
Cat. No. W438-E1-01

SYSMAC
CX-Programmer
Ver. 5.0
WS02-CXPC1-E-V50
CS1-H, CJ1-H, CJ1M CPU Units

CX-Programmer
Ver. 5.0
WS02-CXPC1-E-V50

CS1-H, CJ1-H, CJ1M CPU Units

Operation Manual
Function Blocks
Produced July 2004

iv

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

!DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury.

!WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury.

!Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers to
an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PLC” means Programmable Controller. “PC” is used, however, in some Program-
ming Device displays to mean Programmable Controller.

Visual Aids
The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient opera-
tion of the product.

1,2,3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

 OMRON, 2004
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or
by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of
OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is con-
stantly striving to improve its high-quality products, the information contained in this manual is subject to change without
notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility
for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in
this publication.
v

vi

TABLE OF CONTENTS
PRECAUTIONS . xi
1 Intended Audience . xii

2 General Precautions . xii

3 Safety Precautions . xii

4 Application Precautions. xiii

SECTION 1
Introduction. 1

1-1 Introducing the Function Blocks . 2

1-2 Function Blocks . 7

1-3 Variables . 13

1-4 Converting Function Block Definitions to Library Files . 16

1-5 Usage Procedures. 17

SECTION 2
Specifications . 19

2-1 Function Block Specifications . 21

2-2 Instance Specifications . 30

2-3 Restrictions on Function Blocks . 37

2-4 Function Block Applications Guidelines. 42

2-5 Precautions for Instructions with Operands Specifying the First or Last of Multiple Words 49

2-6 Instruction Support and Operand Restrictions. 52

2-7 CPU Unit Function Block Specifications . 104

2-8 Number of Function Block Program Steps and Instance Execution Time 108

SECTION 3
Creating Function Blocks. 111

3-1 Procedural Flow. 112

3-2 Procedures . 114

Appendices
A Data Types . 137

B Structured Text (ST Language) Specifications . 139

C External Variables . 161

Index. 163

Revision History . 165
vii

TABLE OF CONTENTS
viii

About this Manual:

This manual describes the function blocks and related functionality of the CX-Programmer Ver. 5.0
used together with CS1-H, CJ1-H, and CJ1M CPU Units with unit version 3.0 or later, and includes the
sections described on the next page. The CX-Programmer Ver. 5.0 is software that enables the per-
sonal computer to be used as a function block programming device, and can be used only for SYS-
MAC CS-series and CJ-series CPU Units that support function blocks.

The CX-Programmer Ver. 5.0 function block functions have been enhanced. This manual describes
only CX-Programmer Ver. 5.0 operations that are related to functions blocks. For operations not related
to function blocks, refer to the CX-Programmer Operation Manual (enclosed, Cat. No. W437). This
manual also provides only information related to function blocks for the CS1-H, CJ1-H, and CJ1M CPU
Units. For other information, refer to the CS/CJ-series manuals.

Please read this manual and related manuals carefully and be sure you understand the information
provided before attempting to install or operate the CX-Programmer Ver. 5.0 or the CS1-H, CJ1-H, or
CJ1M CPU Units. Be sure to read the precautions provided in the following section.

Manuals Related to the CX-Programmer Ver. 5.0

Manuals Related to the CS1-H, CJ1-H, CJ1M CPU Units

Name Cat. No. Contents

SYSMAC WS02-CXPC1-E-V50
CX-Programmer Ver. 5.0 Operation Manual
Function Blocks

(CS1G-CPU@@H, CS1H-CPU@@H,
CJ1G-CPU@@H, CJ1H-CPU@@H,

CJ1M-CPU@@ CPU Units)

W438 Describes the functionality unique to the CX-Programmer Ver.
5.0 and CS/CJ-series CPU Units with unit version 3.0 or later
based on function blocks. Functionality that is the same as
that of the CX-Programmer is described in W437 (enclosed).

SYSMAC WS02-CXPC1-E-V50
CX-Programmer Operation Manual

W437 Provides information on how to use the CX-Programmer for
all functionality except for function blocks.

Name Cat. No. Contents

SYSMAC CS Series
CS1G/H-CPU@@-EV1, CS1G/H-CPU@@H
Programmable Controllers
Operation Manual

W339 Provides an outline of and describes the design, installation,
maintenance, and other basic operations for the CS-series
PLCs.

The following information is included:
An overview and features
The system configuration
Installation and wiring
I/O memory allocation
Troubleshooting

Use this manual together with the W394.

SYSMAC CJ Series
CJ1G-CPU@@, CJ1G/H-CPU@@H, CJ1G-
CPU@@P, CJ1M-CPU@@
Programmable Controllers
Operation Manual

W393 Provides an outline of and describes the design, installation,
maintenance, and other basic operations for the CJ-series
PLCs.

The following information is included:
An overview and features
The system configuration
Installation and wiring
I/O memory allocation
Troubleshooting

Use this manual together with the W394.
ix

Overview of Contents
Precautions provides general precautions for using the CX-Programmer Ver. 5.0.

Section 1 introduces the function block functionality of the CX-Programmer and explains the features
that are not contained in the non-function block version of CX-Programmer.

Section 2 provides specifications for reference when using function blocks, including specifications on
function blocks, instances, and compatible PLCs, as well as usage precautions and guidelines.

Section 3 describes the procedures for creating function blocks on the CX-Programmer.

The Appendices provide information on data types, structure text specifications, and external vari-
ables.

SYSMAC CS/CJ Series
CS1G/H-CPU@@-EV1, CS1G/H-CPU@@H,
CJ1G-CPU@@, CJ1G/H-CPU@@H, CJ1G-
CPU@@P, CJ1M-CPU@@
Programmable Controllers
Programming Manual

W394 Describes programming and other methods to use the func-
tions of the CS/CJ-series PLCs.

The following information is included:
Programming
Tasks
File memory
Other functions
Use this manual together with the W339 or W393.

SYSMAC CS/CJ Series
CS1G/H-CPU@@-EV1, CS1G/H-CPU@@H,
CJ1G-CPU@@, CJ1G/H-CPU@@H, CJ1G-
CPU@@P, CJ1M-CPU@@
Programmable Controllers
Instructions Reference Manual

W340 Describes the ladder diagram programming instructions sup-
ported by CS/CJ-series PLCs.

When programming, use this manual together with the Oper-
ation Manual (CS1: W339 or CJ1: W393) and Programming
Manual (W394).

SYSMAC CS/CJ Series
CS1G/H-CPU@@-EV1, CS1G/H-CPU@@H,
CS1W-SCB21-V1/41-V1, CS1W-SCU21/41,
CJ1G-CPU@@, CJ1G/H-CPU@@H, CJ1G-
CPU@@P, CJ1M-CPU@@, CJ1W-SCU21-V1/
41-V1
Communications Commands
Reference Manual

W342 Describes the communications commands that can be
addressed to CS/CJ-series CPU Units.

The following information is included:
C-series (Host Link) commands
FINS commands

Note: This manual describes commands that can be sent to
the CPU Unit without regard for the communications path,
which can be through a serial communications port on the
CPU Unit, a communications port on a Serial Communica-
tions Unit/Board, or a port on any other Communications
Unit.

Name Cat. No. Contents

!WARNING Failure to read and understand the information provided in this manual may result in per-
sonal injury or death, damage to the product, or product failure. Please read each section
in its entirety and be sure you understand the information provided in the section and
related sections before attempting any of the procedures or operations given.
x

PRECAUTIONS

This section provides general precautions for using the CX-Programmer Ver. 5.0 and the Programmable Logic Controller.

The information contained in this section is important for the safe and reliable application of the CX-Programmer
Ver. 5.0 and Programmable Controller. You must read this section and understand the information contained before
attempting to set up or operate the CX-Programmer Ver. 5.0 and Programmable Controller.

1 Intended Audience . xii
2 General Precautions . xii
3 Safety Precautions. xii
4 Application Precautions . xiii
xi

Intended Audience 1
1 Intended Audience
This manual is intended for the following personnel, who must also have
knowledge of electrical systems (an electrical engineer or the equivalent).

• Personnel in charge of installing FA systems.

• Personnel in charge of designing FA systems.

• Personnel in charge of managing FA systems and facilities.

2 General Precautions
The user must operate the product according to the performance specifica-
tions described in the operation manuals.

Before using the product under conditions which are not described in the
manual or applying the product to nuclear control systems, railroad systems,
aviation systems, vehicles, combustion systems, medical equipment, amuse-
ment machines, safety equipment, and other systems, machines, and equip-
ment that may have a serious influence on lives and property if used
improperly, consult your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide
the systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the product.
Be sure to read this manual before attempting to use the product and keep
this manual close at hand for reference during operation.

!WARNING It is extremely important that a PLC and all PLC Units be used for the speci-
fied purpose and under the specified conditions, especially in applications that
can directly or indirectly affect human life. You must consult with your
OMRON representative before applying a PLC System to the above-men-
tioned applications.

3 Safety Precautions

!WARNING Confirm safety sufficiently before transferring I/O memory area status from the
CX-Programmer Ver. 5.0 to the actual CPU Unit. The devices connected to
Output Units may malfunction, regardless of the operating mode of the CPU
Unit. Caution is required in respect to the following functions.

• Transferring from the CX-Programmer to real I/O (CIO Area) in the CPU
Unit using the PLC Memory Window.

• Transferring from file memory to real I/O (CIO Area) in the CPU Unit using
the Memory Card Window.

!Caution Variables must be specified either with AT settings (or external variables), or
the variables must be the same size as the data size to be processed by the
instruction when specifying the first or last address of multiple words in the
instruction operand.

1. If a non-array variable with a different data size and without an AT setting
is specified, the CX-Programmer will output an error when compiling.

2. Array Variable Specifications
xii

Application Precautions 4
• When the size to be processed by the instruction operand is fixed:
The number of array elements must be the same as the number of ele-
ments to be processed by the instruction. Otherwise, the CX-Programmer
will output an error when compiling.

• When the size to be processed by the instruction operand is not fixed:
The number of array elements must be greater than or the same as the
size specified in the other operands.

• If the other operand specifying a size is a constant, the CX-Program-
mer Ver. 5.0 will output an error when compiling.

• If the other operand specifying a size is a variable, the CX-Programmer
Ver. 5.0 will not output an error when compiling, even if the size of the
array variable is not the same as that specified by the other operand
(variable). A warning message, however, will be displayed. In particu-
lar, if the number of array elements is less than the size specified by
the other operand (e.g., the size of the instruction operand is 16, and
the number of elements registered in the actual variable table is 10),
the instruction will execute read/write processing for the area that ex-
ceeds the number of elements. For example, read/write processing will
be executed for the 6 words following those for the number of elements
registered in the actual variable table. If these words are used for other
instructions (including internal variable allocations), unexpected oper-
ation will occur, which may result in serious accidents.
Check that the system will not be adversely affected if the size of the
variable specified in the operand is less than the size in the operand
definition before starting PLC operations.

!Caution Confirm safety at the destination node before transferring a program to
another node or changing contents of the I/O memory area. Doing either of
these without confirming safety may result in injury.

!Caution Execute online editing only after confirming that no adverse effects will be
caused by extending the cycle time. Otherwise, the input signals may not be
readable.

!Caution Confirm safety sufficiently before monitoring power flow and present value
status in the Ladder Section Window or when monitoring present values in the
Watch Window. If force-set/reset or set/reset operations are inadvertently per-
formed by pressing short-cut keys, the devices connected to Output Units
may malfunction, regardless of the operating mode of the CPU Unit.

4 Application Precautions
Observe the following precautions when using the CX-Programmer.

• User programs cannot be uploaded to the CX-Programmer.

• Observe the following precautions before starting the CX-Programmer.

• Exit all applications not directly related to the CX-Programmer. Partic-
ularly exit any software such as screen savers, virus checkers, E-mail
or other communications software, and schedulers or other applica-
tions that start up periodically or automatically.

• Disable sharing hard disks, printers, or other devices with other com-
puters on any network.
xiii

Application Precautions 4
• With some notebook computers, the RS-232C port is allocated to a
modem or an infrared line by default. Following the instructions in doc-
umentation for your computer and enable using the RS-232C port as
a normal serial port.

• With some notebook computers, the default settings for saving energy
do not supply the rated power to the RS-232C port. There may be both
Windows settings for saving energy, as well as setting for specific com-
puter utilities and the BIOS. Following the instructions in documenta-
tion for your computer, disable all energy saving settings.

• Do not turn OFF the power supply to the PLC or disconnect the connect-
ing cable while the CX-Programmer is online with the PLC. The computer
may malfunction.

• Confirm that no adverse effects will occur in the system before attempting
any of the following. Not doing so may result in an unexpected operation.

• Changing the operating mode of the PLC.

• Force-setting/force-resetting any bit in memory.

• Changing the present value of any word or any set value in memory.

• Check the user program for proper execution before actually running it on
the Unit. Not checking the program may result in an unexpected opera-
tion.

• When online editing is performed, the user program and parameter area
data in CS1-H, CJ1-H, and CJ1M CPU Units is backed up in the built-in
flash memory. The BKUP indicator will light on the front of the CPU Unit
when the backup operation is in progress. Do not turn OFF the power
supply to the CPU Unit when the BKUP indicator is lit. The data will not be
backed up if power is turned OFF. To display the status of writing to flash
memory on the CX-Programmer, select Display dialog to show PLC Mem-
ory Backup Status in the PLC properties and then select Windows - PLC
Memory Backup Status from the View Menu.

• Programs including function blocks (ladder programming language or
structured text (ST) language) can be downloaded or uploaded in the
same way as standard programs that do not contain function blocks.
Tasks including function blocks, however, cannot be downloaded in task
units (uploading is possible).

• If a user program containing function blocks created on the CX-Program-
mer Ver. 5.0 or later is downloaded to a CPU Unit that does not support
function blocks (CS/CJ-series CPU Units with unit version 2.0 or earlier),
all instances will be treated as illegal commands and it will not be possible
to edit or execute the user program.

• If the input variable data is not in boolean format, and numerical values
only (e.g., 20) are input in the parameters, the actual value in the CIO
Area address (e.g., 0020) will be passed. Therefore, be sure to include an
&, #, or +, - prefix before inputting the numerical value.

• Addresses can be set in input parameters, but the address itself cannot
be passed as an input variable. (Even if an address is set as an input
parameter, the value passed to the function block will be that for the size
of data in the input variable.) Therefore, an input variable cannot be used
as the operand of the instruction in the function block when the operand
specifies the first or last of multiple words. Use an internal variable with an
AT setting. Alternatively, specify the first or last element in an internal
array variable.
xiv

Application Precautions 4
• Values are passed in a batch from the input parameters to the input vari-
ables before algorithm execution (not at the same time as the instructions
in the algorithm are executed). Therefore, to pass the value from a
parameter to an input variable when an instruction in the function block
algorithm is executed, use an internal variable or external variable instead
of an input variable. The same applies to the timing for writing values to
the parameters from output variables.

• Always use internal variables with AT settings in the following cases.

• The addresses allocated to Basic I/O Units, Special I/O Units, and
CPU Bus Units cannot be registered to global symbols, and these vari-
ables cannot be specified as external variables (e.g., the data set for
global variables may not be stable).

• Use internal variables when Auxiliary Area bits other than those pre-
registered to external variables are registered to global symbols and
these variables are not specified as external variables.

• Use internal variables when specifying PLC addresses for another
node on the network: For example, the first destination word at the re-
mote node for SEND(090) and the first source word at the remote
node for RECV(098).

• Use internal variables when the first or last of multiple words is speci-
fied by an instruction operand and the operand cannot be specified as
an internal array variable (e.g., the number of array elements cannot
be specified).
xv

Application Precautions 4
xvi

SECTION 1
Introduction

This section introduces the function block functionality of the CX-Programmer and explains the features that are not
contained in the non-function block version of CX-Programmer.

1-1 Introducing the Function Blocks. 2

1-1-1 Overview and Features . 2

1-1-2 Function Block Specifications . 3

1-1-3 Files Created with CX-Programmer Ver. 5.0 4

1-1-4 CX-Programmer Ver. 5.0 Function Block Menus 5

1-2 Function Blocks . 7

1-2-1 Outline . 7

1-2-2 Advantages of Function Blocks . 7

1-2-3 Function Block Structure . 8

1-3 Variables . 13

1-3-1 Introduction. 13

1-3-2 Variable Usage and Properties . 13

1-3-3 Variable Properties . 14

1-3-4 Variable Properties and Variable Usage . 15

1-3-5 Internal Allocation of Variable Addresses . 15

1-4 Converting Function Block Definitions to Library Files 16

1-5 Usage Procedures . 17

1-5-1 Creating Function Blocks and Executing Instances 17

1-5-2 Reusing Function Blocks . 18
1

Introducing the Function Blocks Section 1-1
1-1 Introducing the Function Blocks

1-1-1 Overview and Features
The CX-Programmer Ver. 5.0 is a Programming Device that can use standard
IEC 61131-3 function blocks. The CX-Programmer Ver. 5.0 function block
function is supported for CS/CJ-series CPU Units with unit version 3.0 or later
and has the following features.

• User-defined processes can be converted to block format by using func-
tion blocks.

• Function block algorithms can be written in the ladder programming lan-
guage or in the structured text (ST) language. (See note.)

• When ladder programming is used, ladder programs created with non-
CX-Programmer Ver. 4.0 or earlier can be reused by copying and past-
ing.

• When ST language is used, it is easy to program mathematical pro-
cesses that would be difficult to enter with ladder programming.

Note The ST language is an advanced language for industrial control
(primarily Programmable Logic Controllers) that is described in IEC
61131-3. The ST language supported by CX-Programmer con-
forms to the IEC 61131-3 standard.

• Function blocks can be created easily because variables do not have to
be declared in text. They are registered in variable tables.
A variable can be registered automatically when it is entered in a ladder or
ST program. Registered variables can also be entered in ladder programs
after they have been registered in the variable table.

• A single function block can be converted to a library function as a single
file, making it easy to reuse function blocks for standard processing.

• A program check can be performed on a single function block to easily
confirm the function block’s reliability as a library function.

• Programs containing function blocks (ladder programming language or
structured text (ST) language) can be downloaded or uploaded in the
same way as standard programs that do not contain function blocks.
Tasks containing function blocks, however, cannot be downloaded in task
units (uploading is possible).

• One-dimensional array variables are supported, so data handling is eas-
ier for many applications.

Note The IEC 61131 standard was defined by the International Electrotechnical
Commission (IEC) as an international programmable logic controller (PLC)
standard. The standard is divided into 7 parts. Specifications related to PLC
programming are defined in Part 3 Textual Languages (IEC 61131-3).
2

Introducing the Function Blocks Section 1-1
1-1-2 Function Block Specifications
For specifications that are not listed in the following table, refer to the CX-Pro-
grammer Ver. 5.0 Operation Manual (W437).

Item Specifications

Model number WS02-CXPC1-E-V50

Setup disk CD-ROM

Compatible CPU Units CS/CJ-series CS1-H, CJ1-H, and CJ1M CPU Units with unit version 3.0 or
later are compatible.

Device Type CPU Type
• CS1G-H CS1G-CPU42H/43H/44H/45H
• CS1H-H CS1H-CPU63H/64H/65H/66H/67H
• CJ1G-H CJ1G-CPU42H/43H/44H/45H
• CJ1H-H CJ1H-CPU65H/66H/67H
• CJ1M CJ1M-CPU11/12/13/21/22/23

Note If a user program containing function blocks created on the CX-Pro-
grammer Ver. 5.0 or later is downloaded to a CPU Unit that does not
support function blocks (CS/CJ-series CPU Units with unit version 2.0
or earlier), all instances will be treated as illegal commands and it will
not be possible to edit or execute the user program.

CS/CJ Series Function Restrictions
• Instructions Not Supported in Function Block Definitions

Block Program Instructions (BPRG and BEND), Subroutine Instructions
(SBS, GSBS, RET, MCRO, and SBN), Jump Instructions (JMP, CJP, and
CJPN), Step Ladder Instructions (STEP and SNXT), Immediate Refresh
Instructions (!), I/O REFRESH (IORF), ONE-MS TIMER (TMHH)

For details, refer to 2-3 Restrictions on Function Blocks.

Compatible
computers

Computer IBM PC/AT or compatible

CPU 133 MHz Pentium or faster with Windows 98, SE, or NT 4.0 (with service pack
6 or higher)

OS Microsoft Windows 95, 98, SE, Me, 2000, XP, or NT 4.0 (with service pack 6
or higher)

Memory 64 Mbytes min. with Windows 98, SE, or NT 4.0 (with service pack 6 or
higher)
Refer to Computer System Requirements below for details.

Hard disk space 100 Mbytes min. available disk space

Monitor SVGA (800 × 600 pixels) min.

Note Use “small font” for the font size.

CD-ROM drive One CD-ROM drive min.

COM port One RS-232C port min.
3

Introducing the Function Blocks Section 1-1
Note The structured text (ST language) conforms to the IEC 61131-3 standard, but
CX-Programmer Ver. 5.0 supports only assignment statements, selection
statements (CASE and IF statements), iteration statements (FOR, WHILE,
REPEAT, and EXIT statements), RETURN statements, arithmetic operators,
logical operators, comparison functions, numeric functions, and comments.
For details, refer to Appendix B Structured Text (ST Language) Specifications.

1-1-3 Files Created with CX-Programmer Ver. 5.0
Project Files (*.cxp) and
File Memory Program
Files (*.obj)

Projects created using CX-Programmer that contain function block definitions
and projects with instances are saved in the same standard project files
(*.cxp) and file memory program files (*.obj).

The following diagram shows the contents of a project. The function block def-
initions are created at the same directory level as the program within the rele-
vant PLC directory.

Functions not
supported by
CX-Program-
mer Ver. 4.0
or earlier.

Defining
and creat-
ing func-
tion blocks

Number of
function block
definitions

CS1-H/CJ1-H CPU Units:
• Suffix -CPU44H/45H/64H/65H/66H/67H: 1,024 max. per CPU Unit
• Suffix -CPU42H/43H/63H: 128 max. per CPU Unit

CJ1M CPU Units:
• CJ1M-CPU11/12/13/21/22/23: 128 max. per CPU Unit

Function
block names

64 characters max.

Variables Variable names 30,000 characters max.

Variable types Inputs, Outputs, Internals, and Externals

Number of I/O variables in
function block definitions

64 max. (not including EN and ENO)

Allocation of addresses
used by variables

Automatic allocation (The allocation range can
be set by the user.)

Actual address specifica-
tion

Supported

Array specifications Supported (one-dimensional arrays only)

Language Function blocks can be created in ladder programming language or structured
text (ST, see note).

Creating
instances

Number of
instances

CS1-H/CJ1-H CPU Units:

• Suffix -CPU44H/45H/64H/65H/66H/67H: 2,048 max. per CPU Unit
• Suffix -CPU42H/43H/63H: 256 max. per CPU Unit
CJ1M CPU Units:
CJ1M-CPU11/12/13/21/22/23: 256 max. per CPU Unit

Instance
names

30,000 characters max.

Storing
function
blocks as
files

Project files The project file (.cxp/cxt) Includes function block definitions and instances.

Program files The file memory program file (*.obj) includes function block definitions and
instances.

Function
block library
files

Each function block definition can be stored as a single file (.cxf) for reuse in
other projects.

Item Specifications
4

Introducing the Function Blocks Section 1-1
Function Block Library
Files (*.cxf)

A function block definition created in a project with CX-Programmer Ver. 5.0
can be saved as a file (1 definition = 1 file), enabling definitions to be loaded
into other programs and reused.

Project Text Files
Containing Function
Blocks (*.cxt)

Data equivalent to that in project files created with CX-Programmer Ver. 5.0
(*.cxp) can be saved as CXT text files (*.cxt).

1-1-4 CX-Programmer Ver. 5.0 Function Block Menus
The following tables list CX-Programmer Ver. 5.0 menus related to function
blocks. For details on all menus, refer to the CX-Programmer Ver. 5.0 Opera-
tion Manual (W437).

Main Menu

FunctionBlock1

FunctionBlock2

Project file (.cxp)

PLC1

PLC2

Global symbol table

I/O table

PLC Setup

PLC memory table

Program (with rung comments)

Local symbol table

Section 1 (with instances)

Section 2 (with instances)

END section (with instances)

Function block def initions

Each function block can be
stored in a separate
definition file (.cxf).

Instances created
in program
sections.

Main menu Submenu Shortcut Function

File Func-
tion
Block

Load Function
Block from File

--- Reads the saved function block library files (*.cxf).

Save Function
Block to File

--- Saves the created function block definitions to a file ([function block
library file]*.cxf).

Edit Update Function Block --- When a function block definition’s I/O variables have been changed
after the instance was created, an error will be indicated by display-
ing the instance’s left bus bar in red. This command updates the
instance with the new information and clears the error.

Insert Function Block Invocation F Creates an instance in the program (section) at the present cursor
location.

Function Block Parameter P When the cursor is located to the left of an input variable or the right
of an output variable, sets the variable’s input or output parameter.

PLC Func-
tion
Block
Mem-
ory

Function Block
Memory Allocation

--- Sets the range of addresses (function block instance areas) inter-
nally allocated to the selected instance’s variables.

Function Block
Memory Statistics

--- Checks the status of the addresses internally allocated to the
selected instance’s variables.

Function Block
Instance Address

--- Checks the addresses internally allocated to each variable in the
selected instance.

Optimize Function
Memory

--- Optimizes the allocation of addresses internally allocated to vari-
ables.
5

Introducing the Function Blocks Section 1-1
Main Popup Menus

Popup Menu for Function Block Definitions

Popup Menu for Inserted Function Blocks

Popup Menu for Function Block Variable Tables

Popup Menu for Instances

Shortcut Keys

F Key: Pasting Function
Block Definitions in
Program

Move the cursor to the position at which to create the copied function block
instance in the Ladder Section Window, and click the F Key. This operation is
the same as selecting Insert - Function Block Invocation.

P Key: Inputting
Parameters

Position the cursor at the left of the input variable, or at the right of the output
variable and click the P Key. This operation is the same as selecting Insert -
Function Block Parameter.

Popup menu Function

Insert Function Block Ladder Creates a function block definition with a ladder programming language algo-
rithm.

Structured Text Creates a function block definition with an ST language algorithm.

From file Reads a function block definition from a function block library file (*.cxf).

Popup menu Function

Open Displays the contents of the selected function block definition on the right side of the window.

Save Function Block File Saves the selected function block definition in a file.

Compile Compiles the selected function block definition.

Popup menu Function

Edit Edits the variable.

Insert Variable Adds a variable to the last line.

Insert Variable Above Inserts the variable above the current cursor position.

Below Inserts the variable below the current cursor position.

Cut Cuts the variable.

Copy Copies the variable.

Paste Pastes the variable.

Find Searches for the variable. Variable names, variable comments, or all (text strings) can
be searched.

Replace Replaces the variable.

Delete Deletes the variable.

Rename Changes only the name of the variable.

Popup menu Function

Edit Changes the instance name.

Update Invocation When a function block definition’s I/O variables have been changed after the instance
was created, an error will be indicated by displaying the instance’s left bus bar in red.
This command updates the instance with the new information and clears the error.

Go To Function Block Definition Displays the selected instance’s function block definition on the right side of the window.
6

Function Blocks Section 1-2
1-2 Function Blocks

1-2-1 Outline
A function block is a basic program element containing a standard processing
function that has been defined in advance. Once the function block has been
defined, the user just has to insert the function block in the program and set
the I/O in order to use the function.

As a standard processing function, a function block does not contain actual
addresses, but variables. The user sets addresses or constants in those vari-
ables. These address or constants are called parameters. The addresses
used by the variables themselves are allocated automatically by the CX-Pro-
grammer for each program.

With the CX-Programmer, a single function block can be saved as a single file
and reused in other PLC programs, so standard processing functions can be
made into libraries.

1-2-2 Advantages of Function Blocks
Function blocks allow complex programming units to be reused easily. Once
standard programming is created in a function block and saved in a file, it can
be reused just by placing the function block in a program and setting the
parameters for the function block’s I/O. The ability to reuse existing function
blocks will save significant time when creating/debugging programs, reduce
coding errors, and make the program easier to understand.

Structured
Programming

Structured programs created with function blocks have better design quality
and require less development time.

Easy-to-read “Black Box”
Design

The I/O operands are displayed as variable names in the program, so the pro-
gram is like a “black box” when entering or reading the program and no extra
time is wasted trying to understand the internal algorithm.

Use One Function Block
for Multiple Processes

Many different processes can be created easily from a single function block by
using the parameters in the standard process as input variables (such as
timer SVs, control constants, speed settings, and travel distances).

Input Output

Input Output

Output

Function block A

Save function
block as a file.

Program 2

Copy of function block A

Copy of function block A

Copy of function block A

Convert to
library function.

Function
block A

Define in advance.

Insert in
program.

Reuse.
To another PLC program

Variable

Variable Variable

Set Set

Variable Variable

Program 1

Standard
program section
written with
variables
7

Function Blocks Section 1-2
Reduce Coding Errors Coding mistakes can be reduced because blocks that have already been
debugged can be reused.

Data Protection The variables in the function block cannot be accessed directly from the out-
side, so the data can be protected. (Data cannot be changed unintentionally.)

Improved Reusability with
Variable Programming

The function block’s I/O is entered as variables, so it isn’t necessary to change
data addresses in a block when reusing it.

Creating Libraries Processes that are independent and reusable (such as processes for individ-
ual steps, machinery, equipment, or control systems) can be saved as func-
tion block definitions and converted to library functions.

The function blocks are created with variable names that are not tied to actual
addresses, so new programs can be developed easily just by reading the def-
initions from the file and placing them in a new program.

Compatible with
Multiple Languages

Mathematical expressions can be entered in structured text (ST) language.

1-2-3 Function Block Structure
Function blocks consist of function block definitions that are created in
advance and function block instances that are inserted in the program.

Function Block
Definitions

Function block definitions are the programs contained in function blocks. Each
function block definition contains the algorithm and variable definitions, as
shown in the following diagram.

1. Algorithm

Standardized programming is written with variable names rather than real I/O
memory addresses. In the CX-Programmer, algorithms can be written in
either ladder programming or structured text.

tim_a TIMER
tim_b TIMER
ON_TIME INT
OFF_TIME INT

TIMX tim_a OFF_TIME
tim_b

TIMX tim_b ON_TIME
tim_a

ENO

Name Type
Internal

Internal
Input
Input

Function Block Definition
Example: CLOCK PULSE

Algorithm

Example: CLOCK PULSE

1. Algorithm

2. Variable Definitions

Variable definitions

Usage
8

Function Blocks Section 1-2
2. Variable Definitions

The variable table lists each variable’s usage (input, output, or internal) and
properties (data type, etc.). For details, refer to 1-3 Variables.

Number of Function Block
Definitions

The maximum number of function block definitions that can be created for one
CPU Unit is either 128 or 1,024 depending on the CPU Unit model.

Instances To use an actual function block definition in a program, create a copy of the
function block diagram and insert it in the program. Each function block defini-
tion that is inserted in the program is called an “instance” or “function block
instance.” Each instance is assigned an identifier called an “instance name.”

By generating instances, a single function block definition can be used to pro-
cess different I/O data with the same function.

Note Instances are managed by names. More than one instance with the same
name can also be inserted in the program. If two or more instances have the
same name, they will use the same internal variables. Instances with different
names will have different internal variables.

For example, consider multiple function blocks that use a timer as an internal
variable. In this case all instances will have to be given different names. If
more than one instance uses the same name, the same timer would be used
in multiple locations, resulting in duplicated use of the timer.

If, however, internal variables are not used or they are used only temporarily
and initialized the next time an instance is executed, the same instance name
can be used to save memory.

a b

c

a b

c

Not yet in program
and memory not yet
allocated
(abstract).

1. Algorithm

Function Block Definition FB1

2. Parameters

Standard
program unit
with variable
names a, b, c,
etc.

Program Instance

Block instance in program with memory
allocated. (object)

Instance FB1_1 of function block definition FB1 Memory
used

Input
data Output data

Output data

Automatic
allocation

Automatic
allocation

Memory
for FB1_1

Memory
for FB1_2

Different I/O data
can be processed
with the same
function.

Instance FB1_2 of function block definition FB1

Input
data Output data

Output data

Insert in
program.

Insert in
program.

Table defining usage
and properties of
variables a, b, c, etc.
9

Function Blocks Section 1-2
Number of Instances Multiple instances can be created from a single function block definition. Up to
either 256 or 2,048 instances can be created for a single CPU Unit depending
on the CPU Unit model. The allowed number of instances is not related to the
number of function block definitions and the number of tasks in which the
instances are inserted.

Parameters Each time an instance is created, set the real I/O memory addresses or con-
stants for I/O variables used to pass input data values to instances and obtain
output data values from instances. These addresses and constants are called
parameters.

Here, it is not the input source address itself, but the contents at the input
address in the form and size specified by the variable data type that is passed
to the function block. In a similar fashion, it is not the output destination
address itself, but the contents for the output address in the form and size
specified by the variable data type that is passed from the function block.

TIMER_FB

TIMER_FB

TIMER_FB

instance_A

instance_A

instance_B

Function Block Definition
TIMER_FB

Variable Definitions
Internal variable: WORK_NUM Use same internal variables.

Use different internal variables.

a b

c

Input 0.00

Instance of Function Block Definition A

Input 3.00

Output 2.00

Set the constants or
input source addresses
from which to pass data.

Set the constant or
output destination
address to which to pass
data.
10

Function Blocks Section 1-2
Even if an input source address (i.e., an input parameter) or an output desti-
nation address (i.e., an output parameter) is a word address, the data that is
passed will be the data in the form and size specified by the variable data type
starting from the specified word address.

Note (1) Only addresses in the following areas can be used as parameters: CIO
Area, Auxiliary Area, DM Area, EM Area (banks 0 to C), Holding Area,
and Work Area.
The following cannot be used: Index and Data Registers (both direct and
indirect specifications) and indirect addresses to the DM Area and EM
Area (both in binary and BCD mode).

(2) Local and global symbols in the user program can also be specified as
parameters. To do so, however, the data size of the local or global symbol
must be the same as the data size of the function block variable.

(3) When an instance is executed, input values are passed from parameters
to input variables before the algorithm is processed. Output values are
passed from output variables to parameters just after processing the al-
gorithm. If it is necessary to read or write a value within the execution cy-
cle of the algorithm, do not pass the value to or from a parameter. Assign
the value to an internal variable and use an AT setting (specified address-
es).

!Caution If an address is specified in an input parameter, the values in the address are
passed to the input variable. The actual address data itself cannot be passed.

!Caution Parameters cannot be used to read or write values within the execution cycle
of the algorithm. Use an internal variable with an AT setting (specified
addresses). Alternatively, reference a global symbol as an external variable.

■ Reference Information

A variety of processes can be created easily from a single function block by
using parameter-like elements (such as fixed values) as input variables and
changing the values passed to the input variables for each instance.

Example: Creating 3 Instances from 1 Function Block Definition

m k

n

Examples:
If m is type WORD, one word of data from D100 will be passed to the
variable.
If n is type DWORD, two words of data from D200 and D201 will be
passed to the variable.
If k is type LWORD, four words of data from the variable will be passed
to the D300 to D303.

Program

Input D100

Instance of Function Block Definition A

Output D300

Input D200
11

Function Blocks Section 1-2
If internal variables are not used, if processing will not be affected, or if the
internal variables are used in other locations, the same instance name can be
used at multiple locations in the program.

Some precautions are required when using the same memory area. For
example, if the same instance containing a timer instruction is used in more
than one program location, the same timer number will be used causing coil
duplication, and the timer will not function properly if both instructions are exe-
cuted.

Registration of Instances Each instance name is registered in the global symbol table as a file name.

P_On 1.0

&10

CONTROL
EN ENO

ON_TIME

OFF_TIME

&20

CASCADE_01

P_On 1.1

&10

CONTROL
EN ENO

ON_TIME

OFF_TIME

&15

CASCADE_02

P_On 1.2

&8

CONTROL
EN ENO

ON_TIME

OFF_TIME

&7

CASCADE_03

Function Block Definition

Example: CONTROL

Algorithm

Variables

Instance
CASCADE_02

Algorithm

Internal and I/O
variables

Instance
CASCADE_01

Algorithm

Internal and I/O
variables

Instance
CASCADE_03

Algorithm

Internal and I/O
variables

Cyclic task 0

Cyclic task 1

Example:
There are 3 FB
instances and each
has its own I/O and
internal variables.

P_On 1.0

&130

CONTROL
EN ENO

PARA_1

PARA_2

&100

CASCADE

P_On 1.1

&150

CONTROL
EN ENO

PARA_1

PARA_2

&50

CASCADE

P_On 1.2

&200

CONTROL
EN ENO

PARA_1

PARA_2

&100

CASCADE

Function block definition

Example: CONTROL

Algorithm

Variables

Instance
CASCADE

Algorithm
Internal and I/O
variables

Cyclic task 0

Cyclic task 1

The same instance can be
used at multiple locations.

a b

c

sample FB [FunctionBlock1] N/A[Auto]

Program

Instance (sample) of function block definition A

The instance is registered in the
global symbol table with the instance
name as the symbol name.

Name Data type Address/
value

The function block definition
name is registered after FB in
square parentheses [].Instance name
12

Variables Section 1-3
1-3 Variables

1-3-1 Introduction
In a function block, the addresses (see note) are not entered as real I/O mem-
ory addresses, they are all entered as variable names. Each time an instance
is created, the actual addresses used by the variable are allocated automati-
cally in the specified I/O memory areas by the CX-Programmer. Conse-
quently, it isn’t necessary for the user to know the real I/O memory addresses
used in the function block, just as it isn’t necessary to know the actual mem-
ory allocations in a computer. A function block differs from a subroutine in this
respect, i.e., the function block uses variables and the addresses are like
“black boxes.”

Example:

Note Constants are not registered as variables. Enter constants directly in instruc-
tion operands.

• Ladder programming language: Enter hexadecimal numerical values
after the # and decimal values after the &.

• Structured text (ST language): Enter hexadecimal numerical values af-
ter 16# and enter decimal numerical values as is.

Exception: Enter directly or indirectly specified addresses for Index Registers
IR0 to IR15 and Data Registers DR0 to DR15 directly into the instruction
operand.

1-3-2 Variable Usage and Properties
Variable Usage The following variable types (usages) are supported.

Internals: Internal variables are used only within an instance. They cannot
be used pass data directly to or from I/O parameters.

Inputs: Input variables can input data from input parameters outside of
the instance. The default input variable is an EN (Enable) vari-
able, which passes input condition data.

a b

c

MOV

a

c

b

Name Type AT Initial Value Retained

a BOOL
c BOOL

Name Type AT Initial Value Retained
b BOOL

0.00 a1 1

3.00 c0 0

2.00b 11

Input 0.00

Instance of function block definition A

Input 3.00

Output 2.00

Function block definition A

Standard program section with
variable names a, b, c, etc.

Insert in
program.

Specify inputs and outputs
at the same time.

Table indicating usage and
prpperties of variables a, b, c, etc.

Usage: Inputs

Prpperties:

Usage: Outputs

Prpperties:

Status of 0.00 (1 or 0) is
passed to a.

Status of b (1 or 0) is
passed to 2.00.

Status of 3.00 (1 or 0) is
passed to c.

Program

The system automatically allocates the
addresses used by variables a, b, and c. For
example, when W100 to W120 is set as the
system’s non-retained memory area, bit
addresses such as a = W10000, b = W10001,
and c = W10002 will be allocated.
13

Variables Section 1-3
Outputs: Output variables can output data to output parameters outside of
the instance. The default output variable is an ENO (Enable Out)
variable, which passes the instance’s execution status.

Externals: External variables are either system-defined variables registered
in advance with the CX-Programmer, such as the Condition Flags
and some Auxiliary Area bits, or user-defined global symbols for
use within instances.

For details on variable usage, refer to the section on Variable Type (Usage)
under Variable Definitions in 2-1-2 Function Block Elements.

The following table shows the number of variables that can be used and the
kind of variable that is created by default for each of the variable usages.

1-3-3 Variable Properties
Variables have the following properties.

Variable Name The variable name is used to identify the variable in the function block. It
doesn’t matter if the same name is used in other function blocks.

Note The variable name can be up to 30,000 characters long, but must not begin
with a number. Also, the name cannot contain two underscore characters in a
row. The character string cannot be the same as that of a an index register
such as in IR0 to IR15. For details on other restrictions, refer to Variable Defi-
nitions in 2-1-2 Function Block Elements.

Data Type Select one of the following data types for the variable:

BOOL, INT, UINT, DINT, UDINT, LINT, ULINT, WORD, DWORD, LWORD,
REAL, LREAL, TIMER, COUNTER

For details on variable data types, refer to Variable Definitions in 2-1-2 Func-
tion Block Elements.

AT Settings (Allocation to
an Actual Addresses)

It is possible to set a variable to a particular I/O memory address rather than
having it allocated automatically by the system. To specify a particular
address, the user can input the desired I/O memory address in this property.
This property can be set for internal variables only. Even if a specific address
is set, the variable name must still be used in the algorithm.

Refer to Variable Definitions in 2-1-2 Function Block Elements for details on
AT settings and 2-4-3 AT Settings for Internal Variables for details on using AT
settings.

Array Settings A variable can be treated as a single array of data with the same properties.
To convert a variable to an array, specify that it is an array and specify the
maximum number of elements.

This property can be set for internal variables only. Only one-dimensional
arrays are supported by the CX-Programmer Ver. 5.0.

• Setting Procedure
Click the Advanced Button, select the Array Variable option, and input the
maximum number of elements.

• When entering an array variable name in the algorithm in a function block
definition, enter the array index number in square brackets after the vari-
able number.

For details on array settings, refer to Variable Definitions in 2-1-2 Function Block
Elements.

Initial Value This is the initial value set in a variable before the instance is executed for the
first time. Afterwards, the value may be changed as the instance is executed.
14

Variables Section 1-3
For example, set a boolean (BOOL) variable (bit) to either 1 (TRUE) or 0
(FALSE). Set a WORD variable to a value between 0 and 65,535 (between
0000 and FFFF hex).

If an initial value is not set, the variable will be set to 0. For example, a bool-
ean variable would be 0 (FALSE) and a WORD variable would be 0000 hex.

Retain Select the Retain Option if you want a variable’s data to be retained when the
PLC is turned ON again and when the PLC starts operating.

• Setting Procedure
Select the Retain Option.

1-3-4 Variable Properties and Variable Usage
The following table shows which properties must be set, can be set, and can-
not be set, based on the variable usage.

Note Inputs can be set as initial values, but the value of the actual input parameter
will be given priority.

1-3-5 Internal Allocation of Variable Addresses
When an instance is created from a function block definition, the CX-Program-
mer internally allocates addresses to the variables. Addresses are allocated
to all of the variables registered in the function block definition except for vari-
ables that have been assigned actual addresses with the AT Settings prop-
erty.

Setting Internal Allocation
Areas for Variables

The user sets the function block instance areas in which addresses are allo-
cated internally by the system. The variables are allocated automatically by
the system to the appropriate instance area set by the user.

Property Variable usage

Internals Inputs Outputs

Name Must be set. Must be set. Must be set.

Data Type Must be set. Must be set. Must be set.

AT (specified address) Can be set. Cannot be set. Cannot be set.

Initial Value Can be set. Can be set.
(See note.)

Can be set.

Retained Can be set. Can be set.
(See note.)

Can be set.

a b

15 0

15 0

t

Name Type AT Initial Value Retained

a BOOL

Name Type AT

b YES

t TIMER

2000.00
Name Type Initial Value

c 2000.00

Initial Value Retained

RetainedAT

BOOL

BOOL

Input 0.00

Instance of function block definition A

Output 2.00

Output 5.00

Note: Variable c is an internal
variable, so it is not displayed.

Usage: Inputs
Properties:

Usage: Outputs
Properties:

Usage: Internals
Properties:

Automatic allocation of
addresses by system

Manual allocation of address to
variable in FB by AT Settings option.

Program FB instance areas

Size (words)

Non-retained area

Retained area

Starting address

Starting address

Starting address

Starting
address

Timer area

Counter area

CIO, H, W,
D, or E Area

H, D, or E
Area

T Area

C Area

Size (words)

Size (Completion
Flags)

Size (Completion
Flags)

Example
15

Converting Function Block Definitions to Library Files Section 1-4
Setting Procedure

Select Function Block Memory - Function Block Memory Allocation from
the PLC Menu. Set the areas in the Function Block Memory Allocation Dialog
Box.

Function Block Instance Areas

Function Block Holding
Area Words (H512 to
H1535)

The Function Block Holding Area words are allocated from H512 to H1535.
These words are different to the standard Holding Area used for programs
(H000 to H511) and are used only for the function block instance area (inter-
nally allocated variable area). These words cannot be specified as instruction
operands. They are displayed in red if input when a function block is not being
created. Although the words can be input when creating a function block, an
error will occur when the program is checked. If this area is specified not to be
retained in the Function Block Memory Allocation Dialog Box, turn the power
ON/OFF or clear the area without retaining the values when starting opera-
tion.

1-4 Converting Function Block Definitions to Library Files
A function block definition created using the CX-Programmer can be stored as
a single file known as a function block definition file with filename extension
*.cxf. These files can be reused in other projects (PLCs).

FB Instance
Area

Default value Applicable memory
areasStart Address End Address Size

Non Retain H512 H1407 896 CIO, WR, HR, DM, EM

Retain H1408 H1535 128 HR, DM, EM

Timers T3072 T4095 1024 TIM

Counters C3072 C4095 1024 CNT

tim_b

tim_a

ENO

TIMX tim_a OFF_TIME
tim_b

TIMX tim_b ON_TIME
tim_a

ENO

Project Project

Save Read

Function block definition
Example: CLOCK_PULSE

Function block definition
Example: CLOCK_PULSE

1. Algorithm
1. Algorithm

Function block
definition file (.cxf)

TIMX tim_a OFF_TIME

TIMX tim_b ON_TIME

tim_a TIMER
tim_b TIMER
ON_TIME INT
OFF_TIME INT

Name Type
Internal

Internal
Input
Input

2. Variable Definitions
Usage tim_a TIMER

tim_b TIMER
ON_TIME INT
OFF_TIME INT

Name Type
Internal

Internal
Input
Input

2. Variable Definitions
Usage
16

Usage Procedures Section 1-5
1-5 Usage Procedures
Once a function block definition has been created and an instance of the algo-
rithm has been created, the instance is used by calling it when it is time to
execute it. Also, the function block definition that was created can be saved in
a file so that it can be reused in other projects (PLCs).

1-5-1 Creating Function Blocks and Executing Instances
The following procedure outlines the steps required to create and execute a
function block.

1,2,3... 1. First, create the function block definition including the algorithm and vari-
able definitions in ladder program or ST language. Alternatively, insert a
function block library file that has been prepared in advance.

Note (a) Create the algorithm entirely with variable names.

(b) When entering the algorithm in ladder programming language,
project files created with versions of CX-Programmer earlier than
Ver. 5.0 can be reused by reading the project file into the CX-Pro-
grammer Ver. 5.0 and copying and pasting useful parts.

2. When creating the program, insert copies of the completed function block
definition. This step creates instances of the function block.

3. Enter an instance name for each instance.

4. Set the variables’ input source addresses and/or constants and output
destination addresses and/or constants as the parameters to pass data for
each instance.

5. Select the created instance, select Function Block Memory - Function
Block Memory Allocation from the PLC Menu, and set the internal data
area for each type of variable.

6. Transfer the program to the CPU Unit.

7. Start program execution in the CPU Unit and the instance will be called and
executed if their input conditions are ON.

a b

c

1. Algorithm

2. Variables

Standard
program section
with variable
names a, b, c,
etc.

Table defining usage
and properties of
variables a, b, c, etc.

Input 0.00

Function block definition A Program

Insert in
program.

Input
condition

The instance is
executed if the input
condition is established. 3. Input instance name

Output 2.00

Output 3.00

Instance of function block definition A
5. The system automatically allocates
the addresses used by these
variables. Set the data area area in
which these addresses are allocated.

4. Specify the input source and
output destination addresses.
17

Usage Procedures Section 1-5
1-5-2 Reusing Function Blocks
Use the following procedure to save a function block definition as a file and
use it in a program for another PLCs.

1,2,3... 1. Select the function block that you want to save and save it as a function
block definition file (*.cxf).

2. Open the other PLC’s project and open/read the function block definition
file (*.cxf) that was saved.

3. Insert the function block definition in the program when creating the new
program.

Note In the CX-Programmer Ver. 5.0, each function block definition can be com-
piled and checked as a program. We recommend compiling to perform a pro-
gram check on each function block definition file before saving or reusing the
file.

a b

c

1. Algorithm

2. Variables

Standard
program section
with variable
names a, b, c,
etc.

Table defining usage
and properties of
variables a, b, c, etc.

Input 1.00

Function block definition A

Program

Input
condition

Output 5.00

Output 6.00

Instance of function block definition A

Save

Read and
insert.

Function
block
definition
A

Function block
definition file (*.cxf)
18

SECTION 2
Specifications

This section provides specifications for reference when using function blocks, including specifications on function blocks,
instances, and compatible PLCs, as well as usage precautions and guidelines.

2-1 Function Block Specifications . 21

2-1-1 Function Block Specifications . 21

2-1-2 Function Block Elements . 21

2-2 Instance Specifications . 30

2-2-1 Composition of an Instance . 30

2-2-2 Parameter Specifications. 34

2-2-3 Operating Specifications. 35

2-3 Restrictions on Function Blocks . 37

2-4 Function Block Applications Guidelines . 42

2-4-1 Deciding on Variable Data Types . 42

2-4-2 Determining Variable Types (Inputs, Outputs, Externals, and Internals) 42

2-4-3 AT Settings for Internal Variables. 43

2-4-4 Array Settings for Internal Variables . 44

2-4-5 Specifying Addresses Allocated to Special I/O Units 45

2-4-6 Using Index Registers. 46

2-5 Precautions for Instructions with Operands Specifying the First or Last

of Multiple Words . 49

2-6 Instruction Support and Operand Restrictions . 52

2-6-1 Sequence Input Instructions . 53

2-6-2 Sequence Output Instructions . 55

2-6-3 Sequence Control Instructions . 56

2-6-4 Timer and Counter Instructions . 57

2-6-5 Comparison Instructions. 60

2-6-6 Data Movement Instructions. 62

2-6-7 Data Shift Instructions . 64

2-6-8 Increment/Decrement Instructions . 67

2-6-9 Symbol Math Instructions. 67

2-6-10 Conversion Instructions . 72

2-6-11 Logic Instructions . 74

2-6-12 Special Math Instructions . 76

2-6-13 Floating-point Math Instructions . 76

2-6-14 Double-precision Floating-point Instructions. 80

2-6-15 Table Data Processing Instructions. 82

2-6-16 Data Control Instructions . 85

2-6-17 Subroutine Instructions. 86

2-6-18 Interrupt Control Instructions . 87

2-6-19 High-speed Counter and Pulse Output Instructions

(CJ1M-CPU21/22/23 Only) . 88
19

2-6-20 Step Instructions . 89

2-6-21 Basic I/O Unit Instructions . 89

2-6-22 Serial Communications Instructions . 91

2-6-23 Network Instructions . 93

2-6-24 File Memory Instructions . 95

2-6-25 Display Instructions. 95

2-6-26 Clock Instructions . 96

2-6-27 Debugging Instructions . 97

2-6-28 Failure Diagnosis Instructions. 98

2-6-29 Other Instructions . 98

2-6-30 Block Programming Instructions . 99

2-6-31 Text String Processing Instructions . 101

2-6-32 Task Control Instructions . 103

2-6-33 Model Conversion Instructions . 103

2-6-34 Special Instructions for Function Blocks . 104

2-7 CPU Unit Function Block Specifications . 104

2-7-1 Specifications . 104

2-7-2 Operation of Timer Instructions . 107

2-8 Number of Function Block Program Steps and Instance Execution Time . . . 108

2-8-1 Number of Function Block Program Steps

(CPU Units with Unit Version 3.0 or Later) 108

2-8-2 Function Block Instance Execution Time

(CPU Units with Unit Version 3.0 or Later) 109
20

Function Block Specifications Section 2-1
2-1 Function Block Specifications

2-1-1 Function Block Specifications

2-1-2 Function Block Elements
The following table shows the items that must be entered by the user when
defining function blocks.

Function Block
Definition Name

Each function block definition has a name. The names can be up to 64 char-
acters long and there are no prohibited characters. The default function block
name is FunctionBlock@, where @ is a serial number.

Item Description

Number of function block definitions CS1-H/CJ1-H CPU Units:
• Suffix -CPU44H/45H/64H/65H/66H/67H:

1,024 max. per CPU Unit
• Suffix -CPU42H/43H/63H: 128 max. per CPU

Unit
CJ1M CPU Units:

• CJ1M-CPU11/12/13/21/22/23: 128 max. per
CPU Unit

Number of instances CS1-H/CJ1-H CPU Units:
• Suffix -CPU44H/45H/64H/65H/66H/67H:

2,048 max. per CPU Unit
• Suffix -CPU42H/43H/63H: 256 max. per CPU

Unit
CJ1M CPU Units:
CJ1M-CPU11/12/13/21/22/23: 256 max. per
CPU Unit

Number of instance nesting levels Nesting is not supported.

Number of I/O variables 64 variables max. per function block definition

Item Description

Function block
definition name

The name of the function block definition

Language The programming language used in the function block defini-
tion. Select ladder programming or structured text

Variable definitions Variable settings, such as operands and return values,
required when the function block is executed
• Type (usage) of the variable
• Name of the variable
• Data type of the variable
• Initial value of the variable

Algorithm Enter the programming logic in ladder or structured text.
• Enter the programming logic using variables.
• Input constants directly without registering in variables.

Comment Function blocks can have comments.

CLOCK PULSE
EN ENO
(BOOL) (BOOL)
ON_TIME
(INT)

OFF_TIME
(INT)

Function block definition name
21

Function Block Specifications Section 2-1
Language Select either ladder programming language or structured text (ST language).

For details refer to Appendix B Structured Text (ST Language) Specifications.

Variable Definitions Define the operands and variables used in the function block definition.

Variable Names • Variable names can be up to 30,000 characters long.

• Variables name cannot contain spaces or any of the following characters:
! “ # $ % & ‘ () = - ~ ^ \ | ‘ @ { [+ ; * : }] < , > . ? /

• Variable names cannot start with a number (0 to 9).

• Variable names cannot contain two underscore characters in a row.

• The following characters cannot be used to indicate addresses in I/O
memory.

A, W, H (or HR), D (or DM), E (or EM), T (or TIM), C (or CNT) followed
by the numeric value (word address)

Variable Notation

Variable Type (Usage)

CLOCK PULSE
EN

 ENO
(BOOL) (BOOL)

ON_TIME
 (INT)
OFF_TIME
(INT)

TIMX tim_a OFF_TIME
tim_b

TIMX tim_b OFF_TIME
tim_a

ENO

tim_a TIMER
tim_b TIMER
ON_TIME INT
OFF_TIME INT

Input variables
Output variables

Internal
variables

Variable table

Name
Internal
Internal
Input
Input

TypeUsage

Item Variable type

Inputs Outputs Internals Externals

Definition Operands to the
instance

Return values from the
instance

Variables used only
within instance

Global symbols regis-
tered as variables
beforehand with the
CX-Programmer or
user-defined global
symbols.

Status of value at next
execution

The value is not
passed on to the next
execution.

The value is passed on
to the next execution.

The value is passed on
to the next execution.

The value is not
passed on to the next
execution.

Display Displayed on the left
side of the instance.

Displayed on the right
side of the instance.

Not displayed. Not displayed.

Number allowed 64 max. per function
block (excluding EN)

64 max. per function
block (excluding ENO)

Unlimited Unlimited

AT setting No No Supported No

Array setting No No Supported No
22

Function Block Specifications Section 2-1
Note For details on Externals, refer to Appendix C External Variables.

■ Input Variables

Input variables pass external operands to the instance. The input variables
are displayed on the left side of the instance.

The value of the input source (data contained in the specified parameter just
before the instance was called) will be passed to the input variable.

Example

Note 1. The same name cannot be assigned to an input variable and output vari-
able. If it is necessary to have the same variable as an input variable and
output variable, register the variables with different names and transfer the
value of the input variable to the output variable in the function block with
an instruction such as MOV.

2. When the instance is executed, input values are passed from parameters
to input variables before the algorithm is processed. Consequently, values
cannot be read from parameters to input variables within the algorithm. If
it is necessary to read a value within the execution cycle of the algorithm,
do not pass the value from a parameter. Assign the value to an internal
variable and use an AT setting (specified addresses). Alternatively, refer-
ence the global symbol as external variables.

Retain setting No Supported Supported No

Variables created by
default

EN (Enable):
Receives an input con-
dition.

ENO (Enable Output):
Outputs the function
block’s execution sta-
tus.

None Pre-defined symbols
registered in advance
as variables in the CX-
Programmer, such as
Condition Flags and
some Auxiliary Area
bits.

Item Variable type

Inputs Outputs Internals Externals

P_On 1.0
FB

EN
ENO

PV CV

D0 D100

The value of the parameter specified as the input (value of D0)
is passed to the instance’s input variable (PV).

D1000

0.0 10.0

D200

ADD_INT_DINT

EN ENO

IN16 OUT32

IN32

D100

tmp DINT
EN BOOL
IN16 INT
IN32 DINT
ENO BOOL
OUT32 DINT

SIGN IN16 tmp
P_On

+L IN32 tmp OUT32

IN16 is an INT variable, so the content of D100 is used.

IN32 is a DINT variable, so the content of D200 and
D201 is used.

Algorithm (Body)

Variable table
Name

Internal
Input
Input
Input
Output
Output

TypeUsage
23

Function Block Specifications Section 2-1
Initial Value

Initial values can be set for input variables, but the value of the input parame-
ter will be enabled (the input parameter value will be set when the parameter
for input variable EN goes ON and the instance is executed).

Note The input parameter setting cannot be omitted when using the CX-
Programmer.

EN (Enable) Variable

When an input variable is created, the default input variable is the EN variable.
The instance will be executed when the parameter for input variable EN is ON.

■ Output Variables

Output variables pass return values from the instance to external applications.
The output variables are displayed on the right side of the instance.

After the instance is executed, the value of the output variable is passed to the
specified parameter.

Example

Like internal variables, the values of output variables are retained until the
next time the instance is executed (i.e., when EN turns OFF, the value of the
output variable is retained).

Example:
In the following example, the value of output variable CV will be retained until
the next time the instance is executed.

Note 1. The same name cannot be assigned to an input variable and output vari-
able. If it is necessary to have the same variable as an input variable and
output variable, register the variables with different names and transfer the
value of the input variable to the output variable in the function block with
an instruction such as MOV.

P_On FB
EN ENO

PV CVD0 D100

1.0

The value of the output variable (CV) is passed to the parameter
specified as the output destination, which is D100 in this case.

D1000

0.0 10.0

D200

ADD_INT_DINT
EN ENO

IN16 OUT32

IN32

D100

tmp DINT
EN BOOL
IN16 INT
IN32 DINT
ENO BOOL
OUT32 DINT

SIGN IN16 tmp
EN

+L IN32 tmp OUT32

OUT32 is a DINT variable, so
the variable's value is passed
to D1000 and D1001.

Algorithm (Body)

Variable table
Name

Internal
Input
Input
Input
Output
Output

Data typeUsage

CTD
CD Q

LD

PV CV D150

Product A counter
24

Function Block Specifications Section 2-1
2. When the instance is executed, output variables are passed to the corre-
sponding parameters after the algorithm is processed. Consequently, val-
ues cannot be written from output variables to parameters within the
algorithm. If it is necessary to write a value within the execution cycle of the
algorithm, do not write the value to a parameter. Assign the value to an in-
ternal variable and use an AT setting (specified addresses).

Initial Value

An initial value can be set for an output variable that is not being retained, i.e.,
when the Retain Option is not selected. An initial value cannot be set for an
output variable if the Retain Option is selected.
The initial value will not be written to the output variable if the IOM Hold Bit
(A50012) is ON.

ENO (Enable Output) Variable

The ENO variable is created as the default output variable. The ENO output
variable will be turned ON when the instance is called. The user can change
this value. The ENO output variable can be used as a flag to check whether or
not instance execution has been completed normally.

■ Internal Variables

Internal variables are used within an instance. These variables are internal to
each instance. They cannot be referenced from outside of the instance and
are not displayed in the instance.

The values of internal variables are retained until the next time the instance is
executed (i.e., when EN turns OFF, the value of the internal variable is
retained). Consequently, even if instances of the same function block defini-
tion are executed with the same I/O parameters, the result will not necessarily
be the same.

Example:

The internal variable tim_a in instance Pulse_2sON_1sOFF is different from
internal variable tim_a in instance Pulse_4sON_1sOFF, so the instances can-
not reference and will not affect each other’s tim_a value.

Auxiliary Area control bit Initial value

IOM Hold Bit (A50012) ON The initial value will not be set.

P_On 1.0

&10

CLOCK PULSE
EN ENO

ON_TIME

OFF_TIME

&20

Pulse_2sON_1sOFF

P_On 1.1

&10

CLOCK PULSE
EN ENO

ON_TIME

OFF_TIME

&40

Pulse_4sON_1sOFF

tim_a TIMER
tim_b TIMER
ON_TIME INT
OFF_TIME INT

Variable table
Name

Internal
Internal
Input
Input

Data typeUsage
25

Function Block Specifications Section 2-1
Retain Data through Power Interruptions and Start of Operation

Internal variables retain the value from the last time that the instance was
called. In addition, the Retain Option can be selected so that an internal vari-
able will also retains its value when the power is interrupted or operation
starts (the mode is switched from PROGRAM to RUN or MONITOR mode).

When the Retain Option is selected, the value of the variable is retained when
the power is interrupted or operation starts unless the CPU Unit does not
have a backup battery. If the CPU Unit does not have a good battery, the value
will be unstable.

When the Retain Option is not selected, the value of the variable will not be
held when the power is interrupted or operation starts. Even variables not set
to be retained, however, can be held at the start of operation by turning ON
the IOM Hold Bit (A50012) and can be held during power interruptions by set-
ting the PLC Setup, as shown in the following table.

Note The IOM Hold Bit (A50012) is supported for compatibility with previous mod-
els. To hold the values of variables in function blocks, however, use the Retain
Option and not the IOM Hold Bit.

Initial Value

An initial value can be set for an internal variable that is not being retained
(i.e., when the Retain Option not selected). An initial value cannot be set for
an internal variable if the Retain Option is selected.
Internal variables that are not being retained will be initialized to 0.
The initial value will not be written to the internal variable if the IOM Hold Bit
(A50012) is ON.

■ External Variables

External variables are either system-defined variables that have been regis-
tered in CX-Programmer before hand, or variables that externally reference
user-defined variables in the global symbol table.

Variables Condition Status

Variables set to Retain Start of operation Retained

Power ON Retained

SIGN IN16 tmp
EN

+L IN32 tmp OUT32

tmp DINT
EN BOOL
IN16 INT
IN32 DINT
ENO BOOL
OUT32 DINT

D1000

0.0 10.0

D200

ADD_INT_DINT
EN ENO

IN16 OUT32

IN32

D100

Internal variable tmp
is not displayed.

Algorithm (Body)

Variable table
Name

Internal
Input
Input
Input
Output
Output

Type

Variables Condition IOM Hold Bit (A50012) setting

OFF ON

IOM Hold Bit Status at Startup
(PLC Setup) selected

IOM Hold Bit Status at Startup
(PLC Setup) not selected

Variables not
set to Retain

Start of operation Not retained Retained Retained

Power ON Not retained Retained Not retained

Auxiliary Area control bit Initial value

IOM Hold Bit (A50012) ON The initial value will not be set.

OFF The initial value will be set.
26

Function Block Specifications Section 2-1
• For details on system-defined variables, refer to Appendix C External
Variables.

• To reference user-defined variables in the global symbol table, the vari-
ables must be registered in the global symbol table using the same vari-
able name and data type as the external variable.

Variable Properties Variable Name

The variable name is used to identify the variable in the function block. The
name can be up to 30,000 characters long. The same name can be used in
other function blocks.

Note A variable name must be input for variables, even ones with AT settings (spec-
ified address).

Data Type

Any of the following types may be used.

Note (1) The TIMER data type is used to enter variables for timer numbers (0 to
4095) in the operands for TIMER instructions (TIM, TIMH, etc.). When
this variable is used in another instruction, the Timer Completion Flag (1
bit) or the timer present value (16 bits) is specified (depending on the in-
struction operand). The TIMER data type cannot be used in structured
text function blocks.

(2) The COUNTER data type is used to enter variables for counter numbers
(0 to 4095) in the operands for COUNTER instructions (CNT, CNTR,
etc.). When this variable is used in another instruction, the Counter Com-
pletion Flag (1 bit) or the counter present value (16 bits) is specified (de-
pending on the instruction operand). The COUNTER data type cannot be
used in structured text function blocks.

AT Settings (Allocation to Actual Addresses)

With internal variables, it is possible to set the variable to a particular I/O
memory address rather than having it allocated automatically by the system.
To specify a particular address, the user can input the desired I/O memory
address in this property. It is still necessary to use variable name in program-
ming even if a particular address is specified.

Note (1) The AT property can be set for internal variables only.

Data type Content Size Inputs Outputs Internals

BOOL Bit data 1 bit OK OK OK

INT Integer 16 bits OK OK OK

UNIT Unsigned integer 16 bits OK OK OK

DINT Double integer 32 bits OK OK OK

UDINT Unsigned double integer 32 bits OK OK OK

LINT Long (4-word) integer 64 bits OK OK OK

ULINT Unsigned long (4-word) integer 64 bits OK OK OK

WORD 16-bit data 16 bits OK OK OK

DWORD 32-bit data 32 bits OK OK OK

LWORD 64-bit data 64 bits OK OK OK

REAL Real number 32 bits OK OK OK

LREAL Long real number 64 bits OK OK OK

TIMER Timer (See note 1.) Flag: 1 bit
PV: 16 bits

Not supported Not supported OK

COUNTER Counter (See note 2.) Flag: 1 bit
PV: 16 bits

Not supported Not supported OK
27

Function Block Specifications Section 2-1
(2) AT settings can be used only with the CIO (Core I/O Area), A (Auxiliary
Area), D (Data Memory Area), E (Extended Memory Area, H (Holding
Relay Area), W (Internal Relay Area).
The AT property cannot be set in the following memory areas:

• Index Register and Data Register Areas (directly/indirectly specified)

• Indirectly specified DM/EM (: binary mode, *:BCD mode)

(3) AT settings can be used for the following allocations.

• Addresses for Basic I/O Units, CPU Bus Units, or Special I/O Units

• Auxiliary Area bits not registered as external variables in advance

• PLC addresses for other nodes in the network

• Instruction operands specifying the beginning word (or end word) of
multiple words.

Example:
If the READ DATA FILE instruction (FREAD) is being used in the function
block definition and it is necessary to check the File Memory Operation Flag
(A34313), use an internal variable and specify the flag’s address in the AT set-
ting.

Register an internal variable, select the AT setting option, and specify A34313
as the address. The status of the File Memory Operation Flag can be checked
through this internal variable.

When the AT setting is used, the function block loses its flexibility. This func-
tion should thus be used only when necessary.

Array Setting

With internal variables, a variable can be defined as an array.

Note Only one-dimensional arrays are supported by the CX-Programmer.

With the array setting, a large number of variables with the same properties
can be used by registering just one variable.

• An array can have from 1 to 32,000 array elements.

• The array setting can be set for internal variables only.

• Any data type can be specified for an array variable, as long as it is an
internal variable.

• When entering an array variable name in the algorithm of a function block
definition, enter the array index number in square brackets after the vari-
able name. The following three methods can be used to specify the index.
(In this case the array variable is a[].)

• Directly with numbers (for ladder or ST language programming)
Example: a[2]

• With a variable (for ladder or ST language programming)
Example: a[n], where n is a variable

Address A34313 is allocated to a
boolean internal variable named
NOW_CARD_ACCESS.
28

Function Block Specifications Section 2-1
Note INT, DINT, LINT, UINT, UDINT, or ULINT can be used as the vari-
able data type.

• With an equation (for ST language programming only)
Example: a[b+c], where b and c are variables

Note Equations can contain only arithmetic operators (+, −, *, and /).

An array is a collection of data elements that are the same type of data. Each
array element is specified with the same variable name and a unique index.
(The index indicates the location of the element in the array.)

A one-dimensional array is an array with just one index number.

Example: When an internal variable named SCL is set as an array variable
with 10 elements, the following 10 variables can be used:
SCL[0], SCL[1], SCL[2], SCL[3], SCL[4], SCL[5], SCL[6], SCL[7], SCL[8], and
SCL[9]

Note Use an internal array variable when specifying the first or last of multiple
words in an instruction operand to enable reusing the function block if an inter-
nal variable with a AT property cannot be set for the operand and an external
variable cannot be set. Prepare an internal array variable with the number of
elements for the required size, and after setting the data in each array ele-
ment, specify the first or last element in the array variable for the operand.

Example:

SCL

0

1

2

3

4

5

6

7

8

9

Specify SCL[3] to access this data element.

WORD variable

WORD variable

WORD variable

WORD variable

WORD variable

WORD variable

WORD variable

WORD variable

WORD variable

WORD variable

Settings for variable SCL as an array
variable with element numbers 0 to 9.

SCL- BODY

LD P_On
MOV #0000 SCSCL[0]
MOV &0 SCSCL[1]
MOV #0300 SCSCL[2]
MOV &4000 SCSCL[3]
SCL S SCSCL[0] D

SCL
EN ENO

S D
100

SCL WORD[10]

SCL

0 #0000

1 &0

2 #0300

3 &4000

Function block definition Instance

Variable

Algorithm

Specifying this array element
in the SCL instruction is the
same as specifying the first
address.

Write the operand data to
the array variables.

Specify the beginning of the
array in the SCL instruction.
29

Instance Specifications Section 2-2
Note For details, refer to 2-5 Precautions for Instructions with Operands Specifying
the First or Last of Multiple Words.

Initial Values

When an instance is executed the first time, initial values can be set for input
variables, internal variables, and output variables. For details, refer to Initial
Value under the preceding descriptions of input variables, internal variables,
and output variables.

Retaining Data through Power Interruptions and Start of Operation

The values of internal variables can be retained through power interruptions
and the start of operation. When the Retain Option is selected, the variable
will be allocated to a region of memory that is retained when the power is
interrupted and PLC operation starts.

Algorithm Enter the logic programming using the registered variables.

Operand Input
Restrictions

Addresses cannot be directly input into instruction operands within function
blocks. Addresses that are directly input will be treated as variable names.

Note Exception: Input directly or indirectly specified addresses for Index Registers
IR0 to IR15 and Data Registers DR0 to DR15 directly into the instruction
operand. Do not input variables.

Input constants directly into instruction operands.

• Ladder programming language: Enter hexadecimal numerical values
after the # and decimal values after the &.

• Structured text (ST language): Enter hexadecimal numerical values af-
ter 16# and enter decimal numerical values as is.

Comment A comment of up to 30,000 characters long can be entered.

2-2 Instance Specifications

2-2-1 Composition of an Instance
The following table lists the items that the user must set when registering an
instance.

Item Description

Instance name Name of the instance

Language
Variable definitions

The programming and variables are the same as in
the function block definition.

Function block instance areas The ranges of addresses used by the variables

Comments A comment can be entered for each instance.
30

Instance Specifications Section 2-2
Instance Name This is the name of the instance.

• Instance names can be up to 30,000 characters long.

• Instance names cannot contain spaces or any of the following characters:
! “ # $ % & ‘ () = - ~ ^ \ | ‘ @ { [+ ; * : }] < , > . ? /

• Instance names cannot start with a number (0 to 9).

There are no other restrictions.

The instance name is displayed above the instance in the diagram.

Function Block
Instance Areas

To use a function block, the system requires memory to store the instance’s
internal variables and I/O variables. These areas are known as the function
block instance areas and the user must specify the first addresses and sizes
of these areas. The first addresses and area sizes can be specified in 1-word
units.

When the CX-Programmer compiles the function, it will output an error if there
are any instructions in the user program that access words in these areas.

Function Block Instance
Area Types

The following settings are made in the function block instance area:

Non-retained Areas

Note (1) Except when the data type is set to TIMER or COUNTER.

CLOCK PULSE
EN
ENO

ON_TIME

OFF_TIME

Pulse_2sON_2sOFF

Instance name

&20

&10

FB Instance
Area

Default value Applicable memory
areasStart Address End Address Size

Non Retain H512 H1407 896 CIO, WR, HR, DM, EM

Retain H1408 H1535 128 HR, DM, EM

Timers T3072 T4095 1024 TIM

Counters C3072 C4095 1024 CNT

Item Contents

Allocated variables Variables for which the retain property for power OFF and
operation start is set as non-retained (See note 1.)

Applicable areas H (Function block Special Holding Area), I/O (CIO Area), H
(Holding Area), W (Internal Relay Area), D (Data Memory
Area) (see note 2), E (Extended Data Memory Area) (See
notes 2 and 3.)

Setting unit Set in words

Allocated words
(default)

H512 to H140
31

Instance Specifications Section 2-2
(2) Bit data can be accessed even if the DM or EM Area is specified for the
non-retained area or retained area.

(3) The same bank number cannot be specified as the current bank in the
user program if the EM Area is specified for the non-retained area or re-
tained area.

Retained Area

Note (1) Except when the data type is set to TIMER or COUNTER.

(2) Bit data can be accessed even if the DM or EM Area is specified for the
non-retained area or retained area.

(3) The same bank number cannot be specified as the current bank in the
user program if the EM Area is specified for the non-retained area or re-
tained area.

Timer Area

Counter Area

Function Block Holding
Area (H512 to H1535)

The default allocation of Function Block Holding Area words set as retained
and non-retained words is H512 to H1535. These words are different to the
standard Holding Area used for programs (H000 to H511), and are used only
for the function block instance area (internally allocated variable area).

• These words cannot be specified in AT settings for internal variables.

• These words cannot be specified as instruction operands.

• These words are displayed in red if they are input when a function
block is not being created.

• Although the words can be input when creating a function block, an
error will occur when the program is checked.

• If this area is specified as non-retained, turn the power ON/OFF or clear
the area without retaining the values when starting operation.

Note To prevent overlapping of instance area addresses with addresses used in the
program, set H512 to H1535 (Function Block Holding Area words) for the non-
retained area and retained area.

Item Contents

Allocated variables Variables for which the retain property for power OFF and
operation start is set as retained (See note 1.)

Applicable areas H (Function block Special Holding Area), H (Holding Area), D
(Data Memory Area) (see note 1), E (Extended Data Memory
Area) (See notes 2 and 3.)

Setting unit Set in words

Allocated words
(default)

H1408 to H1535

Item Contents

Allocated variables Variables with TIMER set as the data type.

Applicable areas T (Timer Area) Timer Flag (1 bit) or timer PVs (16 bits)

Allocated words
(default)

T3072 to T4095 Timer Flag (1 bit) or timer PVs (16 bits)

Item Contents

Allocated variables Variables with COUNTER set as the data type.

Applicable areas C (Counter Area) Counter Flag (1 bit) or counter PVs (16 bits)

Allocated words
(default)

C3072 to C4095 Counter Flag (1 bit) or counter PVs (16 bits)
32

Instance Specifications Section 2-2
Accessing Function Block
Instance Area from the
User Program

If the user program contains an instruction to access the function block
instance area, an error will be displayed in the Compile Tab of the Output Win-
dow of CX-Programmer if the following operations are attempted.

• Attempting to write during online editing (writing not possible)

• Executing program check (Selecting Compile from the Program Menu or
Compile All PLC Programs from the PLC Menu)

Example: If W0 to W511 is specified as the non-retained area of the function
block instance area and W0.00 is used in the ladder program, an error will
occur when compiling and be displayed as “ERROR: [omitted]...- Address -
W0.00 is reserved for Function Block use].

Note The allocations in the function block instance area for variables are automati-
cally reallocated when a variable is added or deleted. A single instance
requires addresses in sequence, however, so if addresses in sequence can-
not be obtained, all variables will be allocated different addresses. As a result,
unused areas will be created. If this occurs, execute the optimization opera-
tion to effectively use the allocated areas and remove the unused areas.

Comments A comment of up to 30,000 characters long can be entered.

Creating Multiple
Instances

Calling the Same Instance A single instance can be called from multiple locations. In this case, the inter-
nal variables will be shared.

Making Multiple Instances Multiple instances can be created from a single function block definition. In
this case, the values of internal variables will be different in each instance.

Example: Counting Product A and Product B

Prepare a function block definition called Down Counter (CTD) and set up
counters for product A and product B. There are two types of programs, one
for automatic operation and another for manual operation. The user can
switch to the appropriate mode of operation.

In this case, multiple instances will be created from a single function block.
The same instance must be called from multiple locations.

FB
EN ENO

1.0P_Off

3.0W0.00

W0 512

Program

Compile error

Instance data area

Non Retain
Retain
Timers
Counters

Start
address

Size
33

Instance Specifications Section 2-2
2-2-2 Parameter Specifications
The data that can be set by the user in the input parameters and output
parameters is as follows:

Note (1) The following table shows the methods for inputting values in parameters.

CTD
CD Q

LD

PV CV D100

CTD
CD Q

LD

PV CV D200

CTD
CD Q

LD

PV CV D150

FB

FB

FB

Program 1 (automatic operation) Program 2 (manual operation)

Product A counter Product B counter

Product B counter

Program 1
Instance A

Instance B

Program 2
Instance A

Reading the same product’s counter
value at different locations

Reading different products’ counter values
(Algorithm calculating counter value is the same.)

Use the same internal variables

Use different internal variables

Instance A

Instance B

I/O variables,
Internal
variables

Body

I/O variables,
Internal
variables

Body

FB definition

Variable
definitions

Body

Item Applicable data

Input parameters Values (See note 1.), addresses, and program symbols (glo-
bal symbols and local symbols) (See note 2.)

Note The data that is passed to the input variable from the
parameter is the actual value of the size of the input
variable data. (An address itself will not be passed even
if an address is set in the parameter.)

Note Input parameters must be set. If even one input param-
eter has not been set, a fatal error will occur and the
input parameters will not be transferred to the actual
PLC.

Output parameters Addresses, program symbols (global symbols, local symbols)
(See note 2.)

Input
variable

data type

Contents Size Parameter value input
method

Setting range

BOOL Bit data 1 bit P_Off, P_On 0 (FALSE), 1 (TRUE)

INT Integer 16 bits Positive value: & or + followed
by integer

Negative value: − followed by
integer

−32,768 to 32,767

DINT Double integer 32 bits −2,147,483,648 to 2,147,483,647

LINT Long (8-byte) integer 64 bits −9,223,372,036,854,775,808 to
9,223,372,036,854,775,807
34

Instance Specifications Section 2-2
(2) The size of function block input variables and output variables must
match the size of program symbols (global and local), as shown in the fol-
lowing table.

Note The program symbol NUMBER can be set only in the input param-
eters. The value that is input must be within the size range for the
function block variable data type.

2-2-3 Operating Specifications
Calling Instances The user can call an instance from any location. The instance will be executed

when the input to EN is ON.

UINT Unsigned integer 16 bits Positive value: & or + followed
by integer

&0 to 65,535

UDINT Unsigned double integer 32 bits &0 to 4,294,967,295

ULINT Unsigned long (8-byte)
integer

64 bits &0 to 18,446,744,073,709,551,615

REAL Real number 32 bits Positive value: & or + followed
by real number (with decimal
point)

Negative value: − followed by
real number (with decimal
point)

−3.402823 × 1038 to −1.175494 ×
10−38, 0, 1.175494 × 10−38 to
3.402823 × 1038

LREAL Long real number 64 bits −1.79769313486232 × 10308 to
−2.22507385850720 × 10−308, 0,
2.22507385850720 × 10−308,
1.79769313486232 × 10308

WORD 16-bit data 16 bits # followed by hexadecimal
number (4 digits max.)
& or + followed by decimal
number

#0000 to FFFF or &0 to 65,535

DWORD 32-bit data 32 bits # followed by hexadecimal
number (8 digits max.)
& or + followed by decimal
number

#00000000 to FFFFFFFF or &0 to
4,294,967,295

LWORD 64-bit data 64 bits # followed by hexadecimal
number (16 digits max.)
& or + followed by decimal
number

#0000000000000000 to
FFFFFFFFFFFFFFFF or &0 to
18,446,744,073,709,551,615

Input
variable

data type

Contents Size Parameter value input
method

Setting range

Size Function block variable data
type

Program symbol (global, local)
data type

1 bit BOOL BOOL

16 bits INT, UINT, WORD INT, UINT, UINT BCD, WORD

32 bits DINT, UDINT, REAL, DWORD DINT, UDINT, UDINT BCD, REAL,
DWORD

64 bits LINT, ULINT, LREAL, LWORD LINT, ULINT, ULINT BCD, LREAL,
LWORD

More than 1
bit

Non-boolean CHANNEL, NUMBER (see note)

0.0 1.0

D10

EN ENO

A B
D0

Instance

In this case, the input to EN is bit 0.0 at the left of the diagram.

• When the input to EN is ON, the instance is executed and
the execution results are reflected in bit 1.0 and word D10.

• When the input to EN is OFF, the instance is not executed,
bit 1.0 is turned OFF, and the content of D10 is not changed.
35

Instance Specifications Section 2-2
Operation when the
Instance Is Executed

The system calls a function block when the input to the function block’s EN
input variable is ON. When the function block is called, the system generates
the instance’s variables and copies the algorithm registered in the function
block. The instance is then executed.

The order of execution is as follows:

1. Read data from parameters to input variables.

2. Execute the algorithm.

3. Write data from output variables to parameters.

Data cannot be exchanged with parameters in the algorithm itself.
In addition, if an output variable is not changed by the execution of the algo-
rithm, the output parameter will retain its previous value.

P_On 1.0

&10

CLOCK PULSE
EN ENO

ON_TIME

OFF_TIME

&20

Pulse_2sON_1sOFF

&20
&10

TIMX tim_a OFF_TIME
tim_b

TIMX tim_b ON_TIME
tim_a

ENO

1. The FB is called.

2. The system generates the instance
variables and copies the algorithm.

FB instance (Pulse_2sON_1sOFF)

Algorithm (Body)

Name
Internal
Internal
Input

Input

Value
200-100ms_PULSE_tim_a
200-100ms_PULSE_tim_b
200-100ms_PULSE_ON_TIME
200-100ms_PULSE_OFF_TIME

3. The contents of the
instance are executed.Algorithm (Image)

Pulse_2sON_1sOFF tim_a Pulse_2sON_1sOFF OFF_TIME

Pulse_2sON_1sOFF tim_b Pulse_2sON_1sOFF ON_TIME

Pulse_2sON_1sOFF ENO

Pulse_2sON_1sOFF tim_b

Pulse_2sON_1sOFF tim_a

Usage

Input to EN is ON.

Parameters 1. Read values from parameters
to input variables.

2. Execute the algorithm.

3. Write values from output
variables to parameters.

Parameters
36

Restrictions on Function Blocks Section 2-3
Operation when the
Instance Is Not Executed

When the input to the function block’s EN input variable is OFF, the function
block is not called, so the internal variables of the instance do not change (val-
ues are retained). In the same way the output variables do not change when
EN is OFF (values are retained).

!Caution An instance will not be executed while its EN input variable is OFF, so Differ-
entiation and Timer instructions will not be initialized while EN is OFF. If Differ-
entiation or Timer instructions are being used, use the Always ON Flag
(P_On) for the EN input condition and include the instruction’s input condition
within the function block definition.

Nesting

A function block cannot be called from another function block, i.e., nesting is
not supported.

2-3 Restrictions on Function Blocks

Ladder Programming
Restrictions

There are some restrictions on instructions used in ladder programs.

Instructions Prohibited in
Function Block Definitions

The following instructions cannot be used in function block definitions. A com-
pile error will occur if any of these instructions is used.

• Block Programming Instructions (All instructions, including BPRG and
BEND)

• Subroutine Instructions (SBS, GSBS, RET, MCRO, SBN, GSBN, and
GRET)

• Jump Instructions (JMP, CJP, CJPN, and JME)

• Step Instructions (STEP and SNXT)

• Immediate Refresh Instructions (!)

• I/O REFRESH Instruction (IORF)

• TMHH and TMHHX Instructions

• CV Address Conversion Instructions (FRMCV and TOCV)

FB
EN ENO

1.0P_Off
P_On

ENO

1.0P_Off P_On

Program FB definition

Body

Execution results:
Output variable 1.0 is turned OFF, but
internal variable a retains its previous value.

If the programming were entered
directly into the program instead of in a
function block definition, both bit 1.0
and variable a would be turned OFF.

Program

Internal
variable a

Internal
variable a

FB1
FB2

Program
Instance A

Instance A: FB1 Instance X: FB2
37

Restrictions on Function Blocks Section 2-3
• Instructions manipulating record positions (PUSH, FIFO, LIFO, SETR,
and GETR)

• FAILURE POINT DETECTION Instruction (FPD)

• Move Timer/Counter PV to Register Instruction (MOVRW)

AT Setting Restrictions
(Unsupported Data Areas)

Addresses in the following areas cannot be used for AT settings.

• Index Registers (neither indirect nor direct addressing is supported) and
Data Registers

Note Input the address directly, not the AT setting.

• Indirect addressing of DM or EM Area addresses (Neither binary-mode
nor BCD-mode indirect addressing is supported.)

Direct Addressing of I/O
Memory in Instruction
Operands

• Addresses, not variables, can be directly input in Index Registers (both
indirect and direct addressing) and Data Registers.
The following values can be input in instruction operands:
Direct addressing: IR0 to IR15; Indirect addressing: ,IR0 to ,IR15; Con-
stant offset (example): +5,IR0; DR offset: DR0,IR0; Auto-increment:
,IR0++; Auto-decrement: --,IR0

• Direct addressing in instruction operands is not supported for any other
areas in I/O memory.

I/O Variable Restrictions
(Unsupported Data Areas)

Addresses in the following data areas cannot be used as parameters for input
and output variables.

• Index Registers (neither indirect nor direct addressing is supported) and
Data Registers

• Indirect addressing of DM or EM Area addresses (Neither binary-mode
nor BCD-mode indirect addressing is supported.)

Interlock Restrictions When a function block is called from an interlocked program section, the con-
tents of the function block definition will not be executed. The interlocked func-
tion block will behave just like an interlocked subroutine.

Differentiation
Instructions in Function
Block Definitions

An instance will not be executed while its EN input variable is OFF, so the fol-
lowing precautions are essential when using a Differentiation Instruction in a
function block definition. (Differentiation Instructions include DIFU, DIFD, and
any instruction with an @ or % prefix.)

• As long as the instance’s EN input variable is OFF, the execution condition
will retain its previous status (the last status when the EN input variable
was ON) and the Differentiation Instruction will not operate.

• When the instance’s EN input variable goes ON, the present execution
condition status will not be compared to the last cycle’s status. The
present execution condition will be compared to the last condition when
the EN input variable was ON, so the Differentiation Instruction will not
operate properly. (If the EN input variable remains ON, the Differentiation
Instruction will operate properly when the next rising edge or falling edge
occurs.)

FB

IL

P_Off

ILC

FB_BODY

Interlocked Interlock will not
affect instructions in
the function block
definition.
38

Restrictions on Function Blocks Section 2-3
Example:

If Differentiation Instructions are being used, always use the Always ON Flag
(P_On) for the EN input condition and include the instruction’s input condition
within the function block definition.

• Input a decimal numerical value after “#” when specifying the first operand
of the following instructions.
MILH(517), MILR(518), MILC(519), DIM(631), MSKS(690), MSKR(692),
CLI(691), FAL(006), FALS(007), TKON(820), TKOF(821)

Note “&” is not supported.

• CNR(545), CNRX(547) (RESET TIMER/COUNTER) instructions cannot
be used to reset multiple timers and counters within a function block at the
same time.
Always specify the same variable for the first operand (timer/counter num-
ber 1) and second operand (timer/counter number 2). Different variables
cannot be specified for the first and second operand.

Timer Instructions in
Function Block Definitions

An instance will not be executed while its EN input variable is OFF, so the fol-
lowing precautions are essential when using a Timer Instruction in a function
block definition.

The Timer Instruction will not be initialized even though the instance’s EN
input variable goes OFF. Consequently, the timer’s Completion Flag will not be
turned OFF if the EN input variable goes OFF after the timer started operat-
ing.

If Timer Instructions are being used, always use the Always ON Flag (P_On)
for the EN input condition and include the instruction’s input condition within
the function block definition.

FB1
EN ENO

IN1 OUT1

0.0

LD EN
OR IN1

SET OUT1

These Differentiation Instructions do not
operate when input condition 0.00 goes
from OFF to ON the first time.
The instructions do not operate while
input condition 0.00 is OFF.

Body

FB1
EN ENO

a O UT1

IN1

P_On

LD a
OR IN1

SET OUT10.00

The EN input condition is always ON, so
these Differentiation Instructions operate
normally.

Body

FB1
EN ENO

 U P

LD EN
TIM t im UP

0.00

The timer’s Completion Flag (UP)
will not be turned OFF even though
input condition 0.00 goes OFF.

Body
39

Restrictions on Function Blocks Section 2-3
• If the same instance containing a timer is used in multiple locations at the
same time, the timer will be duplicated.

ST Programming
Restrictions

• Only the following statements and operators are supported.

• Assignment statements

• Selection statements (CASE and IF statements)

• Iteration statements (FOR, WHILE, REPEAT, and EXIT statements)

• RETURN statements

• Arithmetic operators

• Logical operators

• Comparison operators

• Numerical Functions

• Arithmetic Functions

• Comments

• The TIMER and COUNTER data types cannot be used.

For further details, refer to Appendix B Structured Text (ST Language) Specifi-
cations.

Program Structure Precautions

No Branches to the Left of
the Instance

Branches are not allowed on the left side of the instance. Branches are
allowed on the right side.

Only One Instance per
Rung

A program rung cannot have more than one instance.

FB1
EN ENO

a U P

P_On

LD a
TIM t im UP

0.00

The timer’s completion flag (UP) is turned
OFF when input condition a (0.00) goes OFF.

Body

FB FB

Incorrect Correct

Instruction

Instruction

FB

FB FB

Incorrect Incorrect
40

Restrictions on Function Blocks Section 2-3
No Function Block
Connections

A function block’s input cannot be connected to another function block’s out-
put. In this case, a variable must be registered to transfer the execution status
from the first function block’s output to the second function blocks input.

Downloading in Task Units Tasks including function blocks cannot be downloaded in task units, but
uploading is possible.

Programming
Console Displays

When a user program created with the CX-Programmer is downloaded to the
CPU Unit and read by a Programming Console, the instances will all be dis-
played as question marks. (The instance names will not be displayed.)

Online Editing
Restrictions

The following online editing operations cannot be performed on the user pro-
gram in the CPU Unit.

• Changing or deleting function block definitions (variable table or algo-
rithm)

• Inserting instances or changing instance names

Note The instance’s I/O parameters can be changed, instances can be
deleted, and instructions outside of an instance can be changed.

Error-related
Restrictions

If a fatal error occurs in the CPU Unit while a function block definition is being
executed, ladder program execution will stop at the point where the error
occurred.

In this case, the MOV AAA BBB instruction will not be executed and output
variable D200 will retain the same value that it had before the function block
was executed.

Prohibiting Access to
FB Instance Areas

To use a function block, the system requires memory areas to store the
instance’s internal variables and I/O variables.

If there is an instruction in the user program that accesses an address in an
FB instance area, the CX-Programmer will output an error in the following
cases.

FB1
EN

XOUT

FB2
XIN1

XIN2D100

0.0
FB1

EN
XOUT

FB2
EN

XIN1

XIN2D100

0.0

D3000

D3000

0.0

Temporary variables
transfer the value from
FB1 to FB2.

FB
EN ENO

AAA BBB D200D100

0.0 LD P_On
++ AAA

MOV AAA BBB

10.0

Program FB definition

BodyInstance name

Fatal error occurs here.

Function block instance
area

Initial value of
start address

Initial value
of size

Allowed data areas

Non-retained H512 896 CIO, WR, HR, DM, EM

Retained H1408 128 HR, DM, EM

Timer T3072 1,024 TIM

Counter C3072 1,024 CNT
41

Function Block Applications Guidelines Section 2-4
• When a program check is performed by the user by selecting Program -
Compile from the Program Menu or Compile All Programs from the
PLC Menu.

• When attempting to write the program through online editing (writing is
not possible).

2-4 Function Block Applications Guidelines
This section provides guidelines for using function blocks with the CX-Pro-
grammer.

2-4-1 Deciding on Variable Data Types
Integer Data Types
(1, 2, or 4-word Data)

Use the following data types when handling single numbers in 1, 2, or 4-word
units.

• INT and UINT

• DINT and DINT

• LINT and ULINT

Note Use signed integers if the numbers being used will fit in the range.

Word Data Types
(1, 2, or 4-word Data)

Use the following data types when handling groups of data (non-numeric
data) in 1, 2, or 4-word units.

• WORD

• DWORD

• LWORD

2-4-2 Determining Variable Types (Inputs, Outputs, Externals, and
Internals)

Using Input Variable to
Change Passed Values

To paste a function block into the program and then change the value (not the
address itself) to be passed to the function block for each instance, use an
input variable.

The following two restrictions apply.

• An address can be set in an input parameter, but an address itself cannot
be passed to an input variable (even if an address is set in the input
parameter, the value for the size of the input variable data type is passed
to the function block). Therefore, when the first or last of multiple words is
specified in the instruction operand within the function block, an input vari-
able cannot be used for the operand. Specify either to use internal vari-
ables with AT settings, specify the first or last element in an internal array
variable, or use an external variable (as described in 2-4-4 Array Settings
for Internal Variables).

&3 Unit No.

PARA&50

Program

Instance for function block definition A
The value itself is
passed

Changing the pass value to an input variable.
42

Function Block Applications Guidelines Section 2-4
• Values are passed in a batch from the input parameters to the input vari-
ables before algorithm execution (not at the same time as the instruction
in the algorithm is executed). Therefore, to pass the value from a parame-
ter to an input variable when the instruction in the function block algorithm
is executed, use an internal variable or external variable instead of an
input variable.

Passing Values from or
Monitoring Output
Variables

To paste into the program and then pass values outside (the program) from
the function block for each instance, or monitor values, use output variables.

The following restrictions apply.

• Values are passed from output variables to output parameters all at once
after algorithm execution.

External Variables:
Condition Flags, Clock
Pulses, Auxiliary Area
Bits, Global Symbols in
Program

Condition Flags (e.g., Always ON Flag, Equals Flag), Clock Pulses (e.g., 1.0
second clock pulse bit), pre-registered Auxiliary Area Bits (e.g., First Cycle
Flag), and global symbols used in the program are all external variables
defined by the system.

Internal Variables:
Internally Allocated
Variables and Variables
Requiring AT Settings

Variables that are not specified as Inputs, Outputs, or Externals are Internals.
Internal variables include variables with internally allocated addresses, vari-
ables requiring addresses with AT settings (e.g., I/O allocation addresses,
addresses specially allocated for Special I/O Units), or variables requiring
array settings. For details on conditions requiring AT settings or array settings,
refer to 2-4-3 AT Settings for Internal Variables, and 2-4-4 Array Settings for
Internal Variables.

2-4-3 AT Settings for Internal Variables
Always specify AT settings for internal variables under the following condi-
tions.

• When addresses allocated to Basic I/O Units, Special I/O Units, or CPU
Bus Units are used and these addresses are registered to global symbols
that cannot be specified as external variables (e.g., data set for global
symbols is unstable).

D00100 DATA_1

 W500
XFER
&10
DATA_1
DATA_2

DATA_2

Program
Instance for function block definition A

The actual value is
passed If the size of the data type in

DATA_1 is 1 word, the value
for the word D00100 is
passed.

If the size of the data type in
DATA_2 is 2 words, the value
for the 2 words W500 and
W501 is passed.

An input variable cannot be used to specify
the address of an operand that specifies
the the first (or last) address of multiple
words.
For example, the XFER (BLOCK
TRANSFER) instruction cannot be used to
transfer 10 words from the address
beginning with DATA_1 to the address
beginning with DATA_2.

The address can be specified, but the address itself is not passed.

W0.00 OK_Flag

NG_Flag W0.01

Program

Instance for function block definition A.

The actual value is
passed.

Variable for passing a value outside or monitoring:
Use an output variable.
43

Function Block Applications Guidelines Section 2-4
Note The method for specifying Index Registers for Special I/O Unit allo-
cation addresses requires AT settings to be specified for the first
address of the allocation area. (For details, refer to 2-4-5 Specifying
Addresses Allocated to Special I/O Units.)

• When Auxiliary Area bits that are not pre-registered to external variables
are used, and these bits are registered to global symbols that are not
specified as external variables.

• When setting the first destination word at the remote node for SEND(090)
and the first source word at the local node for RECV(098).

• When the instruction operand specifies the first or last of multiple words,
and internal array variable cannot be specified for the operand (e.g., the
number of array elements cannot be specified).

2-4-4 Array Settings for Internal Variables
Using Array Variables
to Specify First or Last
Word in Multiword
Operands

When specifying the first or last of a range of words in an instruction operand
(see note), the instruction operates according to the address after AT specifi-
cation or internal allocation. (Therefore, the variable data type and number of
elements for the variable are unrelated to the operation of the instruction.) Al-
ways specify a variable with an AT setting or an array variable with a number
of elements that matches the data size to be processed by the instruction.

Note Some examples are the first source word or first destination word of the
XFER(070) (BLOCK TRANSFER) instruction, the first source word for
SEND(090), or control data for applicable instructions.

For details, refer to 2-5 Precautions for Instructions with Operands Specifying
the First or Last of Multiple Words. Use the following method to specify an array
variable.

1,2,3... 1. Prepare an internal array variable with the required number of elements.

Note Make sure that the data size to be processed by the instruction is
the same as the number of elements. For details on the data sizes
processed by each instruction, refer to 2-6 Instruction Support and
Operand Restrictions.

2. Set the data in each of the array elements using the MOV instruction in the
function block definition.

3. Specify the first (or last) element of the array variable for the operand. This
enables specification of the first (or last) address in a range of words.

Examples are provided below.

Handling a Single String of Data in Multiple Words

In this example, an array contains the directory and filename (operand S2) for
an FREAD instruction.

• Variable table
Internal variable, data type = WORD, array setting with 10 elements, vari-
able names = filename[0] to filename[9]

• Ladder programming

Set data in each array element.

Specify the first element
of the array in the instruction
operand.

FREAD (omitted) (omitted) file_name[0] (omitted)
MOV #0000 file_name[2])
MOV #3233 file_name[1]
MOV #5C31 file_name[0]
44

Function Block Applications Guidelines Section 2-4
Handling Control Data in Multiple Words

In this example, an array contains the number of words and first source word
(operand S1) for an FREAD instruction.

• Variable table
Internal variable, data type = DINT, array setting with 3 elements, variable
names = read_num[0] to read_num[9]

• Ladder programming

Handling a Block of Read Data in Multiple Words

The allowed amount of read data must be determined in advance and an
array must be prepared that can handle the maximum amount of data. In this
example, an array receives the FREAD instruction’s read data (operand D).

• Variable table
Internal variable, data type = WORD, array setting with 100 elements,
variable names = read_data[0] to read_data[99]

• Ladder programming

Division Using Integer
Array Variables (Ladder
Programming Only)

A two-element array can be used to store the result from a ladder program’s
SIGNED BINARY DIVIDE (/) instruction. The result from the instruction is D
(quotient) and D+1 (remainder). This method can be used to obtain the remain-
der from a division operation in ladder programming.

Note When ST language is used, it isn’t necessary to use an array to receive the
result of a division operation. Also, the remainder can’t be calculated directly
in ST language. The remainder must be calculated as follows:
Remainder = Dividend − (Divisor × Quotient)

2-4-5 Specifying Addresses Allocated to Special I/O Units
Use Index Registers IR0 to IR15 (indirectly specified constant offset) to spec-
ify addresses allocated to Special I/O Units based on the value passed for the
unit number as an input parameter within the function block definition as
shown in the following examples.

Note For details on using Index Registers in function blocks, refer to 2-4-6 Using
Index Registers.

Examples

Example 1: Specifying the CIO Area within a Function Block (Same for DM
Area)

Special I/O Units

Variables: Use the unit number as an input variable, and specifying the first
allocation address as an internal variable with the AT set to CIO 2000.

Programs: Use the following procedure.

1,2,3... 1. Multiply the unit number (input variable) by &10, and create the unit num-
ber offset (internal variable, DINT data type).

2. Use the MOVR(560) (MOVE TO REGISTER) instruction to store the real I/
O memory address for the first allocation address (internal variable, AT =
CIO 2000) in the Index Register (e.g., IR0).

Set data in each array element.

Specify the first element of the array
in the instruction operand.FREAD (omitted) read_num[0] (omitted) (omitted)

MOVL &100 read_num[0] (No._of_words)
MOVL &0 read_num[1] (1st_source_word)

FREAD (omitted) (omitted) (omitted) read_data[0]
45

Function Block Applications Guidelines Section 2-4
3. Add the unit number offset to the real I/O memory address within the Index
Register (e.g., IR0).

Example 2: Specifying the Designated Bit in the CIO Area (e.g., CIO Word
n+a, Bit b)

Programs: Use either of the following methods.

• Word addresses: Specify the constant offset of the Index Register using
an indirect specification (e.g., +a,IR0).

• Bit addresses: Specify an instruction that can specify a bit address within
a word (e.g., &b in second operand of SETB instruction when writing and
TST instruction when reading).

Example: Special I/O Units

2-4-6 Using Index Registers
Index Registers IR0 to IR15 function as pointers for specifying I/O memory
addresses. These Index Registers can be used within function blocks to
directly specify addresses using IR0 to IR15 and not the variable names
(Index Register direct specification: IR0 to IR15; Index Register indirect speci-
fication: ,IR0 to ,IR15)

Note After storing the real I/O memory addresses in the Index Registers using the
MOVR(560) instruction, Index Registers can be indirectly specified using gen-
eral instructions. This enables all I/O memory areas to be specified dynami-
cally.

&3 Unit No.

&10
Unit No.

Offset

MOVR
Relay

IR0

+L
IR0

Offset
IR0

SETB
+1,IR0

&2

Instance for function block definition A.
1) Specify the first CIO Area word n (n = CIO 2000 + unit number × 10)

Used constants:
Unit number (input variable, INT data type)
Offset (internal variable, DINT data type)
Relay (internal variable, WORD data type, 400 array elements, AT
setting = 2000)

Multiplies unit number by
&10 and stores in offset.

Stores the real I/O memory
address for the relay in IR0.

Adds offset to IR0.

2) Specify the designated bit in the CIO
Area (e.g., CIO word n+1, bit 02)

Turns ON CIO word n+1,
bit 02.
46

Function Block Applications Guidelines Section 2-4
Note (1) When Index Registers IR0 to IR15 are used within function blocks, using
the same Index Register within other function blocks or in the program
outside of function blocks will create competition between the two in-
stances and the program will not execute properly. Therefore, when using
Index Registers (IR0 to IR15), always save the value of the Index Register
at the point when the function block starts (or before the Index Register
is used), and when the function block is completed (or after the Index
Register has been used), incorporate processing in the program to return
the Index Register to the saved value.

(2) Always set the value before using Index Registers. Operation will not be
stable if Index Registers are used without the values being set.

IR@

IR0

+5,IR0

a

MOVR(560)

Pointer All I/O memory
areas

Index Register

I/O memory

Example: Specifying +5,IR0 using
constant offset specification, not
variable name

Function block

Instruction

Indirect
specifi-
cation

Specify address
in IR0

+5 offset

Specify ad-
dress at +5
offset from
IR0.

Value A

IR0

IR0

IR0

Value A

Value A

Value A

Value B

Value A

Example: Starting function block (or before using Index Register):
1. Save the value of IR (e.g., A).

Within function block:
2.Use IR.

At start of function block (or before Index Register is used):
3. Return IR to saved valuev(e.g., A)
47

Function Block Applications Guidelines Section 2-4
Application Examples The following examples are for using Index Registers IR0 to IR15 within func-
tion blocks.

Example Details

Saving the Index Register Value before Using Index Register When Index Registers are used within this
function block, processing to save the Index
Register value is performed when the func-
tion starts (or before the Index Register is
used) to enable the value to be returned to
the original Index Register value after the
function block is completed (or after the
Index Register is used).
Example: Save the contents of Index Regis-
ter IR0 by storing it in SaveIR[0] (internal
variable, data type DINT, 1 array element).

Using Index Registers
1) Setting the value in the Index Register. (Stores the real I/O memory

address for first CIO Area word n)

Example: The real I/O memory address for
the first word of CIO 1500 + unit number ×
25 allocated in the CPU Bus Unit allocation
area based on the CPU Bus Unit’s unit
number (&0 to &15) passed from the func-
tion block is stored in IR0.

Procedure:
Assumes that unit numbers &0 to &15 have
already been input (from outside the func-
tion block) in UnitNo (input variables, INT
data type).
1. Multiple UnitNo by &25, and store in Off-

set (internal variable, DINT data type)
2. Store the real I/O memory address for

SCPU_Relay (internal variable, WORD
data type, (if required, specify the array as
400 elements (see note), AT setting =
1500)) in Index Register IR0.

Note Specifying an array for SCPU_relay,
such as SCPU_relay [2], for example,
enables the address CIO 1500 +
(UnitNo × &25) + 2 to be specified.
This also applies in example 2 below.

3. Increment the real I/O memory address
in Index Register IR0 by the value for the
variable Offset (variable UnitNo × &25).

Store IR0 temporarily in backup buffer

Calculate offset address from unit number
48

Precautions for Instructions with Operands Specifying the First or Last of Multiple Section 2-5
2-5 Precautions for Instructions with Operands Specifying the
First or Last of Multiple Words

When using ladder programming to create function blocks with instruction
operands specifying the first or last of a range of words, the following precau-
tions apply when specifying variables for the operand.

When the operand specifies the first or last word of multiple words, the
instruction operates according to the internally allocated address for AT set-
ting (or external variable setting). Therefore, the variable data type and num-
ber of array elements are unrelated to the operation of the instruction. Either
specify a variable with an AT setting, or an array variable with a size that
matches the data size to be processed by the instruction.

For details on whether an AT setting (or external variable setting) or an array
setting for a number of elements is required to specify the first address of a
range of words in the instruction operand, refer to 2-6 Instruction Support and
Operand Restrictions.

Note To specify the first or last of multiple words in an instruction operand, always
specify a variable with AT setting (or an external variable), or a variable with
the same size as the data size to be processed in the instruction. The follow-
ing precautions apply.

1,2,3... 1. If a non-array variable is specified without AT setting and without a match-
ing data size, the CX-Programmer will output an error when compiling.

2. The following precautions apply to when an array variable is specified.

2) Specifying constant offset of Index Register (Specifying a bit between
CIO n+0 to n+24)

The real I/O memory address for CIO 1500
+ (UnitNo × &25) is stored in Index Register
IR0 by the processing in step 1 above.
Therefore the word address is specified
using the constant offset from IR0.

For example, specifying +2,IR0 will specify
CIO 1500 + (UnitNo × &25) + 2.

Note CIO 1500 + (UnitNo × &25) + 2 can
also by specified by specifying
SCPU_relay [2] using the array set-
ting with SCPU_relay.

Specify bit addresses using instructions that
can specify bit addresses within words
(e.g., second operand of TST(350/351)/
SETB(532) instructions).

Example: Variable NodeSelf_OK turns ON
when NetCheck_OK (internal variable,
BOOL data type) is ON and bit 15 of the
word at the +6 offset from IR0 (CIO 1500 +
UnitNo × &25 +6) is ON.

Returning the Index Register to the Prior Value The Index Register returns to the original
value after this function block is completed
(or after the Index Register has been used).
Example: The value for variable SaveIR[0]
that was saved is stored in Index Register
IR0, and the value is returned to the con-
tents from when this function started (or
prior to using the Index Register).

Example Details

Check local node data link participation

Restore data to IR0 from temporary backup buffer
49

Precautions for Instructions with Operands Specifying the First or Last of Multiple Section 2-5
Size to Be Processed in the Instruction Operand Is Fixed

Make sure that the number of elements in the array is the same as size to be
processed by the instruction. Otherwise, the CX-Programmer will output an
error when compiling.

Size to Be Processed in the Instruction Operand Is Not Fixed

Make sure that the number of elements in the array is the same or greater
than the size specified by another operand.

Other Operand Specifying Size: Constant

The CX-Programmer outputs an error when compiling.

Other Operand Specifying Size: Variable

The CX-Programmer will not output an error when compiling (a warning mes-
sage will be displayed) even if the number of elements in the array does not
match the size specified in another operand (variable).

In particular, when the number of elements in the array is less than the size
specified by another operand, (for example, when instruction processing size
is 16 and the number of elements actually registered in the variable table is
10), the instruction will execute read/write processing in the areas exceeding
the number of elements. (In this example, read/write processing will be exe-
cuted for the next 6 words after the number of elements registered in the
actual variable table.) If the same area is being used by another instruction
(including internal variable allocations), unexpected operation may occur,
which may result in a serious accident.

Do not use variables with a size that does not match the data size to be pro-
cessed by the instruction in the operand specifying the first address (or last
address) for a range of words. Always use either non-array variables data type
with a size that is the same as the data size required by the instruction or
array variable with the number of elements that is the same as the data size
required by the instruction. Otherwise, the following errors will occur.

Non-array Variables
without Matching Data
Size and without AT
Setting

If the operand specifying the first address (or last address) of multiple words
uses a non-array variable data type with a size that does not match the data
size required by the instruction and an AT setting is also not used, the CX-Pro-
grammer will output a compile error.

Example: BLOCK TRANSFER(070) instruction: XFER W S D
(W: Number of words, S: First source word; D: First destination word)
When &10 is specified in W, variable a with data type WORD is specified in S,
and variable b with data type WORD is specified in D: XFER &10 a b
The XFER(070) instruction will transfer the data in the 10 words beginning from
the automatically allocated address in variable a to the 10 words beginning
with the automatically allocated address in variable b. Therefore, the CX-Pro-
grammer will output a compile error.

Example: XFER &10 a b
(variables a and b are WORD data types)

Internally allocated address Internally allocated address

Example: H700 Example: H7@@ Variable b (1 word)Variable a (1 word)
10 words are
transferred regard-
less of the size of
variable a.

This area will be overwritten,
so the CX-Programmer will
output a compile error.
50

Precautions for Instructions with Operands Specifying the First or Last of Multiple Section 2-5
Array Variables The result depends on the following conditions.

Size to Be Processed by Instruction Is Fixed

If the size to be processed by the instruction is a fixed operand, and this size
does not match the number of array elements, the CX-Programmer will output
a compile error.

Example: LINE TO COLUMN(064) instruction; COLM S D N

(S: Bit number, D: First destination word, N: Source word)

 E.g., COLM a b[0] c

If an array for a WORD data type with 10 array elements is specified in D
when it should be for 16 array elements, the CX-Programmer will output an
error when compiling.

Size to Be Processed by Instruction Is Not Fixed

When the operand size to be processed by the instruction is not fixed (when
the size is specified by another operand in the instruction), make sure that the
number of array elements is the same or greater than the size specified in the
other operand (i.e., size to be processed by the instruction).

Other Operand Specifying Size: Constant

The CX-Programmer will output an error when compiling.

Example: BLOCK TRANSFER: XFER W S D

(W: Number of words, S: First source word; D: First destination word)

When &20 is specified in W, array variable a with data type WORD and 10
elements is specified in S, and array variable b with data type WORD and 10
elements is specified in D:

XFER &20 a[0] b[0]

Even though the array variables a[0] and b[0] are both 10 words, the
XFER(070) instruction will execute transfer processing for the 20 words spec-
ified in W. As a result, the XFER(070) instruction will perform read/write pro-
cessing for the I/O memory area following the number of array elements that
was allocated, as shown in the following diagram.

Therefore, if a[10 elements] is internally allocated words (e.g., H700 to H709),
and b[10 elements] is internally allocated words (e.g., H800 to H809),
XFER(070) will transfer data in words H700 to H719 to words H800 to H819.
In this operation, if another internally allocated variable (e.g., c), is allocated
words in H810 to H819, the words will be overwritten, causing unexpected
operation to occur. To transfer 20 words, make sure that the number of ele-
ments is specified as 20 elements for both array variable a and b.
51

Instruction Support and Operand Restrictions Section 2-6

Other Operand Specifying Size: Variable

Even if the number of array elements does not match the size (i.e., size to be
processed by the instruction) specified in another operand (variable), the CX-
Programmer will not output an error when compiling. The instruction will be
executed according to the size specified by the operand, regardless of the
number of elements in the array variable.

Particularly if the number of elements in the array is less than the size (i.e.,
size to be processed by the instruction) specified by another operand (vari-
able), other variables will be affected and unexpected operation may occur.

2-6 Instruction Support and Operand Restrictions
The tables in this appendix indicate which instructions can be used in function
blocks created with ladder programming language, the restrictions that apply
to them and to the operands, including the variables (whether array variables
and AT settings or external variable specifications are required, and which
data types can be used).

Instruction Support Instructions that are not supported for use in function block definitions by the
CX-Programmer and CS/CJ-series CPU Units with unit version 3.0 are given
as Not supported in function blocks in the Symbol column.

Restrictions on Operands • Operands that specify the first or last of multiple words, thereby requiring
AT setting or specification of array variables, are indicated as follows in
the AT setting or array required column.
Yes: An AT setting (or external specification) or array variable must be
specified for the operand to specify the first or last of multiple words.

• The value within parentheses is the fixed size used by the instruction
for reading, writing, or other processing. This size indicates either the
data type size or the size required for the array variable specified in
word units. For array variables, this size must be the same as the num-
ber of elements. Otherwise, the CX-Programmer will output an error
when compiling.

XFER &20 a[0] b[0]
Using a WORD data type with 10 elements for both variables a and b:
To transfer 20 words, be sure to specify 20 elements for both array variables a and b.

Internally allocated address Internally allocated address

Example: H700

10 words

Example: H710

Example: H719

Array variable
a (10 words)

20 words

Example: H810

20 words will be
transferred regard-
less of the size of ar-
ray variables a and b.

Example: H819

10 words
Array variable
a (10 words)

The variables allocated in this area
(H810 to H819 in this example) are
overwritten. The data is variable-
length data, so the CX-Programmer
will not output a compile error.
52

Instruction Support and Operand Restrictions Section 2-6
• If “not fixed” is indicated in parentheses, the size used by the instruc-
tion for reading, writing, or other processing can be changed. Make
sure that the maximum size required for the number of array elements
is provided.
Even if the number of array elements in an operand with unfixed size
does not match the size specified in another operand, the CX-Pro-
grammer will not output an error when compiling. The instruction will
operate according to the size specified in the other operand, regard-
less of the number of array variable elements.

---: Operands that do not require an AT setting or specification of array vari-
ables.

Note When specifying the first or last word of multiple words in an in-
struction operand, input parameters cannot be used to pass data
to or from variables. Either an AT setting or an array variable with
the required number of elements must be prepared, and after the
array data is set in the function block definition, the first or last ele-
ment in the array variable must be specified for the operand.

• Any operands for which an AT setting must be specified for an I/O mem-
ory address on a remote node in the network are indicated as Specify
address at remote node with AT setting in the AT setting or array required
column.

2-6-1 Sequence Input Instructions
Instruction Mnemonic Function

code
Symbol Operands Supported

variable
data types

AT setting or
array variable

required
(Required word

data size
shown in

parentheses.)

LOAD LD

@LD
%LD
!LD

!@LD
!%LD

B: Bit BOOL ---

LOAD NOT LD NOT
!LD NOT
@LD NOT

%LD NOT
!@LD NOT
!%LD NOT

B: Bit BOOL ---

AND AND
@AND

%AND
!AND
!@AND

!%AND

B: Bit BOOL ---

Bus bar

Starting point of block

Bus bar

Starting point of block
53

Instruction Support and Operand Restrictions Section 2-6
AND NOT AND NOT
!AND NOT

@AND NOT
%AND NOT
!@AND NOT

!%AND NOT

--- BOOL ---

OR OR

@OR
%OR
!OR

!@OR
!%OR

--- BOOL ---

OR NOT OR NOT

!OR NOT
@OR NOT
%OR NOT

!@OR NOT
!%OR NOT

--- BOOL ---

AND LOAD AND LD --- --- ---

OR LOAD OR LD --- --- ---

NOT NOT 520 --- --- ---

CONDITION
ON

UP 521 --- --- ---

CONDITION
OFF

DOWN 522 --- --- ---

BIT TEST LD TST 350 S: Source word WORD ---

N: Bit number UINT ---

BIT TEST LD TSTN 351 S: Source word WORD ---

N: Bit number UINT ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT setting or
array variable

required
(Required word

data size
shown in

parentheses.)

Bus bar

Bus bar

Logic block Logic block

Logic block

Logic block

NOT

UP

DOWN

TST

S

N

TSTN

S

N

54

Instruction Support and Operand Restrictions Section 2-6
2-6-2 Sequence Output Instructions

BIT TEST AND TST 350 S: Source word WORD ---

N: Bit number UINT ---

BIT TEST AND TSTN 351 S: Source word WORD ---

N: Bit number UINT ---

BIT TEST OR TST 350 S: Source word WORD ---

N: Bit number UINT ---

BIT TEST OR TSTN 351 S: Source word WORD ---

N: Bit number UINT ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT setting or
array variable

required
(Required

word data size
shown in

parentheses.)

OUTPUT OUT
!OUT

--- BOOL ---

OUTPUT NOT OUT NOT
!OUT NOT

--- BOOL ---

KEEP KEEP

!KEEP

011 --- BOOL ---

DIFFERENTI-
ATE UP

DIFU
!DIFU

013 --- BOOL ---

DIFFERENTI-
ATE DOWN

DIFD
!DIFD

014 --- BOOL ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT setting or
array variable

required
(Required word

data size
shown in

parentheses.)

AND TST

S

N

AND TSTN

S

N

TST

S

N

TSTN

S

N

KEEP

B

S (Set)

R (Reset)

DIFU

B

DIFD

B

55

Instruction Support and Operand Restrictions Section 2-6
SET SET
@SET

%SET
!SET
!@SET

!%SET

B: Bit BOOL ---

RESET RSET

@RSET
%RSET
!RSET

!@RSET
!%RSET

B: Bit BOOL ---

MULTIPLE BIT
SET

SETA

@SETA

530 D: Beginning word UINT Yes (not fixed)

N1: Beginning bit UINT ---

N2: Number of bits UINT ---

MULTIPLE BIT
RESET

RSTA
@RSTA

531 D: Beginning word UINT Yes (not fixed)

N1: Beginning bit UINT ---

N2: Number of bits UINT ---

SINGLE BIT
SET

SETB
@SETB

!SETB

532 D: Word address UINT ---

N: Bit number UINT ---

SINGLE BIT
RESET

RSTB
@RSTB

!RSTB

533 D: Word address UINT ---

N: Bit number UINT ---

SINGLE BIT
OUTPUT

OUTB
@OUTB
!OUTB

534 D: Word address UINT ---

N: Bit number UINT ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT setting or
array variable

required
(Required

word data size
shown in

parentheses.)

SET

B

RSET

B

SETA

D

N1

N2

RSTA

D

N1

N2

SETB

D

N

RSTB

D

N

OUTB

D

N

56

Instruction Support and Operand Restrictions Section 2-6
2-6-3 Sequence Control Instructions
Instruction Mnemonic Function

code
Symbol Operands Supported

variable
data types

AT setting or
array variable

required
(Required
word data

size shown in
parentheses.)

END END 001 --- --- ---

NO OPERATION NOP 000 --- --- --- ---

INTERLOCK IL 002 --- --- ---

INTERLOCK
CLEAR

ILC 003 --- --- ---

MULTI-INTER-
LOCK DIFFER-
ENTIATION
HOLD

MILH 517 N: Interlock number # + decimal
only

D: Interlock Status
Bit

BOOL ---

MULTI-INTER-
LOCK DIFFER-
ENTIATION
RELEASE

MILR 518 N: Interlock number # + decimal
only

D: Interlock Status
Bit

BOOL ---

MULTI-INTER-
LOCK CLEAR

MILC 519 N: Interlock number # + decimal
only

JUMP JMP 004 Not supported in function
blocks

N: Jump number --- ---

JUMP END JME 005 Not supported in function
blocks

N: Jump number --- ---

CONDITIONAL
JUMP

CJP 510 Not supported in function
blocks

N: Jump number --- ---

CONDITIONAL
JUMP

CJPN 511 Not supported in function
blocks

N: Jump number --- ---

MULTIPLE
JUMP

JMP0 515 --- --- ---

MULTIPLE
JUMP END

JME0 516 --- --- ---

FOR-NEXT
LOOPS

FOR 512 N: Number of loops UINT ---

BREAK LOOP BREAK 514 --- --- ---

FOR-NEXT
LOOPS

NEXT 513 --- --- ---

END

IL

ILC

MILH

N

D

MILR

N

D

MILC

N

JMP0

JME0

FOR

N

BREAK

NEXT
57

Instruction Support and Operand Restrictions Section 2-6
2-6-4 Timer and Counter Instructions
Instruction Mnemonic Function

code
Symbol Operands Supported

variable
data types

AT setting or
array variable

required
(Required
word data

size shown in
parentheses.)

TIMER TIM
(BCD)

N: Timer number TIMER ---

S: Set value WORD ---

TIMX
(BIN)

550 N: Timer number TIMER ---

S: Set value UINT ---

HIGH-SPEED
TIMER

TIMH
(BCD)

015 N: Timer number TIMER ---

S: Set value WORD ---

TIMHX

(BIN)

551 N: Timer number TIMER ---

S: Set value UINT ---

ONE-MS TIMER TMHH

(BCD)

540 Not supported in function
blocks.

N: Timer number TIMER ---

S: Set value WORD ---

TMHHX
(BIN)

552 Not supported in function
blocks.

N: Timer number TIMER ---

S: Set value UINT ---

ACCUMULA-
TIVE TIMER

TTIM
(BCD)

087 N: Timer number TIMER ---

S: Set value WORD ---

TTIMX
(BIN)

555 N: Timer number TIMER ---

S: Set value UINT ---

LONG TIMER TIML

(BCD)

542 D1: Completion
Flag

WORD ---

D2: PV word DWORD ---

S: SV word DWORD ---

TIMLX

(BIN)

553 D1: Completion
Flags

UINT ---

D2: PV word UDINT ---

S: SV word UDINT ---

TIM

N

S

TIMX

N

S

TIMH

N

S

TIMHX

N

S

TTIM

N

S

TTIMX

N

S

Timer input

Reset input

TIML

D1

D2

S

TIMLX

D1

D2

S

58

Instruction Support and Operand Restrictions Section 2-6
Note Enabled when the same variable is specified for N1 and N2.

MULTI-OUTPUT
TIMER

MTIM
(BCD)

543 D1: Completion
Flags

UINT ---

D2: PV word WORD ---

S: 1st SV word WORD Yes (8)

MTIMX

(BIN)

554 D1: Completion
Flags

UINT ---

D2: PV word UINT ---

S: 1st SV word WORD Yes (8)

COUNTER CNT

(BCD)

N: Counter number COUNTER ---

S: Set value WORD ---

CNTX
(BIN)

546 N: Counter number COUNTER ---

S: Set value UINT ---

REVERSIBLE
COUNTER

CNTR

(BCD)

012 N: Counter number COUNTER ---

S: Set value WORD ---

CNTRX
(BIN)

548 N: Counter number COUNTER ---

S: Set value UINT ---

RESET TIMER/
COUNTER

CNR
@CNR
(BCD)

545 N1: 1st number in
range

TIMER or
COUNTER
(See note.)

N2: Last number in
range

TIMER or
COUNTER
(See note.)

CNRX
@CNRX

(BIN)

547 N1: 1st number in
range

TIMER or
COUNTER
(See note.)

N2: Last number in
range

TIMER or
COUNTER
(See note.)

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT setting or
array variable

required
(Required
word data

size shown in
parentheses.)

MTIM

D1

D2

S

MTIMX

D1

D2

S

CNT

N

S

Count input

Reset input

CNTX

N

S

Count input

Reset input

CNTR

N

S

Increment input

Decrement input

Reset input

CNTRX

N

S

Increment input

Decrement input

Reset input

CNR

N1

N2

CNRX

N1

N2
59

Instruction Support and Operand Restrictions Section 2-6
2-6-5 Comparison Instructions
Instruction Mnemonic Function

code
Symbol Operands Supported

variable
data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

Symbol Compari-
son (Unsigned)

LD,AND, OR
+

=, <>, <, <=,
>, >=

300 (=)
305 (<>)

310 (<)
315 (<=)
320 (>)

325 (>=)

S1: Comparison
data 1

UINT ---

S2: Comparison
data 2

UINT ---

Symbol Compari-
son (Double-word,
unsigned)

LD,AND, OR
+
=, <>, <, <=,
>, >=
+

L

301 (=)
306 (<>)

311 (<)
316 (<=)
321 (>)

326 (>=)

--- S1: Comparison
data 1

UDINT ---

S2: Comparison
data 2

UDINT ---

Symbol Compari-
son (Signed)

LD,AND, OR
+
=, <>, <, <=,
>, >=
+
S

302 (=)

307 (<>)
312 (<)
317 (<=)

322 (>)
327 (>=)

--- S1: Comparison
data 1

INT ---

S2: Comparison
data 2

INT ---

Symbol Compari-
son (Double-word,
signed)

LD,AND, OR
+
=, <>, <, <=,
>, >=
+
SL

303 (=)

308 (<>)
313 (<)
318 (<=)

323 (>)
328 (>=)

--- S1: Comparison
data 1

DINT ---

S2: Comparison
data 2

DINT ---

UNSIGNED COM-
PARE

CMP
!CMP

020 S1: Comparison
data 1

UINT ---

S2: Comparison
data 2

UINT ---

Symbol, option

S1

S2

Using LD:

Symbol, option

S1

S2

Using AND:

Symbol, option

S1

S2

Using OR:

CMP

S1

S2
60

Instruction Support and Operand Restrictions Section 2-6
DOUBLE
UNSIGNED COM-
PARE

CMPL 060 S1: Comparison
data 1

UDINT ---

S2: Comparison
data 2

UDINT ---

SIGNED BINARY
COMPARE

CPS
!CPS

114 S1: Comparison
data 1

INT ---

S2: Comparison
data 2

INT ---

DOUBLE SIGNED
BINARY COMPARE

CPSL 115 S1: Comparison
data 1

DINT ---

S2: Comparison
data 2

DINT ---

TABLE
COMPARE

TCMP
@TCMP

085 S: Source data WORD ---

T: 1st word of table WORD Yes (16)

R: Result word UINT ---

MULTIPLE

COMPARE

MCMP

@MCMP

019 S1: 1st word of set
1

WORD Yes (16)

S2: 1st word of set
2

WORD Yes (16)

R: Result word UINT

UNSIGNED
BLOCK
COMPARE

BCMP

@BCMP

068 S: Source data WORD ---

T: 1st word of table WORD Yes (32)

R: Result word UINT ---

EXPANDED
BLOCK COMPARE

BCMP2
@BCMP2

502 S: Source data WORD ---

T: 1st word of block WORD Yes (not
fixed)

R: Result word WORD ---

AREA RANGE
COMPARE

ZCP 088 CD: Compare data
(1 word)

UINT ---

LL: Lower limit of
range

UINT ---

UL: Upper limit of
range

UINT ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

CMPL

S1

S2

CPS

S1

S2

CPSL

S1

S2

TCMP

S

T

R

MCMP

S1

S2

R

BCMP

S

T

R

BCMP2

S

T

R

ZCP

CD

LL

UL
61

Instruction Support and Operand Restrictions Section 2-6
2-6-6 Data Movement Instructions

DOUBLE AREA
RANGE COMPARE

ZCPL 116 CD: Compare data
(2 words)

UDINT ---

LL: Lower limit of
range

UDINT ---

UL: Upper limit of
range

UDINT ---

Time Comparison LD, AND, OR
+

=DT, <>
DT, <DT,
<=DT, >DT,
>=DT

341 (=DT)
342
(<>DT)
343 (<DT)
344
(<=DT)
345 (>DT)
346
(>=DT)

LD (LOAD):

AND:

OR:

C: Control word WORD ---

S1: 1st word of
present time

WORD Yes (3)

S2: 1st word of
comparison time

WORD Yes (3)

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT setting or
array variable

required
(Required

word data size
shown in

parentheses.)

MOVE MOV
@MOV
!MOV

!@MOV

021 S: Source WORD ---

D: Destination WORD ---

DOUBLE MOVE MOVL
@MOVL

498 S: 1st source
word

DWORD ---

D: 1st destina-
tion word

DWORD ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

ZCPL

CD

LL

UL

Symbol

C

S1

S2

Symbol

C

S1

S2

Symbol

C

S1

S2

MOV

S

D

MOVL

S

D

62

Instruction Support and Operand Restrictions Section 2-6
MOVE NOT MVN
@MVN

022 S: Source WORD ---

D: Destination WORD ---

DOUBLE MOVE
NOT

MVNL

@MVNL

499 S: 1st source
word

DWORD ---

D: 1st destina-
tion word

DWORD ---

MOVE BIT MOVB

@MOVB

082 S: Source word
or data

WORD ---

C: Control word UINT ---

D: Destination
word

WORD ---

MOVE DIGIT MOVD
@MOVD

083 S: Source word
or data

WORD ---

C: Control word UINT ---

D: Destination
word

UINT ---

MULTIPLE BIT
TRANSFERÅ@

XFRB
@XFRB

062 C: Control word UINT ---

S: 1st source
word

WORD Yes
(not fixed)

D: 1st destina-
tion word

WORD Yes
(not fixed)

BLOCK
TRANSFER

XFER
@XFER

070 N: Number of
words

UINT ---

S: 1st source
word

WORD Yes
(not fixed)

D: 1st destina-
tion word

WORD Yes
(not fixed)

BLOCK SET BSET
@BSET

071 S: Source word WORD ---

St: Starting word WORD Yes
(not fixed)

E: End word WORD Yes
(not fixed)

DATA EXCHANGE XCHG
@XCHG

073 E1: 1st
exchange word

WORD ---

E2: Second
exchange word

WORD ---

DOUBLE DATA
EXCHANGE

XCGL
@XCGL

562 E1: 1st
exchange word

DWORD ---

E2: Second
exchange word

DWORD ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT setting or
array variable

required
(Required

word data size
shown in

parentheses.)

MVN

S

D

MVNL

S

D

MOVB

S

C

D

MOVD

S

C

D

XFRB

C

S

D

XFER

N

S

D

BSET

S

St

E

XCHG

E1

E2

XCGL

E1

E2
63

Instruction Support and Operand Restrictions Section 2-6
2-6-7 Data Shift Instructions

SINGLE WORD
DISTRIBUTE

DIST
@DIST

080 S: Source word WORD ---

Bs: Destination
base address

WORD Yes
(not fixed)

Of: Offset UINT ---

DATA COLLECT COLL

@COLL

081 Bs: Source base
address

WORD Yes
(not fixed)

Of: Offset WORD ---

D: Destination
word

WORD ---

MOVE TO

REGISTER

MOVR

@MOVR

560 S: Source
(desired word
orbit)

BOOL ---

D: Destination
(Index Register)

WORD ---

MOVE TIMER/
COUNTER PV TO
REGISTER

MOVRW

@MOVRW

561 Not supported in func-
tion blocks

S: Source
(desired TC
number)

--- ---

D: Destination
(Index Register)

--- ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT setting or
array variable

required
(Required

word data size
shown in

parentheses.)

SHIFT REGIS-
TER

SFT 010 St: Starting word UINT Yes (not fixed)

E: End word UINT Yes (not fixed)
D1 and D2
must be the
same array vari-
able when array
variables are
required.

REVERSIBLE
SHIFT REGIS-
TER

SFTR
@SFTR

084 C: Control word UINT ---

St: Starting word UINT Yes (not fixed)

E: End word UINT Yes (not fixed)
D1 and D2
must be the
same array vari-
able when array
variables are
required.

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT setting or
array variable

required
(Required

word data size
shown in

parentheses.)

DIST

S

Bs

Of

COLL

Bs

Of

D

MOVR

S

D

SFT

St

E

Data input

Shift input

Reset input

SFTR

C

St

E

64

Instruction Support and Operand Restrictions Section 2-6
ASYNCHRO-
NOUS SHIFT
REGISTER

ASFT
@ASFT

017 C: Control word UINT ---

St: Starting word UINT Yes (not fixed)

E: End word UINT Yes (not fixed)
D1 and D2
must be the
same array vari-
able when array
variables are
required.

WORD SHIFT WSFT
@WSFT

016 S: Source word WORD

St: Starting word UINT Yes (not fixed)

E: End word UINT Yes (not fixed)
D1 and D2
must be the
same array vari-
able when array
variables are
required.

ARITHMETIC
SHIFT LEFT

ASL
@ASL

025 Wd: Word UINT ---

DOUBLE SHIFT
LEFT

ASLL
@ASLL

570 Wd: Word UDINT ---

ARITHMETIC
SHIFT RIGHT

ASR

@ASR

026 Wd: Word UINT ---

DOUBLE SHIFT
RIGHT

ASRL
@ASRL

571 Wd: Word UDINT ---

ROTATE LEFT ROL

@ROL

027 Wd: Word UINT ---

DOUBLE
ROTATE LEFT

ROLL
@ROLL

572 Wd: Word UDINT ---

ROTATE LEFT
WITHOUT
CARRY

RLNC

@RLNC

574 Wd: Word UINT ---

DOUBLE
ROTATE LEFT
WITHOUT
CARRY

RLNL
@RLNL

576 Wd: Word UDINT ---

ROTATE RIGHT ROR

@ROR

028 Wd: Word UINT ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT setting or
array variable

required
(Required

word data size
shown in

parentheses.)

ASFT

C

St

E

WSFT

S

St

E

ASL

Wd

ASLL

Wd

ASR

Wd

ASRL

Wd

ROL

Wd

ROLL

Wd

RLNC

Wd

RLNL

Wd

ROR

Wd
65

Instruction Support and Operand Restrictions Section 2-6
DOUBLE
ROTATE RIGHT

RORL
@RORL

573 Wd: Word UDINT ---

ROTATE RIGHT
WITHOUT
CARRY

RRNC
@RRNC

575 Wd: Word UINT ---

DOUBLE
ROTATE RIGHT
WITHOUT
CARRY

RRNL
@RRNL

577 Wd: Word UDINT ---

ONE DIGIT
SHIFT LEFT

SLD
@SLD

074 St: Starting word UINT Yes (not fixed)

E: End word UINT Yes (not fixed)

ONE DIGIT
SHIFT RIGHT

SRD
@SRD

075 St: Starting word UINT Yes (not fixed)

E: End word UINT Yes (not fixed)

SHIFT N-BIT
DATA LEFT

NSFL
@NSFL

578 D: Beginning
word for shift

UINT Yes (not fixed)

C: Beginning bit UINT ---

N: Shift data
length

UINT ---

SHIFT N-BIT
DATA RIGHT

NSFR

@NSFR

579 D: Beginning
word for shift

UINT Yes (not fixed)

C: Beginning bit UINT ---

N: Shift data
length

UINT ---

SHIFT N-BITS
LEFT

NASL

@NASL

580 D: Shift word UINT ---

C: Control word UINT ---

DOUBLE SHIFT
N-BITS LEFT

NSLL
@NSLL

582 D: Shift word UDINT ---

C: Control word UINT ---

SHIFT N-BITS
RIGHT

NASR
@NASR

581 D: Shift word UINT ---

C: Control word UINT ---

DOUBLE SHIFT
N-BITS RIGHT

NSRL
@NSRL

583 D: Shift word UDINT ---

C: Control word UINT ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT setting or
array variable

required
(Required

word data size
shown in

parentheses.)

RORL

Wd

RRNC

Wd

RRNL

Wd

SLD

St

E

SRD

St

E

NSFL

D

C

N

NSFR

D

C

N

NASL

D

C

NSLL

D

C

NASR

D

C

NSRL

D

C

66

Instruction Support and Operand Restrictions Section 2-6
2-6-8 Increment/Decrement Instructions

2-6-9 Symbol Math Instructions

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT setting
or array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

INCREMENT
BINARY

++
@++

590 Wd: Word UINT ---

DOUBLE INCRE-
MENT BINARY

++L

@++L

591 Wd: Word UDINT ---

DECREMENT
BINARY

--
@--

592 Wd: Word UINT ---

DOUBLE DECRE-
MENT BINARY

--L

@--L

593 Wd: 1st word UDINT ---

INCREMENT BCD ++B
@++B

594 Wd: Word WORD ---

DOUBLE INCRE-
MENT BCD

++BL

@++BL

595 Wd: 1st word DWORD ---

DECREMENT BCD --B
@--B

596 Wd: Word DWORD ---

DOUBLE DECRE-
MENT BCD

--BL

@--BL

597 Wd: 1st word WORD ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

SIGNED BINARY
ADD WITHOUT
CARRY

+
@+

400 Au: Augend word INT ---

Ad: Addend word INT ---

R: Result word INT ---

+ +

Wd

++L

Wd

--

Wd

--L

Wd

++B

Wd

++BL

Wd

--B

Wd

--BL

Wd

+

Au

Ad

R

67

Instruction Support and Operand Restrictions Section 2-6
DOUBLE SIGNED
BINARY ADD
WITHOUT CARRY

+L

@+L

401 Au: 1st augend
word

DINT ---

Ad: 1st addend
word

DINT ---

R: 1st result word DINT ---

SIGNED BINARY
ADD WITH CARRY

+C
@+C

402 Au: Augend word INT ---

Ad: Addend word INT ---

R: Result word INT ---

DOUBLE SIGNED
BINARY ADD WITH
CARRY

+CL
@+CL

403 Au: 1st augend
word

DINT ---

Ad: 1st addend
word

DINT ---

R: 1st result word DINT ---

BCD ADD
WITHOUT CARRY

+B
@+B

404 Au: Augend word WORD ---

Ad: Addend word WORD ---

R: Result word WORD ---

DOUBLE BCD ADD
WITHOUT CARRY

+BL

@+BL

405 Au: 1st augend
word

DWORD ---

Ad: 1st addend
word

DWORD ---

R: 1st result word DWORD ---

BCD ADD WITH
CARRY

+BC

@+BC

406 Au: Augend word WORD ---

Ad: Addend word WORD ---

R: Result word WORD ---

DOUBLE BCD ADD
WITH CARRY

+BCL
@+BCL

407 Au: 1st augend
word

DWORD ---

Ad: 1st addend
word

DWORD ---

R: 1st result word DWORD ---

SIGNED BINARY
SUBTRACT WITH-
OUT CARRY

-
@-

410 Mi: Minuend word INT ---

Su: Subtrahend
word

INT ---

R: Result word INT ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

+L

Au

Ad

R

+C

Au

Ad

R

+CL

Au

Ad

R

+B

Au

Ad

R

+BL

Au

Ad

R

+BC

Au

Ad

R

+BCL

Au

Ad

R

-

Mi

Su

R

68

Instruction Support and Operand Restrictions Section 2-6
DOUBLE SIGNED
BINARY SUB-
TRACT WITHOUT
CARRY

-L

@-L

411 Mi: Minuend word DINT ---

Su: Subtrahend
word

DINT ---

R: Result word DINT ---

SIGNED BINARY
SUBTRACT WITH
CARRY

-C
@-C

412 Mi: Minuend word INT ---

Su: Subtrahend
word

INT ---

R: Result word INT ---

DOUBLE SIGNED
BINARY WITH
CARRY

-CL
@-CL

413 Mi: Minuend word DINT ---

Su: Subtrahend
word

DINT ---

R: Result word DINT ---

BCD SUBTRACT
WITHOUT CARRY

-B
@-B

414 Mi: Minuend word WORD ---

Su: Subtrahend
word

WORD ---

R: Result word WORD ---

DOUBLE BCD
SUBTRACT WITH-
OUT CARRY

-BL

@-BL

415 Mi: 1st minuend
word

DWORD ---

Su: 1st subtrahend
word

DWORD ---

R: 1st result word DWORD ---

BCD SUBTRACT
WITH CARRY

-BC

@-BC

416 Mi: Minuend word WORD ---

Su: Subtrahend
word

WORD ---

R: Result word WORD ---

DOUBLE BCD
SUBTRACT WITH
CARRY

-BCL
@-BCL

417 Mi: 1st minuend
word

DWORD ---

Su: 1st subtrahend
word

DWORD ---

R: 1st result word DWORD ---

SIGNED BINARY
MULTIPLY

*
@*

420 Md: Multiplicand
word

INT ---

Mr: Multiplier word INT ---

R: Result word DINT ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

-L

Mi

Su

R

-C

Mi

Su

R

-CL

Mi

Su

R

-B

Mi

Su

R

-BL

Mi

Su

R

-BC

Mi

Su

R

-BCL

Mi

Su

R

*

Md

Mr

R

69

Instruction Support and Operand Restrictions Section 2-6
DOUBLE SIGNED
BINARY MULTIPLY

*L

@*L

421 Md: 1st multiplicand
word

DINT ---

Mr: 1st multiplier
word

DINT ---

R: 1st result word LINT ---

UNSIGNED
BINARY MULTIPLY

*U
@*U

422 Md: Multiplicand
word

UINT ---

Mr: Multiplier word UINT ---

R: Result word UINT ---

DOUBLE
UNSIGNED
BINARY

MULTIPLY

*UL
@*UL

423 Md: 1st multiplicand
word

UDINT ---

Mr: 1st multiplier
word

UDINT ---

R: 1st result word ULINT ---

BCD MULTIPLY *B
@*B

424 Md: Multiplicand
word

WORD ---

Mr: Multiplier word WORD ---

R: Result word DWORD ---

DOUBLE BCD
MULTIPLY

*BL

@*BL

425 Md: 1st multiplicand
word

DWORD ---

Mr: 1st multiplier
word

DWORD ---

R: 1st result word LWORD ---

SIGNED BINARY
DIVIDE

/

@/

430 Dd: Dividend word INT ---

Dr: Divisor word INT ---

R: Result word DWORD Yes (2)

INT must
be used
when
array vari-
ables are
required.

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

*L

Md

Mr

R

*U

Md

Mr

R

*UL

Md

Mr

R

*B

Md

Mr

R

*BL

Md

Mr

R

/

Dd

Dr

R

70

Instruction Support and Operand Restrictions Section 2-6
DOUBLE SIGNED
BINARY DIVIDE

/L

@/L

431 Dd: 1st dividend
word

DINT ---

Dr: 1st divisor word DINT ---

R: 1st result word LWORD Yes (2)
DINT must
be used
when
array vari-
ables are
required.

UNSIGNED
BINARY DIVIDE

/U

@/U

432 Dd: Dividend word UINT ---

Dr: Divisor word UINT ---

R: Result word DWORD Yes (2)

UINT must
be used
when
array vari-
ables are
required.

DOUBLE
UNSIGNED
BINARY DIVIDE

/UL
@/UL

433 Dd: 1st dividend
word

UDINT ---

Dr: 1st divisor word UDINT ---

R: 1st result word LWORD Yes (2)

UDINT
must be
used
when
array vari-
ables are
required.

BCD DIVIDE /B
@/B

434 Dd: Dividend word WORD ---

Dr: Divisor word WORD ---

R: Result word DWORD Yes (2)
WORD
must be
used
when
array vari-
ables are
required.

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

/L

Dd

Dr

R

/U

Dd

Dr

R

/UL

Dd

Dr

R

/B

Dd

Dr

R

71

Instruction Support and Operand Restrictions Section 2-6
2-6-10 Conversion Instructions

DOUBLE BCD
DIVIDE

/BL

@/BL

435 Dd: 1st dividend
word

DWORD ---

Dr: 1st divisor word DWORD ---

R: 1st result word LWORD Yes (2)
DWORD
must be
used
when
array vari-
ables are
required.

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

BCD-TO-BINARY BIN
@BIN

023 S: Source word WORD ---

R: Result word UINT ---

DOUBLE BCD-TO-
DOUBLE BINARY

BINL
@BINL

058 S: 1st source word DWORD ---

R: 1st result word UDINT ---

BINARY-TO-BCD BCD
@BCD

024 S: Source word UINT ---

R: Result word WORD ---

DOUBLE BINARY-
TO-DOUBLE BCD

BCDL
@BCDL

059 S: 1st source word UDINT ---

R: 1st result word DWORD ---

2’S COMPLEMENT NEG

@NEG

160 S: Source word WORD ---

R: Result word UINT ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

/BL

Dd

Dr

R

BIN

S

R

BINL

S

R

BCD

S

R

BCDL

S

R

NEG

S

R

72

Instruction Support and Operand Restrictions Section 2-6
DOUBLE 2’S COM-
PLEMENT

NEGL

@NEGL

161 S: 1st source word DWORD ---

R: 1st result word UDINT ---

16-BIT TO 32-BIT
SIGNED BINARY

SIGN
@SIGN

600 S: Source word WORD ---

R: 1st result word DINT ---

DATA DECODER MLPX
@MLPX

076 S: Source word UINT ---

C: Control word UINT ---

R: 1st result word UINT Yes (not
fixed)

DATA ENCODER DMPX
@DMPX

077 S: 1st source word UINT Yes (not
fixed)

R: Result word UINT ---

C: Control word UINT ---

ASCII CONVERT ASC

@ASC

086 S: Source word UINT ---

Di: Digit designator UINT ---

D: 1st destination
word

UINT Yes (3)

ASCII TO HEX HEX

@HEX

162 S: 1st source word UINT Yes (2)

Di: Digit designator UINT ---

D: Destination word UINT Yes (not
fixed)

COLUMN TO LINE LINE
@LINE

063 S: 1st source word WORD Yes (16)

N: Bit number UINT ---

D: Destination word UINT ---

LINE TO COLUMN COLM
@COLM

064 S: Source word WORD ---

D: 1st destination
word

WORD Yes (16)

N: Bit number UINT ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

NEGL

S

R

SIGN

S

R

MLPX

S

C

R

DMPX

S

R

C

ASC

S

Di

D

HEX

S

Di

D

LINE

S

N

D

COLM

S

D

N

73

Instruction Support and Operand Restrictions Section 2-6
2-6-11 Logic Instructions

SIGNED BCD-TO-
BINARY

BINS

@BINS

470 C: Control word UINT ---

S: Source word WORD ---

D: Destination word INT ---

DOUBLE SIGNED
BCD-TO-BINARY

BISL
@BISL

472 C: Control word UINT ---

S: 1st source word DWORD ---

D: 1st destination
word

DINT ---

SIGNED BINARY-
TO-BCD

BCDS
@BCDS

471 C: Control word UINT ---

S: Source word INT ---

D: Destination word WORD ---

DOUBLE SIGNED
BINARY-TO-BCD

BDSL
@BDSL

473 C: Control word UINT ---

S: 1st source word DINT ---

D: 1st destination
word

DWORD ---

Instruction Mnemonic Function
code

Symbol Operand Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

LOGICAL AND ANDW
@ANDW

034 I1: Input 1 WORD ---

I2: Input 2 WORD ---

R: Result word WORD ---

DOUBLE LOGICAL
AND

ANDL

@ANDL

610 I1: Input 1 DWORD ---

I2: Input 2 DWORD ---

R: Result word DWORD ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

BINS

C

S

D

BISL

C

S

D

BCDS

C

S

D

BDSL

C

S

D

ANDW

l1

l2

R

ANDL

l1

l2

R

74

Instruction Support and Operand Restrictions Section 2-6
LOGICAL OR ORW

@ORW

035 I1: Input 1 WORD ---

I2: Input 2 WORD ---

R: Result word WORD ---

DOUBLE LOGICAL
OR

ORWL
@ORWL

611 I1: Input 1 DWORD ---

I2: Input 2 DWORD ---

R: Result word DWORD ---

EXCLUSIVE OR XORW
@XORW

036 I1: Input 1 WORD ---

I2: Input 2 WORD ---

R: Result word WORD ---

DOUBLE EXCLU-
SIVE OR

XORL
@XORL

612 I1: Input 1 DWORD ---

I2: Input 2 DWORD ---

R: Result word DWORD ---

EXCLUSIVE NOR XNRW

@XNRW

037 I1: Input 1 WORD ---

I2: Input 2 WORD ---

R: Result word WORD ---

DOUBLE EXCLU-
SIVE NOR

XNRL

@XNRL

613 I1: Input 1 DWORD ---

I2: Input 2 DWORD ---

R: Result word DWORD ---

COMPLEMENT COM
@COM

029 Wd: Word WORD ---

DOUBLE COMPLE-
MENT

COML
@COML

614 Wd: Word DWORD ---

Instruction Mnemonic Function
code

Symbol Operand Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

ORW

l1

l2

R

ORWL

l1

l2

R

XORW

l1

l2

R

XORL

l1

l2

R

XNRW

l1

l2

R

XNRL

l1

l2

R

COM

Wd

COML

Wd
75

Instruction Support and Operand Restrictions Section 2-6
2-6-12 Special Math Instructions

2-6-13 Floating-point Math Instructions

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

BINARY ROOT ROTB
@ROTB

620 S: 1st source word UDINT ---

R: Result word UINT ---

BCD SQUARE
ROOT

ROOT

@ROOT

072 S: 1st source word DWORD ---

R: Result word WORD ---

ARITHMETIC PRO-
CESS

APR

@APR

069 C: Control word UINT Yes (not
fixed)

S: Source data WORD ---

R: Result word WORD ---

FLOATING POINT
DIVIDE

FDIV
@FDIV

079 Dd: 1st dividend
word

UDINT ---

Dr: 1st divisor word UDINT ---

R: 1st result word UDINT ---

BIT COUNTER BCNT
@BCNT

067 N: Number of
words

UINT ---

S: 1st source word UINT Yes (not
fixed)

R: Result word UINT ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

FLOATING TO 16-
BIT

FIX
@FIX

450 S: 1st source word REAL ---

R: Result word INT ---

ROTB

S

R

ROOT

S

R

APR

C

S

R

FDIV

Dd

Dr

R

BCNT

N

S

R

FIX

S

R

76

Instruction Support and Operand Restrictions Section 2-6
FLOATING TO 32-
BIT

FIXL

@FIXL

451 S: 1st source word REAL ---

R: Result word DINT ---

16-BIT TO FLOAT-
ING

FLT
@FLT

452 S: Source word INT ---

R: 1st result word REAL ---

32-BIT TO FLOAT-
ING

FLTL
@FLTL

453 S: 1st source word DINT ---

R: Result word REAL ---

FLOATING-POINT
ADD

+F
@+F

454 Au: 1st augend
word

REAL ---

Ad: 1st addend
word

REAL ---

R: 1st result word REAL ---

FLOATING-POINT
SUBTRACT

-F

@-F

455 Mi: 1st Minuend
word

REAL ---

Su: 1st Subtrahend
word

REAL ---

R: 1st result word REAL ---

FLOATING- POINT
MULTIPLY

*F

@*F

456 Md: 1st Multiplicand
word

REAL ---

Mr: 1st Multiplier
word

REAL ---

R: 1st result word REAL ---

FLOATING- POINT
DIVIDE

/F
@/F

457 Dd: 1st Dividend
word

REAL ---

Dr: 1st Divisor word REAL ---

R: 1st result word REAL ---

DEGREES TO RADI-
ANS

RAD
@RAD

458 S: 1st source word REAL ---

R: 1st result word REAL ---

RADIANS TO
DEGREES

DEG
@DEG

459 S: 1st source word REAL ---

R: 1st result word REAL ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

FIXL

S

R

FLT

S

R

FLTL

S

R

+F

Au

Ad

R

-F

Mi

Su

R

* F

Md

Mr

R

/F

Dd

Dr

R

RAD

S

R

DEG

S

R

77

Instruction Support and Operand Restrictions Section 2-6
SINE SIN

@SIN

460 S: 1st source word REAL ---

R: 1st result word REAL ---

COSINE COS
@COS

461 S: 1st source word REAL ---

R: 1st result word REAL ---

TANGENT TAN
@TAN

462 S: 1st source word REAL ---

R: 1st result word REAL ---

ARC SINE ASIN
@ASIN

463 S: 1st source word REAL ---

R: 1st result word REAL ---

ARC COSINE ACOS

@ACOS

464 S: 1st source word REAL ---

R: 1st result word REAL ---

ARC TANGENT ATAN

@ATAN

465 S: 1st source word REAL ---

R: 1st result word REAL ---

SQUARE ROOT SQRT
@SQRT

466 S: 1st source word REAL ---

R: 1st result word REAL ---

EXPONENT EXP
@EXP

467 S: 1st source word REAL ---

R: 1st result word REAL ---

LOGARITHM LOG
@LOG

468 S: 1st source word REAL ---

R: 1st result word REAL ---

EXPONENTIAL
POWER

PWR
@PWR

840 B: 1st base word REAL ---

E: 1st exponent
word

REAL ---

R: 1st result word REAL ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

SIN

S

R

COS

S

R

TAN

S

R

ASIN

S

R

ACOS

S

R

ATAN

S

R

SQRT

S

R

EXP

S

R

LOG

S

R

PWR

B

E

R

78

Instruction Support and Operand Restrictions Section 2-6
Floating Symbol
Comparison

LD, AND,
OR
+
=F, <>F, <F,
<=F, >F, >=F

329 (=F)

330 (<>F)
331 (<F)
332 (<=F)

333 (>F)
334 (>=F)

S1:Comparoson
data 1

REAL ---

S2:Comparison
data 2

REAL ---

FLOATING- POINT
TO ASCII

FSTR

@FSTR

448 S: 1st source word REAL ---

C: Control word UINT Yes (3)

D: Destination word UINT Yes (not
fixed)

ASCII TO FLOATING-
POINT

FVAL
@FVAL

449 S: Source word UINT Yes (not
fixed)

D: 1st destination
word

REAL ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

Symbol, option

S1

S2

Using LD:

Symbol, option

S1

S2

Using AND:

Symbol, option

S1

S2

Using OR:

FSTR

S

C

D

FVAL

S

D

79

Instruction Support and Operand Restrictions Section 2-6
2-6-14 Double-precision Floating-point Instructions
Instruction Mnemonic Function

code
Symbol Operands Supported

variable
data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

DOUBLE FLOATING
TO 16-BIT BINARY

FIXD
@FIXD

841 S: 1st source word LREAL ---

D: Destination
word

INT ---

DOUBLE FLOATING
TO 32-BIT BINARY

FIXLD

@FIXLD

842 S: 1st source word LREAL ---

D: 1st destination
word

DINT ---

16-BIT BINARY TO
DOUBLE FLOATING

DBL

@DBL

843 S: Source word INT ---

D: 1st destination
word

LREAL ---

32-BIT BINARY TO
DOUBLE FLOATING

DBLL
@DBLL

844 S: 1st source word DINT ---

D: 1st destination
word

DINT ---

DOUBLE FLOATING-
POINT ADD

+D
@+D

845 Au: 1st augend
word

LREAL ---

Ad: 1st addend
word

LREAL ---

R: 1st result word LREAL ---

DOUBLE FLOATING-
POINT SUBTRACT

-D
@-D

846 Mi: 1st minuend
word

LREAL ---

Su: 1st subtra-
hend word

LREAL ---

R: 1st result word LREAL ---

DOUBLE FLOATING-
POINT MULTIPLY

*D

@*D

847 Md: 1st multipli-
cand word

LREAL ---

Mr: 1st multiplier
word

LREAL ---

R: 1st result word LREAL ---

DOUBLE FLOATING-
POINT DIVIDE

/D

@/D

848 Dd: 1st Dividend
word

LREAL ---

Dr: 1st divisor word LREAL ---

R: 1st result word LREAL ---

FIXD

S

D

FIXLD

S

D

DBL

S

D

DBLL

S

D

+D

Au

Ad

R

-D

Mi

Su

R

*D

Md

Mr

R

/D

Dd

Dr

R

80

Instruction Support and Operand Restrictions Section 2-6
DOUBLE DEGREES
TO RADIANS

RADD

@RADD

849 S: 1st source word LREAL ---

R: 1st result word LREAL ---

DOUBLE RADIANS
TO DEGREES

DEGD
@DEGD

850 S: 1st source word LREAL ---

R: 1st result word LREAL ---

DOUBLE SINE SIND
@SIND

851 S: 1st source word LREAL ---

R: 1st result word LREAL ---

DOUBLE COSINE COSD
@COSD

852 S: 1st source word LREAL ---

R: 1st result word LREAL ---

DOUBLE TANGENT TAND

@TAND

853 S: 1st source word LREAL ---

R: 1st result word LREAL ---

DOUBLE ARC SINE ASIND

@ASIND

854 S: 1st source word LREAL ---

R: 1st result word LREAL ---

DOUBLE ARC
COSINE

ACOSD
@ACOSD

855 S: 1st source word LREAL ---

R: 1st result word LREAL ---

DOUBLE ARC TAN-
GENT

ATAND
@ATAND

856 S: 1st source word LREAL ---

R: 1st result word LREAL ---

DOUBLE SQUARE
ROOT

SQRTD
@SQRTD

857 S: 1st source word LREAL ---

R: 1st result word LREAL ---

DOUBLE EXPO-
NENT

EXPD
@EXPD

858 S: 1st source word LREAL ---

R: 1st result word LREAL ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

RADD

S

R

DEGD

S

R

SIND

S

R

COSD

S

R

TAND

S

R

ASIND

S

R

ACOSD

S

R

ATAND

S

R

SQRTD

S

R

EXPD

S

R

81

Instruction Support and Operand Restrictions Section 2-6
2-6-15 Table Data Processing Instructions

DOUBLE LOGA-
RITHM

LOGD

@LOGD

859 S: 1st source word LREAL ---

R: 1st result word LREAL ---

DOUBLE EXPONEN-
TIAL POWER

PWRD
@PWRD

860 B: 1st base word LREAL ---

E: 1st exponent
word

LREAL ---

R: 1st result word LREAL ---

DOUBLE SYMBOL
COMPARISON

LD, AND,
OR
+

=D, <>D, <D,
<=D, >D,
>=D

335 (=D)
336 (<>D)
337 (<D)

338 (<=D)
339 (>D)
340 (>=D)

S1:Comparoson
data 1

LREAL ---

S2:Comparison
data 2

LREAL ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

SET STACK SSET
@SSET

630 TB: 1st stack
address

UINT Yes (not
fixed)

N: Number of
words

UINT ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

LOGD

S

R

PWRD

B

E

R

Symbol, option

S1

S2

Using LD:

Symbol, option

S1

S2

Using AND:

Symbol, option

S1

S2

Using OR:

SSET

TB

N

82

Instruction Support and Operand Restrictions Section 2-6
PUSH ONTO
STACK

PUSH

@PUSH

632 Not supported in func-
tion blocks

TB: 1st stack
address

--- ---

S: Source word --- ---

FIRST IN FIRST
OUT

FIFO
@FIFO

633 Not supported in func-
tion blocks

TB: 1st stack
address

--- ---

D: Destination word --- ---

LAST IN FIRST
OUT

LIFO
@LIFO

634 Not supported in func-
tion blocks

TB: 1st stack
address

--- ---

D: Destination word --- ---

DIMENSION
RECORD TABLE

DIM

@DIM

631 N: Table number # + decimal

only

LR: Length of each
record

UINT ---

NR: Number of
records

UINT ---

TB: 1st table word UINT Yes (not
fixed)

SET RECORD
LOCATION

SETR
@SETR

635 Not supported in func-
tion blocks

N: Table number --- ---

R: Record number --- ---

D: Destination
Index Register

--- ---

GET RECORD
NUMBER

GETR
@GETR

636 Not supported in func-
tion blocks

N: Table number --- ---

IR: Index Register --- ---

D: Destination word --- ---

DATA SEARCH SRCH

@SRCH

181 C: 1st control word UDINT ---

R1: 1st word in
range

UINT Yes (not
fixed)

Cd: Comparison
data

WORD ---

SWAP BYTES SWAP

@SWAP

637 N: Number of
words

UINT ---

R1: 1st word in
range

UINT Yes (not
fixed)

FIND MAXIMUM MAX
@MAX

182 C: 1st control word UDINT ---

R1: 1st word in
range

UINT Yes (not
fixed)

D: Destination word UINT ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

DIM

N

LR

NR

TB

SRCH

C

R1

Cd

SWAP

N

R1

MAX

C

R1

D

83

Instruction Support and Operand Restrictions Section 2-6
FIND MINIMUM MIN

@MIN

183 C: 1st control word UDINT ---

R1: 1st word in
range

UINT Yes (not
fixed)

D: Destination word UINT ---

SUM SUM
@SUM

184 C: 1st control word UDINT ---

R1: 1st word in
range

UINT Yes (not
fixed)

D: 1st destination
word

UDINT ---

FRAME CHECK
SUM

FCS
@FCS

180 C: 1st control word UDINT ---

R1: 1st word in
range

UINT Yes (not
fixed)

D: 1st destination
word

UINT ---

STACK SIZE READ SNUM
@SNUM

638 TB: First stack
address

UINT Yes (not
fixed)

D: Destination word UINT ---

STACK DATA READ SREAD

@SREAD

639 TB: First stack
address

UINT Yes (not
fixed)

C: Offset value UINT ---

D: Destination word UINT ---

STACK DATA
OVERWRITE

SWRIT

@SWRIT

640 TB: First stack
address

UINT Yes (not
fixed)

C: Offset value UINT ---

S: Source data UINT ---

STACK DATA
INSERT

SINS
@SINS

641 TB: First stack
address

UINT Yes (not
fixed)

C: Offset value UINT ---

S: Source data UINT ---

STACK DATA
DELETE

SDEL
@SDEL

642 TB: First stack
address

UINT Yes (not
fixed)

C: Offset value UINT ---

D: Destination word UINT ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

MIN

C

R1

D

SUM

C

R1

D

FCS

C

R1

D

SNUM

TB

D

SREAD

TB

C

D

SWRIT

TB

C

S

SINS

TB

C

S

SDEL

TB

C

D

84

Instruction Support and Operand Restrictions Section 2-6
2-6-16 Data Control Instructions
Instruction Mnemonic Function

code
Symbol Operands Supported

variable
data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

PID CONTROL PID 190 S: Input word UINT ---

C: 1st parameter
word

WORD Yes (39)

D: Output word UINT ---

PID CONTROL
WITH AUTO TUN-
ING

PIDAT 191 S: Input word UINT ---

C: 1st parameter
word

WORD Yes (40)

D: Output word UINT ---

LIMIT CONTROL LMT

@LMT

680 S: Input word INT ---

C: 1st limit word DINT Yes (2)

D: Output word INT ---

DEAD BAND CON-
TROL

BAND
@BAND

681 S: Input word INT ---

C: 1st limit word UINT Yes (2)

D: Output word UINT ---

DEAD ZONE CON-
TROL

ZONE
@ZONE

682 S: Input word INT ---

C: 1st limit word UDINT Yes (2)

D: Output word UINT ---

TIME-PROPOR-
TIONAL OUTPUT

TPO 685 S: Input word UINT ---

C: 1st parameter
word

WORD Yes (7)

R: Pulse Output Bit BOOL ---

SCALING SCL

@SCL

194 S: Input word UINT ---

P1: 1st parameter
word

LWORD Yes (2)

R: Result word WORD ---

PID

S

C

D

PIDAT

S

C

D

LMT

S

C

D

BAND

S

C

D

ZONE

S

C

D

TPO

S

C

R

SCL

S

P1

R

85

Instruction Support and Operand Restrictions Section 2-6
2-6-17 Subroutine Instructions

SCALING 2 SCL2

@SCL2

486 S: Source word INT ---

P1: 1st parameter
word

WORD Yes (3)

R: Result word WORD ---

SCALING 3 SCL3
@SCL3

487 S: Source word WORD ---

P1: 1st parameter
word

WORD Yes (3)

R: Result word INT ---

AVERAGE AVG 195 S: Source word UINT ---

N: Number of
cycles

UINT ---

R: Result word UINT Yes (not
fixed)

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

SUBROUTINE CALL SBS
@SBS

091 Not supported in func-
tion blocks

N: Subroutine num-
ber

--- ---

SUBROUTINE
ENTRY

SBN 092 Not supported in func-
tion blocks

N: Subroutine num-
ber

--- ---

SUBROUTINE
RETURN

RET 093 Not supported in func-
tion blocks

--- ---

MACRO MCRO

@MCRO

099 Not supported in func-
tion blocks

N: Subroutine num-
ber

--- ---

S: 1st input param-
eter word

--- ---

D: 1st output
parameter word

--- ---

GLOBAL SUBROU-
TINE CALL

GSBS
@GSBS

750 Not supported in func-
tion blocks

N: Subroutine num-
ber

--- ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

SCL2

S

P1

R

SCL3

S

P1

R

AVG

S

N

R

86

Instruction Support and Operand Restrictions Section 2-6
2-6-18 Interrupt Control Instructions

GLOBAL SUBROU-
TINE ENTRY

GSBN 751 Not supported in func-
tion blocks

N: Subroutine num-
ber

--- ---

GLOBAL SUBROU-
TINE RETURN

GRET 752 Not supported in func-
tion blocks

--- ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

SET INTERRUPT
MASK

MSKS
@MSKS

690 N: Interrupt identi-
fier

+ decimal
only

S: Interrupt data UINT ---

READ INTERRUPT
MASK

MSKR

@MSKR

692 N: Interrupt identi-
fier

+ decimal
only

D: Destination word UINT ---

CLEAR INTER-
RUPT

CLI

@CLI

691 N: Interrupt identi-
fier

+ decimal
only

S: Interrupt data UINT ---

DISABLE INTER-
RUPTS

DI
@DI

693 --- --- ---

ENABLE INTER-
RUPTS

EI 694 --- --- ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

MSKS

N

S

MSKR

N

D

CLI

N

S

DI

EI
87

Instruction Support and Operand Restrictions Section 2-6
2-6-19 High-speed Counter and Pulse Output Instructions (CJ1M-CPU21/
22/23 Only)

Instruction Mnemonic Function
code

Symbol/Operands Function Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

MODE CONTROL INI
@INI

880 P: Port specifier WORD ---

C: Control data UINT ---

NV: 1st word with
new PCV

DWORD ---

HIGH-SPEED
COUNTER PV
READ

PRV

@PRV

881 P: Port specifier WORD ---

C: Control data UINT ---

D: 1st destination
word

WORD Yes (1 or
2)

COUNTER FRE-
QUENCY CON-
VERT

(CJ1M CPU Unit
Ver. 2.0 or later only)

PRV2 883 C1: Control data WORD ---

C2: Pulses/revolu-
tion

UINT ---

D: 1st destination
word

UDINT ---

COMPARISON
TABLE LOAD

CTBL
@CTBL

882 P: Port specifier UINT ---

C: Control data UINT ---

TB: 1st compari-
son table word

LWORD Yes (not
fixed)

SPEED OUTPUT SPED
@SPED

885 P: Port specifier UINT ---

M: Output mode WORD ---

F: 1st pulse fre-
quency word

UDINT ---

SET PULSES PULS
@PULS

886 P: Port specifier UINT ---

T: Pulse type UINT ---

N: Number of
pulses

DINT ---

PULSE OUTPUT PLS2

@PLS2

887 P: Port specifier UINT ---

M: Output mode WORD ---

S: 1st word of set-
tings table

WORD Yes (6)

F: 1st word of start-
ing frequency

UDINT ---

INI

P

C

NV

PRV

P

C

D

PRV2

C1

C2

D

CTBL

P

C

TB

SPED

P

M

F

PULS

P

T

N

PLS2

P

M

S

F

88

Instruction Support and Operand Restrictions Section 2-6
2-6-20 Step Instructions

2-6-21 Basic I/O Unit Instructions

ACCELERATION
CONTROL

ACC

@ACC

888 P: Port specifier UINT ---

M: Output mode UINT ---

S: 1st word of set-
tings table

WORD Yes (3)

ORIGIN SEARCH ORG
@ORG

889 P: Port specifier UINT ---

C: Control data WORD ---

PULSE WITH VARI-
ABLE DUTY FAC-
TOR

PWM
@PWM

891 P: Port specifier UINT ---

F: Frequency UINT ---

D: Duty factor UINT ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

STEP DEFINE STEP 008 Not supported in func-
tion blocks

B: Bit --- ---

STEP START SNXT 009 Not supported in func-
tion blocks

B: Bit --- ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

I/O REFRESH IORF
@IORF

097 Not supported in func-
tion blocks

St: Starting word --- ---

E: End word --- ---

Instruction Mnemonic Function
code

Symbol/Operands Function Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

ACC

P

M

S

ORG

P

C

PWM

P

F

D

89

Instruction Support and Operand Restrictions Section 2-6
7-SEGMENT
DECODER

SDEC

@SDEC

078 S: Source word UINT ---

Di: Digit designator UINT ---

D: 1st destination
word

UINT Yes (not
fixed)

DIGITAL SWITCH
INPUT

DSW 210 I: Data input word
(D0 to D3)

UINT ---

O: Output word UINT ---

D: 1st result word WORD ---

C1: Number of dig-
its

UINT ---

C2: System word WORD ---

TEN KEY INPUT TKY 211 I: Data input word UINT ---

D1: 1st register
word

UDINT ---

D2: Key input word UINT ---

HEXADECIMAL
KEY INPUT

HKY 212 I: Data input word UINT ---

O: Output word UINT ---

D: 1st register word WORD Yes (3)

C: System word WORD ---

MATRIX INPUT MTR 213 I: Data input word UINT ---

O: Output word UINT ---

D: 1st destination
word

ULINT Yes (3)

C: System word WORD ---

7-SEGMENT DIS-
PLAY OUTPUT

7SEG 214 S: 1st source word WORD Yes (2)

O: Output word UINT ---

C: Control data UINT ---

D: System word WORD ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

SDEC

S

Di

D

DSW

I

O

D

C1

C2

TKY

I

D1

D2

HKY

I

O

D

C

MTR

I

O

D

C

7SEG

S

O

C

D

90

Instruction Support and Operand Restrictions Section 2-6
2-6-22 Serial Communications Instructions

INTELLIGENT I/O
READ

IORD

@IORD

222 C: Control data UINT ---

S: Transfer source
and number of
words

UDINT Yes (2)
UINT must
be used
when
array vari-
ables are
required.

D: Transfer destina-
tion and number of
words

UINT Yes (not
fixed)

INTELLIGENT I/O
WRITE

IOWR
@IOWR

223 C: Control data UINT ---

S: Transfer source
and number of
words

WORD Yes (not
fixed)

D: Transfer destina-
tion and number of
words

UINT Yes (2)

UINT must
be used
when
array vari-
ables are
required.

CPU BUS UNIT I/O
REFRESH

DLNK
@DLNK

226 N: Unit number UINT ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

PROTOCOL MACRO PMCR
@PMCR

260 C1:Control word 1 UINT ---

C2: Control word 2 UINT ---

S: 1st send word UINT Yes (not
fixed)

R: 1st receive word UINT Yes (not
fixed)

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

IORD

C

S

D

IOWR

C

S

D

DLNK
N

PMCR

C1

C2

S

R

91

Instruction Support and Operand Restrictions Section 2-6
TRANSMIT TXD

@TXD

236 S: 1st source word UINT Yes (not
fixed)

C: Control word UINT ---

N: Number of bytes
0000 to 0100 hex(0
to 256 decimal)

UINT ---

RECEIVE RXD
@RXD

235 D: 1st destination
word

UINT Yes (not
fixed)

C: Control word UINT ---

N: Number of bytes
to store 0000 to
0100 hex(0 to 256
decimal)

UINT ---

TRANSMIT VIA
SERIAL COMMUNI-
CATIONS UNIT

TXDU
@TXDU

256 S: 1st source word UINT Yes (not
fixed)

C: 1st control word UDINT ---

N: Number of send
bytes (4 digits
BCD)

UINT ---

RECEIVE VIA
SERIAL COMMUNI-
CATIONS UNIT

RXDU

@RXDU

255 D: 1st destination
word

UINT Yes (not
fixed)

C: 1st control word UDINT ---

N: Number of stor-
age bytes

UINT ---

CHANGE SERIAL
PORT SETUP

STUP
@STUP

237 C: Control word
(port)

UINT ---

S: 1st source word UINT Yes (not
fixed)

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

TXD

S

C

N

RXD

D

C

N

TXDU

S

C

N

RXDU

D

C

N

STUP

C

S

92

Instruction Support and Operand Restrictions Section 2-6
2-6-23 Network Instructions
Instruction Mnemonic Function

code
Symbol Operands Supported

variable
data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

NETWORK SEND SEND
@SEND

090 S: 1st source word UINT Yes (not
fixed)

D: 1st destination
word

UINT Specify
address at
remote
node with
AT setting.

C: 1st control word WORD Yes (5)

NETWORK RECEIVE RECV

@RECV

098 S: 1st source word UINT Specify
address at
remote
node with
AT setting.

D: 1st destination
word

UINT Yes (not
fixed)

C: 1st control word WORD Yes (5)

DELIVER COMMAND CMND

@CMND

490 S: 1st command
word

UINT Yes (not
fixed)

D: 1st response
word

UINT Yes (not
fixed)

C: 1st control word WORD Yes (6)

EXPLICIT MESSAGE
SEND

EXPLT 720 S: 1st word of send
message

WORD Yes (not
fixed)

D: 1st word of
received message

WORD Yes (not
fixed)

C: 1st control word LWORD Yes (4)

WORD
must be
used
when
array vari-
ables are
required.

EXPLICIT GET
ATTRIBUTE

EGATR 721 S: 1st word of send
message

ULINT Yes (4)

WORD
must be
used
when
array vari-
ables are
required.

D: 1st word of
received message

WORD Yes (not
fixed)

C: 1st control word
message

LWORD Yes (4)

SEND

S

D

C

RECV

S

D

C

CMND

S

D

C

EXPLT

S

D

C

EGATR

S

D

C

93

Instruction Support and Operand Restrictions Section 2-6
EXPLICIT SET
ATTRIBUTE

ESATR 722 S: 1st word of send
message

WORD Yes (not
fixed)

C: 1st control word WORD Yes (3)

EXPLICIT WORD
READ

ECHRD 723 S: 1st source word
in remote CPU Unit

UINT Specify
the desti-
nation
address
when
using AT
settings.

D: 1st destination
word in local CPU
Unit

UINT Yes (2)

C: 1st control word WORD Yes (5)

EXPLICIT WORD
WRITE

ECHWR 724 S: 1st source word
in local CPU Unit

UINT Yes (not
fixed)

D: 1st destination
word in remote
CPU Unit

UINT Specify
the desti-
nation
address
when
using AT
settings.

C: 1st control word WORD Yes (5)

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

ESATR

S

C

ECHRD

S

D

C

ECHWR

S

D

C

94

Instruction Support and Operand Restrictions Section 2-6
2-6-24 File Memory Instructions

2-6-25 Display Instructions

Instruction Mnemonic Function
code

Symbol Operand Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

READ DATA FILE FREAD
@FREAD

700 C: Control word UINT ---

S1: 1st source word LWORD Yes (2)
DWORD
must be
used
when
array vari-
ables are
required.

S2: Filename UINT Yes (39)

D: 1st destination
word

UINT Yes (not
fixed)

WRITE DATA FILE FWRIT
@FWRIT

701 C: Control word UINT ---

D1: 1st destination
word

LWORD Yes (2)

DWORD
must be
used
when
array vari-
ables are
required.

D2: Filename UINT Yes (39)

S: 1st source word UINT Yes (not
fixed)

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

DISPLAY MESSAGE MSG
@MSG

046 N: Message num-
ber

UINT ---

M: 1st message
word

UINT Yes (16)

FREAD

C

S1

S2

D

FWRIT

C

D1

D2

S

MSG

N

M

95

Instruction Support and Operand Restrictions Section 2-6
2-6-26 Clock Instructions
Instruction Mnemonic Function

code
Symbol Operands Supported

variable
data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

CALENDAR ADD CADD
@CADD

730 C: 1st calendar
word

WORD Yes (3)

T: 1st time word DWORD Yes (2)
WORD
must be
used
when
array vari-
ables are
required.

R: 1st result word WORD Yes (3)

CALENDAR SUB-
TRACT

CSUB

@CSUB

731 C: 1st calendar
word

WORD Yes (3)

T: 1st time word DWORD Yes (2)
WORD
must be
used
when
array vari-
ables are
required.

R: 1st result word WORD Yes (3)

HOURS TO SEC-
ONDS

SEC
@SEC

065 S: 1st source word DWORD Yes (2)
WORD
must be
used
when
array vari-
ables are
required.

D: 1st destination
word

DWORD Yes (2)

WORD
must be
used
when
array vari-
ables are
required.

CADD

C

T

R

CSUB

C

T

R

SEC

S

D

96

Instruction Support and Operand Restrictions Section 2-6
2-6-27 Debugging Instructions

SECONDS TO
HOURS

HMS

@HMS

066 S: 1st source word DWORD Yes (2)

WORD
must be
used
when
array vari-
ables are
required.

D: 1st destination
word

DWORD Yes (2)

WORD
must be
used
when
array vari-
ables are
required.

CLOCK ADJUST-
MENT

DATE
@DATE

735 S: 1st source word LWORD Yes (4)
WORD
must be
used
when
array vari-
ables are
required.

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

TRACE MEMORY
SAMPLING

TRSM 045 --- --- ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

HMS

S

D

DATE

S

TRSM
97

Instruction Support and Operand Restrictions Section 2-6
2-6-28 Failure Diagnosis Instructions

2-6-29 Other Instructions

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

FAILURE ALARM FAL
@FAL

006 N: FAL number # + decimal
only

M: 1st message
word or error code
to generate(#0000
to #FFFF)

WORD ---

SEVERE FAILURE
ALARM

FALS 007 N: FALS number # + decimal
only

M: 1st message
word or error code
to generate(#0000
to #FFFF)

WORD ---

FAILURE POINT
DETECTION

FPD 269 Not supported in func-
tion blocks

C: Control word --- ---

T: Monitoring time --- ---

R: 1st register word --- ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

SET CARRY STC
@STC

040 --- --- ---

CLEAR CARRY CLC

@CLC

041 --- --- ---

SELECT EM BANK EMBC

@EMBC

281 N: EM bank num-
ber.

UINT ---

EXTEND MAXI-
MUM CYCLE TIME

WDT
@WDT

094 T: Timer setting Constants
only

SAVE Condition
FlagS

CCS

@CCS

282 --- --- ---

LOAD Condition
FlagS

CCL
@CCL

283 --- --- ---

FAL

N

M

FALS

N

M

STC

CLC

EMBC

N

WDT

T

CCS

CCL
98

Instruction Support and Operand Restrictions Section 2-6
2-6-30 Block Programming Instructions

CONVERT
ADDRESS FROM
CV

FRMCV

@FRMCV

284 Not supported in func-
tion blocks

S: Word containing
CV-series memory
address

--- ---

D: Destination
Index Register

--- ---

CONVERT
ADDRESS TO CV

TOCV

@TOCV

285 Not supported in func-
tion blocks

S: Index Register
containing CS
Series memory
address

--- ---

D: Destination word --- ---

DISABLE PERIPH-
ERAL SERVICING

IOSP

@IOSP

287 --- --- ---

ENABLE PERIPH-
ERAL SERVICING

IORS 288 --- --- ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

BLOCK PROGRAM
BEGIN

BPRG 096 Not supported in func-
tion blocks

N: Block program
number

--- ---

BLOCK PROGRAM
END

BEND 801 Not supported in func-
tion blocks

--- --- ---

BLOCK PROGRAM
PAUSE

BPPS 811 Not supported in func-
tion blocks

N: Block program
number

--- ---

BLOCK PROGRAM
RESTART

BPRS 812 Not supported in func-
tion blocks

N: Block program
number

--- ---

CONDITIONAL
BLOCK EXIT

CONDI-
TION EXIT

806 Not supported in func-
tion blocks

--- --- ---

CONDITIONAL
BLOCK EXIT

EXIT Bit
operand

806 Not supported in func-
tion blocks

B: Bit operand --- ---

CONDITIONAL
BLOCK EXIT (NOT)

EXIT NOT
Bit operand

806 Not supported in func-
tion blocks

B: Bit operand --- ---

CONDITIONAL
BLOCK BRANCHING

CONDI-
TION IF

802 Not supported in func-
tion blocks

--- --- ---

CONDITIONAL
BLOCK BRANCHING

IF Bit oper-
and

802 Not supported in func-
tion blocks

B: Bit operand --- ---

CONDITIONAL
BLOCK BRANCH-
ING (NOT)

IF NOT Bit
operand

802 Not supported in func-
tion blocks

B: Bit operand --- ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

IOSP

IORS
99

Instruction Support and Operand Restrictions Section 2-6
CONDITIONAL
BLOCK BRANCH-
ING (ELSE)

ELSE 803 Not supported in func-
tion blocks

--- --- ---

CONDITIONAL
BLOCK BRANCH-
ING END

IEND 804 Not supported in func-
tion blocks

--- --- ---

ONE CYCLE AND
WAIT

CONDI-
TION WAIT

805 Not supported in func-
tion blocks

--- --- ---

ONE CYCLE AND
WAIT

WAIT Bit
operand

805 Not supported in func-
tion blocks

B: Bit operand --- ---

ONE CYCLE AND
WAIT (NOT)

WAIT NOT
Bit operand

805 Not supported in func-
tion blocks

B: Bit operand --- ---

TIMER WAIT TIMW

(BCD)

813 Not supported in func-
tion blocks

N: Timer number --- ---

SV: Set value --- ---

TIMWX

(BIN)

816 Not supported in func-
tion blocks

N: Timer number --- ---

SV: Set value --- ---

COUNTER WAIT CNTW

(BCD)

814 Not supported in func-
tion blocks

N: Counter number --- ---

SV: Set value --- ---

I: Count input --- ---

CNTWX
(BIN)

817 Not supported in func-
tion blocks

N: Counter number --- ---

SV: Set value --- ---

I: Count input --- ---

HIGH-SPEED TIMER
WAIT

TMHW

(BCD)

815 Not supported in func-
tion blocks

N: Timer number --- ---

SV: Set value --- ---

TMHWX

(BIN)

818 Not supported in func-
tion blocks

N: Timer number --- ---

SV: Set value --- ---

LOOP LOOP 809 Not supported in func-
tion blocks

--- --- ---

LEND LEND 810 Not supported in func-
tion blocks

--- --- ---

LEND LEND Bit
operand

810 Not supported in func-
tion blocks

B: Bit operand --- ---

LEND NOT LEND NOT
Bit operand

810 Not supported in func-
tion blocks

B: Bit operand --- ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)
100

Instruction Support and Operand Restrictions Section 2-6
2-6-31 Text String Processing Instructions
Instruction Mnemonic Function

code
Symbol Operands Supported

variable
data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

MOV STRING MOV$
@MOV$

664 S: 1st source word UINT Yes (not
fixed)

D: 1st destination
word

UINT Yes (not
fixed)

CONCATENATE
STRING

+$

@+$

656 S1: Text string 1 INT Yes (not
fixed)

S2: Text string 2 INT Yes (not
fixed)

D: First destination
word

INT Yes (not
fixed)

GET STRING LEFT LEFT$
@LEFT$

652 S1: Text string first
word

UINT Yes (not
fixed)

S2: Number of
characters

UINT ---

D: First destination
word

UINT Yes (not
fixed)

GET STRING
RIGHT

RGHT$

@RGHT$

653 S1: Text string first
word

UINT Yes (not
fixed)

S2: Number of
characters

UINT ---

D: First destination
word

UINT Yes (not
fixed)

GET STRING MID-
DLE

MID$
@MID$

654 S1: Text string first
word

UINT Yes (not
fixed)

S2: Number of
characters

UINT ---

S3: Beginning posi-
tion

UINT ---

D: First destination
word

UINT Yes (not
fixed)

FIND IN STRING FIND$

@FIND$

660 S1: Source text
string first word

UINT Yes (not
fixed)

S2: Found text
string first word

UINT Yes (not
fixed)

D: First destination
word

UINT ---

STRING LENGTH LEN$
@LEN$

650 S: Text string first
word

UINT Yes (not
fixed)

D: 1st destination
word

UINT ---

MOV$

S

D

+$

S1

S2

D

LEFT$

S1

S2

D

RGHT$

S1

S2

D

MID$

S1

S2

S3

D

FIND$

S1

S2

D

LEN$

S

D

101

Instruction Support and Operand Restrictions Section 2-6
REPLACE IN
STRING

RPLC$

@RPLC$

661 S1: Text string first
word

UINT Yes (not
fixed)

S2: Replacement
text string first word

UINT Yes (not
fixed)

S3: Number of
characters

UINT ---

S4: Beginning posi-
tion

UINT ---

D: First destination
word

UINT Yes (not
fixed)

DELETE STRING DEL$
@DEL$

658 S1: Text string first
word

UINT Yes (not
fixed)

S2: Number of
characters

UINT ---

S3: Beginning posi-
tion

UINT ---

D: First destination
word

UINT Yes (not
fixed)

EXCHANGE
STRING

XCHG$
@XCHG$

665 Ex1: 1st exchange
word 1

UINT Yes (not
fixed)

Ex2: 1st exchange
word 2

UINT Yes (not
fixed)

CLEAR STRING CLR$

@CLR$

666 S: Text string first
word

UINT Yes (not
fixed)

INSERT INTO
STRING

INS$
@INS$

657 S1: Base text string
first word

UINT Yes (not
fixed)

S2: Inserted text
string first word

UINT Yes (not
fixed)

S3: Beginning posi-
tion

UINT ---

D: First destination
word

UINT Yes (not
fixed)

String Comparison LD,AND, OR
+

=$,<>$,<$,<
=$,>$,>=$

670 (=$)
671 (<>$)

672 (<$)
673 (<=$)
674 (>$)

675 (>=$)

S1: Text string 1 UINT Yes (not
fixed)

S2: Text string 2 UINT Yes (not
fixed)

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

RPLC$

S1

S2

S3

S4

D

DEL$

S1

S2

S3

D

XCHG$

Ex1

Ex2

CLR$

S

INS$

S1

S2

S3

D

Symbol

S1

S2
102

Instruction Support and Operand Restrictions Section 2-6
2-6-32 Task Control Instructions

2-6-33 Model Conversion Instructions

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

TASK ON TKON
@TKON

820 N: Task number # + decimal
only

TASK OFF TKOF
@TKOF

821 N: Task number # + decimal
only

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

BLOCK TRANSFER XFERC

@XFERC

565 W: Number of
words (in BCD)

WORD ---

S: 1st source word WORD Yes (not
fixed)

D: 1st destination
word

WORD Yes (not
fixed)

SINGLE WORD DIS-
TRIBUTE

DISTC
@DISTC

566 S1: Source word WORD ---

D: Destination base
address

WORD Yes (not
fixed)

S2: Offset (in BCD) WORD ---

DATA COLLECT COLLC
@COLLC

567 S1: Source base
address

WORD Yes (not
fixed)

S2: Offset (in BCD) WORD ---

D: Destination word WORD ---

MOVE BIT MOVBC

@MOVBC

568 S: Source word or
data

WORD ---

C: Control word (in
BCD)

WORD ---

D: Destination word WORD ---

TKON

N

TKOF

N

XFERC

W

S

D

DISTC

S1

D

S2

COLLC

S1

S2

D

MOVBC

S

C

D

103

CPU Unit Function Block Specifications Section 2-7
2-6-34 Special Instructions for Function Blocks

2-7 CPU Unit Function Block Specifications
The specifications of the functions blocks used in CS/CJ-series CS1-H, CJ1-
H, and CJ1M CPU Units with version 3.0 or later are as follows. Refer to the
other Operation Manuals for the CS/CJ Series for other specifications.

2-7-1 Specifications
CS1-H CPU Unit

BIT COUNTER BCNTC

@BCNTC

621 W: Number of
words (in BCD)

WORD ---

S: 1st source word UINT Yes (not
fixed)

D: Result word WORD ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

GET VARIABLE ID GETID

@GETIC

286 S: Source variable
or address

WORD ---

D1: Variable type
(I/O memory area)
code

WORD ---

D2: Word address WORD ---

Instruction Mnemonic Function
code

Symbol Operands Supported
variable

data types

AT
setting or

array
variable
required

(Required
word data

size
shown in
parenthe-

ses.)

BCNTC

W

S

D

GETID

S

D1

D2

Item Specification

Model CS1H-
CPU67H

CS1H-
CPU66H

CS1H-
CPU65H

CS1H-
CPU64H

CS1H-
CPU63H

CS1G-
CPU45H

CS1G-
CPU44H

CS1G-
CPU43H

CS1G-
CPU42H

I/O bits 5,120 1,280 960

Program capacity
(steps)

250K 120K 60K 30K 20K 60K 30K 20K 10K

Data memory 32K words
104

CPU Unit Function Block Specifications Section 2-7
CJ1-H CPU Unit

Extended Data
Memory

32K
words ×
13 banks
E0_00000
to
EC_32767

32K
words ×
7 banks
E0_00000
to
E6_32767

32K
words ×
3 banks
E0_00000
to
E2_32767

32K words × 1 bank

E0_00000 to
E0_32767

32K
words ×
3 banks
E0_00000
to
E2_32767

32K words × 1 bank

E0_00000 to E0_32767

Function
blocks

Maxi-
mum
number of
definitions

1,024 1,024 1,024 1,024 128 1,024 1,024 128 128

Maxi-
mum
number of
instances

2,048 2,048 2,048 2,048 256 2,048 2,048 256 256

Flash
memory

Function
block pro-
gram
memory
(Kbytes)

1,664 1,664 1,024 512 512 1,024 512 512 512

Com-
ment files
(Kbytes)

128 128 64 64 64 64 64 64 64

Program
index files
(Kbytes)

128 128 64 64 64 64 64 64 64

Variable
tables
(Kbytes)

128 128 128 64 64 128 64 64 64

Item Specification

Item Specification

Model CJ1H-
CPU67H

CJ1H-
CPU66H

CJ1H-
CPU65H

CJ1G-
CPU45H

CJ1G-
CPU44H

CJ1G-
CPU43H

CJ1G-
CPU42H

I/O bits 2,560 1,280 960

Program capacity
(steps)

250K 120K 60K 60K 30K 20K 10K

Data memory 32K words

Extended Data
Memory

32K words
× 13 banks

E0_00000
to
EC_32767

32K words
× 7 banks

E0_00000
to
E6_32767

32K words
× 3 banks

E0_00000
to
E2_32767

32K words
× 3 banks

E0_00000
to
E2_32767

32K words × 1 bank

E0_00000 to E0_32767

Function
blocks

Maxi-
mum
number of
definitions

1,024 1,024 1,024 1,024 1,024 128 128

Maxi-
mum
number of
instances

2,048 2,048 2,048 2,048 2,048 256 256
105

CPU Unit Function Block Specifications Section 2-7
CJ1M CPU Unit

Flash
memory

Function
block pro-
gram
memory
(Kbytes)

1,664 1,664 1,024 1,024 512 512 512

Com-
ment files
(Kbytes)

128 128 64 64 64 64 64

Program
index files
(Kbytes)

128 128 64 64 64 64 64

Variable
tables
(Kbytes)

128 128 128 128 64 64 64

Item Specification

Item Specification

Units with internal I/O functions Units without internal I/O functions

Model CJ1M-CPU23 CJ1M-CPU22 CJ1M-CPU21 CJ1M-CPU13 CJ1M-CPU12 CJ1M-CPU11

I/O bits 640 320 160 640 320 160

Program capacity
(steps)

20K 10K 5K 20K 10K 5K

Number of Expan-
sion Racks

1 max. Expansion not supported 1 max. Expansion not supported

Data memory 32K words

Extended Data
Memory

None

Pulse start times 46 µs (without acceleration/
deceleration)
70 µs (with acceleration/decel-
eration)

63 µs (without
acceleration/
deceleration)
100 µs (with
acceleration/
deceleration)

Number of sched-
uled interrupts

2 1 2 1

PWM outputs 2 1 None

Maximum value of
subroutine number

1,024 256 1,024 256

Maximum value of
jump number in JMP
instruction

1,024 256 1,024 256

Internal inputs 10 points

• 4 interrupt inputs (pulse catch)
• 2 high-speed counter inputs (50-kHz phase dif-

ference or 100-kHz single-phase)

Internal outputs 6 points
• 2 pulse outputs (100 kHz)
• 2 PWM outputs

6 points
• 2 pulse out-

puts
(100 kHz)

• 1 PWM out-
put

106

CPU Unit Function Block Specifications Section 2-7
2-7-2 Operation of Timer Instructions
There is an option called Apply the same spec as TO-2047 to T2048-4095 in
the PLC properties of CPU Units. This setting affects the operation of timers
as described in this section.

Selecting the Option
(Default)

If this option is selected, all timers will operate the same regardless of timer
number, as shown in the following table.

Timer Operation for Timer Numbers T0000 to T4095

Not Selecting the
Option

If this option is not selected, the refreshing of timer instructions with timer
numbers T0000 to T2047 will be different from those with timer numbers
T2048 to T4095, as given below. This behavior is the same for CPU Units that
do not support function blocks. (Refer to the descriptions of individual instruc-
tion in the CS/CJ Series Instruction Reference for details.)

Function
blocks

Maxi-
mum
number of
definitions

128

Maxi-
mum
number of
instances

256

Flash
memory

Function
block pro-
gram
memory
(Kbytes)

256

Com-
ment files
(Kbytes)

64

Program
index files
(Kbytes)

64

Variable
tables
(Kbytes)

64

Item Specification

Units with internal I/O functions Units without internal I/O functions

Refresh Description

When instruction is
executed

The PV is refreshed each time the instruction is executed.
If the PV is 0, the Completion Flag is turned ON. If it is not 0,
the Completion Flag is turned OFF.

When execution of all
tasks is completed

All PV are refreshed once each cycle.

Every 80 ms If the cycle time exceeds 80 ms, all PV are refreshed once
every 80 ms.
107

Number of Function Block Program Steps and Instance Execution Time Section 2-8
Timer Operation for Timer Numbers T0000 to T2047

Timer Operation for Timer Numbers T2048 to T4095

Select the Apply the same spec as TO-2047 to T2048-4095 Option to ensure
consistent operation when using the timer numbers allocated by default to
function block variables (T3072 to T4095).

2-8 Number of Function Block Program Steps and Instance
Execution Time

2-8-1 Number of Function Block Program Steps (CPU Units with Unit
Version 3.0 or Later)

Use the following equation to calculate the number of program steps when
function block definitions have been created and the instances copied into the
user program using CS/CJ-series CPU Units with unit version 3.0 or later.

Note The number of instruction steps in the function block definition (p) will not be
diminished in subsequence instances when the same function block definition
is copied to multiple locations (i.e., for multiple instances). Therefore, in the
above equation, the number of instances is not multiplied by the number of
instruction steps in the function block definition (p).

Refresh Description

When instruction is
executed

The PV is refreshed each time the instruction is executed.

If the PV is 0, the Completion Flag is turned ON. If it is not 0,
the Completion Flag is turned OFF.

When execution of all
tasks is completed

All PV are refreshed once each cycle.

Every 80 ms If the cycle time exceeds 80 ms, all PV are refreshed once
every 80 ms.

Refresh Description

When instruction is
executed

The PV is refreshed each time the instruction is executed.
If the PV is 0, the Completion Flag is turned ON. If it is not 0,
the Completion Flag is turned OFF

When execution of all
tasks is completed

PV are not updated.

Every 80 ms PV are not updated even if the cycle time exceeds 80 ms.

Number of steps
= Number of instances × (Call part size m + I/O parameter transfer part size n × Num-
ber of parameters) + Number of instruction steps in the function block definition p
(See note.)
108

Number of Function Block Program Steps and Instance Execution Time Section 2-8
Example:
Input variables with a 1-word data type (INT): 5
Output variables with a 1-word data type (INT): 5
Function block definition section: 100 steps
Number of steps for 1 instance = 57 + (5 + 5) × 6 steps + 100 steps + 27 steps
= 244 steps

2-8-2 Function Block Instance Execution Time (CPU Units with Unit
Version 3.0 or Later)

Use the following equation to calculate the effect of instance execution on the
cycle time when function block definitions have been created and the
instances copied into the user program using CS/CJ-series CPU Units with
unit version 3.0 or later.

The following table shows the length of time for A, B, and C.

Example: CS1H-CPU63H
Input variables with a 1-word data type (INT): 3
Output variables with a 1-word data type (INT): 2
Total instruction processing time in function block definition section: 10 µs
Execution time for 1 instance = 6.8 µs + (3 + 2) × 0.3 µs + 10 µs = 18.3 µs

Contents CS/CJ-series CPU Units
with unit version 3.0 or later

m Call part 57 steps

n I/O parameter
transfer part

The data type is
shown in parenthe-
ses.

1-bit I/O variable (BOOL) 6 steps

1-word I/O variable (INT,
UINT, WORD)

6 steps

2-word I/O variable (DINT,
UDINT, DWORD, REAL)

6 steps

4-word I/O variable (LINT,
ULINT, LWORD, LREAL)

12 steps

p Number of instruc-
tion steps in func-
tion block definition

The total number of instruction steps (same as standard
user program) + 27 steps.

Effect of Instance Execution on Cycle Time
= Startup time (A)
 + I/O parameter transfer processing time (B)
 + Execution time of instructions in function block definition (C)

Operation CPU Unit model

CS1H-CPU6@H
CJ1H-CPU6@H

CS1G-CPU4@H
CJ1G-CPU4@H

CJ1M-CPU@@

A Startup time Startup time not including
I/O parameter transfer

6.8 µs 8.8 µs 15.0 µs

B I/O parameter trans-
fer processing time

The data type is
indicated in paren-
theses.

1-bit I/O variable (BOOL) 0.4 µs 0.7 µs 1.0 µs

1-word I/O variable (INT,
UINT, WORD)

0.3 µs 0.6 µs 0.8 µs

2-word I/O variable
(DINT, UDINT, DWORD,
REAL)

0.5 µs 0.8 µs 1.1 µs

4-word I/O variable (LINT,
ULINT, LWORD, LREAL)

1.0 µs 1.6 µs 2.2 µs

C Function block defi-
nition instruction
execution time

Total instruction processing time (same as standard user program)
109

Number of Function Block Program Steps and Instance Execution Time Section 2-8
Note The execution time is increased according to the number of multiple instances
when the same function block definition has been copied to multiple locations.
110

SECTION 3
Creating Function Blocks

This section describes the procedures for creating function blocks on the CX-Programmer.

3-1 Procedural Flow . 112

3-2 Procedures . 114

3-2-1 Creating a Project . 114

3-2-2 Creating a New Function Block Definition 114

3-2-3 Defining Function Blocks Created by User 117

3-2-4 Creating Instances from Function Block Definitions 124

3-2-5 Setting Function Block Parameters Using the P Key 125

3-2-6 Setting the FB Instance Areas. 128

3-2-7 Checking Internal Address Allocations for Variables 129

3-2-8 Copying and Editing Function Block Definitions 131

3-2-9 Checking the Source Function Block Definition from an Instance . 131

3-2-10 Checking the Size of the Function Block Definition 131

3-2-11 Compiling Function Block Definitions (Checking Program). 131

3-2-12 Printing Function Block Definition . 132

3-2-13 Saving and Reusing Function Block Definition Files 133

3-2-14 Downloading/Uploading Programs to the Actual CPU Unit 134

3-2-15 Monitoring and Debugging Function Blocks 134
111

Procedural Flow Section 3-1
3-1 Procedural Flow
The following procedures are used to create function blocks, save them in
files, transfer them to the CPU Unit, monitor them, and debug them.

Creating Function Blocks

Create a Project Refer to 3-2-1 Creating a Project for details.

■ Creating a New Project

1,2,3... 1. Start the CX-Programmer and select New from the File Menu.

2. Select a Device type: CS1G-H, CS1H-H, CJ1G-H, CJ1H-H, or CJ1M.

■ Reusing an Existing CX-Programmer Project

1,2,3... 1. Start the CX-Programmer, and read the existing project file (.cxp) created
using CX-Programmer Ver. 4.0 or earlier by selecting the file from the File
Menu.

2. Select a Device type: CS1H-H, CS1G-H, CJ1G-H, CJ1H-H, or CJ1M.

Create a Function Block
Definition

Refer to 3-2-2 Creating a New Function Block Definition for details.

1,2,3... 1. Select Function Blocks in the project workspace and right-click.

2. Select Insert Function Block - Ladder or Insert Function Blocks -
Structured Text from the popup menu.

Define the Function Block Refer to 3-2-3 Defining Function Blocks Created by User for details.

■ Registering Variables before Inputting the Ladder Program or ST Program

1,2,3... 1. Register variables in the variable table.

2. Create the ladder program or ST program.

■ Registering Variables as Necessary while Inputting the Ladder Program
or ST Program

1,2,3... 1. Create the ladder program or ST program.

2. Register a variable in the variable table whenever required.

Create an Instance from
the Function Block
Definition

Refer to 3-2-4 Creating Instances from Function Block Definitions for details.

■ Inserting Instances in the Ladder Section Window and then Inputting the
Instance Name

1,2,3... 1. Place the cursor at the location at which to create an instance (i.e., a copy)
of the function block and press the F Key.

2. Input the name of the instance.

3. Select the function block definition to be copied.

■ Registering Instance Names in the Global Symbol Table and then
Selecting the Instance Name when Inserting

1,2,3... 1. Select Function Block as the data type for the variable in the global symbol
table.

2. Press the F Key in the Ladder Section Window.

3. Select the name of the instance that was registered from the pull-down
menu on the FB Instance Field.
112

Procedural Flow Section 3-1
Allocate External I/O to
the Function Block

Refer to 3-2-5 Setting Function Block Parameters Using the P Key for details.

1,2,3... 1. Place the cursor at the position of the input variable or output variable and
press the P Key.

2. Input the source address for the input variable or the destination address
for the output variable.

Set the Function Block
Memory Allocations
(Instance Areas)

Refer to 3-2-6 Setting the FB Instance Areas for details.

1,2,3... 1. Select the instance and select Function Block Memory - Function Block
Memory Allocation from the PLC Menu.

2. Set the function block memory allocations.

Printing, Saving, and Reusing Function Block Files

Compile the Function
Block Definition and Save
It as a Library File

Refer to 3-2-11 Compiling Function Block Definitions (Checking Program) and
3-2-13 Saving and Reusing Function Block Definition Files for details.

1,2,3... 1. Compile the function block that has been saved.

2. Print the function block.

3. Save the function block as a function block definition file (.cxf).

4. Read the file into another PLC project.

Transferring the Program to the PLC
Refer to 3-2-14 Downloading/Uploading Programs to the Actual CPU Unit.

Monitoring and Debugging the Function Block
Refer to 3-2-15 Monitoring and Debugging Function Blocks.
113

Procedures Section 3-2
3-2 Procedures

3-2-1 Creating a Project
Creating New Projects
with CX-Programmer

1,2,3... 1. Start the CX-Programmer and select New from the File Menu.

2. In the Change PLC Window, select a Device Type that supports function
blocks. These are listed in the following table.

Press the Settings Button and select the CPU Type. For details on other
settings, refer to the CX-Programmer Ver. 5.0 Operation Manual (W414).

3-2-2 Creating a New Function Block Definition
1,2,3... 1. When a project is created, a Function Blocks icon will appear in the project

workspace as shown below.

2. Function block definitions are created by inserting function block defini-
tions after the Function Blocks icon.

Creating Function Block
Definitions

Function blocks can be defined by the user using either ladder programming
or structured text.

Creating (Inserting) Function Block Definitions with Ladders

1. Select Function Blocks in the project workspace, right-click, and select
Insert Function Blocks - Ladder from the popup menu. (Or select Func-
tion Block - Ladder from the Insert Menu.)

Creating (Inserting) Function Block Definitions with Structured Text

1. Select Function Blocks in the project workspace, right-click, and select
Insert Function Blocks - Structured Text from the popup menu. (Or se-
lect Function Block - Structured Text from the Insert Menu.)

Device CPU

CS1G-H CPU42H/43H/44H/45H

CS1H-H CPU63H/64H/65H/66H/67H

CJ1G-H CPU42H/43H/44H/45H

CJ1H-H CPU65H/66H/67H

CJ1M CPU11/12/13/21/22/23

Function Blocks will appear under the PLC.
114

Procedures Section 3-2
2. A function block called FunctionBlock1 will be automatically inserted either

after the for ladder programming language (default) or the for ST
language. This icon contains the definitions for the newly created (insert-
ed) function block.

3. Whenever a function block definition is created, the name FunctionBlock@
will be assigned automatically, where @ is a serial number. These names
can be changed. All names must contain no more than 64 characters.

Using OMRON FB Library Files
Use the following procedure to insert OMRON FB Library files (.cxf).

1. Select Function Blocks in the project workspace, right-click, and select
Insert Function Blocks - Library File from the popup menu. (Or select
Function Block - Library File from the Insert Menu.)

2. The following Select Function Block Library File Dialog Box will be dis-
played.

Note To specify the default folder (file location) in the Function Block Li-
brary File Dialog Box, select Tools - Options, select the General
Tab and the select the default file in the OMRON FB library storage
location field.

3. Specify the folder in which the OMRON FB Library file is located, select the
library file, and click the Open Button. The library file will be inserted as a

function block definition after the .

FunctionBlock1 is displayed as the Icon
under the Function Blocks Icon ().
115

Procedures Section 3-2
Function Block Definitions

Creating Function Block
Definitions

One of the following windows will be displayed when the newly created Func-
tion Block 1 icon is double-clicked (or if it is right-clicked and Open is selected
from the popup menu). A variable table for the variables used in the function
block is displayed on top and an input area for the ladder program or struc-
tured text is displayed on the bottom.

Ladder Program

Structured Text

As shown, a function block definition consists of a variable table that serves
as an interface and a ladder program or structured text that serves as an algo-
rithm.

Variable Table as an Interface

At this point, the variable table is empty because there are no variables allo-
cated for I/O memory addresses in the PLC.

Ladder Program or Structure Text as an Algorithm

• With some exceptions, the ladder program for the function block can con-
tain any of the instructions used in the normal program. Refer to 2-3
Restrictions on Function Blocks for restrictions on the instructions that
can be used.

• Structured text can be input according to the ST language defined in
IEC61131-3.

Using OMRON FB Library
Files

Double-click the inserted function block library (or right-click and select Open
from the pop-up menu) to display the variable table that has finished being
created at the top right window, and the ladder program that has finished
being created in the bottom right window. Both windows are displayed in gray
and cannot be edited.

Variable table

Ladder input area

Variable table

ST input area
116

Procedures Section 3-2
Note Function block definitions are not displayed in the default settings for OMRON
FB Library files (.cxf). To display definitions, select the Display the inside of
FB option in the function block properties. (Select the OMRON FB Library file
in the project workspace, right-click, select Properties, and select the Dis-
play the inside of FB option in the General Tab.)

3-2-3 Defining Function Blocks Created by User
A function block is defined by registering variables and creating an algorithm.
There are two ways to do this.

• Register the variables first and then input the ladder program or structure
text.

• Register variables as they are required while inputting input the ladder
program or structure text.

Registering Variables First

Registering Variables in
the Variable Table

The variables are divided by type into four sheets in the variable table: Inter-
nals, Inputs, Outputs, and Externals.

These sheets must be switched while registering or displaying the variables.

1,2,3... 1. Make the sheet for the type of variable to be registered active in the vari-
able table. (See note.) Place the cursor in the sheet, right-click, and per-
form either of the following operations:

• To add a variable to the last line, select Insert Variable from the popup
menu.

• To add the variable to the line above or below a line within the list, se-
lect Insert Variable - Above or Below from the popup menu.

Note The sheet where a variable is registered can also be switched
when inserting a variable by setting the usage (N: Internals, I: In-
puts, O: Outputs, E: Externals).

The New Variable Dialog Box shown below will be displayed.

• Name: Input the name of the variable.

• Data Type: Select the data type.

• Usage: Select the variable type.

• Initial Value: Select the initial value of the variable at the start of oper-
ation.

• Retain: Select if the value of the variable is to be maintained when the
power is turned ON or when the operating mode is changed from
PROGRAM or MONITOR mode to RUN mode. The value will be
cleared at these times if Retain is not selected.

Variable table

Ladder program
117

Procedures Section 3-2
Note (a) For user-defined external variables, the global symbol table can
be browsed by registering the same variable name in the global
symbol table.

(b) External variables defined by the system are registered in the ex-
ternal variable table in advance.

2. For example, input “aaa” as the variable name and click the OK Button.

As shown below, a BOOL variable called aaa will be created on the Inputs
Sheet of the Variable Table.

Note (1) After a variable is added, it can be selected to display in reverse video,
then moved to another line by dragging and dropping. To select a variable
for dragging and dropping, select the variable in any of the columns ex-
cept the Name field.

(2) After inputting a variable, to move to the registered sheet, double-click,
and switch the setting in the Usage field (N: Internals, I: Inputs, O: Out-
puts, E: Externals). The variable can also be copied or moved between
the sheets for internal, external, input, and output variables. Select the
variable, right-click, and select Copy or Cut from the pop-up menu, and
then select Paste.

(3) Variable names must also be input for variables specified with AT (allocat-
ing actual address) settings.

(4) The following text is used to indicate I/O memory addresses in the PLC
and thus cannot be input as variable names in the function block variable
table.

• A, W, H, HR, D, DM, E, EM, T, TIM, C, or CNT followed by a numeric
value

Input the name of the
function block variable The default data type is BOOL.

 Change as required.

Type of variable to register
(i.e., the sheet)
Initial value

Select to maintain value for
power interruptions.

BOOL variable called aaa
created on Inputs Sheet.
118

Procedures Section 3-2
Creating the Algorithm Using a Ladder Program

1,2,3... 1. Press the C Key and select aaa registered earlier from the pull-down menu
in the New Contact Dialog Box.

2. Click the OK Button. A contact will be entered with the function block inter-
nal variable aaa as the operand (variable type: internal).

The rest of the ladder program is input in exactly the same way as for stan-
dard programs with CX-Programmer.

Note Addresses cannot be directly input for instruction operands within function
blocks. Only Index Registers (IR) and Data Registers (DR) can be input
directly as follows (not as variables): Addresses DR0 to DR5, direct specifica-
tions IR0 to IR15, and indirect specifications ,IR0 to ,IR15.

Using Structured Text

An ST language program (see note) can either be input directly into the ST
input area or a program input into a general-purpose text editor can be copied
and then pasted into the ST input area using the Paste Command on the Edit
Menu.

Note The ST language conforms to IEC61131-3. Refer to Appendix B Structured
Text (ST Language) Specifications for details.

Press the C Key and select aaa registered earlier
from the pull-down menu in the New Contact Dialog Box.

Contact entered with function block
internal variable aaa as operand.
119

Procedures Section 3-2
Note (1) Tabs or spaces can be input to create indents. They will not affect the al-
gorithm.

(2) The display size can be changed by holding down the Ctrl Key and turn-
ing the scrolling wheel on a wheel mouse.

(3) When an ST language program is input or pasted into the ST input area,
syntax keywords reserved words will be automatically displayed in blue,
comments in green, errors in red, and everything else in black.

(4) To change the font size or colors, select Options from the Tools Menu
and then click the ST Font Button on the Appearance Tab Page. The font
names, font size (default is 8 point) and color can be changed.

(5) For details on structured text specifications, refer to Appendix B Struc-
tured Text (ST Language) Specifications.

Registering Variables as Required
The ladder program or structured text program can be input first and variable
registered as they are required.

Using a Ladder Program When using a ladder diagram, a dialog box will be displayed to register the
variable whenever a variable name that has not been registered is input. The
variable is registered at that time.

Use the following procedure.

1,2,3... 1. Press the C Key and input a variable name that has not been registered,
such as aaa, in the New Contact Dialog Box.

Note Addresses cannot be directly input for instruction operands within
function blocks. Only Index Registers (IR) and Data Registers (DR)
can be input directly as follows (not as variables): Addresses DR0
to DR5, direct specifications IR0 to IR15, and indirect specifications
,IR0 to ,IR15.

2. Click the OK Button. The New Variable Dialog Box will be displayed. With
special instructions, a New Variable Dialog Box will be display for each op-
erand in the instruction.

ST program input directly or pasted from one
created in a text editor.

Set the data type and other
properties other than the name.
120

Procedures Section 3-2
The properties for all input variables will initially be displayed as follows:

• Usage: Internal

• Data Type: BOOL for contacts and WORD for channel (word)

• Initial Value: The default for the data type.

• Retain: Not selected.

3. Make any required changes and click the OK Button.

4. As shown below, the variable that was registered will be displayed in the
variable table above the program.

5. If the type or properties of a variable that was input are not correct, double-
click the variable in the variable table and make the required corrections.

■ Reference Information

AT Settings (Specified Address)

AT settings can be made in the variable properties to specify allocation
addresses for Basic I/O Units, Special I/O Units, or CPU Bus Units, or Auxil-
iary Area addresses not registered using the CX-Programmer. A variable
name is required to achieve this. Use the following procedure to specify an
address.

1,2,3... 1. After inputting the variable name in the New Variable Dialog Box, click the
Advanced Button. The Advanced Settings Dialog Box will be displayed.

2. Select AT (Specified Address) under AT Settings and input the desired ad-
dress.

The variable name is used to enter variables into the algorithm in the func-
tion block definition even when they have an address specified for the AT
settings (the same as for variables without a specified address).
For example, if a variable named Restart has an address of A50100 spec-
ified for the AT settings, Restart is specified for the instruction operand.

Array Settings

An array can be specified to use the same data properties for more than one
variable and manage the variables as a group.

Use the following procedure to set an array.

Instruction input. Function block internal variable registered.

Select AT. Input address.
121

Procedures Section 3-2
1,2,3... 1. After inputting the variable name in the New Variable Dialog Box, click the
Advanced Button. The Advanced Settings Dialog Box will be displayed.

2. Select Array Variable in the Array Settings and input the maximum number
of elements in the array.

When the name of an array variable is entered in the algorithm in the func-
tion block definition, square brackets surrounding the index will appear af-
ter the array name.

For example, if you create a variable named PV with a maximum of 3 ele-
ments, PV[0], PV[1], and PV[2] could be specified as instruction operands.

There are three ways to specify indices.

• Directly with numbers, e.g., PV[1] in the above example (for ladder pro-
gramming or ST language programming)

• With a variable, e.g., PV[a] in the above example, where “a” is the
name of a variable with a data type of INT (for ladder programming or
ST language programming)

• With an equation, e.g., PV[a+b] or PV[a+1} in the above example,
where “a” and “b” are the names of variables with a data type of INT
(for ST language programming only)

Using Structured Text When using structured text, a dialog box will not be displayed to register the
variable whenever a variable name that has not been registered is input. Be
sure to always register variables used in standard text programming in the
variable table, either as you need them or after completing the program.
(Place the cursor in the tab page on which to register the variable, right-click,
and select Insert Variable from the popup menu.

Note For details on structured text specifications, refer to Appendix B Structured
Text (ST Language) Specifications.

Copying User Program Circuits and Pasting in Ladder Programming of Function
Block Definitions

A single circuit or multiple circuits in the user program can be copied and
pasted in the ladder programming of function block definitions. This operation,
however, is subject to the following restrictions.

Source Instruction
Operand: Address Only

Addresses are not registered in the function block definition variable tables.
After pasting, the addresses will be displayed in the operand in red. Double-
click on the instruction and input the variable name into the operand.

Note Index Registers (IR) and Data Registers (DR), however, do not require modifi-
cation after pasting and function in the operand as is.

Select Array Variable. Input the number of elements.
122

Procedures Section 3-2
Source Instruction
Operand: Address and I/O
Comment

Automatically generate symbol name Option Selected in Symbols Tab
under Options in Tools Menu

The user program symbol names (in the global symbol table only) will be gen-
erated automatically as AutoGen_ + Address (if the option is deselected, the
symbol names will be removed).

Example 1: For address 100.01, the symbol name will be displayed as
AutoGen_100_01.

Example 2: For address D0, the symbol name will be displayed as
AutoGen_D0.

If circuits in the user program are copied and pasted into the function block
definition program as is, the symbols will be registered automatically in the
function block definition symbol table (at the same time as copying the cir-
cuits) as the symbol name AutoGen_Address and I/O comments as Com-
ment. This function enables programmed circuits to be easily reused in
function blocks as addresses and I/O comments.

Note The prefix AutoGen_ is not added to Index Registers (IR) and Global Data
Registers (DR), and they cannot be registered in the original global symbol
table.

Automatically generate symbol name Option Not Selected in Symbols
Tab under Options in Tools Menu

Addresses and I/O comments are not registered in the function block defini-
tion variable tables. Addresses are displayed in the operand in red. I/O com-
ments will be lost. Double-click on the instruction and input the symbol name
into the operand.

Index Registers (IR) and Data Registers (DR), however, do not require modifi-
cation after pasting and function in the operand as is.

Source Instruction
Operand: Symbol

The user program symbol is automatically registered in the internal variables
of the function block definition variable table. This operation, however, is sub-
ject to the following restrictions.

Addresses

Symbol addresses are not registered. Use AT settings to specify the same
address.

Symbol Data Types

The symbol data types are converted when pasted from the user program into
the function block definition, as shown in the following table.

Symbol data types CHANNEL, NUMBER, UINT BCD, UDINT BCD, or ULINT
BCD, however, cannot be copied from the symbol table (not the program) and
then pasted into the variable table in the function block definition.

Symbol data type in user program → Variable data type after pasting in
function block program

CHANNEL → WORD

NUMBER → The variable will not be registered,
and the value (number) will be pasted
directly into the operand as a con-
stant.

UINT BCD → WORD

UDINT BCD → DWORD

ULINT BCD → LWORD
123

Procedures Section 3-2
Note Symbols with automatically generated symbol names (AutoGen_ + Address)
cannot be copied from a global symbol table and pasted into the function
block definition symbol table.

3-2-4 Creating Instances from Function Block Definitions
If a function block definition is registered in the global symbol table, either of
the following methods can be used to create instances.

Method 1:Select the function block definition, insert it into the program, and
input a new instance name. The instance will automatically be registered in
the global symbol table.

Method 2: Set the data type in the global symbol table to “FUNCTION
BLOCK,” specify the function block definition to use, and input the instance
name to register it.

■ Method 1: Using the F Key in the Ladder Section Window and Inputting
the Instance Name

1,2,3... 1. In the Ladder Section Window, place the cursor in the program where the
instance is to be inserted and press the F Key. (Alternately, select Func-
tion Block Invocation from the Insert Menu.) The New Function Block In-
vocation Dialog Box will be displayed.

2. Input the instance name, select the function block from which to create an
instance, and click the OK Button.

3. As an example, set the instance name in the FB Instance Field to sample,
set the function block in the FB Definition Field to FunctionBlock1, and
click the OK Button. As shown below, a copy of the function block definition
called FunctionBlock1 will be created with an instance name of sample.

The instance will be automatically registered in the global symbol table
with an instance name of sample and a data type of FUNCTION BLOCK.

Press F Key with cursor here.

Input the instance name.

Select the function block from
which to create an instance.

Following dialog
box is displayed.

Instance name
Function block definition

An instance called sample
is created from the function
block definition called
FunctionBlock1.
124

Procedures Section 3-2
■ Method 2: Registering the Instance Name in the Global Symbol Table in
Advance and Then Selecting the Instance Name

If the instance name is registered in the global symbol table in advance, the
instance name can be selected from the global symbol table to create other
instances.

1,2,3... 1. Select a data type of Function block in the global symbol table, input the
instance name, and registered the instance.

2. Press the F Key in the Ladder Section Window. The Function Block Invo-
cation Dialog Box will be displayed.

3. Select the instance name that was previously registered from the pulldown
menu on the FB Instance Field. The instance will be created.

Restrictions
Observe the following restrictions when creating instances. Refer to 2-3
Restrictions on Function Blocks for details.

• No more than one function block can be created in each program circuit.

• The rung cannot be branched to the left of an instance.

• Instances cannot be connected directly to the left bus bar, i.e., an EN
must always be inserted.

Note If changes are made in the I/O variables in a variable table for a function block
definition, the bus bar to the left of all instances that have been created from
that function block definition will be displayed in red to indicate an error. When
this happens, select the function block, right-click, and select Update Invoca-
tion. The instance will be updated for any changes that have been made in
the function block definition and the red bus bar display indicating an error will
be cleared.

3-2-5 Setting Function Block Parameters Using the P Key
After an instance of a function block has been created, input parameters must
be set for input variables and output parameters must be set for output vari-
ables to enable external I/O.

• Values, addresses, and program symbols (global symbols and local sym-
bols) can be set in input parameters. (See note a.)

• Addresses and program symbols (global symbols and local symbols) can
be set in output parameters. (See note b.)

Note (a) The function block’s input variable data size and the program’s
symbol data size must match.

(b) The function block’s output variable data size and the program’s
symbol data size must match.

1,2,3... 1. Inputs are located on the left of the instance and outputs on the right. Place
the cursor where the parameter is to be set and press the P Key. (Alter-
nately, select Function Block Parameter from the Insert Menu.) The New
Parameter Dialog Box will be displayed as shown below.
125

Procedures Section 3-2
2. Set the source address from which to pass the address data to the input
variable. Also set the destination address to which the address data will be
passed from the output variable.

Note Set the data in all the input parameters. If even a single input parameter
remains blank, the left bus bar for the instance will be displayed in red to indi-
cate an error. If this happens, the program cannot be transferred to the CPU
Unit.

Inputting Values in Parameters
The following table lists the methods for inputting values in parameters.

Instance name

Function block definition

Press the P Key with the cursor on the left
of the instance. The New Parameter
Dialog Box will be displayed.

Input the address from which to pass data
to the input variable.

The value of 001 is passed to input
variable aaa.

Input variable data
type

Content Size Input method Setting range

BOOL Bit data 1 bit P_Off, P_On 0 (FALSE), 1 (TRUE)

INT Integer 16 bits Positive value: & or + followed
by integer

Negative value: − followed by
integer

−32768 to +32767

DINT Double integer 32 bits −2147483648 to +2147483647

LINT Long (4-word) inte-
ger

64 bits −9223372036854775808 to
+9223372036854775807

UINT Unsigned integer 16 bits Positive value: & or + followed
by integer

&0 to 65535

UDINT Unsigned double
integer

32 bits &0 to 4294967295

ULINT Unsigned long (4-
word) integer

64 bits &0 to 18446744073709551615
126

Procedures Section 3-2
Note If a non-boolean data type is used for the input variable and only a numerical
value (e.g., 20) is input, the value for the CIO Area address (e.g, CIO 0020)
will be passed, and not the numerical value. To set a numerical value, always
insert an &, #, + or − prefix before inputting the numerical value.

Example Programs:

If the input variable data type is boolean and a numerical value only (e.g.,
0 or 1) is input in the parameter, the value for CIO 000000 (0.00) or
CIO 000001 (0.01) will be passed. Always input P_Off for 0 (OFF) and
P_On for 1 (ON).

REAL Real number 32 bits Positive value: & or + followed
by real number (with decimal
point)

Negative value: − followed by
real number (with decimal
point)

−3.402823 × 1038 to −1.175494

× 10−38, 0, +1.175494 × 10−38

to +3.402823 × 1038

LREAL Long real number 64 bits −1.79769313486232 × 10308 to

−2.22507385850720 × 10−308,

0, +2.22507385850720 × 10−308

to +1.79769313486232 × 10308

WORD 16-bit data 16 bits # followed by hexadecimal
number (4 digits max.)
& or + followed by decimal
number

#0000 to FFFF or &0 to 65535

DWORD 32-bit data 32 bits # followed by hexadecimal
number (8 digits max.)

& or + followed by decimal
number

#00000000 to FFFFFFFF or &0
to 4294967295

LWORD 64-bit data 64 bits # followed by hexadecimal
number (16 digits max.)
& or + followed by decimal
number

#0000000000000000 to
FFFFFFFFFFFFFFFF or &0 to
18446744073709551615

Input variable data
type

Content Size Input method Setting range

10 DATA_1

&10 DATA_1

(INT)

(INT)

Instance for function block definition A

If the data format for DATA_1 is INT, and "10" is input,
the value for CIO 0010 will be passed.

Instance for function block definition A

If the data format for DATA_1 is INT, and the prefix &
is added so that "&10" is input, the numerical value
will be passed.
127

Procedures Section 3-2
3-2-6 Setting the FB Instance Areas
The areas where addresses for variables used in function blocks are allocated
can be set. These areas are called the function block instance areas.

1,2,3... 1. Select the instance in the Ladder Section Window or in the global symbol
table, and then select Function Block Memory - Function Block Memo-
ry Allocation from the PLC Menu.

The Function Block Memory Allocation Dialog shown below will appear.

2. Set the FB instance areas.

The non-retained and retained areas are set in words. The timer and
counter areas are set by time and counter numbers.

The default values are as follows:

Note (1) Bit data can be accessed even if the DM or EM Area is specified for the
non-retained area or retained area.

(2) The Function Block Holding Area words are allocated in H512 to H1535.
These words cannot be specified in instruction operands in the user pro-
gram. These words can also not be specified in the internal variable’s AT
settings.

(3) Words H512 to H1535 are contained in the Holding Area, but the ad-
dresses set as non-retained will be cleared when the power is turned
OFF and ON again or when operation is started.

(4) To prevent overlapping of instance area addresses and addresses used
in the program, set H512 to H1535 (Function Block Holding Area words)
for the non-retained area and retained area. If another area is set, the ad-
dresses may overlap with addresses that are used in the user program.
If the addresses in the function block instance areas overlap with any of
the addresses used in the user program, an error will occur when compil-
ing. This error will also occur when a program is downloaded, edited on-
line, or checked by the user.

FB Instance
Area

Default value Applicable memory
areasStart Address End Address Size

Non Retain
(See notes 1
and 3.)

H512 (See
note 2.)

H1407 (See
note 2.)

896 CIO, WR, HR, DM, EM

Retain (See
note 1.)

H1408 (See
note 2.)

H1535 (See
note 2.)

128 HR, DM, EM

Timers T3072 T4095 1024 TIM

Counters C3072 C4095 1024 CNT

Non-retained area

Retained area

Counter area

Timer area

First
address

Last
address

Size
128

Procedures Section 3-2
If addresses are duplicated and an error occurs, either change the function
block instance areas or the addresses used in the user program.

3-2-7 Checking Internal Address Allocations for Variables
The following procedure can be used to check the I/O memory addresses
internally allocated to variables.

1,2,3... 1. Select View - Symbols - Global.

2. Select the instance in the global symbol table, right-click, and select Func-
tion Block Memory Address from the popup menu. (Alternately, select
Function Block Memory - Function Block Memory Address from the
PLC Menu.)

3. The FB Interface Memory Dialog Box will be displayed. Check the I/O
memory addresses internally allocated to variables here.

Work Area Addresses
used in the user
program overlap with
the instance areas.

Example: Instance name displayed in global variable table (automatically registered)

Right-click on the instance name and select Function Block Instance Address.

Example: Addresses used internally
for the input variables.
129

Procedures Section 3-2
Method Used for Checking Addresses Internally Allocated to Variables

Checking the Status of
Addresses Internally
Allocated to Variables

The following procedure can be used to check the number of addresses allo-
cated to variables and the number still available for allocation in the function
block instance areas.

1,2,3... 1. Select the instance in the Ladder Section Window, right-click, and select
Function Block Memory - Function Block Memory Statistics from the
PLC Menu.

2. The Function Block Memory Statistics Dialog Box will be displayed as
shown below. Check address usage here.

Optimizing Function
Memory

When a variable is added or deleted, addresses are automatically re-allocated
in the variables’ instance area. Consecutive addresses are required for each
instance, so all of the variables will be allocated to a different block of
addresses if the original block of addresses cannot accommodate the change
in variables. This will result in an unused block of addresses. The following
procedure can be used to eliminate the unused areas in memory so that
memory is used more efficiently.

1,2,3... 1. Select the instance in the Ladder Section Window, right-click, and select
Function Block Memory - Optimize Function Memory from the PLC
Menu.

The following dialog box will be displayed.

2. Click the OK Button. Allocations to the function block instance areas will
be optimized.

a b

c

sample FB [FunctionBlock1] N/A [Auto] a BOOL W400.00

b BOOL W401.00
c BOOL W401.02

Instance registered in global
symbol table under instance name.

Name Address/
ValueType Name AddressType

Name AddressType

Inputs

Outputs

FM Instance Memory Dialog Box

Instance name

Addresses used for function
block internal variables

Right-click and select Function
Block Memory Address.

Instance of function block definition A,
instance name: sample

Program

The total number
of words in each
interface area.

The number
of words
already used.

The number of
words still available.
130

Procedures Section 3-2
3-2-8 Copying and Editing Function Block Definitions
Use the following operation to copy and edit the function block definition that
has been created.

1. Select the function block to copy, right-click, and select Copy from the pop-
up menu.

2. Position the cursor over the function block item under the PLC in the
project directory, right-click and select Paste from the pop-up menu.

3. The function block definition will be copied (“copy” is indicated before the
name of the function block definition at the copy source).

4. To change the function block name, left-click or right-click and select Re-
name from the pop-up menu.

5. Double-click the function block definition to edit it.

3-2-9 Checking the Source Function Block Definition from an Instance
Use the following procedure to check the function block definition from which
an instance was created.

1,2,3... Right-click the instance and select Go To - Function Block Definition from
the popup menu. The function block definition will be displayed.

3-2-10 Checking the Size of the Function Block Definition
CX-Programmer can be used to check the size of the function block definition
being created using a similar method to checking the program capacity. The
procedure is as follows:

1. Select Memory View from the View Menu.

2. The function block definition size and number of function block definitions
will be displayed in the Memory View Dialog Box as shown below.

• The Used FB, Free FB, and Total fields under Function Block refer to the
size of the function block definitions. The values are displayed in step
units. 1 step = 4 bytes, so the function block source memory capacity (K
bytes) in the CPU Unit’s internal flash memory is the value multiplied by
1,024 and divided by 4.

• The Used #, Free #, and Max # fields under Function Block refer to the
number of function block definitions.

3-2-11 Compiling Function Block Definitions (Checking Program)
A function block definition can be compiled to perform a program check on it.
Use the following procedure.

1,2,3... Select the function block definition, right-click, and select Compile from the
popup menu. (Alternately, press the Ctrl + F7 Keys.)

The function block will be compiled and the results of the program check will
be automatically displayed on the Compile Table Page of the Output Window.
131

Procedures Section 3-2
3-2-12 Printing Function Block Definition
Use the following procedure to print function block definitions.

1,2,3... 1. Double-click the function block definition to be printed, and with the vari-
able table and algorithm displayed, select Print from the File Menu. The
following Target Print Rung Dialog Box will be displayed.

2. Select the All Rung or Select Rung option. When the Select Rung option
is selected, specify the start rung and end rung numbers. When a page
number has been specified in the header and footer fields in File - Page
Setup, the first page number can be specified.

3. Select either of the following options for the function block printing range.

• Symbol table and program (default)

• Symbol table

• Program

4. Click the OK Button, and display the Print Dialog Box. After setting the
printer, number of items to print and the paper setting, click the OK button.

5. The following variable table followed by the algorithm (e.g, ladder program-
ming language) will be printed.

Results of program check displayed.
132

Procedures Section 3-2
Note For details on print settings, refer to the section on printing in the CX-Pro-
grammer Ver. 5.0 Operation Manual (W437).

3-2-13 Saving and Reusing Function Block Definition Files
The function block definition that has been created can be saved indepen-
dently as a function block library file (*.cxf) to enable reusing it in other
projects.

Note Before saving to file, or reusing in another project, compile the function block
definition and perform a program check.

Saving a Function Block
Library File

Use the following procedure to save a function block definition to a function
block library file.

1,2,3... 1. Select the function block definition, right-click, and select Save Function
Block to File from the popup menu. (Alternately, select Function Block -
Save Function Block to File from the File Menu.)

2. The following dialog box will be displayed. Input the file name. Function
Block Library Files (*.cxf) should be selected as the file type.

Reading Function Block
Library Files into Other
Projects

Use the following procedure to read a function block library file (*.cxf) into a
project.

1,2,3... 1. Select the function block definition item under the PLC directory in the
Project Workspace, right-click, and select Insert Function Block - From
File from the popup menu (or select File - Function Block - Load Func-
tion Block from File).

2. The following dialog box will be displayed. Select a function block library
file (*.cxf) and click the Open Button.
133

Procedures Section 3-2
3. A function block called FunctionBlock1 will be automatically inserted after
the Function Blocks icon. This icon contains the definition of the function
block.

4. Double-click the FunctionBlock1 Icon. The variable table and algorithm
will be display.

3-2-14 Downloading/Uploading Programs to the Actual CPU Unit
After a program containing function blocks has been created, it can be down-
loaded from the CX-Programmer to an actual CPU Unit that it is connected to
online. Programs can also be uploaded from the actual CPU Unit. It is also
possible to check if the programs on the CX-Programmer Ver. 5.0 (personal
computer) and in the actual CPU Unit are the same. When the program con-
tains function blocks, however, downloading in task units is not possible
(uploading is possible).

3-2-15 Monitoring and Debugging Function Blocks
The following procedures can be used to monitor programs containing func-
tion blocks.

Monitoring Programs in
Function Block Definitions

Use the following procedure to check the program in the function block defini-
tion for an instance during monitoring.

1,2,3... Right-click the instance and select Go To - Function Block Definition from
the popup menu. The function block definition will be displayed.

Monitoring Instance
Variables in the Watch
Window

Use the following procedure to monitor instance variables.

1,2,3... 1. Select View - Window - Watch.

A Watch Window will be displayed.

2. Double-click the watch window.

The Edit Dialog Box will be displayed as shown below.

Note The instance variable is displayed as the instance name and vari-
able name.

Click the Browse Button.
134

Procedures Section 3-2
3. Click the Browse Button, select the variable to be monitored, and click the
OK Button.

Note Instance variables are displayed as instance_name,
variable_name.

4. Click the OK Button. Variable values will be display in the Watch Window
as shown below.

Monitoring Instance I/O
Variables

The present values of parameters for I/O variables are displayed below the
parameters.

Editing Function Block
Definition Programs
Online

Programs using function blocks can be edited online. Changes can also be
made around instances.

• Instance parameters can be changed, instances can be deleted, and
instructions other than those in instances can be changed.

• Instances cannot be added, instance names cannot be changed, and
algorithms and variable tables in function block definitions cannot be
changed.

Select the variable to monitor.

Address being used

Variable name

PV of parameter for I/O variable.
135

Procedures Section 3-2
136

Appendix A
Data Types

Basic Data Types

Note The TIMER and COUNTER data types cannot be used in structured text function blocks.

Derivative Data Types

Data type Content Size Range of values

BOOL Bit data 1 0 (FALSE), 1 (TRUE)

INT Integer 16 −32,768 to +32,767

DINT Double integer 32 −2,147,483,648 to +2,147,483,647

LINT Long (8-byte) integer 64 −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

UINT Unsigned integer 16 &0 to 65,535

UDINT Unsigned double integer 32 &0 to 4,294,967,295

ULINT Unsigned long (8-byte)
integer

64 &0 to 18,446,744,073,709,551,615

REAL Real number 32 −3.402823 × 1038 to −1.175494 × 10−38, 0,
+1.175494 × 10−38 to +3.402823 × 1038

LREAL Long real number 64 −1.79769313486232 × 10308 to −2.22507385850720 × 10−308, 0,
2.22507385850720 × 10−308 to 1.79769313486232 × 10308

WORD 16-bit data 16 #0000 to FFFF or &0 to 65,535

DWORD 32-bit data 32 #00000000 to FFFFFFFF or &0 to 4,294,967,295

LWORD 64-bit data 64 #0000000000000000 to FFFFFFFFFFFFFFFF or
&0 to 18,446,744,073,709,551,615

TIMER
(See note.)

Timer (See note.) Flag: 1 bit
PV: 16 bits

Timer number: 0 to 4095
Completion Flag: 0 or 1
Timer PV: 0 to 9999 (BCD), 0 to 65535 (binary)

COUNTER
(See note.)

Counter (See note.) Flag: 1 bit
PV: 16 bits

Counter number: 0 to 4095
Completion Flag: 0 or 1
Counter PV: 0 to 9999 (BCD), 0 to 65535 (binary)

Array 1-dimensional array; 32,000 elements max.
137

Data Types Appendix A
138

Appendix B
Structured Text (ST Language)

Specifications

Structured Text
Structured text (also referred to as ST language) is a high-level programming language similar to PASCAL that
uses language structures such as selection and iteration statements. Programs written using structured text
are configured using statements. Statements are configured from variables and equations.

• Equations are sequences containing operators and operands (variables or constants). Operators include
arithmetic operators, comparison operators, and logical operators.

• Statements are either assignment or control statements. Assignment statements store calculation results
from the equation in the variable. Control statements include selection statements and iteration state-
ments.

Example of Structured Text

Restrictions

Statement Delimiters
• Statements (assignment and control statements) must always end in a semicolon (;). The statement can-

not be completed by simply using a carriage return.

• Do not use a semicolon (;) as a delimiter within a statement such as following reserved words, values, or
equations. Inserting a semicolon within a statement, except at the end of a statement, will result in a syntax
error.

Comments
• Comments are enclosed in parentheses and asterisks, i.e., (*comment*). Any characters except parenthe-

ses and asterisks can be used within a comment. Nesting within comments is not supported.

Notation Example

(*comment*) (*this is the comment*)

CASE COLOR OF

1: NofRed := NofRed +1;

2: NofBlue := NofBlue+1;

ELSE NofOther := NofOther+1;

END CASE;

IF NofRed > 100 OR NofBlue >100 THEN

STOP:=TRUE

END IF;

Statement (e.g., CASE):
Configured using variables,
equations, etc.

Equation: Configured using
operators and operands.

(*Variable COLOR value is...*)
(*1: Increment variable NofRed by 1*)
(*2: Increment variable NofBlue by 1*)
(*Neither 1 or 2: Increment variable NofOther by 1*)

(* When NofRed or NofBlue exceeds 100*)

(*Assign TRUE for variable STOP*)

Statement (e.g., IF):
Configured using variables,
equations, etc.

Comment: Configured using (* before the
comment and *) after the comment.
139

Structured Text (ST Language) Specifications Appendix B
Note: Nesting in comments is not possible, i.e., (*(*this type of nesting is not supported*)*)

Spaces, Carriage Returns, Tabs
• Any number of spaces, carriage returns, and tabs, or combinations of these can be used anywhere within

statements. Therefore, use spaces, carriage returns, and tabs between reserved words and equations to
make them easier to read.

• Spaces, carriage returns, and tabs cannot be used between the following tokens (the smallest meaningful
unit for compiling), in which case they are referred to as token separators.
Tokens: Reserved words, variable names, special characters, constants (numerical values)

Reserved words (upper or lower case):AND, CASE, DO, ELSE, FOR, IT, NOT, OF, OR, REPEAT,
THEN, TO, UNTIL, WHILE, XOR, TRUE, FALSE, ELSIF, BY,
EXIT, RETURN

Variable names: Any text that is not a reserved word will be recognized as a variable
name.

Special characters: <=, >=, <>, :=, .., &, (*, *)

Constants (numerical values): Numerical value only for decimal numbers
16# followed by numerical value for hexadecimal numbers
2# followed by numerical value for binary numbers
8# followed by numerical value for octal numbers

If a space, carriage return, or tab is used between any of the above tokens, the parts of the token on either
side will be treated as separate tokens. Therefore, make sure that spaces, carriage returns, or tabs are not
used within a single token.

• Always use a space, carriage return, tab, or other token separator between reserved words and variable
names. Using token separators between other token combinations is optional.
In the following example, the box (@) indicates where a space, carriage return, tab, or other token separa-
tor is required.

IF@A>0THEN@X=10;
ELSE@
 X:=0;
END_IF;

Upper and Lower Case
• Reserved words and variable names do not distinguish between upper and lower case (either can be

used).

Prohibited Characters for Variable Names
• The following characters enclosed in square brackets cannot be used in variable names.

[!], [“], [#], [$], [%], [&], [‘], [(],, [)], [-], [=], [^], [~], [\], [|], [@], [‘], [[], [{], [;], [+], [:], [*], []], [}], [,], [<], [.], [>], [/], [?]

• The numbers 0 to 9 cannot be used as the first character of variable names.

• An underscore cannot be followed immediately by another underscore in variable names.

• Spaces cannot be used in variable names.

An error message will occur if any of these characters are used in this way.

Inputting Constants (Numerical Values)
• Numerical values can be expressed in decimal, hexadecimal, octal, or binary, as shown in the following

examples.

Notation method Example (for the decimal value 12)

Decimal: Numerical value only 12

Hexadecimal: 16# followed by numerical value 16#C

Octal: 8# followed by numerical value 8#14

Binary: 2# followed by numerical value 2#1100
140

Structured Text (ST Language) Specifications Appendix B
Operator Priority
• Consider the operator priority in the structured text syntax, or enclose operations requiring priority in

parentheses.
Example: AND takes priority over OR. Therefore, in the example X OR Y AND Z, priority will be given to Y
AND Z.

CX-Programmer’s ST Input Screen Display

Text Display Color
The CX-Programmer automatically displays text in the following colors when it is input or pasted in the ST Input
Screen.

• Text keywords (reserved words): Blue

• Comments: Green

• Errors: Red

• Other: Black

Changing Fonts
To change font sizes or display colors, select Tools - Options - Display, and then click the ST Font Button.
The font name, font size (default is 8 point), and color can be changed.

Statements
Statement Function Example

End of statement Ends the statement ;

Comment All text between (* and *) is treated as a
comment.

(*comment*)

Assignment Substitutes the results of the expres-
sion, variable, or value on the right for
the variable on the left.

A:=B;

IF, THEN, ELSIF, ELSE, END_IF Evaluates an expression when the con-
dition for it is true.

IF (condition_1) THEN
(expression 1);

ELSIF (condition_2) THEN
(expression 2);

ELSE
(expression 3);

END_IF;

CASE, ELSE, END_CASE Evaluates an express based on the
value of a variable.

CASE (variable) OF
1: (expression 1);
2: (expression 2);
3: (expression 3);

ELSE
(expression 4);

END_CASE;

FOR, TO, BY, DO, END_FOR Repeatedly evaluates an expression
according to the initial value, final
value, and increment.

FOR (identifier) := (initial_value) TO
(final_value) BY (increment) DO

(expression);
END_FOR;

WHILE, DO, END_WHILE Repeatedly evaluates an expression as
long as a condition is true.

WHILE (condition) DO
(expression);

END_WHILE;

REPEAT, UNTIL, END_REPEAT Repeatedly evaluates an expression
until a condition is true.

REPEAT
(expression);

UNTIL (condition)
END_REPEAT;
141

Structured Text (ST Language) Specifications Appendix B
Operators

Note Operations are performed according to the data type.
Therefore, the addition result for INT data, for example, must be a variable using the INT data type. Par-
ticularly care is required when a carry or borrow occurs in an operation for integer type variables. For
example, using integer type variables A=3 and B= 2, if the operation (A/B)*2 is performed, the result of
A/B is 1 (1.5 with the value below the decimal discarded), so (A/B)*2 = 2.

Functions

EXIT Stops repeated processing. EXIT;

RETURN Returns to the point in the program
from which a function block was called.

RETURN;

Operation Symbol Data types supported by operator Priority
1: Lowest

11: Highest

Parentheses and
brackets

(expression),
array[index]

1

Function evaluation identifier Depends on the function (refer to 2-6 Instruction
Support and Operand Restrictions)

2

Exponential ** REAL, LREAL 3

Complement NOT BOOL, WORD, DWORD, LWORD 4

Multiplication * INT, DINT, UINT, UDINT, ULINT, REAL, LREAL 5

Division / INT, DINT, LINT, UINT, UDINT, ULINT, REAL, LREAL 5

Addition + INT, DINT, LINT, UINT, UDINT, ULINT, REAL, LREAL 6

Subtraction − INT, DINT, LINT, UINT, UDINT, ULINT, REAL, LREAL 6

Comparisons <, >, <=, >= BOOL, INT, DINT, LINT, UINT, UDINT, ULINT,
WORD, DWORD, LWORD, REAL, LREAL

7

Equality = BOOL, INT, DINT, LINT, UINT, UDINT, ULINT,
WORD, DWORD, LWORD, REAL, LREAL

8

Non-equality <> BOOL, INT, DINT, LINT, UINT, UDINT, ULINT,
WORD, DWORD, LWORD, REAL, LREAL

8

Boolean AND & BOOL, WORD, DWORD, LWORD 9

Boolean AND AND BOOL, WORD, DWORD, LWORD 9

Boolean exclusive
OR

XOR BOOL, WORD, DWORD, LWORD 10

Boolean OR OR BOOL, WORD, DWORD, LWORD 11

Function Syntax

Numerical Functions Absolute values, trigonometric functions, etc.

Arithmetic Functions Exponential (EXPT)

Data type conversion Functions Source data type_TO_New data type (Variable name)

Statement Function Example
142

Structured Text (ST Language) Specifications Appendix B
Numerical Functions
The following numerical functions can be used in structured text.

Note The data type returned for numerical functions is the same as that used in the argument. Therefore, vari-
ables substituted for function return values must be the same data type as the argument.

Arithmetic Functions
The following general exponential function can be used in structured text.

Note The data type returned for the general exponential function is the same as that used in the argument.
Therefore, variables substituted for function return values must be the same data type as the argument.

Numerical
functions

Argument data type Return value
data type

Contents Example

ABS (argument) INT, DINT, LINT,
UINT, UDINT, ULINT,
REAL, LREAL

INT, DINT, LINT,
UINT, UDINT,
ULINT, REAL,
LREAL

Absolute value [argument] a: = ABS (b)
(*absolute value of variable b
stored in variable a*)

SQRT (argument) REAL, LREAL REAL, LREAL Square root:
√ argument

a: = SQRT (b)
(*square root of variable b
stored in variable a*)

LN (argument) REAL, LREAL REAL, LREAL Natural logarithm: LOGe
argument

a: = LN (b)
(*natural logarithm of vari-
able b stored in variable a*)

LOG (argument) REAL, LREAL REAL, LREAL Common logarithm:
LOG10 argument

a: = LOG (b)
(*common logarithm of vari-
able b stored in variable a*)

EXP (argument) REAL, LREAL REAL, LREAL Natural exponential: eargu-

ment

a: = EXP (b)
(*natural exponential of vari-
able b stored in variable a*)

SIN (argument) REAL, LREAL REAL, LREAL Sine: SIN argument a: = SIN (b)

(*sine of variable b stored in
variable a*)

COS (argument) REAL, LREAL REAL, LREAL Cosine: COS argument a: = COS (b)

(*cosine of variable b stored
in variable a*)

TAN (argument) REAL, LREAL REAL, LREAL Tangent: TAN argument a: = TAN (b)
(*tangent of variable b stored
in variable a*)

ASIN (argument) REAL, LREAL REAL, LREAL Arc sine: SIN−1 argument a: = ASIN (b)
(*arc sine of variable b
stored in variable a*)

ACOS (argument) REAL, LREAL REAL, LREAL Arc cosine: COS−1 argu-
ment

a: = ACOS (b)
(*arc cosine of variable b
stored in variable a*)

ATAN (argument) REAL, LREAL REAL, LREAL
Arc tangent: TAN−1 argu-
ment

a: = ATAN (b)

(*arc tangent of variable b
stored in variable a*)

Exponential
function

Argument data type Return value
data type

Contents Example

EXPT (base, expo-
nent)

Base: REAL, LREAL
Exponent: INT, DINT,
LINT, UINT, UDINT,
ULINT

REAL, LREAL Exponential: Baseexponent a: = EXPT (b, c)
(*Exponential with variable b
as the base and variable c as
the exponent is stored in
variable a*)
143

Structured Text (ST Language) Specifications Appendix B
Data Type Conversion Functions
The following data type conversion functions can be used in structured text.

Syntax
Source data type_TO_New data type (Variable name)

Example: REAL_TO_INT (C)

In this example, the data type for variable C will be changed from REAL to INT.

Data Type Combinations
The combinations of data types that can be converted are given in the following table.
(YES = Conversion possible, No = Conversion not possible)

Statement Details

Assignment
Summary
The left side of the statement (variable) is substituted with the right side of the statement (equation, variable, or
constant).

Reserved Words
:=

Combination of colon (:) and equals sign (=).

Statement Syntax
Variable: = Equation, variable, or constant;

Usage
Use assignment statements for inputting values in variables. This is a basic statement for use before or within
control statements. This statement can be used for setting initial values, storing calculation results, and incre-
menting or decrementing variables.

Description
Substitutes (stores) an equation, variable, or constant for the variable.

Examples
Example 1: Substitute variable A with the result of the equation X+1.

A:=X+1;

Example 2: Substitute variable A with the value of variable B.

A:=B;

FROM TO

BOOL INT DINT LINT UINT UDINT ULINT WORD DWORD LWORD REAL LREAL

BOOL No No No No No No No No No No No No
INT No No YES YES YES YES YES YES YES YES YES YES
DINT No YES No YES YES YES YES YES YES YES YES YES
LINT No YES YES No YES YES YES YES YES YES YES YES
UINT No YES YES YES No YES YES YES YES YES YES YES
UDINT No YES YES YES YES No YES YES YES YES YES YES
ULINT No YES YES YES YES YES No YES YES YES YES YES
WORD No YES YES YES YES YES YES No YES YES No No
DWORD No YES YES YES YES YES YES YES No YES No No
LWORD No YES YES YES YES YES YES YES YES No No No
REAL No YES YES YES YES YES YES No No No No YES
LREAL No YES YES YES YES YES YES No No No YES No
144

Structured Text (ST Language) Specifications Appendix B
Example 3: Substitute variable A with the constant 10.

A:=10;

Precautions
The data type of the equation, variable, or constant to be assigned must be the same as the data type of the
variable to be substituted. Otherwise, a syntax error will occur.

Control Statements

IF Statement (Single Condition)

Summary
This statement is used to execute an expression when a specified condition is met. If the condition is not met,
a different expression is executed.

Reserved Words
IF, THEN, (ELSE), END_IF

Note ELSE can be omitted.

Statement Syntax
IF <condition> THEN
 <expression_1>;
ELSE
 <expression_2>;
END_IF;

Process Flow Diagram

Usage
Use the IF statement to perform a different operation depending on whether a single condition (condition equa-
tion) is met.

Description
Condition = If true, execute expression_1

Condition = If false, execute expression_2

Precautions
• IF must be used together with END_IF.

• The condition must include a true or false equation for the evaluation result.
Example: IF(A>10)
The condition can also be specified as a boolean variable only rather than an equation. As a result, the
variable value is 1 (ON) = True result, 0 (OFF) = False result.

• Statements that can be used in expression_1 and expression_2 are assignment statements, IF, CASE,
FOR, WHILE, or REPEAT.

Condition
False

True

Expression 1 Expression 2
145

Structured Text (ST Language) Specifications Appendix B
 Example:

IF <condition_1> THEN
 IF <condition_2> THEN
 <expression_1>;
 ELSE
 <expression_2>:
 END_IF;
END_IF;

The processing flow diagram is as follows:

ELSE corresponds to THEN immediately before it, as shown in the above diagram.

• Multiple statements can be executed within expression_1 and expression_2. Be sure to use a semicolon (;)
delimiter between multiple statements in an expression.

• The ELSE statement can be omitted. When ELSE is omitted, no operation is executed if the result of the
condition equation is false.

Processing Flow Diagram

Examples
Example 1: If variable A>0 is true, variable X will be substituted with numerical value 10. If A>0 is false, variable
X will be substituted with numerical value 0.

IF A>0 THEN
 X:=10;
ELSE
 X:=0;
END_IF;

Example 2: If variable A>0 and variable B>1 are both true, variable X will be substituted with numerical value
10, and variable Y will be substituted with numerical value 20. If variable A>0 and variable B>1 are both false,
variable X and variable Y will both be substituted with numerical value 0.

Condition 1

Condition 2

False

True

False

True

Expression 1 Expression 1

Condition
False

True

Expression
146

Structured Text (ST Language) Specifications Appendix B
IF A>0 AND B>1 THEN
 X:=10; Y:=20;
ELSE
 X:=0; Y:=0;
END_IF;

Example 3: If the boolean (BOOL data type) variable A=1(ON), variable X will be substituted with numerical
value 10. If variable A=0(OFF), variable X will be substituted with numerical value 0.

IF A THEN X:=10;
ELSE X:=0;
END_IF;

IF Statement (Multiple Conditions)

Summary
This statement is used to execute an expression when a specified condition is met. If the first condition is not
met, but another condition is met, a corresponding expression is executed. If none of the conditions is met, a
different expression is executed.

Reserved Words
IF, THEN, ELSIF, (ELSE)

Note ELSE can be omitted.

Statement Syntax
IF <condition_1> THEN <expression_1>;
 ELSIF <condition_2> THEN <expression_2>;
 ELSIF <condition_3> THEN <expression_3>;

...
 ELSIF <condition_n> THEN <expression_n>;
ELSE <expression_m>;
END_IF;

Processing Flow Chart

Usage
Use the IF statement to perform different operations depending which of multiple conditions (condition equa-
tion) is met.

Condition 1

Condition 2

Condition 3

False

False

False

True

True

True

Expression 1

Expression 2

Expression 3

Expression m
147

Structured Text (ST Language) Specifications Appendix B
Description
Condition 1 = If true, execute expression 1

Condition 1 = If false,

Condition 2 = If true, execute expression 2

Condition 2 = If false,

Condition 3 = If true, execute expression 3

etc.

Condition n = If true, execute expression n

If none of these conditions are met, condition m is executed.

Precautions
• IF must be used together with END_IF.

• Condition_@ contains the true or false result of the equation (e.g., IF(A>10)).
A boolean (BOOL data type) variable only can also be specified as the condition rather than an equation.
For boolean conditions, the result is true when the variable value is 1 (ON) and false when it is 0 (OFF).

• Statements that can be used in expression_@ are assignment statements, IF, CASE, FOR, WHILE, or
REPEAT.

• Multiple statements can be executed in expression_@. Be sure to use a semicolon (;) delimiter between
multiple statements in an expression.

• The ELSE statement can be omitted. When ELSE is omitted, no operation is executed if the result of any
condition equation is false.

Examples
Example 1: If variable A>0 is true, variable X will be substituted with numerical value 10.
If A>0 is false, but variable B=1, variable X will be substituted with numerical value 1.
If A>0 is false, but variable B=2, variable X will be substituted with numerical value 2.
If either of these conditions is met, variable X will be substituted with numerical value 0.

IF A>0 THEN X:=10;
 ELSIF B=1 THEN X:=1;
 ELSIF B=2 THEN X:=2;
ELSE X:=0;
END_IF;

CASE Statement

Summary
This statement executes an expression containing a selected integer that matches the value from an integer
equation. If the selected integer value is not the same, either no expression or a specified expression is exe-
cuted.

Reserved Word
CASE

Statement Syntax
CASE <integer_equation> OF
 <integer_equation_value_1 >:<expression_1>;
 <integer_equation_value_2>:<expression_2>;

...
 <integer_equation_value_n>:<expression_n>;
ELSE <expression_m>;
END_CASE;
148

Structured Text (ST Language) Specifications Appendix B
Processing Flow Chart

Usage
Use the CASE statement to execute different operations depending on specified integer values.

Description
If the integer_equation matches integer_equation_value_n, expression_n is executed.
if the integer_equation does not match any of integer_equation_value_n, expression_m is executed.

Precautions
• CASE must be used together with END_CASE.

• The result of the integer_equation must be in integer format (INT, DINT, LINT, UINT, UDINT, or ULINT).

• Statements that can be used in expression_@ are assignment statements, IF, CASE, FOR, WHILE, or
REPEAT.

• Multiple statements can be executed in expression_@. Be sure to use a semicolon (;) delimiter between
multiple statements in an expression.

• Variables in integer format (INT, DINT, LINT, UINT, UDINT, or ULINT), or equations that return integer val-
ues can be specified in the integer_equation.

• When OR logic is used for multiple integers in the integer_equation_value_n, separate the numerical value
using a comma delimiter. To specify a sequence of integers, use two periods (..) as delimiters between the
first and last integers.

Examples
Example 1: If variable A is 1, variable X is substituted with numerical value 1. If variable A is 2, variable X is
substituted with numerical value 2. If variable A is 3, variable X is substituted with numerical value 3. If neither
of these cases matches, variable Y will be substituted with 0.

CASE A OF
 1:X:=1;
 2:X:=2;
 3:X:=3;
ELSE Y:=0;
END_CASE;

Yes

Yes

Yes

No

No

No

Expression m Expression n Expression 2 Expression 1

Same as
selected
value 1?

Same as
selected
value 2?

Same as
selected
value n?
149

Structured Text (ST Language) Specifications Appendix B
Example 2: If variable A is 1, variable X is substituted with numerical value 1. If variable A is 2 or 5, variable X
is substituted with numerical value 2. If variable A is a value between 6 and 10, variable X is substituted with
numerical value 3. If variable A is 11, 12, or a value between 15 and 20, variable X is substituted with numerical
value 4. If neither of these cases matches, variable Y will be substituted with 0.

CASE A OF
1:X:=1;
2,5:X:=2;
6..10:X:=3;
11,12,15..20:X:=4;
ELSE Y:=0;
END_CASE;

FOR Statement

Summary
This statement is used to execute a specified expression repeatedly until a variable (referred to here as an iter-
ation variable) reaches a specified value.

Reserved Words
FOR, TO, (BY), DO, END_FOR

Note BY can be omitted.

Statement Syntax
FOR <iteration_variable>:= <initial_value> TO <final_value_equation> BY
<increment_value_equation>
DO
 <expression>;
END_FOR;

Processing Flow Chart

Usage
Use the FOR statement when the number of iterations has been determined beforehand. FOR is particularly
useful when switching the number of elements in an array variable according to the value of a specified itera-
tion variable.

Iteration variable = Initial

True

False

Expression

End

Iteration

Iteration variable + Increment value

Iteration
variable ≥

Final value?
150

Structured Text (ST Language) Specifications Appendix B
Description
When the iteration_variable is the initial_value, the expression is executed. After execution, the value obtained
from the increment_equation is added to the iteration_variable, and if the iteration_variable <
final_value_equation (see note 1), the expression is executed. After execution, the value obtained from the
increment_equation is added to the iteration_variable, and if the iteration_variable < final_value_equation value
(see note 1), the expression is executed. This process is repeated. If the iteration_variable ≥
final_value_equation (see note 2), the processing ends.

Note (1) If the value from the increment_equation is negative, the condition is iteration_variable >
final_value_equation value.

(2) If the value from the increment_equation is negative, the condition is iteration_variable ≤
final_value_equation.

Precautions
• A negative value can be specified in the increment_equation

• FOR must be used in combination with END_FOR.

• The initial_value, final_value_equation, and final_value_equation must be an integer data type (INT, DINT,
LINT, UINT, UDINT, or ULINT).

• Do not reference an iteration variable that is outside the FOR statement, where possible. The value of the
iteration variable after completing execution of the FOR statement depends on the actual model specifica-
tions, and may prevent use of the program for general-purpose applications.
Example: In the following structured text, whether the value of a is TRUE or FALSE depends on the actual
model being used.

FOR i:=0 TO 100 DO
 array[i]:=0;
END_FOR;

IF i=101 THEN
 a:=TRUE;
ELSE
 a:=FALSE;
END_IF;

• Do not use a FOR statement in which an iteration variable is changed directly. Doing so may result in unex-
pected operations.
Example:

FOR i:=0 TO 100 BY 1 DO
 array[i]:=0;
 i:=i+5;
END_FOR;

• Statements that can be used in the expression are assignment statements, IF, CASE, FOR, WHILE, or
REPEAT.

• Multiple statements can be executed in the expression. Be sure to use a semicolon (;) delimiter between
multiple statements in an expression.

• BY increment_equation can be omitted. When omitted, BY is taken as 1.

• Variables with integer data types (INT, DINT, LINT, UINT, UDINT, or ULINT), or equations that return inte-
ger values can be specified in the initial_value, final_value_equation, and increment_equation.
Example 1: The iteration is performed when the iteration variable n = 0 to 50 in increments of 5, and the
array variable SP[n] is substituted with 100.

FOR n:=0 TO 50 BY 5 DO
 SP[n]:=100;
END_FOR;
151

Structured Text (ST Language) Specifications Appendix B
Example 2: The total value of elements DATA[1] to DATA[50] of array variable DATA[n] is calculated, and
substituted for the variable SUM.

FOR n:=0 TO 50 BY 1 DO
 SUM:=SUM+DATA[n];
END_FOR;

Example 3: The maximum and minimum values from elements DATA[1] to DATA[50] of array variable
DATA[n] are detected. The maximum value is substituted for variable MAX and the minimum value is sub-
stituted for variable MIN. The value for DATA[n] is between 0 and 1000.

MAX:=0;
MIN:=1000;
FOR n:=1 TO 50 BY 1 DO
 IF DATA[n]>MAX THEN
 MAX:=DATA[n];
 END IF;
 IF DATA[n]<MIN THEN
 MIN:=DATA[n];
 END IF;
END_FOR;

WHILE Statement

Summary
This statement is used to execute a specified expression repeatedly for as long as a specified condition is true.

Reserved Words
WHILE, DO, END_WHILE

Statement Syntax
WHILE <condition> DO
 <expression>;
END_WHILE;

Processing Flow Chart

Usage
Use the WHILE statement when the number of iterations has not been determined beforehand (depends on
the condition being met) to repeat specified processing for the duration that the condition is met. This state-
ment can be used to execute processing while the condition equation is true only (pretest loop).

Description
Before the expression is executed, the condition is evaluated.
If the condition is true, the expression is executed. Afterwards, the condition is evaluated again. This process is
repeated. If the condition is false, the expression is not executed and the condition evaluation ends.

Iteration

Condition

Expression

False

True

End
152

Structured Text (ST Language) Specifications Appendix B
Precautions
• WHILE must be used in combination with END_WHILE.

• Before executing the expression, if the condition equation is false, the process will end without executing
the expression.

• Statements that can be used in the expression are assignment statements, IF, CASE, FOR, WHILE, or
REPEAT.

• Multiple statements can be executed in the expression. Be sure to use a semicolon (;) delimiter between
multiple statements in an expression.

• The condition can also be specified as a boolean variable (BOOL data type) only rather than an equation.

Examples
Example 1: The value exceeding 1000 in increments of 7 is calculated and substituted for variable A.

A:=0;
WHILE A>=1000 DO
 A:=A+7;
END_WHILE;

Example 2: While X<3000, the value of X is doubled, and the value is substituted for the array variable DATA[1].
The value of X is then multiplied by 2 again, and the value is substituted for the array variable DATA[2]. This
process is repeated.

n:=1’
WHILE X<3000 DO
 X:=X*2;
 DATA[n]:=X;
 n:=n+1;
END_WHIE;

REPEAT Statement

Summary
This statement is used to repeatedly execute an expression until a specified condition is true.

Reserved Words
REPEAT, UNTIL, END_REPEAT

Statement Syntax
REPEAT
 <expression>;
UNTIL <condition>
END_REPEAT

Processing Flow Chart

Expression

False

Iteration

True

End

Condition
153

Structured Text (ST Language) Specifications Appendix B
Usage
Use the REPEAT statement to repeat processing for as long as a condition is met after specified processing,
when the number of iterations is undetermined beforehand (depends on whether the condition is met). This
statement can be used to determine whether to repeat processing according to the results of specified pro-
cessing execution (post-test loop).

Description
The expression will execute the first time without a condition. Thereafter, the condition equation will be evalu-
ated. If the condition is false, the expression will be executed again. If the condition is true, processing will end
without executing the expression.

Precautions
• REPEAT must be used together with END_REPEAT.

• Even if the condition equation is true before the expression has been executed, the expression will be exe-
cuted.

• Statements that can be used in the expression are assignment statements, IF, CASE, FOR, WHILE, or
REPEAT.

• Multiple statements can be executed in the expression. Be sure to use a semicolon (;) delimiter between
multiple statements in an expression.

• The condition can also be specified as a boolean variable (BOOL data type) only rather than an equation.

Examples
Example 1: Numeric values from 1 through 10 are incremented and the total is substituted for the variable
TOTAL.

A:=1;
TOTAL:=0;
REPEAT
 TOTAL:=TOTAL+A;
 A:=A+1;
UNTIL A>10
END_REPEAT;

EXIT Statement

Summary
This statement is used within iteration statements (FOR, WHILE, REPEAT) only to force an iteration statement
to end. This statement can also be used within an IF statement to force an iteration statement to end when a
specified condition is met.

Reserved Words
EXIT

Statement Syntax (Example: Using within IF Statement)
FOR (WHILE, REPEAT) expression

...
IF <condition> THEN EXIT;
END_IF;

...
END_FOR (WHILE, REPEAT);

Usage
Use the EXIT statement to force iteration processing to end before the end condition is met.

Description (Example: Using within IF Statement)
When the condition equation is true, the iteration statement (FOR, WHILE, REPEAT) is forced to end, and any
statements after EXIT will not be executed.
154

Structured Text (ST Language) Specifications Appendix B
Note (1) The condition can also be specified as a boolean variable (BOOL data type) only rather than an
equation.

(2) Even if the condition equation is true before the expression has been executed, the expression will
be executed.

Example
Processing is repeated from when variable n = 1 until 50 in increments of 1 and n is added to array variable
DATA[n]. If DATA[n] exceeds 100, however, processing will end.

FOR n:=1; TO 50 BY 1 DO
 DATA[n]:=DATA[n]+n;
 IF DATA[n]>100 THEN EXIT;
 END_IF;
END_FOR;

RETURN Statement

Summary
This statement is used to execute the next instruction following the location that called the function block in the
program when the function block in the structured text must be forced to end before it has been completed.

Reserved Words
RETURN

Statement Syntax
RETURN;

Usage
Use the RETURN statement when a function block has been forced to end.

Examples of Structured Text Programming

Example 1: Conversion of BCD Data (#0000-#9999) to BIN Data
(*Check the input parameter "Input_BCD" (BCD data) *)
IF (Input_BCD>=0 & Input_BCD<=16#9999) THEN

ENO:=true;
ELSE

ENO:=false;
RETURN;

END_IF;

(*BCD data is divided by 16 four times to get each digit of the BIN data converted from the BCD data*)
DIV_1:=Input_BCD/16;
DIV_2:=DIV_1/16;
DIV_3:=DIV_2/16;
DIV_4:=DIV_3/16;

(*Calculate each digit of the BIN data converted from the BCD data*)
BIN_1:=Input_BCD-16*DIV_1; (*a number of 160 digit*)
BIN_2:=DIV_1-16*DIV_2; (*a number of 161 digit*)
BIN_3:=DIV_2-16*DIV_3; (*a number of 162 digit*)
BIN_4:=DIV_3-16*DIV_4; (*a number of 163 digit*)
(*Calculate the BIN data "Output_BIN" (output parameter) *)
Output_BIN:=BIN_1+BIN_2*10+BIN_3*10*10+BIN_4*10*10*10;

Input_BCD Output_BIN
155

Structured Text (ST Language) Specifications Appendix B
Example 2: Conversion of BIN Data (#0000-#FFFF) to BCD Data
(*check the input parameter "Input_BIN" (BIN data) *)
IF (Input_BIN>=0 & Input_BIN<=16#FFFF) THEN

ENO:=true;
ELSE

ENO:=false;
RETURN;

END_IF;

(*BIN data is divided by 10 four times to get each digit of the BCD data converted from the BIN data*)
DIV_1:=Input_BIN/10;
DIV_2:=DIV_1/10;
DIV_3:=DIV_2/10;
DIV_4:=DIV_3/10;

(*Calculate each digit of the BCD data converted from the BIN data*)
BCD_1:=Input_BIN-10*DIV_1; (*a number of 100 digit*)
BCD_2:=DIV_1-10*DIV_2; (*a number of 101 digit*)
BCD_3:=DIV_2-10*DIV_3; (*a number of 102 digit*)
BCD_4:=DIV_3-10*DIV_4; (*a number of 103 digit*)
(*Calculate the BCD data "Output_BCD" (output parameter) *)
Output_BCD:=BCD_1+BCD_2*16+BCD_3*16*16+BCD_4*16*16*16;

Restrictions
Nesting
There is no restriction on the number of nests that can be used in IF, CASE, FOR, WHILE, or REPEAT state-
ments.

Data Type Restrictions
• Integers can only be allocated to variables with data types WORD, DWORD, INT, DINT, UINT, UDINT, or

ULINT. For example, if A is an INT data type, A:=1; it possible. If the value is not an integer data type, a
syntax error will occur. For example, if A is an INT data type, a syntax error will occur for A:=2.5;.

• If a real number (floating point decimal data) can only be allocated to variables with data types REAL and
UREAL. For example, if A is a REAL data type, A:=1.5; is possible. If the value is not an real data type, a
syntax error will occur. For example, if A is a REAL data type, a syntax error will occur for A:=2;. Use
A:=2.0;.

• Bits (TRUE, FALSE) can only be allocated to variables with the BOOL data type. For example, if A is a
BOOL data type, A:=FALSE; is possible. If a BOOL data type is not used, a syntax error will occur. For
example, if A is an INT data type, a syntax error will occur for A:=FALSE;.

• Data types must all be consistent within the structured text. For example, if A, B, and C are INT data types,
A:=B+C; is possible. If, however, A and B are INT data types, but C is a REAL data type or LINT data type,
a syntax error will occur for A:=B+C;.

Input_BIN Output_BCD
156

Structured Text (ST Language) Specifications Appendix B
Structured Text Errors

Error Messages
Error Message Cause of error Example

%s' Input variables cannot be
assigned a value

A value was substituted for an
input variable.

%s' operator not supported by
%s data type

A numerical value or variable
for a data type that is not sup-
ported by the operator was
used.

A:=B+1; (*A and B are WORD type variables*))

%s' variable had a read only
memory AT Address and can-
not be assigned a value

A value was substituted for a
variable allocated to a read-
only memory address (read-
only Auxiliary Area address or
Condition Flag).

Array index out of range An array index larger than the
array size was specified.

Array[100]:=10; (*Array is an array variable with an array
size of 100*)

Conversion cannot convert
from %s to %s

A numeric equation in which
the data type of the operation
result does not match the vari-
able at the substitution desti-
nation and a variable that is
different from the data type
was substituted.

Y:=ABS(X); (*X is an INT type variable, Y is a UINT type
variable*)

Division by Zero The numeric expression con-
tains division by 0.

End of comment not found The comment does not have a
closing parenthesis and aster-
isk “*)” corresponding to the
opening parenthesis and
asterisk “(*” of the comment.

(*comment

Invalid Literal Format '%s' The numeric format is illegal. X:=123_; (*There is no numeral after underscore*)
X:=1__23; (*The underscore is followed immediately by
another underscore*)

X:=2#301; Y:=8#90; (*A numeral that cannot be used with
binary or octal values has been used*)

Note The underscore can be inserted between numerals
to make them easier to read. Placing 2#, 8#, and
16# at the beginning of the numeral expresses the
numerals as binary, octal, and hexadecimal values,
respectively.

Invalid Literal Value The numeric value is illegal. X:=1e2; (*an index was used for a numeric value that was
not a REAL data type*)

Note “e” indicates an exponent of 10.

Invalid array index A numeric equation with a
non-integer type operation
result or a non-integer vari-
able has been specified in the
array index.

Array[Index]:=10; (*Index is a WORD type variable*)

Invalid constant A numeric equation with a
non-integer type operation
result, or a non-integer vari-
able or numeric value has
been specified in the integer
equation of a CASE state-
ment.

CASE A OF (*A is a REAL type variable*)
1: X:=1;

2: X:=2;
END_CASE;
157

Structured Text (ST Language) Specifications Appendix B
Invalid expression The numeric equation is ille-
gal. For example, the integer
equation or condition equation
is illegal or has not been spec-
ified in the syntax (IF, WHILE,
REPEAT, FOR, CASE).

WHILE DO (*The WHILE statement does not contain a
condition equation*)

 X:=X+1;
END_WHILE;

Invalid parameter in FOR loop
declaration

A variable with data type other
than INT, DINT, LINT, UINT,
UDINT, or ULINT has been
used for variables in a FOR
statement.

FOR I:=1 TO 100 DO (*I is a WORD type variable*)

 X:=X+1;
END_FOR;

Invalid statement The statement is illegal. E.g.,
The statement (IF, WHILE,
REPEAT, FOR, CASE,
REPEAT) does not contain an
IF, WHILE, REPEAT, FOR,
CASE, or REPEAT in the syn-
tax, respectively.

X:=X+1; (*There is no REPEAT in the syntax*)
UNTIL X>10

END_REPEAT;

Invalid variable for Function
output

The specified variable for the
function output is illegal (A
non-boolean (BOOL) variable
or numeral has been specified
as the ENO transfer destina-
tion.)

Y:=SIN(X1, ENO=>1);

Missing (The call for a data format con-
version instruction or function
does not contain a “(“ (open-
ing parenthesis).

Y:=INT_TO_DINT X);

Missing) The operator parentheses or
the call for a data format con-
version instruction or function
does not contain a “)“ (closing
parenthesis) corresponding to
“(“ (opening parenthesis).

Y:=(X1+X2/2

Missing : The integer equation in the
CASE statement is not fol-
lowed by a “:” (colon).

CASE A OF
1 X:=1;
END_CASE;

Missing := “:=” is not included in the
assignment equation.

Missing ; The statement is not con-
cluded by a “;” (semicolon).

Missing DO “DO” is not provided in the
FOR or WHILE statement.

Missing END_CASE “END_CASE” is not provided
at the end of the CASE state-
ment.

Missing END_FOR “END_FOR” is not provided at
the end of the FOR statement.

Missing END_IF “END_IF” is not provided at
the end of the IF statement.

Missing END_REPEAT “END_REPEAT” is not pro-
vided at the end of the
REPEAT statement.

Missing END_WHILE “END_WHILE” is not pro-
vided at the end of the WHILE
statement.

Missing Input Parameter. All
input variables must be set.

The function argument is not
specified or is insufficient.

Y:=EXPT(X);

Error Message Cause of error Example
158

Structured Text (ST Language) Specifications Appendix B
Missing OF “OF” is not included in CASE
statement.

Missing THEN “THEN” is not included in IF
statement.

Missing TO “TO” is not included in FOR
statement.

Missing UNTIL “UNTIL” is not included in
REPEAT statement.

Missing [The array index for the array
variable has not been speci-
fied.

X:=Array; (*Array is an array variable*)

Missing] The array index for the array
variable has not been speci-
fied.

X:=Array[2; (*Array is an array variable*)

Missing constant A constant is not provided in
the integer equation of the
CASE statement.

CASE A OF
2..: X:=1;
2,: X:=2;

END_CASE;

NOT operation not supported
on a literal number

The NOT operator was used
for a numeric value.

Result:=NOT 1;

Negation not supported by %s
data type

A minus symbol was used
before a variable with a data
type that does not support
negative values (UINT,
UDINT, ULINT).

Y:=-X; (*X is an UINT type variable, Y is an INT type vari-
able*)

There must be one line of
valid code (excluding com-
ments)

There is no line of valid code
(excluding comments).

Too many variables specified
for Function

Too many parameter settings
are specified for the function.

Y:=SIN(X1,X2);

Undefined identifier '%s' A variable that is not defined
in the variable table has been
used.

Unexpected syntax '%s' A keyword (reserved word) or
variable has been used ille-
gally.

FOR I:=1 TO 100 DO BY -1 (*The DO position is illegal*)

 X:=X+1;
END_FOR;

Usage mismatch in Function
variable

The function parameter has
been used illegally.

Y:=SIN(X1,EN=>BOOL1); (*The input parameter EN has
been used as an output parameter*)

Value out of range A value outside the range for
the variable data type has
been substituted in the vari-
able.

X:=32768; (*X is an INT type variable*)

Variable '%s' is not a Function
parameter

A variable that cannot be
specified in the function
parameter has been specified
in the parameter.

Y:=SIN(Z:=X); (*X and Y are REAL type variables, and Z
is not a SIN function parameter *)

Error Message Cause of error Example
159

Structured Text (ST Language) Specifications Appendix B
Warning Messages

Commonly Asked Questions
Q: How is a hexadecimal value expressed?
A: Add “16#” before the value, e.g., 16#123F.
The prefixes 8# and 2# can also be added to express octal numbers and binary numbers, respectively. Num-
bers without these prefixes will be interpreted as decimal numbers.

Q: How many times can FOR be used?
A: In the following example, the contents of the FOR statement is executed 101 times. The loop processing
ends when the value of “i” is equal to 101.

FOR i:=0 TO 100 BY 1 DO
 a:=a+1;
END_FOR;

Q: What occurs when the array subscript is exceeded?
A: For the array variable INT[10] with 10 elements, an error will not be detected for the following type of state-
ment. Operation will be unstable when this statement is executed.

i:=15;
INT[i]:=10;

Q: Are the variables in the structured text editor automatically registered in the variable tables?
A: No. Register the variables in the variable table before using them.

Q: Can ladder programming instructions be called directly?
A: No.

Warning message Cause of warning Example

Keyword '%s' is redundant The keyword has been used
in an invalid location. For
example, use of the EXIT
statement outside a loop syn-
tax.

Conversion from '%s' to '%s',
possible loss of data

Data may be lost due to con-
version of a data type with a
large data size to a data type
with a small data size.

Y:=DINT_TO_INT(X); (*X is a DINT type variable, Y is an
INT type variable*)
160

Appendix C
External Variables

Note These words are external variables for the OMRON FB Library. Do not use these words for creating
function blocks.

Classification Name External variable in
CX-Programmer

Data type Address

Conditions Flags Greater Than or Equals (GE) Flag P_GE BOOL CF00

Not Equals (NE) Flag P_NE BOOL CF001

Less Than or Equals (LE) Flag P_LE BOOL CF002

Instruction Execution Error (ER) Flag P_ER BOOL CF003

Carry (CY) Flag P_CY BOOL CF004

Greater Than (GT) Flag P_GT BOOL CF005

Equals (EQ) Flag P_EQ BOOL CF006

Less Than (LT) Flag P_LT BOOL CF007

Negative (N) Flag P_N BOOL CF008

Overflow (OF) Flag P_OF BOOL CF009

Underflow (UF) Flag P_UF BOOL CF010

Access Error Flag P_AER BOOL CF011

Always OFF Flag P_Off BOOL CF114

Always ON Flag P_On BOOL CF113

Clock Pulses 0.02 second clock pulse bit P_0_02s BOOL CF103

0.1 second clock pulse bit P_0_1s BOOL CF100

0.2 second clock pulse bit P_0_2s BOOL CF101

1 minute clock pulse bit P_1mim BOOL CF104

1.0 second clock pulse bit P_1s BOOL CF102

Auxiliary Area Flags/
Bits

First Cycle Flag P_First_Cycle BOOL A200.11

Step Flag P_Step BOOL A200.12

First Task Execution Flag P_First_Cycle_Task BOOL A200.15

Maximum Cycle Time P_Max_Cycle_Time UDINT A262

Present Scan Time P_Cycle_Time_Value UDINT A264

Cycle Time Error Flag P_Cycle_Time_Error BOOL A401.08

Low Battery Flag P_Low_Battery BOOL A402.04

I/O VerIFication Error Flag P_IO_Verify_Error BOOL A402.09

Output OFF Bit P_Output_Off_Bit BOOL A500.15

OMRON FB Library
words (see note)

CIO Area specification P_CIO WORD A450

HR Area specification P_HR WORD A452

WR Area specification P_WR WORD A451

DM Area specification P_DM WORD A460

EM0 to C Area specification P_EM0 to P_EMC WORD A461 to
A473
161

External Variables Appendix C
162

Index

A
addresses

allocation areas, 31

checking internal allocations, 129

setting allocation areas, 128

algorithm

creating, 119

applications

precautions, xiii

array settings, 14, 28, 44, 121

AT settings, 14, 27, 121

restrictions, 38

C
compiling, 131

computer system requirements, 3

D
data types, 14, 27, 137

determining, 42

debugging function blocks, 134

differentiation

restrictions, 38

E
errors

function blocks, 41

external variables, 26

list, 161

externals, 14

F
features, 2
files

function block definitions, 133

library, 5
project text files, 5

function block definitions, 8
checking for an instance, 131

compiling, 131

creating, 114

saving to files, 133

function blocks

advantages, 7
application guidelines, 42

creating, 17, 111

debugging, 134

defining, 117

elements, 21

errors, 41

monitoring, 134

operating specifications, 35

outline, 7
restrictions, 37

reusing, 18

setting parameters, 125

specifications, 4, 21

structure, 8
functions, 2

function blocks, 4
restrictions, 3

G
global symbol table, 12

I
IEC 61131-3, 2, 4
input variables, 23

inputs, 13

instance areas, 15, 31

setting, 16, 128

instances

creating, 17, 124

multiple, 33

number of, 10

outline, 9
registering in global symbol table, 12

specifications, 30

internal variables, 25

internals, 13

L
ladder programming

function block definition, 116

restrictions, 40

restrictions in function blocks, 37
163

Index
M
menus, 5

main, 5
popup, 6

monitoring function blocks, 134

O
online editing

restrictions, 41

output variables, 24

outputs, 14

P
parameters

outline, 10

precautions, xi

applications, xiii

general, xii

safety, xii

Programming Consoles, 41

projects

creating, 114

S
safety precautions, xii

specifications, 19

CX-Programmer Ver. 5.0, 3
function block operation, 35

instances, 30

structured text

function block definition, 116

restrictions, 40

symbol name

automatically generating, 123

T
timer instructions

operation, 107

restrictions, 39

V
variable names, 14

variables

address allocations, 15

checking address allocations, 129

creating as needed, 120

definitions, 22

introduction, 13

properties, 13, 14, 27

registering in advance, 117

restrictions, 38

setting allocation areas, 15

usage, 13, 22
164

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content

01 July 2004 Original production

Cat. No. W438-E1-01

Revision code
165

Revision History
166

OMRON CORPORATION
FA Systems Division H.Q.
66 Matsumoto
Mishima-city, Shizuoka 411-8511
Japan
Tel: (81)55-977-9181/Fax: (81)55-977-9045

Regional Headquarters

OMRON EUROPE B.V.
Wegalaan 67-69, NL-2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388

OMRON ELECTRONICS LLC
1 East Commerce Drive, Schaumburg, IL 60173
U.S.A.
Tel: (1)847-843-7900/Fax: (1)847-843-8568

OMRON ASIA PACIFIC PTE. LTD.
83 Clemenceau Avenue,
#11-01, UE Square,
Singapore 239920
Tel: (65)6835-3011/Fax: (65)6835-2711

Cat. No.

This ma
Authorized Distributor:

 W438-E1-01 Note: Specifications subject to change without notice Printed in Japan
nual is printed on 100% recycled paper.

S
Y

S
M

A
C

 W
S

02
-C

X
P

C
1-

E
-V

50
 C

X
-P

ro
g

ra
m

m
er

 V
er

. 5
.0

C
at

. N
o

. W
43

8-
E

1-
01

O
P

E
R

A
T

IO
N

 M
A

N
U

A
L

 F
u

n
ct

io
n

 B
lo

ck
s

	CX-Programmer Ver. 5.0 WS02-CXPC1-E-V50 CS1-H, CJ1-H, CJ1M CPU Units
	About this Manual:
	PRECAUTIONS
	1 Intended Audience
	2 General Precautions
	3 Safety Precautions
	4 Application Precautions

	SECTION 1 Introduction
	1-1 Introducing the Function Blocks
	1-1-1 Overview and Features
	1-1-2 Function Block Specifications
	1-1-3 Files Created with CX-Programmer Ver. 5.0
	1-1-4 CX-Programmer Ver. 5.0 Function Block Menus

	1-2 Function Blocks
	1-2-1 Outline
	1-2-2 Advantages of Function Blocks
	1-2-3 Function Block Structure

	1-3 Variables
	1-3-1 Introduction
	1-3-2 Variable Usage and Properties
	1-3-3 Variable Properties
	1-3-4 Variable Properties and Variable Usage
	1-3-5 Internal Allocation of Variable Addresses

	1-4 Converting Function Block Definitions to Library Files
	1-5 Usage Procedures
	1-5-1 Creating Function Blocks and Executing Instances
	1-5-2 Reusing Function Blocks

	SECTION 2 Specifications
	2-1 Function Block Specifications
	2-1-1 Function Block Specifications
	2-1-2 Function Block Elements

	2-2 Instance Specifications
	2-2-1 Composition of an Instance
	2-2-2 Parameter Specifications
	2-2-3 Operating Specifications

	2-3 Restrictions on Function Blocks
	2-4 Function Block Applications Guidelines
	2-4-1 Deciding on Variable Data Types
	2-4-2 Determining Variable Types (Inputs, Outputs, Externals, and Internals)
	2-4-3 AT Settings for Internal Variables
	2-4-4 Array Settings for Internal Variables
	2-4-5 Specifying Addresses Allocated to Special I/O Units
	2-4-6 Using Index Registers

	2-5 Precautions for Instructions with Operands Specifying the First or Last of Multiple Words
	2-6 Instruction Support and Operand Restrictions
	2-6-1 Sequence Input Instructions
	2-6-2 Sequence Output Instructions
	2-6-3 Sequence Control Instructions
	2-6-4 Timer and Counter Instructions
	2-6-5 Comparison Instructions
	2-6-6 Data Movement Instructions
	2-6-7 Data Shift Instructions
	2-6-8 Increment/Decrement Instructions
	2-6-9 Symbol Math Instructions
	2-6-10 Conversion Instructions
	2-6-11 Logic Instructions
	2-6-12 Special Math Instructions
	2-6-13 Floating-point Math Instructions
	2-6-14 Double-precision Floating-point Instructions
	2-6-15 Table Data Processing Instructions
	2-6-16 Data Control Instructions
	2-6-17 Subroutine Instructions
	2-6-18 Interrupt Control Instructions
	2-6-19 High-speed Counter and Pulse Output Instructions (CJ1M-CPU21/ 22/23 Only)
	2-6-20 Step Instructions
	2-6-21 Basic I/O Unit Instructions
	2-6-22 Serial Communications Instructions
	2-6-23 Network Instructions
	2-6-24 File Memory Instructions
	2-6-25 Display Instructions
	2-6-26 Clock Instructions
	2-6-27 Debugging Instructions
	2-6-28 Failure Diagnosis Instructions
	2-6-29 Other Instructions
	2-6-30 Block Programming Instructions
	2-6-31 Text String Processing Instructions
	2-6-32 Task Control Instructions
	2-6-33 Model Conversion Instructions
	2-6-34 Special Instructions for Function Blocks

	2-7 CPU Unit Function Block Specifications
	2-7-1 Specifications
	2-7-2 Operation of Timer Instructions

	2-8 Number of Function Block Program Steps and Instance Execution Time
	2-8-1 Number of Function Block Program Steps (CPU Units with Unit Version 3.0 or Later)
	2-8-2 Function Block Instance Execution Time (CPU Units with Unit Version 3.0 or Later)

	SECTION 3 Creating Function Blocks
	3-1 Procedural Flow
	3-2 Procedures
	3-2-1 Creating a Project
	3-2-2 Creating a New Function Block Definition
	3-2-3 Defining Function Blocks Created by User
	3-2-4 Creating Instances from Function Block Definitions
	3-2-5 Setting Function Block Parameters Using the P Key
	3-2-6 Setting the FB Instance Areas
	3-2-7 Checking Internal Address Allocations for Variables
	3-2-8 Copying and Editing Function Block Definitions
	3-2-9 Checking the Source Function Block Definition from an Instance
	3-2-10 Checking the Size of the Function Block Definition
	3-2-11 Compiling Function Block Definitions (Checking Program)
	3-2-12 Printing Function Block Definition
	3-2-13 Saving and Reusing Function Block Definition Files
	3-2-14 Downloading/Uploading Programs to the Actual CPU Unit
	3-2-15 Monitoring and Debugging Function Blocks

	Appendix A Data Types
	Appendix B Structured Text (ST Language) Specifications
	Appendix C External Variables
	Index
	Revision History

