
OPERATION MANUAL

Cat. No. W427-E1-01

SYSMAC
CX-Programmer IEC
Ver. 1.0
WS02-CPIC1-E
CS1-H (FB)/CJ1-H (FB) CPU Units

CX-Programmer IEC
Ver. 1.0
WS02-CPIC1-E

CS1-H (FB)/CJ1-H (FB) CPU Units

Operation Manual
Produced September 2003

iv

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

!DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury.

!WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury.

!Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers to
an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PLC” means Programmable Controller. “PC” is used, however, in some Program-
ming Device displays to mean Programmable Controller.

Visual Aids
The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient opera-
tion of the product.

1,2,3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

 OMRON, 2003
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or
by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of
OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is con-
stantly striving to improve its high-quality products, the information contained in this manual is subject to change without
notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility
for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in
this publication.
v

vi

TABLE OF CONTENTS
PRECAUTIONS . xi
1 Intended Audience . xii

2 General Precautions . xii

3 Safety Precautions . xii

4 Application Precautions. xiii

5 Installation Precaution . xv

SECTION 1
Introduction. 1

1-1 Introducing the CX-Programmer IEC . 2

1-2 Function Blocks . 7

1-3 Variables . 13

1-4 Converting Function Block Definitions to Library Files . 20

1-5 Operating Procedures. 21

SECTION 2
Creating Function Blocks. 23

2-1 Procedural Flow. 24

2-2 Procedures . 26

SECTION 3
Specifications . 47

3-1 Function Block Specifications . 48

3-2 Instance Specifications . 57

3-3 Restrictions on Function Blocks . 60

3-4 Function Block Applications Guidelines. 65

3-5 CPU Unit Specifications and Battery Replacement . 67

Appendices
A Data Types . 81

B Structured Text Keywords . 83

C External Variables . 85

D Instruction Support and Operand Restrictions . 87

Index. 123

Revision History . 127
vii

TABLE OF CONTENTS
viii

About this Manual:

This manual describes the function blocks and related functionality of the CX-Programmer IEC and
includes the sections described on the next page. The CX-Programmer IEC can be used only for SYS-
MAC CS-series and CJ-series CPU Units that support function blocks. These CPU Units are indicated
as the CS1-H (FB)/CJ1-H (FB) CPU Units.

This manual describes only CX-Programmer IEC operations that are different from those of the non-
IEC CX-Programmer. For operations not related to function blocks, refer to the CX-Programmer Oper-
ation Manual (enclosed, Cat. No. W414). This manual also provides only specifications and informa-
tion on the battery replacement procedure for the CS1-H (FB)/CJ1-H (FB) CPU Units. For other
information, refer to the CS/CJ-series manuals.

Please read this manual and related manuals carefully and be sure you understand the information
provided before attempting to install or operate the CX-Programmer IEC or the CS1-H (FB)/CJ1-H
(FB) CPU Units. Be sure to read the precautions provided in the following section.

Manuals Related to the CX-Programmer IEC

Manuals Related to the CS1-H (FB) and CJ1-H (FB) CPU Units

Name Cat. No. Contents

SYSMAC WS02-CPIC1-E
CX-Programmer IEC Operation Manual

(CS1G-CPU42H/44H (FB), CS1H-CPU65H/
67H (FB), CJ1G-CPU42H/43H/44H (FB) CPU
Units)

W427 (This manual)
Describes the functionality unique to the CX-Programmer IEC
based on function blocks. Functionality that is the same as
that of the CX-Programmer is described in W414 (enclosed).

SYSMAC WS02-CXPC1-E-V3@
CX-Programmer Operation Manual

W414 Provides information on how to use the CX-Programmer for
all functionality except for function blocks.

Name Cat. No. Contents

SYSMAC CS Series
CS1G/H-CPU@@-EV1, CS1G/H-CPU@@H
Programmable Controllers
Operation Manual

W339 Provides an outline of and describes the design, installation,
maintenance, and other basic operations for the CS-series
PLCs.

The following information is included:
An overview and features
The system configuration
Installation and wiring
I/O memory allocation
Troubleshooting

Use this manual together with the W394.

SYSMAC CJ Series
CJ1G/H-CPU@@H, CJ1M-CPU@@, CJ1G-
CPU@@
Programmable Controllers
Operation Manual

W393 Provides an outline of and describes the design, installation,
maintenance, and other basic operations for the CJ-series
PLCs.

The following information is included:
An overview and features
The system configuration
Installation and wiring
I/O memory allocation
Troubleshooting

Use this manual together with the W394.
ix

Overview of Contents
Precautions provides general precautions for using the CX-Programmer IEC.

Section 1 provides an overview of CX-Programmer IEC functionality and general information on func-
tion blocks.

Section 2 provides information on and procedures for creating function blocks.

Section 3 provides technical specifications and restrictions for function blocks and information on the
battery replacement procedure.

The Appendices provide additional information required for programming, including data types, ST
language keywords, a table of external variables, and tables of instructions support and operand
restrictions.

SYSMAC CS/CJ Series
CS1G/H-CPU@@-EV1, CS1G/H-CPU@@H,
CJ1G/H-CPU@@H, CJ1M-CPU@@, CJ1G-
CPU@@
Programmable Controllers
Programming Manual

W394 Describes programming and other methods to use the func-
tions of the CS/CJ-series PLCs.

The following information is included:
Programming
Tasks
File memory
Other functions
Use this manual together with the W339 or W393.

SYSMAC CS/CJ Series
CS1G/H-CPU@@-EV1, CS1G/H-CPU@@H,
CJ1G/H-CPU@@H, CJ1M-CPU@@, CJ1G-
CPU@@
Programmable Controllers
Instructions Reference Manual

W340 Describes the ladder diagram programming instructions sup-
ported by CS/CJ-series PLCs.

When programming, use this manual together with the Oper-
ation Manual (CS1: W339 or CJ1: W393) and Programming
Manual (W394).

SYSMAC CS/CJ Series
CS1G/H-CPU@@-EV1, CS1G/H-CPU@@H,
CS1W-SCB21-V1/41-V1, CS1W-SCU21/41,
CJ1G/H-CPU@@H, CJ1M-CPU@@, CJ1G-
CPU@@, CJ1W-SCU21/41
Communications Commands
Reference Manual

W342 Describes the communications commands that can be
addressed to CS/CJ-series CPU Units.

The following information is included:
C-series (Host Link) commands
FINS commands

Note: This manual describes commands that can be sent to
the CPU Unit without regard for the communications path,
which can be through a serial communications port on the
CPU Unit, a communications port on a Serial Communica-
tions Unit/Board, or a port on any other Communications
Unit.

Name Cat. No. Contents

!WARNING Failure to read and understand the information provided in this manual may result in per-
sonal injury or death, damage to the product, or product failure. Please read each section
in its entirety and be sure you understand the information provided in the section and
related sections before attempting any of the procedures or operations given.
x

PRECAUTIONS

This section provides general precautions for using the CX-Programmer IEC.

The information contained in this section is important for the safe and reliable application of the CX-Programmer
IEC. You must read this section and understand the information contained before attempting to set up or operate
the CX-Programmer IEC.

1 Intended Audience . xii
2 General Precautions . xii
3 Safety Precautions. xii
4 Application Precautions . xiii
5 Installation Precaution. xv
xi

Intended Audience 1
1 Intended Audience
This manual is intended for the following personnel, who must also have
knowledge of electrical systems (an electrical engineer or the equivalent).

• Personnel in charge of installing FA systems.

• Personnel in charge of designing FA systems.

• Personnel in charge of managing FA systems and facilities.

2 General Precautions
The user must operate the product according to the performance specifica-
tions described in the operation manuals.

Before using the product under conditions which are not described in the
manual or applying the product to nuclear control systems, railroad systems,
aviation systems, vehicles, combustion systems, medical equipment, amuse-
ment machines, safety equipment, and other systems, machines, and equip-
ment that may have a serious influence on lives and property if used
improperly, consult your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide
the systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the product.
Be sure to read this manual before attempting to use the product and keep
this manual close at hand for reference during operation.

!WARNING It is extremely important that a PLC and all PLC Units be used for the speci-
fied purpose and under the specified conditions, especially in applications that
can directly or indirectly affect human life. You must consult with your
OMRON representative before applying a PLC System to the above-men-
tioned applications.

3 Safety Precautions

!WARNING Confirm safety sufficiently before transferring I/O memory area status from the
CX-Programmer IEC to the CPU Unit. The devices connected to Output Units
may malfunction, regardless of the operating mode of the CPU Unit. Caution
is required in respect to the following functions.

• Transferring from the CX-Programmer IEC to real I/O (CIO Area) in the
CPU Unit using the PLC Memory Window.

• Transferring from file memory to real I/O (CIO Area) in the CPU Unit using
the Memory Card Window.

!Caution Confirm safety at the destination node before transferring a program to
another node or changing contents of the I/O memory area. Doing either of
these without confirming safety may result in injury.

!Caution Execute online editing only after confirming that no adverse effects will be
caused by extending the cycle time. Otherwise, the input signals may not be
readable.
xii

Application Precautions 4
!Caution Confirm safety sufficiently before monitoring power flow and present value
status in the Ladder Section Window or when monitoring present values in the
Watch Window. If force-set/reset or set/reset operations are inadvertently per-
formed by pressing short-cut keys, the devices connected to Output Units
may malfunction, regardless of the operating mode of the CPU Unit.

4 Application Precautions
Observe the following precautions when using the CX-Programmer IEC.

• User programs cannot be uploaded to the CX-Programmer IEC.

• Observe the following precautions before starting the CX-Programmer
IEC.

• Exit all applications not directly related to the CX-Programmer IEC.
Particularly exit any software such as screen savers, virus checkers,
email or other communications software, and schedulers or other ap-
plications that start up periodically or automatically.

• Disable sharing hard disks, printers, or other devices with other com-
puters on any network.

• With some notebook computers, the RS-232C port is allocated to a
modem or an infrared line by default. Following the instructions in doc-
umentation for your computer and enable using the RS-232C port as
a normal serial port.

• With some notebook computers, the default settings for saving energy
do not supply the rated power to the RS-232C port. There may be both
Windows settings for saving energy, as well as setting for specific com-
puter utilities and the BIOS. Following the instructions in documenta-
tion for your computer, disable all energy saving settings.

• Do not turn OFF the power supply to the PLC or disconnect the connect-
ing cable while the CX-Programmer IEC is online with the PLC. The com-
puter may malfunction.

• Confirm that no adverse effects will occur in the system before attempting
any of the following. Not doing so may result in an unexpected operation.

• Changing the operating mode of the PLC.

• Force-setting/force-resetting any bit in memory.

• Changing the present value of any word or any set value in memory.

• Check the user program for proper execution before actually running it on
the Unit. Not checking the program may result in an unexpected opera-
tion.

• When online editing is performed, the user program and parameter area
data in CS1-H (FB)/CJ1-H (FB) CPU Units is backed up in the built-in
flash memory. The BKUP indicator will light on the front of the CPU Unit
when the backup operation is in progress. Do not turn OFF the power
supply to the CPU Unit when the BKUP indicator is lit. The data will not be
backed up if power is turned OFF. To display the status of writing to flash
memory on the CX-Programmer, select Display dialog to show PLC Mem-
ory Backup Status in the PLC properties and then select Windows − PLC
Memory Backup Status from the View Menu.
xiii

Application Precautions 4
• If a project file created with the non-IEC CX-Programmer is read and the
Device Type is changed to one that supports function blocks, the default
function block memory allocations (function block instance area, refer to
2-2-6 Setting the FB Instance Areas) will overlap with any of the following
addresses used in the user program, causing errors when compiling:
W000 to W511, EM 20480 to EM 32767 in the last EM bank, T1024 to
T4095, and C1024 to C4095.
If addresses are duplicated and an error occurs, either change the func-
tion block memory allocations or the addresses used in the user program.

• If a user program containing function blocks created on the CX-Program-
mer IEC is downloaded to a CPU Unit that does not support function
blocks (e.g., the CS1-H or CJ1-H), all instances will be treated as illegal
commands and it will not be possible to edit or execute the user program.

• The CX-Programmer IEC cannot be connected online to any CS-series or
CJ-series CPU Unit not supported by it.

• CXP files from the non-IEC version of CX-Programmer for CPU Unit mod-
els not supported by the CX-Programmer IEC cannot be read by the CX-
Programmer IEC.

• When specifying the first or last word of multiple words for an instruction
operand, I/O parameters cannot be used to pass data to or from I/O vari-
ables. Internal array variables must be used. This applies, for example, to
the first source word for SEND(090) or the starting word or end word for
BSET(071).

For multiword operands, an array variable must be prepared in advance
with the required number of elements and the data must be set for the ar-
ray in the function block definition. The first or last element in the array vari-
able is then specified for the operand to set the first or last word. Refer to
3-4 Function Block Applications Guidelines for details.

• Input values are passed from parameters to input variables before the
algorithm is processed. Consequently, values cannot be read from
parameters to input variables within the algorithm. If it is necessary to
read a value within the execution cycle of the algorithm, do not pass the
value from a parameter. Assign the value to an internal variable and use
an AT setting (specified addresses).

In a similar fashion, output variables are passed to the corresponding pa-
rameters after the algorithm is processed. Consequently, values cannot be
written from output variables to parameters within the algorithm. If it is nec-
essary to write a value within the execution cycle of the algorithm, do not
write the value to a parameter. Assign the value to an internal variable and
use an AT setting (specified addresses).

• Always use variables with AT settings in the following cases.

• The first destination word at the remote node for SEND(090) and the
first source word at the remote node for RECV(098)

• Auxiliary Area flags and bits that are not registered for external vari-
ables and that need to be read or written within the execution cycle of
an algorithm
xiv

Installation Precaution 5
5 Installation Precaution
If the non-IEC version of CX-Programmer is already installed when installing
the CX-Programmer IEC, the following overwrite confirmation dialog box will
be displayed.

Always click the Yes Button and install CX-Server version 2.00.

If the No Button is clicked, it will not be possible to use the CX-Programmer
IEC (i.e., it will not be possible to select a Device Type that supports function
blocks (FB)).

Even if the Yes Button is clicked, the non-IEC version of CX-Programmer will
not be uninstalled and can be used as normal.
xv

Installation Precaution 5
xvi

SECTION 1
Introduction

This section introduces the CX-Programmer IEC and explains the features that are not contained in the non-IEC version of
CX-Programmer.

1-1 Introducing the CX-Programmer IEC. 2

1-1-1 Functions and Features . 2

1-1-2 Specifications . 3

1-1-3 Files Created with CX-Programmer IEC . 5

1-1-4 CX-Programmer IEC Menus . 6

1-2 Function Blocks . 7

1-2-1 Outline . 7

1-2-2 Advantages of Function Blocks . 7

1-2-3 Function Block Structure . 8

1-3 Variables . 13

1-3-1 Introduction. 13

1-3-2 Variable Usage and Properties . 14

1-3-3 Variable Properties . 15

1-3-4 Property Settings and Variable Usage. 17

1-3-5 Internal Allocation of Variable Addresses . 18

1-4 Converting Function Block Definitions to Library Files 20

1-5 Operating Procedures . 21

1-5-1 Creating Function Blocks and Executing Instances 21

1-5-2 Reusing Function Blocks . 22
1

Introducing the CX-Programmer IEC Section 1-1
1-1 Introducing the CX-Programmer IEC

1-1-1 Functions and Features
The CX-Programmer IEC is a Programming Device that can use standard
IEC 61131-3 function blocks. The CX-Programmer IEC is the same as non-
IEC CX-Programmer version 3.0 except that function block functionality has
been added. The CX-Programmer IEC is compatible with the CS/CJ-series
PLCs and has the following features.

• Project files (.cxp) created with non-IEC CX-Programmer can be imported
and reused. Function blocks can be created in ladder language by cutting
and pasting program rungs.

• User-defined processes can be converted to block format by using func-
tion blocks.

• Function block algorithms can be written in the ladder programming lan-
guage or in the structured text (ST) language. (See note.)

• When ladder programming is used, ladder programs created with non-
IEC CX-Programmer can be reused by copying and pasting.

• When ST language is used, it is easy to program mathematical pro-
cesses that would be difficult to enter with ladder programming.

Note The ST language is an advanced language for industrial control
(primarily PLCs) that is described in IEC 61131-3. The ST lan-
guage supported by CX-Programmer IEC conforms to the
IEC 61131-3 standard.

• Function blocks can be created easily because variables do not have to
be declared in text. They are registered in variable tables.
A variable can be registered automatically when it is entered in a ladder or
ST program. Registered variables can also be entered in ladder programs
after they have been registered in the variable table.

• A single function block can be converted to a library function as a single
file, making it easy to reuse function blocks for standard processing.

• A program check can be performed on a single function block to easily
confirm the function block’s reliability as a library function.

• One-dimensional variable arrays are supported, so data handling is eas-
ier for many applications.

Note The IEC 61131 standard was defined by the International Electrotechnical
Commission (IEC) as an international programmable controller (PLC) stan-
dard. The standard is divided into 7 parts. Specifications related to PLC pro-
gramming are defined in Part 3 Textual Languages (IEC 61131-3).
2

Introducing the CX-Programmer IEC Section 1-1
1-1-2 Specifications
Specifications that are not listed in the following table are identical to the spec-
ifications for CX-Programmer Version 3.0.

Item Specifications

Model number WS02-CPIC1-E

Setup disk CD-ROM

Compatible CPU Units Only the following CS1-H and CJ1-H CPU Units are compatible. No other
CPU Units can be used. (See note.)

• CS1G-CPU42H/44H (FB)
• CS1H-CPU65H/67H (FB)
• CJ1G-CPU42H/43H/44H (FB)

Note Non-IEC CX-Programmer project files (.cxp) created for the following
models can be read and reused by changing the Device Type to one
that supports function blocks. Once the existing project file has been
changed, CX-Programmer IEC function blocks can be used.

• CS1G-CPU42H/43H/44H/45H
• CS1H-CPU63H/64H/65H/66H/67H
• CJ1G-CPU42H/43H/44H/45H
• CJ1H-CPU65H/66H

CS/CJ Series Function Restrictions
• Program Restrictions

Subroutine numbers 128 to 1023 cannot be used in Subroutine Instructions
(SBS, GSBS, RET, MCRO, and SBN). Only numbers 0 to 127 can be used.

• Instructions Not Supported in Function Block Definitions
Block Program Instructions (BPRG and BEND), Subroutine Instructions
(SBS, GSBS, RET, MCRO, and SBN), Jump Instructions (JMP, CJP, and
CJPN), Step Ladder Instructions (STEP and SNXT), Immediate Refresh
Instructions (!), I/O REFRESH (IORF), ONE-MS TIMER (TMHH), and HIGH-
SPEED TIMER (TIMH)

• Timer/Counter PV refreshing method: Binary only

For details, refer to 3-3 Restrictions on Function Blocks.

Compatible
computers

Computer IBM PC/AT or compatible

CPU 133 MHz Pentium or faster with Windows 98, SE, or NT 4.0

OS Microsoft Windows 98, SE, Me, 2000, XP, or NT 4.0 (with service pack 6 or
higher)

Memory 64 Mbytes min. with Windows 98, SE, or NT 4.0
Refer to Computer System Requirements below for details.

Hard disk space 100 Mbytes min. available disk space

Monitor SVGA (800 × 600 pixels) min.

Note Use “small font” for the font size.

CD-ROM drive One CD-ROM drive min.

COM port One RS-232C port min.
3

Introducing the CX-Programmer IEC Section 1-1
Note The ST language conforms to the IEC 61131-3 standard, but CX-Programmer
IEC supports only assignment statements, selection statements (CASE and
IF statements), iteration statements (FOR, WHILE, and REPEAT statements),
arithmetic operators, logical operators, comparison operators, and comments.
Other statements and operators are not supported. For details, refer to Appen-
dix B Structured Text Keywords.

Restrictions on Particular CPU Units

• If a user program created with CX-Programmer IEC contains function
blocks, it cannot be downloaded to a CPU Unit that does not support
function blocks. If the program is downloaded to a CPU Unit that does not
support function blocks, all function block instances will be treated as ille-
gal instructions and it will not be possible to edit or execute the user pro-
gram.

• The CX-Programmer IEC cannot be placed online with a CPU Unit that
does not support function blocks.

• The CX-Programmer IEC cannot read non-IEC CX-Programmer CXP files
for CPU Units it does not support.

Functions not
supported by
non-IEC CX-
Programmer

Defining
and creat-
ing func-
tion blocks

Number of
function block
definitions

896 max. per CPU Unit

Function
block names

64 characters max.

Variables Variable names 30,000 characters max.

Variable types Inputs, Outputs, Internals, and Externals

Number of I/O variables in
function block definitions

64 max. (not including EN and ENO)

Allocation of addresses
used by variables

Automatic allocation (The allocation range can
be set by the user.)

Actual address specifica-
tion

Supported

Array specifications Supported (one-dimensional arrays only)

Language Function blocks can be created in ladder programming language or structured
text (ST, see note).

Creating
instances

Number of
instances

2,048 max. per CPU Unit

Instance
names

30,000 characters max.

Storing function blocks as
library files

Each function block definition can be stored as one file for reuse in other
projects.

Item Specifications
4

Introducing the CX-Programmer IEC Section 1-1
Computer System Requirements

Note (1) The required memory (RAM) capacity is the capacity required to create
programs. If the computer’s memory is less than the required memory ca-
pacity, the CX-Programmer may operate slowly.

(2) Windows 95 cannot be used when connecting through a Controller Link
Support Board (PCI Card) or SYSMAC LINK Support Board (PCI Card).

1-1-3 Files Created with CX-Programmer IEC
Project Files (*.cxi) Projects created in CX-Programmer IEC contain all of the program-related

data, such as function block definitions and programs with instances. The
data is stored as a file with a “cxi” filename extension.

The following diagram shows the contents of a project. The function block def-
initions are created at the same directory level as the program within the rele-
vant PLC directory.

Item OS

Windows 95 (See note 2.),
98, or NT 4.0 Service Pack 6

Windows 2000 or Me Windows XP

Computer IBM PC/AT or compatible IBM PC/AT or compatible IBM PC/AT or compatible

CPU Pentium class 133 MHz or
faster

Pentium class 150 MHz or
faster

Pentium class 300 MHz or
faster

Memory
(RAM)
capacity

Programs up to
30 Ksteps

64 Mbytes min.

(96 Mbytes min. when also
using CX-Simulator)

96 Mbytes min.

(128 Mbytes min. when also
using CX-Simulator)

128 Mbytes min.

(192 Mbytes min. when also
using CX-Simulator)

For programs up
to 120 Ksteps

128 Mbytes min.

(128 Mbytes min. when also
using CX-Simulator)

192 Mbytes min.

(192 Mbytes min. when also
using CX-Simulator)

256 Mbytes min.

(256 Mbytes min. when also
using CX-Simulator)

For programs
over 120 Ksteps

192 Mbytes min.
(192 Mbytes min. when also
using CX-Simulator)

256 Mbytes min.
(256 Mbytes min. when also
using CX-Simulator)

384 Mbytes min.
(384 Mbytes min. when also
using CX-Simulator)

Hard disk space 100 Mbytes min. available 100 Mbytes min. available 100 Mbytes min. available

Display 800 × 600 SVGA min. 800 × 600 SVGA min. 800 × 600 SVGA min.

CD-ROM drive One CD-ROM drive min. One CD-ROM drive min. One CD-ROM drive min.

COM port One RS-232C port min.

FunctionBlock1

FunctionBlock2

Project file (.cxi)

PLC1

PLC2

Global symbol table

I/O table

PLC Setup

PLC memory table

Program (with rung comments)

Local symbol table

Section 1 (with instances)

Section 2 (with instances)

END section (with instances)

Function block def initions

Each function block can be
stored in a separate
definition file (.cxf).

Instances created
in program
sections.
5

Introducing the CX-Programmer IEC Section 1-1
Note Project files created with non-IEC CX-Programmer (*.cxp) can be read
(imported) but cannot be saved. After importing a file, the CX-Programmer
IEC functions can be used if the Device Type is changed to one that supports
function blocks. Once the Device Type has been changed, existing program
rungs can be copied and pasted, function blocks can be created in the ladder
programming language, and the data can be saved as a CX-Programmer IEC
project file (*.cxi).

Function Block/Library
Files (.cxf)

A function block definition created in a project in CX-Programmer IEC can be
saved as a file (1 definition = 1 file) so that definitions can be read into other
programs and reused.

Project Text Files in CX-
Programmer IEC (*.cxt)

The project files created in CX-Programmer IEC (*.cxi) can be saved as CXT
text files (*.cxt) just as in the non-IEC CX-Programmer.

1-1-4 CX-Programmer IEC Menus
The following tables list CX-Programmer IEC menus that are different from
non-IEC CX-Programmer menus. Menus that are the same are not listed.

Main Menu

Main Popup Menus

Popup Menu for Function Block Definitions

Popup Menu for Inserted Function Blocks

Popup Menu for Instances

Main menu Submenu Shortcut Function

Insert Function Block Invocation F Creates an instance of a function block in the program at the
present cursor location.

Function Block Parameter P When the cursor is located to the left of an input variable or the right
of an output variable, sets the variable’s input or output parameter.

PLC Mem-
ory

Function Block
Memory Allocation

--- Sets the range of addresses (function block instance areas) inter-
nally allocated to the selected instance’s variables.

Function Block
Memory Statistics

--- Checks the status of the addresses internally allocated to the
selected instance’s variables.

Function Block
Memory Address

--- Checks the addresses internally allocated to each variable in the
selected instance.

Optimize Function
Memory

--- Optimizes the allocation of addresses internally allocated to vari-
ables.

Popup menu Function

Insert Function Block Ladder Creates a function block definition with a ladder programming language algo-
rithm.

Structured Text Creates a function block definition with an ST language algorithm.

From file Reads a function block definition from a function block library file (*.cxf).

Popup menu Function

Open Displays the contents of the selected function block definition on the right side of the window.

Save Function Block File Saves the selected function block definition in a file.

Compile Compiles the selected function block definition.

Popup menu Function

Edit Changes the instance name.

Update Invocation When a function block definition’s I/O variables have been changed after the instance
was created, an error will be indicated by displaying the instance’s left bus bar in red.
This command updates the instance with the new information and clears the error.

Go To Function Block Definition Displays the selected instance’s function block definition on the right side of the window.
6

Function Blocks Section 1-2
1-2 Function Blocks

1-2-1 Outline
A function block is a basic program element containing a standard processing
function that has been defined in advance. Once the function block has been
defined, the user just has to insert the function block in the program and set
the I/O in order to use the function.

As a standard processing function, a function block does not contain actual
addresses, but variables. The user sets addresses or constants in those vari-
ables. These address or constants are called parameters. The addresses
used by the variables themselves are allocated automatically by the CX-Pro-
grammer IEC for each program.

With the CX-Programmer IEC, a single function block can be saved as a sin-
gle file and reused in other PLC programs, so standard processing functions
can be made into libraries.

1-2-2 Advantages of Function Blocks
Function blocks allow complex programming units to be reused easily. Once
standard programming is created in a function block and saved in a file, it can
be reused just by placing the function block in a program and setting the
parameters for the function block’s I/O. The ability to reuse existing function
blocks will save significant time when creating/debugging programs, reduce
coding errors, and make the program easier to understand.

Structured
Programming

Structured programs created with function blocks have better design quality
and require less development time.

Easy-to-read “Black Box”
Design

The I/O operands are displayed as variable names in the program, so the pro-
gram is like a “black box” when entering or reading the program and no extra
time is wasted trying to understand the internal algorithm.

Use One Function Block
for Multiple Processes

Many different processes can be created easily from a single function block by
using the parameters in the standard process as input variables (such as
timer SVs, control constants, speed settings, and travel distances).

Input Output

Input Output

Output

Function block A

Save function
block as a file.

Program 2

Copy of function block A

Copy of function block A

Copy of function block A

Convert to
library function.

Function
block A

Define in advance.

Insert in
program.

Reuse.
To another PLC program

Variable

Variable Variable

Set Set

Variable Variable

Program 1

Standard
program section
written with
variables
7

Function Blocks Section 1-2
Reduce Coding Errors Coding mistakes can be reduced because blocks that have already been
debugged can be reused.

Data Protection The variables in the function block cannot be accessed directly from the out-
side, so the data can be protected. (Data cannot be changed unintentionally.)

Improved Reusability with
Variable Programming

The function block’s I/O is entered as variables, so it isn’t necessary to change
data addresses in a block when reusing it.

Creating Libraries Processes that are independent and reusable (such as processes for individ-
ual steps, machinery, equipment, or control systems) can be saved as func-
tion block definitions and converted to library functions.

The function blocks are created with variable names that are not tied to actual
addresses, so new programs can be developed easily just by reading the def-
initions from the file and placing them in a new program.

Compatible with
Multiple Languages

Mathematical expressions can be entered in structured text (ST) language.

1-2-3 Function Block Structure
A function block consists of the function block definition that is created in
advance and the function block instances that are inserted in the program.

Function Block
Definition

The function block definition is the basic element that makes the function
block reusable. Each function block definition contains the algorithm and vari-
able definitions, as shown in the following diagram.

1. Algorithm

Standardized programming is written with variable names rather than actual I/
O memory addresses. In the CX-Programmer IEC, algorithms can be written
in either ladder programming or structured text.

2. Variable Definitions

The variable table lists each variable’s usage (input, output, or internal) and
properties (data type, etc.). For details, refer to 1-3 Variables.

tim_a TIMER
tim_b TIMER
ON_TIME INT
OFF_TIME INT

TIMX tim_a OFF_TIME
tim_b

TIMX tim_b ON_TIME
tim_a

ENO

Name Type
Internal

Internal
Input
Input

Function Block Definition
Example: CLOCK PULSE

Algorithm

Example: CLOCK PULSE

1. Algorithm

2. Variable Definitions

Variable definitions

Usage
8

Function Blocks Section 1-2
Number of Function Block
Definitions

Up to 896 function block definitions can be created for one CPU Unit.

Instances When a function block definition is inserted in a program, the function block
uses a particular memory area for its variables. Each function block definition
that is inserted in the program is called an “instance” or “function block
instance.” Each instance is assigned an identifier called an “instance name.”

By generating instances, a single function block definition can be used to pro-
cess different I/O data with the same function.

Note Instances are managed by names. More than one instance with the same
name can also be inserted in the program. If two or more instances have the
same name, they will use the same internal variables. Instances with different
names will have different internal variables.

For example, consider three function blocks that use a timer as an internal
variable. In this case all instances will have to be given different names. If
more than one instance uses the same name, the use of the timer would be
duplicated, which is not allowed.

If, however, internal variables are not used or they are used only temporarily
and initialized the next time an instance is executed, the same instance name
can be used to save memory.

a b

c

a b

c

Not yet in program
and memory not yet
allocated
(abstract).

1. Algorithm

Function Block Definition FB1

2. Parameters

Standard
program unit
with variable
names a, b, c,
etc.

Program Instance

Block instance in program with memory
allocated. (object)

Instance FB1_1 of function block definition FB1 Memory
used

Input
data Output data

Output data

Automatic
allocation

Automatic
allocation

Memory
for FB1_1

Memory
for FB1_2

Different I/O data
can be processed
with the same
function.

Instance FB1_2 of function block definition FB1

Input
data Output data

Output data

Insert in
program.

Insert in
program.

Table defining usage
and properties of
variables a, b, c, etc.

TIMER_FB

TIMER_FB

TIMER_FB

instance_A

instance_A

instance_B

Function Block Definition
TIMER_FB

Variable Definitions
Internal variable: WORK_NUM Use same internal variables.

Use different internal variables.
9

Function Blocks Section 1-2
Number of Instances Multiple instances can be created from a single function block definition. Up to
2,048 instances can be created for a single CPU Unit. The allowed number of
instances is not related to the number of function block definitions or the num-
ber of tasks in which the instances are inserted.

Parameters Each time an instance is created, the actual I/O memory addresses or con-
stants used to pass data to and from the I/O variables are set. These
addresses or constants are called parameters.

Here, it is not the input source address itself, but the contents at the input
address in the form and size specified by the variable data type that is passed
to the function block. In a similar fashion, it is not the output destination
address itself, but the contents for the output address in the form and size
specified by the variable data type that is passed from the function block.

a b

c

a b

c

1. Algorithm

Function Block Definition A

2. Parameters

Standard program
unit with variable
names a, b, c, etc.

Program

sample01

sample02

Program

Insert in
program.

Table defining usage
and properties of
variables a, b, c, etc.

Instance example of function block definition A

Instance example of function block definition A

a b

c

Input 0.00

Instance of Function Block Definition A

Input 3.00

Output 2.00

Set the constants or
input source addresses
from which to pass data..

Set the constant or
output destination
address to which to pass
data.
10

Function Blocks Section 1-2
Even if an input source address (i.e., an input parameter) or an output desti-
nation address (i.e., an output parameter) is a word address, the data that is
passed will be the data in the form and size specified by the variable data type
starting from the specified word address.

Note (1) Only addresses in the following areas can be used as parameters: CIO
Area, Auxiliary Area, DM Area, EM Area (banks 0 to C), Holding Area,
and Work Area.
The following cannot be used: Index and data registers (both direct and
indirect specifications) and indirect addresses to the DM Area and EM
Area (both in binary and BCD mode).

(2) Local and global symbols in the user program can also be specified as
parameters. To do so, however, the data size of the local or global symbol
must be the same as the data size of the function block variable.

(3) When an instance is executed, input values are passed from parameters
to input variables before the algorithm is processed. Output values are
passed from output variables to parameters just after processing the al-
gorithm. If it is necessary to read or write a value within the execution cy-
cle of the algorithm, do not pass the value to or from a parameter. Assign
the value to an internal variable and use an AT setting (specified address-
es).

!Caution When specifying the first or last word of multiple words for an instruction oper-
and, I/O parameters cannot be used to pass data to or from I/O variables.
Internal array variables must be used. This applies, for example, to the first
source word for SEND(090) or the starting word and end word for BSET(071).
For multiword operands, an array variable must be prepared in advance with
the required number of elements and the data must be set for the array in the
function block definition. The first or last element in the array variable is then
specified for the operand to set the first or last word. Refer to 3-4 Function
Block Applications Guidelines for details.

m k

n

Examples:
If m is type WORD, one word of data from D100 will be passed to the
variable.
If n is type DWORD, two words of data from D200 and D201 will be
passed to the variable.
If k is type LWORD, four words of data from the variable will be passed
to the D300 to D303.

Program

Input D100

Instance of Function Block Definition A

Output D300

Input D200
11

Function Blocks Section 1-2
!Caution Input values are passed from parameters to input variables before the algo-
rithm is processed. Consequently, values cannot be read from parameters to
input variables within the algorithm. If it is necessary to read a value within the
execution cycle of the algorithm, do not pass the value from a parameter.
Assign the value to an internal variable and use an AT setting (specified
addresses). In a similar fashion, output variables are passed to the corre-
sponding parameters after the algorithm is processed. Consequently, values
cannot be written from output variables to parameters within the algorithm. If it
is necessary to write a value within the execution cycle of the algorithm, do
not write the value to a parameter. Assign the value to an internal variable and
use an AT setting (specified addresses).

■ Reference Information

A variety of processes can be created easily from a single function block by
using parameter-like elements (such as fixed values) as input variables and
changing the values passed to the input variables for each instance.

Example: Creating 3 Instances from 1 Function Block Definition

If internal variables are not used, if processing will not be affected, or if the
internal variables are used in other locations, the same instance name can be
used at multiple locations in the program.

Some precautions are required when using the same memory area. For
example, if an instance containing a timer instruction is used in more than one
program location, the same timer number will be used causing coil duplica-
tion, and the timer will not function properly if both instructions are executed.

P_On 1.

&10

CONTROL
EN ENO

ON_TIME

OFF_TIME

&20

CASCADE_01

P_On 1.

&10

CONTROL
EN ENO

ON_TIME

OFF_TIME

&15

CASCADE_02

P_On 1.

&8

CONTROL
EN ENO

ON_TIME

OFF_TIME

&7

CASCADE_03

Function Block Definition

Example: CONTROL

Algorithm

Variables

Instance
CASCADE_02

Algorithm

Internal and I/O
variables

Instance
CASCADE_01

Algorithm

Internal and I/O
variables

Instance
CASCADE_03

Algorithm

Internal and I/O
variables

Cyclic task 0

Cyclic task 1

Example:
There are 3 FB
instances and each
has its own I/O and
internal variables.

P_On

&130

CONTROL
EN ENO

PARA_1

PARA_2

&100

CASCADE

P_On

&150

CONTROL
EN ENO

PARA_1

PARA_2

&50

CASCADE

P_On

&200

CONTROL
EN ENO

PARA_1

PARA_2

&100

CASCADE

Function block definition

Example: CONTROL

Algorithm

Variables

Instance
CASCADE

Algorithm
Internal and I/O
variables

Cyclic task 0

Cyclic task 1

The same instance can be
used at multiple locations.
12

Variables Section 1-3
Registration of Instances Each instance name is registered in the global symbol table as a file name.

1-3 Variables

1-3-1 Introduction
In a function block, the addresses are not entered as actual I/O memory
addresses, they are all entered as variable names. Each time an instance is
created, the actual addresses used by the variable are allocated automatically
in the specified I/O memory areas by the CX-Programmer IEC. Consequently,
it isn’t necessary for the user to know the actual I/O memory addresses used
in the function block, just as it isn’t necessary to know the actual memory allo-
cations in a computer. A function block differs from a subroutine in this
respect, i.e., the function block uses variables and the addresses are like
“black boxes.”

Example:

a b

c

sample FB [FunctionBlock1] N/A[Auto]

Program

Instance (sample) of function block definition A

The instance is registered in the
global symbol table with the instance
name as the variable name.

Name Type Address/
value

The function block definition
name is registered after FB in
square parentheses [].Instance name

a b

c

MOV

a

c

b

Name Type AT Initial Value Retained

a BOOL
c BOOL

Name Type AT Initial Value Retained
b BOOL

0.00 a1 1

3.00 c0 0

2.00b 11

Input 0.00

Instance of function block definition A

Input 3.00

Output 2.00

Function block definition A

Standard program section with
variable names a, b, c, etc.

Insert in
program.

Specify inputs and outputs
at the same time.

Table indicating usage and
prpperties of variables a, b, c, etc.

Usage: Inputs

Prpperties:

Usage: Outputs

Prpperties:

Status of 0.00 (1 or 0) is
passed to a.

Status of b (1 or 0) is
passed to 2.00.

Status of 3.00 (1 or 0) is
passed to c.

Program

The system automatically allocates the
addresses used by variables a, b, and c. For
example, when W100 to W120 is set as the
system’s non-retained memory area, bit
addresses such as a = W10000, b = W10001,
and c = W10002 will be allocated.
13

Variables Section 1-3
1-3-2 Variable Usage and Properties
Variable Usage The following variable types (usages) are supported.

Internals: Internal variables are used only within an instance. They cannot
be used pass data directly to or from I/O parameters.

Inputs: Input variables can input data from input parameters outside of
the instance. The default input variable is an EN (Enable) vari-
able, which passes input condition data.

Outputs: Output variables can output data to output parameters outside of
the instance. The default output variable is an ENO (Enable Out)
variable, which passes the instance’s execution status.

Externals: External variables are global symbols registered in advance as
variables in the CX-Programmer IEC, such as Condition Flags
and some Auxiliary Area bits.

The following table shows the number of variables that can be used and the
kind of variable that is created by default for each of the variable usages.

Variable
usage

Allowed number Variable created by default

Inputs Up to 64 per function
block (not including EN)

EN (Enable): Receives an input condition.

The instance is executed when the variable
is ON. The instance is not executed when
the variable is OFF.

Outputs Up to 64 per function
block (not including ENO)

EN (Enable Output): Outputs the function
block’s execution status.
The variable is turned ON when the
instance starts being executed. It can be
turned OFF by the algorithm. The variable
remains OFF when the instance is not exe-
cuted.

Internals Unlimited None

Externals Reserved variables only
(28)

Global symbols registered in advance as
variables in the CX-Programmer IEC, such
as Conditions Flags or some Auxiliary Area
bits.
For details, refer to Appendix C External
Variables.
14

Variables Section 1-3
1-3-3 Variable Properties
Variables have the following properties.

Variable Name The variable name is used to identify the variable in the function block. It
doesn’t matter if the same name is used in other function blocks.

Note The variable name can be up to 30,000 characters long, but must not begin
with a number. Also, the name cannot contain two underscore characters in a
row. There are no other restrictions. (Consequently, it is acceptable to use
addresses such as “A20300” as variable names.)

Data Type Select one of the following data types for the variable. Any of the following
types may be used.

Note (1) When a variable is entered in the timer number (0 to 4095) operand of a
timer instruction, such as TIM or TIMH, the data type will be TIMER.
When this variable is used as an operand in another instruction, it will be
treated as the timer Completion Flag if the operand takes 1-bit data or as
a timer PV if the operand takes 16-bit data. The timer PVs are 16-bit bi-
nary data because the CX-Programmer IEC can use only binary format
for the PVs. The TIMER data type cannot be used in ST language func-
tion blocks.

(2) When a variable is entered in the counter number (0 to 4095) operand of
a counter instruction, such as CNT or CNTR, the data type will be
COUNTER. When this variable is used as an operand in another instruc-
tion, it will be treated as a counter Completion Flag if the operand takes
1-bit data or as a counter PV if the operand takes 16-bit data. The counter
PVs are 16-bit binary data because the CX-Programmer IEC can use
only binary format for the PVs.
The COUNTER data type cannot be used in ST language function blocks.

Data type Content Size Inputs Outputs Internals

BOOL Bit data 1 bit OK OK OK

INT Integer 16 bits OK OK OK

UNIT Unsigned integer 16 bits OK OK OK

DINT Double integer 32 bits OK OK OK

UDINT Unsigned double integer 32 bits OK OK OK

LINT Long (8-byte) integer 64 bits OK OK OK

ULINT Unsigned long (8-byte) integer 64 bits OK OK OK

WORD 16-bit data 16 bits OK OK OK

DWORD 32-bit data 32 bits OK OK OK

LWORD 64-bit data 64 bits OK OK OK

REAL Real number 32 bits OK OK OK

LREAL Long real number 64 bits OK OK OK

TIMER Timer (See note 1.) 1 bit or 16 bits OK OK OK

COUNTER Counter (See note 2.) 1 bit or 16 bits OK OK OK
15

Variables Section 1-3
AT Settings (Allocation to
an Actual Addresses)

It is possible to set a variable to a particular I/O memory address rather than
having it allocated automatically by the system. To specify a particular
address, the user can input the desired I/O memory address in this property.
This property can be set for internal variables only. Even if a specific address
is set, the variable name must still be used in the algorithm.

• Setting Procedure
Click the Advanced Button, select the AT (Specified Address) option, and
input the desired address in the Address field.

• Even though a specified address is being used for the variable, specify
the variable name in the algorithm in the function block definition. (Specify
a variable name regardless of whether an address is being specified for
the variable.)

Note (1) Only addresses in the following areas can be used for AT settings: CIO
Area, Auxiliary Area, DM Area, EM Area (banks 0 to C), Holding Area,
and Work Area. The following cannot be used: Index and data registers
(both direct and indirect specifications) and indirect addresses to the DM
Area and EM Area (both in binary and BCD mode).

(2) Always use variables with AT settings in the following cases.

• The first destination word at the remote node for SEND(090) and the
first source word at the remote node for RECV(098)

• Auxiliary Area flags and bits that are not registered for external vari-
ables and that need to be read or written within the execution cycle of
an algorithm (Auxiliary Area flags and bits can be used as parameters
to pass data when these conditions do not apply.)

Array Settings A variable can be treated as a single array of data with the same properties.
To convert a variable to an array, specify that it is an array and specify the
maximum number of elements.

This property can be set for internal variables only. Only one-dimensional
arrays are supported by the CX-Programmer IEC.

• Setting Procedure
Click the Advanced Button, select the Array Variable option, and input
the maximum number of elements in the Size field.

• When entering an array variable name in the algorithm in a function block
definition, enter the array index number in square brackets after the vari-
able number.

For details on array settings, refer to Variable Definitions in 3-1-2 Function Block
Elements.

Select the AT option. Input the address.

Select the Array
Variable option.

Input the maximum
number of elements.
16

Variables Section 1-3
■ Reference Information

When specifying the first or last word of multiple words for an instruction oper-
and, I/O parameters cannot be used to pass data to or from I/O variables.
Internal array variables must be used. For multiword operands, an array vari-
able must be prepared in advance with the required number of elements and
the data must be set for the array in the function block definition. The first or
last element in the array variable is then specified for the operand to set the
first or last word. Refer to 3-4 Function Block Applications Guidelines for
details. Refer to Appendix D Instruction Support and Operand Restrictions for
the instructions and operands that require designation of a first or last word
address for a multiword operand.

Initial Value This is the initial value set in a variable before the instance is executed for the
first time. Afterwards, the value may be changed as the instance is executed.

For example, set a boolean variable (bit) to either 1 (TRUE) or 0 (FALSE). Set
a WORD variable to a value between 0 and 65,535 (between 0000 and FFFF
hex).

If an initial value is not set, the variable will be set to 0. For example, a bool-
ean variable would be 0 (FALSE) and a WORD variable would be 0000 hex.

Retain Select the Retain Option if you want an internal variable’s data to be retained
when the PLC is turned ON again and when the PLC starts operating.

• Setting Procedure
Select the Retain Option.

1-3-4 Property Settings and Variable Usage
The following table shows which properties must be set, can be set, and can-
not be set, based on the variable usage.

Select the Retain option.

Property Variable usage

Internals Inputs Outputs

Name Must be set. Must be set. Must be set.

Type Must be set. Must be set. Must be set.

AT (specified address) Can be set. Cannot be set. Cannot be set.

Initial Value Can be set. Can be set. Can be set.

Retain Can be set. Cannot be set. Cannot be set.
17

Variables Section 1-3
1-3-5 Internal Allocation of Variable Addresses
When an instance is created from a function block definition, the CX-Program-
mer IEC internally allocates addresses to the variables. Addresses are allo-
cated to all of the variables registered in the function block definition except for
variables that have been assigned actual addresses with the AT Settings
property.

Setting Internal Allocation
Areas for Variables

The user sets the function block instance areas in which addresses are allo-
cated internally by the CX-Programmer IEC. The variables are allocated auto-
matically by the system to the appropriate instance area set by the user. The
following data areas can be set for the instance areas.

Non-retained Area

• Applicable variables: Internal variables that do not have the Retain Option
selected to retain the variable’s content when the power is turned ON or
program execution starts.

Note TIMER and COUNTER data types are not allocated to the non-re-
tained area.

• Allowed data areas: I/O (CIO Area), H (Holding Area), W (Work Area), D
(DM Area), or E (EM Area)

Note Bit data can be accessed even if the DM or EM Area is specified.

• Units: Set in word units.

• Default allocation: W000 to W511

Retained Area

• Applicable variables: Internal variables that have the Retain Option
selected to retain the variable’s content when the power is turned ON or
program execution starts.

Note TIMER and COUNTER data types are not allocated to the retained
area.

• Allowed data areas: H (Holding Area), D (DM Area), or E (EM Area)

Note Bit data can be accessed even if the DM or EM Area is specified.

• Units: Set in word units.

• Default allocation: Words 20480 to 32767 of the last EM bank

Note The default area is words 20480 to 32767 of the last EM bank. The
last EM bank number depends on the CPU Unit being used.

a b

15 0

15 0

t

Name Type AT Initial Value Retained

a BOOL

Name Type AT

b YES

t TIMER

2000.00
Name Type Initial Value

c 2000.00

Initial Value Retained

RetainedAT

BOOL

BOOL

Input 0.00

Instance of function block definition A

Output 2.00

Output 5.00

Note: Variable c is an internal
variable, so it is not displayed.

Usage: Inputs
Properties:

Usage: Outputs
Properties:

Usage: Internals
Properties:

Automatic allocation of
addresses by system

Manual allocation of address to
variable in FB by AT Settings option.

Program FB instance areas

Size (words)

Non-retained area

Retained area

Starting address

Starting address

Starting address

Starting
address

Timer area

Counter area

CIO, H, W,
D, or E Area

H, D, or E
Area

T Area

C Area

Size (words)

Size (Completion
Flags)

Size (Completion
Flags)

Example
18

Variables Section 1-3
Timer Area

• Applicable variables: Variables that have the data type property set to
TIMER.

• Allowed data areas: Timer Completion Flags (1 bit each) or timer PVs (16
bits each)

• Default allocation: T3072 to T4095 timer Completion Flags (1 bit each) or
timer PVs (16 bits each)

Counter Area

• Applicable variables: Variables that have the data type property set to
COUNTER.

• Allowed data areas: Counter completion flags (1 bit each) or counter PVs
(16 bits each)

• Default allocation: C3072 to C4095 counter Completion Flags (1 bit each)
or counter PVs (16 bits each)

Setting Procedure

Select Memory - Function Block Memory Allocation from the PLC Menu.
Set the areas in the following dialog box.

Setting Example:

Specifying Instance Area Addresses from the User Program

If there are instructions in the user program that access addresses in the
instance areas, the CX-Programmer IEC will display an error on the Output
Window’s Compile (Program Check) Tab Page in the following cases:

• When attempting to download the user program to the CPU Unit or
attempting to write the program through online editing. (Neither download-
ing or editing will be possible.)

• When a program check is performed by the user by selecting Program -
Compile (Program Check) or Compile All Programs (Check) from the
PLC Menu.

Instance area Start Address End Address Size

Non Retain W400 W449 50

Retain E0_20480 E0_32767 12288

Timers T3072 T4095 1024

Counters C3072 C4095 1024

Set the 4 areas.
19

Converting Function Block Definitions to Library Files Section 1-4
For example, if W000 to W511 is specified as the non-retained instance area
and W000 is used in the ladder program, the following error will be displayed
when compiling: ERROR: ... (omitted) ... Address - W0.00 is reserved for
Function Block use.

Note When a variable is added or deleted, addresses are automatically re-allocated
to the instance areas. Consecutive addresses are required for each instance,
so all of the variables will be allocated to a different block of addresses if the
original block of addresses cannot accommodate the change in variables.
This will result in an unused block of addresses. A memory optimization func-
tion can be executed to eliminate the unused area of memory so that the
memory is used more efficiently.

1-4 Converting Function Block Definitions to Library Files
A function block definition created in the CX-Programmer IEC can be stored
as a single file known as a function block definition file with filename exten-
sion.cxf. These files can be reused in other projects (PLCs).

FB
EN ENO

1.0P_Off

3.0W0.00

W0 512

Program

Compile
error

Instance area Start
address Size

Non-retained area

Retained area

Timer area

Counter area

tim_b

tim_a

ENO

TIMX tim_a OFF_TIME
tim_b

TIMX tim_b ON_TIME
tim_a

ENO

Project Project

Save Read

Function block definition
Example: CLOCK_PULSE

Function block definition
Example: CLOCK_PULSE

1. Algorithm
1. Algorithm

Function block
definition file (.cxf)

TIMX tim_a OFF_TIME

TIMX tim_b ON_TIME

tim_a TIMER
tim_b TIMER
ON_TIME INT
OFF_TIME INT

Name Type
Internal

Internal
Input
Input

2. Variable Definitions
Usage tim_a TIMER

tim_b TIMER
ON_TIME INT
OFF_TIME INT

Name Type
Internal

Internal
Input
Input

2. Variable Definitions
Usage
20

Operating Procedures Section 1-5
1-5 Operating Procedures
Once a function block definition has been created and an instance of the algo-
rithm has been created, the instance is used by calling it when it is time to
execute it. Also, the function block definition that was created can be saved in
a file so that it can be reused in other projects (PLCs).

1-5-1 Creating Function Blocks and Executing Instances
The following procedure outlines the steps required to create and execute a
function block.

1,2,3... 1. First, create the function block definition including the algorithm and vari-
able definitions in ladder program or ST language.

Note (a) Create the algorithm entirely with variable names.

(b) When entering the algorithm in ladder programming language,
project files created with Non-IEC CX-Programmer can be reused
by reading the project file into the CX-Programmer IEC and copy-
ing and pasting useful parts.

2. When creating the program, insert copies of the completed function block
definition. This step creates instances of the function block.

3. Enter an instance name for each instance.

4. Set the variables’ input source addresses and/or constants and output
destination addresses and/or constants as the parameters to pass data for
each instance.

5. Select the created instance, select Memory - Function Block Memory
Allocation from the PLC Menu, and set the internal data area for each
type of variable.

6. Transfer the program to the CPU Unit.

7. Start program execution in the CPU Unit and the instance will be called
and executed if their input conditions are ON.

a b

c

1. Algorithm

2. Variables

Standard
program section
with variable
names a, b, c,
etc.

Table defining usage
and properties of
variables a, b, c, etc.

Input 0.00

Function block definition A Program

Insert in
program.

Input
condition

The instance is
executed if the input
condition is established. 3. Input instance name

Output 2.00

Output 3.00

Instance of function block definition A
5. The system automatically allocates
the addresses used by these
variables. Set the data area area in
which these addresses are allocated.

4. Specify the input source and
output destination addresses.
21

Operating Procedures Section 1-5
1-5-2 Reusing Function Blocks
Use the following procedure to save a function block definition as a file and
use it in a program for another PLCs.

1,2,3... 1. Select the function block that you want to save and save it as a function
block definition file (*.cxf).

2. Open the other PLC’s project and open/read the function block definition
file (*.cxf) that was saved.

3. Insert the function block definition in the program when creating the new
program.

Note In the CX-Programmer IEC, each function block definition can be compiled
and checked as a program. We recommend compiling to perform a program
check on each function block definition file before saving or reusing the file.

a b

c

1. Algorithm

2. Variables

Standard
program section
with variable
names a, b, c,
etc.

Table defining usage
and properties of
variables a, b, c, etc.

Input 1.00

Function block definition A

Program

Input
condition

Output 5.00

Output 6.00

Instance of function block definition A

Save

Read and
insert.

Function
block
definition
A

Function block
definition file (*.cxf)
22

SECTION 2
Creating Function Blocks

This section describes the procedures for creating function blocks on the CX-Programmer IEC.

2-1 Procedural Flow . 24

2-2 Procedures . 26

2-2-1 Creating a Project . 26

2-2-2 Creating a New Function Block Definition 28

2-2-3 Defining a Function Block . 29

2-2-4 Creating Instances from Function Block Definitions 36

2-2-5 Setting Function Block Parameters . 38

2-2-6 Setting the FB Instance Areas. 39

2-2-7 Checking Internal Address Allocations for Variables 40

2-2-8 Checking the Function Block Definition for an Instance 42

2-2-9 Compiling Function Block Definitions . 42

2-2-10 Saving Function Block Definitions to Files 42

2-2-11 Downloading Programs to a CPU Unit. 43

2-2-12 Monitoring and Debugging Function Blocks 44
23

Procedural Flow Section 2-1
2-1 Procedural Flow
The following procedures are used to create function blocks, save them in
files, transfer them to the PLC, monitor them, and debug them.

Creating Function Blocks

Create a Project Refer to 2-2-1 Creating a Project for details.

■ Creating a New Project

1,2,3... 1. Start the CX-Programmer IEC and select New from the File Menu.

2. Select a Device type with a name ending in “(FB).”

■ Using a Non-IEC CX-Programmer Project

1,2,3... 1. Start the CX-Programmer IEC and read the project file (.cxp) created with
non-IEC CX-Programmer (see note).

Note The PLC must be the CS1-H, CS1G-H, CJ1H-H, or CJ1G-H.

2. Change the Device type to one with a name ending in “(FB).”

Create a Function Block
Definition

Refer to 2-2-2 Creating a New Function Block Definition for details.

1,2,3... 1. Select Function Blocks in the project workspace and right-click.

2. Select Insert Function Blocks - Ladder or Insert Function Blocks -
Structured Text from the popup menu.

Define the Function Block Refer to 2-2-3 Defining a Function Block for details.

■ Registering Variables before Inputting the Ladder Program or ST Program

1,2,3... 1. Register variables in the variable table.

2. Create the ladder program or ST program.

■ Registering Variables as Necessary while Inputting the Ladder Program
or ST Program

1,2,3... 1. Create the ladder program or ST program.

2. Register a variable in the variable table whenever required.

Create an Instance from
the Function Block
Definition

Refer to 2-2-4 Creating Instances from Function Block Definitions for details.

■ Inserting Instances in the Ladder Section Window and then Inputting the
Instance Name

1,2,3... 1. Place the cursor at the location at which to create an instance (i.e., a copy)
of the function block and press the F Key.

2. Input the name of the instance.

3. Select the function block definition to be copied.

■ Registering Instance Names in the Global Symbol Table and then
Selecting the Instance Name when Inserting

1,2,3... 1. Select Function Block as the data type for the variable in the global symbol
table.

2. Press the F Key in the Ladder Section Window.

3. Select the name of the instance that was registered from the pull-down
menu on the Function Block Instance Field.
24

Procedural Flow Section 2-1
Allocate External I/O to
the Function Block

Refer to 2-2-5 Setting Function Block Parameters for details.

1,2,3... 1. Place the cursor at the position of the input variable or output variable and
press the P Key.

2. Input the source address for the input variable or the destination address
for the output variable.

Set the Function Block
Memory Allocations
(Instance Areas)

Refer to 2-2-6 Setting the FB Instance Areas for details.

1,2,3... 1. Select the instance and select Memory - Function Block Memory Allo-
cation from the PLC Menu.

2. Set the function block memory allocations.

Saving and Reusing Function Block Files

Compile the Function
Block Definition and Save
It as a Library File

Refer to 2-2-9 Compiling Function Block Definitions and 2-2-10 Saving Func-
tion Block Definitions to Files for details.

1,2,3... 1. Compile the function block that has been saved.

2. Save the function block as a function block definition file (.cxf).

3. Read the file into another PLC project.

Transferring the Program to the PLC
Refer to 2-2-11 Downloading Programs to a CPU Unit.

Monitoring and Debugging the Function Block
Refer to 2-2-12 Monitoring and Debugging Function Blocks.
25

Procedures Section 2-2
2-2 Procedures

2-2-1 Creating a Project
Either new projects can be created in CX-Programmer IEC or programs previ-
ously requested on non-IEC CX-Programmer can be read to create projects.

Creating New Projects
with CX-Programmer IEC

1,2,3... 1. Start the CX-Programmer IEC and select New from the File Menu.

2. In the Change PLC Window, select a Device Type with a name ending in
“(FB).” These are listed in the following table.

3. Press the Settings Button and select the CPU Type. All other settings are
the same as for non-IEC CX-Programmer.

Reusing Projects Created
on Non-IEC CX-
Programmer

1,2,3... 1. Start the CX-Programmer IEC, select Open from the File Menu, and read
the project file (.cxp) created with non-IEC CX-Programmer (see note).

Note The PLC must be the CS1-H, CS1G-H, CJ1H-H, or CJ1G-H.

2. Select the PLC name in the project workspace, right-click, and select
Change from the popup menu.

3. In the Change PLC Window, select a Device Type with a name ending in
“(FB).” These are listed in the following table.

4. Press the Settings Button and select the CPU Type. All other settings are
the same as for non-IEC CX-Programmer.

Note Observe the following precautions when changing the Device type of a project
created with non-IEC CX-Programmer to one that supports function blocks.

(1) Internal Allocations for Variables
If a project file created with the non-IEC CX-Programmer is read and the
Device Type is changed to one that supports function blocks, the default
function block memory allocations (instance area, refer to 2-2-6 Setting

Device CPU Program size Number of EM banks

CS1H-H (FB) CPU67 250 Ksteps 13 banks

CPU65 60 Ksteps 3 banks

CS1G-H (FB) CPU44 30 Ksteps 1 bank

CPU42 10 Ksteps 1 bank

CJ1G-H (FB) CPU44 30 Ksteps 1 bank

CPU43 20 Ksteps 1 bank

CPU42 10 Ksteps 1 bank

Device CPU Program size Number of EM banks

CS1H-H (FB) CPU67 250 Ksteps 13 banks

CPU65 60 Ksteps 3 banks

CS1G-H (FB) CPU44 30 Ksteps 1 bank

CPU42 10 Ksteps 1 bank

CJ1G-H (FB) CPU44 30 Ksteps 1 bank

CPU43 20 Ksteps 1 bank

CPU42 10 Ksteps 1 bank
26

Procedures Section 2-2
the FB Instance Areas) will overlap with any of the following addresses
used in the user program and errors will occur when compiling:
W000 to W511, EM 20480 to EM 32767 in the last EM bank, T1024 to
T4095, and C1024 to C4095.
If addresses are duplicated and an error occurs, either change the func-
tion block memory allocations or the addresses used in the user program.

(2) Specifying the Current EM Bank
The CS1-H (FB)/CJ1-H (FB) CPU Units cannot use the current EM bank
function, i.e., the EM bank must always be specified directly. For CPU
Units with model numbers of CPU42, CPU43, and CPU44 there is only
one EM bank, bank 0, which must be specified as E0_1000. For other
CPU Units, which have more than one EM bank, the EMBC(281) instruc-
tion must be used as follows to determine the EM bank being used:
Example: EMBC &2

MOV #1111 E1000
Change to the following:

MOV #1111 E2_1000

(3) Timer/Counter PV Refresh Method
The CS1-H (FB)/CJ1-H (FB) CPU Units do not support the BCD refresh
method for timer/counter refresh values. Only the binary refresh method
can be used. If any instructions for the BCD refresh method, such as TIM,
are used in existing programs being reused on the CX-Programmer IEC,
an error will occur and these instructions must be changed to the binary
refresh form. Refer to 6-4 Changing the Timer/Counter PV Refresh Mode
in the Programming Manual for details.

(4) Operation of Timer Instructions with Timer Numbers T2048 to T4095
If the option in the PLC properties to execute T2048 to T4095 timers the
same as other timers is selected after reading the project, timers with
these timer numbers will operate differently in function blocks from the
same timers on the CS1-H or CJ1-H CPU Unit at the following times:

• When the cycle time is over 80 ms

• When one of these timers is in a task placed on standby with the
TKON/TKOFF instructions.

To achieve the same operation as on the CS1-H or CJ1-H CPU Unit, clear
the selection of the option in the PLC properties to execute T2048 to
T4095 timers the same as other timers. Function blocks, however, use
timer numbers T3072 to T4095 by default. Timer instructions with timer
numbers T0000 to T2047 will thus operate differently in the main pro-
grams from those in function blocks. To solve this problem and achieve
the same operation, change the timer numbers used by function blocks
to T0000 to T2047. Refer to 3-5-3 Operation of Timer Instructions for de-
tails.
27

Procedures Section 2-2
2-2-2 Creating a New Function Block Definition
1,2,3... 1. When a project is created, a Function Blocks icon will appear in the project

workspace as shown below.

2. Function blocks are created by inserting function block definitions after the
Function Blocks icon. Function block can be defined using either ladder
programming or structured text.

• Defining Function Blocks with Ladders
Select Function Blocks in the project workspace, right-click, and select
Insert Function Blocks - Ladder from the popup menu. (Or select Func-
tion Block - Ladder from the Insert Menu.)

• Defining Function Blocks with Structured Text
Select Function Blocks in the project workspace, right-click, and select
Insert Function Blocks - Structured Text from the popup menu. (Or
select Function Block - Structured Text from the Insert Menu.)

3. By default, a function block called FunctionBlock1 will be automatically in-
serted after the Function Blocks icon. This icon contains the definitions for
the function block.

4. Whenever a function block definition is created, the name FunctionBlock@
will be assigned automatically, where @ is a serial number. These names
can be changed. All names must contain no more than 64 characters.

Function Blocks will appear under the PLC.

FunctionBlock1 is displayed as the Icon
under the Function Blocks Icon ().
28

Procedures Section 2-2
Function Block Definitions
One of the following windows will be displayed when the function block icon is
double-clicked (or if it is right-clicked and Open is selected from the popup
menu). A variable table for the variables used in the function block is displayed
on top and an input area for the ladder program or structured text is displayed
on the bottom.

Ladder Program

Structured Text

As shown, a function block definition consists of a variable table that serves
as an interface and a ladder program or structured text that serves as an algo-
rithm.

Variable Table as an Interface

At this point, the variable table is empty because there are no variables allo-
cated for I/O memory addresses in the PLC.

Ladder Program or Structure Text as an Algorithm

• With some exceptions, the ladder program for the function block can con-
tain any of the instructions used in the normal program. Refer to 3-3
Restrictions on Function Blocks for restrictions on the instructions that
can be used.

• Structured text can be input according to the ST language defined in
IEC61131-3.

2-2-3 Defining a Function Block
A function block is defined by registering variables and creating an algorithm.
There are two ways to do this.

• Register the variables first and then input the ladder program or structure
text.

• Register variables as they are required while inputting input the ladder
program or structure text.

Variable table

Ladder input area

Variable table

ST input area
29

Procedures Section 2-2
Registering Variables First

Registering Variables in
the Variable Table

The variables are divided by type into four sheets in the variable table: Inter-
nals, Inputs, Outputs, and Externals.

These sheets must be switched while registering or displaying the variables.

1,2,3... 1. Make the sheet for the type of variable to be registered active in the vari-
able table. (See note.) Place the cursor in the sheet, right-click, and select
Insert Variable from the popup menu.

Note The sheet where a variable is registered can also be switched by
setting the Usage.

The New Variable Dialog Box shown below will be displayed.

• Name: Input the name of the variable.

• Data Type: Select the data type.

• Usage: Select the variable type.

• Initial Value: Select the initial value of the variable at the start of oper-
ation.

• Retain: Select if the value of the variable is to be maintained when the
power is turned ON or when the operating mode is changed from
PROGRAM or MONITOR mode to RUN mode. The value will be
cleared at these times if Retain is not selected.

2. For example, input “aaa” as the variable name and click the OK Button.

As shown below, a BOOL variable called aaa will be created on the Inputs
Sheet of the Variable Table.

Input the name of the
function block variable The default data type is BOOL.

 Change as required.

Type of variable to register
(i.e., the sheet)
Initial value

Select to maintain value for
power interruptions.

BOOL variable called aaa
created on Inputs Sheet.
30

Procedures Section 2-2
Creating the Algorithm Using a Ladder Program

1,2,3... 1. Press the C Key and select aaa registered earlier from the pull-down menu
in the New Contact Dialog Box.

Note A name must be input for variables, even ones with AT settings
(specified address). With CX-Programmer IEC, the following char-
acters can be input as the variable name to indicate I/O memory
addresses. (This is not possible with non-IEC CX-Programmer.)

• A, W, H, HR, D, DM, E, EM, T,TM, C, or CNT followed by a number
(channel/word address)

• A period to differentiate between channel (word) and bit addresses.

For example, when Auxiliary Area addresses are specified as ATs, the
I/O memory address (e.g., A50200) can be specified as the variable
name to make assignments easier to understand. (Even when this is
done, the actual address must be specified in the AT settings.)

2. Click the OK Button. A contact will be entered with the function block inter-
nal variable aaa as the operand (variable type: internal).

The rest of the ladder program is input the same as for normal programs with
non-IEC CX-Programmer.

Press the C Key and select aaa registered earlier
from the pull-down menu in the New Contact Dialog Box.

Contact entered with function block
internal variable aaa as operand.
31

Procedures Section 2-2
Using Structured Text

An ST language program (see note) can either be input directly into the ST
input area or a program input into a general-purpose text editor can be copied
and then pasted into the ST input area using the Paste Command on the Edit
Menu.

Note The ST language conforms to IEC61131-3, but only assignment statements,
selection statements (CASE and IF), iteration statements (FOR, WHILE, and
REPEAT), arithmetic operations, logic operations, comparison operations,
and comments. All other elements are not supported. Refer to Appendix B
Structured Text Keywords for details.

Note (1) Tabs or spaces can be input to create indents. They will not affect the al-
gorithm.

(2) The display size can be changed by holding down the Ctrl Key and turn-
ing the scrolling wheel on a wheel mouse.

(3) When an ST language program is input or pasted into the ST input area,
syntax keywords will be automatically displayed in blue, errors in red,
comments in green, and everything else in black.

(4) To change the font size or colors, select Options from the Tools Menu
and then click the ST Font Button on the Appearance Tab Page.

ST program input directly or pasted from one
created in a text editor.

Click the ST Font Button
to change the font.
32

Procedures Section 2-2
Registering Variables as Required
The ladder program or structured text program can be input first and variable
registered as they are required.

Using a Ladder Program When using a ladder diagram, a dialog box will be displayed to register the
variable whenever a variable name that has not been registered is input. The
variable is registered at that time.

Use the following procedure.

1,2,3... 1. Press the C Key and input a variable name that has not been registered,
such as aaa, in the New Contact Dialog Box.

Note A name must be input for variables, even ones with AT settings
(specified address). With CX-Programmer IEC, the following char-
acters can be input as the variable name to indicate I/O memory
addresses. (This is not possible with non-IEC CX-Programmer.)

• A, W, H, HR, D, DM, E, EM, T,TM, C, or CNT followed by a number
(channel/word address)

• A period to differentiate between channel (word) and bit addresses.

For example, when Auxiliary Area addresses are specified as ATs, the
I/O memory address (e.g., A50200) can be specified as the variable
name to make assignments easier to understand. (Even when this is
done, the actual address must be specified in the AT settings.)

2. Click the OK Button. The New Variable Dialog Box will be displayed. With
special instructions, a New Variable Dialog Box will be display for each op-
erand in the instruction.

The properties for all input variables will initially be displayed as follows:

• Usage: Internal

• Data Type: BOOL for contacts and WORD for channel (word)

• Initial Value: The default for the data type.

• Retain: Not selected.

3. Make any required changes and click the OK Button.

4. As shown below, the variable that was registered will be displayed in the
variable table above the program.

5. If the type or properties of a variable that was input are not correct, double-
click the variable in the variable table and make the required corrections.

Set the data type and other
properties other than the name.

Instruction input. Function block internal variable registered.
33

Procedures Section 2-2
■ Reference Information

AT Settings (Specified Address)

AT settings can be made to specify CIO or DM Area addresses allocated to a
Special I/O Unit or Auxiliary Area addresses not registered in the CX-Pro-
grammer IEC. A variable name is required to achieve this. Use the following
procedure to specify an address.

1,2,3... 1. After inputting the variable name in the New Variable Dialog Box, click the
Advanced Button. The Advanced Settings Dialog Box will be displayed.

2. Select AT (Specified Address) under AT Settings and input the desired ad-
dress.

The variable name is used to enter variables into the algorithm in the func-
tion block definition even when they have an address specified for the AT
settings (the same as for variables without a specified address).
For example, if a variable named Restart has an address of A50100 spec-
ified for the AT settings, Restart is specified for the instruction operand.

Array Settings

An array can be specified to use the same data properties for more than one
variable and manage the variables as a group.

Use the following procedure to set an array.

1,2,3... 1. After inputting the variable name in the New Variable Dialog Box, click the
Advanced Button. The Advanced Settings Dialog Box will be displayed.

2. Select Array Variable in the Array Settings and input the maximum number
of elements in the array.

When the name of a variable array is entered in the algorithm in the func-
tion block definition, square brackets surrounding the index will appear af-
ter the array name.

For example, if you create a variable named PV with a maximum of 3 ele-
ments, PV[0], PV[1], and PV[2] could be specified as instruction operands.

There are three ways to specify indices.

• Directly with numbers, e.g., PV[1] in the above example (for ladder pro-
gramming or ST language programming)

Select AT. Input address.

Select Array Variable. Input the number of elements.
34

Procedures Section 2-2
• With a variable, e.g., PV[a] in the above example, where “a” is the
name of a variable with a data type of INT (for ladder programming or
ST language programming)

• With an equation, e.g., PV[a+b] or PV[a+1} in the above example,
where “a” and “b” are the names of variables with a data type of INT
(for ST language programming only)

Using an Array to Specify Words Allocated to CPU Bus Units

The first DM Area word allocated to a CS-series or CJ-series CPU Bus Unit is
expressed by the following formula:

D30000 + unit number × 100

Thus an array variable can be used to indirectly address DM Area words allo-
cated to CPU Bus Units by using a formula containing the unit number as an
index to the array.

For example, the following could be done if the unit number is given by the
variable named N and the variable named DataMemory is an array variable
for the DM Area words allocated to the CPU Bus Unit.

1,2,3... 1. Register the variable DataMemory as an array variable with a maximum of
1,600 elements.

2. To designate the DM Area word that is s words from the first allocated word
(where s is either a variable or a direct offset in number of words), the fol-
lowing variable would be used and the AT setting for the Data Memory vari-
able would be set to D30000.

DataMemory[N*100+s]

3. The function block definition would then be placed in the program and
words allocated to the CPU Bus Unit could be specified merely by passing
the unit number (using N in the above example) to the instance. For exam-
ple, if a value of 5 was passed for N, D30500 would be specified.
35

Procedures Section 2-2
Reusing Non-IEC CX-Programmer Projects (.cxp)

1,2,3... 1. Read the non-IEC CX-Programmer project (.cxp) and change the Device
Type to one that supports function blocks.

2. Cut the rungs to be used in the function block.

3. Create a new function block definition.

4. Paste the rungs into the function block.

5. When the rungs are pasted, any symbols used in non-IEC CX-Program-
mer will automatically be registered in the variable table of the function
block. Any addresses that were specified directly in non-IEC CX-Program-
mer will be displayed in red and nothing will be registered for them. Change
all of these to variables.

Using Structured Text When using structured text, a dialog box will not be displayed to register the
variable whenever a variable name that has not been registered is input. Be
sure to always register variables used in standard text programming in the
variable table, either as you need them or after completing the program.
(Place the cursor in the tab page on which to register the variable, right-click,
and select Insert Variable from the popup menu.

2-2-4 Creating Instances from Function Block Definitions
If a function block definition is registered in the global symbol table, either of
the following methods can be used to create instances.

Method 1:Select the function block definition, insert it into the program, and
input a new instance name. The instance will automatically be registered in
the global symbol table.

Method 2: Set the data type in the global symbol table to “function block,”
specify the function block definition to use, and input the instance name to
register it.

1. Open non-IEC CX-Programmer project and change
Device Type to one that supports function blocks.

2. Cut for use in function block.

3. Create function block definition.

4. Paste into function block.

5. Symbols used in non-IEC CX-Programmer
automatically registered as FB variables.
36

Procedures Section 2-2
■ Method 1: Using the F Key in the Ladder Section Window and Inputting
the Instance Name

1,2,3... 1. In the Ladder Section Window, place the cursor in the program where the
instance is to be inserted and press the F Key. (Alternately, select Func-
tion Block Invocation from the Insert Menu.) The New Function Block In-
vocation Dialog Box will be displayed.

2. Input the instance name, select the function block from which to create an
instance, and click the OK Button.

3. As an example, set the instance name in the FB Instance Field to sample,
set the function block in the FB Definition Field to FunctionBlock1, and
click the OK Button. As shown below, a copy of the function block definition
called FunctionBlock1 will be created with an instance name of sample.

The instance will be automatically registered in the global symbol table
with an instance name of sample and a data type of Function block.

■ Method 2: Registering the Instance Name in the Global Symbol Table in
Advance and Then Selecting the Instance Name

If the instance name is registered in the global symbol table in advance, the
instance name can be selected from the global symbol table to create other
instances.

1,2,3... 1. Select a data type of Function block in the global symbol table, input the
instance name, and registered the instance.

2. Press the F Key in the Ladder Section Window. The Function Block Invo-
cation Dialog Box will be displayed.

3. Select the instance name that was previously registered from the pulldown
menu on the FB Instance Field. The instance will be created.

Press F Key with cursor here.

Input the instance name.

Select the function block
from which to create an

Following dialog
box is displayed.

Instance name
Function block definition

An instance called sample
is created from the function
block definition called
FunctionBlock1.
37

Procedures Section 2-2
Restrictions
Observe the following restrictions when creating instances. Refer to 3-3
Restrictions on Function Blocks for details.

• No more than one function block can be created in each program circuit.

• The rung cannot be branched to the left of an instance.

• Instances cannot be connected directly to the left bus bar, i.e., an EN
must always be inserted.

Note If changes are made in the I/O variables in a variable table for a function block
definition, the bus bar to the left of all instances that have been created from
that function block definition will be displayed in red to indicate an error. When
this happens, select each instance, right-click, and select Update Invocation.
The instance will be updated for any changes that have been made in the
function block definition and the red display will be cleared.

2-2-5 Setting Function Block Parameters
After an instance of a function block has been created, input parameters must
be set for input variables and output parameters must be set for output vari-
ables to enable external I/O.

1,2,3... 1. Inputs are located on the left of the instance and outputs on the right. Place
the cursor where the parameter is to be set and press the P Key. (Alter-
nately, select Function Block Parameter from the Insert Menu.) The New
Parameter Dialog Box will be displayed as shown below.

Instance name

Function block definition
Press the P Key with the cursor on the left
of the instance. The New Parameter
Dialog Box will be displayed.

Input the address from which to pass data
to the input variable.
38

Procedures Section 2-2
2. Input the address from which to pass status data to the input variable.

3. Input the addresses from/to which to pass data for the other input and out-
put variables.

2-2-6 Setting the FB Instance Areas
The areas where addresses for variables used in function blocks are allocated
can be set. These areas are called the function block instance areas.

1,2,3... 1. Select the instance in the Ladder Section Window or in the global symbol
table, and then select Memory - Function Block Memory Allocation
from the PLC Menu.

The Function Block Memory Allocation Dialog shown below will appear.

2. Set the FB instance areas.

The non-retained and retained areas are set in words. The timer and
counter areas are set by time and counter numbers.

The default values are as follows:

Note (a) E20480 to E32767 in the last EM Area bank is the default setting.
The number of the last EM Area bank depends on the model of
CPU Unit being used.

(b) Bit data can be accessed even if the DM or EM Area is specified.

The value of 001 is passed to input
variable aaa.

FB instance area Start address End
address

Applicable memory
areas

Non-retained area W0 512 CIO, WR, HR, DM, EM
(See note b.)

Retained area E0_20480
(See note a.)

12,288 HR, DM, EM
(See note b.)

Timer area T3072 1,024 TIM

Counter area C3072 1,024 CNT

Non-retained area

Retained area

Counter area

Timer area

First
address

Last
address

Size
39

Procedures Section 2-2
Note Overlapping of Instance Area Addresses and Address Used in the Program
If the addresses in the function block instance areas overlap with any of the
addresses used in the user program, an error will occur when compiling. This
error will also occur when a program is downloaded, edited online, or checked
by the user.

If addresses are duplicated and an error occurs, either change the function
block instance areas or the addresses used in the user program.

2-2-7 Checking Internal Address Allocations for Variables
The following procedure can be used to check the I/O memory addresses
internally allocated to variables.

1,2,3... 1. Select View - Symbols - Global.

2. Select the instance in the global symbol table, right-click, and select Func-
tion Block Memory Address from the popup menu. (Alternately, select
Memory - Function Block Memory Address from the PLC Menu.)

3. The FB Interface Memory Dialog Box will be displayed. Check the I/O
memory addresses internally allocated to variables here.

Work Area Addresses
used in the user
program overlap with
the instance areas.

Example: Instance name displayed in global variable table (automatically registered)

Right-click on the instance name and select Function Block Instance Address.

Example: Addresses used internally
for the input variables.
40

Procedures Section 2-2
Method Used for Checking Addresses Internally Allocated to Variables

Checking the Status of
Addresses Internally
Allocated to Variables

The following procedure can be used to check the number of addresses allo-
cated to variables and the number still available for allocation in the function
block instance areas.

1,2,3... 1. Select the instance in the Ladder Section Window, right-click, and select
Memory - Function Block Memory Statistics from the PLC Menu.

2. The Function Block Memory Statistics Dialog Box will be displayed as
shown below. Check address usage here.

Optimizing Function
Memory

When a variable is added or deleted, addresses are automatically re-allocated
in the variables’ instance area. Consecutive addresses are required for each
instance, so all of the variables will be allocated to a different block of
addresses if the original block of addresses cannot accommodate the change
in variables. This will result in an unused block of addresses. The following
procedure can be used to eliminate the unused areas in memory so that
memory is used more efficiently.

1,2,3... 1. Select the instance in the Ladder Section Window, right-click, and select
Memory - Optimize Function Memory from the PLC Menu.

The following dialog box will be displayed.

2. Click the OK Button. Allocations to the function block instance areas will
be optimized.

a b

c

sample FB [FunctionBlock1] N/A [Auto] a BOOL W400.00

b BOOL W401.00
c BOOL W401.02

Instance registered in global
symbol table under instance name.

Name Address/
ValueType Name AddressType

Name AddressType

Inputs

Outputs

FM Instance Memory Dialog Box

Instance name

Addresses used for function
block internal variables

Right-click and select Function
Block Memory Address.

Instance of function block definition A,
instance name: sample

Program

The total number
of words in each
interface area.

The number
of words
already used.

The number of
words still available.
41

Procedures Section 2-2
2-2-8 Checking the Function Block Definition for an Instance
Use the following procedure to check the function block definition from which
an instance was created.

1,2,3... Right-click the instance and select Go To - Function Block Definition from
the popup menu. The function block definition will be displayed.

2-2-9 Compiling Function Block Definitions
A function block definition can be compiled to perform a program check on it.
Use the following procedure.

1,2,3... Select the function block definition, right-click, and select Compile from the
popup menu. (Alternately, press the Ctrl + F7 Keys.)

The function block will be compiled and the results of the program check will
be automatically displayed on the Compile Table Page of the Output Window.

2-2-10 Saving Function Block Definitions to Files
A function block definition can be saved as a function block library file (exten-
sion: .cxf) to enable reusing it in other projects.

Saving a Function Block
Library File

Use the following procedure to save a function block definition to a function
block library file.

1,2,3... 1. Select the function block definition, right-click, and select Save Function
Block File from the popup menu. (Alternately, select Save Function
Block File from the File Menu.)

Results of program check displayed.
42

Procedures Section 2-2
2. The following dialog box will be displayed. Input the file name. CX-P IEC
function block library files (*.cxf) should be selected as the file type.

Reading Function Block
Library Files into Other
Projects

Use the following procedure to read a function block library file (*.cxf) into a
project.

1,2,3... 1. Select the function block definition item in the Project Workspace, right-
click, and select Insert Function Block - From File from the popup menu.

2. The following dialog box will be displayed. Select a function block library
file (*.cxf) and click the Open Button.

3. A function block called FunctionBlock1 will be automatically inserted after
the Function Blocks icon. This icon contains the definition of the function
block.

4. Double-click the FunctionBlock1 Icon. The variable table and algorithm
will be display.

2-2-11 Downloading Programs to a CPU Unit
After a program containing function blocks has been created, it can be down-
loaded from the CX-Programmer IEC to a CPU Unit that is connected online.
It is also possible to check if the programs on the CX-Programmer IEC and in
the CPU Unit are the same.

Programs cannot be uploaded from the CPU Unit.
43

Procedures Section 2-2
2-2-12 Monitoring and Debugging Function Blocks
The following procedures can be used to monitor programs containing func-
tion blocks.

Monitoring Programs in
Function Block Definitions

Use the following procedure to check the program in the function block defini-
tion for an instance during monitoring.

1,2,3... Right-click the instance and select Go To - Function Block Definition from
the popup menu. The function block definition will be displayed.

Monitoring Instance
Variables in the Watch
Window

Use the following procedure to monitor instance variables.

1,2,3... 1. Select View - Window - Watch.

A Watch Window will be displayed.

2. Double-click the watch window.

The Edit Dialog Box will be displayed as shown below.

3. Click the Browse Button, select the variable to be monitored, and click the
OK Button.

4. Click the OK Button. Variable values will be display in the Watch Window
as shown below.

Click the Browse Button.

Select the variable to monitor.

Address being used

Variable name
44

Procedures Section 2-2
Monitoring Instance I/O
Variables

The present values of parameters for I/O variables are displayed below the
parameters.

Editing Function Block
Definition Programs
Online

Programs using function blocks can be edited online. Changes can also be
made around instances.

• Instance parameters can be changed, instances can be deleted, and
instructions other than those in instances can be changed.

• Instances cannot be added, instance names cannot be changed, and
algorithms and variable tables in function block definitions cannot be
changed.

PV of parameter for I/O variable.
45

Procedures Section 2-2
46

SECTION 3
Specifications

This section provides specifications for reference when using function blocks, including specifications on function blocks,
instances, and compatible PLCs, as well as usage precautions and guidelines.

3-1 Function Block Specifications . 48

3-1-1 Function Block Specifications . 48

3-1-2 Function Block Elements . 48

3-2 Instance Specifications . 57

3-2-1 Composition of an Instance . 57

3-2-2 Operating Specifications. 59

3-3 Restrictions on Function Blocks . 60

3-4 Function Block Applications Guidelines . 65

3-4-1 Deciding on Variable Data Types . 65

3-4-2 Array Settings . 65

3-4-3 AT Settings . 66

3-5 CPU Unit Specifications and Battery Replacement . 67

3-5-1 Specifications . 67

3-5-2 General Specifications . 75

3-5-3 Operation of Timer Instructions . 78

3-5-4 Battery Replacement Procedure . 79
47

Function Block Specifications Section 3-1
3-1 Function Block Specifications

3-1-1 Function Block Specifications

3-1-2 Function Block Elements
The following table shows the items that must be entered by the user when
defining function blocks.

Function Block
Definition Name

Each function block definition has a name. The names can be up to 64 char-
acters long and there are no prohibited characters. The default function block
name is FunctionBlock@, where @ is a serial number.

Language Select either ladder or structured text.

Variable Definitions Define the operands and variables used in the function block definition.

Variable Names • Variable names can be up to 30,000 characters long.

• Variables name cannot contain spaces or any of the following characters:
! “ # $ % & ‘ () = - ~ ^ \ | ‘ @ { [+ ; * : }] < , > . ? /

• Variable names cannot start with a number (0 to 9).

• Variable names cannot contain two underscore characters in a row.

There are no other restrictions.

Item Description

Number of function block definitions 896 max. per CPU Unit

Number of instances 2,048 max. per CPU Unit

Number of instance nesting levels Nesting is not supported.

Number of I/O variables 64 variables max. per function block definition

Item Description

Function block
definition name

The name of the function block definition

Language The programming language used in the function block defini-
tion. Select ladder programming or structured text

Variable definitions Variable settings, such as operands and return values,
required when the function block is executed
• Type (usage) of the variable
• Name of the variable
• Data type of the variable
• Initial value of the variable

Algorithm Enter the programming logic in ladder or structured text.

Comment Function blocks can have comments.

CLOCK PULSE
EN ENO
(BOOL) (BOOL)
ON_TIME
(INT)

OFF_TIME
(INT)

Function block definition name
48

Function Block Specifications Section 3-1
Variable Notation

Variable Type (Usage)

Note For details on Externals, refer to Appendix C External Variables.

■ Input Variables

Input variables pass external operands to the instance. The input variables
are displayed on the left side of the instance.

The value of the input source (data contained in the specified parameter just
before the instance was called) will be passed to the input variable.

CLOCK PULSE
EN

 ENO
(BOOL) (BOOL)

ON_TIME
 (INT)
OFF_TIME
(INT)

TIMX tim_a OFF_TIME
tim_b

TIMX tim_b OFF_TIME
tim_a

ENO

tim_a TIMER
tim_b TIMER
ON_TIME INT
OFF_TIME INT

Input variables
Output variables

Internal
variables

Variable table

Name
Internal
Internal
Input
Input

TypeUsage

Item Variable type

Inputs Outputs Internals Externals

Definition Operands to the
instance

Return values from the
instance

Variables used only
within instance

Global symbols regis-
tered as variables
beforehand with the
CX-Programmer IEC

Status of value at next
execution

The value is not
passed on to the next
execution.

The value is passed
on to the next execu-
tion.

The value is passed
on to the next execu-
tion.

The value is not
passed on to the next
execution.

Display Displayed on the left
side of the instance.

Displayed on the right
side of the instance.

Not displayed. Not displayed.

Number allowed 64 max. per function
block (excluding EN)

64 max. per function
block (excluding ENO)

Unlimited Reserved variables
only (28 total)

AT setting No No Supported No

Array setting No No Supported No

Retain setting No Supported Supported No

Variables created by
default

EN (Enable):
Receives an input con-
dition.

ENO (Enable Output):
Outputs the function
block’s execution sta-
tus.

None Global symbols regis-
tered in advance as
variables in the CX-
Programmer IEC, such
as Condition Flags and
some Auxiliary Area
bits.

P_On 1.0
FB

EN
ENO

PV CV

D0 D100

The value of the parameter specified as the input (value of D0)
is passed to the instance’s input variable (PV).
49

Function Block Specifications Section 3-1
Example

Note 1. The same name cannot be assigned to an input variable and output vari-
able. If it is necessary to have the same variable as an input variable and
output variable, register the variables with different names and transfer the
value of the input variable to the output variable in the function block with
an instruction such as MOV.

2. When the instance is executed, input values are passed from parameters
to input variables before the algorithm is processed. Consequently, values
cannot be read from parameters to input variables within the algorithm. If
it is necessary to read a value within the execution cycle of the algorithm,
do not pass the value from a parameter. Assign the value to an internal
variable and use an AT setting (specified addresses).

Initial Value

When you set an initial value for an input variable, that value will be written to
the variable when the parameter for input variable EN goes ON and the
instance is executed for the first time (and that one time only). If an initial
value has not been set for an input variable, the input variable will be set to 0
when the instance is first executed.

EN (Enable) Variable

When an input variable is created, the default input variable is the EN vari-
able. The instance will be executed when the parameter for input variable EN
is ON.

■ Output Variables

Output variables pass return values from the instance to external applications.
The output variables are displayed on the right side of the instance.

After the instance is executed, the value of the output variable is passed to
the specified parameter.

D1000

0.0 10.0

D200

ADD_INT_DINT

EN ENO

IN16 OUT32

IN32

D100

tmp DINT
EN BOOL
IN16 INT
IN32 DINT
ENO BOOL
OUT32 DINT

SIGN IN16 tmp
P_On

+L IN32 tmp OUT32

IN16 is an INT variable, so the content of D100 is used.

IN32 is a DINT variable, so the content of D200 and
D201 is used.

Algorithm (Body)

Variable table
Name

Internal
Input
Input
Input
Output
Output

TypeUsage

P_On FB
EN ENO

PV CVD0 D100

1.0

The value of the output variable (CV) is passed to the parameter
specified as the output destination, which is D100 in this case.
50

Function Block Specifications Section 3-1
Example

Like internal variables, the values of output variables are retained until the
next time the instance is executed.

Example:
In the following example, the value of output variable CV will be retained until
the next time the instance is executed.

Note 1. The same name cannot be assigned to an input variable and output vari-
able. If it is necessary to have the same variable as an input variable and
output variable, register the variables with different names and transfer the
value of the input variable to the output variable in the function block with
an instruction such as MOV.

2. When the instance is executed, output variables are passed to the corre-
sponding parameters after the algorithm is processed. Consequently, val-
ues cannot be written from output variables to parameters within the
algorithm. If it is necessary to write a value within the execution cycle of the
algorithm, do not write the value to a parameter. Assign the value to an in-
ternal variable and use an AT setting (specified addresses).

Initial Value

An initial value can be set for an output variable that is not being retained, i.e.,
when the Retain Option is not selected. An initial value cannot be set for an
output variable if the Retain Option is selected.
The initial value will not be written to the output variable if the IOM Hold Bit
(A50012) is ON.

ENO (Enable Output) Variable

The ENO variable is created as the default output variable. The ENO output
variable will be turned ON when the instance is called. The user can change
this value. The ENO output variable can be used as a flag to check whether or
not instance execution has been completed normally.

D1000

0.0 10.0

D200

ADD_INT_DINT
EN ENO

IN16 OUT32

IN32

D100

tmp DINT
EN BOOL
IN16 INT
IN32 DINT
ENO BOOL
OUT32 DINT

SIGN IN16 tmp
EN

+L IN32 tmp OUT32

OUT32 is a DINT variable, so
the variable's value is passed
to D1000 and D1001.

Algorithm (Body)

Variable table
Name

Internal
Input
Input
Input
Output
Output

TypeUsage

CTD
CD Q

LD

PV CV D150

Product A counter

Auxiliary Area control bit Initial value

IOM Hold Bit (A50012) ON The initial value will not be set.
51

Function Block Specifications Section 3-1
■ Internal Variables

Internal variables are used within an instance. These variables are internal to
each instance. They cannot be referenced from outside of the instance and
are not displayed in the instance.

The values of internal variables are retained until the next time the instance is
executed. Consequently, even if instances of the same function block defini-
tion are executed with the same I/O parameters, the result will not necessarily
be the same.

Example:

The internal variable tim_a in instance Pulse_2sON_1sOFF is different from
internal variable tim_a in instance Pulse_4sON_1sOFF, so the instances can-
not reference and will not affect each other’s tim_a value.

Retain Data through Power Interruptions and Start of Operation

Internal variables retain the value from the last time that the instance was
called. In addition, the Retain Option can be selected so that an internal vari-
able will also retains its value when the power is interrupted or operation
starts (the mode is switched from PROGRAM to RUN or MONITOR mode).

When the Retain Option is selected, the value of the variable is retained when
the power is interrupted or operation starts unless the CPU Unit does not
have a backup battery. If the CPU Unit does not have a good battery, the
value will be unstable.

Variables Condition Status

Variables set to Retain Start of operation Retained

Power ON Retained

P_On 1.0

&10

CLOCK PULSE
EN ENO

ON_TIME

OFF_TIME

&20

Pulse_2sON_1sOFF

P_On 1.1

&10

CLOCK PULSE
EN ENO

ON_TIME

OFF_TIME

&40

Pulse_4sON_1sOFF

tim_a TIMER
tim_b TIMER
ON_TIME INT
OFF_TIME INT

Variable table
Name

Internal
Internal
Input
Input

TypeUsage

SIGN IN16 tmp
EN

+L IN32 tmp OUT32

tmp DINT
EN BOOL
IN16 INT
IN32 DINT
ENO BOOL
OUT32 DINT

D1000

0.0 10.0

D200

ADD_INT_DINT
EN ENO

IN16 OUT32

IN32

D100

Internal variable tmp
is not displayed.

Algorithm (Body)

Variable table
Name

Internal
Input
Input
Input
Output
Output

Type
52

Function Block Specifications Section 3-1
When the Retain Option is not selected, the value of the variable will not be
held when the power is interrupted or operation starts. Even variables not set
to be retained, however, can be held at the start of operation by turning ON
the IOM Hold Bit (A50012) and can be held during power interruptions by set-
ting the PLC Setup, as shown in the following table.

Note The IOM Hold Bit (A50012) is supported for compatibility with previous mod-
els. To hold the values of variables in function blocks, however, use the Retain
Option and not the IOM Hold Bit.

Initial Value

An initial value can be set for an internal variable that is not being retained
(i.e., when the Retain Option not selected). An initial value cannot be set for
an internal variable if the Retain Option is selected.
Internal variables that are not being retained will be initialized to 0.
The initial value will not be written to the internal variable if the IOM Hold Bit
(A50012) is ON.

■ External Variables

External variables are global symbols registered as variables in advance with
the CX-Programmer IEC. For details, refer to Appendix C External Variables.

Variable Properties Variable Name

The variable name is used to identify the variable in the function block. The
name can be up to 30,000 characters long. The same name can be used in
other function blocks.

Note A variable name must be input for variables, even ones with AT settings
(specified address).

Variables Condition IOM Hold Bit (A50012) setting

OFF ON

IOM Hold Bit Status at Startup
(PLC Setup) selected

IOM Hold Bit Status at Startup
(PLC Setup) not selected

Variables not
set to Retain

Start of operation Not retained Retained Retained

Power ON Not retained Retained Not retained

Auxiliary Area control bit Initial value

IOM Hold Bit (A50012) ON The initial value will not be set.

OFF The initial value will be set.
53

Function Block Specifications Section 3-1
Data Type

Any of the following types may be used.

Note The TIMER and COUNTER data types cannot be used in ST language func-
tion blocks.

AT Settings (Allocation to Actual Addresses)

With internal variables, it is possible to set the variable to a particular I/O
memory address rather than having it allocated automatically by the system.
To specify a particular address, the user can input the desired I/O memory
address in this property. It is still necessary to use variable name in program-
ming even if a particular address is specified.

Note The AT property can be set for internal variables only.

Example:
If the READ DATA FILE instruction (FREAD) is being used in the function
block definition and it is necessary to check the File Memory Operation Flag
(A34313), use an internal variable and specify the flag’s address in the AT
setting.

Register an internal variable, select the AT setting option, and specify A34313
as the address. The status of the File Memory Operation Flag can be checked
through this internal variable.

When the AT setting is used, the function block loses its flexibility. This func-
tion should thus be used only when necessary.

Data type Content Size Inputs Outputs Internals

BOOL Bit data 1 bit OK OK OK

INT Integer 16 bits OK OK OK

UNIT Unsigned integer 16 bits OK OK OK

DINT Double integer 32 bits OK OK OK

UDINT Unsigned double integer 32 bits OK OK OK

LINT Long (8-byte) integer 64 bits OK OK OK

ULINT Unsigned long (8-byte) integer 64 bits OK OK OK

WORD 16-bit data 16 bits OK OK OK

DWORD 32-bit data 32 bits OK OK OK

LWORD 64-bit data 64 bits OK OK OK

REAL Real number 32 bits OK OK OK

LREAL Long real number 64 bits OK OK OK

TIMER Timer (See note.) Flag: 1 bit
PV: 16 bits

OK OK OK

COUNTER Counter (See note.) Flag: 1 bit
PV: 16 bits

OK OK OK

Address A34313 is allocated to a
boolean internal variable named
NOW_CARD_ACCESS.
54

Function Block Specifications Section 3-1
Array Setting

With internal variables, a variable can be defined as an array.

Note Only one-dimensional arrays are supported by the CX-Programmer IEC.

With the array setting, a large number of variables with the same properties
can be used by registering just one variable.

• An array can have from 1 to 32,000 array elements.

• The array setting can be set for internal variables only.

• Any data type can be specified for an array variable, as long as it is an
internal variable.

• When entering an array variable name in the algorithm of a function block
definition, enter the array index number in square brackets after the vari-
able name. The following three methods can be used to specify the index.
(In this case the array variable is a[].)

• Directly with numbers (for ladder or ST language programming)
Example: a[2]

• With a variable (for ladder or ST language programming)
Example: a[n], where n is a variable

• With an equation (for ST language programming only)
Example: a[b+c], where b and c are variables

Note Equations can contain only arithmetic operators (+, −, *, and /).

An array is a collection of data elements that are the same type of data. Each
array element is specified with the same variable name and a unique index.
(The index indicates the location of the element in the array.)

A one-dimensional array is an array with just one index number.

Example: When an internal variable named SCL is set as an array variable
with 10 elements, the following 10 variables can be used:
SCL[0], SCL[1], SCL[2], SCL[3], SCL[4], SCL[5], SCL[6], SCL[7], SCL[8], and
SCL[9]

Note When specifying the first or last word of multiple words for an instruction oper-
and, I/O parameters cannot be used to pass data to or from I/O variables.
Internal array variables must be used. This applies, for example, to the first
source word for SEND(090) or the starting word or end word for BSET(071).

SCL

0

1

2

3

4

5

6

7

8

9

Specify SCL[3] to access this data element.

WORD variable

WORD variable

WORD variable

WORD variable

WORD variable

WORD variable

WORD variable

WORD variable

WORD variable

WORD variable

Settings for variable SCL as an array
variable with element numbers 0 to 9.
55

Function Block Specifications Section 3-1
For multiword operands, an array variable must be prepared in advance with
the required number of elements and the data must be set for the array in the
function block definition. The first or last element in the array variable is then
specified for the operand to set the first or last word. Refer to 3-4 Function
Block Applications Guidelines for details.

Example:

Note For details, refer to 3-4 Function Block Applications Guidelines.

Initial Values

When an instance is executed the first time, initial values can be set for input
variables, internal variables, and output variables. For details, refer to Initial
Value under the preceding descriptions of input variables, internal variables,
and output variables.

Retaining Data through Power Interruptions and Start of Operation

The values of internal variables can be retained through power interruptions
and the start of operation. When the Retain Option is selected, the variable
will be allocated to a region of memory that is retained when the power is
interrupted and PLC operation starts.

Algorithm Enter the logic programming using the registered variables.

Comment A comment up to 30,000 characters long can be entered.

SCL- BODY

LD P_On
MOV #0000 SCSCL[0]
MOV &0 SCSCL[1]
MOV #0300 SCSCL[2]
MOV &4000 SCSCL[3]
SCL S SCSCL[0] D

SCL
EN ENO

S D
100

SCL WORD[10]

SCL

0 #0000

1 &0

2 #0300

3 &4000

Function block definition Instance

Variable

Algorithm

Specifying this array element
in the SCL instruction is the
same as specifying the first
address.

Write the operand data to
the array variables.

Specify the beginning of the
array in the SCL instruction.
56

Instance Specifications Section 3-2
3-2 Instance Specifications

3-2-1 Composition of an Instance
The following table lists the items that the user must set when registering an
instance.

Instance Name This is the name of the instance.

• Instance names can be up to 30,000 characters long.

• Instance names cannot contain spaces or any of the following characters:
! “ # $ % & ‘ () = - ~ ^ \ | ‘ @ { [+ ; * : }] < , > . ? /

• Instance names cannot start with a number (0 to 9).

• Instance names cannot contain two underscore characters in a row.

There are no other restrictions.

The instance name is displayed above the instance in the diagram.

Function Block
Instance Areas

To use a function block, the system requires memory to store the instance’s
internal variables and I/O variables. These areas are known as the function
block instance areas and the user must specify the first addresses and sizes
of these areas. The first addresses and area sizes can be specified in 1-word
units.

When the CX-Programmer IEC compiles the function, it will output an error if
there are any instructions in the user program that access words in these
areas.

The default values are as follows:

Item Description

Instance name Name of the instance

Language
Variable definitions

The programming and variables are the same as in
the function block definition.

Function block instance areas The ranges of addresses used by the variables

Comments A comment can be entered for each instance.

CLOCK PULSE
EN
ENO

ON_TIME

OFF_TIME

Pulse_2sON_2sOFF

Instance name

&20

&10

FB instance area Start address End
address

Applicable memory
areas

Non-retained area W0 512 CIO, WR, HR, DM, EM

Retained area E0_20480 in last
EM Area bank

12,288 HR, DM, EM
57

Instance Specifications Section 3-2
Comments A comment up to 30,000 characters long can be entered.

Creating Multiple
Instances

Calling the Same Instance A single instance can be called from multiple locations. In this case, the inter-
nal variables will be shared.

Making Multiple Instances Multiple instances can be created from a single function block definition. In
this case, the values of internal variables will be different in each instance.

Example: Counting Product A and Product B

Prepare a function block definition called Down Counter (CTD) and set up
counters for product A and product B. There are two types of programs, one
for automatic operation and another for manual operation. The user can
switch to the appropriate mode of operation.

In this case, multiple instances will be created from a single function block.
The same instance must be called from multiple locations.

Timer area T3072 1,024 TIM

Counter area C3072 1,024 CNT

FB instance area Start address End
address

Applicable memory
areas

CTD
CD Q

LD

PV CV D100

CTD
CD Q

LD

PV CV D200

CTD
CD Q

LD

PV CV D150

FB

FB

FB

Program 1 (automatic operation) Program 2 (manual operation)

Product A counter Product B counter

Product B counter

Program 1
Instance A

Instance B

Program 2
Instance A

Reading the same product’s counter
value at different locations

Reading different products’ counter values
(Algorithm calculating counter value is the same.)

Use the same internal variables

Use different internal variables

Instance A

Instance B

I/O variables,
Internal
variables

Body

I/O variables,
Internal
variables

Body

FB definition

Variable
definitions

Body
58

Instance Specifications Section 3-2
3-2-2 Operating Specifications
Calling Instances The user can call an instance from any location. The instance will be executed

when the input to EN is ON.

Operation when the
Instance Is Executed

The system calls a function block when the input to the function block’s EN
input variable is ON. When the function block is called, the system generates
the instance’s variables and copies the algorithm registered in the function
block. The instance is then executed.

The order of execution is as follows:

1. Read data from parameters to input variables.

2. Execute the algorithm.

3. Write data from output variables to parameters.

Note Data cannot be exchanged with parameters in the algorithm itself.
In addition, if an output variable is not changed by the execution of the algo-
rithm, the output parameter will retain its previous value.

0.0 1.0

D10

EN ENO

A B
D0

Instance

In this case, the input to EN is bit 0.0 at the left of the diagram.

• When the input to EN is ON, the instance is executed and
the execution results are reflected in bit 1.0 and word D10.

• When the input to EN is OFF, the instance is not executed,
bit 1.0 is turned OFF, and the content of D10 is not changed.

P_On 1.0

&10

CLOCK PULSE
EN ENO

ON_TIME

OFF_TIME

&20

Pulse_2sON_1sOFF

&20
&10

TIMX tim_a OFF_TIME
tim_b

TIMX tim_b ON_TIME
tim_a

ENO

1. The FB is called.

2. The system generates the instance
variables and copies the algorithm.

FB instance (Pulse_2sON_1sOFF)

Algorithm (Body)

Name
Internal
Internal
Input

Input

Value
200-100ms_PULSE_tim_a
200-100ms_PULSE_tim_b
200-100ms_PULSE_ON_TIME
200-100ms_PULSE_OFF_TIME

3. The contents of the
instance are executed.Algorithm (Image)

Pulse_2sON_1sOFF tim_a Pulse_2sON_1sOFF OFF_TIME

Pulse_2sON_1sOFF tim_b Pulse_2sON_1sOFF ON_TIME

Pulse_2sON_1sOFF ENO

Pulse_2sON_1sOFF tim_b

Pulse_2sON_1sOFF tim_a

Usage

Input to EN is ON.

Parameters 1. Read values from parameters
to input variables.

2. Execute the algorithm.

3. Write values from output
variables to parameters.

Parameters
59

Restrictions on Function Blocks Section 3-3
Operation when the
Instance Is Not Executed

When the input to the function block’s EN input variable is OFF, the function
block is not called, so the internal variables of the instance do not change.

!Caution An instance will not be executed while its EN input variable is OFF, so Differ-
entiation and Timer instructions will not be initialized while EN is OFF. If Differ-
entiation or Timer instructions are being used, use the Always ON Flag
(P_On) for the EN input condition and include the instruction’s input condition
within the function block definition.

Nesting

A function block cannot be called from another function block, i.e., nesting is
not supported.

3-3 Restrictions on Function Blocks

Ladder Programming
Restrictions

There are some restrictions on instructions used in ladder programs.

Restrictions in Program
(Outside of Instances)

Subroutine Instructions (SBS, GSBS, RET, MCRO, and SBN):

Subroutine numbers 128 to 1,023 cannot be used. Only 0 to 127 can be used.

Instructions Prohibited in
Function Block
Definitions

The following instructions cannot be used in function block definitions. A com-
pile error will occur if any of these instructions is used.

• Block Programming Instructions (BPRG and BEND)

• Subroutine Instructions (SBS, GSBS, RET, MCRO, and SBN)

• Jump Instructions (JMP, CJP, CJPN, JMP0, and JME0)

• Step Instructions (STEP and SNXT)

• Immediate Refresh Instructions (!)

• I/O REFRESH Instruction (IORF)

• TMHH and TIMH Instructions

• CV Address Conversion Instructions (FRMCV and TOCV)

FB
EN ENO

1.0P_Off
P_On

ENO

1.0P_Off P_On

Program FB definition

Body

Execution results:
Output variable 1.0 is turned OFF, but
internal variable a retains its previous value.

If the programming were entered
directly into the program instead of in a
function block definition, both bit 1.0
and variable a would be turned OFF.

Program

Internal
variable a

Internal
variable a

FB1
FB2

Program
Instance A

Instance A: FB1 Instance X: FB2
60

Restrictions on Function Blocks Section 3-3
• Instructions manipulating record positions (PUSH, FIFO, LIFO, SETR,
and GETR)

• FAILURE POINT DETECTION Instruction (FPD)

• Index Register Read Instructions (MOVR and MOVRW)

AT Setting Restrictions
(Unsupported Data Areas)

Addresses in the following areas cannot be used for AT settings.

• Index Registers and Data Registers (Neither indirect nor direct address-
ing is supported.)

• Indirect addressing of DM or EM Area addresses (Neither binary-mode
nor BCD-mode indirect addressing is supported.)

I/O Variable Restrictions
(Unsupported Data Areas)

Addresses in the following data areas cannot be used as parameters for input
and output variables.

• Index Registers and Data Registers (Neither indirect nor direct address-
ing is supported.)

• Indirect addressing of DM or EM Area addresses (Neither binary-mode
nor BCD-mode indirect addressing is supported.)

Refreshing Timer and
Counter PVs

Timer and counter PVs are always stored in binary mode, so PVs of all Timer
and Counter Instructions must be treated as binary data whether or not the
instructions are in function blocks.

Interlocks When a function block is called from an interlocked program section, the con-
tents of the function block definition will not be executed. The interlocked
function block will behave just like an interlocked subroutine.

Differentiation
Instructions in Function
Block Definitions

An instance will not be executed while its EN input variable is OFF, so the fol-
lowing precautions are essential when using a Differentiation Instruction in a
function block definition. (Differentiation Instructions include DIFU, DIFD, and
any instruction with an @ or % prefix.)

• As long as the instance’s EN input variable is OFF, the execution condi-
tion will retain its previous status (the last status when the EN input vari-
able was ON) and the Differentiation Instruction will not operate.

• When the instance’s EN input variable goes ON, the present execution
condition status will not be compared to the last cycle’s status. The
present execution condition will be compared to the last condition when
the EN input variable was ON, so the Differentiation Instruction will not
operate properly. (If the EN input variable remains ON, the Differentiation
Instruction will operate properly when the next rising edge or falling edge
occurs.)

FB

IL

P_Off

ILC

FB_BODY

Interlocked Interlock will not
affect instructions in
the function block
definition.
61

Restrictions on Function Blocks Section 3-3
Example:

If Differentiation Instructions are being used, always use the Always ON Flag
(P_On) for the EN input condition and include the instruction’s input condition
within the function block definition.

Timer Instructions in
Function Block
Definitions

An instance will not be executed while its EN input variable is OFF, so the fol-
lowing precautions are essential when using a Timer Instruction in a function
block definition.

The Timer Instruction will not be initialized even though the instance’s EN
input variable goes OFF. Consequently, the timer’s Completion Flag will not
be turned OFF if the EN input variable goes OFF after the timer started oper-
ating.

If Timer Instructions are being used, always use the Always ON Flag (P_On)
for the EN input condition and include the instruction’s input condition within
the function block definition.

• If the same instance containing a timer is used in multiple locations at the
same time, the timer will be duplicated.

FB1
EN ENO

IN1 OUT1

0.0

LD EN
OR IN1

SET OUT1

These Differentiation Instructions do not
operate when input condition 0.00 goes
from OFF to ON the first time.
The instructions do not operate while
input condition 0.00 is OFF.

Body

FB1
EN ENO

a O UT1

IN1

P_On

LD a
OR IN1

SET OUT10.00

The EN input condition is always ON, so
these Differentiation Instructions operate
normally.

Body

FB1
EN ENO

 U P

LD EN
TIM t im UP

0.00

The timer’s Completion Flag (UP)
will not be turned OFF even though
input condition 0.00 goes OFF.

Body

FB1
EN ENO

a U P

P_On

LD a
TIM t im UP

0.00

The timer’s completion flag (UP) is turned
OFF when input condition a (0.00) goes OFF.

Body
62

Restrictions on Function Blocks Section 3-3
ST Programming
Restrictions

• Only the following statements and operators are supported.

• Assignment statements

• Selection statements (CASE and IF statements)

• Iteration statements (FOR, WHILE, and REPEAT statements)

• Arithmetic operators

• Logical operators

• Comparison operators

• Comments

• The TIMER and COUNTER data types cannot be used.

• Use parentheses to indicate the priority of arithmetic operations.
Example: D:= (A+B) *C

• Tabs and spaces can be used to indent text.

EM Current Bank The EM current bank function cannot be used. The EM bank number must be
specified in all EM Area addresses.

Online Editing
Restrictions

The following online editing operations cannot be performed on the user pro-
gram in the CPU Unit.

• Changing or deleting function block definitions (variable table or algo-
rithm)

• Inserting instances or changing instance names

Note The instance’s I/O parameters can be changed, instances can be
deleted, and instructions outside of an instance can be changed.

Error-related
Restrictions

If a fatal error occurs in the CPU Unit while a function block definition is being
executed, ladder program execution will stop at the point where the error
occurred.

In this case, the MOV AAA BBB instruction will not be executed and output
variable D200 will retain the same value that it had before the function block
was executed.

Programming
Console Displays

When a user program created in the CX-Programmer IEC is downloaded to
the CPU Unit and read by a Programming Console, the instances will all be
displayed as question marks. (The instance names will not be displayed.)

FB
EN ENO

AAA BBB D200D100

0.0 LD P_On
++ AAA

MOV AAA BBB

10.0

Program FB definition

BodyInstance name

Fatal error occurs here.
63

Restrictions on Function Blocks Section 3-3
Prohibiting Access to
FB Instance Areas

To use a function block, the system requires memory areas to store the
instance’s internal variables and I/O variables.

If there is an instruction in the user program that accesses an address in an
FB instance area, the CX-Programmer IEC will output an error in the following
cases.

• When a program check is performed by the user by selecting Program -
Compile or Compile All Programs from the PC Menu.

• When attempting to download the user program to the PLC or attempting
to write the program through online editing. (Neither downloading or edit-
ing will be possible.)

Program Structure
Precautions

No Branches to the Left of
the Instance

Branches are not allowed on the left side of the instance. Branches are
allowed on the right side.

Only One Instance per
Rung

A program rung cannot have more than one instance.

No Function Block
Connections

A function block’s input cannot be connected to another function block’s out-
put. In this case, a variable must be registered to transfer the execution status
from the first function block’s output to the second function blocks input.

Uploading Restriction Programs cannot be uploaded from the CPU Unit to the CX-Programmer IEC.

FB instance
area

Initial value of Start
Address

Initial value
of Size

Allowed data areas

Non-retained W0 512 CIO, WR, HR, DM, EM

Retained E20480 in last EM bank 12,288 HR, DM, EM

Timer T3072 1,024 TIM

Counter C3072 1,024 CNT

FB FB

Incorrect Correct

Instruction

Instruction

FB

FB FB

Incorrect Incorrect

FB1
EN

XOUT

FB2
XIN1

XIN2D100

0.0
FB1

EN
XOUT

FB2
EN

XIN1

XIN2D100

0.0

D3000

D3000

0.0

Temporary variables
transfer the value from
FB1 to FB2.
64

Function Block Applications Guidelines Section 3-4
PT Ladder Monitoring
Restriction

The Programmable Terminal ladder monitoring function cannot be used with
the CS1-H (FB)/CJ1-H (FB).

3-4 Function Block Applications Guidelines
This section provides guidelines for using function blocks with the CX-Pro-
grammer IEC.

3-4-1 Deciding on Variable Data Types
Integer Data Types
(1, 2, or 4-word Data)

Use the following data types when handling single numbers in 1, 2, or 4-word
units.

• INT and UINT

• DINT and DINT

• LINT and ULINT

Note Use signed integers if the numbers being used will fit in the range.

Word Data Types
(1, 2, or 4-word Data)

Use the following data types when handling groups of data (non-numeric
data) in 1, 2, or 4-word units.

• WORD

• DWORD

• LWORD

3-4-2 Array Settings
Array Variables
Use for First or End
Addresses of Word
Ranges

When specifying an instruction operand that is the first address or end address
of a range of words (see note), the required values cannot be passed to vari-
ables through input parameters or output parameters.

Note Refer to Appendix D Instruction Support and Operand Restrictions to deter-
mine which instruction operands must have array variables because they
specify the first/end address of a range of words.

In this case, prepare an array variable with the required number of array ele-
ments, set the data in each array element in the function block, and specify the
beginning (or end) array variable in the operand. Using an array variable allows
you to specify the first address or end address of a range of words.

Handling a Single String of Data in Multiple Words

In this example, an array contains the directory and filename (operand S2) for
an FREAD instruction.

• Variable table
Internal variable, data type = WORD, array setting with 10 elements, vari-
able names = filename[0] to filename[9]

• Ladder programming

Handling Control Data in Multiple Words

In this example, an array contains the number of words and first source word
(operand S1) for an FREAD instruction.

Set data in each array element.

Specify the first element
of the array in the instruction
operand.

FREAD (omitted) (omitted) file_name[0] (omitted)
MOV #0000 file_name[2])
MOV #3233 file_name[1]
MOV #5C31 file_name[0]
65

Function Block Applications Guidelines Section 3-4
• Variable table
Internal variable, data type = DINT, array setting with 3 elements, variable
names = read_num[0] to read_num[9]

• Ladder programming

Handling a Block of Read Data in Multiple Words

The allowed amount of read data must be determined in advance and an
array must be prepared that can handle the maximum amount of data. In this
example, an array receives the FREAD instruction’s read data (operand D).

• Variable table
Internal variable, data type = WORD, array setting with 100 elements,
variable names = read_data[0] to read_data[99]

• Ladder programming

Division Using Integer
Array Variables (Ladder
Programming Only)

A two element array can be used to store the result from a ladder program’s
SIGNED BINARY DIVIDE (/) instruction. The result from the instruction is D
(quotient) and D+1 (remainder). This method can be used to obtain the remain-
der from a division operation in ladder programming.

Note When ST language is used, it isn’t necessary to use an array to receive the
result of a division operation. Also, the remainder can’t be calculated directly
in ST language. The remainder must be calculated as follows:
Remainder = Dividend − (Divisor × Quotient)

3-4-3 AT Settings
Use the AT setting in the following cases.

• When setting the first destination word at the remote node for SEND(090)
and the first source word at the remote node for RECV(098)

• When you want to read or write an Auxiliary Area bit within the execution
cycle of an algorithm and the bit is not registered as an external variable.
(If it isn’t necessary to read or write the bit in the same cycle, use an I/O
variable and I/O parameter.)

Set data in each array element.

Specify the first element of the array
in the instruction operand.FREAD (omitted) (omitted) file_name[0] (omitted)

MOVL &100 read_num[0] (No._of_words)
MOVL &0 read_num[1] (1st_source_word)

FREAD (omitted) (omitted) (omitted) read_data[0]
66

CPU Unit Specifications and Battery Replacement Section 3-5
3-5 CPU Unit Specifications and Battery Replacement
The specifications of the CS1-H (FB)/CJ1-H (FB) CPU Units and the battery
replacement procedure are given in this section. Refer to the CS Series PLC
Operation Manual or the CS Series PLC Operation Manual for other items.

3-5-1 Specifications

CPU Unit Specifications

CS1-H (FB) CPU Units

Note The number of steps in a program is not the same as the number of instruc-
tions. Some instructions require only 1 step, whereas others required 7 steps.
(For example, LD and OUT require 1 step each, but MOV(021) requires 3
steps.) The program capacity indicates the total number of steps for all
instructions in the program. Refer to 10-5 Instruction Execution Times and
Number of Steps in the Operation Manual for the number of steps required for
each instruction.

CJ1-H (FB) CPU Units

Common Specifications

CPU CS1H-
CPU67H (FB)

CS1H-
CPU65H (FB)

CS1G-
CPU44H (FB)

CS1G-
CPU42H (FB)

I/O bits 5120 1280 960

User program
memory (steps)
(See note.)

250K 60K 30K 10K

Data memory 32K words

Extended data
memory

32K words x
13 banks

E0_00000 to
E6_32767

32K words x 3
banks

E0_00000 to
E2_32767

32K words x 1 bank
E0_00000 to E2_32767

Current con-
sumption

0.82 A at 5 V DC 0.78 A at 5 V DC

CPU CJ1G-CPU44H (FB) CJ1G-CPU43H (FB) CJ1G-CPU42H (FB)

I/O bits 1,280 960

User program
memory (steps)
(See note.)

30 K 20 K 10 K

Data Memory 32 Kwords

Extended Data
Memory

32Kwords x 1 bank
E0_00000 to E0_32767

Current con-
sumption

0.91 A at 5 V DC

Item Specification Reference

Control method Stored program ---

I/O control method Cyclic scan and immediate processing are both possible. ---

Programming Ladder diagram ---

CPU processing mode Normal Mode, Parallel Processing Mode with Asynchronous
Memory Access, Parallel Processing Mode with Synchro-
nous Memory Access, or Peripheral Servicing Priority Mode

67

CPU Unit Specifications and Battery Replacement Section 3-5
Instruction length 1 to 7 steps per instruction Steps and number of
steps per instruction:
10-5 Instruction Execu-
tion Times and Num-
ber of Steps in
Operation Manual

Ladder instructions Approx. 400 different instructions (3-digit function codes)
The following instructions cannot be used in function block
definitions.
• Block programming instructions (BPRG and BEND)
• Subroutine instructions (SBS, GSBS, RET, MCRO, and

SBN)
• Jump instructions (JMP, CJP, and CJPN)
• Step ladder instructions (STEP and SNXT)
• Immediate refresh instructions (!)
• I/O REFRESH (IORF)
• ONE-MS TIMER (TMHH) and HIGH-SPEED TIMER (TIMH)

Execution time Basic instructions: 0.02 µs min.
Special instructions: 0.06 µs min.

Instruction execution
times: 10-5 Instruction
Execution Times and
Number of Steps in
Operation Manual

Overhead processing time Normal mode: 0.3 ms min.
Parallel processing: 0.3 ms min.

Number of Expansion Racks CS1-H (FB) CPU Unit: 7 Racks max. (C200H Expansion I/O
Racks: 3 max.)

CJ1-H (FB) CPU Unit: 3 Racks max.

Expansion Racks

Number of tasks 288 (cyclic tasks: 32, interrupt tasks: 256)
Interrupt tasks can be executed every cycle the same as
cycle cyclic tasks and are called “extra cyclic tasks” when
they are used this way.If extra cyclic tasks are used, up to
288 cyclic tasks can be executed.

Note Cyclic tasks are executed each cycle and are con-
trolled with TKON(820) and TKOF(821) instructions.

Note The following 4 types of interrupt tasks are supported.
Power OFF interrupt tasks: 1 max.
Scheduled interrupt tasks: 2 max.
I/O interrupt tasks: 32 max.
External interrupt tasks: 256 max.

Tasks: Programming
Manual (W394)

Interrupt types Scheduled Interrupts:
Interrupts generated at a time scheduled by the CPU Unit’s
built-in timer.
I/O Interrupts:
Interrupts from Interrupt Input Units.

Power OFF Interrupts:
Interrupts executed when the CPU Unit’s power is turned
OFF.

External I/O Interrupts:
Interrupts from the Special I/O Units, CS-series CPU Bus
Units, or the Inner Board (CS1-H (FB) only).

Calling subroutines from more
than one task

Supported using global subroutines.

Item Specification Reference
68

CPU Unit Specifications and Battery Replacement Section 3-5
CIO
(Core
I/O)
Area

I/O Area 5,120: CIO 000000 to CIO 031915 (320 words from CIO
0000 to CIO 0319)

The setting of the first word can be changed from the default
(CIO 0000) so that CIO 0000 to CIO 0999 can be used.
I/O bits are allocated to Basic I/O Units, such as CS-series
Basic I/O Units, C200H Basic I/O Units, and C200H Group-2
High-density I/O Units.

Input and
output bits:
9-4 CIO
Area in
Operation
Manual

The CIO
Area can
be used as
work bits if
the bits are
not used
as shown
here.

C200H DeviceNet
Area

1,600 (100 words):
Outputs: CIO 005000 to CIO 009915 (words CIO 0050 to
CIO 0099)
Inputs: CIO 035000 to CIO 039915 (words CIO 0350 to
CIO 0399)
C200H DeviceNet Area bits are allocated to Slaves accord-
ing to C200HW-CRW21-V1 DeviceNet Unit remote I/O com-
munications.

9-5 C200H
DeviceNet
Area in
Operation
Manual

PLC Link Area
(CS1-H (FB) only)

80 bits (5 words): CIO 024700 to CIO 025015 (words
CIO 0247 to CIO 0250 and CIO A442)
When a PLC Link Unit is used in a PLC Link, use these bits to
monitor PLC Link errors and the operating status of other
CPU Units in the PLC Link.

9-7 PLC
Link Area
in Opera-
tion Man-
ual

Link Area 3,200 (200 words): CIO 10000 to CIO 119915 (words CIO
1000 to CIO 1199)
Link bits are used for data links and are allocated to Units in
Controller Link Systems and PLC Link Systems (CS1-H (FB)
only).

9-8 Data
Link Area
in Opera-
tion Man-
ual

CPU Bus Unit Area 6,400 (400 words): CIO 150000 to CIO 189915 (words CIO
1500 to CIO 1899)

CS-series CPU Bus Unit bits store the operating status of
CS-series CPU Bus Units.

(25 words per Unit, 16 Units max.)

9-9 CPU
Bus Unit
Area in
Operation
Manual

Special I/O Unit Area 15,360 (960 words): CIO 200000 to CIO 295915 (words CIO
2000 to CIO 2959)

Special I/O Unit bits are allocated to CS-series Special I/O
Units and C200H Special I/O Units. (See Note.)
(10 words per Unit, 96 Units max.)

Note For the CS1-H (FB), there are I/O Units that are
treated as Special I/O Units. Examples: C200H-ID215/
0D215/MD215

9-11 Spe-
cial I/O
Unit Area
in Opera-
tion Man-
ual

Inner Board Area
(CS1-H (FB) only)

1,600 (100 words): CIO 190000 to CIO 199915 (words CIO
1900 to CIO 1999)

Inner Board bits are allocated to Inner Boards. (100 I/O
words max.)

9-10 Inner
Board
Area in
Operation
Manual

SYSMAC BUS Area
(CS1-H (FB) only)

800 (50 words): CIO 300000 to CIO 304915 (words CIO 3000
to CIO 3049)
SYSMAC BUS bits are allocated to Slave Racks connected
to SYSMAC BUS Remote I/O Master Units. (10 words per
Rack, 5 Racks max.)

9-12 SYS-
MAC BUS
Area in
Operation
Manual

I/O Terminal Area
(CS1-H (FB) only)

512 (32 words): CIO 310000 to CIO 313115 (words CIO 3100
to CIO 3131)
I/O Terminal bits are allocated to I/O Terminal Units (but not
to Slave Racks) connected to SYSMAC BUS Remote I/O
Master Units. (1 word per Terminal, 32 Terminals max.)

9-13 I/O
Terminal
Area in
Operation
Manual

Item Specification Reference
69

CPU Unit Specifications and Battery Replacement Section 3-5
CIO
(Core
I/O)
Area,
contin-
ued

CS-series DeviceNet
Area

9,600 (600 words): CIO 320000 to CIO 379915 (words
CIO 3200 to CIO 3799)

CS-series DeviceNet Area bits are allocated to Slaves
according to C200HW-CRW21-V1 DeviceNet Unit remote I/O
communications.

The following words are allocated to the CS-Series
DeviceNet Unit functioning as a master when fixed alloca-
tions are used for the CS1W-DRM21 DeviceNet Unit.

9-6 CS-series
DeviceNet Area in
Operation Manual

Internal I/O Area 4,800 (300 words): CIO 120000 to CIO 149915 (words CIO
1200 to CIO 1499)
37,504 (2,344 words): CIO 380000 to CIO 614315 (words
CIO 3800 to CIO 6143)

These bits in the CIO Area are used as work bits in program-
ming to control program execution. They cannot be used for
external I/O.

Work Area 8,192 bits (512 words): W00000 to W51115 (W000 to W511)
Controls the programs only. (I/O from external I/O terminals is
not possible.)

Note When using work bits in programming, use the bits in
the Work Area first before using bits from other areas.

9-14 Work Area in
Operation Manual

Holding Area 8,192 bits (512 words): H00000 to H51115 (H000 to H511)
Holding bits are used to control the execution of the program,
and maintain their ON/OFF status when the PLC is turned
OFF or the operating mode is changed.

9-15 Holding Area in
Operation Manual

Auxiliary Area Read only: 7,168 bits (448 words): A00000 to A44715 (words
A000 to A447)
Read/write: 8,192 bits (512 words): A44800 to A95915
(words A448 to A959)

Auxiliary bits are allocated specific functions.

9-16 Auxiliary Area in
Operation Manual

Temporary Area 16 bits (TR0 to TR15)
Temporary bits are used to temporarily store the ON/OFF
execution conditions at program branches.

9-17 TR (Temporary
Relay) Area in Opera-
tion Manual

Timer Area 4,096: T0000 to T4095 (used for timers only) 9-18 Timer Area in
Operation Manual

Counter Area 4,096: C0000 to C4095 (used for counters only) 9-19 Counter Area in
Operation Manual

Item Specification Reference

Fixed allocation 1 Outputs: CIO 3200 to CIO 3263
Inputs: CIO 3300 to CIO 3363

Fixed allocation 2 Outputs: CIO 3400 to CIO 3463
Inputs: CIO 3500 to CIO 3563

Fixed allocation 3 Outputs: CIO 3600 to CIO 3663
Inputs: CIO 3700 to CIO 3763

Setting Master to slave Slave to master

Fixed allocation 1 Outputs: CIO 3370 Inputs: CIO 3270

Fixed allocation 2 Outputs: CIO 3570 Inputs: CIO 3470

Fixed allocation 3 Outputs: CIO 3770 Inputs: CIO 3670
70

CPU Unit Specifications and Battery Replacement Section 3-5
DM Area 32K words: D00000 to D32767
Used as a general-purpose data area for reading and writing
data in word units (16 bits). Words in the DM Area maintain
their status when the PLC is turned OFF or the operating
mode is changed.

Internal Special I/O Unit DM Area: D20000 to D29599 (100
words × 96 Units)
Used to set parameters for Special I/O Units.

CPU Bus Unit DM Area: D30000 to D31599 (100 words × 16
Units)
Used to set parameters for CPU Bus Units.

Inner Board DM Area: D32000 to D32099
Used to set parameters for Inner Boards.

9-20 Data Memory
(DM) Area in Operation
Manual

EM Area 32K words per bank, 13 banks max.: E0_00000 to EC_32767
max.
Used as a general-purpose data area for reading and writing
data in word units (16 bits). Words in the EM Area maintain
their status when the PLC is turned OFF or the operating
mode is changed.

The EM Area is divided into banks, and the addresses can be
set by either of the following methods.
Changing the current bank using the EMBC(281) instruction
and setting addresses for the current bank.
Setting bank numbers and addresses directly.
EM data can be stored in files by specifying the number of
the first bank.

9-21 Extended Data
Memory (EM) Area in
Operation Manual

Data Registers DR0 to DR15
Store offset values for indirect addressing. One register is 16
bits (1 word).
CS1 CPU Units: Data registers used independently in each
task.
CS1-H CPU Units: Setting to use data registers either inde-
pendently in each task or to share them between tasks.

9-23 Data Registers in
Operation Manual

Index Registers IR0 to IR15
Store PLC memory addresses for indirect addressing. One
register is 32 bits (2 words).

Setting to use index registers either independently in each
task or to share them between tasks.

9-22 Index Registers in
Operation Manual

Task Flag Area 32 (TK0000 to TK0031)
Task Flags are read-only flags that are ON when the corre-
sponding cyclic task is executable and OFF when the corre-
sponding task is not executable or in standby status.

9-24 Task Flags in
Operation Manual

Trace Memory 40,000 words (trace data: 31 bits, 6 words) Programming Manual
(W394)

File Memory Memory Cards: Use OMRON HMC-EF@@@ Memory Cards.
(Commercially available compact flash memory cards can
not be used.)
EM file memory: Part of the EM Area can be converted to file
memory (MS-DOS format).

Programming Manual
(W394)

Item Specification Reference
71

CPU Unit Specifications and Battery Replacement Section 3-5
Function Specifications

Item Specification Reference

Constant cycle time 1 to 32,000 ms (Unit: 1 ms)
When a parallel processing mode is used, the cycle time
for executing instructions is constant.

Cycle time:10-4 Computing the
Cycle Time in Operation Manual

Constant cycle time: Program-
ming Manual (W394)

Cycle time monitoring Possible (Unit stops operating if the cycle is too long): 1 to
40,000 ms (Unit: 10 ms)
When a parallel processing mode is used, the instruction
execution cycle is monitored. CPU Unit operation will stop
if the peripheral servicing cycle time exceeds 2 s (fixed).

Cycle time:10-4 Computing the
Cycle Time in Operation Manual
Cycle time monitoring: Program-
ming Manual (W394)

I/O refreshing Cyclic refreshing, immediate refreshing, refreshing by
IORF(097).
IORF(097) refreshes I/O bits allocated to Basic I/O Units
and Special I/O Units.

The CPU BUS UNIT I/O REFRESH (DLNK(226)) instruc-
tion can be used to refresh bits allocated to CPU Bus Units
in the CIO and DM Areas.

I/O refreshing:10-4 Computing
the Cycle Time in Operation Man-
ual
I/O refresh methods: Program-
ming Manual (W394)

Timing of special
refreshing for CPU Bus
Units

Data links for Controller Link Units and SYSMAC LINK
Units, remote I/O for DeviceNet Units, and other special
refreshing for CPU Bus Units is performed at the following
times:
I/O refresh period and when the CPU BUS UNIT I/O
REFRESH (DLNK(226)) instruction is executed

I/O memory holding
when changing operat-
ing modes

Depends on the ON/OFF status of the IOM Hold Bit in the
Auxiliary Area.

I/O memory: SECTION 9 Memory
Areas in Operation Manual

Holding memory areas when
changing operating modes: Pro-
gramming Manual (W394)

Holding I/O memory: 9-2-3 Data
Area Properties in Operation
Manual

Load OFF All outputs on Output Units can be turned OFF when the
CPU Unit is operating in RUN, MONITOR, or PROGRAM
mode.

Load OFF: Programming Manual
(W394)

Timer/counter PV
refresh method

Binary only.

Note BCD is not supported.

Programming Manual (W394)

Input response time
setting

Time constants can be set for inputs from Basic I/O Units.
The time constant can be increased to reduce the influence
of noise and chattering or it can be decreased to detect
shorter pulses on the inputs.

Input response time: 10-4-6 I/O
Response Time in Operation
Manual
Input response settings: Pro-
gramming Manual (W394)

Startup mode setting Supported.

The CPU Unit will start in RUN mode if the PLC Setup is
set to use the Programming Console mode (default) and a
Programming Console is not connected.

Startup mode: Programming
Manual (W394)

Flash memory The user program and parameter area data (e.g., PLC
Setup) are always backed up automatically in flash mem-
ory.

72

CPU Unit Specifications and Battery Replacement Section 3-5
Memory Card functions Automatically reading pro-
grams (autoboot) from the
Memory Card when the
power is turned ON.

Supported Memory Cards and file memory:
3-2 File Memory in Operation
Manual and Programming Man-
ual (W394)
Automatic file transfer at startup
and file operations using CMND:
Programming Manual (W394)

Program replacement during
PLC operation

Supported Replacing the program with
CMND: Programming Manual
(W394)

Format in which data is
stored in Memory Card

User program: Program file
format
PLC Setup and other
parameters: Data file format
I/O memory: Data file format
(binary format), text format,
or CSV format

Data stored in the Memory Card:
Programming Manual (W394)

Functions for which Memory
Card read/write is supported

User program instructions,
Programming Devices
(including Programming
Consoles), Host Link com-
puters, AR Area control bits,
easy backup operation

Memory Card read/write opera-
tions: Programming Manual
(W394)

Filing Memory Card data and the EM (Extended Data Memory)
Area can be handled as files.

File memory: Programming Man-
ual (W394)

Debugging Control set/reset, differential monitoring, data tracing
(scheduled, each cycle, or when instruction is executed),
storing location generating error when a program error
occurs

Debugging, set/reset, differential
monitoring, data tracing: Pro-
gramming Manual (W394)

Online editing User programs can be overwritten in program-block units
when the CPU Unit is in MONITOR or PROGRAM mode.
This function is not available for block programming areas.
With the CX-Programmer, more than one program block
can be edited at the same time.

Note The following operations cannot be performed using
online editing.

• Changing function block definitions (variable tables or
algorithms)

• Inserting or deleting instances (Instance I/O parameters
and instructions not in instances can be changed.)

Operating modes: Programming
Manual (W394)

Program protection Overwrite protection: Set using DIP switch.
Copy protection: Password set using Programming Device.

Program protection: Program-
ming Manual (W394)

Error check User-defined errors (i.e., user can define fatal errors and
non-fatal errors)

The FPD(269) instruction can be used to check the execu-
tion time and logic of each programming block.
FAL and FALS instructions can be used to simulate errors.

Failure diagnosis: Programming
Manual (W394)

Fatal and nonfatal errors: 11-2-4
Error Processing Flowchart in
Operation Manual

User-defined errors: Program-
ming Manual (W394)

Error log Up to 20 errors are stored in the error log. Information
includes the error code, error details, and the time the error
occurred.
The CPU Unit can be set so that user-defined FAL errors
are not stored in the error log.

Error log: Programming Manual
(W394)

Item Specification Reference
73

CPU Unit Specifications and Battery Replacement Section 3-5
Serial communications Built-in peripheral port: Programming Device (including
Programming Console) connections, Host Links, NT Links

Built-in RS-232C port: Programming Device (excluding
Programming Console) connections, Host Links, no-proto-
col communications, NT Links

Serial communications systems:
2-5-1 Serial Communications
System in Operation Manual
Serial communications: Program-
ming Manual (W394)

Serial Communications Board (sold separately): Protocol
macros, Host Links, NT Links

Clock Provided on all models. Accuracy: ± 1 min. 30 s/mo. at
25°C (accuracy varies with the temperature)

Note Used to store the time when power is turned ON and
when errors occur.

Clock: Programming Manual
(W394)

Power OFF detection
time

10 to 25 ms (not fixed) Power OFF operation and power
OFF detection time: 10-3 Power
OFF Operation in Operation Man-
ual

Power OFF detection
delay time

0 to 10 ms (user-defined, default: 0 ms) Power OFF detection delay time:
Programming Manual (W394)

Memory protection Held Areas: Holding bits, contents of Data Memory and
Extended Data Memory, and status of the counter Comple-
tion Flags and present values.

Note If the IOM Hold Bit in the Auxiliary Area is turned ON,
and the PLC Setup is set to maintain the IOM Hold
Bit status when power to the PLC is turned ON, the
contents of the CIO Area, the Work Area, part of the
Auxiliary Area, timer Completion Flag and PVs,
Index Registers, and the Data Registers will be
saved.

Memory protection: 9-2-3 Data
Area Properties in Operation
Manual

Sending commands to
a Host Link computer

FINS commands can be sent to a computer connected via
the Host Link System by executing Network Communica-
tions Instructions from the PLC.

Host Links and non-solicited
communications: 2-5-2 Systems
in Operation Manual

Remote programming
and monitoring

Host Link communications can be used for remote pro-
gramming and remote monitoring through a Controller Link
System or Ethernet network.

Remote programming and moni-
toring: Programming Manual
(W394)
Controller Link 2-5-3 Communi-
cations Network System in Oper-
ation Manual

Three-level communi-
cations

Host Link communications can be used for remote pro-
gramming and remote monitoring from devices on net-
works up to two levels away (Controller Link Network or
Ethernet Network).

Host Links and FINS message
service: 2-5-2 Systems in Opera-
tion Manual

Storing comments in
CPU Unit

I/O comments can be stored in the CPU Unit in Memory
Cards or EM file memory.

I/O comments: CX-Programmer
User Manual

Program check Program checks are performed at the beginning of opera-
tion for items such as no END instruction and instruction
errors.
CX-Programmer can also be used to check programs.

Program check: Programming
Manual (W394)

Control output signals RUN output: The internal contacts will turn ON (close)
while the CPU Unit is operating.
For CS1-H (HB) CPU Units, these terminals are provided
only on the C200HW-PA204R and C200HW-PA209R
Power Supply Units.
For CJ1-H (HB) CPU Units, these terminals are provided
only on the CJ1W-PA205R Power Supply Units.

RUN output: Programming Man-
ual (W394)

Battery life CS1-H (FB) CPU Units: Battery Set: CS1W-BAT01
CJ1-H (FB) CPU Units: Battery Set: CPM2A-BAT01

Battery life and replacement
period: 12-2-1 Battery Replace-
ment in Operation Manual

Item Specification Reference
74

CPU Unit Specifications and Battery Replacement Section 3-5
3-5-2 General Specifications
CS1-H (FB) CPU Units

Self-diagnostics CPU errors (watchdog timer), I/O verification errors, I/O
bus errors, memory errors, and battery errors.

CPU, I/O bus, memory, and bat-
tery errors: 11-2-4 Error Process-
ing Flowchart in Operation
Manual

Other functions Storage of number of times power has been interrupted.
(Stored in A514.)

Number of power interruptions:
10-3 Power OFF Operation in
Operation Manual

Item Specifications

Power Supply
Unit

C200HW-PA204 C200HW-PA204S C200HW-PA204R C200HW-PA209R C200HW-PD024

Supply voltage 100 to 120 V AC or 200 to 240 V AC, 50/60 Hz 24 V DC

Operating volt-
age range

85 to 132 V AC or 170 to 264 V AC 19.2 to 28.8 V DC

Power consump-
tion

120 VA max. 180 VA max. 40 W max.

Inrush current 30 A max. 30 A max./100 to
120 V AC

40 A max./200 to
240 V AC

30 A max.

Output capacity 4.6 A, 5 V DC (including the CPU Unit power supply) 9 A, 5 V DC
(including the CPU
Unit power supply)

4.6 A, 5 V DC
(including the CPU
Unit power supply)

0.625 A, 26 V DC

Total: 30 W max.

0.625 A, 26 V DC
0.8 A, 24 V DC
Total: 30 W max.

0.625 A, 26 V DC

Total: 30 W max.

1.3 A, 26 V DC

Total: 45 W max.

0.625 A, 26 V DC

Total: 30 W max.

Output terminal
(service supply)

Not provided Provided.
At consumption of
less than 0.3 A,
24-V DC supply
will be +17%
/–11%; at 0.3 A or
greater, +10%
/–11% (lot 0197 or
later)

Not provided

RUN output
(See note 2.)

Not provided Contact configura-
tion: SPST-NO

Switch capacity:
250 V AC, 2A
(resistive load)
250 V AC, 0.5 A
(induction load),
24 V DC, 2A

Contact configura-
tion: SPST-NO

Switch capacity:
240 V AC, 2A
(resistive load)
120 V AC, 0.5 A
(induction load)
24 V DC, 2A
(resistive load)
24 V DC, 2 A
(induction load)

Not provided

Insulation resis-
tance

20 MΩ min. (at 500 V DC) between AC external and GR terminals (See note 1.) 20 MΩ min. (at
500 V DC)
between DC exter-
nal and GR termi-
nals (See note 1.)

Item Specification Reference
75

CPU Unit Specifications and Battery Replacement Section 3-5
Note 1. Disconnect the Power Supply Unit’s LG terminal from the GR terminal
when testing insulation and dielectric strength.

Testing the insulation and dielectric strength with the LG terminal and the
GR terminals connected will damage internal circuits in the CPU Unit.

2. Supported only when mounted to CPU Backplane.

3. The depth is 153 mm for the C200HW-PA209R Power Supply Unit.

CJ1-H (FB) CPU Units

Dielectric
strength

2,300 V AC 50/60 Hz for 1 min between AC external and GR terminals (See
note 1.)

Leakage current: 10 mA max.

1,000 V AC 50/
60 Hz for 1 min
between DC exter-
nal and GR termi-
nals, leakage
current: 10 mA
max.

1,000 V AC 50/60 Hz for 1 min between AC external and GR terminals (See
note 1.)
Leakage current: 10 mA max.

Noise immunity 2 kV on power supply line (conforming to IEC61000-4-4)

Vibration resis-
tance

10 to 57 Hz, 0.075-mm amplitude, 57 to 150 Hz, acceleration: 9.8 m/s2 in X, Y, and Z directions for 80
minutes (Time coefficient: 8 minutes ×coefficient factor 10 = total time 80 min.)

CPU Unit mounted to a DIN track: 2 to 55 Hz, 2.94 m/s2 in X, Y, and Z directions for 20 minutes

Shock resistance 147 m/s2 3 times each in X, Y, and Z directions (according to JIS 0041)

Ambient operat-
ing temperature

0 to 55°C

Ambient operat-
ing humidity

10% to 90% (with no condensation)

Atmosphere Must be free from corrosive gases.

Ambient storage
temperature

–20 to 75°C (excluding battery)

Grounding Less than 100 Ω
Enclosure Mounted in a panel.

Weight All models are each 6 kg max.

CPU Rack
dimensions
(mm)
(See note 3.)

2 slots: 198.5 × 157 × 123 (W x H x D)

3 slots: 260 × 130 × 123 (W x H x D)
5 slots: 330 × 130 × 123 (W x H x D)
8 slots: 435 × 130 × 123 (W x H x D)

10 slots:505 × 130 × 123 (W x H x D)

Safety measures Conforms to cULus and EC directives.

Item Specifications

Item Specifications
Power Supply Unit CJ1W-PA205R CJ1W-PA202 CJ1W-PD025
Supply voltage 100 to 240 V AC (wide-range), 50/60 Hz 24 V DC
Operating voltage
and frequency
ranges

85 to 264 V AC, 47 to 63 Hz 19.2 to 28.8 V DC

Power consump-
tion

100 VA max. 50 VA max. 50 W max.

Inrush current
(See note 3.)

At 100 to 120 V AC:
15 A/8 ms max. for cold start at
room temperature
At 200 to 240 V AC:
30 A/8 ms max. for cold start at
room temperature

At 100 to 120 V AC:
20 A/8 ms max. for cold start at
room temperature
At 200 to 240 V AC:
40 A/8 ms max. for cold start at
room temperature

At 24 V DC:
30 A/2 ms max. for cold
start at room temperature

Output capacity 5.0 A, 5 V DC (including supply to
CPU Unit)

2.8 A, 5 V DC (including supply to
CPU Unit)

5.0 A, 5 V DC (including
supply to CPU Unit)

0.8 A, 24 V DC
Total: 25 W max.

0.4 A, 24 V DC
Total: 14 W max.

0.8 A, 24 V DC
Total: 25 W max.
76

CPU Unit Specifications and Battery Replacement Section 3-5
Note 1. Disconnect the Power Supply Unit’s LG terminal from the GR terminal
when testing insulation and dielectric strength. Testing the insulation and
dielectric strength with the LG terminal and the GR terminals connected
will damage internal circuits in the CPU Unit.

2. Supported only when mounted to CPU Rack.

3. The inrush current is given for an AC Power Supply and cold start at room
temperature. The inrush control circuit for an AC Power Supply uses a
thermistor element with a low-temperature current control characteristic. If
the ambient temperature is high or the PLC is hot-started, the thermistor
will not be sufficiently cool, and the inrush current given in the table may
be exceeded by up to twice the given value. When selecting fuses or
breakers for external circuits, allow sufficient margin in shut-off perfor-
mance.

The inrush control circuit for an DC Power Supply uses a delay circuit with
a capacitor. If the PLC is hot-started after a short power-OFF time, the ca-
pacitor will not be charged, and the inrush current given in the table may
be exceeded by up to twice the given value.

Output terminal
(service supply)

Not provided

RUN output
(See note 2.)

Contact configuration: SPST-NO
Switch capacity: 250 V AC, 2 A
(resistive load)
120 V AC, 0.5 A (inductive load),
24 V DC, 2A (resistive load)
24 V DC, 2 A (inductive load)

Not provided.

Insulation resis-
tance

20 MΩ min. (at 500 V DC) between AC external and GR terminals
(See note 1.)

20 MΩ min. (at 500 V DC)
between DC external and
GR terminals (See note 1.)

Dielectric strength 2,300 V AC 50/60 Hz for 1 min between AC external and GR terminals (See note 1.)
Leakage current: 10 mA max.
1,000 V AC 50/60 Hz for 1 min between AC external and GR terminals (See note 1.)
Leakage current: 10 mA max.

Noise immunity 2 kV on power supply line (conforming to IEC61000-4-4)
Vibration resistance 10 to 57 Hz, 0.075-mm amplitude, 57 to 150 Hz, acceleration: 9.8 m/s2 in X, Y, and Z directions for

80 minutes (Time coefficient: 8 minutes ×coefficient factor 10 = total time 80 min.) (according to JIS
C0040)

Shock resistance 147 m/s2 3 times each in X, Y, and Z directions (Relay Output Unit: 100 m/s2) (according to JIS
C0041)

Ambient operating
temperature

0 to 55°C

Ambient operating
humidity

10% to 90% (with no condensation)

Atmosphere Must be free from corrosive gases.
Ambient storage
temperature

–20 to 70°C (excluding battery)

Grounding Less than 100 Ω
Enclosure Mounted in a panel.
Weight All models are each 5 kg max.
CPU Rack dimen-
sions

90.7 to 466.7 × 90 × 65 mm (W x H x D) (not including cables)
Note: W = a + b +20 x n + 31 x m + 14.7
a: Power Supply Unit: PA205R = 80; PA202 = 45; PD025 = 60
b: CPU Unit: CJ1-H = 62
n: Number of 32-point I/O Units or I/O Control Units
m: Number of other Units.

Safety measures Conforms to cULus and EC Directives.

Item Specifications
77

CPU Unit Specifications and Battery Replacement Section 3-5
3-5-3 Operation of Timer Instructions
There is an option called Apply the same spec as TO-2047 to T2048-4095 in
the PLC properties of CPU Units. This setting affects the operation of timers
as described in this section.

Selecting the Option
(Default)

If this option is selected, all timers will operate the same regardless of timer
number, as shown in the following table.

Timer Operation for Timer Numbers T0000 to T4095

Not Selecting the
Option

If this option is not selected, the refreshing of timer instructions with timer
numbers T0000 to T2047 will be different from those with timer numbers
T2048 to T4095, as given below. This behavior is the same for CPU Units that
do not support function blocks. (Refer to the descriptions of individual instruc-
tion in the CS/CJ Series Instruction Reference for details.)

Timer Operation for Timer Numbers T0000 to T2047

Timer Operation for Timer Numbers T2048 to T4095

Select the Apply the same spec as TO-2047 to T2048-4095 Option to ensure
consistent operation when using the timer numbers allocated by default to
function block variables (T3072 to T4095).

Refresh Description

When instruction is
executed

The PV is refreshed each time the instruction is executed.
If the PV is 0, the Completion Flag is turned ON. If it is not 0,
the Completion Flag is turned OFF.

When execution of all
tasks is completed

All PV are refreshed once each cycle.

Every 80 ms If the cycle time exceeds 80 ms, all PV are refreshed once
every 80 ms.

Refresh Description

When instruction is
executed

The PV is refreshed each time the instruction is executed.

If the PV is 0, the Completion Flag is turned ON. If it is not 0,
the Completion Flag is turned OFF.

When execution of all
tasks is completed

All PV are refreshed once each cycle.

Every 80 ms If the cycle time exceeds 80 ms, all PV are refreshed once
every 80 ms.

Refresh Description

When instruction is
executed

The PV is refreshed each time the instruction is executed.
If the PV is 0, the Completion Flag is turned ON. If it is not 0,
the Completion Flag is turned OFF

When execution of all
tasks is completed

PV are not updated.

Every 80 ms PV are not updated even if the cycle time exceeds 80 ms.
78

CPU Unit Specifications and Battery Replacement Section 3-5
3-5-4 Battery Replacement Procedure

CJ1-H (FB) CPU Units The battery replacement method is the same as for CJ1-H CPU Units.

CS1-H (FB) CPU Units The battery replacement method is the same as for CS1 CPU Units. There
are two battery connectors. Connect a new battery to the open connector first
and then remove the old battery from the other connector. This enables peri-
odic replacement of the battery while the CPU Unit is turned ON without a bat-
tery error being detected.

Note (1) If the old battery is removed from the CS1-H (FB) CPU Unit first without
power turned ON, an internal capacitor will back up memory even though
no battery is connected. The capacitor, however, will back up memory for
only 3 minutes after the power supply is turned OFF. Connect the new
battery within 3 minutes.

(2) If the old battery is removed from the CS1-H (FB) CPU Unit first while
power is turned ON, memory will be retained even though no battery is
connected.

(3) Both the top and bottom battery connectors are equivalent. It does not
matter which is used. Also, no problems will occur if a battery is connect-
ed to both connectors, e.g., the battery with the lower voltage will not re-
ceive a charge.

!Caution The battery can be replaced while the power is turned ON even if communica-
tions are being performed. In this case, always touch a grounded piece of
metal to discharge any static electricity from your body before touching any
part of the PLC. Whenever possible, we recommend turning OFF the power
supply to the CPU Unit before replacing the battery. Refer to the CS Series
Operation Manual for the battery replacement procedure (either with or with-
out power supplied).

Battery Life and
Replacement Period

The effective life of the battery is 5 years at 20 °C regardless of how long
power is supplied to the CPU Unit. The battery life will be reduced at higher
temperatures. The battery life will also depend on the ratio of time that power
is supplied. Refer to the Operation Manual for the CPU Unit for details. The
CPU Unit models to refer to are listed in the following table.

Replacement Batteries

CPU Unit Reference CPU Unit

CS1G-CPU@@H(FB) CS1G-CPU@@H

CS1H-CPU@@H(FB) CS1H-CPU@@H

CJ1G-CPU@@H(FB) CJ1G-CPU@@H

CPU Unit Replacement Battery Set

CS1G-CPU@@H(FB) CS1W-BAT01

CS1H-CPU@@H(FB)

CJ1G-CPU@@H(FB) CPM2A-BAT01
79

CPU Unit Specifications and Battery Replacement Section 3-5
80

Appendix A
Data Types

Basic Data Types

Note The TIMER and COUNTER data types cannot be used in ST language function blocks.

Derivative Data Types

Data type Content Size Range of values

BOOL Bit data 1 0, 1

INT Integer 16 −32,768 to 32,767

DINT Double integer 32 −2,147,483,648 to 2,147,483,647

LINT Long (8-byte) integer 64 −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

UINT Unsigned integer 16 0 to 65,535

UDINT Unsigned double integer 32 0 to 4,294,967,295

ULINT Unsigned long (8-byte)
integer

64 0 to 18,446,744,073,709,551,615

REAL Real number 32 −3.402823 × 1038 to −1.175494 × 10−38, 0,
1.175494 × 10−38 to 3.402823 × 1038

LREAL Long real number 64 −1.79769313486232 × 10308 to −2.22507385850720 × 10−308, 0,
2.22507385850720 × 10−308 to 1.79769313486232 × 10308

WORD 16-bit data 16 0 to 65,535

DWORD 32-bit data 32 0 to 4,294,967,295

LWORD 64-bit data 64 0 to 18,446,744,073,709,551,615

TIMER
(See note.)

Timer (See note.) Flag: 1 bit
PV: 16 bits

Timer number: 0 to 4095
Completion Flag: 0 or 1
PV: 0 to 65536 (binary refreshing only)

COUNTER
(See note.)

Counter (See note.) Flag: 1 bit
PV: 16 bits

Counter number: 0 to 4095
Completion Flag: 0 or 1
PV: 0 to 65536 (binary refreshing only)

Array 1-dimensional array; 32,000 elements max.
81

Data Types Appendix A
82

Appendix B
Structured Text Keywords

Operators

Note Restrictions in Data Types for Structured Text Programming

• Integers can be assigned only to the WORD, DWORD, INT, DINT, UINT, UDINT, and ULINT data types.
For example, if A is an INT, then A:=1 is acceptable. A syntax error will occur if anything other than an inte-
ger is assigned. For example, an error will occur for A:=2.5 if A is an INT.

• Real numbers (floating-point decimal) can be assigned only to the READ and LREAD data types. For
example, if A is a REAL, then A:=1.5 is acceptable. A syntax error will occur if anything other than a real
number is assigned. For example, an error will occur for A:=2 if A is an REAL.

• Contacts (TRUE/FALSE) can be assigned only to the BOOL data type. For example, if A is a BOOL, then
A:=FALSE is acceptable. A syntax error will occur if a contact is assigned to anything else. For example,
an error will occur for A:=FALSE if A is an INT.

• The same data type must be used in a single ST statement. For example, if A, B, and C are INT, then
A;=B+C is acceptable. A syntax error will occur if different data types are mixed. For example, an error will
occur for A;=B+C if A and B are INT but C is a LINT.

• The following type of data type conversion functions can be used in structured text.
Syntax: CurrentDataType_TO_NewDataType (VariableName)
Example: REAL_TO_INT (C)
The above example changes the data type of variable C from REAL to INT.

Operation Symbol Data types supported by operator CX-
Programmer
IEC support

Priority
1: Lowest

11: Highest

Parentheses and
brackets

(expression),
array[index]

--- Supported. 1

Function evaluation identifier
(operand_list)

--- Not supported. 2

Exponential ** --- Not supported. 3

Complement − --- Not supported. 4

Negation NOT BOOL, WORD, DWORD, LWORD Supported. 4

Multiplication * INT, DINT, UINT,UDINT, ULINT, REAL, LREAL Supported. 5

Division / INT, DINT, LINT, UNIT,UDINT, ULINT, REAL,
LREAL

Supported. 5

Remainder calculation MOD --- Not supported. 5

Addition + INT, DINT, LINT, UNIT,UDINT, ULINT, REAL,
LREAL

Supported. 6

Subtraction − INT, DINT, LINT, UNIT,UDINT, ULINT, REAL,
LREAL

Supported. 6

Comparisons <, >, <=, >= BOOL, INT, DINT, LINT, UINT, UDINT, ULINT,
WORD, DWORD, LWORD, REAL, LREAL

Supported. 7

Equality = BOOL, INT, DINT, LINT, UINT, UDINT, ULINT,
WORD, DWORD, LWORD, REAL, LREAL

Supported. 8

Non-equality <> BOOL, INT, DINT, LINT, UINT, UDINT, ULINT,
WORD, DWORD, LWORD, REAL, LREAL

Supported. 8

Boolean AND & BOOL, WORD, DWORD, LWORD Supported. 9

Boolean AND AND BOOL, WORD, DWORD, LWORD Supported. 9

Boolean exclusive OR XOR BOOL, WORD, DWORD, LWORD Supported. 10

Boolean OR OR BOOL, WORD, DWORD, LWORD Supported. 11
83

Structured Text Keywords Appendix B
The combinations of data types that can be converted are given in the following table.
(YES = Conversion possible, No = Conversion not possible.

Control Statements

FROM TO

BOOL INT DINT LINT UINT UDINT ULINT WORD DWORD LWORD REAL LREAL

BOOL No No No No No No No No No No No No

INT No No YES YES YES YES YES YES YES YES YES YES

DINT No YES No YES YES YES YES YES YES YES YES YES

LINT No YES YES No YES YES YES YES YES YES YES YES

UINT No YES YES YES No YES YES YES YES YES YES YES

UDINT No YES YES YES YES No YES YES YES YES YES YES

ULINT No YES YES YES YES YES No YES YES YES YES YES

WORD No YES YES YES YES YES YES No YES YES No No

DWORD No YES YES YES YES YES YES YES No YES No No

LWORD No YES YES YES YES YES YES YES YES No No No

REAL No YES YES YES YES YES YES No No No No YES

LREAL No YES YES YES YES YES YES No No No YES No

Control statement Function Example CS-Programmer IEC

Assignment Substitutes the results of the expres-
sion, variable, or value on the right
for the variable on the left.

A:=B; Supported

Function block call Calls a function block. FB_INST (augument_list) Not supported

RETURN Returns to the point from which a
function block was called.

RETURN; Not supported

IF/THEN/ELSIF/
ELSE/END_IF

Evaluates an expression when the
condition for it is true.

IF (condition_1) THEN
(expression 1)

ELSIF (condition_2) THEN
(expression 2)

ELSE
(expression 3)

END_IF;

Supported

CASE/ELSE/
END_CASE

Evaluates an express based on the
value of a variable.

CASE (variable) OF
1: (expression 1)
2: (expression 2)
3: (expression 3)

ELSE
(expression 4)

END_CASE;

Supported

FOR/TO/BY/DO/
END_FOR

Repeatedly evaluates an expression
according to the initial value, final
value, and increment.

FOR (identifier) := (initial_value)
TO (final_value) BY (increment)
DO

(expression)
END_FOR;

Supported

WHILE/DO/
END_WHILE

Repeatedly evaluates an expression
as long as a condition is true.

WHILE (condition) DO
(expression)

END_WHILE;

Supported

REPEAT/UNTIL/
END_REPEAT

Repeatedly evaluates an expression
until a condition is true.

REPEAT
(expression)

UNTIL (condition)
END_REPEAT;

Supported

EXIT Stops repeated processing. EXIT; Not supported

End of statement Ends a statement. ; Supported

Comment All text between (* and *) is treated
as a comment.

(*comment*) Supported
84

Appendix C
External Variables

Classification Name External variable in
CX-Programmer IEC

Data type Address

Conditions Flags Greater Than or Equals (GE) Flag P_GE BOOL CF00

Not Equals (NE) Flag P_NE BOOL CF001

Less Than or Equals (LE) Flag P_LE BOOL CF002

Instruction Execution Error (ER) Flag P_ER BOOL CF003

Carry (CY) Flag P_CY BOOL CF004

Greater Than (GT) Flag P_GT BOOL CF005

Equals (EQ) Flag P_EQ BOOL CF006

Less Than (LT) Flag P_LT BOOL CF007

Negative (N) Flag P_N BOOL CF008

Overflow (OF) Flag P_OF BOOL CF009

Underflow (UF) Flag P_UF BOOL CF010

Access Error Flag P_AER BOOL CF011

Always OFF Flag P_Off BOOL CF114

Always ON Flag P_On BOOL CF113

Clock Pulses 0.02 second clock pulse bit P_0_02s BOOL CF103

0.1 second clock pulse bit P_0_1s BOOL CF100

0.2 second clock pulse bit P_0_2s BOOL CF101

1 minute clock pulse bit P_1mim BOOL CF104

1.0 second clock pulse bit P_1s BOOL CF102

Auxiliary Area Flags/
Bits

First Cycle Flag P_First_Cycle BOOL A200.11

Step Flag P_Step BOOL A200.12

First Task Execution Flag P_First_Cycle_Task BOOL A200.15

Maximum Cycle Time P_Max_Cycle_Time UDINT A262

Present Scan Time P_Cycle_Time_Value UDINT A264

Cycle Time Error Flag P_Cycle_Time_Error BOOL A401.08

Low Battery Flag P_Low_Battery BOOL A402.04

I/O VerIFication Error Flag P_IO_Verify_Error BOOL A402.09

Output OFF Bit P_Output_Off_Bit BOOL A500.15
85

External Variables Appendix C
86

Appendix D
Instruction Support and Operand Restrictions

The tables in this appendix tell which instructions can be used in function blocks and provide any restrictions
that apply to operands, including the use of array variables and AT settings.

Instruction Support
• Instructions that are not supported by the CX-Programmer IEC or the CS1-H (FB)/CJ1-H (FB) either in

function blocks or the main program are given as Not supported in the Symbol column.

• Instructions that are not supported by the CX-Programmer IEC or the CS1-H (FB)/CJ1-H (FB) in function
blocks but that can be used in the main program are given as Not supported in function blocks in the Sym-
bol column.

Restrictions on Operands
• Operands that specify the first or last of multiple words and that require specification of array variables are

indicated as follows in the Array required? column:
Yes: An array variable must be specified for the operand for the first or last oF multiple words.
---: Operands that do not require specification of array variables.

Note When specifying the first or last word of multiple words for an instruction operand, I/O parameters can-
not be used to pass data to or from I/O variables. Internal array variables must be used. For multiword
operands, an array variable must be prepared in advance with the required number of elements and the
data must be set for the array in the function block definition. The first or last element in the array vari-
able is then specified for the operand to set the first or last word.

• Any operands for which an AT setting is required for an I/O memory address on a remote node are indi-
cated as Specify address at remote node with AT setting in the Array required? column.
87

Instruction Support and Operand Restrictions Appendix D
Instruction Functions

Sequence Input Instructions
*1: Not supported by CS1D
*1: CS1-H, CJ1-H, CJ1M, or CS1D only
*1: CS1-H, CJ1-H, or CJ1M only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

LOAD LD
@LD
%LD

!LD (*1)
!@LD (*1)
!%LD (*1)

B: Bit ---

LOAD NOT LD NOT
!LD NOT (*1)

@LD NOT (*2)
%LD NOT (*2)
!@LD NOT (*3)

!%LD NOT (*3)

B: Bit ---

AND AND
@AND

%AND
!AND (*1)
!@AND (*1)

!%AND (*1)

B: Bit ---

AND NOT AND NOT

!AND NOT
(*1)
@AND NOT (*2)

%AND NOT (*2)
!@AND NOT
(*3)

!%AND NOT
(*3)

B: Bit ---

OR OR
@OR
%OR

!OR (*1)
!@OR (*1)
!%OR (*1)

B: Bit ---

OR NOT OR NOT
!OR NOT(*1)
@OR NOT (*2)

%OR NOT (*2)
!@OR NOT (*3)
!%OR NOT (*3)

B: Bit ---

Bus bar

Starting point of block

Bus bar

Starting point of block

Bus bar

Bus bar
88

Instruction Support and Operand Restrictions Appendix D
AND LOAD AND LD --- ---

OR LOAD OR LD --- ---

NOT NOT 520 B: Bit ---

CONDITION ON UP 521 B: Bit ---

CONDITION OFF DOWN 522 B: Bit ---

BIT TEST LD TST 350 S: Source word ---

N: Bit number ---

BIT TEST LD TSTN 351 S: Source word ---

N: Bit number ---

BIT TEST AND TST 350 S: Source word ---

N: Bit number ---

BIT TEST AND TSTN 351 S: Source word ---

N: Bit number ---

BIT TEST OR TST 350 S: Source word ---

N: Bit number ---

BIT TEST OR TSTN 351 S: Source word ---

N: Bit number ---

*1: Not supported by CS1D
*1: CS1-H, CJ1-H, CJ1M, or CS1D only
*1: CS1-H, CJ1-H, or CJ1M only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

Logic block Logic block

Logic block

Logic block

NOT

UP

DOWN

TST

S

N

TSTN

S

N

AND TST

S

N

AND TSTN

S

N

TST

S

N

TSTN

S

N

89

Instruction Support and Operand Restrictions Appendix D
Sequence Output Instructions
*1: CS1-H, CJ1-H, CJ1M, or CS1D only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

OUTPUT OUT
!OUT

B: Bit ---

OUTPUT NOT OUT NOT

!OUT NOT

B: Bit ---

KEEP KEEP

!KEEP

011 B: Bit ---

DIFFERENTIATE UP DIFU

!DIFU

013 B: Bit ---

DIFFERENTIATE DOWN DIFD
!DIFD

014 B: Bit ---

SET SET

@SET
%SET
!SET

!@SET
!%SET

B: Bit ---

RESET RSET
@RSET
%RSET

!RSET
!@RSET
!%RSET

B: Bit ---

MULTIPLE BIT SET SETA
@SETA

530 D: Beginning word ---

N1: Beginning bit ---

N2: Number of bits ---

MULTIPLE BIT RESET RSTA
@RSTA

531 D: Beginning word ---

N1: Beginning bit ---

N2: Number of bits ---

SINGLE BIT SET
*1

SETB

@SETB
!SETB

532 D: Word address ---

N: Bit number ---

KEEP

B

S (Set)

R (Reset)

DIFU

B

DIFD

B

SET

B

RSET

B

SETA

D

N1

N2

RSTA

D

N1

N2

SETB

D

N

90

Instruction Support and Operand Restrictions Appendix D
Sequence Control Instructions

Timer and Counter Instructions

SINGLE BIT RESET
*1

RSTB
@RSTB

!RSTB

533 D: Word address ---

N: Bit number ---

SINGLE BIT OUTPUT
*1

OUTB

@OUTB
!OUTB

534 D: Word address ---

N: Bit number ---

Instruction Mnemonic Function
code

Symbol Operands Array
required?

END END 001 --- ---

NO OPERATION NOP 000 --- --- ---

INTERLOCK IL 002 B: Bit ---

INTERLOCK CLEAR ILC 003 B: Bit ---

JUMP JMP 004 Not supported in func-
tion blocks

N: Jump number ---

JUMP END JME 005 Not supported in func-
tion blocks

N: Jump number ---

CONDITIONAL JUMP CJP 510 Not supported in func-
tion blocks

N: Jump number ---

CONDITIONAL JUMP CJPN 511 Not supported in func-
tion blocks

N: Jump number ---

MULTIPLE JUMP JMP0 515 Not supported in func-
tion blocks

--- ---

MULTIPLE JUMP END JME0 516 Not supported in func-
tion blocks

--- ---

FOR-NEXT LOOPS FOR 512 N: Number of loops ---

BREAK LOOP BREAK 514 --- ---

FOR-NEXT LOOPS NEXT 513 --- ---

*1: CS1-H, CJ1-H, CJ1M, or CS1D only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

TIMER TIM

(BCD)

Not supported N: Timer number ---

S: Set value ---

TIMX

(BIN)
*1

550 N: Timer number ---

S: Set value ---

*1: CS1-H, CJ1-H, CJ1M, or CS1D only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

RSTB

D

N

OUTB

D

N

END

IL

ILC

FOR

N

BREAK

NEXT

TIMX

N

S

91

Instruction Support and Operand Restrictions Appendix D
HIGH-SPEED TIMER TIMH
(BCD)

015 Not supported N: Timer number ---

S: Set value ---

TIMHX
(BIN)

*1

551 N: Timer number ---

S: Set value ---

ONE-MS TIMER TMHH
(BCD)

540 Not supported N: Timer number ---

S: Set value ---

TMHHX
(BIN)

*1

552 N: Timer number ---

S: Set value ---

ACCUMULATIVE TIMER TTIM

(BCD)

087 Not supported N: Timer number ---

S: Set value ---

TTIMX

(BIN)
*1

555 N: Timer number ---

S: Set value ---

LONG TIMER TIML
(BCD)

542 Not supported D1: Completion Flag ---

D2: PV word ---

S: SV word ---

TIMLX

(BIN)
*1

553 D1: Completion Flags ---

D2: PV word ---

S: SV word ---

MULTI-OUTPUT TIMER MTIM
(BCD)

543 Not supported D1: Completion Flags ---

D2: PV word ---

S: 1st SV word ---

MTIMX
(BIN)

*1

554 D1: Completion Flags ---

D2: PV word ---

S: 1st SV word ---

COUNTER CNT

(BCD)

Not supported N: Counter number ---

S: Set value ---

CNTX

(BIN)
*1

546 N: Counter number ---

S: Set value ---

REVERSIBLE COUNTER CNTR
(BCD)

012 Not supported N: Counter number ---

S: Set value ---

CNTRX
(BIN)
*1

548 N: Counter number ---

S: Set value ---

*1: CS1-H, CJ1-H, CJ1M, or CS1D only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

TIMHX

N

S

TMHHX

N

S

TTIMX

N

S

Timer input

Reset input

TIMLX

D1

D2

S

MTIMX

D1

D2

S

CNTX

N

S

Count input

Reset input

CNTRX

N

S

Increment input

Decrement input

Reset input
92

Instruction Support and Operand Restrictions Appendix D
Comparison Instructions

RESET TIMER/
COUNTER

CNR
@CNR

(BCD)

545 Not supported N1: 1st number in range ---

N2: Last number in range ---

CNRX
@CNRX

(BIN)
*1

547 N1: 1st number in range ---

N2: Last number in range ---

*1: CS1-H, CJ1-H, CJ1M, or CS1D only

*2: CJ1M only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

Symbol Comparison
(Unsigned)

LD,AND, OR
+

=, <>, <, <=,
>, >=

300 (=)
305 (<>)

310 (<)
315 (<=)
320 (>)

325 (>=)

S1: Comparison data 1 ---

S2: Comparison data 2 ---

Symbol Comparison (Dou-
ble-word, unsigned)

LD,AND, OR
+
=, <>, <, <=,
>, >=
+

L

301 (=)
306 (<>)

311 (<)
316 (<=)
321 (>)

326 (>=)

--- S1: Comparison data 1 ---

S2: Comparison data 2 ---

Symbol Comparison
(Signed)

LD,AND, OR
+
=, <>, <, <=,
>, >=
+
S

302 (=)
307 (<>)

312 (<)
317 (<=)
322 (>)

327 (>=)

--- S1: Comparison data 1 ---

S2: Comparison data 2 ---

Symbol Comparison (Dou-
ble-word, signed)

LD,AND, OR
+
=, <>, <, <=,
>, >=
+
SL

303 (=)

308 (<>)
313 (<)
318 (<=)

323 (>)
328 (>=)

--- S1: Comparison data 1 ---

S2: Comparison data 2 ---

*1: CS1-H, CJ1-H, CJ1M, or CS1D only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

CNRX

N1

N2

Symbol, option

S1

S2

Using LD:

Symbol, option

S1

S2

Using AND:

Symbol, option

S1

S2

Using OR:
93

Instruction Support and Operand Restrictions Appendix D
UNSIGNED COMPARE CMP

!CMP

020 S1: Comparison data 1 ---

S2: Comparison data 2 ---

DOUBLE UNSIGNED
COMPARE

CMPL 060 S1: Comparison data 1 ---

S2: Comparison data 2 ---

SIGNED BINARY COM-
PARE

CPS
!CPS

114 S1: Comparison data 1 ---

S2: Comparison data 2 ---

DOUBLE SIGNED
BINARY COMPARE

CPSL 115 S1: Comparison data 1 ---

S2: Comparison data 2 ---

TABLE
COMPARE

TCMP
@TCMP

085 S: Source data ---

T: 1st word of table Yes

R: Result word ---

MULTIPLE

COMPARE

MCMP

@MCMP

019 S1: 1st word of set 1 Yes

S2: 1st word of set 2 Yes

R: Result word

UNSIGNED BLOCK

COMPARE

BCMP

@BCMP

068 S: Source data ---

T: 1st word of table Yes

R: Result word ---

EXPANDED BLOCK COM-
PARE
*2

BCMP2
@BCMP2

502 S: Source data ---

T: 1st word of block ---

R: Result word ---

AREA RANGE COMPARE
*1

ZCP 088 CD: Compare data
(1 word)

LL: Lower limit of range ---

UL: Upper limit of range ---

*1: CS1-H, CJ1-H, CJ1M, or CS1D only
*2: CJ1M only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

CMP

S1

S2

CMPL

S1

S2

CPS

S1

S2

CPSL

S1

S2

TCMP

S

T

R

MCMP

S1

S2

R

BCMP

S

T

R

BCMP2

S

T

R

ZCP

CD

LL

UL
94

Instruction Support and Operand Restrictions Appendix D
Data Movement Instructions

DOUBLE AREA RANGE
COMPARE
*1

ZCPL 116 CD: Compare data
(2 words)

LL: Lower limit of range ---

UL: Upper limit of range ---

Instruction Mnemonic Function
code

Symbol Operands Array
required?

MOVE MOV

@MOV
!MOV
!@MOV

021 S: Source ---

D: Destination ---

DOUBLE MOVE MOVL

@MOVL

498 S: 1st source word ---

D: 1st destination word ---

MOVE NOT MVN
@MVN

022 S: Source ---

D: Destination ---

DOUBLE MOVE NOT MVNL
@MVNL

499 S: 1st source word ---

D: 1st destination word ---

MOVE BIT MOVB
@MOVB

082 S: Source word or data ---

C: Control word ---

D: Destination word ---

MOVE DIGIT MOVD

@MOVD

083 S: Source word or data ---

C: Control word ---

D: Destination word ---

MULTIPLE BIT TRANS-
FERÅ@

XFRB

@XFRB

062 C: Control word ---

S: 1st source word Yes

D: 1st destination word Yes

BLOCK
TRANSFER

XFER
@XFER

070 N: Number of words ---

S: 1st source word Yes

D: 1st destination word Yes

*1: CS1-H, CJ1-H, CJ1M, or CS1D only
*2: CJ1M only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

ZCPL

CD

LL

UL

MOV

S

D

MOVL

S

D

MVN

S

D

MVNL

S

D

MOVB

S

C

D

MOVD

S

C

D

XFRB

C

S

D

XFER

N

S

D

95

Instruction Support and Operand Restrictions Appendix D
Data Shift Instructions

BLOCK SET BSET

@BSET

071 S: Source word ---

St: Starting word Yes

E: End word Yes

DATA EXCHANGE XCHG
@XCHG

073 E1: 1st exchange word ---

E2: Second exchange
word

DOUBLE DATA EXCHANGE XCGL
@XCGL

562 E1: 1st exchange word ---

E2: Second exchange
word

SINGLE WORD DISTRIB-
UTE

DIST
@DIST

080 S: Source word ---

Bs: Destination base
address

Yes

Of: Offset ---

DATA COLLECT COLL
@COLL

081 Bs: Source base address Yes

Of: Offset ---

D: Destination word ---

MOVE TO

REGISTER

MOVR

@MOVR

560 Not supported in func-
tion blocks

S: Source (desired word
orbit)

D: Destination (Index Reg-
ister)

MOVE TIMER/ COUNTER
PV TO REGISTER

MOVRW
@MOVRW

561 Not supported in func-
tion blocks

S: Source (desired TC
number)

D: Destination (Index Reg-
ister)

Instruction Mnemonic Function
code

Symbol Operands Array
required?

SHIFT REGISTER SFT 010 St: Starting word Yes

E: End word Yes

REVERSIBLE SHIFT REG-
ISTER

SFTR
@SFTR

084 C: Control word ---

St: Starting word Yes

E: End word Yes

Instruction Mnemonic Function
code

Symbol Operands Array
required?

BSET

S

St

E

XCHG

E1

E2

XCGL

E1

E2

DIST

S

Bs

Of

COLL

Bs

Of

D

SFT

St

E

Data input

Shift input

Reset input

SFTR

C

St

E

96

Instruction Support and Operand Restrictions Appendix D
ASYNCHRONOUS SHIFT
REGISTER

ASFT

@ASFT

017 C: Control word ---

St: Starting word Yes

E: End word Yes

WORD SHIFT WSFT
@WSFT

016 S: Source word

St: Starting word Yes

E: End word Yes

ARITHMETIC SHIFT LEFT ASL
@ASL

025 Wd: Word ---

DOUBLE SHIFT LEFT ASLL

@ASLL

570 Wd: Word ---

ARITHMETIC SHIFT RIGHT ASR
@ASR

026 Wd: Word ---

DOUBLE SHIFT RIGHT ASRL

@ASRL

571 Wd: Word ---

ROTATE LEFT ROL
@ROL

027 Wd: Word ---

DOUBLE ROTATE LEFT ROLL

@ROLL

572 Wd: Word ---

ROTATE LEFT WITHOUT
CARRY

RLNC
@RLNC

574 Wd: Word ---

DOUBLE ROTATE LEFT
WITHOUT CARRY

RLNL

@RLNL

576 Wd: Word ---

ROTATE RIGHT ROR
@ROR

028 Wd: Word ---

DOUBLE ROTATE RIGHT RORL

@RORL

573 Wd: Word ---

ROTATE RIGHT WITHOUT
CARRY

RRNC
@RRNC

575 Wd: Word ---

DOUBLE ROTATE RIGHT
WITHOUT CARRY

RRNL

@RRNL

577 Wd: Word ---

Instruction Mnemonic Function
code

Symbol Operands Array
required?

ASFT

C

St

E

WSFT

S

St

E

ASL

Wd

ASLL

Wd

ASR

Wd

ASRL

Wd

ROL

Wd

ROLL

Wd

RLNC

Wd

RLNL

Wd

ROR

Wd

RORL

Wd

RRNC

Wd

RRNL

Wd
97

Instruction Support and Operand Restrictions Appendix D
Increment/Decrement Instructions

ONE DIGIT SHIFT LEFT SLD

@SLD

074 St: Starting word Yes

E: End word Yes

ONE DIGIT SHIFT RIGHT SRD
@SRD

075 St: Starting word Yes

E: End word Yes

SHIFT N-BIT DATA LEFT NSFL
@NSFL

578 D: Beginning word for shift ---

C: Beginning bit ---

N: Shift data length ---

SHIFT N-BIT DATA RIGHT NSFR
@NSFR

579 D: Beginning word for shift ---

C: Beginning bit ---

N: Shift data length ---

SHIFT N-BITS LEFT NASL
@NASL

580 D: Shift word ---

C: Control word ---

DOUBLE SHIFT N-BITS
LEFT

NSLL

@NSLL

582 D: Shift word ---

C: Control word ---

SHIFT N-BITS RIGHT NASR
@NASR

581 D: Shift word ---

C: Control word ---

DOUBLE SHIFT N-BITS
RIGHT

NSRL
@NSRL

583 D: Shift word ---

C: Control word ---

Instruction Mnemonic Function
code

Symbol Operands Array
required?

INCREMENT BINARY ++
@++

590 Wd: Word ---

DOUBLE INCREMENT
BINARY

++L

@++L

591 Wd: Word ---

DECREMENT BINARY --
@--

592 Wd: Word ---

Instruction Mnemonic Function
code

Symbol Operands Array
required?

SLD

St

E

SRD

St

E

NSFL

D

C

N

NSFR

D

C

N

NASL

D

C

NSLL

D

C

NASR

D

C

NSRL

D

C

+ +

Wd

++L

Wd

--

Wd
98

Instruction Support and Operand Restrictions Appendix D
Symbol Math Instructions

DOUBLE DECREMENT
BINARY

--L

@--L

593 Wd: 1st word ---

INCREMENT BCD ++B
@++B

594 Wd: Word ---

DOUBLE INCREMENT
BCD

++BL

@++BL

595 Wd: 1st word ---

DECREMENT BCD --B
@--B

596 Wd: Word ---

DOUBLE DECREMENT
BCD

--BL

@--BL

597 Wd: 1st word ---

Instruction Mnemonic Function
code

Symbol Operands Array
required?

SIGNED BINARY ADD
WITHOUT CARRY

+
@+

400 Au: Augend word ---

Ad: Addend word ---

R: Result word ---

DOUBLE SIGNED BINARY
ADD WITHOUT CARRY

+L
@+L

401 Au: 1st augend word ---

Ad: 1st addend word ---

R: 1st result word ---

SIGNED BINARY ADD
WITH CARRY

+C

@+C

402 Au: Augend word ---

Ad: Addend word ---

R: Result word ---

DOUBLE SIGNED BINARY
ADD WITH CARRY

+CL

@+CL

403 Au: 1st augend word ---

Ad: 1st addend word ---

R: 1st result word ---

BCD ADD
WITHOUT CARRY

+B
@+B

404 Au: Augend word ---

Ad: Addend word ---

R: Result word ---

Instruction Mnemonic Function
code

Symbol Operands Array
required?

--L

Wd

++B

Wd

++BL

Wd

--B

Wd

--BL

Wd

+

Au

Ad

R

+L

Au

Ad

R

+C

Au

Ad

R

+CL

Au

Ad

R

+B

Au

Ad

R

99

Instruction Support and Operand Restrictions Appendix D
DOUBLE BCD ADD WITH-
OUT CARRY

+BL

@+BL

405 Au: 1st augend word ---

Ad: 1st addend word ---

R: 1st result word ---

BCD ADD WITH CARRY +BC
@+BC

406 Au: Augend word ---

Ad: Addend word ---

R: Result word ---

DOUBLE BCD ADD WITH
CARRY

+BCL
@+BCL

407 Au: 1st augend word ---

Ad: 1st addend word ---

R: 1st result word ---

SIGNED BINARY SUB-
TRACT WITHOUT CARRY

-
@-

410 Mi: Minuend word ---

Su: Subtrahend word ---

R: Result word ---

DOUBLE SIGNED BINARY
SUBTRACT WITHOUT
CARRY

-L
@-L

411 Mi: Minuend word ---

Su: Subtrahend word ---

R: Result word ---

SIGNED BINARY SUB-
TRACT WITH CARRY

-C

@-C

412 Mi: Minuend word ---

Su: Subtrahend word ---

R: Result word ---

DOUBLE SIGNED BINARY
WITH CARRY

-CL
@-CL

413 Mi: Minuend word ---

Su: Subtrahend word ---

R: Result word ---

BCD SUBTRACT WITH-
OUT CARRY

-B
@-B

414 Mi: Minuend word ---

Su: Subtrahend word ---

R: Result word ---

DOUBLE BCD SUB-
TRACT WITHOUT CARRY

-BL
@-BL

415 Mi: 1st minuend word ---

Su: 1st subtrahend word ---

R: 1st result word ---

Instruction Mnemonic Function
code

Symbol Operands Array
required?

+BL

Au

Ad

R

+BC

Au

Ad

R

+BCL

Au

Ad

R

-

Mi

Su

R

-L

Mi

Su

R

-C

Mi

Su

R

-CL

Mi

Su

R

-B

Mi

Su

R

-BL

Mi

Su

R

100

Instruction Support and Operand Restrictions Appendix D
BCD SUBTRACT WITH
CARRY

-BC

@-BC

416 Mi: Minuend word ---

Su: Subtrahend word ---

R: Result word ---

DOUBLE BCD SUB-
TRACT WITH CARRY

-BCL
@-BCL

417 Mi: 1st minuend word ---

Su: 1st subtrahend word ---

R: 1st result word ---

SIGNED BINARY MULTI-
PLY

*
@*

420 Md: Multiplicand word ---

Mr: Multiplier word ---

R: Result word ---

DOUBLE SIGNED BINARY
MULTIPLY

*L
@*L

421 Md: 1st multiplicand word ---

Mr: 1st multiplier word ---

R: 1st result word ---

UNSIGNED BINARY MUL-
TIPLY

*U
@*U

422 Md: Multiplicand word ---

Mr: Multiplier word ---

R: Result word ---

DOUBLE UNSIGNED
BINARY
MULTIPLY

*UL

@*UL

423 Md: 1st multiplicand word ---

Mr: 1st multiplier word ---

R: 1st result word ---

BCD MULTIPLY *B
@*B

424 Md: Multiplicand word ---

Mr: Multiplier word ---

R: Result word ---

DOUBLE BCD MULTIPLY *BL
@*BL

425 Md: 1st multiplicand word ---

Mr: 1st multiplier word ---

R: 1st result word ---

SIGNED BINARY DIVIDE /
@/

430 Dd: Dividend word ---

Dr: Divisor word ---

R: Result word Yes

Instruction Mnemonic Function
code

Symbol Operands Array
required?

-BC

Mi

Su

R

-BCL

Mi

Su

R

*

Md

Mr

R

*L

Md

Mr

R

*U

Md

Mr

R

*UL

Md

Mr

R

*B

Md

Mr

R

*BL

Md

Mr

R

/

Dd

Dr

R

101

Instruction Support and Operand Restrictions Appendix D
Conversion Instructions

DOUBLE SIGNED BINARY
DIVIDE

/L

@/L

431 Dd: 1st dividend word ---

Dr: 1st divisor word ---

R: 1st result word Yes

UNSIGNED BINARY
DIVIDE

/U
@/U

432 Dd: Dividend word ---

Dr: Divisor word ---

R: Result word Yes

DOUBLE UNSIGNED
BINARY DIVIDE

/UL
@/UL

433 Dd: 1st dividend word ---

Dr: 1st divisor word ---

R: 1st result word Yes

BCD DIVIDE /B
@/B

434 Dd: Dividend word ---

Dr: Divisor word ---

R: Result word Yes

DOUBLE BCD DIVIDE /BL
@/BL

435 Dd: 1st dividend word ---

Dr: 1st divisor word ---

R: 1st result word Yes

Instruction Mnemonic Function
code

Symbol Operands Array
required?

BCD-TO-BINARY BIN

@BIN

023 S: Source word ---

R: Result word ---

DOUBLE BCD-TO-DOU-
BLE BINARY

BINL

@BINL

058 S: 1st source word ---

R: 1st result word ---

BINARY-TO-BCD BCD
@BCD

024 S: Source word ---

R: Result word ---

DOUBLE BINARY-TO-
DOUBLE BCD

BCDL
@BCDL

059 S: 1st source word ---

R: 1st result word ---

Instruction Mnemonic Function
code

Symbol Operands Array
required?

/L

Dd

Dr

R

/U

Dd

Dr

R

/UL

Dd

Dr

R

/B

Dd

Dr

R

/BL

Dd

Dr

R

BIN

S

R

BINL

S

R

BCD

S

R

BCDL

S

R

102

Instruction Support and Operand Restrictions Appendix D
2’S COMPLEMENT NEG

@NEG

160 S: Source word ---

R: Result word ---

DOUBLE 2’S COMPLE-
MENT

NEGL
@NEGL

161 S: 1st source word ---

R: 1st result word ---

16-BIT TO 32-BIT SIGNED
BINARY

SIGN
@SIGN

600 S: Source word ---

R: 1st result word ---

DATA DECODER MLPX
@MLPX

076 S: Source word ---

C: Control word ---

R: 1st result word Yes

DATA ENCODER DMPX
@DMPX

077 S: 1st source word Yes

R: Result word ---

C: Control word ---

ASCII CONVERT ASC

@ASC

086 S: Source word Yes

Di: Digit designator ---

D: 1st destination word Yes

ASCII TO HEX HEX
@HEX

162 S: 1st source word Yes

Di: Digit designator ---

D: Destination word Yes

COLUMN TO LINE LINE
@LINE

063 S: 1st source word Yes

N: Bit number ---

D: Destination word ---

LINE TO COLUMN COLM
@COLM

064 S: Source word ---

D: 1st destination word Yes

N: Bit number ---

SIGNED BCD-TO-BINARY BINS
@BINS

470 C: Control word ---

S: Source word ---

D: Destination word ---

Instruction Mnemonic Function
code

Symbol Operands Array
required?

NEG

S

R

NEGL

S

R

SIGN

S

R

MLPX

S

C

R

DMPX

S

R

C

ASC

S

Di

D

HEX

S

Di

D

LINE

S

N

D

COLM

S

D

N

BINS

C

S

D

103

Instruction Support and Operand Restrictions Appendix D
Logic Instructions

DOUBLE SIGNED BCD-
TO-BINARY

BISL

@BISL

472 C: Control word ---

S: 1st source word ---

D: 1st destination word ---

SIGNED BINARY-TO-BCD BCDS
@BCDS

471 C: Control word ---

S: Source word ---

D: Destination word ---

DOUBLE SIGNED
BINARY-TO-BCD

BDSL
@BDSL

473 C: Control word ---

S: 1st source word ---

D: 1st destination word ---

Instruction Mnemonic Function
code

Symbol Operand Array
required?

LOGICAL AND ANDW
@ANDW

034 I1: Input 1 ---

I2: Input 2 ---

R: Result word ---

DOUBLE LOGICAL AND ANDL
@ANDL

610 I1: Input 1 ---

I2: Input 2 ---

R: Result word ---

LOGICAL OR ORW

@ORW

035 I1: Input 1 ---

I2: Input 2 ---

R: Result word ---

DOUBLE LOGICAL OR ORWL

@ORWL

611 I1: Input 1 ---

I2: Input 2 ---

R: Result word ---

EXCLUSIVE OR XORW
@XORW

036 I1: Input 1 ---

I2: Input 2 ---

R: Result word ---

Instruction Mnemonic Function
code

Symbol Operands Array
required?

BISL

C

S

D

BCDS

C

S

D

BDSL

C

S

D

ANDW

l1

l2

R

ANDL

l1

l2

R

ORW

l1

l2

R

ORWL

l1

l2

R

XORW

l1

l2

R

104

Instruction Support and Operand Restrictions Appendix D
Special Math Instructions

DOUBLE EXCLUSIVE OR XORL

@XORL

612 I1: Input 1 ---

I2: Input 2 ---

R: Result word ---

EXCLUSIVE NOR XNRW
@XNRW

037 I1: Input 1 ---

I2: Input 2 ---

R: Result word ---

DOUBLE EXCLUSIVE NOR XNRL
@XNRL

613 I1: Input 1 ---

I2: Input 2 ---

R: Result word ---

COMPLEMENT COM
@COM

029 Wd: Word ---

DOUBLE COMPLEMENT COML

@COML

614 Wd: Word ---

Instruction Mnemonic Function
code

Symbol Operands Array
required?

BINARY ROOT ROTB
@ROTB

620 S: 1st source word ---

R: Result word ---

BCD SQUARE ROOT ROOT
@ROOT

072 S: 1st source word ---

R: Result word ---

ARITHMETIC PROCESS APR

@APR

069 C: Control word Yes

S: Source data ---

R: Result word ---

FLOATING POINT DIVIDE FDIV

@FDIV

079 Dd: 1st dividend word ---

Dr: 1st divisor word ---

R: 1st result word ---

Instruction Mnemonic Function
code

Symbol Operand Array
required?

XORL

l1

l2

R

XNRW

l1

l2

R

XNRL

l1

l2

R

COM

Wd

COML

Wd

ROTB

S

R

ROOT

S

R

APR

C

S

R

FDIV

Dd

Dr

R

105

Instruction Support and Operand Restrictions Appendix D
Floating-point Math Instructions

BIT COUNTER BCNT

@BCNT

067 N: Number of words ---

S: 1st source word Yes

R: Result word ---

*1: CS1-H, CJ1-H, CJ1M, or CS1D only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

FLOATING TO 16-BIT FIX
@FIX

450 S: 1st source word ---

R: Result word ---

FLOATING TO 32-BIT FIXL
@FIXL

451 S: 1st source word ---

R: Result word ---

16-BIT TO FLOATING FLT

@FLT

452 S: Source word ---

R: 1st result word ---

32-BIT TO FLOATING FLTL

@FLTL

453 S: 1st source word ---

R: Result word ---

FLOATING-POINT ADD +F
@+F

454 Au: 1st augend word ---

Ad: 1st addend word ---

R: 1st result word ---

FLOATING-POINT SUB-
TRACT

-F
@-F

455 Mi: 1st Minuend word ---

Su: 1st Subtrahend word ---

R: 1st result word ---

FLOATING- POINT MULTI-
PLY

*F
@*F

456 Md: 1st Multiplicand word ---

Mr: 1st Multiplier word ---

R: 1st result word ---

FLOATING- POINT DIVIDE /F

@/F

457 Dd: 1st Dividend word ---

Dr: 1st Divisor word ---

R: 1st result word ---

Instruction Mnemonic Function
code

Symbol Operands Array
required?

BCNT

N

S

R

FIX

S

R

FIXL

S

R

FLT

S

R

FLTL

S

R

+F

Au

Ad

R

-F

Mi

Su

R

* F

Md

Mr

R

/F

Dd

Dr

R

106

Instruction Support and Operand Restrictions Appendix D
DEGREES TO RADIANS RAD
@RAD

458 S: 1st source word ---

R: 1st result word ---

RADIANS TO DEGREES DEG
@DEG

459 S: 1st source word ---

R: 1st result word ---

SINE SIN

@SIN

460 S: 1st source word ---

R: 1st result word ---

COSINE COS

@COS

461 S: 1st source word ---

R: 1st result word ---

TANGENT TAN
@TAN

462 S: 1st source word ---

R: 1st result word ---

ARC SINE ASIN
@ASIN

463 S: 1st source word ---

R: 1st result word ---

ARC COSINE ACOS
@ACOS

464 S: 1st source word ---

R: 1st result word ---

ARC TANGENT ATAN

@ATAN

465 S: 1st source word ---

R: 1st result word ---

SQUARE ROOT SQRT

@SQRT

466 S: 1st source word ---

R: 1st result word ---

EXPONENT EXP
@EXP

467 S: 1st source word ---

R: 1st result word ---

LOGARITHM LOG
@LOG

468 S: 1st source word ---

R: 1st result word ---

*1: CS1-H, CJ1-H, CJ1M, or CS1D only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

RAD

S

R

DEG

S

R

SIN

S

R

COS

S

R

TAN

S

R

ASIN

S

R

ACOS

S

R

ATAN

S

R

SQRT

S

R

EXP

S

R

LOG

S

R

107

Instruction Support and Operand Restrictions Appendix D
Double-precision Floating-point Instructions
(CS1-H, CJ1-H, CJ1M, or CS1D Only)

EXPONENTIAL POWER PWR
@PWR

840 B: 1st base word ---

E: 1st exponent word ---

R: 1st result word ---

Floating Symbol Comparison
*1

LD, AND,
OR

+
=F, <>F, <F,
<=F, >F, >=F

329 (=F)
330 (<>F)

331 (<F)
332 (<=F)
333 (>F)

334 (>=F)

S1:Comparoson data 1 ---

S2:Comparison data 2 ---

FLOATING- POINT TO
ASCII
*1

FSTR
@FSTR

448 S: 1st source word ---

C: Control word ---

D: Destination word Yes

ASCII TO FLOATING-POINT
*1

FVAL

@FVAL

449 S: Source word Yes

D: 1st destination word ---

Instruction Mnemonic Function
code

Symbol Operands Array
required?

DOUBLE FLOATING TO 16-
BIT BINARY

FIXD

@FIXD

841 S: 1st source word ---

D: Destination word ---

DOUBLE FLOATING TO 32-
BIT BINARY

FIXLD

@FIXLD

842 S: 1st source word ---

D: 1st destination word ---

*1: CS1-H, CJ1-H, CJ1M, or CS1D only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

PWR

B

E

R

Symbol, option

S1

S2

Using LD:

Symbol, option

S1

S2

Using AND:

Symbol, option

S1

S2

Using OR:

FSTR

S

C

D

FVAL

S

D

FIXD

S

D

FIXLD

S

D

108

Instruction Support and Operand Restrictions Appendix D
16-BIT BINARY TO DOUBLE
FLOATING

DBL

@DBL

843 S: Source word ---

D: 1st destination word ---

32-BIT BINARY TO DOUBLE
FLOATING

DBLL
@DBLL

844 S: 1st source word ---

D: 1st destination word ---

DOUBLE FLOATING-POINT
ADD

+D
@+D

845 Au: 1st augend word ---

Ad: 1st addend word ---

R: 1st result word ---

DOUBLE FLOATING-POINT
SUBTRACT

-D
@-D

846 Mi: 1st minuend word ---

Su: 1st subtrahend word ---

R: 1st result word ---

DOUBLE FLOATING-POINT
MULTIPLY

*D
@*D

847 Md: 1st multiplicand word ---

Mr: 1st multiplier word ---

R: 1st result word ---

DOUBLE FLOATING-POINT
DIVIDE

/D

@/D

848 Dd: 1st Dividend word ---

Dr: 1st divisor word ---

R: 1st result word ---

DOUBLE DEGREES TO
RADIANS

RADD
@RADD

849 S: 1st source word ---

R: 1st result word ---

DOUBLE RADIANS TO
DEGREES

DEGD
@DEGD

850 S: 1st source word ---

R: 1st result word ---

DOUBLE SINE SIND
@SIND

851 S: 1st source word ---

R: 1st result word ---

DOUBLE COSINE COSD
@COSD

852 S: 1st source word ---

R: 1st result word ---

Instruction Mnemonic Function
code

Symbol Operands Array
required?

DBL

S

D

DBLL

S

D

+D

Au

Ad

R

-D

Mi

Su

R

*D

Md

Mr

R

/D

Dd

Dr

R

RADD

S

R

DEGD

S

R

SIND

S

R

COSD

S

R

109

Instruction Support and Operand Restrictions Appendix D
DOUBLE TANGENT TAND

@TAND

853 S: 1st source word ---

R: 1st result word ---

DOUBLE ARC SINE ASIND
@ASIND

854 S: 1st source word ---

R: 1st result word ---

DOUBLE ARC COSINE ACOSD
@ACOSD

855 S: 1st source word ---

R: 1st result word ---

DOUBLE ARC TANGENT ATAND
@ATAND

856 S: 1st source word ---

R: 1st result word ---

DOUBLE SQUARE ROOT SQRTD
@SQRTD

857 S: 1st source word ---

R: 1st result word ---

DOUBLE EXPONENT EXPD

@EXPD

858 S: 1st source word ---

R: 1st result word ---

DOUBLE LOGARITHM LOGD
@LOGD

859 S: 1st source word ---

R: 1st result word ---

DOUBLE EXPONENTIAL
POWER

PWRD
@PWRD

860 B: 1st base word ---

E: 1st exponent word ---

R: 1st result word ---

Instruction Mnemonic Function
code

Symbol Operands Array
required?

TAND

S

R

ASIND

S

R

ACOSD

S

R

ATAND

S

R

SQRTD

S

R

EXPD

S

R

LOGD

S

R

PWRD

B

E

R

110

Instruction Support and Operand Restrictions Appendix D
Table Data Processing Instructions

DOUBLE SYMBOL COM-
PARISON

LD, AND,
OR
+
=D, <>D,
<D, <=D,
>D, >=D

335 (=D)

336 (<>D)
337 (<D)
338 (<=D)

339 (>D)
340 (>=D)

S1:Comparoson data 1 ---

S2:Comparison data 2 ---

*1: CS1-H, CJ1-H, CJ1M, or CS1D only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

SET STACK SSET
@SSET

630 TB: 1st stack address Yes

N: Number of words -

PUSH ONTO STACK PUSH
@PUSH

632 Not supported in func-
tion blocks

TB: 1st stack address Yes

S: Source word -

FIRST IN FIRST OUT FIFO
@FIFO

633 Not supported in func-
tion blocks

TB: 1st stack address Yes

D: Destination word -

LAST IN FIRST OUT LIFO
@LIFO

634 Not supported in func-
tion blocks

TB: 1st stack address Yes

D: Destination word ---

DIMENSION RECORD
TABLE

DIM
@DIM

631 N: Table number ---

LR: Length of each record ---

NR: Number of records ---

TB: 1st table word Yes

SET RECORD LOCATION SETR
@SETR

635 Not supported in func-
tion blocks

N: Table number ---

R: Record number ---

D: Destination Index Reg-
ister

GET RECORD NUMBER GETR
@GETR

636 Not supported in func-
tion blocks

N: Table number ---

IR: Index Register ---

D: Destination word ---

Instruction Mnemonic Function
code

Symbol Operands Array
required?

Symbol, option

S1

S2

Using LD:

Symbol, option

S1

S2

Using AND:

Symbol, option

S1

S2

Using OR:

SSET

TB

N

DIM

N

LR

NR

TB
111

Instruction Support and Operand Restrictions Appendix D
DATA SEARCH SRCH
@SRCH

181 C: 1st control word ---

R1: 1st word in range Yes

Cd: Comparison data ---

SWAP BYTES SWAP
@SWAP

637 N: Number of words ---

R1: 1st word in range Yes

FIND MAXIMUM MAX

@MAX

182 C: 1st control word ---

R1: 1st word in range Yes

D: Destination word ---

FIND MINIMUM MIN

@MIN

183 C: 1st control word ---

R1: 1st word in range Yes

D: Destination word ---

SUM SUM
@SUM

184 C: 1st control word ---

R1: 1st word in range Yes

D: 1st destination word ---

FRAME CHECK SUM FCS
@FCS

180 C: 1st control word ---

R1: 1st word in range Yes

D: 1st destination word ---

STACK SIZE READ
*1

SNUM
@SNUM

638 TB: First stack address Yes

D: Destination word ---

STACK DATA READ
*1

SREAD

@SREAD

639 TB: First stack address Yes

C: Offset value ---

D: Destination word ---

STACK DATA OVER-
WRITE
*1

SWRIT

@SWRIT

640 TB: First stack address Yes

C: Offset value ---

S: Source data ---

*1: CS1-H, CJ1-H, CJ1M, or CS1D only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

SRCH

C

R1

Cd

SWAP

N

R1

MAX

C

R1

D

MIN

C

R1

D

SUM

C

R1

D

FCS

C

R1

D

SNUM

TB

D

SREAD

TB

C

D

SWRIT

TB

C

S

112

Instruction Support and Operand Restrictions Appendix D
Data Control Instructions

STACK DATA INSERT
*1

SINS
@SINS

641 TB: First stack address Yes

C: Offset value ---

S: Source data ---

STACK DATA DELETE
*1

SDEL
@SDEL

642 TB: First stack address Yes

C: Offset value ---

D: Destination word ---

*1: CS1-H, CJ1-H, CJ1M, or CS1D only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

PID CONTROL PID 190 S: Input word ---

C: 1st parameter word Yes

D: Output word ---

PID CONTROL WITH AUTO
TUNING
*1

PIDAT 191 S: Input word ---

C: 1st parameter word Yes

D: Output word ---

LIMIT CONTROL LMT
@LMT

680 S: Input word ---

C: 1st limit word Yes

D: Output word ---

DEAD BAND CONTROL BAND

@BAND

681 S: Input word ---

C: 1st limit word Yes

D: Output word ---

DEAD ZONE CONTROL ZONE

@ZONE

682 S: Input word ---

C: 1st limit word Yes

D: Output word ---

SCALING SCL
@SCL

194 S: Input word ---

P1: 1st parameter word Yes

R: Result word ---

*1: CS1-H, CJ1-H, CJ1M, or CS1D only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

SINS

TB

C

S

SDEL

TB

C

D

PID

S

C

D

PIDAT

S

C

D

LMT

S

C

D

BAND

S

C

D

ZONE

S

C

D

SCL

S

P1

R

113

Instruction Support and Operand Restrictions Appendix D
Subroutine Instructions

Interrupt Control Instructions

SCALING 2 SCL2
@SCL2

486 S: Source word ---

P1: 1st parameter word Yes

R: Result word ---

SCALING 3 SCL3
@SCL3

487 S: Source word ---

P1: 1st parameter word Yes

R: Result word ---

AVERAGE AVG 195 S: Source word ---

N: Number of cycles ---

R: Result word Yes

*1: CS1-H, CJ1-H, CJ1M, or CS1D only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

SUBROUTINE CALL SBS
@SBS

091 Not supported in func-
tion blocks

N: Subroutine number ---

SUBROUTINE ENTRY SBN 092 Not supported in func-
tion blocks

N: Subroutine number ---

SUBROUTINE RETURN RET 093 Not supported in func-
tion blocks

MACRO MCRO

@MCRO

099 Not supported in func-
tion blocks

N: Subroutine number ---

S: 1st input parameter
word

D: 1st output parameter
word

GLOBAL SUBROUTINE
CALL
*1

GSBS
@GSBS

750 Not supported in func-
tion blocks

N: Subroutine number ---

GLOBAL SUBROUTINE
ENTRY
*1

GSBN 751 Not supported in func-
tion blocks

N: Subroutine number ---

GLOBAL SUBROUTINE
RETURN
*1

GRET 752 Not supported in func-
tion blocks

*1: Not supported by CS1D.

Instruction Mnemonic Function
code

Symbol Operands Array
required?

SET INTERRUPT MASK
*1

MSKS
@MSKS

690 N: Interrupt identifier -

S: Interrupt data -

*1: CS1-H, CJ1-H, CJ1M, or CS1D only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

SCL2

S

P1

R

SCL3

S

P1

R

AVG

S

N

R

MSKS

N

S

114

Instruction Support and Operand Restrictions Appendix D
Step Instructions

Basic I/O Unit Instructions

READ INTERRUPT MASK
*1

MSKR
@MSKR

692 N: Interrupt identifier -

D: Destination word -

CLEAR INTERRUPT
*1

CLI
@CLI

691 N: Interrupt identifier -

S: Interrupt data -

DISABLE INTERRUPTS
*1

DI

@DI

693 -

ENABLE INTERRUPTS
*1

EI 694 -

Instruction Mnemonic Function
code

Symbol Operands Array
required?

STEP DEFINE STEP 008 Not supported in func-
tion blocks

B: Bit ---

STEP START SNXT 009 Not supported in func-
tion blocks

B: Bit ---

*1: CS1-H, CJ1-H, CJ1M, or CS1D only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

I/O REFRESH IORF
@IORF

097 Not supported in func-
tion blocks

St: Starting word ---

E: End word ---

7-SEGMENT DECODER SDEC
@SDEC

078 S: Source word ---

Di: Digit designator ---

D: 1st destination word Yes

INTELLIGENT I/O READ IORD
@IORD

222 C: Control data ---

S: Transfer source and
number of words

Yes

D: Transfer destination and
number of words

Yes

INTELLIGENT I/O WRITE IOWR

@IOWR

223 C: Control data ---

S: Transfer source and
number of words

Yes

D: Transfer destination and
number of words

Yes

CPU BUS UNIT I/O
REFRESH
*1

DLNK

@DLNK

226 N: Unit number ---

*1: Not supported by CS1D.

Instruction Mnemonic Function
code

Symbol Operands Array
required?

MSKR

N

D

CLI

N

S

DI

EI

SDEC

S

Di

D

IORD

C

S

D

IOWR

C

S

D

DLNK
N

115

Instruction Support and Operand Restrictions Appendix D
Serial Communications Instructions

Network Instructions

Instruction Mnemonic Function
code

Symbol Operands Array
required?

PROTOCOL MACRO PMCR
@PMCR

260 C1:Control word 1 ---

C2: Control word 2 ---

S: 1st send word Yes

R: 1st receive word Yes

TRANSMIT TXD

@TXD

236 S: 1st source word Yes

C: Control word ---

N: Number of bytes 0000
to 0100 hex(0 to 256 deci-
mal)

RECEIVE RXD

@RXD

235 D: 1st destination word Yes

C: Control word ---

N: Number of bytes to
store 0000 to 0100 hex(0
to 256 decimal)

CHANGE SERIAL PORT
SETUP

STUP
@STUP

237 C: Control word (port) ---

S: First source word Yes

Instruction Mnemonic Function
code

Symbol Operands Array
required?

NETWORK SEND SEND
@SEND

090 S: 1st source word Yes

D: 1st destination word Specify
address at
remote
node with
AT setting.

C: 1st control word Yes

NETWORK RECEIVE RECV
@RECV

098 S: 1st source word Specify
address at
remote
node with
AT setting.

D: 1st destination word Yes

C: 1st control word Yes

DELIVER COMMAND CMND
@CMND

490 S: 1st command word Yes

D: 1st response word Yes

C: 1st control word Yes

PMCR

C1

C2

S

R

TXD

S

C

N

RXD

D

C

N

STUP

C

S

SEND

S

D

C

RECV

S

D

C

CMND

S

D

C

116

Instruction Support and Operand Restrictions Appendix D
File Memory Instructions

Display Instructions

Clock Instructions

Instruction Mnemonic Function
code

Symbol Operand Array
required?

READ DATA FILE FREAD
@FREAD

700 C: Control word ---

S1: 1st source word Yes

S2: Filename Yes

D: 1st destination word Yes

WRITE DATA FILE FWRIT

@FWRIT

701 C: Control word ---

D1: 1st destination word Yes

D2: Filename Yes

S: 1st source word Yes

Instruction Mnemonic Function
code

Symbol Operands Array
required?

DISPLAY MESSAGE MSG
@MSG

046 N: Message number ---

M: 1st message word Yes

Instruction Mnemonic Function
code

Symbol Operands Array
required?

CALENDAR ADD CADD
@CADD

730 C: 1st calendar word Yes

T: 1st time word Yes

R: 1st result word Yes

CALENDAR SUBTRACT CSUB

@CSUB

731 C: 1st calendar word Yes

T: 1st time word Yes

R: 1st result word Yes

HOURS TO SECONDS SEC

@SEC

065 S: 1st source word Yes

D: 1st destination word Yes

SECONDS TO HOURS HMS
@HMS

066 S: 1st source word Yes

D: 1st destination word Yes

CLOCK ADJUSTMENT DATE
@DATE

735 S: 1st source word Yes

FREAD

C

S1

S2

D

FWRIT

C

D1

D2

S

MSG

N

M

CADD

C

T

R

CSUB

C

T

R

SEC

S

D

HMS

S

D

DATE

S

117

Instruction Support and Operand Restrictions Appendix D
Debugging Instructions

Failure Diagnosis Instructions

Other Instructions

Instruction Mnemonic Function
code

Symbol Operands Array
required?

TRACE MEMORY SAM-
PLING

TRSM 045 ---

Instruction Mnemonic Function
code

Symbol Operands Array
required?

FAILURE ALARM FAL
@FAL

006 N: FAL number ---

M: 1st message word or
error code to gener-
ate(#0000 to #FFFF)

SEVERE FAILURE ALARM FALS 007 N: FALS number ---

M: 1st message word or
error code to gener-
ate(#0000 to #FFFF)

FAILURE POINT DETEC-
TION

FPD 269 Not supported in func-
tion blocks

C: Control word ---

T: Monitoring time ---

R: 1st register word Yes

*1: CS1-H, CJ1-H, CJ1M, or CS1D only
*2: CS1-H, CJ1-H, or CJ1M only (Not supported by CS1D, CS1, or CJ1.)

Instruction Mnemonic Function
code

Symbol Operands Array
required?

SET CARRY STC
@STC

040 ---

CLEAR CARRY CLC
@CLC

041 ---

SELECT EM BANK EMBC

@EMBC

281 Not supported N: EM bank number. ---

EXTEND MAXIMUM
CYCLE TIME

WDT

@WDT

094 T: Timer setting ---

SAVE Condition FlagS
*1

CCS
@CCS

282 ---

LOAD Condition FlagS
*1

CCL
@CCL

283 ---

CONVERT ADDRESS
FROM CV
*1

FRMCV

@FRMCV

284 Not supported in func-
tion blocks

S: Word containing CV-
series memory address

D: Destination Index Reg-
ister

CONVERT ADDRESS TO
CV
*1

TOCV
@TOCV

285 Not supported in func-
tion blocks

S: Index Register contain-
ing CS Series memory
address

D: Destination word ---

TRSM

FAL

N

M

FALS

N

M

STC

CLC

WDT

T

CCS

CCL
118

Instruction Support and Operand Restrictions Appendix D
Block Programming Instructions

DISABLE PERIPHERAL
SERVICING
*2

IOSP

@IOSP

287 ---

ENABLE PERIPHERAL
SERVICING
*2

IORS 288 ---

*1: CS1-H, CJ1-H, CJ1M, or CS1D only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

BLOCK PROGRAM BEGIN BPRG 096 Not supported in func-
tion blocks

N: Block program number ---

BLOCK PROGRAM END BEND 801 Not supported in func-
tion blocks

BLOCK PROGRAM PAUSE BPPS 811 Not supported in func-
tion blocks

N: Block program number ---

BLOCK PROGRAM
RESTART

BPRS 812 Not supported in func-
tion blocks

N: Block program number ---

CONDITIONAL BLOCK
EXIT

CONDI-
TION EXIT

806 Not supported in func-
tion blocks

CONDITIONAL BLOCK
EXIT

EXIT Bit
operand

806 Not supported in func-
tion blocks

B: Bit operand ---

CONDITIONAL BLOCK
EXIT (NOT)

EXIT NOT
Bit operand

806 Not supported in func-
tion blocks

B: Bit operand ---

CONDITIONAL BLOCK
BRANCHING

CONDI-
TION IF

802 Not supported in func-
tion blocks

CONDITIONAL BLOCK
BRANCHING

IF Bit oper-
and

802 Not supported in func-
tion blocks

B: Bit operand ---

CONDITIONAL BLOCK
BRANCHING (NOT)

IF NOT Bit
operand

802 Not supported in func-
tion blocks

B: Bit operand ---

CONDITIONAL BLOCK
BRANCHING (ELSE)

ELSE 803 Not supported in func-
tion blocks

CONDITIONAL BLOCK
BRANCHING END

IEND 804 Not supported in func-
tion blocks

ONE CYCLE AND WAIT CONDI-
TION WAIT

805 Not supported in func-
tion blocks

ONE CYCLE AND WAIT WAIT Bit
operand

805 Not supported in func-
tion blocks

B: Bit operand ---

ONE CYCLE AND WAIT
(NOT)

WAIT NOT
Bit operand

805 Not supported in func-
tion blocks

B: Bit operand ---

TIMER WAIT TIMW
(BCD)

813 Not supported in func-
tion blocks

N: Timer number ---

SV: Set value ---

TIMWX
(BIN)
*1

816 Not supported in func-
tion blocks

N: Timer number ---

SV: Set value ---

*1: CS1-H, CJ1-H, CJ1M, or CS1D only
*2: CS1-H, CJ1-H, or CJ1M only (Not supported by CS1D, CS1, or CJ1.)

Instruction Mnemonic Function
code

Symbol Operands Array
required?

IOSP

IORS
119

Instruction Support and Operand Restrictions Appendix D
Text String Processing Instructions

COUNTER WAIT CNTW
(BCD)

814 Not supported in func-
tion blocks

N: Counter number ---

SV: Set value ---

I: Count input ---

CNTWX

(BIN)
*1

817 Not supported in func-
tion blocks

N: Counter number ---

SV: Set value ---

I: Count input ---

HIGH-SPEED TIMER WAIT TMHW
(BCD)

815 Not supported in func-
tion blocks

N: Timer number ---

SV: Set value ---

TMHWX
(BIN)

*1

818 Not supported in func-
tion blocks

N: Timer number ---

SV: Set value ---

LOOP LOOP 809 Not supported in func-
tion blocks

LEND LEND 810 Not supported in func-
tion blocks

LEND LEND Bit
operand

810 Not supported in func-
tion blocks

B: Bit operand ---

LEND NOT LEND NOT
Bit operand

810 Not supported in func-
tion blocks

B: Bit operand ---

Instruction Mnemonic Function
code

Symbol Operands Array
required?

MOV STRING MOV$

@MOV$

664 S: 1st source word Yes

D: 1st destination word Yes

CONCATENATE STRING +$
@+$

656 S1: Text string 1 Yes

S2: Text string 2 Yes

D: First destination word Yes

GET STRING LEFT LEFT$
@LEFT$

652 S1: Text string first word Yes

S2: Number of characters ---

D: First destination word Yes

GET STRING RIGHT RGHT$
@RGHT$

653 S1: Text string first word Yes

S2: Number of characters ---

D: First destination word Yes

*1: CS1-H, CJ1-H, CJ1M, or CS1D only

Instruction Mnemonic Function
code

Symbol Operands Array
required?

MOV$

S

D

+$

S1

S2

D

LEFT$

S1

S2

D

RGHT$

S1

S2

D

120

Instruction Support and Operand Restrictions Appendix D
GET STRING MIDDLE MID$

@MID$

654 S1: Text string first word Yes

S2: Number of characters ---

S3: Beginning position ---

D: First destination word Yes

FIND IN STRING FIND$
@FIND$

660 S1: Source text string first
word

Yes

S2: Found text string first
word

Yes

D: First destination word ---

STRING LENGTH LEN$
@LEN$

650 S: Text string first word Yes

D: 1st destination word ---

REPLACE IN STRING RPLC$
@RPLC$

661 S1: Text string first word Yes

S2: Replacement text
string first word

Yes

S3: Number of characters ---

S4: Beginning position ---

D: First destination word Yes

DELETE STRING DEL$
@DEL$

658 S1: Text string first word Yes

S2: Number of characters ---

S3: Beginning position ---

D: First destination word Yes

EXCHANGE STRING XCHG$
@XCHG$

665 Ex1: 1st exchange word 1 Yes

Ex2: 1st exchange word 2 Yes

CLEAR STRING CLR$

@CLR$

666 S: Text string first word Yes

INSERT INTO STRING INS$
@INS$

657 S1: Base text string first
word

Yes

S2: Inserted text string first
word

Yes

S3: Beginning position ---

D: First destination word Yes

String Comparison LD,AND, OR
+

=$,<>$,<$,<
=$,>$,>=$

670 (=$)
671 (<>$)

672 (<$)
673 (<=$)
674 (>$)

675 (>=$)

S1: Text string 1 Yes

S2: Text string 2 Yes

Instruction Mnemonic Function
code

Symbol Operands Array
required?

MID$

S1

S2

S3

D

FIND$

S1

S2

D

LEN$

S

D

RPLC$

S1

S2

S3

S4

D

DEL$

S1

S2

S3

D

XCHG$

Ex1

Ex2

CLR$

S

INS$

S1

S2

S3

D

Symbol

S1

S2
121

Instruction Support and Operand Restrictions Appendix D
Task Control Instructions

Instruction Mnemonic Function
code

Symbol Operands Array
required?

TASK ON TKON
@TKON

820 N: Task number ---

TASK OFF TKOF

@TKOF

821 N: Task number ---

TKON

N

TKOF

N

122

Index

A
addresses

allocation areas, 57

checking internal allocations, 40

setting allocation areas, 39

algorithm

creating, 31

applications

precautions, xiii

array settings, 16, 34, 55, 65

AT settings, 16, 34, 54, 66

restrictions, 61

B
battery

replacement, 79

C
compiling, 42

computer system requirements, 3, 5
control statements, 84

CPU Unit

specifications, 67

D
data types, 15, 54, 81, 84

determining, 65

debugging function blocks, 44

differentiation

restrictions, 61

downloading programs, 43

E
EM Area

current bank restriction, 63

errors

function blocks, 63

external variables, 53

list, 85

externals, 14

F
features, 2
files, 5

function block definitions, 42

library, 6
project files, 5
project text files, 6

function block definitions, 8
checking for an instance, 42

compiling, 42

creating, 28

description, 29

saving to files, 42

function blocks

advantages, 7
application guidelines, 65

creating, 21, 23

debugging, 44

defining, 29

elements, 48

errors, 63

instruction support, 87

monitoring, 44

operating specifications, 59

outline, 7
restrictions, 60

reusing, 22

setting parameters, 38

specifications, 4, 48

structure, 8
functions, 2

function blocks, 4
restrictions, 3

G
general specifications

CJ1-H (FB), 76

CS1H (FB), 75

global symbol table, 13

H
hardware

specifications

CJ1-H (FB), 76

CS1-H (FB), 75
123

Index
I
IEC 61131-3, 2, 4
input variables, 49

inputs, 14

instance areas, 18, 57

counter, 19

non-retained, 18

retained, 18

setting, 19, 39

timer, 19

instances

creating, 21, 36

multiple, 58

number of, 10

outline, 9
registering in global symbol table, 13

specifications, 57

instructions

support, 87

internal variables, 52

internals, 14

L
ladder programming

function block definition, 29

restrictions, 64

restrictions in function blocks, 60

M
menus, 6

main, 6
popup, 6

monitoring function blocks, 44

O
online editing

restrictions, 63

operands

restrictions, 87

operators, 83

output variables, 50

outputs, 14

P
parameters

outline, 10

precautions, xi

applications, xiii

general, xii

safety, xii

Programming Consoles, 63

programs

downloading, 43

projects

creating, 26

reusing, 26, 36

PTs

monitoring restriction, 65

PV

restrictions, 61

S
safety precautions, xii

specifications, 47

CPU Unit, 67

CX-Programmer IEC, 3
function block operation, 59

general, 75, 76

instances, 57

structured text

function block definition, 29

keywords, 83

restrictions, 63

T
timer instructions

operation, 78

restrictions, 62

U
uploading

restrictions, 64
124

Index
V
variable names, 15

variables

address allocations, 18

checking address allocations, 40

creating as needed, 33

definitions, 48

introduction, 13

properties, 14, 15, 17, 53

registering in advance, 30

restrictions, 61

setting allocation areas, 18

usage, 14, 17, 49
125

Index
126

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content

1 September 2003 Original production

Cat. No. W427-E1-01

Revision code
127

Revision History
128

OMRON CORPORATION
FA Systems Division H.Q.
66 Matsumoto
Mishima-city, Shizuoka 411-8511
Japan
Tel: (81)55-977-9181/Fax: (81)55-977-9045

Regional Headquarters

OMRON EUROPE B.V.
Wegalaan 67-69, NL-2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388

OMRON ELECTRONICS LLC
1 East Commerce Drive, Schaumburg, IL 60173
U.S.A.
Tel: (1)847-843-7900/Fax: (1)847-843-8568

OMRON ASIA PACIFIC PTE. LTD.
83 Clemenceau Avenue,
#11-01, UE Square,
Singapore 239920
Tel: (65)6835-3011/Fax: (65)6835-2711

Cat. No.
Authorized Distributor:

 W427-E1-01 Note: Specifications subject to change without notice Printed in Japan

0803-??M

SYSMAC CX-Programmer IEC Ver, 1.0 (WS02-CPIC1-E)Cat. No. W427-E1-01 OPERATION MANUAL

	Manual.pdf
	CX-Programmer IEC
	Ver. 1.0 WS02-CPIC1-E
	CS1-H (FB)/CJ1-H (FB) CPU Units
	About this Manual:
	Manuals Related to the CX-Programmer IEC
	Manuals Related to the CS1-H (FB) and CJ1-H (FB) CPU Units
	Overview of Contents
	PRECAUTIONS
	1 Intended Audience
	2 General Precautions
	3 Safety Precautions
	4 Application Precautions
	5 Installation Precaution

	SECTION 1 Introduction
	1-1 Introducing the CX-Programmer IEC
	1-1-1 Functions and Features
	1-1-2 Specifications
	1-1-3 Files Created with CX-Programmer IEC
	1-1-4 CX-Programmer IEC Menus

	1-2 Function Blocks
	1-2-1 Outline
	1-2-2 Advantages of Function Blocks
	1-2-3 Function Block Structure

	1-3 Variables
	1-3-1 Introduction
	1-3-2 Variable Usage and Properties
	1-3-3 Variable Properties
	1-3-4 Property Settings and Variable Usage
	1-3-5 Internal Allocation of Variable Addresses

	1-4 Converting Function Block Definitions to Library Files
	1-5 Operating Procedures
	1-5-1 Creating Function Blocks and Executing Instances
	1-5-2 Reusing Function Blocks

	SECTION 2 Creating Function Blocks
	2-1 Procedural Flow
	2-2 Procedures
	2-2-1 Creating a Project
	2-2-2 Creating a New Function Block Definition
	2-2-3 Defining a Function Block
	2-2-4 Creating Instances from Function Block Definitions
	2-2-5 Setting Function Block Parameters
	2-2-6 Setting the FB Instance Areas
	2-2-7 Checking Internal Address Allocations for Variables
	2-2-8 Checking the Function Block Definition for an Instance
	2-2-9 Compiling Function Block Definitions
	2-2-10 Saving Function Block Definitions to Files
	2-2-11 Downloading Programs to a CPU Unit
	2-2-12 Monitoring and Debugging Function Blocks

	SECTION 3 Specifications
	3-1 Function Block Specifications
	3-1-1 Function Block Specifications
	3-1-2 Function Block Elements

	3-2 Instance Specifications
	3-2-1 Composition of an Instance
	3-2-2 Operating Specifications

	3-3 Restrictions on Function Blocks
	3-4 Function Block Applications Guidelines
	3-4-1 Deciding on Variable Data Types
	3-4-2 Array Settings
	3-4-3 AT Settings

	3-5 CPU Unit Specifications and Battery Replacement
	3-5-1 Specifications
	3-5-2 General Specifications
	3-5-3 Operation of Timer Instructions
	3-5-4 Battery Replacement Procedure

	Appendix A Data Types
	Appendix B Structured Text Keywords
	Appendix C External Variables
	Appendix D Instruction Support and Operand Restrictions
	Index
	Revision History

