

Input-output parame-
ters

Addresses, program symbols (global symbols, local symbols)

Note (1) The following table shows the methods for inputting values in parameters.
Input Contents Size Parameter value input Setting range
variable method
data type
BOOL Bit data 1 bit P_Off, P_On 0 (FALSE), 1 (TRUE)

47

Instance Specifications

Section 2-3

Input Contents Size Parameter value input Setting range
variable method
data type
INT Integer 16 bits Positive value: & or + followed |-32,768 to 32,767
DINT Double integer 32 bits by integer —2,147,483,648 t0 2,147,483,647
LINT Long (8-byte) integer 64 bits Negative value: — followed by |_g 223 372,036,854,775,808 to
integer 9,223,372,036,854,775,807
UINT Unsigned integer 16 bits Positive value: & or + followed | &0 to 65,535
UDINT Unsigned double integer |32 bits by integer &0 to 4,294,967,295
ULINT Unsigned long (8-byte) |64 bits &0 to 18,446,744,073,709,551,615
integer
REAL Real number 32 bits Positive value: & or + followed | _3 402823 x 1038 to —1.175494 x
by.real number (with decimal 10738, 0, 1.175494 x 1038 to
point) 28
Negati | ollowed b 3.402823 x 10
. egative value: — followed by 308
LREAL Long real number 64 bits real number (with decimal —1.79769313486232 x 10308 to
point) —2.22507385850720 x 107308 0,
2.22507385850720 x 107308,
1.79769313486232 x 10308
WORD 16-bit data 16 bits # followed by hexadecimal #0000 to FFFF or &0 to 65,535
number (4 digits max.)
& or + followed by decimal
number
DWORD 32-bit data 32 bits # followed by hexadecimal #00000000 to FFFFFFFF or &0 to
number (8 digits max.) 4,294,967,295
& or + followed by decimal
number
LWORD 64-bit data 64 bits # followed by hexadecimal #0000000000000000 to
number (16 digits max.) FFFFFFFFFFFFFFFF or &0 to
& or + followed by decimal | 18,446,744,073,709,551,615
number

48

(2) The size of function block input variables and output variables must
match the size of program symbols (global and local), as shown in the fol-

lowing table.
Size Function block variable data Program symbol (global, local)
type data type

1 bit BOOL BOOL

16 bits INT, UINT, WORD INT, UINT, UINT BCD, WORD

32 bits DINT, UDINT, REAL, DWORD DINT, UDINT, UDINT BCD, REAL,
DWORD

64 bits LINT, ULINT, LREAL, LWORD LINT, ULINT, ULINT BCD, LREAL,
LWORD

More than 1 | Non-boolean CHANNEL, NUMBER (see note)

bit

Note The program symbol NUMBER can be set only in the input param-
eters. The value that is input must be within the size range for the

function block variable data type.

Instance Specifications Section 2-3

2-3-3 Operating Specifications

Calling Instances The user can call an instance from any location. The instance will be executed
when the input to EN is ON.
Instance
0
0'0}_ EN ENO ' In this case, the input to EN is bit 0.0 at the left of the diagram.
DO D10 * When the input to EN is ON, the instance is executed and
— A B |— the execution results are reflected in bit 1.0 and word D10.
* When the input to EN is OFF, the instance is not executed,
bit 1.0 is turned OFF, and the content of D10 is not changed.
Operation when the The system calls a function block when the input to the function block’s EN
Instance Is Executed input variable is ON. When the function block is called, the system generates

the instance’s variables and copies the algorithm registered in the function
block. The instance is then executed.

Pulse_2sON_1sOFF

CLOCK PULSE 10

: tim_b E
EN ENO | TIMX tim_a OFF_TIME 1
820 ! |

ON_TIME ﬁ 1. The FBis called. i i a
! F TIMX tim_b ON_TIME
&0 | opr me | — L b o |
! . ENO
2. The system generates the instance :

variables and copies the algorithm. "7 T T

P_On

FB instance (Pulse_2sON_1sOFF)

Usage Name Value
Internal | 200-100ms_PULSE_tim_a

Internal | 200-100ms_PULSE_tim_b
Input 200-100ms_PULSE_ON_TIME | &20
Input 200-100ms_PULSE_OFF_TIME | &10

Fm oo . [3. The contents of the
Algorithm (Image) instance are executed.

! Pulse_2sON_1SOFF tim_b i
i AH Pulse_2sON_1sOFF tim_a Pulse_25ON_1sOFF OFF_TIME ‘ 3

Pulse_2sON_1sOFF tim_a
% Pulse_2sON_1sOFF tim_b Pulse_2sON_1sOFF ON_TIME ‘

Pulse_2sON_1sOFF ENO

The order of execution is as follows:

1. Read data from parameters to input variables.
2. Execute the algorithm.

3. Write data from output variables to parameters.

Input to EN is ON.

!

Parameters —p| 1. Read values from parameters
to input variables.

2. Execute the algorithm.

3. Write values from output — Parameters
variables to parameters.

Data cannot be exchanged with parameters in the algorithm itself.
In addition, if an output variable is not changed by the execution of the algo-
rithm, the output parameter will retain its previous value.

49

Instance Specifications Section 2-3

Operation when the When the input to the function block’s EN input variable is OFF, the function

Instance Is Not Executed block is not called, so the internal variables of the instance do not change (val-
ues are retained). In the same way the output variables do not change when
EN is OFF (values are retained).

Program FB definition
Body
P_Off FB 1.0
— EN ENO 4@ P_On
—] | ENO
Internal
variable a

Execution results:
Output variable 1.0 is turned OFF, but
internal variable a retains its previous value.

Program
If the programming were entered
directly into the program instead of in a
P_Off| P_On 1.0 function block definition, both bit 1.0
| | O and variable a would be turned OFF.

‘ f I Internal
variable a

&Caution An instance will not be executed while its EN input variable is OFF, so Differ-
entiation and Timer instructions will not be initialized while EN is OFF. If Differ-
entiation or Timer instructions are being used, use the Always ON Flag
(P_On) for the EN input condition and include the instruction’s input condition
within the function block definition.

Nesting With CX-Programmer Ver. 6.0 and later versions, a function block can be
called from another function block, i.e., nesting is supported. Function blocks
can be nested up to 8 levels (including the function block called from the pro-
gram).

The calling function block and called function block can be either ST lan-
guage, ladder language, or either combination of the two.

Program FBO: Ladder diagram FB1: Ladder diagram FB7: Ladder diagram FB8: Ladder diagram
INSTANCE_FB0
¥ INSTANCE_FB2 INSTANCE_FB8
— B0 . INSTANCE FB1| | s p—
N |18 N /
/
FBO (ST) /1 FB1(ST) JAS FB7 (ST) FB8 (ST)

4 ! / g
Example: ++-Y| Example: g P Example: Example:
INSTANCE_FB1 (A:=FB1__OUTH B=:>FB1_IN1) INSTANCE_FB2(......) INSTANCE_FBS (......)

"INSTANCE_FB1," "INSTANCE_FB2," etc., are the FUNCTION BLOCK data type instance names.
Note: Any combination of ladder diagrams and structured text programming can be used between the called and the calling function block.

The function block nesting levels can also be displayed in a directory tree for-
mat with the FB Instance Viewer function.

A E| Target_1_FB[Operation_madule]
 ®-FEF Conditionii [Condition_check]

E| sample[Cperation_module]
[#1-J8F ConditionD1[Condition_check]

The nested function blocks’ function block definitions are included in the func-
tion block library file (.cxf) containing the calling function block’s definitions.

50

Programming Restrictions

Section 2-4

2-4 Programming Restrictions

2-4-1

Instructions Prohibited in
Function Block Definitions

AT Setting Restrictions
(Unsupported Data Areas)

Direct Addressing of I/O
Memory in Instruction
Operands

Restrictions for Input
Variables, Output
Variables, and Input-
Output Variables
(Unsupported Data Areas)

Interlock Restrictions

Differentiation
Instructions in Function
Block Definitions

Ladder Programming Restrictions

There are some restrictions on instructions used in ladder programs.

Refer to the Programmable Controllers Instructions Reference Manual (Cat.
No. W474)

Addresses in the following areas cannot be used for AT settings.

* Index Registers (neither indirect nor direct addressing is supported) and
Data Registers

Note Input the address directly, not the AT setting.

* Indirect addressing of DM or EM Area addresses (Neither binary-mode
nor BCD-mode indirect addressing is supported.)

* Addresses, not variables, can be directly input in Index Registers (both
indirect and direct addressing) and Data Registers.
The following values can be input in instruction operands:
Direct addressing: IR0 to IR15; Indirect addressing: ,IRO to ,IR15; Con-
stant offset (example): +5,IR0; DR offset: DRO,IR0; Auto-increment:
,IR0++; Auto-decrement: --,IRO

e Direct addressing in instruction operands is not supported for any other
areas in I/O memory.
Addresses in the following data areas cannot be used as parameters for input
variables, output variables, and input-output variables.

* Index Registers (neither indirect nor direct addressing is supported) and
Data Registers

¢ Indirect addressing of DM or EM Area addresses (Neither binary-mode
nor BCD-mode indirect addressing is supported.)

When a function block is called from an interlocked program section, the con-
tents of the function block definition will not be executed. The interlocked func-
tion block will behave just like an interlocked subroutine.

P_Off

T
\FB_BODY

-0 Hiro!

Interlocked

Interlock will not
affect instructions in
the function block
definition.

An instance will not be executed while its EN input variable is OFF, so the fol-
lowing precautions are essential when using a Differentiation Instruction in a
function block definition. (Differentiation Instructions include DIFU, DIFD, and
any instruction with an @ or % prefix.)

* As long as the instance’s EN input variable is OFF, the execution condition
will retain its previous status (the last status when the EN input variable
was ON) and the Differentiation Instruction will not operate.

51

Programming Restrictions

Section 2-4

Timer Instructions in
Function Block Definitions

52

* When the instance’s EN input variable goes ON, the present execution
condition status will not be compared to the last cycle’s status. The
present execution condition will be compared to the last condition when
the EN input variable was ON, so the Differentiation Instruction will not
operate properly. (If the EN input variable remains ON, the Differentiation
Instruction will operate properly when the next rising edge or falling edge
occurs.)

Example:

Body

. TORIN1
IN1 OouTt |—— . SETOUT1

0.0
FB1
}7 EN ENO |7 T 1LDEN

These Differentiation Instructions do not
operate when input condition 0.00 goes
from OFF to ON the first time.

The instructions do not operate while

input condition 0.00 is OFF.
If Differentiation Instructions are being used, always use the Always ON Flag
(P_On) for the EN input condition and include the instruction’s input condition
within the function block definition.

P On Body
FB1
EN ENO LD a
ORIN1
000 a O UT SETOUT1
IN1
The EN input condition is always ON, so

these Differentiation Instructions operate
normally.
¢ Input a decimal numerical value after “#” when specifying the first operand
of the following instructions.
MILH(517), MILR(518), MILC(519), DIM(631), MSKS(690), MSKR(692),
CLI(691), FAL(006), FALS(007), TKON(820), TKOF(821)

Note “&”is not supported.

* CNR(545), CNRX(547) (RESET TIMER/COUNTER) instructions cannot
be used to reset multiple timers and counters within a function block at the
same time.

Always specify the same variable for the first operand (timer/counter num-
ber 1) and second operand (timer/counter number 2). Different variables
cannot be specified for the first and second operand.

An instance will not be executed while its EN input variable is OFF, so the fol-
lowing precautions are essential when using a Timer Instruction in a function
block definition.

The Timer Instruction will not be initialized even though the instance’s EN
input variable goes OFF. Consequently, the timer's Completion Flag will not be
turned OFF if the EN input variable goes OFF after the timer started operat-

ing.

Programming Restrictions

Section 2-4

0 FBI
EN

ENO

Body

LD EN
TIM tim UP

The timer's Completion Flag (UP)
will not be turned OFF even though
input condition 0.00 goes OFF.

If Timer Instructions are being used, always use the Always ON Flag (P_On)
for the EN input condition and include the instruction’s input condition within

the function block definition.

P On
FB1
EN

0.00 a

ENO

UP

Body

LD a
TIM tim UP

The timer's completion flag (UP) is turned
OFF when input condition a (0.00) goes OFF.

¢ If the same instance containing a timer is used in multiple locations at the
same time, the timer will be duplicated.

2-4-2 ST Programming Restrictions

Restrictions when * Only the following statements and operators are supported.
Using ST Language in « Assignment statements

Function Blocks

* Selection statements (CASE and IF statements)

* lteration statements (FOR, WHILE, REPEAT, and EXIT statements)

* RETURN statements

* Function block calling statements

* Arithmetic operators

* Logical operators

» Comparison operators

* Numerical functions

* Arithmetic functions
 Standard text string functions
* Numeric text string functions
* OMRON expansion functions

e Comments

* The TIMER and COUNTER data types cannot be used.

For further details, refer to SECTION 5 Structured Text (ST) Language Speci-
fications in Part 2: Structured Text (ST).

53

Programming Restrictions

Section 2-4

2-4-3 Programming Restrictions

Restrictions in Locating Function Block Instances

No Branches to the Left of
the Instance

Only One Instance per
Rung

No Function Block
Connections

Downloading in Task
Units

Programming
Console Displays

Online Editing
Restrictions

54

Branches are not allowed on the left side of the instance. Branches are
allowed on the right side.

Incorrect Correct

O — ——o e %
Instruction

A program rung cannot have more than one instance.

—]

Instruction

Incorrect
— B —O

FB

A function block’s input cannot be connected to another function block’s out-
put. In this case, a variable must be registered to transfer the execution status
from the first function block’s output to the second function blocks input.

0.0
0.0
FB1 _1 }7 FB1
EN FB2 EN
XouT || XIN1 xout(| 3000
0.0
D100 XIN2
—{ }7 FB2 Temporary variables
EN transfer the value from
FB1 to FB2.
D3000
—1 XIN1
D100 XIN2

Tasks including function blocks cannot be downloaded in task units, but
uploading is possible.

When a user program created with the CX-Programmer is downloaded to the
CPU Unit and read by a Programming Console, the instances will all be dis-
played as question marks. (The instance names will not be displayed.)

The following online editing operations cannot be performed on the user pro-
gram in the CPU Unit.

* Changing or deleting function block definitions (variable table or algo-
rithm)

* Inserting instances or changing instance names

Note The instance’s I/O parameters can be changed, instances can be
deleted, and instructions outside of an instance can be changed.

Programming Restrictions

Section 2-4

Error-related
Restrictions

Prohibiting Access to
FB Instance Areas

Note

If a fatal error occurs in the CPU Unit while a function block definition is being
executed, ladder program execution will stop at the point where the error

occurred.
Program FB definition
Instance name Body
0.0 FB 100 LD APA—/S”
. EN ENO Ay
‘ Fatal error occurs here.
D100 | AAA BBB | D200 MOV AAA BBB

In this case, the MOV AAA BBB instruction will not be executed and output
variable D200 will retain the same value that it had before the function block

was executed.

To use a function block, the system requires memory areas to store the
instance’s internal variables, input variables, output variables, and input-out-

put variables.
CJ2-series CPU Units

Function block instance | Initial value of | Initial value | Allowed data areas
area start address of size

Non-retained H512 896 CIO, WR, HR, DM,
EM (See note.)

Retained H1408 128 HR, DM, EM (See
note.)

Timer T3072 1024 TIM

Counter C3072 1024 CNT

CJ2H-CPUB4(-EIP)/-CPU65(-EIP)

EM bank 3

EM banks 6 to 9

CJ2H-CPUG7(-EIP)

EM banks 7 to E

(-
CJ2H-CPUG6(-EIP)

(_

(-

CJ2H-CPUGS(-EIP)

EM banks 11 to 18

Force-setting/resetting is enabled when the following EM banks are specified:

CS/CJ-series CPU Units Ver. 3.0 or Later, and NSJ Controllers

Function block instance | Initial value of | Initial value | Allowed data areas
area start address of size
Non-retained H512 896 CIO, WR, HR, DM, EM
Retained H1408 128 HR, DM, EM
Timer T3072 1,024 TIM
Counter C3072 1,024 CNT
FQM1 Flexible Motion Controllers
FB Instance Default value Applicable memory
Area Start address | End address | Size areas
Non Retain 5000 5999 1000 |CIO, WR, DM
Retain None
Timers T206 T255 50 TIM
Counters C206 C255 50 CNT

55

Function Block Applications Guidelines Section 2-5

CP-series CPU Units

Function block instance | Initial value of | Initial value | Allowed data areas
area start address of size
Non-retained H512 896 ClO, WR, HR, DM
(See note.)
Retained H1408 128 HR, DM (See note.)
Timer T3072 1024 TIM
Counter C3072 1024 CNT

Note DM area of CP1L-L

Address CP1L-L
D0000 to D9999 Provided
D10000 to D31999 Not Provided
D32000 to D32767 Provided

If there is an instruction in the user program that accesses an address in an
FB instance area, the CX-Programmer will output an error in the following
cases.

* When a program check is performed by the user by selecting Program -
Compile from the Program Menu or Compile All Programs from the
PLC Menu.

* When attempting to write the program through online editing (writing is
not possible).

2-5 Function Block Applications Guidelines

This section provides guidelines for using function blocks with the CX-Pro-
grammer.

2-5-1 Deciding on Variable Data Types

Integer Data Types Use the following data types when handling single numbers in 1, 2, or 4-word
(1, 2, or 4-word Data) units.
* INT and UINT

* DINT and DINT
e LINT and ULINT

Note Use signed integers if the numbers being used will fit in the range.

Word Data Types Use the following data types when handling groups of data (non-numeric
(1, 2, or 4-word Data) data) in 1, 2, or 4-word units.

* WORD

* DWORD

* LWORD

Text String Data Use the following data type for text string data.
* STRING

56

Function Block Applications Guidelines Section 2-5

2-5-2 Determining Variable Types (Inputs, Outputs, In Out, Externals,

and Internals)

Using Input Variable to
Change Passed Values

To paste a function block into the program and then change the value (not the
address itself) to be passed to the function block for each instance, use an
input variable.

Program
Instance for function block definition A
The value itself is
_| |7 passed
/83" | /| UnitNo.
\&50/ |/ PARA

Changing the pass value to an input variable.

The following two restrictions apply.
* An address can be set in an input parameter, but an address itself cannot

be passed to an input variable (even if an address is set in the input
parameter, the value for the size of the input variable data type is passed
to the function block). Therefore, when the first or last of multiple words is
specified in the instruction operand within the function block, an input vari-
able cannot be used for the operand. Specify either to use internal vari-
ables with AT settings, specify the first or last element in an input-output
array variable (set the input parameter to the first address) (CX-Program-
mer version 7.0 or higher), specify the first or last element in an internal
array variable, or use an external variable (as described in 2-5-4 Array
Settings for Input-Output Variables and Internal Variables).

Program An input variable cannot be used to specify
the address of an operand that specifies
Instance for function block definition A the first (or last) address of multiple words.
- For example, the XFER (BLOCK
|7T2§Sae%tual value is .) TRANSFER) instruction cannot be used to
P If the size of the data type in _ transfer 10 words from the address
DATA _1is 1 word, the value beginning with DATA_1 to the address
/D00100\| //DATA 1 for the word D00100 is beginning with DATA_2.
| \i passed.
\W500/|/ paTa 2
Nl If the size of the data type in ?:(IJER
DATA_2 is 2 words, the value
for the 2 words W500 and DATA1
W501 is passed. DATA 2

The address can be specified, but the address itself is not passed.

* Values are passed in a batch from the input parameters to the input vari-

ables before algorithm execution (not at the same time as the instruction
in the algorithm is executed). Therefore, to pass the value from a parame-
ter to an input variable when the instruction in the function block algorithm
is executed, use an internal variable or external variable instead of an
input variable.

57

Function Block Applications Guidelines Section 2-5

Passing Values from or
Monitoring Output
Variables

Input-Output Variables to
Return FB Processing
Results from Values
Passed from Input
Parameters to Output
Parameters

Input-Output Array
Variables to Pass Large
Amounts of Data

58

To paste into the program and then pass values outside (the program) from
the function block for each instance, or monitor values, use output variables.

Program

Instance for function block definition A.

_| |7The actual value is
passed.

OK_Flag |} /Wo0.00

-&i/ }:

NG_Flag uo.m /‘

Variable for passing a value outside or monitoring:
Use an output variable.

The following restrictions apply.

* Values are passed from output variables to output parameters all at once
after algorithm execution.

An input-output variable can be used to implement the functionality of both
input and output parameters. Internal operation involves passing the address
set for the parameter to the input-output variable, but the use of the input-out-
put variable inside the function block is the same as that of other variables.

Program Section

Instance of FB definition A

Specify an address far the input parameter;
the address will be passed to the FB.

D100 can be used
in the rest of the
program after being
Ll changed in the FB.
Use an input-output variable to implerment - Contents can be changed in the FB.
both input and output variable functiol

while changing the value in-the FB.

This address — D100 Y "a" indicates D100.

is passed. (Example: WORD data type)

Input-output variables can be set as arrays (which is not possible for input
variables and output variables). If an input-output array variable is used, a
range of addresses of the specified size starting from the address set for the
input parameter can be used inside the FB. Input-output variables should thus

be used when it's necessary to pass large quantities of data to a function
block.

Program Section

Instance of FB definition A

Specify an address fgr the input parameter;
the address will be passed to the FB.

("—DEE)E)\‘L Data Data | D200
1__[1 —L, D200 to D2009 can

be used in the rest
of the|program after
being/changed in
the FB.

Contents can be changed in the FB.

Use an input-output variable to pass Igrge
quantities of data to the FB (only the fifst
address is-actually passed).

This address — D200 Data "Datal0]" indicates D200.
is passed. D201 WORD data "Data [1]" indicates D201
Array setting Etc.

10 elements

D209

Function Block Applications Guidelines Section 2-5

External Variables:
Condition Flags, Clock
Pulses, Auxiliary Area
Bits, Global Symbols in
Program

Internal Variables:
Internally Allocated
Variables and Variables
Requiring AT Settings

Condition Flags (e.g., Always ON Flag, Equals Flag), Clock Pulses (e.g., 1.0
second clock pulse bit), pre-registered Auxiliary Area Bits (e.g., First Cycle
Flag), and global symbols used in the program are all external variables
defined by the system.

Variables that are not specified as Inputs, Outputs, In Out, or Externals are
Internals. Internal variables include variables with internally allocated
addresses and variables requiring addresses with AT settings (e.g., I/O alloca-
tion addresses, addresses specially allocated for Special I/0 Units). Variables
requiring array settings include input-output variables and internal variables.
For details on conditions requiring AT settings or array settings, refer to 2-5-3
AT Settings for Internal Variables, and 2-5-4 Array Settings for Input-Output
Variables and Internal Variables.

2-5-3 AT Settings for Internal Variables

Always specify AT settings for internal variables under the following condi-
tions.

* When addresses allocated to Basic I/0O Units, Special I/O Units, or CPU
Bus Units are used and these addresses are registered to global symbols
that cannot be specified as external variables (e.g., data set for global
symbols is unstable).

Note The method for specifying Index Registers for Special /O Unit allo-
cation addresses requires AT settings to be specified for the first
address of the allocation area. (For details, refer to 2-5-5 Specify-
ing Addresses Allocated to Special I/O Units.)

* When Auxiliary Area bits that are not pre-registered to external variables
are used, and these bits are registered to global symbols that are not
specified as external variables.

* When setting the first destination word at the remote node for SEND(090)
and the first source word at the local node for RECV(098).

* When the instruction operand specifies the first or last of multiple words,
and an array variable cannot be specified for the operand (e.g., the num-
ber of array elements cannot be specified).

2-5-4 Array Settings for Input-Output Variables and Internal Variables

Using Array Variables
to Specify First or Last
Word in Multiword
Operands

Note

1,2,3...

When specifying the first or last of a range of words in an instruction operand
(see note), the instruction operates according to the address after AT specifi-
cation or internal allocation. (Therefore, the variable data type and number of
elements for the variable are unrelated to the operation of the instruction.) Al-
ways specify a variable with an AT setting or an array variable with a number
of elements that matches the data size to be processed by the instruction.

Some examples are the first source word or first destination word of the
XFER(070) (BLOCK TRANSFER) instruction, the first source word for
SEND(090), or control data for applicable instructions.

For details, refer to 2-6 Precautions for Instructions with Operands Specifying
the First or Last of Multiple Words. Use the following method to specify an array
variable.

When using input-output variables, set the input parameter to the first address
of multiple words.

Use the following procedure for internal variables.

1. Prepare an internal array variable with the required number of elements.

59

Function Block Applications Guidelines Section 2-5

60

Note Make sure that the data size to be processed by the instruction is
the same as the number of elements. For details on the data sizes
processed by each instruction, refer to 2-7 Instruction Support and
Operand Restrictions.

2. Setthe data in each of the array elements using the MOV instruction in the
function block definition.

3. Specify the first (or last) element of the array variable for the operand. This
enables specification of the first (or last) address in a range of words.

Examples are provided below.

Handling a Single String of Data in Multiple Words

In this example, an array contains the directory and filename (operand S2) for
an FREAD instruction.
* Variable Table
Input-output variable or internal variable, data type = WORD, array setting
with 10 elements, variable names = filename[0] to filename[9]
* Data Settings and Internal Function Block Processing
* Input-output variables:
Set the input parameter to the address of the first word in the data (ex-
ample: D100). The data (#5C31, #3233, #0000, etc.) is set in D100 to
D109 in advance from the main user program.

FREAD itt itt itteq)<— Specify the first element of the array
(omitted) (omitted) read_num[0] (omitted) in the instruction operand.

* Internal variables:
Use ladder programming within the function block to set data into the
array.

MOV #5C31 file_name[0]
MOV #3233 file_name[1] Set data in each array element.
MOV #0000 file_name[2])

FREAD (omitted) (omitted) file_name[0] (omitted)<— Specify the first element

of the array in the instruction
operand.

Handling Control Data in Multiple Words

In this example, an array contains the number of words and first source word
(operand S1) for an FREAD instruction.

e Variable table
Input-output variable or internal variable, data type = DINT, array setting
with 3 elements, variable names = read_num][0] to read_num][9]

* Data Settings and Internal Function Block Processing

e Input-output variables:
Set the input parameter to the address of the first word in the data (ex-
ample: D200). The data is set in D200 to D205 in advance from the
main user program.

FREAD (omitted) read numi0] (omitted) (omitted)~— Specify the first element of the array
(omitted) _numi0] (omitted) (omitted) in the instruction operand.

e Internal variables:
Use ladder programming within the function block to set data into the
array.

* Ladder Programming

MOVL &100 read_num([0] (No._of words)

MOVL &0 read_num(1] (7st_source_word) }<_ Set data in each array element.

FREAD (omitted) read_num[0] (omitted) (omittea)™— ﬁlpt%gf% gt'r% g{if)tneé%ngganr} dof the array

Function Block Applications Guidelines Section 2-5

Division Using Integer
Array Variables (Ladder
Programming Only)

Note

Handling a Block of Read Data in Multiple Words

The allowed amount of read data must be determined in advance and an
array must be prepared that can handle the maximum amount of data. In this
example, an array receives the FREAD instruction’s read data (operand D).

e Variable table
Input-output variable or internal variable, data type = WORD, array setting
with 100 elements, variable names = read_data[0] to read_data[99]

* Data Settings and Internal Function Block Processing

* Input-output variables:
Set the input parameter to the address of the first word in the read data
(example: D200).

FREAD (omitted) (omitted) (omitted) read_data[0]
e Internal variables:

FREAD (omitted) (omitted) (omitted) read_data[0]

A two-element array can be used to store the result from a ladder program’s
SIGNED BINARY DIVIDE (/) instruction. The result from the instruction is D
(quotient) and D+1 (remainder). This method can be used to obtain the remain-
der from a division operation in ladder programming.

When ST language is used, it isn’'t necessary to use an array to receive the
result of a division operation. Also, the remainder can’'t be calculated directly
in ST language. The remainder must be calculated as follows:

Remainder = Dividend — (Divisor x Quotient)

2-5-5 Specifying Addresses Allocated to Special I/O Units

Note

1,2,3...

Use Index Registers IR0 to IR15 (indirectly specified constant offset) to spec-
ify addresses allocated to Special I/0 Units based on the value passed for the
unit number as an input parameter within the function block definition as
shown in the following examples.

For details on using Index Registers in function blocks, refer to 2-5-6 Using
Index Registers.

Examples

Example 1: Specifying the CIO Area within a Function Block (Same for DM
Area)

Special I/0 Units

Variables: Use the unit number as an input variable, and specifying the first
allocation address as an internal variable with the AT set to CIO 2000.

Programs: Use the following procedure.

1. Multiply the unit number (input variable) by &10, and create the unit num-
ber offset (internal variable, DINT data type).

2. Use the MOVR(560) (MOVE TO REGISTER) instruction to store the real I/
O memory address for the first allocation address (internal variable, AT =
CIO 2000) in the Index Register (e.g., IR0).

3. Add the unit number offset to the real I/O memory address within the Index
Register (e.g., IR0).

Example 2: Specifying the Designated Bit in the CIO Area (e.g., CIO Word

n+a, Bit b)

Programs: Use either of the following methods.

61

Function Block Applications Guidelines Section 2-5

* Word addresses: Specify the constant offset of the Index Register using
an indirect specification (e.g., +a,IR0).

* Bit addresses: Specify an instruction that can specify a bit address within
a word (e.g., &b in second operand of SETB instruction when writing and
TST instruction when reading).

Example: Special I/0O Units

n L 1) Specify the first CIO Area word n (n = CIO 2000 + unit number x 10)
Instance for function block deﬂmtlonA/ Specily the firs

e —

&3 Unit No.

L~

Unit number (input variable, INT data type)

Offset (internal variable, DINT data type)

Relay (internal variable, WORD data type, 400 array elements, AT
setting = 2000)

4| I Multiplies unit number by
&10 | &10 and stores in offset.

Unit No.
Offset

—{MOVR | Stores the real I/O memory
Relay | address for the relay in IRO.
IR0

L Adds offset to IRO.

IRO
Offset
1RO

2) Specify the designated bit in the CIO
Area (e.g., CIO word n+1, bit 02)

+1,IR0 | bit 02.
82

[—{ ——{SETB_| Turms ON CIO word n+1,

2-5-6 Using Index Registers

62

Note

Index Registers IR0 to IR15 function as pointers for specifying 1/0 memory
addresses. These Index Registers can be used within function blocks to
directly specify addresses using IR0 to IR15 and not the variable names
(Index Register direct specification: IR0 to IR15; Index Register indirect speci-
fication: ,IRO to ,IR15)

After storing the real /O memory addresses in the Index Registers using the
MOVR(560) instruction, Index Registers can be indirectly specified using gen-
eral instructions. This enables all I/O memory areas to be specified dynami-
cally.

Function Block Applications Guidelines

Section 2-5

Pointer

MOVR(560) ——

|
IRC] j
Index Register
Example: Specifying +5,IR0 using
constant offset specification, not

variable name
Function block

Indirect
_ / specifi-
— Instructxn Cation

+5,IR0_P—

a

> areas

A 4

All I/O memory

Specify address
in IRO

+5 offset

Specify ad-
dress at +5

1RO offset from

IRO.

I/O memory

Note (1) When Index Registers IR0 to IR15 are used within function blocks, using
the same Index Register within other function blocks or in the program
outside of function blocks will create competition between the two in-
stances and the program will not execute properly. Therefore, when using
Index Registers (IR0 to IR15), always save the value of the Index Register
at the point when the function block starts (or before the Index Register
is used), and when the function block is completed (or after the Index
Register has been used), incorporate processing in the program to return
the Index Register to the saved value.

Example: Starting function block (or before using Index Register):

1. Save the value of IR (e.g., A).
"

Value A
<

Within function block:
2.Use IR.
Value B

At start of function block (or before Index Register is used):
3. Return IR to saved value (e.g., A)

Value A
<

(2) Always set the value before using Index Registers. Operation will not be
stable if Index Registers are used without the values being set.

63

Function Block Applications Guidelines Section 2-5

Application Examples The following examples are for using Index Registers IR0 to IR15 within func-
tion blocks.

Example Details

Saving the Index Register Value before Using Index Register When Index Registers are used within this
function block, processing to save the Index
Register value is performed when the func-
tion starts (or before the Index Register is
used) to enable the value to be returned to
First destinlion word the original Index Register value after the
function block is completed (or after the
Index Register is used).

Example: Save the contents of Index Regis-
ter IR0 by storing it in SavelR[0] (internal
variable, data type DINT, 1 array element).

Store IR0 temporarily in backup buffer
P_On
I

MOVL(438)
G

I
Alwvays OM Flag Long Mave

First source word

SavelR[0]

IRQ

Using Index Registers Example: The real I/O memory address for

1) Setting the value in the Index Register. (Stores the real I/O memory the first word of CIO 1500 + unit number X

address for first CIO Area word n.) 25 allocated in the CPU Bus Unit allocation
area based on the CPU Bus Unit’s unit
number (&0 to &15) passed from the func-
tion block is stored in IRO.

Caloulate offset address from unit number Procedure:

G v H s sy s Assumes that unit numbers &0 to &15 have
5| | Mutplcand word already been input (from outside the func-
o tion block) in UnitNo (input variables, INT
Unithlo Muttiplier worc data type)

Uit Mn&0 to

offest | | Resut word 1. Multiple UnitNo by &25, and store in Off-
Unit o825 set (internal variable, DINT data type)
MovR(EED) [Move To Register 2. Store the real I/O memory address for
SCPLeOl | Source wordt SCPU_Relay (internal variable, WORD
[FUBLELI. || ston i regter) data type, (if required, specify the array as
400 elements (see note), AT setting =
o H ot sy vt 1500)) in Index Register IRO.

S| | First augen word Note Specifying an array for SCPU_relay,
such as SCPU_relay [2], for example,
. enables the address CIO 1500 +
RO | Firetresut word (UnitNo X &25) + 2 to be specified.
This also applies in example 2 below.
3. Increment the real I/O memory address
in Index Register IR0 by the value for the
variable Offset (variable UnitNo X &25).

— !
Reangs Check O

Offzet First acdend word

64

Precautions for Instructions with Operands Specifying the First or Last of Multiple Words Section 2-6

Example Details

MetCheck_OHK

Local Mode Met...

Check local node data link participation

TET(350)

2) Specifying constant offset of Index Register (Specifying a bit between | The real I/O memory address for CIO 1500
CIO n+0 to n+24)

+ (UnitNo X &25) is stored in Index Register
IR0 by the processing in step 1 above.
Therefore the word address is specified
using the constant offset from IRO.

For example, specifying +2,IR0 will specify
ClO 1500 + (UnitNo X &25) + 2.

Note CIO 1500 + (UnitNo X &25) + 2 can
also by specified by specifying
SCPU_relay [2] using the array set-
ting with SCPU_relay.

Specify bit addresses using instructions that
can specify bit addresses within words
(e.g., second operand of TST(350/351)/
SETB(532) instructions).

Example: Variable NodeSelf OK turns ON

ModeSelf_OkK

VB R0

218

when NetCheck_OK (internal variable,
BOOL data type) is ON and bit 15 of the
word at the +6 offset from IR0 (CIO 1500 +

UnitNo X &25 +6) is ON.

Local Mode Dat...

P_On

Restore data to IR0 from temporary backup buffer

Returning the Index Register to the Prior Value

The Index Register returns to the original
value after this function block is completed
e N (or after the Index Register has been used).

I
Alwvays ON Flag

SavERTT || First source ward Example: The value for variable SavelR[0]
- that was saved is stored in Index Register

IR0, and the value is returned to the con-
tents from when this function started (or
prior to using the Index Register).

2-6 Precautions for Instructions with Operands Specifying the
First or Last of Multiple Words

Note

1,2,3...

When using ladder programming to create function blocks with instruction
operands specifying the first or last of a range of words, the following precau-
tions apply when specifying variables for the operand.

When the operand specifies the first or last word of multiple words, the
instruction operates according to the internally allocated address for AT set-
ting (or external variable setting). Therefore, the variable data type and num-
ber of array elements are unrelated to the operation of the instruction. Either
specify a variable with an AT setting, or an array variable with a size that
matches the data size to be processed by the instruction.

For details on whether an AT setting (or external variable setting) or an array
setting for a number of elements is required to specify the first address of a
range of words in the instruction operand, refer to 2-7 Instruction Support and
Operand Restrictions.

To specify the first or last of multiple words in an instruction operand, always
specify a variable with AT setting (or an external variable), or a variable with
the same size as the data size to be processed in the instruction. The follow-
ing precautions apply.

1. If anon-array variable is specified without AT setting and without a match-
ing data size, the CX-Programmer will output an error when compiling.

2. The following precautions apply to when an array variable is specified.

65

Precautions for Instructions with Operands Specifying the First or Last of Multiple Words Section 2-6

Non-array Variables

without Matching Data

Size and without AT

Setting

66

Size to Be Processed in the Instruction Operand Is Fixed

Make sure that the number of elements in the array is the same as size to be
processed by the instruction. Otherwise, the CX-Programmer will output an
error when compiling.

Size to Be Processed in the Instruction Operand Is Not Fixed

Make sure that the number of elements in the array is the same or greater
than the size specified by another operand.

Other Operand Specifying Size: Constant
The CX-Programmer outputs an error when compiling.

Other Operand Specifying Size: Variable

The CX-Programmer will not output an error when compiling (a warning mes-
sage will be displayed) even if the number of elements in the array does not
match the size specified in another operand (variable).

In particular, when the number of elements in the array is less than the size
specified by another operand, (for example, when instruction processing size
is 16 and the number of elements actually registered in the variable table is
10), the instruction will execute read/write processing in the areas exceeding
the number of elements. (In this example, read/write processing will be exe-
cuted for the next 6 words after the number of elements registered in the
actual variable table.) If the same area is being used by another instruction
(including internal variable allocations), unexpected operation may occur,
which may result in a serious accident.

Do not use variables with a size that does not match the data size to be pro-
cessed by the instruction in the operand specifying the first address (or last
address) for a range of words. Always use either non-array variables data type
with a size that is the same as the data size required by the instruction or
array variable with the number of elements that is the same as the data size
required by the instruction. Otherwise, the following errors will occur.

If the operand specifying the first address (or last address) of multiple words
uses a non-array variable data type with a size that does not match the data
size required by the instruction and an AT setting is also not used, the CX-Pro-
grammer will output a compile error.

Example: BLOCK TRANSFER(070) instruction: XFER W S D

(W: Number of words, S: First source word; D: First destination word)

When & 10 is specified in W, variable a with data type WORD is specified in S,
and variable b with data type WORD is specified in D: XFER &10 a b
The XFER(070) instruction will transfer the data in the 10 words beginning from
the automatically allocated address in variable a to the 10 words beginning
with the automatically allocated address in variable b. Therefore, the CX-Pro-
grammer will output a compile error.

Example: XFER &10 a b
(variables a and b are WORD data types)

Internally allocated address Internally allocated address

Example: H700

Variable a (1 word)) Example: H7[I] (| Variable b (1 word)

10 words are 3
transferred regard-
less of the size of
variable a.

H This area will be overwritten,
> so the CX-Programmer will

output a compile error.

Precautions for Instructions with Operands Specifying the First or Last of Multiple Section 2-6

Array Variables

The result depends on the following conditions.

Size to Be Processed by Instruction Is Fixed

If the size to be processed by the instruction is a fixed operand, and this size
does not match the number of array elements, the CX-Programmer will output
a compile error.

Example: LINE TO COLUMN(064) instruction; COLM S D N
(S: Bit number, D: First destination word, N: Source word)
E.g., COLM a b[0] c

If an array for a WORD data type with 10 array elements is specified in D
when it should be for 16 array elements, the CX-Programmer will output an
error when compiling.

Size to Be Processed by Instruction Is Not Fixed

When the operand size to be processed by the instruction is not fixed (when
the size is specified by another operand in the instruction), make sure that the
number of array elements is the same or greater than the size specified in the
other operand (i.e., size to be processed by the instruction).

Other Operand Specifying Size: Constant

The CX-Programmer will output an error when compiling.

Example: BLOCK TRANSFER: XFER W S D

(W: Number of words, S: First source word; D: First destination word)

When &20 is specified in W, array variable a with data type WORD and 10
elements is specified in S, and array variable b with data type WORD and 10
elements is specified in D:

XFER &20 a[0] b[0]

Even though the array variables a[0] and b[0] are both 10 words, the
XFER(070) instruction will execute transfer processing for the 20 words spec-
ified in W. As a result, the XFER(070) instruction will perform read/write pro-
cessing for the I/0 memory area following the number of array elements that
was allocated, as shown in the following diagram.

Therefore, if a[10 elements] is internally allocated words (e.g., H700 to H709),
and b[10 elements] is internally allocated words (e.g., H800 to H809),
XFER(070) will transfer data in words H700 to H719 to words H800 to H819.
In this operation, if another internally allocated variable (e.g., c), is allocated
words in H810 to H819, the words will be overwritten, causing unexpected
operation to occur. To transfer 20 words, make sure that the number of ele-
ments is specified as 20 elements for both array variable a and b.

67

Instruction Support and Operand Restrictions Section 2-7

XFER &20 a[0] b0]

Using a WORD data type with 10 elements for both variables a and b:
To transfer 20 words, be sure to specify 20 elements for both array variables a and b.

Internally allocated address

Internally allocated address

Example: H700 3
Array variable Array variable
10 words 4| a (10 words) a (10 words) 10 words
20 words

Example: H710 > Example: H810
20 words will be) o
transferred regard- The variables allocated in this area
less of the size of ar- (H810 to H819 in this example) are

Example: H719 ray variables a and b. overwritten. The data is variable-

length data, so the CX-Programmer

Example: H819 " will not output a compile error.

Other Operand Specifying Size: Variable

Even if the number of array elements does not match the size (i.e., size to be
processed by the instruction) specified in another operand (variable), the CX-
Programmer will not output an error when compiling. The instruction will be
executed according to the size specified by the operand, regardless of the
number of elements in the array variable.

Particularly if the number of elements in the array is less than the size (i.e.,

size to be processed by the instruction) specified by another operand (vari-
able), other variables will be affected and unexpected operation may occur.

2-7 Instruction Support and Operand Restrictions

Instruction Support

Restrictions on Operands

68

The tables in this appendix indicate which instructions can be used in function
blocks created with ladder programming language, the restrictions that apply
to them and to the operands, including the variables (whether array variables
and AT settings or external variable specifications are required, and which
data types can be used).

Instructions that are not supported for use in function block definitions by the
CX-Programmer, CP-series CPU Units, and CS/CJ-series CPU Units with unit
version 3.0 are given as Not supported in function blocks in the Symbol col-
umn.

* Operands that specify the first or last of multiple words, thereby requiring
AT setting or specification of array variables, are indicated as follows in
the AT setting or array required column.

Yes: An AT setting (or external specification) or array variable must be
specified for the operand to specify the first or last of multiple words.

* The value within parentheses is the fixed size used by the instruction
for reading, writing, or other processing. This size indicates either the
data type size or the size required for the array variable specified in
word units. For array variables, this size must be the same as the num-
ber of elements. Otherwise, the CX-Programmer will output an error
when compiling.

Instruction Support and Operand Restrictions Section 2-7

* If “not fixed” is indicated in parentheses, the size used by the instruc-

tion for reading, writing, or other processing can be changed. Make
sure that the maximum size required for the number of array elements
is provided.
Even if the number of array elements in an operand with unfixed size
does not match the size specified in another operand, the CX-Pro-
grammer will not output an error when compiling. The instruction will
operate according to the size specified in the other operand, regard-
less of the number of array variable elements.

---: Operands that do not require an AT setting or specification of array vari-
ables.

Note When specifying the first or last word of multiple words in an in-
struction operand, input parameters cannot be used to pass data
to or from variables. Either an AT setting must be used or one of the
following must be used: 1) An input-output variable set to an array
must be used and the address of the first word must be set for the
input parameter (CX-Programmer version 7.0 or higher) or 2) An
array variable with the required number of elements must be pre-
pared, and after the array data is set in the function block definition,
the first or last element in the array variable must be specified for
the operand.

* Any operands for which an AT setting must be specified for an I/O mem-
ory address on a remote node in the network are indicated as Specify
address at remote node with AT setting in the AT setting or array required
column.

The following table lists all of the instructions supported by the CS/CJ-series
CPU Units, CP-series CPU Units, NSJ-series NSJ Controllers, and FQM1
Flexible Motion Controllers (unit version 3.0 or later).

* Some instructions are supported only by FQM1 Flexible Motion Control-
lers (unit version 3.0 or later). These are indicated by “FQM1 only” under
the mnemonic.

* There are also instructions that are supported only by the CS/CJ-series
CPU Units, CP-series CPU Units, and NSJ-series NSJ Controllers, i.e.,
that cannot be used by the FQM1 Flexible Motion Controllers (unit version
3.0 or later). Refer to the FQM1 Instructions Reference Manual (Cat. No.
0013) to confirm the instructions that are supported.

For details, refer to the Programmable Controllers Instructions Reference
Manual (Cat. No. W474).

69

CPU Unit Function Block Specifications

Section 2-8

2-8 CPU Unit Function Block Specifications

The specifications of the functions blocks used in CS/CJ-series and CP-series
CPU Units are given in the following tables. Refer to the other operation man-
uals for the CS/CJ Series and CP Series for other specifications.

2-8-1 Specifications
CJ2H CPU Units
ltem Specification
Model CJ2H-CPU6G8 CJ2H-CPU6B7 CJ2H-CPU66 CJ2H-CPU65 CJ2H-CPU64
(-EIP) (-EIP) (-EIP) (-EIP) (-EIP)
I/O points 2,560
Program capacity 400K 250K 150K 100K 50K
(steps)
Data memory 32K words (The DM and EM areas can be accessed in bit-units.)
Extended Data 32K words X 25 | 32K words X 15 [32K words X 10 |32K words X 4 | 32K words X 4
Memory banks banks banks banks banks
EO0_00000 to EO0_00000 to EO0_00000 to EO0_00000 to EO0_00000 to
E18_32767 EE_32767 E9_32767 E3_32767 E3_32767
Force-set/ |[EM11to EM 18 |EM7to EME EM 6 to EM9 EM3 EM3
reset
enabled
area
Function | Maxi- 1,024
blocks mum
number of
definitions
Maxi- 2,048
mum
number of
instances
Source/ | Symbol 3.5MB (See note.)
Com- tables/
ment com-
areas ments/
program
indexes
Note There is no restriction on the memory capacity by the stored data.
The total capacity of source and comment areas is 3.5 MB.
CS1-H CPU Units
Item Specification
Model CS1H- CS1H- CS1H- CS1H- CS1H- CS1G- |CS1G- |CS1G- |CS1G-
CPU67H |CPU6B6H |CPU6B5H |CPUB4H |CPUB3H | CPU45H |CPU44H | CPU43H | CPU42H
I/O points 5,120 1,280 960
Program capacity 250K 120K 60K 30K 20K 60K 30K 20K 10K
(steps)
Data memory 32K words
Il\Eﬂxtended Data 32K 32K 32K 32K words X 1 bank | 32K 32K words X 1 bank
emory words X words X words X EO_OOOOO to words X Eo_ooooo to E0_32767
13 banks |7 banks |3banks |gq 32767 3 banks
EO0_00000 | E0O_00000 | EO_00000 EO0_00000
to to to to
EC_32767 | E6_32767 | E2_32767 E2_32767

70

CPU Unit Function Block Specifications

Section 2-8

Item Specification
Function | Maxi- 1,024 1,024 1,024 1,024 128 1,024 1,024 128 128
blocks mum
number of
definitions
Maxi- 2,048 2,048 2,048 2,048 256 2,048 2,048 256 256
mum
number of
instances
Com- Total for | 2,048 2,048 1,280 1,280 1,280 1,280 704 704 704
ment all files
Memory | (Kbytes)
Unit (ver.
4.0 or
later)
Inside Function |1,664 1,664 1,024 512 512 1,024 512 512 512
com- block pro-
ment gram
memory | memory
(ver. 3.0 |(Kbytes)
or later) [Gom- 128 128 64 64 64 64 64 64 64
ment files
(Kbytes)
Program | 128 128 64 64 64 64 64 64 64
index files
(Kbytes)
Variable 128 128 128 64 64 128 64 64 64
tables
(Kbytes)
CJ1-H CPU Units
ltem Specification
Model CJ1H- CJ1H- CJ1H- CPUB4H- |CJ1G- CJ1G- CJ1G- CJ1G-
CPU67H/ |CPUe6H/ |CPU6B5H/ [R CPU45H |CPU44H |[CPU43H |CPU42H
CPU6B7H- |CPUB6H- |CPUB5H-
R R R
I/O points 2,560 1,280 960
Program capacity 250K 120K 60K 30K 60K 30K 20K 10K
(steps)
Data memory 32K words
Extended Data 32K words | 32K words | 32K words | 32K words | 32K words | 32K words X 1 bank
Memory X 13 X 7 banks | X 3 banks [X 1bank |X 3 banks EO_00000 to E0_32767
banks E0_00000 | E0_00000 | E0_00000 |EO_00000
EO0_00000 |to to to to
to E6_32767 |E2_32767 |E2_32767 |E2_32767
EC_32767
Function | Maxi- 1,024 1,024 1,024 1,024 1,024 1,024 128 128
blocks mum
number of
definitions
Maxi- 2,048 2,048 2,048 2,048 2,048 2,048 256 256
mum
number of
instances
Com- Total for | 2,048 2,048 1,280 1,280 1,280 1,280 1,280 704
ment all files
Memory | (Kbytes)
Unit (ver.
4.0 or
later)

71

CPU Unit Function Block Specifications

Section 2-8

Item

Specification

Inside
com-
ment
memory
(ver. 3.0

Function
block pro-
gram
memory
(Kbytes)

1,664

1,664

1,024

512

1,024

512

512

512

or later) Com-

ment files
(Kbytes)

128 128 64

64

64 64

64

64

Program
index files
(Kbytes)

128 128 64

64

64 64

64

64

Variable
tables
(Kbytes)

128 128 128

64

128 64

64

64

CJ1M CPU Units

4 interrupt inputs (pulse catch)

* 2 high-speed counter inputs (50-kHz phase dif-

ference or 100-kHz single-phase)

Item Specification
Units with internal I/O functions Units without internal /O functions

Model CJ1M-CPU23 |CJ1M-CPU22 |CJ1M-CPU21 |[CJ1M-CPU13 |[CJ1M-CPU12 |CJ1M-CPU11
I/O points 640 320 160 640 320 160
Program capacity 20K 10K 5K 20K 10K 5K
(steps)
Number of Expan- 1 max. Expansion not supported 1 max. Expansion not supported
sion Racks
Data memory 32K words
Extended Data None
Memory
Pulse start times 46 us (without acceleration/ 63 us (without | ---

deceleration) acceleration/

70 us (with acceleration/decel- | deceleration)

eration) 100 us (with

acceleration/
deceleration)

Number of sched- 2 1 2 1
uled interrupts
PWM outputs 2 1 None
Maximum value of 1,024 256 1,024 256
subroutine number
Maximum value of 1,024 256 1,024 256
jump number in JMP
instruction
Internal inputs 10 points -

Internal outputs

6 points
e 2 pulse outputs (100 kHz)
*2 PWM outputs

6 points

* 2 pulse out-
puts
(100 kHz)

*1 PWM out-
put

72

CPU Unit Function Block Specifications

Section 2-8

Item

Specification

Units with internal I/O functions

Units without internal I/O functions

Function | Maxi- 128

blocks mum
number of
definitions
Maxi- 256
mum
number of
instances

Com- Total for | 704

ment all files

Memory | (Kbytes)

Unit (ver.

4.0 or

later)

Inside Function |256

com- block pro-

ment gram

memory | memory

(ver. 3.0 |(Kbytes)

orlater) com- 64
ment files
(Kbytes)
Program |64
index files
(Kbytes)
Variable |64
tables
(Kbytes)

CP1H CPU Units

Item

X models

XA models

Y models

Model

CP1H-X40DR-A
CP1H-X40DT-D
CP1H-X40DT1-D

CP1H-XA40DR-A
CP1H-XA40DT-D
CP1H-XA40DT1-D

CP1H-Y20DT-D

Max. number of 1/O points

320 points (40 built-in points + 40 points/Expansion

Rack x 7 Racks)

300 points (20 built-in
points + 40 points/Expan-
sion Rack x 7 Racks)

Program capacity (steps)

20K

Data memory

32K words

Number of connectable Expan-
sion Units and Expansion I/O Units

7 Units (CP-series Expansion Units and Expansion 1/O Units)

(Kbytes)

Function blocks | Maximum num- | 128
ber of definitions
Maximum num- | 256
ber of instances
Inside comment | Function block | 256
memory program mem-
ory (Kbytes)
Comment files |64
(Kbytes)
Program index |64
files (Kbytes)
Variable tables |64

73

CPU Unit Function Block Specifications

Section 2-8

CP1L CPU Units

Item M models L models
Model CP1L- CP1L- CP1L- CP1L- CP1L- CP1L-
MeoDLI-[]1 | M40D0I-[] |M30DC-[1 |L20Dl[-[] L14DCI-[] L10DLI-[]
Max. number of I/O points 180 points 160 points 150 points | 60 points 54 points 10 points
(60 built-in | (40 built-in | (30 built-in | (20 built-in | (14 built-in
points + 40 | points + 40 |points + 40 |points + 40 |points + 40
points/ points/ points/ points/ points/
Expansion |Expansion |Expansion |Expansion |Expansion
Rack x 3 Rack x 3 Rack x 3 Rack x 1 Rack x 1
Racks) Racks) Racks) Rack) Racks)
Program capacity (steps) 10K 5K

Data memory

32K words (D00000 to D32767)

10K words (D00000 to D09999, and
D32000 to D32767)

Number of connectable Expan-
sion Units and Expansion I/O Units

3 Units (CP-series Expansion Units and
Expansion 1/0 Units)

1 Unit (CP-series Expan- |None

sion Unit or Expansion 1/O

(Kbytes)

Unit)

Function blocks | Maximum num- | 128

ber of definitions

Maximum num- | 256

ber of instances
Inside comment | Function block | 256
memory program mem-

ory (Kbytes)

Comment files |64

(Kbytes)

Program index |64

files (Kbytes)

Variable tables |64

NSJ-series NSJ Controllers

Model

NSJ5-TQOLI-G5D, NSJ5-SQ0L]-G5D,
NSJ8-TVOLI-G5D, NSJ10-TVOL-G5D,
NSJ12-TS0LJ-G5D,

NSJ5-TQO[-M3D, NSJ5-SQ0[-M3D,
NSJ8-TVOLI-M3D

(Kbytes)

Max. number of I/O points 1,280 640
Program capacity (steps) 60K 20K
Data memory 32K words
Extended data memory 32K words X 3 banks None
EO0_00000 to E2_32767
Function blocks | Maximum num- | 1,024 128
ber of definitions
Maximum num- |2,048 256
ber of instances
Inside comment | Function block | 1,024 256
memory program mem-
ory (Kbytes)
Comment files |64 64
(Kbytes)
Program index |64 64
files (Kbytes)
Variable tables |128 64

74

CPU Unit Function Block Specifications

Section 2-8

FQM1 Flexible Motion Controllers

Iltem Coordinator Module Motion Control Modules
Model FQM1-CM002 FQM1-MMA22 FQM1-MMP22
Max. number of I/O points 344 points (24 built-in 20 built-in points
points + 320 points on
Basic 1/0O Units)

Program capacity (steps) 10K
Data memory 32K words
Function blocks | Maximum num- |128

ber of definitions

Maximum num- | 256

ber of instances
Inside comment | Function block | 256
memory program mem-

ory (Kbytes)

Comment files |64

(Kbytes)

Program index |64

files (Kbytes)

Variable tables |64

(Kbytes)

2-8-2 Operation of Timer Instructions

Selecting the Option

Not Selecting the
Option (Default)

There is an option called Apply the same spec as T0-2047 to T2048-4095 in
the PLC properties. This setting affects the operation of timers as described in
this section.

If this option is selected, all timers will operate the same regardless of timer
number, as shown in the following table.

Timer Operation for Timer Numbers T0000 to T4095

Refresh Description
When instruction is The PV is refreshed each time the instruction is executed.
executed If the PV is 0, the Completion Flag is turned ON. If it is not 0,

the Completion Flag is turned OFF.

When execution of all | All PV are refreshed once each cycle.
tasks is completed

Every 80 ms

If the cycle time exceeds 80 ms, all PV are refreshed once
every 80 ms.

If this option is not selected, the refreshing of timer instructions with timer
numbers TO000 to T2047 will be different from those with timer numbers
T2048 to T4095, as given below. This behavior is the same for CPU Units that
do not support function blocks. (Refer to the descriptions of individual instruc-
tion in the CS/CJ Series Instruction Reference for details.)

75

Number of Function Block Program Steps and Instance Execution Time

Section 2-9

Timer Operation for Timer Numbers T0000 to T2047

Refresh Description
When instruction is The PV is refreshed each time the instruction is executed.
executed

If the PV is 0, the Completion Flag is turned ON. If it is not O,
the Completion Flag is turned OFF.

When execution of all | All PV are refreshed once each cycle.
tasks is completed

Every 80 ms

If the cycle time exceeds 80 ms, all PV are refreshed once
every 80 ms.

Timer Operation for Timer Numbers T2048 to T4095

Refresh Description
When instruction is The PV is refreshed each time the instruction is executed.
executed

If the PV is 0, the Completion Flag is turned ON. If it is not O,
the Completion Flag is turned OFF

When execution of all | PV are not updated.
tasks is completed

Every 80 ms

PV are not updated even if the cycle time exceeds 80 ms.

Select the Apply the same spec as TO-2047 to T2048-4095 Option to ensure
consistent operation when using the timer numbers allocated by default to
function block variables (T3072 to T4095).

2-9 Number of Function Block Program Steps and Instance
Execution Time

2-9-1

76

Number of Function Block Program Steps

Note

This section applies only to CP-series CPU Units with unit version Ver. 1.0 or
later and CS/CJ-series CPU Units with unit version Ver. 3.0 or later, NSJ Con-
trollers, and FQM1 Flexible Motion Controllers.

Use the following equation to calculate the approximate number of program
steps when function block definitions have been created and the instances
copied into the user program of the CPU Unit.

Number of steps

= Number of instances x (Call part size m + |/O parameter transfer part size n x Num-
ber of parameters) + Number of instruction steps in the function block definition p

(See note.)

The number of instruction steps in the function block definition (p) will not be
diminished in subsequence instances when the same function block definition
is copied to multiple locations (i.e., for multiple instances). Therefore, in the
above equation, the number of instances is not multiplied by the number of
instruction steps in the function block definition (p).

The following table applies only to CP-series CPU Units with unit version Ver.
1.0 or later and CS/CJ-series CPU Units with unit version Ver. 3.0 or later,
NSJ Controllers, and FQM1 Flexible Motion Controllers.

Number of Function Block Program Steps and Instance Execution Time Section 2-9

Contents Number of steps

m | Call part - 57 steps
n I/O parameter 1-bit (BOOL) input vari- 6 steps

transfer part able or output variable

The data type is 1-word (INT, UINT, or 6 steps

shown in parenthe- | WORD) input variable or

ses. output variable

2-word (DINT, UDINT, 6 steps

DWORD, or REAL) input

variable or output variable
4-word (LINT, ULINT, 12 steps
LWORD, or LREAL) input
variable or output variable
Input-output variables 18 steps

p Number of instruc- | The total number of instruction steps (same as standard
tion steps in func- | user program) + 27 steps.
tion block definition

Example:

Input variables with a 1-word data type (INT): 5

Output variables with a 1-word data type (INT): 5

Function block definition section: 100 steps

Number of steps for 1 instance =57 + (5 + 5) x 6 steps + 100 steps + 27 steps
= 244 steps

When the program is written in ST language, the actual number of steps can-
not be calculated. The number of instruction steps in each function block defi-
nition can be found in the function block definition’s properties.

2-9-2 Function Block Instance Execution Time

This section applies only to CP-series CPU Units with unit version Ver. 1.0 or
later and CS/CJ-series CPU Units with unit version Ver. 3.0 or later, NSJ Con-
trollers, and FQM1 Flexible Motion Controllers.

Use the following equation to calculate the effect of instance execution on the
cycle time when function block definitions have been created and the
instances copied into the CPU Unit’s user program.

Effect of Instance Execution on Cycle Time
= Startup time (A)
+ 1/0O parameter transfer processing time (B)
+ Execution time of instructions in function block definition (C)

77

Number of Function Block Program Steps and Instance Execution Time

Section 2-9

The following table shows the length of time for A, B, and C.

Operation CPU Unit model
CJ1H- CS1H- CS1G- CJ1M-CPULI]
CPU6[H-R CPU6[H CPU4[H CP1H-X-[J
CJ2H- CJ1H- CJ1G- CP1H-XAO-]
CPUGL(-EIP) CPU6H CPU4[H CP1H-YUOIO-OI
NSJ CP1L-MCICIC-
CP1L-LOOIO-]
A | Startup time Startup time notincluding | 3.3 us 6.8 us 8.8 us 15.0 us
I/O parameter transfer
B | I/O parameter trans- | 1-bit input variable, out- | 0.24 us 0.4 us 0.7 us 1.0 us
fer processing time | put variable, or input-out-
The data type is put variable (BOOL)
indicated in paren- | 1-word input variable, 0.19 us 0.3 us 0.6 us 0.8 us
theses. output variable, or input-
output variable (INT,
UINT, WORD)
2-word input variable, 0.19 us 0.5us 0.8 us 1.1 us
output variable, or input-
output variable (DINT,
UDINT, DWORD, REAL)
4-word input variable, 0.38 us 1.0 us 1.6 us 2.2 s
output variable, or input-
output variable (LINT,
ULINT, LWORD, LREAL)
C | Function block defi- | Total instruction processing time (same as standard user program)
nition instruction
execution time

78

Note

Example: CJ1H-CPU67H-R
Input variables with a 1-word data type (INT): 3
Output variables with a 1-word data type (INT): 2
Total instruction processing time in function block definition section: 10 us
Execution time for 1 instance = 3.3 us + (3 +2) x 0.19 us + 10 us = 14.25 us

The execution time is increased according to the number of multiple instances

when the same function block definition has been copied to multiple locations.

SECTION 3
Creating Function Blocks

This section describes the procedures for creating function blocks on the CX-Programmer.

3-1 Procedural Flow 80
3-2 Procedures.ttt e 82
3-2-1 CreatingaProject.t 82
3-2-2 Creating a New Function Block Definition 82
3-2-3 Defining Function Blocks Created by User 85
3-2-4 Creating Instances from Function Block Definitions............ 97
3-2-5 Setting Function Block Parameters Using the Enter Key......... 99
3-2-6 Setting the FB Instance Areas., 102
3-2-7 Checking Internal Address Allocations for Variables 104
3-2-8 Copying and Editing Function Block Definitions 106
3-2-9 Checking the Source Function Block Definition from an Instance . 106
3-2-10 Checking Instance Information such as Nesting Levels.......... 106
3-2-11 Checking the Size of the Function Block Definition 107
3-2-12 Compiling Function Block Definitions (Checking Program). 108
3-2-13 Printing Function Block Definition 108
3-2-14 Password Protection of Function Block Definitions. 109
3-2-15 Comparing Function Blocks. 112
3-2-16 Saving and Reusing Function Block Definition Files 112
3-2-17 Downloading/Uploading Programs to the Actual CPU Unit 113
3-2-18 Monitoring and Debugging Function Blocks 113
3-2-19 Online Editing Function Block Definitions 121

79

Procedural Flow Section 3-1

3-1 Procedural Flow

The following procedures are used to create function blocks, save them in
files, transfer them to the CPU Unit, monitor them, and debug them.

Creating Function Blocks

Create a Project Refer to 3-2-1 Creating a Project for details.
m Creating a New Project

1,2,3... 1. Start the CX-Programmer and select New from the File Menu.
2. Select a Device type: CS1G-H, CS1H-H, CJ1G-H, CJ1H-H, CJ1M, or
CP1H, CP1L, NSJ, or FQM1-CM (MMA/MMP).

m Reusing an Existing CX-Programmer Project

1,2,3... 1. Start the CX-Programmer, and read the existing project file (.cxp) created
using CX-Programmer Ver. 4.0 or earlier by selecting the file from the File
Menu.

2. Select a Device type: CS1H-H, CS1G-H, CJ1G-H, CJ1H-H, CJ1M, or
CP1H, CP1L, NSJ, or FQM1-CM (MMA/MMP).

Create a Function Block Refer to 3-2-2 Creating a New Function Block Definition for details.
Definition
1,2,3... 1. Select Function Blocks in the project workspace and right-click.
2. Select Insert Function Block - Ladder or Insert Function Blocks -
Structured Text from the pop-up menu.
Define the Function Block Refer to 3-2-3 Defining Function Blocks Created by User for details.
m Registering Variables before Inputting the Ladder Program or ST Program

1,2,3... 1. Register variables in the variable table.
2. Create the ladder program or ST program.
m Registering Variables as Necessary while Inputting the Ladder Program
or ST Program
1,2,3... 1. Create the ladder program or ST program.
2. Register a variable in the variable table whenever required.

Create an Instance from Refer to 3-2-4 Creating Instances from Function Block Definitions for details.
the Function Block
Definition

m Inserting Instances in the Ladder Section Window and then Inputting the
Instance Name

1,2,3... 1. Place the cursor at the location at which to create an instance (i.e., a copy)
of the function block and press the F Key.
2. Input the name of the instance.
3. Select the function block definition to be copied.

m Registering Instance Names in the Global Symbol Table and then
Selecting the Instance Name when Inserting

1,2,3... 1. Select Function Block as the data type for the variable in the global symbol
table.

2. Press the F Key in the Ladder Section Window.

80

Procedural Flow

Section 3-1

Allocate External I/O to
the Function Block

1,2,3...

Set the Function Block
Memory Allocations
(Instance Areas)

1,2,3...

3. Select the name of the instance that was registered from the pull-down
menu on the FB Instance Field.

Refer to 3-2-5 Setting Function Block Parameters Using the Enter Key for
details.

1. Place the cursor at the position of the input variable or output variable and
press the P Key.

2. Input the source address for the input variable or the destination address
for the output variable.

Refer to 3-2-6 Setting the FB Instance Areas for details.

1. Select the instance and select Function Block/SFC Memory - Function
Block/SFC Memory Allocation from the PLC Menu.

2. Set the function block memory allocations.

Printing, Saving, and Reusing Function Block Files

Compile the Function
Block Definition and Save
It as a Library File

1,2,3...

Refer to 3-2-12 Compiling Function Block Definitions (Checking Program) and
3-2-16 Saving and Reusing Function Block Definition Files for details.

Compile the function block that has been saved.

Print the function block.

Save the function block as a function block definition file (.cxf).
Read the file into another PLC project.

P oDd -

Transferring the Program to the PLC

Refer to 3-2-17 Downloading/Uploading Programs to the Actual CPU Unit.

Monitoring and Debugging the Function Block

Refer to 3-2-18 Monitoring and Debugging Function Blocks.

81

Procedures Section 3-2

3-2 Procedures
3-2-1 Creating a Project

Creating New Projects
with CX-Programmer

1,2,3... 1. Start the CX-Programmer and select New from the File Menu.

2. In the Change PLC Window, select a Device Type that supports function
blocks. These are listed in the following table.

Device CPU

CJ2H CPU68/67/66/65/64/68-EIP/67-EIP/66-EIP/65-EIP/64-EIP

CS1G-H CPU42H/43H/44H/45H

CS1H-H CPU63H/64H/65H/66H/67H

CJ1G-H CPU42H/43H/44H/45H

CJ1H-H CPU65H/66H/67H/64H-R/65H-R/66H-R/67H-R

CJ1iM CPU11/12/13/21/22/23

CP1H CP1H-XA/XIY

CP1L CP1L-M/L

NSJ G5D (Used for the NSJ5-TQOI-G5D, NSJ5-SQO[1-G5D, NSJ8-
TVOUI-G5D, NSJ10-TVOLI-G5D, and NSJ12-TS0L]-G5D)
M3D (Used for the NSJ5-TQOL1-M3D, NSJ5-SQO0[1-M3D, and
NSJ8-TVO0[I-M3D)

FQM1-CM FQM1-CM002

FQM1-MMA | FQM1-MMA22

FQM1-MMP | FQM1-MMP22

3. Press the Settings Button and select the CPU Type. For details on other
settings, refer to the CX-Programmer Operation Manual (W446).

3-2-2 Creating a New Function Block Definition

1,2,3... 1. When a project is created, a Function Blocks icon will appear in the project
workspace as shown below.

= ntitled - CX-Programmer - [NewPLC1.NewProgrami.Sectionl [Diagram]]
Fi\e Edit View Insert PLC Program Simulation Tools ‘Window Help

DEE RER[IDE - - #aun|2R oy
a Q@& EER Abrirw | —CoBES

NEERPDE & 2PEE|LS L v @8]
= o

% [Programm Mame : MewProgram1]
= MewProject

E--@,:E MewPLZ1[CI15-H] Offline [Section MName : Section]
-2 symbols
% 10 Tabie and Uit Setup R ;
Settings ¢ 3
@ Memary
E| % Programs
E-@ MewPrograml (00}
: -5 Symbols

B sectionl
— e Function Blocks will appear under the PLC.

- {F Function Blocks |

2. Function block definitions are created by inserting function block defini-
tions after the Function Blocks icon.

Creating Function Block Function blocks can be defined by the user using either ladder programming
Definitions or structured text.

82

Procedures

Section 3-2

Creating (Inserting) Function Block Definitions with Ladders

1.

Select Function Blocks in the project workspace, right-click, and select
Insert Function Blocks - Ladder from the pop-up menu. (Or select Func-
tion Block - Ladder from the Insert Menu.)

Creating (Inserting) Function Block Definitions with Structured Text

1.

Select Function Blocks in the project workspace, right-click, and select
Insert Function Blocks - Structured Text from the pop-up menu. (Or se-
lect Function Block - Structured Text from the Insert Menu.)

== o [Program Mame : MewProgrami]
E'% NewProject
=D MewPLC1[CI16-H] Offline [Section Name : Sectiond]
----- =3 Symbols
----- §7 10 Table and Unit Setup
----- Settings

G Memary
[—]% Programs

FunctionBlock1 is displayed as the Icon
under the Function Blocks Icon (£F).
1

El"'ﬂF nckicR-B

“-J8F FunctionBlockl

A function block called FunctionBlock1 will be automatically inserted either
after the tF for ladder programming language (default) or the fgF for ST
language. This icon contains the definitions for the newly created (insert-
ed) function block.

Whenever a function block definition is created, the name FunctionBlock[]

will be assigned automatically, where [is a serial number. These names
can be changed. All names must contain no more than 64 characters.

Using OMRON FB Library Files

Use the following procedure to insert OMRON FB Library files (.cxf).

1.

Select Function Blocks in the project workspace, right-click, and select
Insert Function Blocks - Library File from the pop-up menu. (Or select
Function Block - Library File from the Insert Menu.)

The following Select Function Block Library File Dialog Box will be dis-
played.

Select Function Block Library Fil I |
Lookin:l_\JCLK j Lol £F B+
8] _CLK_CheckMode32 10.cxf o8] _CLE_Link_SetAutoMaded 10.cxf
] _CLK_CheckModeg4 10.cxf =] _CLk_Link_SetInitialParaOpt 10.cxf

B _cLk_Link_RunDatalink 10.cxF =] _CLE_Link_SetInitialParatire 10.cxf
] _CLK_Link_SetAutoMadel 10.cxf =] _CLK_Link_SetManualMode 10.cxf
] _CLK_Link_SetAutoMadez 10.cxf =] _CLK_Link_StopDatalink 10,cxf

o8] _CLK_Link_SetAutoModes 10, cxf

File name: I_CLK_Link_H unDiatalink 10.cxf Open I
Files of type: IFunchnn Black Library Files[* cxf] j Cancel |
4

Note To specify the default folder (file location) in the Function Block Li-
brary File Dialog Box, select Tools - Options, click the General
Tab and the select the default file in the OMRON FB library storage
location field.

Specify the folder in which the OMRON FB Library file is located, select the
library file, and click the Open Button. The library file will be inserted as a

function block definition after the JF.

83

Procedures

Section 3-2

Function Block Definitions

Creating Function Block
Definitions

Ladder Program

Structured Text

Using OMRON FB Library
Files

84

One of the following windows will be displayed when the newly created Func-
tion Block 1 icon is double-clicked (or if it is right-clicked and Open is selected
from the pop-up menu). A variable table for the variables used in the function
block is displayed on top and an input area for the ladder program or struc-
tured text is displayed on the bottom.

= Untitled - £X-P

DF\ Edit Wiew Ins tCPgam TW
DEHE B SR $2| 22|80 m\?w\]]@g,ﬁm\ MR
aoQ\Ffﬁufmfnmvw|—o¢ﬁa=-el_lx\ IR EEEEN AL A
Fﬂﬁmt\aﬁ:a[@lllmwmmawamzr\”

Hame | Data Type [&1

N Variable table

Internals

4
o
g

Z
||) /Ladder input area

FuncionBlockl

= Untitled - CX-Programmer - [NewPLC1.FunctionBlock2 [FB Structured Text]]
[0 Fie Edit View Inset PLC Program Tooks Window Help

DedEegr|seaacankew|ar8a L[RER (2SR DRET |k
e Xa [EEEER [T i —oqz»ﬁﬁ-sl_lx\ Blop|ens|E BERL |
FREEEIREEEL A - -0 D=

A f Hame [Data Type [AT

v Variable table

temals | Dputs | Outputs | Externals |)
e
——
[

ST input area
% input ar

As shown, a function block definition consists of a variable table that serves

as an interface and a ladder program or structured text that serves as an algo-
rithm.

Variable Table as an Interface

At this point, the variable table is empty because there are no variables allo-
cated for I/O memory addresses in the PLC.

Ladder Program or Structure Text as an Algorithm

* With some exceptions, the ladder program for the function block can con-
tain any of the instructions used in the normal program. Refer to 2-4 Pro-
gramming Restrictions for restrictions on the instructions that can be
used.

e Structured text can be input according to the ST language defined in
IEC61131-3.

Double-click the inserted function block library (or right-click and select Open
from the pop-up menu) to display the variable table that has finished being
created at the top right window, and the ladder program that has finished
being created in the bottom right window. Both windows are displayed in gray
and cannot be edited.

Procedures Section 3-2

. =), Variable table

L

Vi A
o RE

—

Ladder program

'

Note Function block definitions are not displayed in the default settings for OMRON
FB Library files (.cxf). To display definitions, select the Display the inside of
FB option in the function block properties. (Select the OMRON FB Library file
in the project workspace, right-click, select Properties, and select the Dis-
play the inside of FB option in the General Tab.)

3-2-3 Defining Function Blocks Created by User
A function block is defined by registering variables and creating an algorithm.
There are two ways to do this.

* Register the variables first and then input the ladder program or structure
text.

* Register variables as they are required while inputting input the ladder
program or structure text.

Registering Variables First

Registering Variables in The variables are divided by type into five sheets in the variable table: Inter-
the Variable Table nals, Inputs, Outputs, Input-Output, and Externals.

These sheets must be switched while registering or displaying the variables.

1,2,3... 1. Make the sheet for the type of variable to be registered active in the vari-
able table. (See note.) Place the cursor in the sheet, right-click, and per-
form either of the following operations:

* To add a variable to the last line, select Insert Variable from the pop-
up menu.

* To add the variable to the line above or below a line within the list, se-
lect Insert Variable - Above or Below from the pop-up menu.

Note The sheet where a variable is registered can also be switched
when inserting a variable by setting the usage (N: Internals, I: In-
puts, O: Outputs, E: Externals, P: In Out).

The New Variable Dialog Box shown below will be displayed.
* Name: Input the name of the variable.
» Data Type: Select the data type.
» Usage: Select the variable type.

* Initial Value: Select the initial value of the variable at the start of oper-
ation.

* Retain: Select if the value of the variable is to be maintained when the
power is turned ON or when the operating mode is changed from
PROGRAM or MONITOR mode to RUN mode. The value will be
cleared at these times if Retain is not selected.

85

Procedures

Section 3-2

86

Note

Input the name of the
function block variable g gefault data type is BOOL.

New Variable x| Change as required.

Mame: [——— Type of variable to register
| (i.e., the sheet
Data Type: [BOOL® =] _ Concel ()

— Initial value
Uzage: Ilnput — -

Initial ¥alwe: |FALSE < I_‘-—Etexam\

Comment: — Select to maintain value for
=] power interruptions.

|

Note (a) For user-defined external variables, the global symbol table can
be browsed by registering the same variable name in the global
symbol table.

(b) External variables defined by the system are registered in the ex-
ternal variable table in advance.

For example, input “aaa” as the variable name and click the OK Button.

As shown below, a BOOL variable called aaa will be created on the Inputs
Sheet of the Variable Table.

= Untitled - CX-Programmer - [NewPLC 1.FunctionBlock1 [FB Ladder]] (o] x|
[P File Edt View Insert PLC Program Tools Window Help =& x|

DEH|RER[sme2cnt%(2w|[at88 (L1 [RER (2SR 2BEE|su|a s
cxaisEnErRErrrw) —ooaatlk|[FeE(vnes|EBEEE |
FEEEEIEEEE R

=l [ame [oatatype [AT [initial vaiue | Retai... | Comment [

-5 NewProject lock,

= ER ewpLCI[C1G-H] Offline -

=3 Symbels
§7 10 Table
Settings
S Memery
B Programs Intermals, Inputs Outputs | External |

-G8l NewProgram1 (00)
-3 symbals
- g section1
B END
=-F Function Al
d

Functionglockl

//////////// BOOL variable called aaa :I
created on Inputs Sheet.

(1) After a variable is added, it can be selected to display in reverse video,

then moved to another line by dragging and dropping. To select a variable
for dragging and dropping, select the variable in any of the columns ex-
cept the Name field.

(2) After inputting a variable, the sheet where the variable is registered can

be changed by double-clicking and changing the setting in the Usage field
(N: Internals, I: Inputs, O: Outputs, E: Externals, P: In Out). The variable
can also be copied or moved between the sheets for internal, external, in-
put, output, and input-output variables. Select the variable, right-click,
and select Copy or Cut from the pop-up menu, and then select Paste.

(3) Variable names must also be input for variables specified with AT (allocat-

ing actual address) settings.

(4) The following text is used to indicate /0O memory addresses in the PLC

and thus cannot be input as variable names in the function block variable
table.
* A, W, H, HR, D, DM, E, EM, T, TIM, C, or CNT followed by a numeric
value

Procedures Section 3-2
Creating the Algorithm Using a Ladder Program
1,2,3... 1. Pressthe C Key and select aaa registered earlier from the pull-down menu
in the New Contact Dialog Box.
[Fie Edt Yew Insert PLC Frogam Tools iWindow Help
DedR ek sedacani(er||s28a L1 REXerQEREE L%
coasEBER[Hriw | —opaaxl k||Bcav%n s |E|BERE |
FREEEIREEEDL A CEE s B
= [ame [Data Type [a7 [mitial v... [Ret... | Comment |
B %mg[] e o0t = e mensinef et
97 10 Table
[B) settings
b “Z‘z;f;k [s | Inputs [outputs Externals
=G} NewPrograma (00) T
= Symbols]
B9 Sectiont
3 Enp
= TF Function Blocks
1LF FunctionBlockl
ZF FunctionBlockz
Press the C Key and select aaa registered earlier
from the pull-down menu in the New Contact Dialog Box.
2. Click the OK Button. A contact will be entered with the function block inter-
nal variable aaa as the operand (variable type: internal).
ST
[Fle Edt wiew Insert PLC Program Tools Window Help =@ x|
DSH®gR|sd (22 ni%|ew|at8a (L1l 2R DRTT L%
s [FEBERRHirw | —ogaastl x| [Blea(vens|EBERT |
EREEEEE
S =l [Hame [Datatype [T [tnitial Value | Retai... | Comment |
E-E@%ﬁ%%ijf&;imﬁ] st A E:a :gg\[E:\ég Controls execution of the Function Block,
] IO Table
(5] Settings
gt Memory f—
=% Programs Internals Inputs Outputs | External |
ER %TE;E%“ (oo j Y j
T, .
Contact entered with function block
internal variable aaa as operand.
The rest of the ladder program is input in exactly the same way as for stan-
dard programs with CX-Programmer.

Note Addresses cannot be directly input for instruction operands within function
blocks. Only Index Registers (IR) and Data Registers (DR) can be input
directly as follows (not as variables): Addresses DRO to DR5, direct specifica-
tions IR0 to IR15, and indirect specifications ,IR0 to ,IR15.
Using Structured Text
An ST language program (see note) can either be input directly into the ST
input area or a program input into a general-purpose text editor can be copied
and then pasted into the ST input area using the Paste Command on the Edit
Menu.

Note The ST language conforms to IEC61131-3. For details, refer to SECTION 5

Structured Text (ST) Language Specifications in Part 2: Structured Text (ST).

87

Procedures

Section 3-2

Note

= Untitled - CX-Programmer - [NewPLCLFunctionBlock1 [FB Structured Text]] =10 x|
[P Fle Edic wiew Insert PLC Program Help =& x|

DSd®gR|smd 2z at%|en|at8a Rl 2R DRTT|su|ns

sxafFEBERE e —coaastl x| [Blea|vens|EBERT |

ERARS sEFEE|L8YE|e8neas || 2@ |
=l

Hame [Data Type [AT [tritial y... | Ret... | Comment i |
- 5@ Newroject a T 0
=B NewPLCA[CI1G-H] Offiine b INT 0
-3 Symbols

Tnternals Thps

Fora:=10 T00BY -1 DO +1;

bl

ST program input directly or pasted from one
created in a text editor.

ELSE
=2
END_F,;

(1) Tabs or spaces can be input to create indents. They will not affect the al-
gorithm.

(2) The display size can be changed by holding down the Ctrl Key and turn-
ing the scrolling wheel on a wheel mouse.

(3) When an ST language program is input or pasted into the ST input area,
syntax keywords reserved words will be automatically displayed in blue,
comments in green, errors in red, and everything else in black.

(4) To change the font size or colors, select Options from the Tools Menu
and then click the ST Font Button on the Appearance Tab Page. The font
names, font size (default is 8 point) and color can be changed.

(5) For details on structured text specifications, refer to SECTION 5 Struc-
tured Text (ST) Language Specifications in Part 2: Structured Text (ST).

Registering Variables as Required

Using a Ladder Program

88

1,2,3...

The ladder program or structured text program can be input first and variable
registered as they are required.

When using a ladder diagram, a dialog box will be displayed to register the
variable whenever a variable name that has not been registered is input. The
variable is registered at that time.

Use the following procedure.

1.

Press the C Key and input a variable name that has not been registered,
such as aaa, in the New Contact Dialog Box.

Note Addresses cannot be directly input for instruction operands within
function blocks. Only Index Registers (IR) and Data Registers (DR)
can be input directly as follows (not as variables): Addresses DRO
to DR5, direct specifications IR0 to IR15, and indirect specifications
,IRO to ,IR15.

2. Click the OK Button. The New Variable Dialog Box will be displayed. With

special instructions, a New Variable Dialog Box will be display for each op-
erand in the instruction.

Mame:
Data Type: -
Usaee: [temal =]
bitial Value: [FALSE <] [Retai

Comment:

Set the data type and other
properties other than the name.

I

J

Procedures

Section 3-2

1,2,3...

5.

The properties for all input variables will initially be displayed as follows:
e Usage: Internal
* Data Type: BOOL for contacts and WORD for channel (word)
¢ Initial Value: The default for the data type.
* Retain: Not selected.
Make any required changes and click the OK Button.

As shown below, the variable that was registered will be displayed in the
variable table above the program.

3= Untitled - CX-Programmer - [NewPLCL.FunctionBlock1 [FB Ladder]]

[Fle Edt view Insert PLC Program Tools ‘indow Help

DEd® el |t melaaank|e|esr8a 1 Rl L ERCDDT|Lu

soalFeEBERRrrirw | —opaaxl & |[Blealarea|EBERE |

REFRRE |2 EE LS a8 e[
[[Mame [Data Type [AT [tritial v... [Ret... | Comment n |]

=5 NewProject. aaa BOOL FALSE
=B HewPLCL[CI1G-H] Offine bbb BOOL FALSE

< Memary \
% proga _nteras Inpts | \ouputs | Extenals |
-5 NewProgram1 (00} =3 T b
52 Symbals 0— 5
1
2
ke oc

Instruction input. Function block internal variable registered.

If the type or properties of a variable that was input are not correct, double-
click the variable in the variable table and make the required corrections.

M Reference Information

AT Settings (Specified Address)

AT settings can be made in the variable properties to specify allocation
addresses for Basic I/0O Units, Special 1/0 Units, or CPU Bus Units, or Auxil-
iary Area addresses not registered using the CX-Programmer. A variable
name is required to achieve this. Use the following procedure to specify an
address.

1.

After inputting the variable name in the New Variable Dialog Box, click the
Advanced Button. The Advanced Settings Dialog Box will be displayed.

Select AT (Specified Address) under AT Settings and input the desired ad-
dress.

1 B

- rray

[paa
Type: BOOL >
[Internal

Initial Value: [FALEE -] Hetin

Address: 0000 D

Range: Rlin)

I

|

Select AT. Input address.

The variable name is used to enter variables into the algorithm in the func-
tion block definition even when they have an address specified for the AT
settings (the same as for variables without a specified address).

For example, if a variable named Restart has an address of A50100 spec-
ified for the AT settings, Restart is specified for the instruction operand.

Array Settings

An array can be specified to use the same data properties for more than one
variable and manage the variables as a group.

Use the following procedure to set an array.

89

Procedures

Section 3-2

Using Structured Text

Note

1. After inputting the variable name in the New Variable Dialog Box, click the
Advanced Button. The Advanced Settings Dialog Box will be displayed.

2. Select Array Variable in the Array Settings and input the maximum number
of elements in the array.

rray Size:
AT (Specified Address)
fddress
Ranzz:

\

\

Select Array Variable. Input the number of elements.

When the name of an array variable is entered in the algorithm in the func-
tion block definition, square brackets surrounding the index will appear af-
ter the array name.

For example, if you create a variable named PV with a maximum of 3 ele-
ments, PV[0], PV[1], and PV[2] could be specified as instruction operands.

There are three ways to specify indices.

* Directly with numbers, e.g., PV[1] in the above example (for ladder pro-
gramming or ST language programming)

* With a variable, e.g., PV[a] in the above example, where “a” is the
name of a variable with a data type of INT (for ladder programming or
ST language programming)

* With an equation, e.g., PV[a+b] or PV[a+1} in the above example,
where “a” and “b” are the names of variables with a data type of INT
(for ST language programming only)

When using structured text, a dialog box will not be displayed to register the
variable whenever a variable name that has not been registered is input. Be
sure to always register variables used in standard text programming in the
variable table, either as you need them or after completing the program.
(Place the cursor in the tab page on which to register the variable, right-click,
and select Insert Variable from the pop-up menu.

For details on structured text specifications, refer to SECTION 5 Structured
Text (ST) Language Specifications in Part 2: Structured Text (ST).

Copying User Program Circuits and Pasting in Ladder Programming of Function

Block Definitions

Source Instruction
Operand: Address Only

Note

90

A single circuit or multiple circuits in the user program can be copied and
pasted in the ladder programming of function block definitions. This operation,
however, is subject to the following restrictions.

Addresses are not registered in the function block definition variable tables.
After pasting, the addresses will be displayed in the operand in red. Double-
click on the instruction and input the variable name into the operand.

Index Registers (IR) and Data Registers (DR), however, do not require modifi-
cation after pasting and function in the operand as is.

Procedures

Section 3-2

Source Instruction
Operand: Address and I/O
Comment

Note

Source Instruction
Operand: Symbol

Automatically generate symbol name Option Selected in Symbols Tab
under Options in Tools Menu

The user program symbol names (in the global symbol table only) will be gen-
erated automatically as AutoGen_ + Address (if the option is deselected, the
symbol names will be removed).

Example 1: For address 100.01, the symbol name will be displayed as
AutoGen_100_01.

Example 2: For address DO, the symbol name will be displayed as
AutoGen_DO.

If circuits in the user program are copied and pasted into the function block
definition program as is, the symbols will be registered automatically in the
function block definition symbol table (at the same time as copying the cir-
cuits) as the symbol name AutoGen_Address and I/O comments as Com-
ment. This function enables programmed circuits to be easily reused in
function blocks as addresses and I/O comments.

The prefix AutoGen_ is not added to Index Registers (IR) and Global Data
Registers (DR), and they cannot be registered in the original global symbol
table.

Automatically generate symbol name Option Not Selected in Symbols
Tab under Options in Tools Menu

Addresses and I/O comments are not registered in the function block defini-
tion variable tables. Addresses are displayed in the operand in red. /O com-
ments will be lost. Double-click on the instruction and input the symbol name
into the operand.

Index Registers (IR) and Data Registers (DR), however, do not require modifi-
cation after pasting and function in the operand as is.

The user program symbol is automatically registered in the internal variables
of the function block definition variable table. This operation, however, is sub-
ject to the following restrictions.

Addresses

Symbol addresses are not registered. Use AT settings to specify the same
address.

Symbol Data Types

The symbol data types are converted when pasted from the user program into
the function block definition, as shown in the following table.

Symbol data type in user program — | Variable data type after pasting in
function block program

CHANNEL — |WORD

NUMBER — | The variable will not be registered,
and the value (number) will be pasted
directly into the operand as a con-
stant.

UINT BCD — |WORD

UDINT BCD — |DWORD

ULINT BCD — |LWORD

Symbol data types CHANNEL, NUMBER, UINT BCD, UDINT BCD, or ULINT
BCD, however, cannot be copied from the symbol table (not the program) and
then pasted into the variable table in the function block definition.

91

Procedures Section 3-2

Note Symbols with automatically generated symbol names (AutoGen_ + Address)
cannot be copied from a global symbol table and pasted into the function
block definition symbol table.

Generating Function Block Definitions from Existing Ladder Programming

One or more program circuits in a user program can be converted to the lad-
der programming in a function block definition.

Note This function is designed to help you create function block definitions based
on existing ladder programming. It does not automatically generate finish def-
initions. After generating a function block definition with this function, always
check the warning messages in the FB Variable Allocation Dialog Box and
Output Window and check the program that was generated, and be sure to
make any required changes.

1,2,3... 1. Right-click one or more program circuits in the user program and select
Function Block (ladder) generation from the pop-up menu.

[1]
0

E [Program Name : NewProgrami]

[Section Name : Sectionl]

Online Edit , polE
Go To (3
e
F!nd Bit Addresses MOV WMove
Il s data Source word
Find Mhemonics
& Cut D00 Destination
Copy
[Paste Set_Complete
Delete
2 I Fun
L

2. The following FB Variable Allocation Dialog Box will be displayed.
x|

Internals I Inputsl Dutputsl Inputx’DutputsI

Address | Mame | Type | Hiray Sizel AT Spe... | 10 Com,. ~
Q.00 Start BOOL i} Mo
w001 Setting BOOL u} Ma
1.00 Error BOOL a Mo
0o Lirnit BOOL u} Mo
000 AutalGe.. WORD n} Ma po
0,00 Set_Co.. BOOL i} Mo
n

?PI’I Rum ROl
A

N -
n I _>I_I

ak. I Cancel

92

Procedures

Section 3-2

Note

The addresses of the operands used in the instructions in the selected pro-
gram circuits will be automatically allocated as listed below depending on
application conditions.

Application Application inside selected program circuits
outside selected | Not ysed [Used in Used in Used in input
program circuits input output and output

section section sections
Not used Internal vari- |Internal vari- | Internal variable
(See note.) able able
Used Input variable | Output vari- | Input-output vari-
able able

Note Even if an addressis allocated to I/O, it will be considered to be “not
used” and converted to an internal variable if it is not used outside
the selected circuits (no matter where it is used inside the selected
circuits).

Names will be automatically set for addresses without symbol names as fol-

lows: AutoGen_address. AT specifications will be automatically removed.

3.

5.

Change the allocations to internal, input, output, or input-output variables
as required. Right-click the variable and select the desired variable type
from the Change usage Menu.

Inkernals

Change usage

Lirnit BOOL Inputs
D100 AuoGe.. WORC Outputs
w000 Sef Co.. BOOL ppputfoutputs
20N Tearn =Inlnll

If necessary, double-click any variable in the variable list and change the
name or comment. The array and AT settings can also be changed.

Click the OK Button. The following Function Block (Ladder) Generation Di-
alog Box will be displayed.

Function Block {Ladder) Gen

FE definition name: IFunctionBIncH

Comment;

] I Cancel
Input the FB definition name and comment, and then click the OK Button.

The function block definition will be generated based on the settings and
will appear under the function blocks in the Workspace.

EI{F Function Blocks
“-gLtFFunctionBlock1

The following dialog box will be displayed asking if you want to insert an
instance of the function block definition below the original program circuits.

CX-Programmer ¥6.1 |

@ Do you wish ko insert a Function Black call at the position of the source ladder 7

93

Procedures

Section 3-2

94

Note

7. Click the Yes Button to insert an instance and click the No Button to not
insert an instance.

8. The following New Function Block Invocation Dialog Box will appear if the
Yes Button was clicked.

Mew Function Block Invocation x|

FB Instance: I j
FE Definition: IFunctinnEIocH j Cancel |

Enter the function block instance name and click the OK Button. An in-
stance of the function block definition will be inserted below the original
program circuits as shown below.

‘3 sample0] - CX-Programmer - [NewPLC1.NewProgram1.Section1 [Diagram] =10lx|
File Edt View Insert PLC Program Tooks Window Help NI
[ozad|ar|s2e(zc a2 (2[[e28% L1 |EERerEBREE|Lu|n |

JaoaaFekEnER[Tirwuw | —ooaEEL k|
[& w0 st 2y >1 |

I d —|
[5% rewproject o =
=5 NewPLCI[CS16-H] Offine = | [Section Name : Section]
]
51 Symbols =]
O 0Tkl ndunk e | gy Sart Lt Eror Settng
Settngs [% i
< Memory 121
5% pogans az [st
53 NewProgram1 {10} 4 !
) Symbols x5 nmovozty || move
@ sectionl E2 Source word
& 4 Funetion Bodks ol
Functionglockt B o Destination
e
E Set_Complts
|l
|| secompite Tomp_dam fun
7t it
3 sample f=
10
FunclionBlock!
oo o000
e el
@00 ®00L)
Sart G
4 Condtion Inserot st
1 T 1r
s
L4 | _>l“
I\ Project / AT e | ackress orvabuer | Commen: |
2 PLCName: | Browse. H A >[I\ Compie A Find Report A Transfer/ LT 1

[R ks s

For e, press Fi [l INenPLC1(Neti0 Nodki0) - Offine T T fung3(0,0) - 100% | [o

9. Enter the input conditions and parameters for the instance that was insert-
ed.

The function block definition generation function is convenient for converting
existing ladder programming that has been proven in actual operation into
function blocks. The application of addresses within the selected program cir-
cuits is analyzed both inside and outside the selection to allocate internal,
input, output, and input-output variables as accurately as possible. Program
circuits that contain operands that are only symbols (i.e., that are not
addresses) cannot be converted. To create function blocks from program cir-
cuits that contain operands that are only symbols, copy and past the program
circuits into a function block definition. Refer to Copying User Program Cir-
cuits and Pasting in Ladder Programming of Function Block Definitions on
page 90 for details.

Procedures

Section 3-2

Program Circuits That
Must Be Altered before
Generating a Function

Block Definition

Program Circuits That
Must Be Altered after
Generating a Function

Block Definition

In the following case, the program circuits must be altered before a function
block definition can be automatically generated.

Addresses Used Both as Bits and Words

The bit and word addresses will be registered as different variables. The pro-
gram can be altered in advance to avoid this.

Example: MOV(021) for WO and SET for W0.02

000
— ¥ 1
! moviozn) || move
oo Source word
Wi Destination
1 om
2 — ¥ H
! SET Set
Wi 02 Bit

Here, the instruction can be changed to specify a word instead of a bit. As
shown below, WO is used both for MOV(021) and SETB(532), and the bit
number for SETB(532) is specified using &2.

onoo

— } H

! MOw(21) || Move
oo Source word
Wi Destination

1 oo
2 —} H

! SETH(S32) || Bit Set
wiao Set Channel address
&2 Bit

In the following cases, operand specifications must be changed using array
settings after generating the function block definition.

Instructions with Multiword Operands, Some of Which Are Changed by
Another Instruction in the Program Circuits

Example: DO Specified as the First Word for MOVL(498) and D1 Specified for
MQOV(021)

.00

— | H
! MOWL(498) Long Mave
#12343678 First source word
=1} First destination word
1 om
2/ —— | Y
! MOv(o21) || Move
#1234 SOUrce ward

D1 Destination

95

Procedures

Section 3-2

96

)

As shown below, the variables must be changed to specify the first word in an
array and a specific word in the same array after the function block definition
has been generated.

Example: DT_WORD is set as a WORD array variable with 2 elements.
DT_WORDIO0] is specified for MOVL(498) and DT_WORDI[1] is specified for
MOV(021).

EiID"I
f

MOVLE98) || Lang Move
#12345678 First source word

DT_WORD(O] || First destination word

1 Bit00
2}

MOVIT2T) |1 Move
#1234 Source wird

DT_WORD(1] || Destination

Instructions with Two Operands Specifying Starting and Ending Words
Example: DO to D9 Specified for BSET(071)

0.00

— | H
! BSET(071) Block Set
#10 Source word
Do Starting sward
[at] End weord

)

As shown below, the variables must be changed to specify the first word in an
array and a specific word in the same array after the function block definition
has been generated.
Example: DT_WORD is set as a WORD array variable with 10 elements.
DT_WORDIO0] is specified for the first operand and DT_WORDI[9] is specified
for the second operand of BSET(071).
Bit00
I BSET(O71) i Block Set

#10 Source word

DT_WORDO] || Starting word

DT WORD[S] | | End word

Procedures Section 3-2

Operands with Sizes Affected by Other Operands

Example: Five Transfer Words, DO Specified for the First Source Word, and
D100 Specified for the First Destination Word for XFER(070)

2 ooo

3| — |

H
#FER(O7O) Transfer

&5 Mumber of words

[wi] First source ward

D100 First destination word

,,,,,,,,,,,,,,,,,,,,,,,

As shown below, the variables must be changed to set the first elements in
two different arrays after the function block definition has been generated.

Example: DT_WORD1 and DT_WORD2 are set as WORD array variables
with 5 elements each. DT_WORD1[0] is specified for the first word for the first
operand and DT_WORDZ2[0] is specified for first word for the second operand
of XFER(070).

BiTO0
I
I

HFER(O7O) i Tranzfer

&5 Mumber of words

DT_WORD[D]| | First source wword

DT _WORD2[0]| | First destination word

3-2-4 Creating Instances from Function Block Definitions

If a function block definition is registered in the global symbol table, either of
the following methods can be used to create instances.
Method 1:Select the function block definition, insert it into the program, and

input a new instance name. The instance will automatically be registered in
the global symbol table.

Method 2: Set the data type in the global symbol table to “FUNCTION

BLOCK, specify the function block definition to use, and input the instance
name to register it.

Note When using ST language, a function block can be called by select-

ing “FUNCTION BLOCK” as the variable’s data type, using the de-

sired instance name, and entering a function block call statement.

97

Procedures

Section 3-2

1,2,3...

98

H Method 1: Using the F Key in the Ladder Section Window and Inputting

the Instance Name

1. In the Ladder Section Window, place the cursor in the program where the
instance is to be inserted and press the F Key. (Alternately, select Func-
tion Block Invocation from the Insert Menu.) The New Function Block In-
vocation Dialog Box will be displayed.

When using ST language, a function block can be called by selecting
“FUNCTION BLOCK” as the variable’s data type, using the desired in-
stance name, and entering the following function block call statement.
Specify arguments in parentheses after the instance name (to pass input
variable values from the calling function block to input variables in the
called function block) and also specify return values (to receive output vari-
able values from the called function block to output variables in the calling
function block). The instance name can be set to any internal variable with
the “FUNCTION BLOCK” data type.

2. Input the instance name, select the function block from which to create an
instance, and click the OK Button.

[[H Fie Edic View Insert PLC Program Tooks Window Help

Ded®egr|sea2c(aniew|ar8a L [RER (2SR DRET |k

aaq[SEsER GHrwww) —opaEElk|[Z(Sm|vmss B BEED |

REARS &s2BHE|Lss | |oaes e

=l fo

-5 NewProject
= BB NewPLCI[CI1G-H] Offine
= Symbols
97 10 Table
Settings
Gt Memory
=+ Programs
) %) Hewbragrami0
) mﬁ o
=]l
=-F Function Blacks
FunctionBlockl

000

[New Function Block Invocatior

FE Instance:

FB Definitior:

[Program Name : NewProgrami]

is=ient Press F Key with cursor here.

Foilowing dialog
box is displayed.

FunctionBlock1 \

_]

Input the instance name.

x|

K.
Cancel

Select the function block from
which to create an instance.

3. As an example, set the instance name in the FB Instance Field to sample,
set the function block in the FB Definition Field to FunctionBlock1, and
click the OK Button. As shown below, a copy of the function block definition
called FunctionBlock1 will be created with an instance name of sample.

9% Untitled - CX-Programmer - [NewPLC1.NewProgramL.Sectionl [Diagram]]

[0 Fie Edit View Insert PLC FProgram Tooks Window Help

ol xi
T

DedR(er|(ser 2 auR|tv|es8a (L Rz e2EDREE|Lu|as

awAl [k

[Farwurw | —ocoaatl k||B|ecm|%n % B BERRT |

o=

2@ |

(=5 NewFroject
=B NewPLCA[CI1G-H] Offiine
50 Symbols
] IO Table
(5] Settings
i Memory
=% Programs
158 NewProgram (00)
52 Symbols.
ction

Ve

D
=-ZF Function Blacks
FunctionBlocki

FREEEIREEEL TR R
=« [0 E
o

-

000

[Program Mame : NewFrogrami]

[Section Mame ; Section1]

=mle®————— |nstance name

ooy
M
BooL)
=

(WORD)
ok

FunctionBlock

(BOOL)
ENG

(WORD)
13

Function block definition

« Aninstance called sample
is created from the function
block definition called
FunctionBlock1.

The instance will be automatically registered in the global symbol table
with an instance name of sample and a data type of FUNCTION BLOCK.

H Method 2: Registering the Instance Name in the Global Symbol Table in

Advance and Then Selecting the Instance Name

If the instance name is registered in the global symbol table in advance, the
instance name can be selected from the global symbol table to create other

instances.

Procedures

Section 3-2

1,2,3...

Restrictions

3-2-5

Note

1. For a ladder diagram, select a data type of Function block in the global
symbol table, input the instance name, and registered the instance.

For ST, select a data type of Function block, use the instance name, and
use a call statement for the function block as follows to call the function
block:

Input the instance name (any internal variable name with a function block
data type) followed by the arguments in parentheses (i.e., specify the input
variable values of the calling function block to pass to the input variables of
the called function block). Also include the return values (i.e., specify the
output variable values of the called function block to pass back to the out-
put variables of the calling function block).

2. Press the F Key in the Ladder Section Window. The Function Block Invo-
cation Dialog Box will be displayed.

3. Select the instance name that was previously registered from the pulldown
menu on the FB Instance Field. The instance will be created.

Observe the following restrictions when creating instances. Refer to 2-4 Pro-
gramming Restrictions for details.

* No more than one function block can be created in each program circuit.
* The rung cannot be branched to the left of an instance.

e Instances cannot be connected directly to the left bus bar, i.e., an EN
must always be inserted.

If changes are made in the I/O variables in a variable table for a function block
definition, the bus bar to the left of all instances that have been created from
that function block definition will be displayed in red to indicate an error. When
this happens, select the function block, right-click, and select Update Invoca-
tion. The instance will be updated for any changes that have been made in
the function block definition and the red bus bar display indicating an error will
be cleared.

Setting Function Block Parameters Using the Enter Key

1,2,3...

After an instance of a function block has been created, input parameters must
be set for input variables and output parameters must be set for output vari-
ables to enable external I/O.

* Values, addresses, and program symbols (global symbols and local sym-
bols) can be set in input parameters. (See note a.)

* Addresses and program symbols (global symbols and local symbols) can
be set in output parameters. (See note b.)

Note (a) The function block’s input variable data size and the program’s
symbol data size must match.

(b) The function block’s output variable data size and the program’s
symbol data size must match.

1. Inputs are located on the left of the instance and outputs on the right. Place
the cursor where the parameter is to be set and press the Enter Key. (Al-
ternately, select Function Block Parameter from the Insert Menu.) The
New Parameter Dialog Box will be displayed as shown below.

929

Procedures

Section 3-2

= Untitled - CX-Pros

[FH Fle Edit View Insert PLC Frogram Tools Window Help

Dod B(ESR saio: (asm2e||ergs b1 |erffarE DRl w

aoq sEsErtirnirw | —ogaEELk|[Z(ee v e B BEERD

HIEEEEEE BT

PR
==

EE 3
=

e
Yars)

&

WPt DjaCt
T3 NewPLCI[CIGH] Offiine

3 Symbals
@7 10 Table
Settings

Memary

=% Programs
- B NewProgram1 (00)

54 Symbols

IF Function Blocks
FunctionBlock!
*-iF FunctionBlockz

o o [[Program tame : NewProgramt]
[Section Name : Sectioni]

FunctionBlockt

0.00 (BOOL) (BOCLY
En ENG:

I

COTRTAT

1 201

to the input variable.

sampe @——— Instance name
Function block definition
Press the P Key with the cursor on the left

of the instance. The New Parameter
Dialog Box will be displayed.

|
| peiz|[oK | Cancel

4 _|DL Input the address from which to pass data

2. Set the source address from which to pass the address data to the input
variable. Also set the destination address to which the address data will be
passed from the output variable.

= Untitled - CX-Programmer - [NewPLC1.NewPragram1.5ection] [Diagram]]

[H File Edk View Insert PLC Frogram Tools Window Help

Dod B[R smeoc (wsn2e||ergss s |erflarE DRl w

sxalEEEERErrrw | —osaatl x||[Bleaont sk BEER |

EFERRE %S PE

[-=

T EEEEE
-

Note

B 58 NewProject

= B3 NewPLCI[CI16-H] Offiine
53 symbals

[Settings
L Memary
=% Programs
- 553 MewProgram? (00}
22 Symbels
i ~fg section1
. 5 Enp
=-F Function Blacks

E FunctionBlock!

variable aaa.

END o [[Procram Name : NewProgrami]
[Section Name : Section]
sample
FunctionBlockt
oo (BooL) (BOCL)
— EN ENO L
oot (BOOL) (BOCL)
rvi) LamPL
WIORD) (BOOL)
Py nk
810 WIORD) (BOOL) 20000
constart mfp
1 200 00|
5 |
"The value of 00T is passed to input

Set the data in all the input parameters. If even a single input parameter

remains blank, the left bus bar for the instance will be displayed in red to indi-
cate an error. If this happens, the program cannot be transferred to the CPU

Unit.

Inputting Values in Parameters

The following table lists the methods for inputting values in parameters.

Input variable data Content Size Input method Setting range
type
BOOL Bit data 1 bit P_Off, P_On 0 (FALSE), 1 (TRUE)
INT Integer 16 bits Positive value: & or + followed | —32768 to +32767
- - by integer
DINT Double integer 32 bits] —2147483648 to +2147483647
. . Negative value: — followed by

LINT Long (4-word) inte- |64 bits | jnteger —9223372036854775808 to
ger +9223372036854775807

UINT Unsigned integer | 16 bits Positive value: & or + followed | &0 to 65535

UDINT Unsigned double | 32 bits by integer &0 to 4294967295
integer

ULINT Unsigned long (4- | 64 bits &0 to 18446744073709551615
word) integer

100

Procedures Section 3-2
Input variable data Content Size Input method Setting range
type
REAL Real number 32 bits Positive value: & or + followed | —3 402823 X 1038 to —1.175494
by real number (with decimal _ _
point) X 10798 0, +1.175494 X 10 38
38
Negative value: — followed by to +3.402823 X 10
LREAL Long real number |64 bits real number (with decimal —1.79769313486232 X 10398 to
point) _
—2.22507385850720 X 10 308,
0, +2.22507385850720 X 10 308
to +1.79769313486232 X 10308
WORD 16-bit data 16 bits # followed by hexadecimal #0000 to FFFF or &0 to 65535
number (4 digits max.)
& or + followed by decimal
number
DWORD 32-bit data 32 bits # followed by hexadecimal #00000000 to FFFFFFFF or &0
number (8 digits max.) to 4294967295
& or + followed by decimal
number
LWORD 64-bit data 64 bits # followed by hexadecimal #0000000000000000 to
number (16 digits max.) FFFFFFFFFFFFFFFF or &0 to
& or + followed by decimal 18446744073709551615
number
Note If a non-boolean data type is used for the input variable and only a numerical

value (e.g., 20) is input, the value for the CIO Area address (e.g, CIO 0020)
will be passed, and not the numerical value. To set a numerical value, always
insert an &, #, + or — prefix before inputting the numerical value.

Example Programs:

-

Instance for function block definition A

SN | CINT)
{10 | DATAt
L v

If the data format for DATA_1 is INT, and "10" is input,
the value for CIO 0010 will be passed.

-

Instance for function block definition A

SN CINT)
{ 8101 DATA1

If the data format for DATA_1 is INT, and the prefix &
is added so that "&10" is input, the numerical value
will be passed.

If the input variable data type is boolean and a numerical value only (e.g.,
0 or 1) is input in the parameter, the value for CIO 000000 (0.00) or
CIO 000001 (0.01) will be passed. Always input P_Off for 0 (OFF) and
P_On for 1 (ON).

101

Procedures Section 3-2

3-2-6 Setting the FB Instance Areas

The areas where addresses for variables used in function blocks are allocated
can be set. These areas are called the function block instance areas.

1,2,3... 1. Select the instance in the Ladder Section Window or in the global symbol
table, and then select Function Block/SFC Memory - Function
Block/SFC Memory Allocation from the PLC Menu.
The Function Block/SFC Memory Allocation Dialog shown below will ap-
pear.

2. Setthe FB instance areas.
x|

Non-retained area

Memary Area | Start Address | End Address | Size ’TI

Retained area ——JBlmrewsd 12 iy o =N
Timer area 7 e m s | ca|
Counter area S word Bragnthe - : Defaut_ |
Advanced... |

¥ Share SFC with FB Meman

First Last Size
address address

The non-retained and retained areas are set in words. The timer and
counter areas are set by time and counter numbers.

The default values are as follows:
CJ2-series CPU Units

FB Instance Default value Applicable memory
Area Start address | End address | Size areas
Non Retain H512 H1407 896 CIO, WR, HR, DM,
EM (See note.)
Retain H1408 H1535 128 HR, DM, EM (See note.)
Timers T3072 T4095 1024 |TIM
Counters C3072 C4095 1024 |CNT

Note Force-setting/resetting is enabled when the following EM banks are specified:

CJ2H-CPU64(-EIP)/-CPU65(-EIP) | EM bank 3
CJ2H-CPUG6(-EIP) EM banks 6 to 9

CJ2H-CPU67(-EIP) EM banks 7 to E

CJ2H-CPUB8(-EIP) EM banks 11 to 18
CS/CJ-series CPU Units Ver. 3.0 or Later, and NSJ Controllers

FB Instance Default value Applicable memory
Area Start address | End address | Size areas

Non Retain H512 (See H1407 (See 896 CIO, WR, HR, DM, EM
(See notes 1 note 2.) note 2.)

and 3.)

Retain (See H1408 (See H1535 (See 128 HR, DM, EM

note 1.) note 2.) note 2.)

Timers T3072 T4095 1024 | TIM

Counters C3072 C4095 1024 |CNT

Note (1) Bit data can be accessed even if the DM or EM Area is specified for the

non-retained area or retained area.

102

Procedures Section 3-2

(2) The Function Block Holding Area words are allocated in H512 to H1535.
These words cannot be specified in instruction operands in the user pro-
gram. These words can also not be specified in the internal variable’s AT
settings.

(8) Words H512 to H1535 are contained in the Holding Area, but the ad-
dresses set as non-retained will be cleared when the power is turned
OFF and ON again or when operation is started.

(4) To prevent overlapping of instance area addresses and addresses used

in the program, set H512 to H1535 (Function Block Holding Area words)
for the non-retained area and retained area. If there are not sufficient
words, use words in areas not used by the user program. If another area
is set, the addresses may overlap with addresses that are used in the
user program.
If the addresses in the function block instance areas overlap with any of
the addresses used in the user program, an error will occur when compil-
ing. This error will also occur when a program is downloaded, edited on-
line, or checked by the user.

o — BT MewELLL L Moge] Lo BTE B ez |
Zl[Eampiing
[PLCProgiam Name : NenPLC1 NewProgram1]

[Section Name : Sectior]

ERROR: Step at nng 0 [0, 0) - Address -W0.0 I reserved for Function Block use
ERROR: Step at mng 0 [1. 0) - Address - W0.01 is reserved for Function Block use
ERROR: Step ot ng 0 [2. 0) - Addiess - W3.00 is reserved for Function Block use
ERROR: Step at nng 0 [3, 0) - Address -W5.00 i reserved for Function Black use
ERROR: Step at ng 0 [4, 0) - Addiess - W3.01 is reserved for Function Block use
ERROR: Step ot ng 0 [5. 0) - Addiess -W2,00 is reserved for Function Block use
ERROR: Step at nung 0 (6,) - Address -w100.01 is reserved for Function Black use
[Section Name - E|

Work Area Addresses
used in the user
program overlap with
the instance areas.

NewProgiam] - 7 emars, 0 wamnings.

[TE T\ Comeie A Find Feport A Transfer KX 4

If addresses are duplicated and an error occurs, either change the function
block instance areas or the addresses used in the user program.

FQM1 Flexible Motion Controllers

FB Instance Default value Applicable memory
Area Start address | End address | Size areas
Non Retain 5000 5999 1000 |CIO, WR, DM
(See note.)
Retain None
Timers T206 T255 50 TIM
Counters C206 C255 50 CNT

Note
area.

CP-series CPU Units

Bit data can be accessed even if the DM Area is specified for the non-retained

FB Instance Default value Applicable memory
Area Start address | End address | Size areas
Non Retain H512 H1407 896 CIO, WR, HR, DM (See
note.)
Retain H1408 H1535 128 HR, DM (See note.)
Timers T3072 T4095 1024 |[TIM
Counters C3072 C4095 1024 |CNT

103

Procedures

Section 3-2

Note DM area of CP1L-L

Address

CP1L-L

D0000 to D9999

Provided

D10000 to D31999

Not Provided

D32000 to D32767

Provided

3-2-7 Checking Internal Address Allocations for Variables

The following procedure can be used to check the I/O memory addresses

internally allocated to variables.

1,23... 1.

Select View - Symbols - Global.

2. Select the instance in the global symbol table, right-click, and select Func-
tion Block/SFC Memory Address from the pop-up menu. (Alternately,
select Memory Allocation - Function Block/SFC Memory - Function
Block/SFC Memory Address from the PLC Menu.)

Example: Instance name displayed in global variable table (automatically registered)

Data Type

{ Eit.

CPUF iy pncert Symbol,
* P_Step

© P_cutput_ 42 Validste Symbols
- Pon
- P_oFF
* PoF
P NE

25\ arge Icons

cpuT pEELEEs

S P lowbel g oo

tRs Reusable File >
* P_First_Cy
“ P_First_Cy
® PER

“pEQ & Properties

Rename

Address | Value | _RackLocation | _Usage | Comment

work W Area Parameter
Work Underflow (UF) Flag
Work Step Flag

Work Oubput OFF Bit
work Always ON Flag
work Always OFF Flag
Work | Overflow (OF) Flag
tork - Not Equals {NE) Flag

f Right-ciick on the instance name and select Function Block Instance Address.

Wiork | Less Than (LT) Flag

Wark Low Battery Flag

wiork | Less Than or Equals (LE) Flag
Wiork 170 Verification Error Flag
Work | HR Area Parameter

work | Greater Than (GT) Flag

wiork | Greater Than or Equas (GE) Fk
Wiork First Task Execution Flag

Work First Cycle Flag

work, | Instruction Execution Errar (ER
work | Equals (EQ) Flag

3. The FB Interface Memory Dialog Box will be displayed. Check the 1/O
memory addresses internally allocated to variables here.

Example: Addresses used internally
for the input variables.

x|
Ihternals Inputs |Outputs |
| Name | Tvpe Vﬁddress \ |
aaa BOOL W02
cco BOOL 13,03
mmm WORD

104

Procedures Section 3-2

Method Used for Checking Addresses Internally Allocated to Variables

Program
Instance of function block definition A,
instance name: sample
a b
[
Right-click and select Function
Instance registered in global Block Memory Address.
symbol table under instance name. — FM Instance Memory Dialog Box
Inputs
Address/
Name | Type Value Name| Type [[Address
lsamplel FB [FunctionBlock1] lN/A [Auto] l ! a_|BOOL [W400.00
Outputs
T [Name} Type {Address {
b BOOL | | W401.00
Instance name [¢ [BooL ‘[waot.02 |

Addresses used for function
block internal variables

Checking the Status of The following procedure can be used to check the number of addresses allo-

Addresses Internally cated to variables and the number still available for allocation in the function
Allocated to Variables block instance areas.

1,2,3... 1. Select the instance in the Ladder Section Window, right-click, and select
Memory Allocation - Function Block/SFC Memory - Function
Block/SFC Memory Statistics from the PLC Menu.

2. The Function Block/SFC Memory Statistics Dialog Box will be displayed as
shown below. Check address usage here.

1,
Memorny Area | [Awailable ‘ [Requied | (Remaining
FEB Mon Retained 836 27 o963
FB Retained 128 o 128
FE Timer 1024 0 1024
FE Counter 1024] 1024
SFCBit Share with F.. -
SFC word Share with F.
° []
et |
The total number The number of

of words in each The number words still available.

interface area. of words

already used.

Optimizing Function When a variable is added or deleted, addresses are automatically re-allocated

Memory in the variables’ instance area. Consecutive addresses are required for each
instance, so all of the variables will be allocated to a different block of
addresses if the original block of addresses cannot accommodate the change
in variables. This will result in an unused block of addresses. The following
procedure can be used to eliminate the unused areas in memory so that
memory is used more efficiently.

1,2,3... 1. Select the instance in the Ladder Section Window, right-click, and select
Memory Allocation - Function Block/SFC Memory - Optimize Func-
tion/SFC Memory from the PLC Menu.

The following dialog box will be displayed.
=

Optimising Functin Block memory will Force the memory ta be re-slocated
and thersfore the project will na longer match with the PLC.
Do you wish to continue?

Yes Mo

105

Procedures Section 3-2

2. Click the OK Button. Allocations to the function block instance areas will
be optimized.

3-2-8 Copying and Editing Function Block Definitions

Use the following operation to copy and edit the function block definition that
has been created.

1. Select the function block to copy, right-click, and select Copy from the pop-
up menu.

2. Position the cursor over the function block item under the PLC in the
project directory, right-click and select Paste from the pop-up menu.

3. The function block definition will be copied (“copy” is indicated before the
name of the function block definition at the copy source).

4. To change the function block name, left-click or right-click and select Re-
name from the pop-up menu.

5. Double-click the function block definition to edit it.

3-2-9 Checking the Source Function Block Definition from an Instance

Use the following procedure to check the function block definition from which
an instance was created.

Either double-click the instance or right-click the instance and select To
Lower Layer from the pop-up menu. The function block definition will be dis-
played.

3-2-10 Checking Instance Information such as Nesting Levels

When function blocks are nested in the created program, the structure of the
nesting levels can be checked by selecting Windows - FB Instance Viewer
from the View Menu. The function block relationships will be shown in a direc-
tory tree format, with the calling function blocks at the higher level and the
called function blocks at the lower level.

The FB Instance Viewer Window will provide other information, such as the
array variables being used and internal addresses allocated to the variables,
as shown in the following diagram. Variables can be registered in the Watch
Window just by dragging the variable from the list of variables used in the
instance and dropping the variable in the Watch Window.

106

Procedures

Section 3-2

9 F5_manual_sample - CX-Programmer - [NewPLC1.NewProgram1.5ection1 [Diagram]] o [=[]
[[3 Ele Edt ¥ew Isert PLC Progam Iools Window Help & x|
Ded|®(eh[smr|ac|annew|as8sti|RER|esEDEDE| 555 |
cxaAEEsERT e —coaeilx|[Bleauuns|E/®ERT |
HEEEEEEE T e
= © [Program Mame : MewProgram] -
NewPraject Z
= BB NewPLC1[CILM] Offline [Section Mame : Section!]
2 Symbols
97 10 Table sample
Settings
o Metmory Operation_module
=% proorams 0.00 (BooL) (BOOL)
=5t NewProgram (00) [ENO
) ymbols
50 R woon fEooL) an| oo
3 eno StartFlag averagel L oyeraga value
= IF Function Blacks
EF Average_caleulation
£EF Condtian_check RGN L.
F Operation_module
oo (T
InpLt_Thickne:
lss_target 1
[]
lInput_Thickne:
w5 _target_2
02 (INT)
lInput_Thickne
lss_target_3
WADDOD |(BOOL)
' Execution_Ena
FB Instance Viewer i, Flago
14| | o
\ Froject / [=4 Hame: | Address or Value: | Comment: [
= NewPLC1 Name | Data Type | address | Commey] | ZI[PLCName | Mame | Address | Daka Type | Format | FB Lisage | ¥akn
1 =] Target_L_FB[Oparation_module] CheckFlag BOOL H538.04 Conditic MewPLCL sample. HS38.06 BOOL (Onfoff,Co. Internal
4F Conditior01[Condition_chack] Condition0L FB [Condition_chack] MewPLCL sampla... HSS1 INT (Signed Deci... Internal
) 4IF sample[Operation_module] ExecutionFlag BO H538.05 Executi MewPLC! sample... HS38.04 BOOL (OnjOff Co... Internal
Condition1[Condition, check] ExseLtion_Enable_Flag BOOL H538.,06 — . z
= Condition 1 [condition_sherk] Exscution_Flag BOOL H538.07 Note: Variables can be
I mverags Fe[aversge_ralculstion] | 0 W 49 \ istered by d . d
Thickness_2 T HS51 regis t_ere y _ragglng an
Thickness_3 w1 50 B dropping them in the Watch
[\ Intemats] ¢ 2 | |[m Window. b
For Help, press Fi [[Hromore T 4

When nesting, this area shows
the nesting level relationship
between instances (function block
definition names in parentheses).
The higher-level is the calling
block and the lower-level is the
called block.

Also, if there are array variables
or timer/counter variables, they
are displayed just below the
instance.

The variable names, data types,
addresses (allocated internal
addresses), and comments are
displayed for variables used in
the active instance selected in
the directory tree in the area on
the left.

3-2-11 Checking the Size of the Function Block Definition

CX-Programmer can be used to check the size of the function block definition
being created using a similar method to checking the program capacity. The

procedure is as follows:
1.
2.

Select Memory View from the View Menu.
The function block definition size and number of function block definitions

will be displayed in the Memory View Dialog Box as shown below.

LU Function Block.
Used UM Uzed FE: Used #:
| 1479 Steps [estimate | ‘ 3134 Steps | 4
Free LIM: Free FB: Free #:
| 9785 Steps [estimate | ‘ 127938 Steps 1020
Tatal: Tatak Ma #:
| 11264 Steps ‘ 131072 Steps 1024

x|

* The Used #, Free #, and Max # fields under Function Block refer to the
number of function block definitions.

107

Procedures Section 3-2

3-2-12 Compiling Function Block Definitions (Checking Program)

A function block definition can be compiled to perform a program check on it.
Use the following procedure.

1,2,3... Select the function block definition, right-click, and select Compile from the
pop-up menu. (Alternately, press the Ctrl + F7 Keys.)

The function block will be compiled and the results of the program check will
be automatically displayed on the Compile Table Page of the Output Window.

=lx

ot (BooL)
LCI[CIGH] OFfine Lt

o) @ (BOoL)
]

810 (WORD) (BO0L) 20000
constart m

300.00
4 '

2 samplen2

FunctionBlock2

(BooL) (BO0L)
EN ENG

El

Kl |

Froject AT tame: Address or Value: |
FLE: Mewb Lol (PLE Madel G H L2] -

Compiing

WARNING: Unused Function Block Instane:
[PLC /Pragram Nam: Pl

k Instance. This can
ewPLC1 FunctionBlock2]

Results of program check displayed.

FunctionBlock2 - 0 erors, 1 warming.
en checked with the progrem check oplion set ta Uit Ver 3.0

TA[ATETEI, Compile 4 Find Feport Jy Transfer /

el
3-2-13 Printing Function Block Definition
Use the following procedure to print function block definitions.
1,2,3... 1. Double-click the function block definition to be printed, and with the vari-

able table and algorithm displayed, select Print from the File Menu. The
following Target Print Rung Dialog Box will be displayed.

x
i~ Target Print
@ ALl Rung
~ Select Aung
Start Aung Mo ID _|::l
End Rung No 33 _:I

—Header / Footer Information—————

First Page Mo [1 to 93339) |1 _I::l

[Valid when Page number field is selected]

— Print Item of FB Definition————————

¢ Symbaol table and Program
€ Symbal table

 Program

|

2. Select the All Rung or Select Rung option. When the Select Rung option
is selected, specify the start rung and end rung numbers. When a page
number has been specified in the header and footer fields in File - Page
Setup, the first page number can be specified.

108

Procedures

Section 3-2

Note

3. Select either of the following options for the function block printing range.
* Symbol table and program (default)
* Symbol table
* Program

4. Click the OK Button, and display the Print Dialog Box. After setting the
printer, number of items to print and the paper setting, click the OK button.

5. The following variable table followed by the algorithm (e.g, ladder program-
ming language) will be printed.

Variable Type Name Type |Retained] AT Tnitial Value Comment
Inputs EN BOOL No FALSE Controls execution of the Function
Block
Outputs | ENO BOOL No FALSE Indicates successful execution of
the Function Block.
[Function Block Name : FB_sample04]
000000 MoV [oP1]
(000000) —— o || 1op2]
EN D100
Controls D200

execution
of the
Function
Block.

For details on print settings, refer to the section on printing in the CX-Pro-
grammer Operation Manual (W446).

3-2-14 Password Protection of Function Block Definitions

Overview

Password Protection on
both Writing and Reading

Password Protection on
Writing Only

Function block definitions in a project can be protected by setting a password
to restrict access. The following two levels of password protection that can be
set, depending on the application.

This password protection level restricts both writing (changing) and displaying
the contents of the function block definition.

To set read/write protection, select Prohibit writing and display as the Protec-
tion type in the function block’s properties. This level of protection prevents
unintended program changes/modifications and also protects against misap-
propriation of program materials.

This password protection level restricts writing (changing) the contents of the
function block definition.

To set write protection, select Prohibit writing as the Protection type in the
function block’s properties. This level of protection prevents unintentional pro-
gram changes/modifications.

Setting Password Protection

Protecting an Individual
Function Block Definition

This operation can be performed offline only.

Password protection can be applied to individual function block definitions or
multiple function block definitions together.

Use the following procedure to set the password protection for an individual
function block definition.

109

Procedures Section 3-2

1,2,3... 1. In the project workspace, select the function block definition, right-click,
and select Properties from the pop-up menu. (Alternately, select Proper-
ties from the View Menu.)

2. The Function Block Properties Dialog Box will be displayed. Click the Pro-
tection Tab and click the Set Button.

Function Block Properties |

-Wl General Protection | Comments | Memary |

Fratection Status:

IND protection

Felease |

3. The Function Block Protect Setting Dialog Box will be displayed. Select the
protection level in the Protection Type Field.

Function Block Protection 5 x|

Input a passward after selecting a protection ype.

Frotection Type:
’7 % Prohibit witing and display ¢ Prohibit wiiting only

Password: Ixxxx
Password [corfimation]: Imﬁ

Set Cancel |

The following table shows the functions restricted in each protection level.

Function Protect Type
Prohibit writing and Prohibit writing
display
Displaying function block contents | Prohibited Allowed
Printing function block contents
Editing function block contents Prohibited
Saving/loading to function block Allowed Allowed
library files

4. Input the password in the Password Field of the Function Block Protect
Setting Dialog Box. Input the same password again in the confirmation
field to verify the password and click the Set Button.

The password can be up to 8 characters long and only alphanumeric char-
acters can be used.

5. When a function block definition has been password protected, the func-
tion block definition’s icon will change to indicate that it is protected. The
icon also indicates the protection level, as shown below.

‘% : Prohibit writing and display (same for ladder and ST)

&F : Prohibit writing (ladder)

& : Prohibit writing (ST)
Protecting Multiple Use the following procedure to set the password protection for two or more
Function Block Definitions function block definitions at the same time.

1,2,3... 1. Select Function Blocks in the project workspace, right-click, and select
Function Block Protection - Set from the pop-up menu.

110

Procedures Section 3-2

2. The Function Block Protection Collective Setting Dialog Box will be dis-
played. Select the names of the function blocks that you want to protect,
select the Protection Type (protection level), input the password, and click
the Set Button.

Function Block Protection Ca x|
Input the pazsword after selecting Function Blocks:
Function Block Mame
FunctionBlock1
O FunctionBlock?
FunctionBlock3
O FunctionBlockd
FunctionBlockS
O FunctionBlocks
FunctionBlock?
O FunctionBlocka
FunctionBlock3
Password: I xxxxxxxx
Release I Cancel |

3. The selected function block definitions will be password protected.

Clearing Password Protection

This operation can be performed offline only.

Password protection can be cleared from an individual function block defini-
tion or multiple function block definitions together.

Clearing Password Use the following procedure to clear the password protection on an individual

Protection on an function block definition.
Individual Function Block

1,2,3... 1. In the project workspace, select the function block definition, right-click,
and select Properties from the pop-up menu. (Alternately, select Proper-
ties from the View Menu.)

2. The Function Block Properties Dialog Box will be displayed. Click the Pro-
tection Tab and click the Release Button.

3. The Function Block Protection Release Dialog Box will be displayed. Input
the password in the Password Field and click the Release Button.

4. If the password was correct, the protection will be cleared and the function
block definition’s icon will change to a normal icon in the project work-

space.
Clearing Password Use the following procedure to clear the password protection on two or more
Protection on Multiple function block definitions at the same time.
Function Blocks
1,2,3... 1. Select Function Blocks in the project workspace, right-click, and select

Function Block Protection - Release from the pop-up menu.

111

Procedures

Section 3-2

2. The Function Block Protection Collective Release Dialog Box will be dis-
played. Select the names of the function blocks that you want to be unpro-
tected, input the password, and click the Release Button.

3. Ifthe password input matches the selected function blocks’ passwords, the
protection will be cleared for all of the function block definitions at once.

3-2-15 Comparing Function Blocks

It is possible to compare the edited function block with a function block in the
actual PLC or another project file to check whether the two function blocks are
identical. For details on comparing programs, refer to the CX-Programmer
Operation Manual (W446).

3-2-16 Saving and Reusing Function Block Definition Files

Note

Saving a Function Block
Library File

1,2,3...

Reading Function Block
Library Files into Other
Projects

1,2,3...

112

The function block definition that has been created can be saved indepen-
dently as a function block library file (*.cxf) to enable reusing it in other
projects.

(1) Before saving to file, or reusing in another project, compile the function
block definition and perform a program check.

(2) When function blocks are being nested, the function block definition of the
called (nested) function blocks are included and saved in the function
block library file.

Use the following procedure to save a function block definition to a function
block library file.

1. Select the function block definition, right-click, and select Save Function
Block to File from the pop-up menu. (Alternately, select Function Block
- Save Function Block to File from the File Menu.)

2. The following dialog box will be displayed. Input the file name. Function
Block Library Files (*.cxf) should be selected as the file type.

Select Function Block Library Fil 21x1
Savein:l — TMP j = |‘=_“F '
File name: | Save I
Save as type: IFunction Black. Library Files(* cxf) j Cancel |
VA

Use the following procedure to read a function block library file (*.cxf) into a
project.

1. Select the function block definition item under the PLC directory in the
Project Workspace, right-click, and select Insert Function Block - From
File from the pop-up menu (or select File - Function Block - Load Func-
tion Block from File).

2. The following dialog box will be displayed. Select a function block library
file (*.cxf) and click the Open Button.

Procedures Section 3-2

Select CX-Programmer Functio 21xl
Look ir: I — FBL j - &% E5-
"l omroniib =] Operation_module. cxf

|| Average_calculation, cxf |#8] Stsample.cxf
|#] Condition_check. cxf

|=]FB_LDO1 . cxf
[#]FE_LD0Z.cxf
[=]FB_sT01.0F
File name: I Open I

Files of type: IFunc:tion Block Librany Files(*.cxf] j Cancel |
A

3. A function block called FunctionBlock1 will be automatically inserted after
the Function Blocks icon. This icon contains the definition of the function
block.

4. Double-click the FunctionBlock1 Icon. The variable table and algorithm
will be display.

3-2-17 Downloading/Uploading Programs to the Actual CPU Unit

After a program containing function blocks has been created, it can be down-
loaded from the CX-Programmer to an actual CPU Unit that it is connected to
online. Programs can also be uploaded from the actual CPU Unit. It is also
possible to check if the programs on the CX-Programmer (personal computer)
and in the actual CPU Unit are the same. When the program contains function
blocks, however, downloading in task units is not possible (uploading is possi-
ble).

3-2-18 Monitoring and Debugging Function Blocks

The following procedures can be used to monitor programs containing func-

tion blocks.
Monitoring I/O in Ladder With the CX-Programmer Ver. 6.0 and later versions, it is possible to monitor
Programs within the status of bits and content of words in a ladder program within an instance

Instances when monitoring the program. To monitor I/O bits and words (I/O Bit Monitor),

either double-click the instance or right-click the instance and select Monitor
FB Ladder Instance from the pop-up menu. At this point, it is possible to
monitor bits and words, change PVs, force-set/reset bits, and perform differ-
entiation monitoring.

Note (1) It is not possible to perform online editing or change timer/counter SVs.

(2) Changing PVs and force-setting/resetting bits is not possible for input-
output variables. Also, if data structures are used as input-output vari-
ables, you cannot display forced-set/reset information (key icons) for any
BOOL members of those data structures.

113

Procedures

Section 3-2

| fyrosramame newprogrant El || {Functon Block ame Dttt _selreoer Sial
[Section Name : Sectiont])
E——_—
"
o001y o0ty oot all —oo [om
—t EN @ s
i -~ &0 215
10 G| Wi Double-glick I/0 values can be
@ @ . . Mastarlntio | | Mastertnthio
monitored in the peveaet .| pevia .
@onl wior ¢ N {r m m
. . algorithm within the ovcon ost
oo e function block. stz | =68]| =&
(BO&LJ W10.00
e = =
0000 He Ok _Bit
I [Rangs Chsck e set
" 0000 He NG_Bit ;:nge Check NG Bit
! 3 clard, UK traffic-light sequence: o
m o]] | of

114

(3) If an array variable is used in a function block and a symbol is used for the
array variable’s arguments, the present value cannot be monitored if that
array variable is used as the operand of an input condition or special in-
struction. In this case, the input condition or instruction will be displayed

in red.

SW[n] Sl
MO @21 [

#

DATAR]

Procedures

Section 3-2

Monitoring Variables of ST
Programs within
Instances

With the CX-Programmer Ver. 6.1 and later versions, it is possible to monitor
the ST programs within an instance when monitoring the program. To monitor
I/0O bits and words (I/O Bit Monitor), either double-click the instance or right-
click the instance and select Monitor FB Instance from the pop-up menu.

To return to the original instance, right-click in the ST program monitor window
and select To Upper Layer from the pop-up menu.

g 0 [Function Block Mame : DWD_ThickSelectControl]

[Instance Name : Stages_D%DThickSelect]

The wpper limit is 1.26mm, the lower limit is 1.94mm. (1.20mm (+-5%1)

DYDThickludge

Avgvalue_ThiesholdCheck

Enl (BonL (BODL)
=) EMO
Contrals exec
heasurel [REAL) (BOaL) Jucloe
Measuremen... | IMAUtl Result
+0.0000000 .. 0
Measure2 [REAL)
Measuremen... HIMAUE2

+0.0000000 ..

Meazures [REAL)
Measuremen... IMAUES
+2.7555838-...

+1.25 (REAL)

UppLimit
+114 (REAL)
LowLimit
1. . Juchiye . _Judge |
Right-click and select Double-click
To Upper Layer. the instance.
The ST program and variable
monitoring areas are displayed.
Left side: Right side:
ST program monitor window ST variable monitor window
Avgvalue = [Input! + Input2 + Input3) 530, Avgvalue = +0 0000000 Float |, Input! = +2.304836-041 Float | Ing
IF ({Awvgy'alue ==UpLimit) ARD (Avgvalue ==LowLimit)) THEN Avgivalue = \Uai , UpLimit = +0.0000000 Float |, Avgh'e
Result := TRUE; Result =0
ELZE
Result = FALSE; Result =0

END_F;

The variable’s PV is displayed
in blue characters.

The ST program is displayed in the left side of the window (called the ST pro-
gram monitor window).

The values of variables used in the ST program are displayed in the right side
of the window (called the ST variable monitor window).

At this point, it is possible to monitor variable values, change PVs, force-set or
force-reset bits, and copy/paste variables in the Watch Window. (These oper-
ations are described below.)

Monitoring Variables

Variable values are displayed in blue in the ST variable monitor window.

115

Procedures

Section 3-2

116

Changing PVs

To change a PV, select the desired variable in the ST variable monitor window
(displayed in reverse video when selected), right-click, and select Set - Value
from the pop-up menu.

Select the variable.

Input! = +2.304856-041 Flaat , Inp
UpLitmit = +0.0000000 Flost | Swegh's

The Set New Value Dialog Box will be displayed. Input the new value in the
Value field.

Force-setting and Force-resetting Bits

To force-set, force-reset, or clear the forced status, select the desired variable
in the ST variable monitor window (displayed in reverse video when selected),
right-click, and select Force - On, Force - Off, Force - Cancel, or Force -
Cancel All Forces from the pop-up menu.

Copying and Pasting in the Watch Window

1. To copy a variable to the Watch Window, select the desired variable in the
ST variable monitor window (displayed in reverse video when selected),
right-click, and select Copy from the pop-up menu.

2. Right-click in the Watch Window and select Paste from the pop-up menu.

M cample_e2 - CX-Programmer - [NewPLC1 Staged_D¥DThickSelect D¥DThickJudge =]]
@ File Edit Yew Insert PLC Program Tools ‘Window Help = ﬂ
DeH|R|ER|[snad|acank|te||aes|sn iR e BER8 L =%

a K|

®ERE |

ERERDE |2 P EE

L0k %u EE LT L]

1 | (* Agarage value calculstion and check of threshould for three values
= % NewProject Axgvalue = [Input! + Input2 + Input3)/ 3.0; * Divides | Avgyalueg = +0.0000000 Flog 2.3048568-041 Float | Inp
=8 gWPLCI[CJIG'H] Stop(Program IF ((Avgalue ==LiLimit) AND (Svg'value ==LowLimity) THEM ©* Comp | Avgialue = +0 0000000 Flgs, DpCimt = +0 0000000 Flost |, Avghs
33 Symbols Result = TRUE: Result = 0
]} 10 Table and Urit Setup ELSE Select the variable in the ST
Settings Resultt := FALSE; Result = 0 variable monitor WindOW,
(B Memary card EHD_F: right-click, and select Copy.
[y Error log
PLC Clock
@ Mernory
=% Programs
-4 Ovekin b <fl1 (00) Stop
=4 Symbols
B Section1
& EnD
= F Function Blacks
ActuatorControl
I5F Avgvalue_ThresholdChec
DD _ThickSelectControl
J5F WorkMoveContral_LSON:
4] | B
Project / 4| | ol | |
El[pLC Mame | Address | Data Type [Format | FB Usage | Value | Yalue(B. .. | Comment |

BOOL (Onfoff,Contka. .,
REAL (Floating Point, ..

Cukpuk oK o .

o]
Linternal [+0L000. . [+0.000. [

Right-click in the Watch
Window and select Paste.

[A[ATE BT, sheett 1N [
For Help, press F1 ’_| [[A

Procedures

Section 3-2

Checking Programs within
Function Block Definitions

1,2,3...

Monitoring Instance
Variables in the Watch
Window

1,2,3...

Use the following procedure to check the program in the function block defini-
tion for an instance during monitoring.

Right-click the instance and select To Lower Layer from the pop-up menu.
The function block definition will be displayed.

Use the following procedure to monitor instance variables.

1. Select View - Window - Watch.
A Watch Window will be displayed.
2. Use any one of the three following methods to display the FB variables reg-
istration Dialog Box.
a. Right-click the instance and select Register in Watch Windows from
the pop-up menu.
Copy the instance and paste it in the Watch Window.
Right-click an empty row in the Watch Window and select Register in
Watch Windows from the pop-up menu.

ﬂ
ELC NewPLCT
FB |nstance: Isamplem vl
Usage: I Internal - l
Data Type: All -
Mame | Diata Type | Comment «
F_ER BOOL Error Bit
Ok_Eit BOOL Fiange Che
MG_Bit EOOL Fiange Che
Addrezs0k_Bit BOOL Addrss Ral
Control_Data WORD ChMD co
Trmp_Data wiORD Far interna
Phase WiORD Frocess or
Cormmand_Data ‘wORD CMMD cor
Fesponze_Data wiRD ChMD reg
F_Ermar EOOL Eror Bit o

u]: I Cancel |

3. Select Usage - Data Type. The FB Instance setting can also be selected.
The default Usage is N: Internal and the other available selections are I:
Input, O: Output, and E: External.

The default Data Typeis A: All. Special data types BOOL and INT can also
be selected.

4. Click the OK Button. The selected variable will be registered in the Watch
Window and the value will be displayed as shown below.

117

Procedures

Section 3-2

Monitoring Input Variables
and Output Variables in

Instances

Simulation of Ladder/ST

Programs in Instances

1,2,3...

118

=ix [o

—_— [Program Mame : NewProgrami] . .
EE] NeaProject o Select Register in Watch
£-E3 NenPLCI[CI1M] OF [Section Mame : Sectiont] :
=5 Symbols Windows.
3.1 10 Table: sample0 or
3] settings f
< Memory _Dret211_GethPower_Stet Copy the instance and
= % Programs leoe) a5y paste it in the Watch
1G5} NewProgran En ENO Window.
=) Symbols :
& section! - g L or
-4 Function Blocks Masterunitio Edic Right-click an empty row in
~AF _CPUOD_T: & > .
~AF Dret211 ¢ — = the Watch Window and
---g ch,uth hiodehio RS L B select Register in Watch
-+2F FunctionBloc Undate Function Elack Invacation .
8 Woritor F5 Ladder Instance Windows.
Find \
Find =l
%o BT [NewPLCT]
Eé EDP: FEB Instance: [sample0t -
Past
ool Usage ntemal -
1 e
3 Ry DetaTvpe. Al - =
L | A Y NEN] >
Project x4 " Insel ——
P x4 Hame; [BUSY Address or va = e e e b
FLC Name | Hame Address | DataT... | FEUsag()j * P_ER EOOL Error Bit -
/_Fnr ‘ ‘ “Click the OK Button * Ok_Bit BOOL Range Che
NewPLCI sample... CFOO3 BOOL(.. Internd . HEaes BEL e
NewPLC1 sample... H516.06 BOOL{.. IntemallO register. e f T oo i
MewPLC1 sample... HS16.07 BOOL(.. Internal g .. Contial Dt WORD CMND oor
NewPLC1 sample... HS16.08 BOOL{.. Inkernal ‘addrss ... TUHUUD,|E|E e e
NewPLC1 sample... HS2L WORD ... Inkernal CHIND ... P WORD Froceseor
NewPLC1 sample... HS2F WORD ... Internal For int. &3 (HEICY —
b Command Data WORD CMND cor
lewPLC1 sample... HS3Z WORD ... Internal Praces... H B i BB
NewPLC1 sample... HS33 WORD ... Internal CHIND .. PE;W”“ 2 e B Et’“‘
NewPLC1 sample... HS38 WORD.. Internal D .., i e B el 2
NewPLC1 sample... HS16.09 BOOL{(.. Internd Error Bit ‘ v
NewPLCI sample... . Internal First C..,
NeL sample... Internal Port Ho... Cancel ;l
Select variables ta register in Wakch Window [MewPLC1(et:0,Node:n) - Offfine. | I fran@, 2 -100% |]

The present values of input variables and output variables (parameters) are
displayed below the parameters.

Function01
Function Elock1
_D{ 00 ﬁ?OL) (BC%% 1.00
”2‘ 1855 ipur
m 4 MNPUT

#1000 | WWI]}N PUT

PV of parameter for I/O variable.

The CX-One Ver 1.1 (CX-Programmer Ver. 6.1) and later versions have a sim-
ulation function that can simulate the operation of a ladder program or ST pro-
gram within a function block instance. Both step execution and break point
operation are supported.

To return to the original instance, right-click in the ST program monitor window
and select To Upper Layer from the pop-up menu.

m Enabling the Simulation Function

Use the following procedure to enable the simulation function.

1. Open the program containing the instance to be debugged.

2. Select View - Toolbars and select the Simulator Debug Option in the Tool-
bars Tab.

3. Select Work Online Simulatorfrom the CX-Programmer’s PLC Menu and
transfer the program to the CX-Simulator in the computer.

Note Steps 2 and 3 can be done in the opposite order.

m Step Execution (Step Run)

Executes the program in step (instruction) increments. When the instance is
stopped, this function can move to the first step (instruction) of the ladder or
ST program in that instance.

The program in the instance can be executed with the Step Run or Continu-
ous Step Run method (see note).

Procedures

Section 3-2

Note

1,2,3...

Set the duration of the step execution for Continuous Step Run operation by
selecting the CX-Programmer’s Tools - Options command and setting the
Continuous Step Interval on the PLCs Tab Page.

Step In
Use the following procedure to begin step execution of a ladder/ST program
within an instance (called Step Run operation).

1. Pause execution of the instance. (See note.)
2. Click the Step In Icon or select Tools - Simulation - Mode - Step In.

Example: Step In from Instance to Internal Ladder Program

| Stopped here.

| Click the Step In Icon to

o

R
 Alvways ON Flag £

Stopped here.

StageA_Boxsslect

start Step In execution.

WerkhioveCanirol L& flcourt
Program Narme : ov4dal 1]
B00L: BOOL 0 !
o "9 >
' {Section Name : Section{]
(Bo0L) (B00L) 400 Moves to here.
RighDifput ActustorRigrt
on 0 DV _ThickSekectCortrol
(800L) |ocL)| 401
Lefidiinout ActustorLeftd (500L) B0oL)
e £Ho)
n 0
(800L) [oto
(800L) @ocy)| 200
it LS Otincnte] oL LSrighi CylinderRightts |
E o n o
(800L)
10 (200L) @oow| 201
=t LSieft CylinderL oG
o n o
(s00L)
Reset o0 (REAL)
Vieasuret
+0.0000000
02 (REAL)
Veasure2
+0.0000000
04 (REAL)
ieacires
+0.0000000
1
2 Stagea BaxSeiect
2
WerklioveCanirol_LSONcourt

With an ST program, an
arrow is displayed to the left
of the stopped position.

Example: Step In from ST Program to Internal Ladder Program

Click the Step In Icon to
start Step In execution.

B> Y Reset = TRUE THEN
PrevCycieLS i= FALSE;
EMD_F;

F Preveyclels = FALSE and LSright = TRUE THEN
LS_Ohnumber := LS_Chinumber+1;

1D_IF;
PrevCycleL s = LStight;

WorkMove(RightDirinpLt, LeftDirnput, LSright, LSlett, ActuatorRighton, ActustorLe

Note

1,2,3...

* “ostiopd © Lsneg Lepos ActustorPosout
f 14 Actustor output for pos
Input for posit. it switch fo...|Linit swich fo
[E—— . e
ey » P
Actustor outp
1 NegDirnput Lspos Lsneg Actustorlisgout
5 ; |t 4+ {O——1 Actustor output for neg
Input for negat. .. Limit switch fo...|Linit svitch fo
RightDirinput = 0 , LeftDirlnput =0 , LSright = 0, LSleft = 0, Actuatorf
ActustorhiegOut
PrevCycieLs =0, LSright = 0 Actuator outp...
LS_Ghinumber = 0. ,LS_Onumber = 0L 2

PrevCyclels = 0, LSright = 0

When the program is being executed at a point outside of the function block
instance, the processing is the same as normal Step Run operation.

Step Out

Use the following procedure to pause step execution of a ladder/ST program
within an instance (Step Run operation) and return to one level higher in the
program (the program or instance that was the source of the call).

1. During Step Run operation, move the cursor to any stopping point in the
instance.

2. Click the Step Out Icon or select Tools - Simulation - Mode - Step Out.

119

Procedures

Section 3-2

Example:

Returning from an ST Program to the Calling Program or Instance

| Stopped here. |

FF Reset = TRUE THEN
PrevCycleLS = FALSE;
END_F;

B WorkMove(RightDirinput, LeftDirinput, L Srigtt, LSIef,

Reset=0
PrevCycieLs =0

F Preveyclels = FALSE and LSright = TRUE THEN
LS_ONnumbser := LS_Ohinumber+1;

END_F;
PrevCycleL S = LStight;

Note

Note

Note

120

, Actuatorl

PrevCyeieLS =0 , LSright = 0

, Click the Step Out Icon to
' return to the calling program.

3

Moves to here.

+0.0000000
D4

+0.0000000

F_On
Always O Flag

Wo.00 (Bo0L)
RightDirinput

(BoOL)
LeftDirnput
300 (BooL)
Lsright
am (BOOL)
Lslett

040 (BOOL)
Reset

(BoOL)
ActustorLeftd
n

(B00L)
ENO

(B00L) 400
ActustorRight
on

LS_Ohnumbser

The Step Out command can be executed only in a ladder/ST program within

an instance.

m Display when Operation is Paused by the Simulation Function

The color of the cursor (or arrow in an ST program) indicates whether an
operation has been paused in the Simulation Function Window, as well as
which operation has been paused.

Debug Color (default) | Program execution Details
operation status
Step Run or Pink Simulator paused Paused by Step Run
Continuous status operation or the Pause
Step Run Button
Regular color Not executed due to | Step is not being exe-
interlock or other cuted because of an
function. instruction such as IL,
MILR/MILH, JMPO, or
FOR/BREAK.
Break point Blue Simulator instruction | Paused (break status) by
break a break point.

(1) When Tools - Simulation - Always Display Current Execution Point
has been selected, the Simulator automatically scrolls the display to show
the paused point in the instance when performing Step Run or Continu-
ous Step Run operation.

(2) The color of the cursor (or arrow in an ST program), which indicates when
an operation has been paused in the Simulation Function Window, can
be changed from its default color.

To change the color, select Tools - Options and click the Appearance
Tab. Select Pause Simulator, Simulator Instruction Break, or Simulator 10
Break, and change the color for that condition.

m Break Point Operation in an Instance

Execution can be paused automatically at the preset break point in the
instance. (In this case, the Step In operation cannot be used.)

When a break point is set for an instance, the break point is valid for that
instance only. (The break point is not valid for other instances created from
the same function block definition.)

Procedures

Section 3-2

3-2-19 Online Editing Function Block Definitions

Ladder diagrams for ST programs in function block definitions can be edited
even when the CPU Unit is operating in MONITOR mode. This enables
debugging or changing function block definitions even in systems that cannot
be shut down, such as systems that operate 24 hours a day.

To edit function block definitions online, you must use CX-Programmer version

7.0 or higher (i.e., CX-One version 2.0 or higher) and a CS/CJ-series CPU
Unit with unit version 4.0 or later (See note.) or a CJ2-series CPU Unit.

This function cannot be used for simulations on CX-Simulator.

Note With CS/CJ-series CPU Units with unit version 3.0, online editing
can be used to change peripheral aspects of function block instanc-
es.

e Parameters passing data to/from instances can be changed, in-
structions not in instances can be changed, and instances can be
deleted.

* Instances cannot be added, instance names cannot be changed,
and changes cannot be made to variable tables or algorithms in
function block definitions.

Editing Reserved Memory to Add an Internal Variable with Online Editing

1,2,3...

To add an internal variable to the variable table in a function block definition,
the memory required for the size of the variable being added must be
reserved in advance. This memory is separate from the internally allocated
range for the variable in the function block instance area. Use the following
procedure to reserve memory before starting online editing of the function
block.

1. In the Workspace, right-click the function block definition to be edited and
select Properties from the pop-up menu.

2. Click the Memory Tab, right-click the area for which to reserve memory,
and select Online edit reserved memory from the pop-up menu.

Function Block Properties |
-Wl Generall F'mtectiunl Comments MEFﬂDL'r'I
|27 step

Fequired Memony:

Agzigned area | Fequired | Reszerved memc

Retain
Timers
Counters 0

< | i3

3. Enter the size of memory to reserve in each field in the Memory Size Edit
for FB Online Edit Dialog Box.

Memory Size Edit for FB Online x|
Address allocation area : Mon Retain i
Reserved memary size (BO0Ls): Ig Cancel |

Fezerved memory size [non BOOLg] : ID

121

Procedures

Section 3-2

Editing and Transferring a Function Block Definition

122

1,2,3...

1.

While online with the PLC, right-click a function block definition in the
Workspace (see note) and select FB online Edit - Begin from the pop-up
menu.

Note Online editing can also be started from the Function Block Defini-
tion Window, the Instance Ladder/ST Monitor Window, or a function
block call instruction (from the normal ladder program or from a lad-
der program in a function block).

The following dialog box will be displayed before the FB Online Editor is
started.

CX-Programmer ¥7.2 |

All Instances which were created from the FB Definition will be affected.
\3_'/ Check For the affected Instances which are listed in the Output window,

Do vou skart FE Online Edit?

es | Mo I

At the same time, a list of instances that will be affected is displayed in the
Output Window.

H|MewProgram1 /Section : 1 Step
|| MewProgrami /Section] : 3 Step

Note Affect of Function Block Definition Changes on Instances
When a function block definition is changed, the contents of all in-
stances that call that function block definition will also be changed.
This is illustrated below.

Function Block Definition FB1 User Program

O L/
}—E Instance calling FB1

Affected
D Programming </’
changed. 4{

-

IR

Instance calling FB1

n i}
ibe affected is displayed in |
ithe Output Window.

4{

Change function block definitions only after considering the affect
of the change on overall program operation.

Click the Yes Button. The contents of the function block definition will be
displayed and can be edited.

Procedures

Section 3-2

3 sample_e2 - CX-Programmer - [NewPLCLDYD_ThickSelectControl [FB Ladder]] _|&] x|
File Edit Wew Insert PLC Program Tools swindow Help _1&] x|
e ®REr[smeac|ansnee||lceEasn iR (e 2EBTEE] w|es]
“XaEEBERIS | oo G L« |36 [t s B EE
EEERE w2 EE 2% %8 |[a s e B en s
Il [Name [Data Type [a1 [Initial ¥alue | Retained | Comment [
=158 NewProjeck workiove FB [ActuatorCa...
BB NewPLCI[CILGH] Monitor Mode DYDThickludge FB [Avavalue_T...
..... 3 Symbols Judge BOOL FALSE
37 10 Table and Unit Setup Judge BOGL FALSE
----- Settings . Inputs | oupus | In Ot | Externas
[E] remary card — B
= [The upper i iz 1.26mm, the lower limit is 1 1 4mm. (1 .20mm (+-5%)) =
@ Erorlog 0 DVDThickudge
PLE Clock
gt Memary Avgvalue_ThresholdCheck
=% Programs EN Bo0L) (BooL)
-5 NewProgram (00) Running N ENC|
= symbols ortrols exscut
B sectiont Measurel (REALY (BOOL)| Judge
nputt Resut|
3 Enp
d Measuremen...
=-IF Fur\tlnr\ Blocks Weasre? | |mEaL)
ct ol rptz
-4 Avgitalus_ThresholdCheck Measuremen...
4EF DVD_ThickSelectControl Measured (REAL)
- JEF WorkMoveConkral_LSONCount —nput3
Measuremen
+126 (REAL)
UpLimit
+1.14 (REAL)Y
—LowLimit
1 Juciye _Judge
2 I
2 -
KN 3
', Project / EE]| Name: Address or Yalue: | Comment:
I Ffhe Function Block 1o be online-edited 15 Uged in the folowing progiams. i
[NewProgram1 /Section - 1 Step
JJ (Mo Comgte Find Repart / Transter el | 3
For Help, press F1 [[MewPLE1{Net:0,Node:0) - Monitor Mode [Dd4ms [s¥nC [rung 0 (2, 1) - 100% [[raum

3. After editing the contents of the function block definition, select FB online
Edit - Send Changes. The following FB Online Edit - Transfer Dialog Box
will be displayed.

FB Online Edit - Transfer x|
— Transfer mode

& Momal mode [Transter FB source) Caticel |

Transfer takes time, but upload can be done normally.

" Quick mode (Do nat ansfer FB Source)

Transfer cat be done mare quickly, but it is then necessary to transfer
the FE Source ta the PLC later ta enable programm upload.

4. Select one of the following transfer modes and click the Yes Button.
* Normal Mode
* Quick Mode

Refer to Transfer Modes on page 124 and Selecting a Transfer Mode on
page 125 for details on the transfer modes.

123

Procedures

Section 3-2

Transfer Modes

124

The new function block definition will be transferred to the buffer memory
in the CPU Unit and the progress of the transfer will be displayed in a dialog
box.

Transter FB programs to PLC MewPLC1

>

& =

Transfering FE Program information...
Biyte 974 of 2733
Diownloading... Don't power off PLC.

(At this point, the CPU Unit will still be operating with the previous function
block definition.)

The following dialog box will appear when the transfer has been complet-
ed.

CX-Programmer ¥7.2 |
\‘_?/ Aire you sure you wank to reflect the changes ko the program?
¥es |] I

(At this point, the CPU Unit will still be operating with the previous function
block definition.)

5. Click the Yes Button. The user program in the CPU Unit will be updated
with the new function block definition from the buffer memory of the CPU
Unit. (If the No Button is click, the new function block definition in the buffer
memory will be discarded and the program will not be changed.)

In either case, the program will return to the status in which function block
definitions cannot be edited. To edit another function block definition, se-
lect FB online Edit - Begin and begin the online editing procedure from
the beginning.

Normal Mode

In Normal Mode, both the source code and object code are transferred to the
CPU Unit. Some time may be required for Normal Mode transfers because of
the quantity of data that must be sent. Other editing or transfer operations
cannot be performed until the transfer has been completed.

Note The Display confirmation of FB online edit changes Option can be
selected to display a confirmation dialog box after the source code
has been transferred but just before updating the user memory in
the CPU Unit.

Quick Mode

In Quick Mode, only the object code is transferred to the CPU Unit. The
source code is not transferred, making Quick Mode faster than Normal Mode.
After transferring the object code either 1) select Program - Transfer FB
Source to transfer the source code or 2) transfer the source code according
to instructions displayed in a dialog box when you go offline.

After transferring the object code, “FB Source” will be displayed in yellow at
the bottom of the window to indicate that the source code has not yet been
transferred. This message will disappear when the source code is transferred.

Procedures

Section 3-2

Selecting a Transfer Mode

Note

As a rule, use Normal Mode to transfer function block definition changes. If
too much time is required, increase the baud rate as much as possible before
the transfer. If too much time is still required and debugging efficiency is hin-
dered by continuous online editing, use Quick Mode as an exception, but be
sure you understand the restrictions given in the following note (Mode Restric-
tions in Quick Mode).

Guidelines for transfer times are given below for eight function block defini-
tions with a source code totaling 8 Kbytes for all 8 definitions and all
instances.

Normal Mode Quick Mode
At115.2kbps: 5s 1s
At 19.2 kbps: 10s 2s

Restrictions in Quick Mode

A program containing function blocks cannot be uploaded correctly to the CX-
Programmer unless the source code for all function block definitions has been
transferred to the CPU Unit. Whenever using Quick Mode to transfer changes
to function block definitions, always select Program - Transfer FB Source
later to transfer the source code as well. Even if the source code is not trans-
ferred, it will be automatically transferred when you go offline unless the com-
puter or CX-Programmer crashes before the source code can be transferred.
In that happens, it may be impossible to upload the program. (See note.)

Note It may be still be possible to transfer the source code even if the
above problem occurs.
a. The following dialog box will be displayed the next time the CX-Pro-
grammer is started.
=

FE/SFCIST Source in the project"D:\programisample3_NewPLC1.FEE"
! may nok be transferred correctly.
Go onling and check the status of the PLC,

Click the OK Button.

Go online with the CPU Unit to which a transfer was made using Quick
Mode.

d. When you go online, the CXP project automatically backed up in the
computer will be started and the following dialog box will be displayed.

Cx-Programmer ¥7.2 |
[} Check if the backed-up FBfSFCIST Source can be transferred.
- If [Mo]is selected, the program cannot be transferred from the PLC correctly after going online.
es Mo |

e. Click the Yes Button and then following the instructions provided in the
dialog boxes. The source code automatically backed up in the comput-
er can be compared to the object code in the CPU Unit and if they
match, the source code can be transferred.

125

Procedures

Section 3-2

Note

Source Code and Object Code

Before transferring a program, the CX-Programmer normally compiles the
source code into object code so that the CPU Unit can execute it and then
transfers both the source code and object code to the CPU Unit. The CPU
Unit stores the source code and object code in user memory and built-in flash
memory. Only when both the source code and object code exist in the CPU
Unit can the CX-Programmer transfer and restore the program for the upload
operation.

Canceling Changes to Function Block Definitions

Select FB online Edit - Cancel to discard any changes made to a function
block definition. The function block definition will not be transferred to the CPU
Unit and the original definition will be restored.

Effects on CPU Unit Operation

Maximum Cycle Time
Extensions for Online
Editing

Note

& Caution

The following will occur if online editing is performed with the CPU Unit oper-
ating in MONITOR mode: 1) The cycle time of the CPU Unit will be extended
by several cycle times when the program in the CPU Unit is rewritten and 2)
The cycle time will again be extended when the results of online editing are
backed up to built-in flash memory. (At this time, the BKUP indicator on the
front of the CPU Unit will flash and the progress will be displayed on the CX-
Programmer.)

The maximum extensions to the cycle time are given in the following table.

During online editing During backup

12 ms max. 4% of cycle time

Cycle Time Monitor Time

Be sure that the cycle time monitor time set in the PLC Setup is not exceeded
when the program is rewritten as a result of online editing in MONITOR mode.
If the monitor time is exceeded, a cycle time exceeded error will occur and
CPU Unit operation will stop. If this occurs, switch to PROGRAM mode and
then to MONITOR or RUN mode to restart operation.

If synchronous unit operation is being used, an increase in the synchronous
processing time caused by online editing may result in unexpected operation
timing. Perform online editing only after confirming that an increased synchro-
nous processing time will not affect the operation of the main and slave axes.

Restrictions in Online Editing of Function Block Definitions

126

The following restrictions apply to online editing of function block definitions.

* For CJ2-series CPU Units, there is no restriction on the number of steps
that can be added to or deleted from a function block definition during one
online editing operation.

* Online editing is not possible for function block definitions that exceed
4 Ksteps. (except for CJ2-series CPU Units)

¢ A maximum of 0.5 Ksteps can be added to or deleted from a function
block definition during one online editing operation. (except for CJ2-series
CPU Units)

* Input variables, output variables, and input-output variables cannot be
added or deleted.

* New function block instances cannot be added.
* Instance names cannot be changed.

Procedures Section 3-2

* Internal variables can be added, internal variable comments can be
changed, and internal variables can be deleted from the variable table in
the function block definition. To add an internal variable, however, memory
must be reserved in advance. Refer to Editing Reserved Memory to Add
an Internal Variable with Online Editing on page 121 for details.

The previous status flags for all differentiated instructions (DIFU(013), @
instructions, DIFD(014), and % instructions) will be initialized (i.e., turned
OFF) when online editing is finished.

After performing online editing, do not turn OFF the power supply to the
PLC until the CPU Unit has finished backing up data to the built-in flash
memory (i.e., until the BKUP indicator stops flashing). If the power supply
is turned OFF before the data is backed up, the data will not be backed up
and the program will return to the status it had before online editing was
performed.

127

Procedures Section 3-2

128

Part 2:
Structured Text (ST)

SECTION 4
Introduction to Structured Text

This section introduces the structure text programming functionality of the CX-Programmer and explains the features that
are not contained in the non-structured text version of CX-Programmer.

4-1 ST LangUAZE . . . ottt et e e e e e 132
A-1-1 OVEIVIEW. . .ttt ittt et e e e e et 132
4-2 CX-Programmer Specificationso, 133
4-2-1 PLC Models Compatible with ST Programs (ST Tasks) 133
4-2-2 Specificationsttt e 133

131

ST Language

Section 4-1

4-1

4-1-1

132

ST Language

Overview

This section explains the specifications and operating procedures for ST pro-
grams directly allocated to CX-Programmer tasks (ST tasks). Refer to the fol-
lowing sections for information on functions and operations specific to ST
programs used in other programs (function blocks or SFC).

» ST programs used in function block instances:
Refer to Part 1: Function Blocks in this manual.

» ST programs used in SFC:
Refer to the CX-Programmer Operation Manual: SFC (W469).

The ST (Structured Text) language is a high-level language code for industrial
controls (mainly PLCs) defined by the IEC 61131-3 standard. The standard
control statements, operators, and functions make the ST language ideal for
mathematical processing that is difficult to write in ladder programming. (The
ST language does not support all of the processing that can be written in lad-
der language.)

The ST language supported by CX-Programmer Ver. 7.2 or higher conforms
with the IEC 61131-3 standard, and these ST-language programs can be allo-
cated to tasks.

The PLC must be a CS/CJ-series CPU Unit with unit version 4.0 or later, or a
CJ2-series CPU Unit.

The following list shows the features of the ST language.

e There are many control statements available, such as loop statements
and IF-THEN-ELSE statements, many operators such as arithmetic oper-
ators, comparison operators, and AND/OR operators, as well as many
mathematical functions, string extract and merge functions, Memory Card
processing functions, string transfer functions, and trigonometric func-
tions.

® Programs can be written like high-level languages such as C, and com-
ments can be included to make the program easy to read.

ST Program

IF score > setover THEN (*If score>setover*)
underNG := FALSE; (*Turn OFF underNG™)
OK := FALSE; (*Turn OFF OK*)
overNG := TRUE; (*Turn ON overNG*)

ELSIF score < setunder THEN (*If score=<setover and score < setunder®)
overNG := FALSE; (*Turn ON overNG*)
OK := FALSE; (*Turn OFF OK*)
underNG := TRUE; (*Turn ON underNG*)

ELSE (*If setover>score>setunder*)
underNG := FALSE; (*Turn OFF underNG™)
overNG := FALSE; (*Turn OFF overNG*)
OK := TRUE; (*Turn OFF OK*)

END IF; (*End of IF statement*)

e ST programs can be uploaded and downloaded just like ordinary pro-

grams, but ST program tasks cannot be uploaded and downloaded in task
units.

® Function blocks (ladder or ST language) can be called in ST programs.

CX-Programmer Specifications Section 4-2

® One-dimensional array variables are supported for easier data handling in
applications.

4-2 CX-Programmer Specifications

This section describes the operating environment for CX-Programmer ST pro-
grams (ST tasks). For details on the basic CX-Programmer operating environ-
ment, refer to the CX-Programmer Operation Manual (W446).

e For details on the CX-Programmer operating environment used with other
programs (function block or SFC), refer to Part 1: Function Blocks in this
manual, or the CX-Programmer Operation Manual: SFC (W469).

4-2-1 PLC Models Compatible with ST Programs (ST Tasks)

The following PLC models support ST tasks.

PLC model CPU Unit model

CJ2H CJ2H-CPU68/67/66/65/64/68-E1P/67-EIP/66-EIP
/65-EIP/64-EIP

CS1G-H with unit version 4.0 | CS1G-CPU45H/44H/43H/42H

CS1H-H with unit version 4.0 | CS1H-CPU67H/66H/65H/64H/63H

CJ1G-H with unit version 4.0 | CJ1G-CPU45H/44H/43H/42H

CJ1H-H with unit version 4.0 | CJ1H-CPU67H/66H/65H/67H-R/66H-R/65H-R/64H-R
CJ1M with unit version 4.0 | CJ1M-CPU23/22/21/13/12/11

4-2-2 Specifications

Item Specification
Program languages that can | SFC, ladder, or ST (These programs can be combined
be allocated to tasks freely.)
ST program units Task units
Up to 288 tasks (32 cyclic tasks, and 256 extra cyclic
tasks)

Tasks to which ST programs | Cyclic tasks and extra cyclic tasks
can be allocated

Online editing ST chart editing

Note The user can select standard mode (ST source
code included in transfer) or quick mode (ST
source code not included in transfer).

Array variables Array variables can be used in SFC, ladder, and ST
programs.

133

CX-Programmer Specifications Section 4-2

134

SECTION 5
Structured Text (ST) Language Specifications

This section provides specifications for reference when using structured text programming, as well as programming
examples and restrictions.

5-1 Structured Text Language Specifications 136
5-1-1 Overview of the Structured Text Language 136
5-2 DataTypes Used in ST Programst 137
5-2-1 BasicDataTypesouuiiiiiiii i 137
5-2-2 Derivative Data Types.o vt 137
5-3 Inputting ST Programs 138
5-3-1 Syntax Rules. 138
5-3-2 CX-Programmer's ST Input Screen Display. 140
5-4 ST Language Configurationutitiriniinnnnenenennn.. 141
5-4-1 Statements.ottt e 141
5-4-2 Variables 142
5-4-3 Inputting Constants.uutintnen e, 142
S5-4-4 OPETatOrS. . v v vttt et e et 142
5-4-5 Standard Functions................, 143
5-4-6 OMRON Expansion Functions. 146
5-5 Statement Descriptions vt 148
5-5-1 ASSIGNMENL. . .ottt ettt et e 148
5-5-2 Control Statementsttt e 148
5-6 ST-language Program Example. 166
5-6-1 Using an ST Program in a Function Block. 166
5-7 RESHHCHONS . o . ottt ettt e e e e 167
5-7-1 RESHICHONS . .« ottt et ettt e e e e 167
5-7-2 Commonly Asked Questionscouvuiuinienenn .. 167

135

Structured Text Language Specifications Section 5-1

5-1 Structured Text Language Specifications

5-1-1 Overview of the Structured Text Language

Structured text is a high-level textual language that has selection and iteration
structures, and is similar to PASCAL.

ST Language
Configuration

M ST Language Configuration

An ST language program is composed from statements. There are two kinds
of statements: assignment and control.

* Assignment statement: This statement uses an equation to store a calcu-
lation result in a variable.

¢ Control statement: Includes statements such as selection statements and
iteration statements.

For details on each kind of statement, refer to 5-4 ST Language Configura-
tion.

H Statement Contents
Statements are composed of the following elements.
* Variables (Refer to 5-4-2 Variables.)
 Constants (Refer to 5-4-3 Inputting Constants.)
* Operators (Refer to 5-4-4 Operators.)

* Functions (Refer to 5-4-5 Standard Functions and 5-4-6 OMRON Expan-
sion Functions.)

H Example of a Control Statement

Statement (e.g., CASE): Equation: Configured using
Configured using variables,

operators and operands.
equations, etc. Variable| |Constant

! (*Variable COLOR value is...")

1: Increment variable NofRed by 1)

2: Increment variable NofBlue by 1)

Neither 1 or 2: Increment variable NofOther by 1)

-
1: NofRed := No_t}{_e_d_H iy

_— e~ o~ —~

BNDCASE.)
EIF NofRed > 100 OR NofBlue >100 THEN i 1 (* When NofRed or NofBlue exceeds 100%)
i STOP:=TRUE i (*Assign TRUE for variable STOP*)

ENDIF ! T

Statement (e.g., IF): Comment:
Configured using variables, A comment can be attached to a statement.
equations, etc. Configured using (* before the

comment and *) after the comment.

Note In an ST program, addresses are not input as actual I/O memory addresses.
Variable names are used for all address inputs. The addresses that use vari-
ables are set by the user.

For details on variable specifications and setting methods, refer to the CX-
Programmer Operation Manual (W446).

136

Data Types Used in ST Programs

Section 5-2

5-2 Data Types Used in ST Programs

The following tables show the data types used in ST programs. For details on
the data types that can be used in ST programs within function blocks, refer to
Part 1: Function Blocks in this manual.

5-2-1 Basic Data Types
Data type Content Size Range of values
BOOL Bit data 1 0 (FALSE), 1 (TRUE)
INT Integer 16 -32,768 to +32,767
DINT Double integer 32 -2,147,483,648 to +2,147,483,647
LINT Long (8-byte) integer 64 -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807
UINT Unsigned integer 16 &0 to 65,535
UINT BCD Unsigned BCD integer | --- (See note 1.)
UDINT Unsigned double integer | 32 &0 to 4,294,967,295
UDINT BCD Unsigned double BCD | --- (See note 1.)
integer
ULINT Unsigned long (8-byte) |64 &0 to 18,446,744,073,709,551,615
integer
ULINT BCD Unsigned long (8-byte) | --- (See note 1.)
BCD integer
REAL Real number 32 -3.402823 x 10%8 to —1.175494 x 10738, 0,
+1.175494 x 10738 to +3.402823 x 10°8
LREAL Long real number 64 —1.79769313486232 x 10398 to —2.22507385850720 x 10308, 0,
2.22507385850720 x 1073%8 to 1.79769313486232 x 10308
WORD 16-bit data 16 #0000 to FFFF or &0 to 65,535
DWORD 32-bit data 32 #00000000 to FFFFFFFF or &0 to 4,294,967,295
LWORD 64-bit data 64 #0000000000000000 to FFFFFFFFFFFFFFFF or
&0 to 18,446,744,073,709,551,615
STRING Text string Variable
FUNCTION Function block instance |---
BLOCK
CHANNEL Word (See note 1.)
NUMBER Constant or number (See note 2.)
Note (1) In ST programs, these data types are recognized as the following data
types.
* UNIT BCD is recognized as WORD.
* UDINT BCD is recognized as DWORD.
* ULINT BCD is recognized as LWORD.
* CHANNEL is recognized as WORD.
(2) This data type cannot be used in an ST program. A program error will oc-
cur if this data type is specified.
5-2-2 Derivative Data Types

|Array | 1-dimensional array; 32,000 elements max.

137

Inputting ST Programs

Section 5-3

5-3 Inputting ST Programs

5-3-1 Syntax Rules

Statement Delimiters

Comments

Spaces, Carriage Returns,
Tabs

138

 Statements (assignment and control statements) must always end in a
semicolon (;). The statement cannot be completed by simply using a car-
riage return.

* Do not use a semicolon (;) as a delimiter within a statement such as fol-
lowing reserved words, values, or equations. Inserting a semicolon within
a statement, except at the end of a statement, will result in a syntax error.

* Comments are enclosed in parentheses and asterisks, i.e., (*comment?).
Any characters except parentheses and asterisks can be used within a
comment. Nesting within comments is not supported.

Notation Example
(*comment) (*this is the comment*)

Note Nesting in comments is not possible, i.e.,
(*(*this type of nesting is not supported*)*)

* Any number of spaces, carriage returns, and tabs, or combinations of
these can be used anywhere within statements. Therefore, use spaces,
carriage returns, and tabs between reserved words and equations to
make them easier to read.

* Spaces, carriage returns, and tabs cannot be used between the following
tokens (the smallest meaningful unit for compiling), in which case they are
referred to as token separators.

Tokens: Reserved words, variable names, special characters, constants
(numerical values)

Reserved words (upper or lower case): AND, CASE, DO, ELSE, FOR,
IT, NOT, OF, OR, REPEAT,
THEN, TO, UNTIL, WHILE,
XOR, TRUE, FALSE, ELSIF,
BY, EXIT, RETURN

Variable names: Any text that is not a reserved
word will be recognized as a
variable name.

Special characters: <=, >=, <>, 05, ., & (5, 7)

Constants (numerical values): * Numerical value only for
decimal numbers

* 16# followed by numerical
value for hexadecimal
numbers

e 2# followed by numerical
value for binary numbers

* 8# followed by numerical
value for octal numbers

If a space, carriage return, or tab is used between any of the above tokens,
the parts of the token on either side will be treated as separate tokens.
Therefore, make sure that spaces, carriage returns, or tabs are not used
within a single token.

Inputting ST Programs

Section 5-3

Upper and Lower Case

Prohibited Characters for
Variable Names

Operator Priority

STRING Data Type

e Always use a space, carriage return, tab, or other token separator
between reserved words and variable names. Using token separators
between other token combinations is optional.

In the following example, the box ([J) indicates where a space, carriage
return, tab, or other token separator is required.

IFLJAS>OTHENLIX=10;

ELSEL]
X:=0;
END IF;

* Reserved words and variable names do not distinguish between upper
and lower case (either can be used).

* The following characters enclosed in square brackets cannot be used in
variable names.

[, ['l [#], [$], [%], [&], ['], [(1,, DL, -], (=], I, [~0, DN 0L [@], O), (0, i), G,

(+1, -1, 1, (01 B1, 0], [<L L), (>0,), [7]
* The numbers 0 to 9 cannot be used as the first character of variable
names.

* An underscore cannot be followed immediately by another underscore in
variable names.

* Spaces cannot be used in variable names.
An error message will occur if any of these characters are used in this way.

* Consider the operator priority in the structured text syntax, or enclose
operations requiring priority in parentheses.

Example: AND takes priority over OR. Therefore, in the example X OR 'Y
AND Z, priority will be given to Y AND Z.

* The following text strings are supported:
Strings with up to 255 alphanumeric characters
The text strings are not case sensitive.

* Text strings defined in the ST language are stored in PLC memory as fol-
lows:

Data for the Text String "123456"

The null code (00) is stored

n 3132
n+1 33 34
n+2 35 36
n+3 00 00

at the end of the text string.

* Place text strings inside signal quotation marks.

Notation

Description

N

Indicates the text string “A” (ASCII 41).

Indicates a text string containing a single space (ASCII 20).

1]

Indicates an empty text string.

» Two hexadecimal digits following a dollar sign ($) are interpreted as hexa-
decimal values.

Notation Description
$02 The hexadecimal number 02 (start code)
$03 The hexadecimal number 03 (end code)

139

Inputting ST Programs Section 5-3

* Certain alphabet characters following a dollar sign ($) are interpreted as
listed in the following table.

Notation Description
$$ The dollar sign (ASCII 24)
$ A single quotation mark (ASCII 27)
$SL or $I Line feed (ASCII 0A)
$N or $n Carriage return + line feed (ASCII 0D 0A)
$P or $p New page (ASCII 0C)
$R or $r Carriage return (ASCII OD)
$T or $t Tab (ASCII 09)

* When a text string is being stored from the ladder program in an ST func-
tion block’s STRING variable, append a NULL character (#00) to the end
of the text string.

Example: Passing string data to the function block STRING variable StrX:
Ladder program that stores "123456" in STRING variable StrX:

I I { Mov #3132 D100 |

—— MoV #3334 D101 |
— MOV #3536 D102 |
—| MOV #0000 D103 -I— Attach a NULL character (#00) at the end.

STRING data is stored to the function block by the ladder program above.

i

D100 —

(STRING) (STRING)

StrX sux | P10

5-3-2 CX-Programmer's ST Input Screen Display

Text Display Color The CX-Programmer automatically displays text in the following colors when it
is input or pasted in the ST Input Screen.

 Text keywords (reserved words): Blue
e Comments: Green

e Errors: Red

e Other: Black

Changing Fonts To change font sizes or display colors, select Tools - Options, click the

Appearance Tab, and then click the ST Font Button. The font name, font size
(default is 8 point), and color can be changed.

140

ST Language Configuration

Section 5-4

5-4 ST Language Configuration

5-4-1 Statements
Statement Function Example
End of statement Ends the statement ;
Comment All text between (* and *) is treated as | (*comment*)
a comment.
Assign- Assignment Substitutes the results of the expres- | A:=B;
ment state- sion, variable, or value on the right for
ment the variable on the left.
Control IF, THEN, ELSIF, ELSE, Evaluates an expression when the IF (condition_1) THEN
statements | END_IF condition for it is true. (expression 1);

ELSIF (condition_2) THEN
(expression 2);

ELSE
(expression 3);

END_IF;

CASE, ELSE, END_CASE

Evaluates an express based on the
value of a variable.

CASE (variable) OF
1: (expression 1);
2: (expression 2);
3: (expression 3);

ELSE
(expression 4);

END_CASE;

FOR, TO, BY, DO,

Repeatedly evaluates an expression

FOR (identifier) := (initial_value) TO

Ends the ST task that is being exe-
cuted, and executes the next task.

ST used in SFC:
Ends the SFC action program that is
being executed, and executes the
next action program.

ST used in a function block:
Returns from the called program to
the point in the calling program
where the call occurred.

END_FOR according to the initial value, final (final_value) BY (increment) DO
value, and increment. (expression);
END_FOR;
WHILE, DO, END_WHILE |Repeatedly evaluates an expression | WHILE (condition) DO
as long as a condition is true. (expression);
END_WHILE;
REPEAT, UNTIL, Repeatedly evaluates an expression | REPEAT
END_REPEAT until a condition is true. (expression);
UNTIL (condition)
END_REPEAT;
EXIT Stops repeated processing. EXIT;
RETURN ST program: RETURN;

Function block instance call

Calls a function block definition.

When used in a function block:
Variable name with FUNCTION
BLOCK data type (called function
block definition’s input variable name
:= calling function block definition’s
variable name or constant, ..., called
function block definition’s output vari-
able name or constant => calling func-
tion block definition’s output variable
name, ...);

141

ST Language Configuration

Section 5-4

5-4-2 Variables

5-4-3

Note

5-4-4 Operators

For details on variable specifications and setting methods, refer to the CX-
Programmer Operation Manual (W469).

Inputting Constants

Numerical values can be expressed in decimal, hexadecimal, octal, or binary,
as shown in the following examples.

Notation Method Example
(for the decimal value 12)
Decimal: Numerical value only 12

Hexadecimal: 16# followed by numerical value 16#C

Octal: 8# followed by numerical value 8#14
Binary: 2# followed by numerical value 2#1100
Text string: Place in single quotation marks ‘Hello world’

Negative hexadecimal, octal, and binary numbers are expressed as 2’s com-
plements.

The valid range of INT data is -32,768 to 32,767 in decimal, but 0000 to FFFF
in hexadecimal, so the 2’s complement is used for negative integers. For
example, when a value of -10 decimal is set in an INT variable, it will be
expressed as 16#FFF6 in hexadecimal.

142

Operation Symbol Data types supported by operator Priority
1: Lowest
11: Highest

Parentheses and (expression), 1
brackets arraylindex]
Function evaluation | identifier Depends on the function (refer to Appendix C Func- |2

tion Descriptions)
Exponential b REAL, LREAL 3
Complement NOT BOOL, WORD, DWORD, LWORD 4
Multiplication * INT, DINT, UINT, UDINT, ULINT, REAL, LREAL 5
Division / INT, DINT, LINT, UINT, UDINT, ULINT, REAL, LREAL |5
Addition + INT, DINT, LINT, UINT, UDINT, ULINT, REAL, LREAL | 6
Subtraction - INT, DINT, LINT, UINT, UDINT, ULINT, REAL, LREAL | 6
Comparisons <, >, <=, >= BOOL, INT, DINT, LINT, UINT, UDINT, ULINT, 7

WORD, DWORD, LWORD, REAL, LREAL
Equality = BOOL, INT, DINT, LINT, UINT, UDINT, ULINT, 8

WORD, DWORD, LWORD, REAL, LREAL
Non-equality <> BOOL, INT, DINT, LINT, UINT, UDINT, ULINT, 8

WORD, DWORD, LWORD, REAL, LREAL
Boolean AND & BOOL, WORD, DWORD, LWORD 9
Boolean AND AND BOOL, WORD, DWORD, LWORD 9
Boolean exclusive XOR BOOL, WORD, DWORD, LWORD 10
OR
Boolean OR OR BOOL, WORD, DWORD, LWORD 11

Note Operations are performed according to the data type.

Therefore, the addition result for INT data, for example, must be a variable
using the INT data type. Particularly care is required when a carry or borrow
occurs in an operation for integer type variables. For example, using integer

ST Language Configuration

Section 5-4

type variables A=3 and B= 2, if the operation (A/B)*2 is performed, the result
of A/B is 1 (1.5 with the value below the decimal discarded), so (A/B)*2 = 2.

5-4-5 Standard Functions

Function type

Syntax

Numerical Functions

Absolute values, trigonometric functions, etc.

Arithmetic Functions

Exponential (EXPT)

Data Type Conversion Functions

Source_data_type_TO_New_data_type (Variable_name)

Number-String Conversion Functions

Source_data_type_TO_STRING (Variable_name)
STRING_TO_New_data_type (Variable_name)

Numerical Functions

Function Argument data type | Return value Description Example
data type
ABS (argument) INT, DINT, LINT, INT, DINT, LINT, |Absolute value [argu- a: = ABS (b)
UINT, UDINT, ULINT, |UINT, UDINT, ment] (*absolute value of variable
REAL, LREAL ULINT, REAL, b stored in variable a*)
LREAL
SQRT (argument) REAL, LREAL REAL, LREAL Square root: a: = SQRT (b)
argument (*square root of variable b
stored in variable a*)
LN (argument) REAL, LREAL REAL, LREAL Natural logarithm: LOG; |a: =LN (b)
argument (*natural logarithm of vari-
able b stored in variable a*)
LOG (argument) REAL, LREAL REAL, LREAL Common logarithm: a: = LOG (b)
LOG o argument (*common logarithm of vari-
able b stored in variable a*)
EXP (argument) REAL, LREAL REAL, LREAL Natural exponential: @ |a&: = EXP (b)
gument (*natural exponential of vari-
able b stored in variable a*)
SIN (argument) REAL, LREAL REAL, LREAL Sine: SIN argument a: = SIN (b)
(*sine of variable b stored in
variable a*)
COS (argument) REAL, LREAL REAL, LREAL Cosine: COS argument | a: = COS (b)
(*cosine of variable b stored
in variable a*)
TAN (argument) REAL, LREAL REAL, LREAL Tangent: TAN argument | a: = TAN (b)
(*tangent of variable b stored
in variable a*)
ASIN (argument) REAL, LREAL REAL, LREAL Arc sine: SIN™! argument a: = ASIN (b)
(*arc sine of variable b
stored in variable a*)
ACOS (argument) REAL, LREAL REAL, LREAL Arc cosine: COS ™ argu- a:= ACQS (b) .
ment (*arc cosine of variable b
stored in variable a*)
ATAN (argument) REAL, LREAL REAL, LREAL Arc tangent: TAN " argu- a: = ATAN (b) .
ment (*arc tangent of variable b
stored in variable a*)

143

ST Language Configuration

Section 5-4

Function Argument data type | Return value Description Example
data type
EXPT (base, expo- |Base REAL, REAL, LREAL Exponential: Base®*Ponent | a: = EXPT (b, c)
nent) LREAL (*Exponential with variable b
Exponent | INT, as the base and variable ¢
DINT, as the exponent is stored in
LINT, variable a*)
UINT,
UDINT,
ULINT
Note The data type returned for numerical functions is the same as that used in the

Text String Functions

argument. Therefore, variables substituted for function return values must be
the same data type as the argument.

version 4.0 or later, or CJ2-series CPU Units.

The following functions can be used with CS/CJ-series CPU Units with unit

Function Argument data type Return Description Example
value
data type
LEN(String) String STRING |INT Detects the length |a: = LEN (b)
of a text string. (*number of characters in string
b stored in variable a*)
LEFT(<Source_string>, Source_ STRING |STRING Extracts charac- a: = LEFT (b,c)
<Number_of_characters>) | string ters from a text (*number of characters specified
Number_of |INT, string starting from |,y variable ¢ extracted from the
characters | UINT the left. left of text string b and stored in
variable a*)
RIGHT(<Source_string>, Source_ STRING |STRING Extracts charac- a: = RIGHT (b,c)
<Number_of_characters>) | string ters from a text (*number of characters specified
Number_of__ | INT, string starting from | by variable ¢ extracted from the
characters | UINT the right. eight of text string b and stored
in variable a*)
MID(<Source_string>, Source_ STRING |STRING Extracts charac- a: = MID (b,c,d)
<Nun7t?er_of_ characters>, |string ter§ from a text (*number of characters specified
<Position=) Number_of_ | INT, string. by variable ¢ extracted from text
characters |UINT string b starting at position spec-
Position INT ified by variable d and stored in
UII\iT variable a*)
CON- Source_ STRING |[STRING |Concatenates text |a: = CONCAT (b,c...)
CAT(<SOL_/rce_string*_ 1>,<§ | string strings. (*text strings b, c... are joined
ggr gg—fgg’;%f;g;) Up to and stored in variable a*)
u ings.
INSERT (<Source_string>, | Source_ STRING |STRING Insert one text a: = INSERT (b,c,d)
<Insert_string>,<Position>) | string string into another. (*text string ¢ inserted into text
Insert_ STRING string b at position specified by
string variable d and resulting string
Position INT stored in variable a*)
UINT
DELETE(<Source_string>, | Source_ STRING |STRING |Deletes characters |a: = DELETE (b,c,d)
<Number_of_characters>, | string from a text string. | (number of characters specified
<Position=) Number_of_ | INT, by variable ¢ deleted from text
characters |UINT string b starting from position
Position INT specified by variable d and
UII\jT resulting string stored in variable
a")

144

ST Language Configuration

Section 5-4

Function Argument data type Return Description Example
value
data type
REPLACE(<Source_string | Source_ STRING |STRING Replaces charac- |a: = REPLACE (b,c,d,e)
>,<Replace_string>, string tersin atext string. | (snumber of characters specified
<Number_of_characters>, Replace_ | STRING by variable d in source string b
<Position>) string replaced with text string ¢ start-
Number_of_| INT, ing.frtc:lm posigon sple.cified _by
characters | UINT variable e an resu*tlng string
— stored in variable a*)
Position INT,
UINT
FIND(<Source_string>, Source_ STRING |INT Finds characters a: = FIND (b,c)
<Find_string>) string within a text string. | (+first occurrence of text string ¢
Find_string | STRING found in text string b and posi-
tion stored in variable a; 0 stored
if text string cis not found.*)

Data Type Conversion

Functions

Syntax

The following data type conversion functions can be used in structured text.

Source_data_type_TO_New_data_type (Variable_name)
Example: REAL_TO_INT (C)
In this example, the data type for variable C will be changed from REAL to

INT.
Data Type Combinations The combinations of data types that can be converted are given in the follow-
ing table.
(YES = Conversion possible, No = Conversion not possible)
FROM TO
BOOL | INT DINT | LINT | UINT | UDINT | ULINT | WORD | DWORD | LWORD | REAL | LREAL | BCD_ | BCD_
WORD | DWORD
BOOL No No No No No No No No No No No No No No
INT No No YES YES YES YES YES YES YES YES YES YES YES YES
DINT No YES No YES YES YES YES YES YES YES YES YES YES YES
LINT No YES YES No YES YES YES YES YES YES YES YES No No
UINT No YES YES YES No YES YES YES YES YES YES YES YES YES
UDINT | No YES YES YES YES No YES YES YES YES YES YES YES YES
ULINT |No YES YES YES YES YES No YES YES YES YES YES No No
WORD | No YES YES YES YES YES YES No YES YES No No No No
DWORD | No YES YES YES YES YES YES YES No YES No No No No
LWORD |No YES YES YES YES YES YES YES YES No No No No No
REAL No YES YES YES YES YES YES No No No No YES No No
LREAL |No YES YES YES YES YES YES No No No YES No No No
\évgl:l;tD_ No YES YES No YES YES No No No No No No No No
g\(l:VSRD_ No YES YES No YES YES No No No No No No No No

Number-String
Conversion Functions

Syntax

The following number-string conversion functions can be used in structured
text.

Source_data_type_TO_STRING (Variable_name)
Example: INT_TO_STRING (C)

In this example, the integer variable C will be changed to a STRING vari-
able.

STRING_TO_New_data_type (Variable_name)
Example: STRING_TO_INT (C)

145

ST Language Configuration

Section 5-4

Data Type Combinations

In this example, the STRING variable C will be changed to an integer.

The combinations of data types that can be converted are given in the follow-

ing table.
(YES = Conversion possible, No = Conversion not possible)
FROM TO

BOOL INT DINT LINT UINT | UDINT | ULINT | WORD | DWORD | LWORD | REAL | LREAL | STRING
BOOL No No No No No No No No No No No No No
INT No No YES YES YES YES YES YES YES YES YES YES YES
DINT No YES No YES YES YES YES YES YES YES YES YES YES
LINT No YES YES No YES YES YES YES YES YES YES YES No
UINT No YES YES YES No YES YES YES YES YES YES YES YES
UDINT |No YES YES YES YES No YES YES YES YES YES YES YES
ULINT |No YES YES YES YES YES No YES YES YES YES YES No
WORD |No YES YES YES YES YES YES No YES YES No No YES
DWORD | No YES YES YES YES YES YES YES No YES No No YES
LWORD |No YES YES YES YES YES YES YES YES No No No No
REAL No YES YES YES YES YES YES YES YES YES No No No
LREAL |No YES YES YES YES YES YES YES YES YES No No No
STRING | No YES YES No YES YES No YES YES No No No No
5-4-6 OMRON Expansion Functions

Function type Description

Memory Card Functions

Functions that write data to Memory Cards

Communications Functions

Functions that send and received text strings

Angle Conversion Functions

Functions that convert between degrees and radians.

Memory Card

The following functions can be used with CS/CJ-series CPU Units with unit

Functions version 4.0 or later, or CJ2-series CPU Units.
Function Argument data type Return Description Example
value
data type
WRITE_TEXT (< Write_string>, | Write_string | STRING | --- Writes a text | WRITE_TEXT(a,b,c,d)
<Directory_name_and_file_ Directory_ | STRING string to a (*text string a is written to a file
name>,<Delimiter>,<Parame- | hame and_ Memory with the file name and directory
ter>) file_name Card. specified by variable b; if variable
Delimiter STRING dis 0 the text g,trlng is gdded to.
the file along with delimiter speci-
Parameter | INT, fied by variable c; if variable d’is 1,
UINT, a new file is created*)
WORD
Communications The following functions can be used with CS/CJ-series CPU Units with unit
Functions version 4.0 or later, or CJ2-series CPU Units.
Function Argument data type Return Description Example
value
data type
TXD_CPU(<Send_string>) | Send_string | STRING |--- Sends a text stringto | TXD_CPU(a)
the RS-232C port on (*text string a is sent from
the CPU Unit. the RS-232C port on the
CPU Unit*)
TXD_SCB(<Send_string>, | Send_string |STRING |--- Sends a text stringto | TXD_SCB(a,b)
<Serial_port>) Serial_port | INT, the serial port on a (*text string a is sent from
UINT, Serial Communica- the serial port specified by
WORD tions Board. variable b on the Serial
Communications Board*)

146

ST Language Configuration

Section 5-4

Function Argument data type Return Description Example
value
data type
TXD_SCU(<Send_string>, | Send_string |STRING |--- Sends a text string to a | TXD_SCU(a,b,c,d)
<SCU_unit_number>, SCU unit INT, serial port on a Serial | (gt string a is sent from
<Serial_port>,<internal_ | number | UINT, Communications Unit. | the serial port specified by
logic_port>) WORD variable ¢ on the Serial
: Communications Unit speci-
Serial_port | Tt fied by variable b using the
WOR’D internal logic port specified
- by variable d*. The variable
Internal_logic | INT, dindicates the internal logic
—port UINT, port number.)
WORD
RXD_CPU(<Storage_ Storage_ STRING | --- Receives a text string | RXD_CPU(a,b)
location>,<Number_of _ location from the RS-232C port (*number of characters
characters>) Number_of_ | INT, on the CPU Unit. specified by variable b are
characters UINT, received from the RS-232C
WORD port on the CPU Unit and
stored in variable a*)
RXD_SCB(<Storage_ Storage_ STRING | --- Receives a text string | RXD_SCB(a,b,c)
location>,<Number_of _ location from the serial port on (*number of characters
characters>,<Serial_port>) Number of INT a Serial Communica- specified by variable b are
characters UINT, tions Board. received from the serial port
WORD specified by variable ¢ on
: the Serial Communications
Serial_port |INT, Board and stored in variable
UINT, .
WORD a)
RXD_SCU(<Storage_ Storage_ STRING |--- Receives a text string | RXD_SCU(a,b,c,d,e)
location>,<Number_of_ location from a serial porton a | (*nymper of characters
characters>,<SCU_unit_ [Number of |INT Serial Communica- specified by variable b are
number>,<Serial_port>, | characters | UINT, tions Unit. received from the serial port
<Internal_logic_port>) WORD specified by variable d on
SCU unit INT the Serial Communications
number UII\iT, Unit specified by variable ¢
using the internal logic port
WORD - ¢
- specified by variable e and
Serial_port | INT, stored in variable a*. The
UINT, variable e indicates the
WORD internal logic port number.)
Internal_logic | INT,
_port UINT,
WORD

Angle Conversion
Instructions

The following functions can be used with CS/CJ-series CPU Units with unit
version 4.0 or later, or CJ2-series CPU Units.

ment)

Function Argument Return value Description Example
data type data type
DEG_TO_RAD(argument) | REAL, LREAL | REAL, LREAL | Converts an angle from a:=DEG_TO_RAD(b)
degrees to radians. (*an angle in degrees in variable
b is converted to radians and
stored in variable a*)
RAD_TO_DEG (argu- REAL, LREAL | REAL, LREAL | Converts an angle from a:=RAD_TO_DEG(b)

radians to degrees.

(*an angle in radians in variable
b is converted to degrees and
stored in variable a*)

147

Statement Descriptions Section 5-5

5-5 Statement Descriptions
5-5-1 Assignment

B Summary
The left side of the statement (variable) is substituted with the right side of the
statement (equation, variable, or constant).

M Reserved Words

Combination of colon (:) and equals sign (=).

H Statement Syntax
Variable: = Equation, variable, or constant;

H Usage
Use assignment statements for inputting values in variables. This is a basic
statement for use before or within control statements. This statement can be
used for setting initial values, storing calculation results, and incrementing or
decrementing variables.

H Description
Substitutes (stores) an equation, variable, or constant for the variable.
Examples
Example 1: Substitute variable A with the result of the equation X+1.
A:=X+1;
Example 2: Substitute variable A with the value of variable B.
A:=B;
Example 3: Substitute variable A with the constant 10.
A:=10;

H Precautions

The data type of the equation, variable, or constant to be assigned must be
the same as the data type of the variable to be substituted. Otherwise, a syn-
tax error will occur.

5-5-2 Control Statements

IF Statement (Single
Condition)

B Summary
This statement is used to execute an expression when a specified condition is
met. If the condition is not met, a different expression is executed.

M Reserved Words
IF, THEN, (ELSE), END_IF

Note ELSE can be omitted.

W Statement Syntax

IF <condition> THEN
<expression_1>;
ELSE
<expression_2>;
END IF;

148

Statement Descriptions Section 5-5

M Process Flow Diagram

. False
Condition

True

Expression 1 Expression 2

|

H Usage
Use the IF statement to perform a different operation depending on whether a
single condition (condition equation) is met.

H Description
Condition = If true, execute expression_1

Condition = If false, execute expression_2

B Precautions
* IF must be used together with END_IF.

e The condition must include a true or false equation for the evaluation
result.
Example: IF(A>10)
The condition can also be specified as a boolean variable only rather than
an equation. As a result, the variable value is 1 (ON) = True result, 0
(OFF) = False result.

e Statements that can be used in expression_1 and expression 2 are
assignment statements, IF, CASE, FOR, WHILE, or REPEAT.

Example:

IF <condition_1> THEN
IF <condition_2> THEN
<expression_1>;
ELSE
<expression_2>:
END IF;
END IF;
The processing flow diagram is as follows:

Expression 1 Expression 1

149

Statement Descriptions

Section 5-5

IF Statement (Multiple
Conditions)

150

ELSE corresponds to THEN immediately before it, as shown in the above
diagram.

* Multiple statements can be executed within expression_1 and
expression_2. Be sure to use a semicolon (;) delimiter between multiple
statements in an expression.

* The ELSE statement can be omitted. When ELSE is omitted, no opera-
tion is executed if the result of the condition equation is false.

M Processing Flow Diagram

Condition False

True

Expression

&
<

B Examples

Example 1: If variable A>0 is true, variable X will be substituted with numerical
value 10. If A>0 is false, variable X will be substituted with numerical value 0.

IF A>0 THEN

X:=10;
ELSE

X:=0;
END_TIF;

Example 2: If variable A>0 and variable B>1 are both true, variable X will be
substituted with numerical value 10, and variable Y will be substituted with
numerical value 20. If variable A>0 and variable B>1 are both false, variable X
and variable Y will both be substituted with numerical value 0.

IF A>0 AND B>1 THEN
X:=10; Y:=20;

ELSE
X:=0; Y:=0;
END TIF;

Example 3: If the boolean (BOOL data type) variable A=1(ON), variable X will
be substituted with numerical value 10. If variable A=0(OFF), variable X will
be substituted with numerical value 0.

IF A THEN X:=10;

ELSE X:=0;

END IF;

B Summary

This statement is used to execute an expression when a specified condition is
met. If the first condition is not met, but another condition is met, a corre-
sponding expression is executed. If none of the conditions is met, a different
expression is executed.

M Reserved Words

IF, THEN, ELSIF, (ELSE), END_IF

Statement Descriptions

Section 5-5

Note

Statement Syntax

Processing Flow Chart

ELSE can be omitted.

IF <condition_1> THEN <expression_1>;
ELSIF <condition_2> THEN <expression 2>;
ELSIF <condition_3> THEN <expression_3>;

ELSIF <condition_n> THEN <expression_n>;
ELSE <expression_m>;
END IF;

Condition 1

Expression 1

Expression 2 True

Expression 3

<&
€

Expression m

B Usage

Use the IF statement to perform different operations depending which of mul-
tiple conditions (condition equation) is met.

H Description

Condition 1 = If true, execute expression 1

Condition 1 = If false,

Condition 2 = If true, execute expression 2

Condition 2 = If false,

Condition 3 = If true, execute expression 3

etc.

Condition n = If true, execute expression n

If none of these conditions are met, condition mis executed.

M Precautions

* IF must be used together with END_IF.

* Condition_[] contains the true or false result of the equation (e.g.,
IF(A>10)).
A boolean (BOOL data type) variable only can also be specified as the
condition rather than an equation. For boolean conditions, the result is
true when the variable value is 1 (ON) and false when it is 0 (OFF).

» Statements that can be used in expression [are assignment state-
ments, IF, CASE, FOR, WHILE, or REPEAT.

151

Statement Descriptions Section 5-5

* Multiple statements can be executed in expression_[1. Be sure to use a
semicolon (;) delimiter between multiple statements in an expression.

* The ELSE statement can be omitted. When ELSE is omitted, no opera-
tion is executed if the result of any condition equation is false.

B Examples
Example 1: If variable A>0 is true, variable X will be substituted with numerical
value 10.
If A>0 is false, but variable B=1, variable X will be substituted with numerical
value 1.
If A>0 is false, but variable B=2, variable X will be substituted with numerical
value 2.
If either of these conditions is met, variable X will be substituted with numeri-
cal value 0.

IF A>0 THEN X:=10;
ELSIF B=1 THEN X:=1;
ELSIF B=2 THEN X:=2;
ELSE X:=0;
END_IF;

CASE Statement

B Summary
This statement executes an expression containing a selected integer that
matches the value from an integer equation. If the selected integer value is
not the same, either no expression or a specified expression is executed.

M Reserved Word
CASE

H Statement Syntax
CASE <integer_equation> OF
<integer_equation_value_1 > : <expression_1>;
<integer_equation_value_2> : <expression_2>;

<integer_equation_value_n> : <expression_n>;
ELSE <expression_m>;
END CASE;

152

Statement Descriptions Section 5-5

M Processing Flow Chart

Same as Yes
selected
value 1?

No

Same as Yes
selected
value 2?

N

No

Same as Yes
selected
value n?

AN

No
A4 A A4

Expression m [| Expression n Expression 2 Expression 1

A

H Usage

Use the CASE statement to execute different operations depending on speci-
fied integer values.

H Description
If the integer_equation matches integer_equation_value_n, expression_n is
executed.
if the integer_equation does not match any of integer_equation_value_n,
expression_m is executed.

H Precautions
* CASE must be used together with END_CASE.

* The result of the integer_equation must be in integer format (INT, DINT,
LINT, UINT, UDINT, or ULINT).

» Statements that can be used in expression [are assignment state-
ments, IF, CASE, FOR, WHILE, or REPEAT.

* Multiple statements can be executed in expression_[1. Be sure to use a
semicolon (;) delimiter between multiple statements in an expression.

* Variables in integer format (INT, DINT, LINT, UINT, UDINT, or ULINT), or
equations that return integer values can be specified in the
integer_equation.

*When OR logic is wused for multiple integers in the
integer_equation_value_n, separate the numerical value using a comma
delimiter. To specify a sequence of integers, use two periods (..) as delim-
iters between the first and last integers.

153

Statement Descriptions

Section 5-5

FOR Statement

154

B Examples

Example 1: If variable A is 1, variable X is substituted with numerical value 1.
If variable A is 2, variable X is substituted with numerical value 2. If variable A
is 3, variable X is substituted with numerical value 3. If neither of these cases
matches, variable Y will be substituted with 0.

CASE A OF
1:X:=1;
2:X:=2;
3:X:=3;

ELSE Y:=0;

END_CASE;

Example 2: If variable A is 1, variable X is substituted with numerical value 1.
If variable A is 2 or 5, variable X is substituted with numerical value 2. If vari-
able A is a value between 6 and 10, variable X is substituted with numerical
value 3. If variable A is 11, 12, or a value between 15 and 20, variable X is
substituted with numerical value 4. If neither of these cases matches, variable
Y will be substituted with 0.

CASE A OF

1:X:=1;

2,5:X:=2;
6..10:X:=3;
11,12,15..20:X:=4;
ELSE Y:=0;

END_ CASE;

B Summary

This statement is used to execute a specified expression repeatedly until a
variable (referred to here as an iteration variable) reaches a specified value.

M Reserved Words

FOR, TO, (BY), DO, END_FOR

BY can be omitted.

H Statement Syntax

FOR <iteration_variable>: = <initial_value> TO <final_value_equation> BY
<increment_value_equation>

DO

<expression>;

END_FOR;

Statement Descriptions Section 5-5

M Processing Flow Chart

lteration variable = Initial

A

lteration Iteration

variable >
Final value?

True

False

Expression

Iteration variable + Increment value

]

End

H Usage
Use the FOR statement when the number of iterations has been determined
beforehand. FOR is particularly useful when switching the number of ele-
ments in an array variable according to the value of a specified iteration vari-
able.

H Description

When the iteration_variable is the initial_value, the expression is executed.
After execution, the value obtained from the increment_equation is added to
the iteration_variable, and if the iteration_variable < final_value_equation (see
note 1), the expression is executed. After execution, the value obtained from
the increment_equation is added to the iteration_variable, and if the
iteration_variable < final_value_equation value (see note 1), the expression is
executed. This process is repeated.

If the iteration_variable = final_value_equation (see note 2), the processing
ends.

Note (1) If the value from the increment_equation is negative, the condition is
iteration_variable > final_value_equation value.

(2) If the value from the increment_equation is negative, the condition is
iteration_variable < final_value_equation.

H Precautions
* A negative value can be specified in the increment_equation
* FOR must be used in combination with END_FOR.

e The initial_value, final_value_equation, and final_value_equation must be
an integer data type (INT, DINT, LINT, UINT, UDINT, or ULINT).

* After processing is executed with the final value, the iteration value is
incremented to the final value + 1 and iteration processing ends.
Example: In the following structured text, the value of “a”becomes TRUE.

155

Statement Descriptions

Section 5-5

WHILE Statement

156

FOR i:=0 TO 100 DO
array[i] :=0;
END FOR;

IF i=101 THEN

a:=TRUE;
ELSE

a:=FALSE;
END TIF;

* Do not use a FOR statement in which an iteration variable is changed
directly. Doing so may result in unexpected operations.
Example:
FOR 1:=0 TO 100 BY 1 DO
array[i] :=0;
i:=1i+5;
END_ FOR;
» Statements that can be used in the expression are assignment state-
ments, IF, CASE, FOR, WHILE, or REPEAT.
e Multiple statements can be executed in the expression. Be sure to use a
semicolon (;) delimiter between multiple statements in an expression.
e BY increment_equation can be omitted. When omitted, BY is taken as 1.
* Variables with integer data types (INT, DINT, LINT, UINT, UDINT, or
ULINT), or equations that return integer values can be specified in the
initial_value, final_value_equation, and increment_equation.
Example 1: The iteration is performed when the iteration variable n = 0 to
50 in increments of 5, and the array variable SP[n] is substituted with 100.
FOR n:=0 TO 50 BY 5 DO
SP[n] :=100;
END FOR;
Example 2: The total value of elements DATA[1] to DATA[50] of array vari-
able DATA[N] is calculated, and substituted for the variable SUM.

FOR n:=0 TO 50 BY 1 DO
SUM:=SUM+DATA [n] ;
END_FOR;

Example 3: The maximum and minimum values from elements DATA[1] to
DATA[50] of array variable DATA[n] are detected. The maximum value is
substituted for variable MAX and the minimum value is substituted for vari-
able MIN. The value for DATA[n] is between 0 and 1000.

MAX:=0;
MIN:=1000;
FOR n:=1 TO 50 BY 1 DO

IF DATA [n] >MAX THEN
MAX : =DATA [n] ;
END IF;
IF DATA[n] <MIN THEN
MIN:=DATA[n] ;
END IF;

END_FOR;

B Summary

This statement is used to execute a specified expression repeatedly for as
long as a specified condition is true.

Statement Descriptions Section 5-5

M Reserved Words
WHILE, DO, END_WHILE

M Statement Syntax

WHILE <condition> DO
<expression>;
END WHILE;

M Processing Flow Chart

Iteration >
False
Condition
True
Expression
End

H Usage
Use the WHILE statement when the number of iterations has not been deter-
mined beforehand (depends on the condition being met) to repeat specified
processing for the duration that the condition is met. This statement can be
used to execute processing while the condition equation is true only (pretest
loop).

H Description
Before the expression is executed, the condition is evaluated.
If the condition is true, the expression is executed. Afterwards, the condition is
evaluated again. This process is repeated. If the condition is false, the expres-
sion is not executed and the condition evaluation ends.

H Precautions

* WHILE must be used in combination with END_WHILE.

*» Before executing the expression, if the condition equation is false, the pro-
cess will end without executing the expression.

» Statements that can be used in the expression are assignment state-
ments, IF, CASE, FOR, WHILE, or REPEAT.

e Multiple statements can be executed in the expression. Be sure to use a
semicolon (;) delimiter between multiple statements in an expression.

* The condition can also be specified as a boolean variable (BOOL data
type) only rather than an equation.

B Examples
Example 1: The value exceeding 1000 in increments of 7 is calculated and
substituted for variable A.
A:=0;
WHILE A<=1000 DO
A:=A+7;
END WHILE;

157

Statement Descriptions

Section 5-5

REPEAT Statement

158

Example 2: While X<3000, the value of X is doubled, and the value is substi-
tuted for the array variable DATA[1]. The value of X is then multiplied by 2
again, and the value is substituted for the array variable DATA[2]. This process
is repeated.
n:=1"'
WHILE X<3000 DO

X:=X*2;

DATA [n] : =X;

n:=n+l;
END WHIE;

B Summary

This statement is used to repeatedly execute an expression until a specified
condition is true.

H Reserved Words

REPEAT, UNTIL, END_REPEAT

W Statement Syntax

REPEAT

<expression>;
UNTIL <condition>
END REPEAT

M Processing Flow Chart

<&
<

Expression

Iteration

Condition

H Usage

Use the REPEAT statement to repeat processing for as long as a condition is
met after specified processing, when the number of iterations is undetermined
beforehand (depends on whether the condition is met). This statement can be
used to determine whether to repeat processing according to the results of
specified processing execution (post-test loop).

m Description

The expression will execute the first time without a condition. Thereafter, the
condition equation will be evaluated. If the condition is false, the expression
will be executed again. If the condition is true, processing will end without exe-
cuting the expression.

M Precautions

* REPEAT must be used together with END_REPEAT.

e Even if the condition equation is true before the expression has been exe-
cuted, the expression will be executed.

Statement Descriptions Section 5-5

» Statements that can be used in the expression are assignment state-
ments, IF, CASE, FOR, WHILE, or REPEAT.

* Multiple statements can be executed in the expression. Be sure to use a
semicolon (;) delimiter between multiple statements in an expression.

* The condition can also be specified as a boolean variable (BOOL data
type) only rather than an equation.

B Examples
Example 1: Numeric values from 1 through 10 are incremented and the total
is substituted for the variable TOTAL.
A:=1;
TOTAL:=0;
REPEAT
TOTAL: =TOTAL+A;
A:=A+1;
UNTIL A>10
END REPEAT;

EXIT Statement

B Summary
This statement is used within iteration statements (FOR, WHILE, REPEAT)
only to force an iteration statement to end. This statement can also be used
within an IF statement to force an iteration statement to end when a specified
condition is met.

M Reserved Words
EXIT

M Statement Syntax (Example: Using within IF Statement)
FOR (WHILE, REPEAT) expression

IF <condition> THEN EXIT;
END IF;

END FOR (WHILE, REPEAT) ;

H Usage
Use the EXIT statement to force iteration processing to end before the end
condition is met.

Bl Description (Example: Using within IF Statement)
When the condition equation is true, the iteration statement (FOR, WHILE,
REPEAT) is forced to end, and any statements after EXIT will not be exe-
cuted.

Note (1) The condition can also be specified as a boolean variable (BOOL data
type) only rather than an equation.

(2) Even if the condition equation is true before the expression has been ex-
ecuted, the expression will be executed.

B Example
Processing is repeated from when variable n = 1 until 50 in increments of 1
and n is added to array variable DATA[n]. If DATA[n] exceeds 100, however,
processing will end.

159

Statement Descriptions Section 5-5

FOR n:=1; TO 50 BY 1 DO
DATA [n] : =DATA [n] +n;
IF DATA[n]>100 THEN EXIT;
END_IF;

END_FOR;

RETURN Statement

B Summary
The function of the RETURN statement depends on the type of program in
which ST is used.
* ST program:
Forcibly ends the ST task that is being executed, and executes the next
task.
* ST used in SFC:
Forcibly ends the action program that is being executed, and executes the
next action program or transition program.

* ST used in a function block:
Forcibly ends the ST-language function block containing the RETURN
statement, returns to the place in the calling function block instance where
the call occurred, and executes the next instruction.

M Reserved Words
RETURN

B Statement Syntax
RETURN

H Usage

Use the RETURN statement to forcibly end an SFC program and function
block that is executing an ST task.

Function Block Call
Statement

B Summary
This statement calls a function block definition.

H Reserved Words
None

B Statement Syntax

Enter the arguments (specified variable values that are passed to the called
function block’s input variables) and return value (specified variable that
receives the function block’s output variable value) in parentheses after the
instance name (see note). The two methods (entry method 1 and entry
method 2) that can be used to enter these parameters are described in the fol-
lowing paragraphs.

Note The data type is any of the function block’s internal variable names (when ST
is used in the function block’s instance) or global variable names (when ST is
used in an ST task or SFC action program).

H Entry Method 1

Use this method to enter both the argument specification (called function
block definition’s variable name) and return value specification.

A(B:=C, ,D=>E)

160

Statement Descriptions

Section 5-5

Note

Note

A: Instance name
B: Called function block definition’s input variable name
C: One of the following values, depending on the ST program being used

e Calling function block’s input variable or a constant (when ST is being
used in the function block’s instance)

* Global variable or local variable name (when ST is being used in an
ST task or SFC action program)

D: Called function block definition’s output variable name or constant
E: One of the following values, depending on the ST program being used

* Calling function block’s output variable or constant (when ST is being
used in the function block’s instance)

* Global variable or local variable name (when ST is being used in an
ST task or SFC action program)

Delimit all of the “B:=C” type assignments with commas.
Delimit only the required number of “D=>E” type assignments with commas.

H Entry Method 2

Use this method to enter just the return value specification, and omit the argu-
ment specification (called function block definition’s variable name).

A(C, ..., ,E)
A: Instance name
B: Omitted (called function block definition’s input variable name)
C: One of the following values, depending on the ST program being used
* Calling function block’s input variable or a constant (when ST is being
used in the function block’s instance)
* Global variable or local variable name (when ST is being used in an
ST task or SFC action program)
D: Omitted (called function block definition’s output variable name or constant)
E: One of the following values, depending on the ST program being used
* Calling function block’s output variable or constant (when ST is being
used in the function block’s instance)

* Global variable or local variable name (when ST is being used in an
ST task or SFC action program)

When B and D are omitted, as shown above, C is moved to the B position and
passed automatically in the order that values are registered in that variable
table. In contrast, the values from the D position are automatically received at
E in the order that values are registered in that variable table.

B Usage

Use the function block call statement to call a function block definition (ST or
ladder language) from an ST-language program.

H Description

1. The following instance is registered in the internal or global variables in the
variable table.

Internal variable element Content Example
Name Any instance name Calcu_execute
Data type FUNCTION BLOCK FUNCTION BLOCK
FB definition Selects the called func- | Calculation

tion block definition.

161

Statement Descriptions

Section 5-5

162

2. The values that will be passed between variables are specified within pa-
rentheses after the instance name registered in step 1 (Calcu_execute in
this example), and a semi-colon marks the end of the statement, as shown
in the following example.

Calcu_execute (A:=B,C=>D) ;

The value of B is passed to A, and at the same time the value of C is re-
ceived at D.

A: Called function block definition’s input variable name
B: One of the following values, depending on the ST program being used

* Calling function block’s input variable or a constant (when ST is being
used in the function block’s instance)

* Global variable or local variable name (when ST is being used in an
ST task or SFC action program)

C: Called function block definition’s output variable name or constant
D: One of the following values, depending on the ST program being used

* Calling function block’s output variable or constant (when ST is being
used in the function block’s instance)

* Global variable or local variable name (when ST is being used in an
ST task or SFC action program)

B Examples Showing Additional Details

The following two examples show how to actually use an ST program to call a
function block.
Example 1:

These examples show how to call a function block from each kind of source
program (ST task, SFC, and function block).

* Conditions:
A function block is called.
The called function block is written in ladder language or ST language.
Call Details
a. Calling a function block from an ST task or SFC program

ST task Function block (FB)
(ST) (Ladder diagram)
Example) ... —
Instance_FB(...,...); s---m----mmTToTTT <
) —I—0
S ,
~o /
~ ’
. ,
s ’
~ N ,
T Function block (FB)
SFC ’ S~
’ ~
| / N ST

| Stepn |—| N | aaa | ,/ Example) ...

’ A 4
’, -
/ -
/e
[
2
(ST) INSTANCE_FB is an instance name of
Example) ... data type FUNCTIONBLOCK.

Instance_FB(...,...);

Action program

Statement Descriptions Section 5-5

b. Calling a function block from another function block

Function block (ST) Function block (FB)
Program (ST) (Ladder diagram)
Instance_ST Example) ... N
I ST L - -] Instance_FB(...,...); cm===""""
[\ 0
N
A Y

*« Function block (FB)

(ST)
Example) ...

INSTANCE_FB is an instance name of data type FUNCTIONBLOCK.

Variable Settings
* Setting the variables of the ST program and SFC program (call source)

The ST program and SFC program have the following variables, and the
following values are passed with the called function block.

Variable name in ST task/ | Values passed to (or received from) variables in
SFC program the called function block
IN1 Passed to FB_IN1 (input variable).
IN2 Passed to FB_IN2 (input variable).
IN3 Passed to FB_IN3 (input variable).
OUTH Received from FB_OUT1 (output variable).
ouT2 Received from FB_OUT2 (output variable).
OuUT3 Received from FB_OUTS3 (output variable).
A Passed to EN (internal variable).
Note Data type: BOOL
B Received from ENO (internal variable).
Note Data type: BOOL
Instance_FB Calling function block definition: Function block
Note Data type: FUNC-
TIONBLOCK

* Function block (call source) variable settings

The function block (call source) has the following variables, and the follow-
ing values are passed with the called function block.

Variable type Function block (call Values passed to (or received
source) variable name from) variables in the called
function block
Input variables IN1 Passed to FB2_IN1.
IN2 Passed to FB2_IN2.
IN3 Passed to FB2_IN3.
Output variables OUT1 Received from FB2_OUT1.
ouT2 Received from FB2_OUT2.
OUT3 Received from FB2_OUTS3.

163

Statement Descriptions Section 5-5

Variable type Function block (call Values passed to (or received
source) variable name from) variables in the called
function block
Internal variables A Passed to EN.
Note Data type: BOOL
B Received from ENO.
Note Data type: BOOL
Internal variables Instance_FB Calling function block definition:
(instance) Note Data type: FUNC- Function block 2
TIONBLOCK

* Function block (call destination) variable settings
The function block (call destination) has the following variables, and
the following values are passed with the call source (ST program, SFC
program, or call source function block).

Variable type Function block (call Values received from (or
destination) variable name | passed to) variables in the
calling function block
Input variables FB_IN1 Received from IN1.
FB_IN2 Received from IN2.
FB_IN3 Received from IN3.
Output variables FB_OUT1 Passed to OUT1.
FB_OUT2 Passed to OUT2.
FB_OUT3 Passed to OUT3.
Examples

H Example of Entry Method 1
Instance_FB(EN:=A,FB_IN1:=IN1,FB_IN2:=IN2,FB_IN3:= IN3,
FB_OUT1=>0UT1,FB_OUT2=> OUT2,FB_OUT3=> OUT3,ENO=>B)

e It is all right for the arguments and return values to be listed in irregular
order.

* The input variables' arguments must be at the beginning of the list, or just
after the EN variable if the EN variable is listed.

» Qutput variables may be omitted if the data is not used.

* Specification method 2 cannot be used together with specification method
A in the same function block call statement.

Bl Examples of other Entry Formats
¢ EN not entered:

Instance_FB(FB_IN1:=IN1,FB_IN2:=IN2,FB_IN3:= IN3,
FB_OUT1=>0UT1,FB_OUT2=> OUT2,FB_OUT3=> OUT3,ENO=>B)

¢ EN and ENO not entered:

Instance_FB(FB_IN1:=IN1,FB_IN2:=IN2,FB_IN3:= IN3,
FB_OUT1=>0UT1,FB_OUT2=> OUT2,FB_OUT3=> OUT?3)

¢ ENO not entered:

Instance_FB(EN:=A,FB_IN1:=IN1,FB_IN2:=IN2,FB_IN3:=IN3,
FB_OUT1=>0UT1,FB_OUT2=>0UT2,FB_OUT3=>0UT3)

* FB_OUT2 data not required:

Instance_FB(EN:=A,FB_IN1:=IN1,FB_IN2:=IN2,FB_IN3:=IN3,
FB_OUT1=>0UT1,FB_OUT3=>0UT3,ENO=>B)

164

Statement Descriptions Section 5-5

Instance_FB(FB_IN1:=IN1,FB_IN2:=IN2,FB_IN3:=IN3,
FB_OUT1=>0UT1,FB_OUT3=>0UT3)

* Different order of entry:
Instance_FB(EN:=A,FB_IN1:=IN1,FB_OUT1=> OUT1,FB_IN2:=IN2,
FB_OUT2=>0UT2,FB_IN3:= IN3,FB_OUT3=> OUT3,ENO=>B)

B Example of Entry Method 2

In this example, only parameter variables (including constants) of a new
instance are entered.

Instance_FB(IN1, IN2, IN3, OUT1, OUT2, OUT3)
Instance_FB(IN1, IN2, IN3, OUT1)

* The arguments and return values must be listed in a fixed order.
Input variable 1, Input variable 2, ..., Output variable 1, Output variable 2,

* The input variables’ arguments must be at the beginning of the list, or just
after the EN variable if the EN variable is listed.

¢ An output variable can be omitted if the data is not actually being used
and the output variable is not in the middle of the list of output variables.

Example: Instance_FB(IN1, IN2, IN3, OUT1, OUT3)

In this case, the OUT3 at the end of the list would return the value from
FB_OuUT2.

* The EN and ENO data cannot be entered as an argument or return value.

* Specification method 1 cannot be used together with specification method
B in the same function block call statement.

B Example 2
In the following example, function block 1 calls function block 2, which calcu-
late the average value by calling a function block from within a function block.

Program FB1 (ST) The datat, data2, and data3 values are
Instance_FB1 passed to input1, input2, and input3.
—] FB1 P Average_FB(inputt := datal, input2 = data2, f-~=--—_____
input3 := data3, average => AVG); g FB2 (ST)
] average := (input1 + input2 + input3) /3
The average value is
returned in AVG.

Average_FB is an instance name with data type FUNCTION BLOCK.

Function Block 1
¢ Variable Table

Variable type Variable name Data type Passage to/from FB2
Input variable EN BOOL
Input variable data1l INT Passed to input1
Input variable data2 INT Passed to input2
Input variable data3 INT Passed to input3
Input variable bCheck BOOL ~-n
Output variable ENO BOOL
Output variable AVG INT Received from average
Internal variable Average_FB FUNCTION BLOCK
Called function block definition:
Function block 2

165

ST-language Program Example

Section 5-6

» ST-language Algorithm
If bCheck is true, function block 2 is called to calculate the average value.
The 3 values datal1, data2, and data3 are passed to function block 2 input
variables input1, input2, and input3 respectively. The result of the calcula-
tion (average) is returned to AVG.

Note The following diagram shows the Average_FB function block called
with specification method A (both function block’s variables listed).

IF bCheck = TRUE THEN

Average (inputl:=datal, input2:=data2, input3:=data3, aver-

age=>AVG) ;

ELSE
RETURN;

END IF;

Function Block 2
¢ Variable Table

Variable type Variable name Data type Passage to/from FB1
Input variable EN BOOL
Input variable inputi INT Received from data1
Input variable input2 INT Received from data2
Input variable input3 INT Received from data3
Output variable ENO BOOL ~-n
Output variable average INT Passed to AVG

» ST-language Algorithm

Calculates the average value of input1, input2, and input3 and stores the

result in average.

average:= (inputl+input2+input3) /3;

5-6 ST-language Program Example

5-6-1

Converting an Integer

to BCD and

Using an ST Program in a Function Block

Outputting It as a Text

String

166

FB
(BOOL) (BOOL)
EN ENO
(INT)
" | Input_Num
(STRING) (STRING)

Output_String—Output_String

Input Variable
INT Input Num;

Input-Output Variable

STRING Output String;

Internal Variable

WORD Num BCD;

(*Check Input_BCD input parameter (BCD data)*)
IF (Input BCDNum>=0 & Input BCD<=16#Num<=9999) THEN

Restrictions Section 5-7

ENO:=true;
ELSE
ENO:=false;
RETURN;
END IF;

Num BCD:=INT TO BCD WORD (Input Num) ;

(*For example, if Numis 100 (16#0064), it is converted to BCD 0100%)
Output String:=WORD TO STRING (Num BCD) ;

(*Convert BCD 0100 to text string™)

5-7 Restrictions

5-7-1 Restrictions

B Nesting
* There is no restriction on the number of nests that can be used in IF,
CASE, FOR, WHILE, or REPEAT statements.

H Data Type Restrictions

* Integers can only be allocated to variables with data types WORD,
DWORD, INT, DINT, UINT, UDINT, or ULINT. For example, if A is an INT
data type, A:=1; it possible. If the value is not an integer data type, a syn-
tax error will occur. For example, if A is an INT data type, a syntax error
will occur for A:=2.5;.

* If a real number (floating point decimal data) can only be allocated to vari-
ables with data types REAL and UREAL. For example, if A is a REAL data
type, A:=1.5; is possible. If the value is not an real data type, a syntax
error will occur. For example, if A is a REAL data type, a syntax error will
occur for A:=2;. Use A:=2.0;.

* Bits (TRUE, FALSE) can only be allocated to variables with the BOOL
data type. For example, if A is a BOOL data type, A:=FALSE; is possible.
If a BOOL data type is not used, a syntax error will occur. For example, if
A is an INT data type, a syntax error will occur for A:=FALSE;.

» Data types must all be consistent within the structured text. For example,
if A, B, and C are INT data types, A:=B+C; is possible. If, however, A and
B are INT data types, but C is a REAL data type or LINT data type, a syn-
tax error will occur for A:=B+C;.

* In the structured text, the following cannot be used:
P_CY, P_EQ, P_ER, P_N, P_GE, P_GT, P_LE, P_LT, P_NE, P_OF, and
P_UF

5-7-2 Commonly Asked Questions

Q: How is a hexadecimal value expressed?

A: Add “16#” before the value, e.g., 16#123F.

The prefixes 8# and 2# can also be added to express octal numbers and
binary numbers, respectively. Numbers without these prefixes will be inter-
preted as decimal numbers.

Q: How many times can FOR be used?

A: In the following example, the contents of the FOR statement is executed

101 times. The loop processing ends when the value of “i” is equal to 101.

167

Restrictions

Section 5-7

168

FOR i:=0 TO 100 BY 1 DO
a:=a+1l;
END_ FOR;
Q: What occurs when the array subscript is exceeded?

A: For the array variable INT[10] with 10 elements, an error will not be
detected for the following type of statement. Operation will be unstable when
this statement is executed.

1:=15;

INT[1] :=10;

Q: Are the variables in the structured text editor automatically registered
in the variable tables?

A: No. Register the variables in the variable table before using them.

Q: Can ladder programming instructions be called directly?
A: No.

SECTION 6

Creating ST Programs
This section explains how to create ST programs.
6-1 Procedures.ttt 170
6-1-1 CreatingaProject. 170
6-1-2 Creatinga New ST Program.cvu.... 170
6-1-3 Allocating the ST ProgramtoaTask 171
6-1-4 Creatingthe STProgram, 172
6-1-5 Compiling the ST Program (Checking Program)............... 174
6-1-6 Downloading/Uploading Programs to the Actual CPU Unit 174
6-1-7 Comparing ST Programs 175
6-1-8 Monitoring and Debugging the ST Program 175
6-1-9 Online Editing of ST Programs 176

169

Procedures Section 6-1

6-1

6-1-1

6-1-2

170

Procedures

This section explains how to create ST programs. For details on creating a
function block with ST language, refer to SECTION 3 Creating Function
Blocks in Part 1: Function Blocks of this manual.

Creating a Project

1,2,3... 1. Start the CX-Programmer and select File -New.

2. In the Change PLC Dialog Box, select a PLC model that supports ST pro-
grams from the Device Type list. Refer to 4-2-1 PLC Models Compatible
with ST Programs (ST Tasks) for a table of the PLC models that support
ST programs.

3. Click the Settings Button, and select the CPU Type. For details on other
settings, refer to the CX-Programmer Operation Manual (W446).

Creating a New ST Program
Use the following procedure to create an ST program in a project.

1,2,3... 1. Right-click the Programs ltem in the project workspace to display the pop-
up menu.
2. Select Insert Program - ST from the pop-up menu.

=l o I [Program Mame : MewwProgrami]

E"% MewProject
BB MewPLCI[CI1G-H] OFfline

52 Symbals

#% 10 Table and Uit Setup fororsssctctcseseseses

Settings [:

Q Mermory

2%

[Section Mame : Section]

=] Insett Program
o Gt
Copy

{F Fur E Easte

Delete

,T Allow Dacking
Hide

Flaat In Main Windaw

Properties

1

An ST program will be inserted in the project workspace, and the ST Editor
will be displayed on the right side of the workspace.

Note (1) Ladder and SFC programs can also be created. To create these pro-
grams, right-click the Programs Item in the project workspace to display
the pop-up menu, and select Insert Program - Ladder or Insert Pro-
gram - SFC.

For details on ladder programming, refer to the CX-Programmer Opera-
tion Manual (W446).

For details on SFC programming, refer to the CX-Programmer Operation
Manual: SFC (W469).

Procedures

Section 6-1

(2) When a new project has been created, ST programs can be set as the
PLC’s initial program type. Select Tools - Options and click the PLCs

Tab to set this option.

options x|
Ladder Infarmation | General | SFC |
Diagrams PLCs | Symbals I Appearance

[+ Confim all operations affecting the PLC
™ Prohibit the arline operations until the PC and PLEC data matches

™ Check forced status after orline carnection.

Default PLC details

FLC Type: CJ1 A Use Current PLC |
CPL: [crum -]

¥ Use comment instructions

¥ Use section marker instructions

Default Frogram Tupe in new PLE: - | Select the ST Option.

“wlork Online Simulator
¥ Automatically Transfer Program to Simulator

Continuous Step Interval I5 _:| *100 mz

Yy

ok I Cancel | Apply | Help

6-1-3 Allocating the ST Program to a Task

Note

1,2,3...

The ST program that was inserted in the project must be allocated to a task as
an execution unit. If a program has not been allocated to a task, there will be a

check mark over that program’s icon in the project workspace.

The following procedure, which allocates a program to a task, can be per-
formed after the program has been created, but always allocate the programs

before transferring the user program to the PLC.
Use the following procedure to allocate a program to a task.

1. Right-click the inserted ST program item in the project workspace, and se-
lect Properties from the pop-up menu.

gt Memory

=% Programs

: = @ MNewProgrami (000
: = symbols

@ sectionl

3 EnD
E%
sy open
..y Function &

Cormpile

Partial Transfer

& cu
Copy
2 paste

Delete

Rename

,T Allow Docking
Hide

Float In Main Window

171

Procedures Section 6-1

2. Click the General Tab in the displayed Program Properties Dialog box, and
select the task from the Task Type List. To set a program name, input the
program name in the Name Text Box in this tab page.

Program Properties |

EI General | Protection | Comments |

MHame: INewF’rogram2

T azk type: Unassigned j

Unazzigned a
w Cyclic Tazk 00 [Startup)

Cyelic: Tazk 01
Cyclic Tazk 02
Size: Cyeclic Task 03
Cyclic Tazk 04
Cyclic Tazk 05 —

3. Click the Close Button to close the Program Properties Dialog Box.

..... St Memory L Memory

El % Programs EI % Programs

Eﬁ MewwProgramil (00) =S @ TesaPrograml (007}
-2 Symhbuols

% Sectionl

: END
- MewwProgramz (Linassigned)

i 3 Symbals : . 3 Symbals
------ Q:F Function Blacks LA Function Blocks

4. When the program is allocated to a task, the check mark over the ST pro-
gram’s icon will be deleted. The allocated task number will be shown in pa-
rentheses after the program name.

6-1-4 Creating the ST Program

There are two ways to create the ST program’s content.
* Input the ST language after registering the variables.
* Register the variables as you input the ST language.

Inputting the ST There are two kinds of variables: global variables and local variables. This
Language after section explains how to set local variables. For details on setting global vari-

Registering Variables ables, refer to the CX-Programmer Operation Manual (W446).
1. Registering Variables (with Local Addresses)

1,2,3... 1. Double-click the inserted ST program’s Symbols in the project workspace.

Lt Memary Reusable File L4

E % Programs .
El @ NewProgr ’_.ﬂ.llnw Dacking

2. The symbol table will be displayed. Right-click to display the pop-up menu,
and select Insert Symbol from the pop-up menu.
(It is also possible to select Insert - Symbol.)

3. The New Symbol Dialog Box will be displayed. Set the following items, and
click the OK Button.

172

Procedures Section 6-1

* Name: Input the variable name.
* Data type: Select the data type.
* Address or Value: Input the address.

Input the name.

| The default is BOOL.

! Change the data type if required.
R l(_— g yp q
[rata type: EOOL -

Address or value: | < Input the address.
El

Comment:

™| Lirk the definition to the praject's Ee-Serven file

Advanced Settings... | QK I Cancel |

4. The variables set in the symbol table will be registered.

Note = When variables are being registered without specifying addresses, the CX-
Programmer can be set to allocate addresses automatically. For details on
Automatic Allocation, refer to the CX-Programmer Operation Manual (W4486).

2. Creating the ST Program

1,2,3... 1. The ST language can be input directly in the ST Editor Window, or the ST
data can be created in a text editor and then pasted in the ST Editor Win-
dow by selecting Edit - Paste.

1 pverage Value Measurement - CX-Programmer - [NewPLC1.Average_¥alue_Calculatios _[ol x|
[P File Edt View Insert PLC Program Simulation Tock Window Help _1=]x|

DEH|R(eh | tne a2z |atvi(ee|ara|tn iRl 2E0® (Lw|as|
cxaa| SEBERErrw) —coasrlx||BeE Eee s |EBERER |
ErREROF s 2PEE 28k vx8 @8 Blasranpaen amasrsess|o

S T [DataType | Address | value [Rack Location | Usage [Comment [I=|
= NewProject & flag ™ oo work Thres Times Measuremert Flag
= ER NewPLCI[CIIHH] Offline © green_lamp Bl 15.01 ‘Wark Green Lamp {within tolerance) 1
53 Symbols = margin REAL 06 Work, Talerance
] 10 Table and Uni: Setup * red_Jamp BOOL 15,00 Work Red Lamp (without tokerance) ~ @————— Symbol table
(@) Settings == thickness1 REAL ol Work Measurement Value 1
[]@ z'z;f;;s = thickness2 REAL o2 Work Measurement Valus 2
2151 Werk iece_Messurement (on) | = ticknesss REAL 03 Work. Measurement Yalue 3 -

o -5 symbols
. -F Default_Setting

(* Average Value Calculation)

P average:=(thickness1 +thickness2+thickness3Y3.0, (% average =Average Value Athickness1 tn 3 =Measurement Yaluz 1 103 %)
i B Measurement

3 EnD (* udgement %)
£ B, Average_Walue_Calculation (01) | F flag = 3 THEM (* flag =Three Times Measurement Flag %)
© T Spmbols IF average = criterion-margin THEN ¢* criterion =Crierion Yalue Amargin =Tolerance *)
5-Gg) Resul_Display (2] vedl_lampr=TRUE; (* rect_Jamp =Red Lamp (withaut tolsrance) 5

ELSIF awerage = criteriormargin THEN

+- 22 Symbals red_lamp=TRLE;

-5 LED_Display L e———— ST Editor Window
3 enp areen_lamp:=TRUE; (= gresn_aimg =Green Lamp (within tolerance) =)
~{F Function Blocks _F;
END_F;
I\ Project /
For Help, press F1 [T [WewPLEL(Hat: 0, Node:0) - Offine [[[[P

If the symbol table with the registered variables is displayed while inputting
the ST program, it is easy to reference the variable names for program-
ming.

Note (1) Tabs or spaces can be input to create indents. They will not affect the al-
gorithm.

(2) The display size can be changed by holding down the Ctrl Key and turn-
ing the scrolling wheel on a wheel mouse.

(3) When an ST language program is input or pasted into the ST input area,
syntax keywords reserved words will be automatically displayed in blue,

173

Procedures Section 6-1

comments in green, tex strings in brown, errors in red, and everything
else in black.

(4) To change the font size or colors, select Options from the Tools Menu
and then click the ST Font Button on the Appearance Tab Page. The font
names, font size (default is 8 point) and color can be changed.

(5) For details on ST language specifications, refer to SECTION 5 Structured
Text (ST) Language Specifications in Part 2: Structured Text (ST) in this
manual.

Registering Variables When using structured text, a dialog box will not be displayed to register the

While Using variable whenever a variable name that has not been registered is input. Be
Structured Text sure to always register variables used in standard text programming in the

variable table, either as you need them or after completing the program.

6-1-5 Compiling the ST Program (Checking Program)

The ST program can be compiled to perform a program check on it. Use the
following procedure.

1,2,3... 1. Select the ST program, right-click, and select Compile from the pop-up
menu. (Alternately, press the Ctrl + F7 Keys.)

2. The ST program will be compiled and the results of the program check will
be automatically displayed on the Compile Table Page of the Output Win-

dow.
x| name Data Type Address | Value | Rack Local
MewProject < Flag INT Do
= BR NewPLCI[CIIH-H] Offline + green_lamp BOOL 15.01
2 Symbols = margin REAL o6
EF 16 Table and Unit Setup * red_lamp BOOL 15.00
= ;Ett‘”gs = thicknesst REAL Dt
G Memar =
-4 pramas == thickness2 REAL D2
Eom
= ‘a Work_piece_Measurement (00} = thidness3 REAL D3
5} Symbols -
P Default_setting average =(thickniess1 Hhickness 2Hhickness3)/3 0
I Measurement
3 enp
= @ Average_Yalue_Calculation {013 IF flag = 3 THEM
= Symbols IF arverage = criterion-margin THEN |
= @ Result_Display (02) red_tamp:=TRUE,
=y Sumbols ELSIF average = criterion+margin THEM
FE red_lamp=TRUE;
B LED Display ELZE
5 e green_lamp=TRUE;
TF Function Elacks EMD_IF;

END_F,

Project

[Ladder Section Mame : Measurement]
[Ladder Section Mame : END]
[FLC#Program Mame : NewPLC1 Adverage_WYalue_Calculation]

SR

WARMING: Program Mame exceeds 24 characters [may be tuncated when downloaded ta PLC)
[FLC/Program Mame : MewPLC1/Result_Display] R_esu “S Of prOgram CheCk
[Ladder Section Name : LED_Display] d|Sp|ayed_

[Laclder Section Name - END]

NewPLC1 - 0 erars, 1 warning.
The pragrams have been checked with the program check option et ta Unit Ver. 4.0,

[4TE TR, Compile £ Find Repart A, Transfer

6-1-6 Downloading/Uploading Programs to the Actual CPU Unit

After a program containing the ST programs has been created, the CX-Pro-
grammer can be connected online to the actual PLC, and the program down-
loaded to the actual PLC. Conversely, the program can be uploaded from an
actual PLC.

Program tasks cannot be downloaded or uploaded individually in task units.

174

Procedures Section 6-1

6-1-7 Comparing ST Programs

It is possible to compare the edited ST program with an ST program block in
the actual PLC or another project file to check whether the two ST programs
are identical. For details on comparing programs, refer to the CX-Programmer
Operation Manual (W446).

6-1-8 Monitoring and Debugging the ST Program

Monitoring the ST The ST program can be monitored.

Program’s Variables The ST program is displayed in the left side of the window (called the ST pro-
gram monitor window).
The values of variables used in the ST program are displayed in the right side
of the window (called the ST variable monitor window).

At this point, it is possible to monitor variable values, change PVs, force-set or
force-reset bits, and copy/paste variables in the Watch Window. (These oper-
ations are described below.)

H Monitoring Variables
Variable values are displayed in blue in the ST variable monitor window.

B Changing PVs
To change a PV, select the desired variable in the ST variable monitor window
(displayed in reverse video when selected), right-click, and select Set - Value
from the pop-up menu.

Select the variable.

The Set New Value Dialog Box will be displayed. Input the new value in the
Value field.

M Force-setting and Force-resetting Bits

To force-set, force-reset, or clear the forced status, select the desired variable
in the ST variable monitor window (displayed in reverse video when selected),
right-click, and select Force - On, Force - Off, Force - Cancel, or Force -
Cancel All Forces from the pop-up menu.

M Copying and Pasting in the Watch Window

1,2,3... 1. To copy a variable to the Watch Window, select the desired variable in the
ST variable monitor window (displayed in reverse video when selected),
right-click, and select Copy from the pop-up menu.

175

Procedures

Section 6-1

2. Right-click in the Watch Window and select Paste from the pop-up menu.

1 sverage Yalue Measurement - CX-Programmer - [NewPLC1 NewProgrami [Structured T

File Edt “ew Insert PLC Program Simulation Tools Window Help

=101
=18 x|

o o

DEHk 2R+ B2

| #h 25 T

2R |[[alse|s 0 dR| e

2 BEER L S|

a X Qe [

SEpERErrew | —oosaanl k|[BloE|enen|EPEEE |

DEFROS 620 EE

srsiewn|BES8lasrmnmaen||lemaa sz

==l

E--% MewProject

E% NewPLC1[C11G-H] Monitor Mode
=9 Symbols
@7 10 Table and Uit Setup
Settings

S Symbols

P Default_Setting

P Measurement

B3 END

E@ MewPrograml {01) Running
© 2 symbols

E@ Resulk_Display {02} Running
= symbals

* Average YWalue Calculation *)
averane =(thickness1 +hickness2+thickness3)3.0;

[* Juddgement *)
IF flacy = 3 THER

M 4 red_lamp=TRLE; (* red_lamp =Red Lamp [
Eemolry car ELEIF average = criterion+margin THEM
fror Iogk red_lampr=TRLIE;
(@) PLC Cloc ELSE
Q Memary green_lamp:=TRUE; (* areen_lamp =Green L,
[—]% Programs EMD_IF;
= ‘Work_piece_Measuremnent (00) Ri || ERD_IF;

(* averane =Averat

(* flag =Three Times Me:

IF average = criterion-margin THEM (* criterion =Critetion 'l

average = +0.0000000 Flost

green_lamp =0

= +0.0000000 Flost |, thicknes

Select the variable in the
)| ST variable monitor

.| window, right-click,

and select Copy.

--Fg LED_ Display
@ END
I F Function Blocks
| | 3%
Project £ | | KN |
—’:l PLC Name | Mame | Addmﬁ/ ‘ DataT... | FB Usage | Yalue | valuelB. .. | Comment |
NewPLC1 e w4 REAL(... +0.000... +0.000... Meastr...
NewrLC 1 C MewProgra, . D2 REALL... 0,000, +0.000... Measur...
NewPLC 1 L EELL 0,000, +0.000... Msasur...
Right-click in the Watch
Window and select Paste.
TR KN |+
For Help, press F1 [[MewPLCT(Met: 0, Mode: 1) - Manitor Mode [0Ems [SvNC [4

ST Program
Simulation Function

6-1-9 Online Editing of ST Programs

ST programs can be edited even when the PLC (CPU Unit) is operating. This
allows ST programs to be debugged or changed in systems that cannot be
shut down, such as systems that operate 24 hours/day.

ST programs can be edited online when the PLC is in an operating mode
other than RUN mode.

This function cannot be used with the simulator.

Starting Online
Editing
1,2,3...

176

Start monitoring.

The ST program can be connected to a simulator and monitored, although the
step execution and breakpoint functions cannot be used.

Select the desired ST program in the project workspace, and display it in

program view.

Select Program - Online Edit - Begin. At this point, it will be possible to

edit the ST program.
Start editing the ST program.

Procedures

Section 6-1

Transferring the
Changes

1,2,3...

Cancelling the
Changes

Transfer Modes
Standard Mode

Quick Mode

Selecting a Transfer
Mode

& Caution

Note

1. After editing is completed, select Program - Online Edit - Send Changes.
The Send Changes Dialog Box will be displayed.

2. Select the desired transfer mode and click the OK Button. The edited ST
program will be transferred to the PLC.
For details on the transfer modes, refer to Transfer Modes on page 177
and Selecting a Transfer Mode on page 177.

3. After the transfer is completed, the ST program will return to its previous
status in which the ST program cannot be edited. If further editing is nec-
essary, resume the online editing procedure from the beginning of the pro-
cedure (Starting Online Editing).

To discard the changes made to the ST program, select Program - Online
Edit - Cancel. The edited ST program will not be sent to the PLC, and the ST
program will revert to the original status before online editing was started.

In Standard Mode, both the ST program’s source code and object code are
transferred to the CPU Unit. Some time may be required for Standard Mode
transfers because of the quantity of data that must be sent. Other editing or
transfer operations cannot be performed until the transfer has been com-
pleted.

In Quick Mode, only the ST program’s object code is transferred to the CPU
Unit. The ST source code is not transferred, making Quick Mode faster than
Normal Mode. After transferring the object code in Quick Mode, either 1)
select Program - Transfer SFC/ST Source to PLC to transfer the source
code or 2) transfer the source code according to instructions displayed in a
dialog box when you go offline.

After transferring the object code, a yellow mark will be displayed at the bot-
tom of the window until offline status is entered to indicate that the source
code has not yet been transferred. This yellow mark will disappear when the
source code is transferred.

As a rule, use Standard Mode to transfer ST program changes, unless online
editing is performed frequently. If too much time is required, increase the baud
rate as much as possible before the transfer. If too much time is still required
and debugging efficiency is hindered by continuous online editing, use Quick
Mode as an exception, but be sure you understand the restrictions given in
the following note (Mode Restrictions in Quick Mode).

Restrictions in Quick Mode (ST Source Code Not Transferred)

When the ST program’s ST source code is not being transferred, the CX-Pro-
grammer cannot upload the program correctly the next time.

Consequently, after the ST program’s online editing changes have been trans-
ferred in Quick Mode, it may be impossible to upload the program later (see
note) if the computer or CX-Programmer crashes before the source code can
be transferred.

It may be still be possible to transfer the source code with the following proce-
dure, even if the above problem occurs.

177

Procedures

Section 6-1

Transferring Source Code
from a Backup Project

1,23... 1.

Manually Transferring the

ST Source Code

1,23... 1.

Start the CX-Programmer.

The following dialog box will be displayed if a project’s ST source code was
being transferred in Quick Mode and the transfer failed.

CX-Programmer ¥ 7.2 x|

' FEJSFC/ST Source in the project”D:\program’SFC) Average Yalue Measurement_MewPLC1 FEE"
may not be transferred correctly,
50 online and check the status of the PLC,

OF I Cancel |

Click the OK Button. the CX-Programmer will start the backup project from
the previous Quick Mode transfer.

Connect online with the PLC that was the destination of the Quick Mode
transfer. The following dialog box will be displayed.

CX-Programmer ¥ 7.2 |

L] Check if the backed-up FB/SFC/ST Source can be transferred,
[If [Mo] is selected, the program cannot be transferred from the PLC correcthy after going online,

Yes Mo |

Click the Yes Button.

If the PLC is not in RUN mode, the program will be compared between the
project and PLC, and the ST source code will be transferred if the pro-
grams match.

If the PLC is in RUN mode, switch the operating mode to another mode,
and execute the ST source code transfer from the CX-Programmer menu.

Start the CX-Programmer, and open the project file with the ST source
code to be transferred.

Connect online with the PLC that was the destination of the Quick Mode
transfer. The flashing yellow message Src, Fail will be displayed in the CX-
Programmer’s status bar

Select Program - Online Edit - Transfer SFC/ST Source to PLC. The ST
source code transfer dialog box will be displayed.

Click the OK Button.

The ST source code that was automatically backed up in the computer will
be compared with the object code in the actual PLC, and the ST source
code can be transferred if the code matches.

Note Before transferring a program, the CX-Programmer normally compiles the
program code (ST source code) into object code, which can be executed in
the CPU Unit, and then transfers both the source code and object code to the
CPU Unit. The CPU Unit stores the programs ST source code and object
code in user memory and built-in flash memory. Only when both the source
code and object code exist in the CPU Unit can the CX-Programmer transfer
and restore the program for the upload operation.

Restrictions in Online Editing of ST Programs

The following restrictions apply to online editing of ST programs.

178

Procedures Section 6-1

* For CJ2-series CPU Units, there is no restriction on the number of steps
that can be added to or deleted from a function block definition during one
online editing operation.

* Online editing is not possible for ST programs that exceed 4 Ksteps
(except for CJ2-series CPU Units).

* A maximum of 0.5 Ksteps can be added to or deleted from an ST program
during one online editing operation (except for CJ2-series CPU Units).

* After performing online editing, do not turn OFF the power supply to the
PLC until the CPU Unit has finished backing up data to the built-in flash
memory (i.e., until the BKUP indicator goes OFF). If the power supply is
turned OFF before the data is backed up, the data will not be backed up
and the program will return to the status it had before online editing was
performed.

179

Procedures Section 6-1

180

Appendix A
System-defined external variables supported

in function blocks

Classification Name External variable in | Data type Address
CX-Programmer
Conditions Flags Greater Than or Equals (GE) Flag P_GE BOOL CF00
Not Equals (NE) Flag P_NE BOOL CFo001
Less Than or Equals (LE) Flag P_LE BOOL CF002
Instruction Execution Error (ER) Flag P_ER BOOL CF003
Carry (CY) Flag P_CY BOOL CF004
Greater Than (GT) Flag P_GT BOOL CF005
Equals (EQ) Flag P_EQ BOOL CFo006
Less Than (LT) Flag P_LT BOOL CFo007
Negative (N) Flag P_N BOOL CF008
Overflow (OF) Flag P_OF BOOL CF009
Underflow (UF) Flag P_UF BOOL CFo10
Access Error Flag P_AER BOOL CFO11
Always OFF Flag P_Off BOOL CF114
Always ON Flag P_On BOOL CF113
Clock Pulses 0.02 second clock pulse bit P_0_02s BOOL CF103
0.1 second clock pulse bit P_0_1s BOOL CF100
0.2 second clock pulse bit P_0_2s BOOL CF101
1 minute clock pulse bit P_1mim BOOL CF104
1.0 second clock pulse bit P_1s BOOL CF102
Auxiliary Area Flags/ | First Cycle Flag P_First_Cycle BOOL A200.11
Bits Step Flag P_Step BOOL A200.12
First Task Execution Flag P_First_Cycle_Task |BOOL A200.15
Maximum Cycle Time P_Max_Cycle_Time |UDINT A262
Present Scan Time P_Cycle_Time_Value | UDINT A264
Cycle Time Error Flag P_Cycle_Time_Error |BOOL A401.08
Low Battery Flag P_Low_Battery BOOL A402.04
I/O VerlFication Error Flag P_IO_Verify_Error BOOL A402.09
Output OFF Bit P_Output_Off_Bit BOOL A500.15
OMRON FB Library |CIO Area specification P_CIO WORD A450
words (see note) HR Area specification P_HR WORD A452
WR Area specification P_WR WORD A451
DM Area specification P_DM WORD A460
EMO to C Area specification P_EMO to P_EMC WORD 2461 to
473

Note These words are external variables for the OMRON FB Library. Do not use these words for creating
function blocks.

181

System-defined external variables supported in function blocks Appendix A

182

Error Messages

Appendix B
Structured Text Errors

Error Message

Cause of error

Example

%s' Input variables cannot be
assigned a value

A value was substituted for an
input variable.

%s' operator not supported by
%s data type

A numerical value or variable
for a data type that is not sup-
ported by the operator was
used.

A:=B+1; (*A and B are WORD type variables*))

%s' variable had a read only
memory AT Address and can-
not be assigned a value

A value was substituted for a
variable allocated to a read-
only memory address (read-
only Aucxiliary Area address or
Condition Flag).

Array index out of range

An array index larger than the
array size was specified.

Array[100]:=10; (*Array is an array variable with an array
size of 100%)

Conversion cannot convert
from %s to %s

A numeric equation in which
the data type of the operation
result does not match the vari-
able at the substitution desti-
nation and a variable that is
different from the data type
was substituted.

Y:=ABS(X); (*X is an INT type variable, Y is a UINT type
variable*)

Division by Zero

The numeric expression con-
tains division by 0.

End of comment not found

The comment does not have a
closing parenthesis and aster-
isk “*)” corresponding to the
opening parenthesis and
asterisk “(*” of the comment.

(*comment

Invalid Literal Format '%s'

The numeric format is illegal.

X:=123_; (*There is no numeral after underscore*)

X:=1__28; (*The underscore is followed immediately by
another underscore*)

X:=2#301; Y:=8#90; (*A numeral that cannot be used with
binary or octal values has been used*)

Note The underscore can be inserted between numerals
to make them easier to read. Placing 2#, 8#, and
16# at the beginning of the numeral expresses the
numerals as binary, octal, and hexadecimal values,
respectively.

Invalid Literal Value

The numeric value is illegal.

X:=1e2; (*an index was used for a numeric value that was
not a REAL data type*)

Note “e” indicates an exponent of 10.

Invalid array index

A numeric equation with a
non-integer type operation
result or a non-integer vari-
able has been specified in the
array index.

Array[Index]:=10; (*/Index is a WORD type variable*)

183

Structured Text Errors

Appendix B

Error Message

Cause of error

Example

Invalid constant

A numeric equation with a
non-integer type operation
result, or a non-integer vari-
able or numeric value has
been specified in the integer
equation of a CASE state-
ment.

CASE A OF (*Ais a REAL type variable™)
1: Xi=1;

2: X:=2;

END_CASE;

Invalid expression

The numeric equation is ille-
gal. For example, the integer
equation or condition equation
is illegal or has not been spec-
ified in the syntax (IF, WHILE,
REPEAT, FOR, CASE).

WHILE DO (*The WHILE statement does not contain a
condition equation®)

X:=X+1;
END_WHILE;

Invalid parameter in FOR loop
declaration

A variable with data type other
than INT, DINT, LINT, UINT,
UDINT, or ULINT has been
used for variables in a FOR
statement.

FOR I:=1 TO 100 DO (*I is a WORD type variable*)
X:=X+1;
END_FOR;

Invalid statement

The statement is illegal. E.g.,
The statement (IF, WHILE,
REPEAT, FOR, CASE,
REPEAT) does not contain an
IF, WHILE, REPEAT, FOR,
CASE, or REPEAT in the syn-
tax, respectively.

X:=X+1; (*There is no REPEAT in the syntax®)
UNTIL X>10
END_REPEAT;

Invalid variable for Function
output

The specified variable for the
function output is illegal (A
non-boolean (BOOL) variable
or numeral has been specified
as the ENO transfer destina-
tion.)

Y:=SIN(X1, ENO=>1);

Missing (

The call for a data format con-
version instruction or function
does not contain a “(“ (open-
ing parenthesis).

Y:=INT_TO_DINT X);

Missing)

The operator parentheses or

the call for a data format con-
version instruction or function
does not contain a “)“ (closing
parenthesis) corresponding to
“(* (opening parenthesis).

Y:=(X1+X2/2

Missing :

The integer equation in the
CASE statement is not fol-

lowed by a “” (colon).

CASE A OF
1 X:=1;
END_CASE;

Missing :=

“="is not included in the
assignment equation.

Missing ;

The statement is not con-

cluded by a “;” (semicolon).

Missing DO

“DQ” is not provided in the
FOR or WHILE statement.

Missing END_CASE

“END_CASE” is not provided
at the end of the CASE state-
ment.

Missing END_FOR

“END_FOR” is not provided at
the end of the FOR statement.

Missing END_IF

“END_IF” is not provided at
the end of the IF statement.

Missing END_REPEAT

“END_REPEAT” is not pro-
vided at the end of the
REPEAT statement.

184

Structured Text Errors

Appendix B

Error Message

Cause of error

Example

Missing END_WHILE

“END_WHILE” is not pro-
vided at the end of the WHILE
statement.

Missing Input Parameter. All
input variables must be set.

The function argument is not
specified or is insufficient.

Y:=EXPT(X);

Missing OF

“OF” is not included in CASE
statement.

Missing THEN “THEN” is not included in IF
statement.
Missing TO “TO” is not included in FOR
statement.
Missing UNTIL “UNTIL” is not included in
REPEAT statement.
Missing [The array index for the array | X:=Array; (*Array is an array variable*)
variable has not been speci-
fied.
Missing] The array index for the array | X:=Array[2; (*Array is an array variable™)

variable has not been speci-
fied.

Missing constant A constant is not provided in | CASE A OF
the integer equation of the 2.1 X:=1:
CASE statement. 2. X:=2:
END_CASE;
NOT operation not supported | The NOT operator was used | Result:=NOT 1;

on a literal number

for a numeric value.

Negation not supported by %s
data type

A minus symbol was used
before a variable with a data
type that does not support
negative values (UINT,
UDINT, ULINT).

Y:=-X; (*X is an UINT type variable, Y is an INT type vari-
able*)

There must be one line of
valid code (excluding com-
ments)

There is no line of valid code
(excluding comments).

Too many variables specified
for Function

Too many parameter settings
are specified for the function.

Y:=SIN(X1,X2);

Undefined identifier '%s'

A variable that is not defined
in the variable table has been
used.

Unexpected syntax '%s'

A keyword (reserved word) or
variable has been used ille-

gally.

FOR I:=1 TO 100 DO BY -1 (*The DO position is illegal*)
X:i=X+1;
END_FOR;

Usage mismatch in Function
variable

The function parameter has
been used illegally.

Y:=SIN(X1,EN=>BOOL1); (*The input parameter EN has
been used as an output parameter*)

Value out of range

A value outside the range for
the variable data type has
been substituted in the vari-
able.

X:=32768; (*X is an INT type variable*)

Variable '%s' is not a Function
parameter

A variable that cannot be
specified in the function
parameter has been specified
in the parameter.

Y:=SIN(Z:=X); (*X and Y are REAL type variables, and Z
is not a SIN function parameter *)

185

Structured Text Errors

Appendix B

Warning Messages

Warning message

Cause of warning

Example

Keyword '%s' is redundant

The keyword has been used
in an invalid location. For
example, use of the EXIT
statement outside a loop syn-
tax.

Conversion from '%s' to '%s',
possible loss of data

Data may be lost due to con-
version of a data type with a
large data size to a data type
with a small data size.

INT type variable™)

Y:=DINT_TO_INT(X); (*X is a DINT type variable, Y is an

186

Appendix C
Function Descriptions

Standard Functions

Text String Functions
LEN: Detect String Length
* Function
Finds the length of a specified text string.
* Application
Return_value := LEN(string);
* Arguments and Return Values

Variable name Data type Description
String STRING Specifies the text string for
which to find the length.
Return_value INT Returns the size of the speci-
fied text string.

* Example

Variables
STRING Message Message |A|B|C | D|E|F|G|H

INT Result

Result:=LEN(Message);
— "8" is stored in Result variable.

LEFT: Extract Characters from Left
¢ Function

Extracts the specified number of characters from the left of the specified text string.
¢ Application

Return_value := LEFT (Source_string, Number_of_characters);
* Arguments and Return Values

Variable name Data type Description

Source_string STRING Specifies the text string from which to
extract characters.

Number_of_characters | INT, UINT Specifies the number of characters to
extract.

Return_value STRING Returns the extracted characters.

e Example
Variables
STRING Message Message A|B|C|D|EIFIGH

STRING Result

Result:=LEFT(Message,3);
— "ABC" is stored in the Result variable.

RIGHT: Extract Characters from Right
* Function

Extracts the specified number of characters from the right of the specified text string.
* Application
Return_value := RIGHT (Source_string, Number_of_characters);

187

Function Descriptions Appendix C

* Arguments and Return Values

Variable name Data type Description

Source_string STRING Specifies the text string from
which to extract characters.

Number_of_characters | INT, UINT Specifies the number of char-
acters to extract.

Return_value STRING Returns the extracted charac-
ters.

e Example
Variables AlBlc|IpD|lEIF|lG|H
STRING Message Message

STRING Result

Result:=RIGHT(Message, 3);
— "FGH" is stored in the Result variable.

MID: Extract Characters from Middle
e Function
Extracts the specified number of characters starting from the specified position of the specified text
string.
¢ Application
Return_value := MID (Source_string, Number_of_characters, Position);
* Arguments and Return Values

Variable name Data type Description
Source_string STRING Specifies the text string from which to
extract characters.
Number_of_characters INT, UINT Specifies the number of characters to
extract.
Position INT, UINT Specifies the position from which to start

extracting characters. The first character is
position “1” (e.g., position 1 is “A” in mes-
sage 1 in the following illustration).

Return_value STRING Returns the extracted characters.
* Example

Variables Message A|{B|C|D|E|F|G]|H

STRING Message

STRING Result
Result:=MID(Message,3,2);

— "BCD" is stored in the Result variable.

CONCAT: Concatenate Strings
* Function

Joins the specified text strings.
Up to 31 text strings can be specified.

* Application
Return_value := CONCAT (Source_string_1, Source_string_2, ...);
* Arguments and Return Values

Variable name Data type Description
Source_string_1 STRING Specifies a text string to be joined.
Source_string_2 STRING Specifies a text string to be joined.
Return_value STRING Returns the joined text strings.

188

Function Descriptions Appendix C

* Example

Message1 | A | B | C Message 2 DI|E Message 3 FIGg|H

Variables

STRING Message1
STRING Message2
STRING Message3
STRING Result

Result:=CONCAT(M gel,M ge2,M ge3);
— "ABCDEFGH" is stored in the Result variable.

Resut | A|B|C|D|E|F|G|H

INSERT: Insert Characters
¢ Function

Inserts the specified characters into a text string.
* Application

Return_value := INSERT (Source_string, Insert_string, Position);
* Arguments and Return Values

Variable name Data type Description
Source_string STRING Specifies the text string into which to insert char-
acters.
Insert_string STRING Specifies the text string to be inserted.
Position INT, UINT Specifies the position at which to insert charac-

ters. The first character is position “1” (e.g., posi-
tion 1 is “A” in message 1 in the following

illustration).
Return_value STRING Returns the text string with the characters
inserted.
e Example
Variables Message1 | o [g | c| D | Message2 || |G| H
STRING Message1

STRING Message2
STRING Result Result := INSERT(Message1, Message2, 2);
— "ABEFGHC" is stored in the Result variable.

Result | A |B|E|F|G|H|C|D

DELETE: Delete Characters
e Function

Deletes the specified number of characters starting from the specified position of the specified text
string.

* Application
Return_value := DEL (Source_string, Number_of_characters, Position);
* Arguments and Return Values

Variable name Data type Description
Source_string STRING Specifies the text string from which to delete
characters.
Number_of_characters INT, UINT Specifies the number of characters to delete.
Position INT, UINT Specifies the position from which to delete

characters. The first character is position “1”
(e.g., position 1 is “A” in message 1 in the fol-
lowing illustration).

Return_value STRING Returns the text string with the specified
number of characters deleted.

189

Function Descriptions

Appendix C

* Example

Variables
STRING Message1
STRING Result

Message AlBlcC

F|G|H

REPLACE: Replace Characters

¢ Function

Result:=DEL(Message1,4,2);
— "AFGH" is stored in the Result variable.

Result AlFlGl|H

Replaces the specified number of characters starting from the specified position of the specified text

string.
* Application

Return_value := REPLACE (Source_string, Replace_string, Number_of_characters, Position);
* Arguments and Return Values

Variable name Data type Description
Source_string STRING Specifies the text string in which to replace
characters.
Replace_string STRING Specifies the replace text string.

Number_of_characters | INT, UINT

Specifies the number of characters to be
replaced.

Position INT, UINT Specifies the position from which to
replace characters. The first character is
position “1” (e.g., position 1 is “A” in mes-
sage 1 in the following illustration).

Return_value STRING Returns the text string with the characters

replaced.

e Example

Variables

STRING Message1
STRING Message2
STRING Result

FIND: Find Characters

¢ Function

Message 1 |A|B clo

E|F

GlH Message 2 Xx|lvylz

Result:=REPLACE(Message1,Message2,2,3);
— "ABXYEFGH" is stored in the Result variable.

Result

A[B|X|Y|E|F|G|H

Finds the first occurrence of the specified text string in another text string and returns the position.
If the text string is not found, 0 is returned.

* Application

Return_value := FIND (Source_string, Find_string);
* Arguments and Return Values

Variable name Data type Description
Source_string STRING Specifies the text string to search.
Find_string STRING Specifies the text string to find.
Return_value INT Returns the position of the first occurrence of

the find text string. The first character is position
“1” (e.g., position 1 is “A” in message 1 in the fol-
lowing illustration).

190

Function Descriptions

Appendix C

* Example

Variables
STRING Messagel

STRING Message2
INT Result

Memory Card Functions
WRITE_TEXT: Create Text File

¢ Function

Message1’A‘B clplE C|D|E‘ Message 2 clple

Result:=FIND(Message1,Message3);
— "2" is stored in the Result variable.

Writes the specified text sting into the specified file in the Memory Card.

¢ Application

Write_Text (Write_string, Directory_name_and_file_name, Delimiter, Parameter);
* Arguments and Return Values

Variable name

Data type

Description

Write_string

STRING

Specifies the text string to write to a file.

Directory_name_and
_file_name

STRING

Specifies the directory and file name, including the root direc-
tory(\). The file name must be 8 characters or less. The file
name extension is always TXT. For example, the following file
name creates a file named LINE_A.TXT in the root directory:
\LINE_A.

Delimiter

STRING

": Empty character

' Comma

“$L” or “$I": Line feed (ASCII 0A)

“$N” or “$n”: Carriage return + line feed (ASCII 0D 0A)
“$P” or “$p”: New page (ASCII 0C)

“$R” or “$r”: Carriage return (ASCII 0D)

“$T” or “$t”: Tab (ASCII 09)

Parameter

INT, UINT, WORD

0: Append
1: Create new file

191

Function Descriptions

Appendix C

Variables

BOOL P_MemCardBusyFlag
BOOL P_MemCardAskFlag
STRING FileName

INT LogDatatl 2 3
STRING FiledStrl1 2 3
STRING CsvLineStr

* File name *)
* Log number *)

* File Memory Operation Flag *) AT A343.13
* Memory Card Detected Flag *) AT A343.15

* Log number text string *)
* CSV-format log, 1-line text string *)

FileName := \LOGFILE';
LogDatat :=12;
LogData2 := 345;
LogData3 := 6789;

FieldStr1 :
FieldStr2 :

END_IF;

(* Output data to text file if Memory Card write conditions are met. *)
IF (P_MemCardAckFlag AND (NOT P_MemCardBusyFlag)) THEN

(* Convert from number to text string *)
INT_TO_STRING(LogData1);
INT_TO_STRING(LogData2);

FieldStr3 := INT_TO_STRING(LogData3);

(* Create 1-row CSV-format numeric value text string *)
CsvLineStr := FieldStr1 + ' + FieldStr2 + ',' + FieldStr3;
(* Output one line of numeric data to file *)
WRITE_TEXT(CsvLineStr, FileName, '$n', 0);

Contents of output file

LOGFILE.TXT

12,345,6789

Related Auxiliary
Area Flag

Address

Description

File Memory Opera- | A343.13
tion Flag

ON when any of the following conditions exists:

* CMND instruction sending a FINS command to the local
CPU Unit.
* File Memory Instruction being executed.

* Program replacement using the control bit in the Auxiliary
Area.

* Easy backup operation.

Memory Card A343.15
Detected Flag

ON when a Memory Card has been detected.

For further information and precautions on related Auxiliary Area flags, refer to the section on the FWRIT File
Memory Instruction in the CS/CJ-series Instruction Reference Manual.

Communications Functions

TXD_CPU: Send String via CPU Unit RS-232C Port
* Function

Sends a text string from the RS-232C port on the CPU Unit.
* Application

TXD_CPU (Send_string);

 Conditions
The serial communications mode of the RS-232C port must be set to no-protocol communications.

* Arguments and Return Values

Variable name

Data type

Description

Send_string STRING

Specifies the text string to send.

192

Function Descriptions

Appendix C

* Example
CPU Unit Get Scene Number
command: @READ
RS-232C
port
Barcode Reader

{Variables T
i BOOL DoSendData (* Variable to control send function *) i
LINT iProcess (* Process number *) !
1 STRING Message (* Send message *) i
i BOOL SendEnableCPUPort (* Send Ready Flag *) AT A392.05 i

(* Send data when D

iProcess :

END_IF;

(* Execute send proc

CASE iProcess OF
1:

oSendData is ON and iProcess is 0 *)

IF (DoSendData = TRUE) AND (iProcess = 0) THEN

=1;

DoSendData := FALSE;

essing according to process number *)

(* Create send text data *)
Message := '@READ;
iProcess := 2;

2: (* Execute send function if sending is enabled *)
IF SendEnableCPUPort = TRUE THEN
TXD_CPU(Message);
iProcess := 3;
END_IF;
3: (* Sending is finished if Send Ready Flag is ON *)
IF SendEnableCPUPort = TRUE THEN
iProcess := 0;
END_IF;
END_CASE;
Related Auxiliary Address Description
Area Flag
RS-232C Port Send | A392.05 ON when sending is enabled in no-protocol mode.
Ready Flag

For further information and precautions on related Auxiliary Area flags, refer to the section on TXD Serial Com-
munications Instruction in the CS/CJ-series Instruction Reference Manual.

TXD_SCB: Send String via Serial Port on Serial Communications Board

¢ Function

Sends a text string from a serial port on a Serial Communications Board (SCB).

¢ Application

TXD_SCB (Send_string, Serial_port);

¢ Conditions

The serial communications mode of the serial port must be set to no-protocol communications.
* Arguments and Return Values

Variable name Data type Description
Send_string STRING Specifies the text string to send.
Serial_port INT, UINT, WORD Specifies the number of the serial port.

1: Serial port 1
2: Serial port 2

193

Function Descriptions

Appendix C

* Example

Serial
Communi-
cations
Board
; Get Scene Number
(SCB) CPU Unit command: @READ
Serial
port 1
]
D Barcode Reader
Variables
BOOL P_DoSendData (* Variable to control send function *)
INT iProcess (* Process number *)

STRING Message (* Send message *)

BOOL P_SendEnableSCBPort1 (* Send Ready Flag *) AT A356.05

Serial port 1 used.

(* Use serial port number 1 *)

(*Send data when P_DoSendData is ON and iProcess is 0 *)
IF (P_DoSendData = TRUE) AND (iProcess = 0) THEN
iProcess :=1;
P_DoSendData := FALSE;
END_IF;

(* Execute send processing according to process number *)
CASE iProcess OF
1: (* Create send text data *)

Message = '@READ";
iProcess := 2;

2: (* Execute send function if sending is enabled *)
IF P_SendEnableSCBPort1 = TRUE THEN
TXD_SCB(Message, 1);

iProcess := 3;
END_IF;

3: (* Sending is finished if Send Ready Flag is ON *)
IF P_SendEnableSCBPort1 = TRUE THEN

iProcess := 0;
END_IF;
END_CASE;
Related Auxiliary Address Description
Area Flag
Port 1 Send Ready |A356.05 ON when sending is enabled in no-protocol mode.
Flag
Port 2 Send Ready |A356.13 ON when sending is enabled in no-protocol mode.
Flag

For further information and precautions on related Auxiliary Area flags, refer to the section on TXD Serial Com-
munications Instruction in the CS/CJ-series Instruction Reference Manual.

TXD_SCU: Send String via Serial Port on Serial Communications Unit

¢ Function

Sends a text string from a serial port on a Serial Communications Unit (SCU).

* Application

TXD_SCU (Send_string, SCU_unit_number, Serial_port, Internal_logic_port);

¢ Conditions

The serial communications mode of the serial port must be set to no-protocol communications.

194

Function Descriptions Appendix C

* Arguments and Return Values

Variable name Data type Description

Send_string STRING Specifies the text string to send.

SCU_unit_number INT, UINT, WORD Specifies the number of the Serial Communi-
cations Unit.

Serial_port INT, UINT, WORD 1: Serial port 1
2: Serial port 2

Internal_logic_port | INT, UINT, WORD 0 to 7: Internal logic port number specified
16#F: Automatic internal logic port allocation

* Example

Serial
Communications
Unit (SCU)

CPU Unit Unit No.: 0

Get Scene Number
command: @READ

Serial
port 2 I:,l
1
Barcode reader

e |
: Variables :
1 BOOL P_DoSendData (* Variable to control send function *) 1
1 . 1
1 INT iProcess (* Process number *) 1
| STRING Message (* Send message *) ,
1 BOOL P_TXDU_Exe (* TXDU Execution Flag *) AT 1519.05 Unit number 0, 1
| Use serial port 2. :
: BOOL P_CominstEnable (* Communications Port Enable Flag*) AT A202.07 Use port 7. :

(* Use the following: Unit number: 0, Serial port number: 2, Logical port number: 7 *)

(* Send data when P_DoSendData is ON and iProcess is 0 *)
IF (P_DoSendData = TRUE) AND (iProcess = 0) THEN
iProcess = 1;
P_DoSendData := FALSE;
END_IF;

(* Execute send processing according to process number *)
CASE iProcess OF
1: (* Create send text data *)
Message = '@READ;
iProcess = 2;
2: (* Execute send function if Communications Port Enable Flag and TXDU Execution Flag are ON *)
IF (P_ComlnstEnable = TRUE) AND (P_TXDU_Exe = FALSE) THEN
TXD_SCU(Message, 0, 2, 7);
iProcess := 3;
END_IF;
3: (* Sending has been completed if Communications Port Enable Flag is ON *)
IF P_ComlnstEnable = TRUE THEN
iProcess = 0;
END_IF;
END_CASE;

195

Function Descriptions

Appendix C

Related Auxiliary
Area Flag

Address

Communications
Instruction Enable
Flags

A202.00 to A202.07

ON when network communications can be executed. The bit
numbers correspond directly to the internal logic port numbers
Bits 00 to 07: Internal logic ports 0 to 7

Related CPU Bus
Unit Area bits

Bit

n=CIlO 150 + 25 x
unit number

Port 1: n+9
Port 2: n+19

05

ON when TXDU is being executed.

For further information and precautions on related Auxiliary Area flags, refer to the section on TXDU Serial
Communications Instruction in the CS/CJ-series Instruction Reference Manual.

RXD_CPU: Receive String via CPU Unit RS-232C Port

* Function
Receives a text string from the RS-232C port on the CPU Unit.
¢ Application
RXD_CPU (Storage_location, Number_of_characters)
 Conditions
The serial communications mode of the RS-232C port must be set to no-protocol communications.
* Arguments and Return Values

196

Variable name

Data type

Description

Storage_location

STRING

Specifies the storage location for the received
text string.

Number_of_characters

INT, UINT, WORD

Specifies the number of characters to receive.
0 to 255

Function Descriptions Appendix C

* Example
CPU Unit
Message — Value to read
RS-232C
port
Barcode reader

{Variables TR
i BOOL P_DoRecvData (* Variable to control receive function *) i
1 STRING Message (* Variable to store received message *) i
E BOOL P_EndRecvCPUPort (* Reception Completed Flag *) AT A392.06 !

(* Receive data when P_DoRecvData is ON and reception has been completed*)

IF (P_DoRecvData = TRUE) AND (P_EndRecvCPUPort = TRUE) THEN
(* Get 16 characters *)
RXD_CPU(Message, 16);
P_DoRecvData := FALSE;

END_IF;
Related Auxiliary Address Description
Area Flag
RS-232C Port A392.06 ON when reception has been completed in no-protocol mode.
Reception Com-
pleted Flag
RS-232C Port A392.07 ON when a data overflow occurred during reception in no-pro-
Reception Overflow tocol mode.
Flag
RS-232C Port A393 Contains the number of characters received in no-protocol
Reception Counter mode.

For further information and precautions on related Auxiliary Area flags, refer to the section on RXD Serial Com-
munications Instruction in the CS/CJ-series Instruction Reference Manual.

RXD_SCB: Receive String via Serial Port on Serial Communications Board
* Function
Receives a text string from a serial port on a Serial Communications Board (SCB).
* Application
RXD_SCB (Storage_location, Number_of_characters, Serial_port)
» Conditions

The serial communications mode of the serial port must be set to no-protocol communications.
* Arguments and Return Values

Variable name Data type Description

Storage_location STRING Specifies the storage location for the received
text string.

Number_of_characters INT, UINT, WORD Specifies the number of characters to receive.
0to 255

Serial_port INT, UINT, WORD Specifies the number of the serial port.
1: Serial port 1
2: Serial port 2

197

Function Descriptions

Appendix C

* Example

Serial
Commu-
nications
Board

(SCB) CPU Unit

Serial
port 1

Message — Value to read

Barcode reader

| Variables
1 BOOL

i BOOL

P_DoRecvData
i STRING Message
P_EndRecvSCBPort1

—_—— o~

Use serial port 1

* Variable to control receive function *)
* Variable to store received message *)
* Reception Completed Flag *) AT A356.06

(* Use serial port number 1 *)
(* Receive data when P_DoRecvData is ON and reception has been completed®)
IF (P_DoRecvData = TRUE) AND (P_EndRecvSCBPort1 = TRUE) THEN
(* Get 16 characters *)
RXD_SCB(Message, 16, 1);
P_DoRecvData := FALSE;

END_IF;
Related Auxiliary Address Description
Area Flag

Port 1 Reception A356.06 ON when reception has been completed in no-protocol mode.
Completed Flag
Port 1 Reception A356.07 ON when a data overflow occurred during reception in no-pro-
Overflow Flag tocol mode.
Port 1 Reception A357 Contains the number of characters received in no-protocol
Counter mode.
Port 2 Reception A356.14 ON when reception has been completed in no-protocol mode.
Completed Flag
Port 2 Reception A356.15 ON when a data overflow occurred during reception in no-pro-
Overflow Flag tocol mode.
Port 2 Reception A358 Contains the number of characters received in no-protocol

Counter

mode.

For further information and precautions on related Auxiliary Area flags, refer to the section on RXD Serial Com-
munications Instruction in the CS/CJ-series Instruction Reference Manual.

RXD_SCU: Receive String via Serial Port on Serial Communications Unit
* Function

Receives a text string from a serial port on a Serial Communications Unit (SCU).
* Application
RXD_SCU (Storage_location, Number_of_characters, SCU_unit_number, Serial_port,
Internal_logic_port);
» Conditions
The serial communications mode of the serial port must be set to no-protocol communications.

198

Function Descriptions Appendix C

* Arguments and Return Values

Variable name Data type Description

Storage_location STRING Specifies the storage location for the received text
string.

Number_of_characters INT, UINT, WORD Specifies the number of characters to receive.
0to 255

SCU_unit_number INT, UINT, WORD Specifies the number of the Serial Communica-
tions Unit.

Serial_port INT, UINT, WORD 1: Serial port 1
2: Serial port 2

Internal_logic_port INT, UINT, WORD 0 to 7: Internal logic port number specified
16#F: Automatic internal logic port allocation

* Example

Serial
Communications
Unit (SCU)

CPU Unit Unit No.: 0

Message — Value to readj

I
Serial

port 2 D‘ |
1

Barcode reader

| Variables

1

1 BOOL P_DoRecvData (* Variable to control receive function *)
lINT iProcess (* Process number *)

i STRING Message *

1 BOOL P_RXDU_Recv (* Status of Serial Communications Unit *) AT 1519.06 Unit No. 0
Use serial port 2

1
1
1
1
1
1
Variable to store received message *) ,
i
1
BOOL P_CominstEnable (* Communications Port Enable Flag *)*) AT A202.07 Use port 7 :

(* Use the following: Unit number: 0, Serial port number: 2, Logical port number: 7 *)
(* Receive data when P_DoRecvData is ON and iProcess is 0 *)
IF (P_DoRecvData = TRUE) AND (iProcess = 0) THEN
iProcess = 1;
P_DoRecvData := FALSE;
END_IF;

(* Execute receive processing according to process number *)
CASE iProcess OF
1: (* Reception function executed if Communications Enabled Flag and Reception Completed
Flag are ON. *);
IF (P_ComlInstEnable = TRUE) AND (P_RXDU_Recv = TRUE) THEN
RXD_SCU(Message, 16, 0, 2, 7);
iProcess := 2;
END_IF;
2: (* Reception has been completed if Communications Port Enable Flag is ON *)
IF P_CominstEnable = TRUE THEN
iProcess := 0;
END_IF;
END_CASE;

199

Function Descriptions

Appendix C

Related Auxiliary Area Flag Address
Communications Instruction A202.00 to ON when network communications can be executed. The bit
Enable Flag A202.07 numbers correspond directly to the internal logic port numbers

Bits 00 to 07: Internal logic ports 0 to 7

Related CPU Bus Unit Area bits Bit
n = CIlO 150 + 25 x unit number |06 ON when reception has been completed in no-protocol mode.
Port 1: n+9
Port 2: n+19
n = CIlO 150 + 25 x unit number |07 ON when a data overflow occurred during reception in no-pro-
Port 1: n+9 tocol mode.
Port 2: n+19
n = CIO 150 + 25 x unit number | --- Contains the number of characters received in no-protocol
Port 1: n+10 mode.
Port 2: n+20

For further information and precautions on related Auxiliary Area flags, refer to the section on RXDU Serial

Communications Instruction in the CS/CJ-series Instruction Reference Manual.

Angle Conversion Functions

DEG_TO_RAD: Convert Degrees to Radians
* Function
Converts an angle in degrees to radians.
* Application
Return_value := DEG_TO_RAD (argument)
* Arguments and Return Values

Variable name Data type Description

Argument REAL, LREAL

Specifies an angle in degrees.

Return_value REAL, LREAL Returns an angle in radians.

RAD_TO_DEG: Convert Radians to Degrees
* Function

Converts an angle in radians to degrees.
¢ Application

Return_value := RAD_TO_DEG (argument)
* Arguments and Return Values

Variable name Data type Description

Argument REAL, LREAL

Specifies an angle in radians.

Return_value REAL, LREAL Returns an angle in degrees.

200

Index

A

addresses
allocation areas, 42
checking internal allocations, 104

setting allocation areas, 102

algorithm

creating, 87

applications
precautions, xxiii
array settings, 20, 38, 59, 89
AT settings, 19, 38, 89
restrictions, 51

automatically generating function block definitions, 92

C

compiling, 108

D

data types, 19, 37

determining, 56
debugging function blocks, 113

differentiation

restrictions, 51

E

errors
function blocks, 55
external variables, 37

externals, 19

F

features, 4

files
function block definitions, 112
library, 8
project text files, 8

function block definitions, 13
checking for an instance, 106
compiling, 108
creating, 82

saving to files, 112

function blocks

advantages, 12
application guidelines, 56
creating, 23
debugging, 113
defining, 85
elements, 31
errors, 55
monitoring, 113
operating specifications, 49
outline, 11
restrictions, 51
reusing, 24
setting parameters, 99
specifications, 6, 7, 30
structure, 13

functions, 4
function blocks, 6, 7
restrictions, 5

G

global symbol table, 18

IEC 61131-3, 4, 7

input variables, 32

input-output variables, 35

inputs, 19

instance areas, 21, 42
setting, 21, 102

instances
creating, 23, 97
multiple, 46
number of, 14

outline, 14

registering in global symbol table, 18

specifications, 42
internal variables, 35

internals, 19

L

ladder programming
function block definition, 84

restrictions in function blocks, 51

201

Index

M

menus, 8
main, 8
popup, 10
monitoring function blocks, 113

o)

online editing
function block definitions, 121

restrictions, 54
output variables, 33

outputs, 19

P

parameters
outline, 15
precautions, xxi
applications, xxiii
general, xxii
safety, xxii
Programming Consoles, 54
projects
creating, 82

S

safety precautions, xxii

specifications
CX-Programmer Ver. 5.0, 5
function block operation, 49
instances, 42

structured text
function block definition, 84
restrictions, 53

symbol name

automatically generating, 91

T

timer instructions
operation, 75
restrictions, 52

202

\'}

variable names, 19

variables

address allocations, 21

checking address allocations, 104
creating as needed, 88
definitions, 31

introduction, 18

properties, 19, 37

registering in advance, 85
restrictions, 51

setting allocation areas, 21

usage, 19, 32

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W447-E1-09

Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision Date Revised content
code

01 February 2005 | Original production

02 November 2005 | Added Ver. 6.1 upgrade information, such as information on the Simulation functions and
ST program variable monitoring.

03 July 2006 Added Ver. 7.0 upgrade information.

04 January 2007 Pages 17 and 18: Changed “can” to “cannot” in table (two locations) and changed note.
Page 29: Changed text in “inputs” cell for the status of value at next execution.
Page 213: Changed illustration.
Pages 214, 216 to 218, and 202: Changed illustration and changed code.
Pages 215 and 219: Changed text in bottom right cell.

05 July 2007 Added upgrade information from Ver. 7.0 to Ver. 7.2.

07 June 2008 Added upgrade information from Ver. 7.2 to Ver. 8.0.

08 February 2009 | Added upgrade information from Ver. 8.0 to Ver. 8.1.

09 December 2009 | Added upgrade information from Ver. 8.3 to Ver. 9.0.

203

Revision History

204

Authorized Distributor:

	CX-Programmer Ver. 9._ WS02-CXPC1-V9 Function Blocks/Structured Text
	Notice:
	About this Manual:
	Read and Understand this Manual
	PRECAUTIONS
	1 Intended Audience
	2 General Precautions
	3 Safety Precautions
	4 Application Precautions

	Part 1: Function Blocks
	SECTION 1 Introduction to Function Blocks
	1-1 Introducing the Function Blocks
	1-1-1 Overview and Features
	1-1-2 Function Block Specifications
	1-1-3 Files Created with CX-Programmer Ver. 6.0 or Later
	1-1-4 Function Block Menus in CX-Programmer Ver. 5.0 (and later Versions)

	1-2 Function Blocks
	1-2-1 Outline
	1-2-2 Advantages of Function Blocks
	1-2-3 Function Block Structure

	1-3 Variables
	1-3-1 Introduction
	1-3-2 Variable Usage and Properties
	1-3-3 Variable Properties
	1-3-4 Variable Properties and Variable Usage
	1-3-5 Internal Allocation of Variable Addresses

	1-4 Converting Function Block Definitions to Library Files
	1-5 Usage Procedures
	1-5-1 Creating Function Blocks and Executing Instances
	1-5-2 Reusing Function Blocks

	1-6 Version Upgrade Information

	SECTION 2 Function Block Specifications
	2-1 Function Block Specifications
	2-1-1 Function Block Specifications
	2-1-2 Function Block Elements

	2-2 Data Types Supported in Function Blocks
	2-2-1 Basic Data Types
	2-2-2 Derivative Data Types

	2-3 Instance Specifications
	2-3-1 Composition of an Instance
	2-3-2 Parameter Specifications
	2-3-3 Operating Specifications

	2-4 Programming Restrictions
	2-4-1 Ladder Programming Restrictions
	2-4-2 ST Programming Restrictions
	2-4-3 Programming Restrictions

	2-5 Function Block Applications Guidelines
	2-5-1 Deciding on Variable Data Types
	2-5-2 Determining Variable Types (Inputs, Outputs, In Out, Externals, and Internals)
	2-5-3 AT Settings for Internal Variables
	2-5-4 Array Settings for Input-Output Variables and Internal Variables
	2-5-5 Specifying Addresses Allocated to Special I/O Units
	2-5-6 Using Index Registers

	2-6 Precautions for Instructions with Operands Specifying the First or Last of Multiple Words
	2-7 Instruction Support and Operand Restrictions
	2-8 CPU Unit Function Block Specifications
	2-8-1 Specifications
	2-8-2 Operation of Timer Instructions

	2-9 Number of Function Block Program Steps and Instance Execution Time
	2-9-1 Number of Function Block Program Steps
	2-9-2 Function Block Instance Execution Time

	SECTION 3 Creating Function Blocks
	3-1 Procedural Flow
	3-2 Procedures
	3-2-1 Creating a Project
	3-2-2 Creating a New Function Block Definition
	3-2-3 Defining Function Blocks Created by User
	3-2-4 Creating Instances from Function Block Definitions
	3-2-5 Setting Function Block Parameters Using the Enter Key
	3-2-6 Setting the FB Instance Areas
	3-2-7 Checking Internal Address Allocations for Variables
	3-2-8 Copying and Editing Function Block Definitions
	3-2-9 Checking the Source Function Block Definition from an Instance
	3-2-10 Checking Instance Information such as Nesting Levels
	3-2-11 Checking the Size of the Function Block Definition
	3-2-12 Compiling Function Block Definitions (Checking Program)
	3-2-13 Printing Function Block Definition
	3-2-14 Password Protection of Function Block Definitions
	3-2-15 Comparing Function Blocks
	3-2-16 Saving and Reusing Function Block Definition Files
	3-2-17 Downloading/Uploading Programs to the Actual CPU Unit
	3-2-18 Monitoring and Debugging Function Blocks
	3-2-19 Online Editing Function Block Definitions

	Part 2: Structured Text (ST)
	SECTION 4 Introduction to Structured Text
	4-1 ST Language
	4-1-1 Overview

	4-2 CX-Programmer Specifications
	4-2-1 PLC Models Compatible with ST Programs (ST Tasks)
	4-2-2 Specifications

	SECTION 5 Structured Text (ST) Language Specifications
	5-1 Structured Text Language Specifications
	5-1-1 Overview of the Structured Text Language

	5-2 Data Types Used in ST Programs
	5-2-1 Basic Data Types
	5-2-2 Derivative Data Types

	5-3 Inputting ST Programs
	5-3-1 Syntax Rules
	5-3-2 CX-Programmer's ST Input Screen Display

	5-4 ST Language Configuration
	5-4-1 Statements
	5-4-2 Variables
	5-4-3 Inputting Constants
	5-4-4 Operators
	5-4-5 Standard Functions
	5-4-6 OMRON Expansion Functions

	5-5 Statement Descriptions
	5-5-1 Assignment
	5-5-2 Control Statements

	5-6 ST-language Program Example
	5-6-1 Using an ST Program in a Function Block

	5-7 Restrictions
	5-7-1 Restrictions
	5-7-2 Commonly Asked Questions

	SECTION 6 Creating ST Programs
	6-1 Procedures
	6-1-1 Creating a Project
	6-1-2 Creating a New ST Program
	6-1-3 Allocating the ST Program to a Task
	6-1-4 Creating the ST Program
	6-1-5 Compiling the ST Program (Checking Program)
	6-1-6 Downloading/Uploading Programs to the Actual CPU Unit
	6-1-7 Comparing ST Programs
	6-1-8 Monitoring and Debugging the ST Program
	6-1-9 Online Editing of ST Programs

	Appendix A System-defined external variables supported in function blocks
	Appendix B Structured Text Errors
	Appendix C Function Descriptions
	Index
	Revision History

