
Cat. No. W306-E1-3A

ASCII Units

SYSMAC
C200H-ASC11/ASC21/ASC31

OPERATION MANUAL

Cat. No. F08E-EN-01 Note: Specifi cations subject to change without notice.

Authorized Distributor:

Printed in Europe

C
at. N

o. F08E-EN
-01

R
M

6 M
uting C

ontroller
O

PER
ATIO

N
 M

A
N

U
A

L

C200H-ASC11/ASC21/ASC31
ASCII Units
Operation Manual
Revised June 2000

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

!DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury.

!WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury.

!Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers to
an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for anything
else.

Visual Aids
The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient opera-
tion of the product.

1,2,3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

 OMRON, 1998
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or
by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of
OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is con-
stantly striving to improve its high-quality products, the information contained in this manual is subject to change without
notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility
for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in
this publication.
v

TABLE OF CONTENTS

PRECAUTIONS . xi

1 Intended Audience . xii

2 General Precautions . xii

3 Safety Precautions. xii

4 Operating Environment Precautions . xii

5 Application Precautions . xiii

SECTION 1
Introduction. 1

1-1 Overview . 2

1-2 System Configuration . 3

1-3 Internal Configuration. 5

1-4 Specifications . 7

1-5 Comparison with Previous ASCII Units . 10

1-6 Basic Operating Procedures . 12

SECTION 2
Installation . 17

2-1 Nomenclature and Functions . 18

2-2 Installation. 22

SECTION 3
IR/CIO and DM Area Allocations. 29

3-1 IR/CIO Area Allocations . 30

3-2 DM Area Allocations . 38

SECTION 4
Data Exchange with General-purpose External Devices 43

4-1 Overview . 44

4-2 Opening a Communications Port . 44

4-3 Sending Data . 47

4-4 Receiving Data . 51

4-5 Closing a Communications Port . 53

4-6 Communications Errors . 59

SECTION 5
Processing . 61

5-1 Processing Character Strings . 62

5-2 Processing Bits . 62

5-3 Processing Receive Buffers. 62

5-4 Time Processing . 63

5-5 Interrupt Functions . 64

5-6 Loop Processing . 67

SECTION 6
Data Exchange with the CPU Unit 69

6-1 Overview of Data Exchanges . 70
vii

TABLE OF CONTENTS

6-2 Selecting the Data Exchange Method . 74

6-3 Details of the Data Exchange Methods . 75

6-4 Data Exchange Time Charts . 87

6-5 IOWR/IORD Instruction Specifications . 95

6-6 Restrictions for CS1-series PCs. 108

SECTION 7
Editing BASIC Programs . 111

7-1 Programming Procedure . 112

7-2 Character Variable Space Allocations . 118

7-3 Starting/Stopping the BASIC Program . 120

7-4 Program Configuration . 121

7-5 List of BASIC Commands. 129

7-6 BASIC Commands . 139

7-7 User-defined BASIC Functions . 231

7-8 Debugging . 232

SECTION 8
Data Exchange Application Programs 235

8-1 Asynchronous Processing . 236

8-2 High-speed Data Exchanges . 237

8-3 High-volume Data Exchanges . 239

8-4 Data Transfer: ASCII Unit to CPU Unit . 239

8-5 Bit Data Exchanges . 240

SECTION 9
Clearing Error Messages . 241

9-1 List of Error Messages. 242

9-2 Troubleshooting . 248

9-3 CPU Unit Error Indicators . 252

9-4 Reading and Clearing the Error Log . 254

9-5 Maintenance. 255

A Operating Precautions . 257

B Comparison with C200H-ASC02 . 263

C PC Format . 265

D Formats for Storing Variables in Memory . 275

E Command Execution Time Samples . 279

F Sample Programs . 283

G Wiring RS-232C or RS-422A/485 Cable Connectors . 287

H Reserved Words . 289

Index . 291

Revision History . 295

Appendix
viii

About this Manual:

This manual describes the installation and operation of the C200H-ASC11/ASC21/ASC31 ASCII Units
and includes the sections described below. These ASCII Units can be used with the C200HX/HG/HE,
ZE-version C200HX/HG/HE, C200H, C200HS, and CS1-series PCs as a Special I/O Unit. Unless
specified otherwise, references to the “C200HX/HG/HE” include the ZE-version C200HX/HG/HE PCs.

It has been assumed in the writing of this manual that the reader is already familiar with the hardware,
programming, and terminology of OMRON PCs. If a review of this information is necessary, the reader
should refer to the appropriate OMRON PC manuals for assistance.

Please read this manual carefully and be sure you understand the information provided before
attempting to install and operate an ASCII Unit. Be sure to read the precautions in the following
section.

Section 1 provides basic information on the features of the ASCII Unit, internal configurations, and
operating procedures. It also provides the Unit’s specifications, and a comparison of the ASCII Unit
models covered in this manual with the previous ASCII Unit.

Section 2 describes how to install and connect the ASCII Unit, including mounting to the PC Back-
plane and connecting to external devices/computers.

Section 3 describes the methods used to allocate words to the ASCII Unit in the IR and DM Areas and
the applications of the bits and words in these areas.

Section 4 describes the ASCII Unit commands in conjunction with transmission control signals for
opening and closing communications ports and for sending and receiving data between the ASCII Unit
and external devices.

Section 5 provides examples of processing character strings, bits, receive buffers, looping, and inter-
rupts.

Section 6 describes procedures for exchanging data between the ASCII Unit and the CPU Unit, the
transfer sequence, instruction/command timing, and the use of various interrupts.

Section 7 describes the procedures for editing, saving, starting, and stopping BASIC programs. An
overview of BASIC program configuration, language definitions, and the use of various BASIC com-
mands, statements, and functions is provided as well.

Section 8 provides examples of data exchange applications.

Section 9 provides a list of error messages, probable causes and possible corrections.

The Appendices provide important operating precautions, differences with the command language
used for the ASC02 ASCII Unit, the PC format, and the formats for storing variables in memory.

!WARNING Failure to read and understand the information provided in this manual may result in per-
sonal injury or death, damage to the product, or product failure. Please read each section
in its entirety and be sure you understand the information provided in the section and
related sections before attempting any of the procedures or operations given.
ix

PRECAUTIONS

This section provides general precautions for using the Programmable Controller (PC) and related devices.

The information contained in this section is important for the safe and reliable application of the Programmable
Controller. You must read this section and understand the information contained before attempting to set up or
operate a PC system.

1 Intended Audience . xii

2 General Precautions . xii

3 Safety Precautions. xii

4 Operating Environment Precautions . xii

5 Application Precautions . xiii
xi

Intended Audience 1
1 Intended Audience
This manual is intended for the following personnel, who must also have
knowledge of electrical systems (an electrical engineer or the equivalent).

• Personnel in charge of installing FA systems.

• Personnel in charge of designing FA systems.

• Personnel in charge of managing FA systems and facilities.

2 General Precautions
The user must operate the product according to the performance specifica-
tions described in the operation manuals.

Before using the product under conditions which are not described in the
manual or applying the product to nuclear control systems, railroad systems,
aviation systems, vehicles, combustion systems, medical equipment, amuse-
ment machines, safety equipment, and other systems, machines, and equip-
ment that may have a serious influence on lives and property if used
improperly, consult your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide
the systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the Unit. Be
sure to read this manual before attempting to use the Unit and keep this man-
ual close at hand for reference during operation.

!WARNING It is extremely important that a PC and all PC Units be used for the specified
purpose and under the specified conditions, especially in applications that can
directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PC System to the above-mentioned applica-
tions.

3 Safety Precautions

!WARNING Do not attempt to take any Unit apart while the power is being supplied. Doing
so may result in electric shock.

!Caution Do not turn OFF the power supply to the PC while the BASIC program is
being written to the flash ROM of the ASCII Unit by executing ROMSAVE
command from the terminal.

!WARNING Do not attempt to disassemble, repair, or modify any Units. Any attempt to do
so may result in malfunction, fire, or electric shock.

4 Operating Environment Precautions

!Caution Do not operate the control system in the following places:

• Locations subject to direct sunlight.

• Locations subject to temperatures or humidity outside the range specified
in the specifications.
xii

Application Precautions 5
• Locations subject to condensation as the result of severe changes in tem-
perature.

• Locations subject to corrosive or flammable gases.

• Locations subject to dust (especially iron dust) or salts.

• Locations subject to exposure to water, oil, or chemicals.

• Locations subject to shock or vibration.

!Caution Take appropriate and sufficient countermeasures when installing systems in
the following locations:

• Locations subject to static electricity or other forms of noise.

• Locations subject to strong electromagnetic fields.

• Locations subject to possible exposure to radioactivity.

• Locations close to power supplies.

!Caution The operating environment of the PC System can have a large effect on the
longevity and reliability of the system. Improper operating environments can
lead to malfunction, failure, and other unforeseeable problems with the PC
System. Be sure that the operating environment is within the specified condi-
tions at installation and remains within the specified conditions during the life
of the system.

5 Application Precautions
Observe the following precautions when using the ASCII Unit or PC System.

!WARNING Always heed these precautions. Failure to abide by the following precautions
could lead to serious or possibly fatal injury.

• Always turn OFF the power supply to the PC before attempting any of the
following. Not turning OFF the power supply may result in malfunction or
electric shock.

• Mounting or dismounting I/O Units, CPU Units, Memory Cassettes, or
any other Units.

• Assembling the Units.

• Setting DIP switches or rotary switches.

• Connecting or wiring the cables.

• Connecting or disconnecting the connectors.

!Caution Failure to abide by the following precautions could lead to faulty operation of
the ASCII Unit, PC or the system, or could damage the ASCII Unit, PC or PC
Units. Always heed these precautions.

• There are restrictions in the data areas and addresses that can be speci-
fied for the PC READ, PC WRITE, PC READ@, and PC WRITE@ com-
mands in the BASIC program when using an ASCII Unit with a CS1-
series CPU Unit. Be particularly careful when using existing BASIC pro-
grams in ASCII Units for CS1-series PCs.
xiii

Application Precautions 5
• Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal
lines, momentary power interruptions, or other causes.

• Install the Unit properly as specified in the operation manual. Improper
installation of the Unit may result in malfunction.

• Be sure that all the mounting screws, terminal screws, and cable connec-
tor screws are tightened to the torque specified in the relevant manuals.
Incorrect tightening torque may result in malfunction.

• Leave the label attached to the Unit when wiring. Removing the label may
result in malfunction.

• Remove the label after the completion of wiring to ensure proper heat dis-
sipation. Leaving the label attached may result in malfunction.

• Double-check all the wiring before turning ON the power supply. Incorrect
wiring may result in burning.

• Mount the Unit only after checking the connectors and wring.

• Be sure that the terminal blocks, Memory Units, expansion cables, and
other items with locking devices are properly locked into place. Improper
locking may result in malfunction.

• Check the user program for proper execution before actually running it on
the Unit. Not checking the program may result in an unexpected opera-
tion.

• Confirm that no adverse effect will occur in the system before attempting
any of the following. Not doing so may result in an unexpected operation.

• Changing the operating mode of the PC.

• Force-setting/force-resetting any bit in memory.

• Changing the present value of any word or any set value in memory.

• Before touching the Unit, be sure to first touch a grounded metallic object
in order to discharge any static built-up. Not doing so may result in mal-
function or damage.
xiv

SECTION 1
Introduction

This section provides basic information on the features of the ASCII Unit, internal configurations, and operating
procedures. It also provides the Unit’s specifications, and a comparison of the ASCII Unit models covered in this manual
with the previous ASCII Unit.

1-1 Overview . 2

1-2 System Configuration . 3

1-3 Internal Configuration. 5

1-4 Specifications . 7

1-5 Comparison with Previous ASCII Units . 10

1-6 Basic Operating Procedures . 12

1-6-1 Editing BASIC Programs . 12

1-6-2 BASIC Programming Procedure . 14

1-6-3 Connection and Transfer to External Devices 14
1

Overview Section 1-1
1-1 Overview
The ASCII Unit is a Special I/O Unit that can exchange ASCII data with per-
sonal computers, board computers, bar code readers, ID systems, and non-
OMRON Programmable Controllers (PCs) via an RS-232C or RS-422A/485
interface. Because it is programmed in BASIC, the ASCII Unit can indepen-
dently process read/write data from general-purpose peripheral devices, mak-
ing it easy to combine sequence control and information processing on the
same PC.

ASCII Communications
with Peripheral Devices

The following functions are provided. These functions are not possible with
protocol macros and host link non-procedural communications alone.

• Flexible processing of character strings (sampling, comparison, combina-
tion, and length determination of portions of character strings).

• Reception processing for only a portion of the data from a receive buffer.

• Processing of interrupt subroutines, such as those for communications,
time processing, and PC interrupts.

• Flexible response processing, such as retries and time monitoring.

These functions enable the ASCII Unit to handle all kinds of communications
frames and protocols. It can handle essentially all data exchanges with other
devices equipped with an RS-232C or RS-422A/485 port.

Multiport
Communications

Up to either 10 or 16 ASCII Units can be mounted on each PC (depending on
the model of the CPU Unit), making ASCII Units ideal for monitoring a large
number of general-purpose peripheral devices via communications.

Special Processing Apart from communicating with general-purpose peripheral devices, ASCII
Units can also be used for special operations. Data operations, character
string processing, logic flow processing, and other operations that are difficult
to carry out in the PC can be handled by using the ASCII Units as “sub-CPUs”
for the CPU Unit. This aids high-speed processing in the system as a whole,
and reduces the load on the CPU Unit. In particular, by carrying out special
operations and transmitting back the results when an interrupt is received
from the CPU Unit, ASCII Units can act as co-processors for the CPU Unit.

C200H-ASC11/ASC21/ASC31 Features

High-capacity User
Memory

ASCII Units each provide 200 Kbytes of user memory (BASIC program area
and variable area), enabling them to handle complicated applications.

High-speed Processing A 32-bit MPU (C200H-ASC02 used an 8-bit processor) enables high-speed
processing.

RS-422A/485 Port The RS-422A/485 port enables long-range communications and 1:N commu-
nications.

Various Formats for
CPU Unit Data Transfers

In addition to previous commands (PC READ/WRITE, PC READ@/WRITE@,
and PC PUT/PC GET) it is also possible to execute PC QREAD/QWRITE trig-
gered by the ASCII Unit, as well as the PC EPUT/EGET commands, which
allow the ASCII Unit to read/write the memory shared between the ASCII Unit
and the CPU Unit. For the C200HX/HG/HE or CS1-series PCs, the CPU Unit
can immediately read/write the ASCII Unit using the IOWR/IORD instructions.
This means that the user can select the data exchange method to match the
application, including the read/write trigger, the Unit executing the read/write,
the read/write timing, the transmitted data size, and whether or not special
programming is required.
2

System Configuration Section 1-2
High-speed Data
Exchange Using Shared
Memory

There is an internal shared memory shared with the CPU Unit, and the ASCII
Unit and the CPU Unit can access this shared memory asynchronously. Previ-
ously, in data exchange using the I/O refresh period, the CPU Unit or ASCII
Unit had to wait until the I/O refresh timing arrived, but now shared memory
can be read/written as soon as the command/instruction is executed. High-
speed data transfer is also possible by combining an instantaneous interrupt
with the IOWR instruction addressed to the ASCII Unit from the CPU Unit.

Bit ON/OFF Command By treating variables as bit strings, individual bits out of 16 or 32 bits can be
turned ON/OFF in integer variables, simplifying bit input processing to the PC.

Extensive Interrupt
Processing

There are two ways that the CPU Unit can interrupt the ASCII Unit: by I/O
refreshing or by IOWR instruction. There are 5 types of interrupts for receiving
data from the communications circuit: General data reception, specified char-
acter reception, specified byte size reception, leading and final character
reception, leading and specified number of characters reception. Interrupts
can also occur for key inputs, when an error occurs, and at specified times.
Timers can also generate either one-shot or interval interrupts.

Built-in Transmission
Control Signal Control

Commands for transmission control signals (RTS, DTR) and commands to
monitor transmission control signals (CTS, DSR) are provided. These com-
mands simplify handling all types of transmission protocols.

Error Check Calculation
Commands

The FCS instruction can be used to calculate error check codes, including
those for LRC (longitudinal parity), CRC-CCITT (XMODEM), CRC-16 (MOD-
BUS), and SUM (1-byte or 2-byte). This allows you to eliminate the program-
ming previously required to calculate error check codes.

Special Operations Calculations are possible for exponential function (ex), square root (√), trigo-
nometric functions (TAN, SIN, and COS), inverse trigonometric functions

(TAN–1, SIN–1, COS–1), and logarithmic functions (LOG) in both single and
double precision.

More Commands Support is provided for conditional repeating commands (WHILE/WEND), IF
commands enabling structured programming (@IF...ENDIF), and commands
that record the interrupted line number when an interrupt occurred (INTRB).

Full BASIC Debugging The following commands are also supported: BRKPT commands to suspend
operation at specified lines, single or multiple line STEP commands, and
WATCH commands to display the contents of variables when operation is sus-
pended. This makes it easy to confirm that the BASIC program is running cor-
rectly.

A TRON command to monitor tracing of the execution lines is also available.
The results of this trace are saved in the trace buffer, and can be monitored
afterwards by means of the TRACE command. This allows checking the oper-
ation of the BASIC program.

Error Log Up to 30 error records are stored in an error log. This is useful for trouble-
shooting.

1-2 System Configuration
The C200H-ASC11/ASC21/ASC31 ASCII Units are Special I/O Units for the
C200H, C200HS, C200HX/HG/HE, and CS1-series Programmable Control-
lers.

The ASCII Unit’s communications port #1 (C200H-ASC11/ASC21) or terminal
port (C200H-ASC31) can be connected to a computer terminal using an RS-
232C cable to input BASIC commands, compile BASIC programs, debug, and
display RUN results.
3

System Configuration Section 1-2
The ASCII Unit’s communications port can be connected to a peripheral
device using an RS-232C cable or twisted-pair cable (RS-422A/485) to send/
receive communications frames and other data via the BASIC program.

Note Use an NT-AL001 Link Adapter (RS-232C to RS-422/485) to connect more
than one terminal/device to an RS-232C port (except for the terminal port,
port 3, on C200H-ASC31).

Terminal Peripheral device

15 m max.
15 m max.

C200H-ASC11

C200H-ASC11

Communications port 1
Communications port 2

RS-232C
RS-232C

Peripheral device

Or

C200H-ASC21

C200H-ASC21

15 m max.

500 m max.

Communications port 1
Communications port 2

RS-232C

RS-422/485

Peripheral
device

Peripheral
device

Terminal Peripheral device

Or

Terminal port

C200H-ASC31
C200H-ASC31

15 m max.

15 m max.
Communications port 1
Communications port 2

RS-232C
RS-232C

15 m max.
Terminal
RS-232C

Peripheral
device

Peripheral
device

RS-232C

NT-AL001

RS-422/485 500 m max.

Peripheral
device

Peripheral
device
4

Internal Configuration Section 1-3
Connectable CPU Units

Restrictions on SYSMAC
BUS Slave Racks

The following restrictions apply when mounting Units to SYSMAC BUS Slave
Racks.

Note The ASCII Unit can also be mounted to an C200H Expansion Rack connected
to a Mini H-type PC (C20H/C28H/C40H/C60H).

1-3 Internal Configuration
ASCII Units are each allocated 10 words in the IR/CIO area of the PC. These
allow the exchange of data read/write triggers, bit data, status, and interrupts
with the CPU Unit during I/O refreshing without the need for special program-
ming.

Each Unit is also allocated 10 words as a Setup Area in the data memory
area (DM area). The Setup Area contains operating parameters, such as the
communications parameters for communications ports and the starting pro-
gram number. These parameters are automatically transferred from the DM
area to the ASCII Unit when the power supply is turned on or the ASCII Unit is
restarted.

Internally, the ASCII Unit provides 100 words of shared memory with the CPU
Unit (10 Setup Area words and 90 general-purpose words). The ASCII Unit
and the CPU Unit can access these areas independently (asynchronously).

PC CPU Unit Total no. of Units
on CPU Rack,
Expansion I/O

Racks, and
SYSMAC BUS
Slave Racks

Mounting
restrictions

C200HX/HG/HE C200HE-CPU11-E/32-E/42-E/11-ZE/32-ZE/42-ZE
C200HG-CPU33-E/43-E/33-ZE/43-ZE
C200HX-CPU34-E/44-E/34-ZE/44-ZE

10 None

C200HG-CPU53-E/63-E/53-ZE/63-ZE
C200HX-CPU54-E/64-E/54-ZE/64-ZE/65-ZE/85-ZE

16

C200HS C200HS-CPU01-E/01-EC/21-E/21-EC/31-E/03-E/23-E/33-E 10

CS1 CS1H-CPU66-E/65-E/64-E/63-E
CS1G-CPU45-E/44-E/43-E/42-E

16 None

C200H C200H-CPU01-E/02-E/03-E/11-E/21-E/23-E/31-E 10 Do not mount
Unit to rightmost
two slots on
CPU Rack.

Group A B C D

Unit ASCII Unit,
High-speed Counter
Unit, Position Control
Unit (NC111/112/113/
213) Analog I/O Unit,
ID Sensor Unit, Fuzzy
Logic Unit

Multi-point I/O Unit Temperature Sensor
Unit, Voice Unit

Position Control Unit
(NC211)
Motion Control Unit

Number of Units
mountable for each
group per Remote I/O
Master Unit

4 Units 8 Units 6 Units 2 Units

Number of Units
mountable for all
groups combined per
Remote I/O Master
Unit

3A + B + 2C + 6D ≤ 12, and A + B + C + D ≤ 8
5

Internal Configuration Section 1-3
Data read/write that does not depend on the cycle time can be executed using
the IOWR (SPECIAL I/O UNIT WRITE) or IORD (SPECIAL I/O UNIT READ)
instructions from the CPU Unit (C200HX/HG/HE or CS1).

Interrupts that do not depend on the cycle time can be sent from the CPU Unit
to the ASCII Unit using IOWR (SPECIAL I/O UNIT WRITE) instructions
(C200HX/HG/HE or CS1).

Data Exchange
CPU Unit ASCII Unit

Ladder program BASIC program

Internal operation

Interrupt

Data exchange
with the CPU
Unit:
PC READ/
PC WRITE

PC READ@/
PC WRITE@

PC QREAD@/
PC QWRITE@

Data exchange
with general-
purpose periph-
eral devices:
OPEN#
PRINT#
INPUT#
INPUT$, etc.

Transmit
buffer

Receive
buffer General-purpose

peripheral devices

I/O memory
Allocated words in IR/CIO
Area (Special I/O Unit Areas)

I/O refresh Allocated I/O area

10 words allocated
per ASCII Unit

DM Area

Power ON or restart

Transfer YES/NO

Shared memory

Parameter Area

IORD/
IOWR Area

RS-232C or
RS-422/485

PC PUT
PC GET

PC EPUT
PC EGET

MOV, OUT, etc.
IOWR (#00@@/IORD#00@@)
IOWR (#FD00/IORD#FD00)
IOWR (#CC00)

:

:

:

:

:

:

:

:

n

n+4
n+5

n+9

n

n+4
n+5

n+9

0

9
10

99

m

m+9
m+10

m+99
6

Specifications Section 1-4
Internal Layout

Note 1. All memory, including RTC, is backed up by battery.

2. Work memory is part of user memory.

3. Trace memory is part of system memory.

1-4 Specifications
General Specifications Conform to those of the SYSMAC C200H, C200HS, C200HX/HG/HE (-Z),

and CS1-series CPU Units.

Functional and Performance Specifications

CPU Unit Interface
circuit

Shared
memory

System memory

Work memory

Allocated
I/O data

BASIC
program

Variables

Battery

Trace memory

Flash
ROM RS-232C

interface

RS-232C or
RS-422/485
interface

START/STOP
switch

Indicators I/O

MPU

I/O bus

ASCII Unit

U
se

r
m

em
or

y

User memory
default switch

Rotary
switch

Terminating
resistance
switch

2-wire/
4-wire
switch

RS-232C
interface

C200H-ASC31 only

RTC

Item Specifications

Model C200H-ASC11 C200H-ASC21 C200H-ASC31

Communica-
tions port

Port 1 RS-232C
(peripheral device or
terminal connection)

RS-232C (peripheral device
or terminal connection)

RS-232C
(peripheral device
connection)

Port 2 RS-232C
(peripheral device
connection)

RS-422A/485 (peripheral
device connection)

RS-232C
(peripheral device
connection)

Terminal port None None RS-232C
(terminal connection)
7

Specifications Section 1-4
Communica-
tions parame-
ters

Communica-
tions mode

Half duplex (full duplex available for RS-232C)

Synchroniza-
tion

Start-stop

Baud rate 300/600/1,200/2,400/4,800/9,600/19,200/38,400 bps (terminal port does not support
38,400 bps)
Note Using interrupts will limit the baud rates that can be used.

Transmission
mode

RS-232C: Point-to-point (1:1)
RS-422A/485: Point-to-multipoint (1:N)

Transmission
distance

RS-232C: 15 m
RS-422A/485: 500 m

Communica-
tions buffers

Receive buffer: 512-bytes
Transmit buffer: 512-bytes

Response flow
control

RTS/CTS flow (for receive buffer of external device)

Note ASCII also asserts RTS when sending data.
Xon, Xoff flow (for receive buffers of external device and ASCII Unit)

Program Language BASIC

No. of tasks Single task

Memory
capacity

User program
memory area
(BASIC pro-
gram + variable
area)

200 Kbytes

Contents: BASIC source program (up to 4 programs can be loaded) intermediate code,
variables.

Note The BASIC program has battery backup. Make sure the battery is installed before
operating.

Flash ROM 200 Kbytes

The BASIC program can be stored in the flash ROM from the user memory area. It can
be loaded into the user memory area when the power supply is turned on or the Unit is
restarted.

CPU Unit and
data
exchange
areas

Allocated I/O
words

Special I/O Unit Area: 10 words

Shared
memory area

100 words (no battery backup) as follows:

10 word: Setup Area (can be transferred from the DM area words allocated in the CPU
Unit to the ASCII Unit when the power supply is turned on or when the Unit is
restarted).

90 wordGeneral-purpose area (IORD/IOWR area).
Note Read/write is possible using IORD/IOWR instructions from the CPU Unit or

PC_EPUT/PC_EGET commands from the ASCII Unit. The position and size of
the IORD area/IOWR area can be adjusted. When the power is turned on or the
Unit is restarted, the data in the DM words allocated in the CPU Unit can be
transferred to the ASCII Unit. (The PC_EPUT and PC_EGET commands are not
supported by the C200H and C200HS.)

Item Specifications

Model C200H-ASC11 C200H-ASC21 C200H-ASC31
8

Specifications Section 1-4
Note 1. If an NT-AL001 RS-232C/RS-422 Link Adapter is used at the RS-232C
port, an additional 150 mA of current will be consumed.

2. Always connect the battery to the ASCII Unit before using it.

Item Specifications

Method of data exchange with CPU Unit Item CPU Unit instructions ASCII Unit commands

ASCII Unit reads/writes
I/O memory on trigger
from CPU Unit.

MOV, LD, etc. PC READ/PC WRITE
255 words max. per
command.

ASCII Unit
independently reads/
writes I/O memory.

Not required PC READ@/PC
WRITE@
255 words max. per
command.

Read/write allocated
IR/CIO area words.

MOV, LD etc. PC PUT/PC GET

1 word per command
for PC PUT; 2 words for
PC GET.

CPU Unit executes
IOWR/IORD(#FD00)
on trigger from ASCII
Unit.

IOWR (#FD00) /IORD
(#FD00)
Note C200HX/HG/HE

or CS1.
128 words max. per
instruction.

PC QREAD/PC
QWRITE
128 words max. per
command.

CPU Unit and ASCII
Unit read/write to
shared memory
asynchronously.

IOWR (#00@@) /IORD
(#00@@)
Note C200HX/HG/HE

or CS1.
90 words max. per
instruction.

PC EPUT/PC EGET

90 words max. per
command.

RTC Year, month, day, date, hour, minute, second (leap year adjusted for)

Accuracy:
At 25°C: +70 s/–45 s per month
At 0°C: +5 s/–110 s per month
At 55°C: +0/–140 s per month

Battery backup. Can be synchronized with the CPU Unit time.

Battery Model C200H-BAT09

Life 5 years at 25°C (The life of the battery is shortened if the ASCII Unit is
used at higher temperatures.)

Diagnostic functions CPU watchdog timer, battery voltage drops

Accessories Connector plug: XM2A-0901 or equivalent
(C200H-ASC11/21: 2, C200H-ASC31: 3)

Hood: XM2S-0911 or equivalent (C200H-ASC11/21: 2, C200H-ASC31: 3)

Internal current consumption (See note.) 250 mA max. at 5 VDC 300 mA max. at 5 VDC 300 mA max. at 5 VDC

Dimensions 130 x 35 x 100.5 mm (H x W x D)

Weight 400 grams max.
9

Comparison with Previous ASCII Units Section 1-5
1-5 Comparison with Previous ASCII Units
The following table shows a comparison between the C200H-ASC11/ASC21/
ASC31 and the C200H-ASC02 ASCII Units. Before using the ASCII Unit, refer
to Appendix A Operating Precautions, and for further details, refer to Appen-
dix B Comparison with C200H-ASC02.

Item C200H-ASC02 C200H-ASC11
/ASC21/ASC31

Comments

Applicable PCs C200H, C200HS, C200HX/HG/HE,
CS1-series PCs

Unit No. 0 to 9 0 to 15 ---

MPU 8 bits 32 bits ---

Interfaces (ports) Two RS-232C Two RS-232C

OR
One RS-232C and
one RS-422A/485

OR

One terminal port and
two RS-232C

Baud rate 19,200 bps max. 38,400 bps max. ---

User program memory area (BASIC program + vari-
able area)

24 Kbytes 200 Kbytes ---

BASIC program storage EEPROM:
24 Kbytes

Flash ROM:
200 Kbytes

Number of BASIC programs in user area of Unit Up to 3 Up to 4 ---

Number of BASIC program lines 0 to 63,999 1 to 65,535 ---

ASCII Unit system settings DIP switch on
back of Unit

Setup Area (10
words) (transferred
from DM area at
power ON or restart)

Allocated IR/CIO area words 4 words 10 words ---

Shared memory None Yes (general-purpose
words: 90 words)

10

Comparison with Previous ASCII Units Section 1-5
Com-
mands/
Instruc-
tions

ASCII Unit
BASIC com-
mands for data
exchange with
CPU Unit

PC READ/
PC WRITE

Yes Yes
(multiple format
strings supported)

On trigger from CPU
Unit, ASCII Unit
reads/writes I/O
memory.

PC READ@/
PC WRITE@

Yes Yes
(multiple format
strings supported)

ASCII Unit reads/
writes I/O memory
independently.

PC QREAD/
PC QWRITE

None Yes On trigger from ASCII
Unit, CPU Unit reads/
writes via IOWR/
IORD instructions.

PC PUT/
PC GET

Yes Yes Reads/writes allo-
cated IR/CIO area
words.

PC EPUT/
PC EGET

None Yes Reads/writes its own
shared memory.

Exchanging
data with ASCII
Unit from CPU
Unit

IOWR/IORD instruc-
tions (read/write to
ASCII Unit’s shared
memory, IR/CIO area
transfer, and interrupts)

None Yes (C200HX/HG/HE
or CS1)

Error check code calculation instruction None Yes (FCS) ---

Bit ON/OFF command None Yes
(BITON, BITOFF)

Conditional repeat command None Yes (WHILE/WEND) ---

Label branching None Yes ---

Integer search None Yes (SEARCH) ---

Debugging
function

Break point command None Yes (BRKPT) ---

Trace command None Yes (TRACE) ---

Variable display com-
mand

None Yes (WATCH) ---

Transmission control code:
Control command

None Yes (RTS/DTR con-
trol, CTS/DSR moni-
tor)

Special opera-
tions

Exponential function None Yes ---

Square root None Yes ---

Floating point calculations Single Double ---

Machine language program Yes None ---

Item C200H-ASC02 C200H-ASC11
/ASC21/ASC31

Comments
11

Basic Operating Procedures Section 1-6
1-6 Basic Operating Procedures

1-6-1 Editing BASIC Programs
The following example uses WINDOWS 95 on a personal computer as a ter-
minal (hyperterminal VT-100 emulation).

1,2,3... 1. Mount the ASCII Unit to the Backplane. Refer to 2-2 Installation.

2. Connect the Unit’s terminal port to the personal computer’s RS-232C port
via an RS-232C cable. Refer to 2-2 Installation.

3. Set the switches on the front of the Unit.

4. Turn on the PC power supply.

5. Perform the following steps if the ASCII Unit’s default setup is used.

a) Clear all the DM words allocated to the ASCII Unit in the CPU Unit us-
ing a PC Peripheral Device (such as a Programming Console).

b) Toggle the PC power switch off and then back on, or restart the ASCII
Unit.

Inter-
rupts

PC interrupts Using allocated IR/CIO
area words

Yes Yes ---

Using IOWR (CC##)
instruction

None Yes ---

Maximum number 15 99 ---

Communica-
tions interrupts
(via received
data)

Interrupts when data is
received in the receive
buffer

Yes Yes ---

Interrupt on reception
of designated character

None Yes ---

Interrupt on reception
of designated number
of bytes

None Yes ---

Interrupt on reception
of designated start and
end characters

None Yes ---

Interrupt on reception
of designated start
character and desig-
nated number of bytes

None Yes ---

Key interrupts Yes Yes ---

Timed interrupts None Yes ---

Interval timer interrupts None Yes ---

One-shot timer interrupts None Yes ---

Error interrupts Yes Yes ---

Line code storage command on interrupt None Yes (INTRB, INTRR,
INTRS)

Error log None Yes (Can record up to
30 error records.
Time and date of
occurrence not
recorded.)

Internal current consumption 5 VDC

200 mA

5 VDC

250 mA or 300 mA

Item C200H-ASC02 C200H-ASC11
/ASC21/ASC31

Comments
12

Basic Operating Procedures Section 1-6
6. Perform the following steps if the ASCII Unit’s default setup is not being
used.

a) Set the DM words allocated to the ASCII Unit in the CPU Unit using a
PC peripheral device (such as Programming Console).

b) Select whether to set the terminals ports’ communications parameters
to the default settings or not, and whether to set the terminal emulation
to VT100 or not. Refer to 3-2 DM Area Allocations.

c) Toggle the PC power switch off and then back on, or restart the ASCII
Unit.

7. In WINDOWS 95, click Start and then point to Programs.

8. Point to Accessories and then click Hyperterminal. Refer to 7-1 Pro-
gramming Procedure.

9. Start the hyperterminal, and specify the connection settings and proper-
ties.

10. Press the Ctrl+X Keys on the computer keyboard.

Inputting a BASIC
Program Directly into the
ASCII Unit

1,2,3... 1. Input New to clear the ASCII Unit’s program.

2. Input Auto to automatically display the line numbers.

3. Input the BASIC program and press the Enter Key.

Transferring a BASIC
Program from a Text
Editor to the ASCII Unit

1,2,3... 1. Input a program using a text editor such as Note Pad, and save it in text
format.

2. Input New to clear the ASCII Unit’s program.

3. Input the LOAD command.

4. Point to Hyperterminal and then Transfer, and click Transmit text file to
transfer the saved file to the ASCII Unit. Specify a transmission delay after
each line when transmitting data (or use XON/XOFF flow control).

5. Press the Ctrl+C Keys on the computer keyboard.

Transferring the ASCII
Unit’s BASIC program to
the Personal Computer

1,2,3... 1. Using the SAVE command, read the program. Input SAVE #@, and press
the Enter Key.

2. Point to Hyperterminal and then Transfer, and click Capture Text.

3. Input the file name to save the program and switch to reception mode.

4. Press the Ctrl+C Keys to begin the transfer.

5. Point to Hyperterminal, Transfer, and then Capture Text, and then click
STOP.

6. Press the Ctrl+C Keys.
13

Basic Operating Procedures Section 1-6
1-6-2 BASIC Programming Procedure
1,2,3... 1. Study communications procedures with the external devices. For further

details on creating flowcharts for communications procedures, refer to
SECTION 4 Data Exchange with General-purpose External Devices.

2. Study the method of data exchange with the CPU Unit, including the fol-
lowing:

• Data exchange timing

• Data exchange trigger to be used (i.e., whether to trigger the exchange
from the CPU Unit or the ASCII Unit)

• Interrupts from the CPU Unit

• Data transfer method based on the volume of data

For further details, refer to SECTION 6 Data Exchange with the CPU Unit.

3. Study BASIC internal processing. For further details, refer to SECTION 5
Processing.

4. Write the program. Refer to 7-4 Program Configuration, 7-5 List of BASIC
Commands, and 7-6 BASIC Commands.

5. Debug the program. Refer to 7-3 Starting/Stopping the BASIC Program
and 7-8 Debugging.

Note 1. When storing the program in flash ROM, enter the ROMSAVE command
from the terminal.

2. When automatically reading the program to user memory at power ON or
when the Unit is restarted, set bits 08 to 15 of the DM word m to 5Ahex in
the DM Setup Area allocated to the Unit.

3. Set the port number to 3 when using the LOAD or SAVE command for the
C200H-ASC31.

1-6-3 Connection and Transfer to External Devices
1,2,3... 1. Mount the ASCII Unit to the Backplane.

2. Set the following switches on the front of the Unit.

• Unit number switch

• RS-422/485 2-wire/4-wire switch

• RS-422/485 terminating resistance switch

Refer to 2-1 Nomenclature and Functions.

3. Connect the external devices using an RS-232C or RS-422/485 port de-
pending on the type of device. Refer to 2-2 Installation.

4. Turn on the PC power supply.

5. Using a PC peripheral device (such as Programming Console) set the DM
area words allocated in the CPU Unit. In particular, set DM word m+1 bits
00 to 07 to specify whether the ASCII Unit will run when power is turned
on or the Unit is restarted. Refer to 3-2 DM Area Allocations.

6. Transfer the ladder program to the CPU Unit.

7. Toggle the PC power off and then back on, or restart the ASCII Unit. The
BASIC program will be executed if the ASCII Unit is set to start operation
at power ON or when the Unit is restarted (in the DM Setup Area allocated
to the Unit).

8. If the ASCII Unit is set for manual starting at power ON or when the Unit is
restarted (in the DM Setup Area allocated to the Unit), perform one of the
following steps.
14

Basic Operating Procedures Section 1-6
a) Set the START/STOP switch on the front panel of the Unit to START.

b) Input RUN from the terminal to run the BASIC program. (The START/
STOP switch on the front panel of the Unit must be set to START first.)

Note 1. Use one of the following steps to pause the BASIC program.

• Press the Ctrl+X Keys from the terminal.

• Set the START/STOP switch on the front panel of the Unit to STOP.

2. Use one of the following steps to pause the BASIC program at a particular
line.

• Set a break point from the terminal.

• Place a STOP command in the program.

• Input the RUN TO line number command from the terminal.
15

SECTION 2
Installation

This section describes how to install and connect the ASCII Unit, including mounting to the PC Backplane and connecting
to external devices/computers.

2-1 Nomenclature and Functions . 18

2-1-1 Names of Parts . 18

2-1-2 Front Panel . 19

2-1-3 Rear Panel . 21

2-2 Installation. 22

2-2-1 Installation Method. 22

2-2-2 Connections . 24

2-2-3 General-purpose Peripheral Device Connections 26
17

Nomenclature and Functions Section 2-1
2-1 Nomenclature and Functions

2-1-1 Names of Parts

2-wire/4-wire switch

Terminating
resistance switch

C200H-ASC11 C200H-ASC21

• Front Panel

Indicators

Unit No. switch

START/STOP switch

Communications
port 1: RS-232C

Communications
port 1: RS-232C

Communications
port 2: RS-232C

Communications
port 2: RS-422/485
18

Nomenclature and Functions Section 2-1

2-1-2 Front Panel
Indicators

C200H-ASC31 • Back Panel
(Same for all models.)

Battery

START/STOP switch

User memory
default switch

Backplane
connector

Note The above diagram shows the Unit with the cov-
er removed. The caution on the cover will be
added from Units shipped after November 1998.

Indicators

Unit No. switch

Terminal port (port 3):
RS-232C

Communications
port 1: RS-232C

Communications
port 2: RS-232C

Battery
connector

Cover

Indicator Color Name Display Meaning Bit in allocated
IR/CIO area

words

RUN Green Unit operation Lit The ASCII Unit is operating normally. ---

Not lit An error has occurred. The CPU Unit power is
turned OFF, or the MPU in the ASCII Unit is out of
control. DM setting is incorrect.

BASIC Green System mode Lit The BASIC program is running. Bit 7 of n+5

Slow
flashing

INPUT/LINE INPUT/INPUT$ command standby
(awaiting input), (L)PRINT command standby
(awaiting transmission conditions), or command
input standby.

Bit 7 of n+5
(not for INPUT/
LINE INPUT/
INPUT$, and
PRINT
commands)

Quick
flashing

Transfer standby for the BASIC program.
(The flashing cycle will be unstable when transfer
of the BASIC program has started.)

Not lit At power-on waiting for Ctrl+X Key input. ---

ERR Red System error/
BASIC
error/Battery error

Lit An error has occurred in the system or the BASIC
program.

Bit 2 of n+5

Flashing Battery voltage has drop, or battery not con-
nected.

Bit 6 of n+5

T/R 1 Orange Communications
port 1 data transfer

Flashing Communications port 1 is receiving or transmit-
ting data.

T/R 2 Orange Communications
port 2 data transfer

Flashing Communications port 2 is receiving or transmit-
ting data.

19

Nomenclature and Functions Section 2-1

Note If a PROGRAM MEMORY ERROR (BASIC program memory error) is gener-
ated, all error indicators (ERR, ERR 1, ERR 2, ERR T) will flash. (Refer to 9-2
Troubleshooting for details.)

START/STOP Switch The START/STOP switch starts and stops the BASIC program. If STOP is
selected while the program is running, the program will STOP, and if START is
selected during a STOP, the program will be restarted from the first line. The
effect on operations in relation to initial settings and switch positions are
shown in the following table. When START/STOP switch is turned OFF, the
program will not run even if the RUN command is sent from the terminal or
automatic starting is set in the initial settings.

Note Either manual or automatic starting is set in bits 00 to 07 of word m + 1 in the
DM area words allocated to the Unit.

T/R T Orange Terminal port data
transfer

Flashing Terminal port (port 3) is receiving or transmitting
data (C200H-ASC31 only).

ERR 1 Red Communications
port 1 error

Lit A reception error (parity error, reception buffer
overflow, etc.) has occurred at communications
port 1.

Bit 4 of n+5

ERR 2 Red Communications
port 2 error

Lit A reception error (parity error, reception buffer
overflow, etc.) has occurred at communications
port 2.

Bit 5 of n+5

ERR T Red Terminal port error Lit A reception error (parity error, reception buffer
overflow, etc.) has occurred at terminal port 1
(C200H-ASC31 only)

Bit 3 of n+5

Indicator Color Name Display Meaning Bit in allocated
IR/CIO area

words

C200H-ASC11 C200H-ASC21 C200H-ASC31

ASC11 ASC21 ASC31

RUN

ERR

T/R 1

ERR 1

BASIC

T/R 2

ERR 2

RUN

ERR

T/R 1

ERR 1

BASIC

T/R 2

ERR 2

RUN

ERR

T/R T

ERR T

BASIC

T/R 2

ERR 2

T/R 1

ERR 1

STOP START

Operation Power on or
restart

Stopped Running

RUN command
from terminal

Switch
changed to
START

Ctrl+X
pressed

Switch
changed to
STOP

Switch position START STOP START STOP STOP to
START

START START to
STOP

Startup
mode
(See
note.)

Manual
start
(00)

No
effect

No
effect

RUN No
effect

RUN Break Break

Auto
start
(5A)

RUN No
effect

RUN No
effect

RUN Break Break
20

Nomenclature and Functions Section 2-1
Unit No. Switch Set the unit number to between 0 and F. If the same number is set for other
Special I/O Units, an I/O Unit Overflow error (fatal) will occur, and the system
will not operate.

2-wire/4-wire Switch
(C200H-ASC21 Only)

On the C200H-ASC21, the RS-422A/485 port can be set to either 2-wire or 4-
wire communications.

2: 2-wire communications
4: 4-wire communications

Terminating Resistance
Switch (C200H-ASC21
Only)

On the C200H-ASC21, the RS-422A/485 port’s terminating resistance (220
Ω) can be turned ON or OFF.

ON: Terminating resistance connected.
OFF: Terminating resistance disconnected.

2-1-3 Rear Panel
User Memory Default
Switch

When an error occurs in the ASCII Unit as a result of damage to the user
memory, this switch can be used to forcibly format (delete all programs from
memory) the user memory and return the ASCII Unit to normal operating sta-
tus.

Note During normal operation, make sure that the user memory switch is turned
OFF (set to the left). If the switch is turned ON (set to the right) and the power
turned ON, all programs in the ASCII Unit will be deleted. Refer to 9-2 Trouble-
shooting for details on processing errors.

ON: All user memory will be formatted (returned to default settings)

OFF: User memory will not be formatted.

Battery The battery backs up the ASCII Unit’s BASIC program, trace memory, and
real-time clock settings when power is not being supplied. If the battery volt-
age drops, or the battery is not connected, the Error Indicator on the front
panel will flash.

Refer to 9-5 Maintenance for details on replacing the battery.

CPU Unit Unit No. setting range

C200H-CPU01-E/02-E/03-E
C200H-CPU21-E/22-E/23-E/31-E,
C200HS-CPU01-E/21-E/31-E/03-E/23-E/33-E,
C200HE-CPU11-E/32-E/42-E/11-ZE/32-ZE/42-ZE,
C200HG-CPU33-E/43-E/33-ZE/43-ZE,
C200HX-CPU34-E/44-E/34-ZE/44-ZE

0 to 9

C200HG-CPU53-E/63-E/53-ZE/63-ZE,
C200HX-CPU54-E/64-E/54-ZE/64-ZE/65-ZE/85-ZE
CS1H-CPU66-E/65-E/64-E/63-E
CS1G-CPU45-E/44-E/43-E/42-E

0 to F

MACHINE
No.

Indicates
the Unit
No.

4WIRE 2

TERM OFF ON

ONOFF

Part name
(replacement part)

Model

Battery Set C200H-BAT09
21

Installation Section 2-2
2-2 Installation

2-2-1 Installation Method
1,2,3... 1. Attach the hooks on the upper section of the ASCII Unit onto the Back-

plane.

2. Insert the ASCII Unit connector into the Backplane connector.

Note When removing the ASCII Unit, lift it out while pressing down on the lock lever
with a screwdriver, as shown in the following illustration.

Hook

Backplane

Lock lever

Lock lever
22

Installation Section 2-2
Mounting Positions and Number of Units

Restrictions on SYSMAC
BUS Slave Racks

The following restrictions apply when mounting Units to SYSMAC BUS Slave
Racks.

PC CPU Unit Total No. of Units
on CPU Rack,
Expansion I/O

Racks, and
SYSMAC BUS
Slave Racks

Mounting
restrictions

C200HX/HG/HE C200HE-CPU11-E/32-E/42-E/11-ZE/32-ZE/42-ZE
C200HG-CPU33-E/43-E/33-ZE/43-ZE
C200HX-CPU34-E/44-E/34-ZE/44-ZE

10 None

C200HG-CPU53-E/63-E/53-ZE/63-ZE
C200HX-CPU54-E/64-E/54-ZE/64-ZE/65-ZE/85-ZE

16

C200HS C200HS-CPU01-E/01-EC/21-E/21-EC/31-E/03-E/23-E/33-E 10

CS1 CS1H-CPU66-E/65-E/64-E/63-E
CS1G-CPU45-E/44-E/43-E/42-E

16 None

C200H C200H-CPU01-E/02-E/03-E/11-E/21-E/23-E/31-E 10 Do not mount
Unit to rightmost
two slots on
CPU Rack.

Dimensions Unit Dimensions when Mounted

Cable
connector

Backplane
connector

35 100.5 117
180 to 200

ASC11 CH
RUN

ERR

T/R 1

ERR 1

BASIC

T/R 2

ERR 2

13
0

Group A B C D

Unit ASCII Unit,
High-speed Counter
Unit, Position Control
Unit (NC111/112/113/
213) Analog I/O Unit,
ID Sensor Unit, Fuzzy
Logic Unit

Multi-point I/O Unit Temperature Sensor
Unit, Voice Unit

Position Control Unit
(NC211)
Motion Control Unit

Number of Units
mountable for each
group per Remote I/O
Master Unit

4 Units 8 Units 6 Units 2 Units

Number of Units
mountable for all
groups combined per
Remote I/O Master
Unit

3A + B + 2C + 6D ≤ 12, and A + B + C + D ≤ 8
23

Installation Section 2-2
2-2-2 Connections

External Devices External devices are connected to the RS-232C or RS-422A/485 port. For
interface code/timing, refer to SECTION 4 Data Exchange with General-pur-
pose External Devices.

RS-232C Connections
(C200H-ASC11/21/31)

Using the enclosed connector, connect all pins to match the external device
interface.

RS-232C Interface Specifications

Note For details on connecting cables, refer to Appendix F Wiring RS-232C or RS-
422A/485 Cable Connectors.

Pin Symbol Name Direction Comments

1 FG Frame ground -

2 SD Send data Output

3 RD Receive data Input

4 RTS Request to send Output

5 CTS Clear to send Input

6 - Not used - Only for terminal port of
C200H-ASC31.

5V 5V output Output Other ports

7 DSR Data set ready Input

8 DTR Data terminal ready Output

9 SG Signal ground -

Hood FG Frame ground -

C200H-ASC11/21 C200H-ASC31

1 6

5
9

9 5

6
1

Item Specifications

Electrical characteristics Conform to EIA RS-232C

Synchronization Start-stop

Baud rate 300/600/1,200/2,400/4,800/9,600/19,200/38,400 bps
(38,400 bps cannot be used for the terminal port on the ASC31.)

Transmission mode Point-to-point (1:1)

Communications buffers Transmit: 512 bytes; receive: 512 bytes

Flow control RTS/CTS flow, Xon/Xoff flow control supported

Connector type D-sub 9-pin for both ports

Applicable connector (enclosed) Plug: XM2A-0901 or equivalent
Connector hood: XM2S-0911 or equivalent

Recommended cable UL2464 AWG28x5P IFS-RVV-SB (UL product)
AWG28x5P IFVV-SB (non-UL product)

Fujikura Ltd.

UL2464-SB(MA) 5Px28AWG (7/0.127) (UL product)
CO-MA-VV-SB 5Px28AWG (7/0.127) (non-UL
product)

Hitachi Cable, Ltd.

Cable length 15 m max.
24

Installation Section 2-2
RS-422A/485
Connections
(C200H-ASC21 Only)

Using the enclosed connector, connect the pins to match the external device
interface.

RS-422A/485 Interface Specifications

Note 1. For details on connecting cables, see Appendix F Wiring RS-232C or RS-
422A/485 Cable Connectors.

2. When the 2/4-wire switch is set for 2-wire operation, use either pins 1 and
2, or pins 6 and 8. (Pins 1 and 6 are short-circuited, and pins 2 and 8 are
short-circuited.)

Pin Symbol Name Direction

1 SDA Send data A (–) Output

2 SDB Send data B (+) Output

3 NC Not used -

4 NC Not used -

5 NC Not used -

6 RDA Receive data A (–) Input

7 NC Not used -

8 RDB Receive data B (+) Input

9 NC Not used -

Hood FG Frame ground -

1

5
9

6

Item Specifications

Communications mode Half duplex (1 ms is required after transmission has been completed until the ASCII
Unit is ready to receive.)

Electrical characteristics Conform to EIA RS-422A/485

Synchronization Start-stop

Baud rate 300/600/1,200/2,400/4,800/9,600/19,200/38,400 bps

Transmission mode Point-to-multipoint (1:N)

Communications buffer Transmit: 512 bytes; receive: 512 bytes

Flow control None

Applicable connector (enclosed) Plug: XM2A-0901 or equivalent
Connector hood: XM2S-0911 or equivalent

Recommended cable UL2464 AWG28x5P IFS-RVV-SB (UL product)
AWG28x5P IFVV-SB (non-UL product)

Fujikura Ltd.

UL2464-SB(MA) 5Px28AWG (7/0.127) (UL product)
CO-MA-VV-SB 5Px28AWG (7/0.127) (non-UL
product)

Hitachi Cable, Ltd.

Cable length 500 m max.
25

Installation Section 2-2
Personal Computer Used
as Terminal

Check the wiring between the RS-232C connector and the computer, and
using the appropriate connectors, prepare the connecting cables using the the
pin arrangement shown in the following diagram.

Note 1. DSR-DTR signals are not connected back to each other for the cable used
above, so do not specify that the DSR signal is checked when the LOAD
command is executed. (If the specification is omitted, the DSR signal will
not be checked by default.)

2. CTS-RTS and DSR-DTR are not cross-connected, so if flow control is re-
quired, use Xon/Xoff flow control.

2-2-3 General-purpose Peripheral Device Connections
 Bar Code Reader Connected with RS-232C

C200H-ASC11/ASC21/ASC31IBM PC/AT or compatible

3 SD

2 RD

7 RTS

8 CTS

6 DSR

4 DTR

5 GND

D-sub 9-pin (female) D-sub 9-pin (male)

Cables:
XW2Z-200S-V (2 m)
XW2Z-500S-V (5 m)

Con-
nector
hood

FG

2 SD

3 RD

4 RTS

5 CTS

7 DSR

8 DTR

9 GND

Con-
nector
hood

FG

Connecting an OMRON V500 Bar Code Reader

9-pin D-sub (female)

C200H-ASC11/ASC21/ASC31
ASCII Unit

Signal Pin No.

ASCII Unit

82S-0305 +5V
External Power Supply

V520-RH21-6
Bar Code Reader

FG 1

SD 2

RD 3

RTS 4

CTS 5

DSR 7

DTR 8

SG 9

SignalPin No.

1 SD

2 RD

3 RTS

4 CTS

6 DTR

7 SG

8 +5 V

V509-W012 Extension
Cable

V520-RH21-6
Bar Code Reader
DIN 8p

V509-W012
Extension Cable

100 VAC

SG

+5 V
26

Installation Section 2-2
Note In order to prevent malfunctions, when external devices have a FG, ground
both the external devices and the ASCII Unit with shielded cables.

ID Controller Connected with RS-422A (4-wire)

Note 1. Make sure that the shield is grounded at either the ID Controller end or the
ASCII Unit end, but not both ends.

2. Make sure to set the 2/4-wire switch on the C200H-ASC21 Unit to 4 wires.

Digital Operator Connected with RS-485 (2-wire)

V600-CA2A ID ControllerC200H-ASC21 ASCII Unit
9-pin D-sub (female) 9-pin D-sub (female)

Signal Pin No.

Shield

Data Carrier Data Carrier

R/W Head R/W Head

ID ControllerID Controller

C200H-ASC21 ASCII Unit only

Connecting a V600/620 ID Controller

Connec-
tor hood

RDB 8
SDB 2
RDA 6
SDA 1

FG

SignalPin No.

1 RDB

3 SG

5 SDB

6 RDA

7 FG

9 SDA

RS-422A

When 2 connectors are used

V600-CA2A ID ControllerV600-CA2A ID Controller
9-pin D-sub (female) 9-pin D-sub (female)

Shield

SignalPin No.SignalPin No.

9 SDA

5 SDB

6 RDA

1 RDB

3 SG

7 FG

9 SDA
5 SDB
6 RDA
1 RDB
3 SG
7 FG

Connecting an OMRON ES100X Digital Operator

C200H-ASC21 ASCII Unit
9-pin D-sub (female) ES100@-@04@ Terminal Block

Signal Pin No.

Connec-
tor hood

RDB 8

SDB 2

RDA 6

SDA 1

FG

SignalPin No.

16 –
17 +

SignalPin No.

16 –
17 +

ES100@-@04@ Terminal Block
27

Installation Section 2-2
Note 1. Make sure that the shield is grounded at either the Digital Operator end or
the ASCII Unit end, but not both ends.

2. Make sure to set the 2/4-wire switch on the C200H-ASC21 Unit to 2 wires.
28

SECTION 3
IR/CIO and DM Area Allocations

This section describes the methods used to allocate words to the ASCII Unit in the IR/CIO and DM Areas and the
applications of the bits and words in these areas.

3-1 IR/CIO Area Allocations . 30

3-1-1 Overview. 30

3-1-2 Overview of IR/CIO Area Allocations . 31

3-2 DM Area Allocations . 38

3-2-1 Overview. 38

3-2-2 Overview of DM Allocations . 40
29

IR/CIO Area Allocations Section 3-1
3-1 IR/CIO Area Allocations

3-1-1 Overview
Each ASCII Unit is allocated 10 words in the Special I/O Unit Areas of the
CPU Unit’s IR or CIO Area. The words that are allocated depend on the Unit
No. set on the rotary switch on the front panel of the ASCII Unit. The contents
of the allocated 10 words is exchanged automatically between the CPU Unit
and the ASCII Unit every time the CPU Unit refreshes I/O.

Data Exchange for the C200HX/HG/HE, C200H, C200HS

Note For CPU Units C200HG-CPU53-E/63-E/53-ZE/63-ZE and C200HX
-CPU54-E/64-E/54-ZE/64-ZE/65-ZE/85-ZE, IR 400 to IR 459 are also allo-
cated (maximum of 16 Special I/O Units).

Special I/O Area Allocation for the C200HX/HG/HE, C200H, C200HS

Note For C200HG-CPU53-E/63-E/53-ZE/63-ZE and C200HX-
CPU54-E/64-E/54-ZE/64-ZE/65-ZE/85-ZE CPU Units only.

Unit No. Allocated words Unit No. Allocated words Unit No. Allocated words Unit No. Allocated words

0 IR 100 to IR109 4 IR 140 to IR 149 8 IR 180 to IR 189 C IR 420 to IR 429
(See note.)

1 IR 110 to IR 119 5 IR 150 to IR 159 9 IR 190 to IR 199 D IR 430 to IR 439
(See note.)

2 IR 120 to IR 129 6 IR 160 to IR 169 A IR 400 to IR 409
(See note.)

E IR 440 to IR 449
(See note.)

3 IR 130 to IR 139 7 IR 170 to IR 179 B IR 410 to IR 419
(See note.)

F IR 450 to IR 459
(See note.)

CPU Unit ASCII Unit

IR Area Unit 0

Unit 0

Data automatically
exchanged during I/O
refreshUnit 1

Unit 9
(see note)

IR 100

IR 104
IR 105

IR 109
IR 110

IR 119

IR 190

IR 199

5 words

5 words

15 0
30

IR/CIO Area Allocations Section 3-1
Data Exchange for the CS1 Series

Special I/O Area Allocation for the CS1 Series

3-1-2 Overview of IR/CIO Area Allocations
The following data is exchanged automatically during the I/O refresh period.
The first word allocated to the ASCII Unit in the IR/CIO Area is “n.” The value
of “n” can be calculated from the unit number using the following equation.

• C200HX/HG/HE, C200H, C200HS

Unit numbers 0 to 9: n = 100 + 10 x Unit number

Unit numbers A to F: n = 400 + 10 x (Unit number – 10)

• CS1 Series

Unit numbers 0 to F: n = 2000 + 10 x Unit number

Unit No. Allocated words Unit No. Allocated words Unit No. Allocated words Unit No. Allocated words

0 CIO 2000 to
CIO 2009

4 CIO 2040 to
CIO 2049

8 CIO 2080 to
CIO 2089

C CIO 2120 to
CIO 2129

1 CIO 2010 to
CIO 2019

5 CIO 2050 to
CIO 2059

9 CIO 2090 to
CIO 2099

D CIO 2130 to
CIO 2139

2 CIO 2020 to
CIO 2029

6 CIO 2060 to
CIO 2069

A CIO 2100 to
CIO 2109

E CIO 2140 to
CIO 2149

3 CIO 2030 to
CIO 2039

7 CIO 2070 to
CIO 2079

B CIO 2110 to
CIO 2119

F CIO 2150 to
CIO 2159

CPU Unit ASCII Unit

CIO Area Unit 0

Unit 0

Data automatically
exchanged during I/O
refresh

Unit 1

Unit F
(see
note)

CIO 2000

CIO 2004
CIO 2005

CIO 2009
CIO 2010

CIO 2019

CIO 2150

CIO 2159

5 words

5 words

15 0
31

IR/CIO Area Allocations Section 3-1
Outputs The following words are output from the CPU Unit to the ASCII Unit.

Not used

Write Bit (PC Read
Request)

Not used

PC Interrupt Bit

Sync Time Set Bit

Error Code Read Bit

Read Bit (PC
Write Request)

Output Data (from CPU Unit to ASCII Unit)

n

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Output Data
(16-bit; from CPU Unit to ASCII Unit)

n + 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Interrupt Number
(00 to 99 BCD)

Not used

n + 2

15 12 11 8 7 4 3 0

Transfer Data Area
(for PC READ/PC WRITE)

Number of Transfer Words
(for PC READ/PC WRITE)

n + 3

15 12 11 8 7 4 3 0

First Transfer Word
(for PC READ/PC WRITE)

n + 4

15 12 11 8 7 4 3 0
32

IR/CIO Area Allocations Section 3-1
Word Bit Name Function Use

n 00 Not used --- ---

01 Write Bit 1: Establishes the execution conditions for
PC READ (Data transferred from CPU
Unit to ASCII Unit according to the spec-
ified First Transfer Word and Number of
Transfer Words.)

0: PC READ execution wait.

When this bit is turned ON by the user pro-
gram in the CPU Unit, data is transferred
according to the PC READ command at the
ASCII Unit.

02 Read Bit 1: Establishes the execution conditions for
PC WRITE (Data transferred from ASCII
Unit to CPU Unit according to the speci-
fied First Transfer Word and Number of
Transfer Words.)

0: PC WRITE execution wait.

When this bit is turned ON by the user pro-
gram in the CPU Unit, data is transferred
according to the PC WRITE command at the
ASCII Unit.

03 Not used --- ---

04 PC Interrupt
Bit

0 to 1: Sends an interrupt to the ASCII
Unit.

The interrupt subroutine for the ON PC
GOSUB is branched to when this bit
changes from 0 to 1.

When this bit is switched from OFF to ON by
the user program in the CPU Unit, an inter-
rupt is sent to the ASCII Unit.
It is necessary to set the interrupt number in
n + 2 bits 0 to 7 when using the PC Interrupt
Bit.

05 Sync Time
Set Bit

0 to 1: Sets the ASCII Unit RTC according
to the CPU Unit RTC.

The time on the clock in the ASCII Unit is set
to the time on the clock in the CPU Unit.

06 Error Code
Read Bit

0 to 1, 1 to 0: Reads the error code to n +
7.

By toggling this bit (0 to 1, 1 to 0) the last
error code from the ASCII Unit’s internal
error log can be read and set in n + 7.
The error status in the ASCII Unit will not be
cleared when the error code is read using
this bit.

07 to
15

Output Data Data transferred from the CPU Unit to the
ASCII Unit. The ASCII Unit reads this data
via the BASIC program’s PC GET com-
mand.

The CPU Unit writes data here using the
MOV instruction in the user program. The
ASCII Unit can read this data via the PC
GET command.

n + 1 00 to
15

Output Data Data transferred from the CPU Unit to the
ASCII Unit. The ASCII Unit reads this data
via the BASIC program’s PC GET com-
mand.

The CPU Unit writes data here using the
MOV instruction in the user program. The
ASCII Unit can read this data via the PC
GET command.

n + 2 00 to
07

Interrupt
Number

00 to 99 BCD (2-digit) When the ON PC GOSUB command inter-
rupt number and this interrupt number are
the same and the PC Interrupt Bit changes
from OFF to ON, an interrupt will be sent
from the CPU Unit to the ASCII Unit. The
interrupt subroutine will be executed in
response.

08 to
15

Not used --- ---
33

IR/CIO Area Allocations Section 3-1
n + 3 00 to
11

No. of Trans-
fer Words

Number of words transferred when ASCII
Unit PC READ/PC WRITE command is
executed (1 to 255).

Data is written via the MOV instruction from
the user program in the CPU Unit. If the
Write Bit is ON, the data will be transmitted
by the ASCII Unit’s PC READ/PC WRITE
command at the next I/O refresh period.

12 to
15

Transfer Data
Area

The memory area for ASCII Unit PC
READ/PC WRITE commands is set using
the following codes.

No. Data area

C200HX/HG/HE,
C200H, C200HS

CS1 Series

0 DM Area

1 IR Area CIO Area

2 LR Area Data Link Area

3 HR Area H000 to H099 in
Holding Area

4 AR Area H100 to H127 in
Holding Area

5 EM Area bank 0

6 TC Area Timer Area

n + 4 00 to
15

First Transfer
Word
(address)

First word transferred from the CPU Unit
memory address when the ASCII Unit’s PC
READ/PC WRITE command is executed.

Word Bit Name Function Use
34

IR/CIO Area Allocations Section 3-1
Input The following words are input from the ASCII Unit to the CPU Unit.

IORD Request Flag

Error Code Type

BASIC RUN Flag

ASCII Busy Flag

PC Interrupt Subroutine Completed Flag

System BASIC Error Flag

Terminal Port Error Flag

Port 1 Error Flag

Battery Error Flag

IOWR Request Flag

n + 5

Port 2 Error Flag

Not used

Interrupt Fail Flag

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input Data (ASCII Unit to CPU Unit; 16-bit)

n + 6

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Error Type Error Code

n + 7

15 12 11 8 7 4 3 0

Transfer Data Area
(for PC QREAD/PC QWRITE)

No. of Transfer Words
(for PC QREAD/PC QWRITE)

n + 8

15 12 11 8 7 4 3 0

First Transfer Word

(for PC QREAD/PC QWRITE)

n + 9

15 12 11 8 7 4 3 0
35

IR/CIO Area Allocations Section 3-1
Word Bit Name Function Use

n + 5 00 ASCII Busy
Flag

1: The ASCII Unit is exchanging data with
the CPU Unit.

There is an error in the DM settings.

The ROMSAVE command is being exe-
cuted and data is being transferred to
the flash ROM.

0: Transfer is not occurring.

When this flag is ON, the next transfer with
the ASCII Unit should not be executed in the
user program in the CPU Unit.

Use this flag’s address in an NC input condi-
tion for an OUT instruction controlling the
Read Flag and Write Flag outputs to the
ASCII Unit or as an NC input condition for
the IOWR (#00@@) instruction.

01 PC Interrupt
Subroutine
Completed
Flag

Turns ON when the interrupt subroutine at
the PC is completed.

Until this bit toggles, subroutine results are
not yet available. (See Note.)

02 System
BASIC Error
Flag

1: System error or BASIC error

0: Normal

03 Terminal Port
Error Flag

1: Communications error at the terminal
port

0: Normal

These bits are cleared by executing an ERC
command.

04 Port 1 Error
Flag

1: Port 1 transmission error (parity error,
reception buffer overflow, etc.)

0: Normal

05 Port 2 Error
Flag

1: Port 2 transmission error (parity error,
reception buffer overflow, etc.)

0: Normal

06 Battery Error
Flag

1: Battery voltage drop or no battery con-
nected

0: Normal

07 BASIC RUN
Flag

1: BASIC program running

0: BASIC program stopped

08 Error Code
Type

1: New

0: Old

This flag shows whether the error for the
error code being read was generated before
the last RUN.

09 PC Interrupt
Fail Flag

1: PC Interrupt has failed

0: Normal

This flag turns ON when a PC interrupt fails
due to the PC OFF (stop interrupt) condition
in the ASCII Unit. The PC Interrupt Bit will
turn ON for the next cycle and will turn OFF
for the following cycle.

10 to
13

Not used --- ---

14 IORD
Request Flag

1: IORD (#FD00) execution request by the
ASCII Unit to the CPU Unit
(When a PC QWRITE command is exe-
cuted, this flag turns ON automatically,
and after the data is transferred by the
CPU Unit using the IORD (#FD00)
instruction, it automatically turns OFF at
the next I/O refresh period.)

0: No request

This flag automatically turns ON when a PC
QWRITE command is executed to request
execution of an IORD (#FD00) instruction
from the CPU Unit.

15 IOWR
Request Flag

1: IOWR (#FD00) execution request by the
ASCII Unit to the CPU Unit
(When a PC QREAD command is exe-
cuted, this flag turns ON automatically,
and after the data is transferred by the
CPU Unit using the IOWR (#FD00)
instruction, it automatically turns OFF at
the next I/O refresh period.)

0: No request

This flag automatically turns ON when a PC
QREAD command is executed to request
execution of an IOWR (#FD00) instruction
from the CPU Unit.
36

IR/CIO Area Allocations Section 3-1
Note 1. An OR can be taken of DIFU/DIFD instructions to detect changes in the
status of the Interrupt Subroutine Completed Flag. This flag can be used
when executing an IORD instruction (#00@@) when a PC EPUT command
is received during a subroutine.

2. The data set in these words by execution of the PC QREAD/PC QWRITE
commands is used for monitoring from the CPU Unit. Actual data transfer
is performed according to the operands specified for the IOWR/IORD
(#FD00) instructions. Care is required for CS1-series PCs because the ad-
dressing range for PC QREAD and PC QWRITE is different from that for
IOWR/IORD (#FD00). Dummy addresses can be used when the desired
addresses cannot be addressed directly with PC QREAD/PC QWRITE.
Refer to 6-3 Details of the Data Exchange Methods for details on page 75.

n + 6 00 to
15

Input Data The data (16 bit) transferred from the
ASCII Unit to the CPU Unit by a PC PUT
command at the ASCII Unit.

The ASCII Unit’s PC PUT command writes
data to the IR/CIO words allocated to the
ASCII Unit. After the next I/O refresh, this
16-bit, 8-bit or 1-bit data is read using the
CPU Unit’s MOV or LD instruction.

n + 7 00 to
11

Error Code Error code Each time word n bit 06 changes status (ON
to OFF or OFF to ON) in the CPU Unit, the
next newest error code and error type are
read from the ASCII Unit’s error code table,
and stored in the CPU Unit.

12 to
15

Error Type B: BASIC error

0: System error
1: Port 1 communications error

2: Port 2 communications error

3: Terminal port communications error
(C200H-ASC31 only)

n + 8 00 to
11

No. of Trans-
fer Words

The number of words transferred when the
ASCII Unit’s PC QREAD/PC QWRITE
command is executed. (1 to 128)

The ASCII Unit writes data for these words
when the PC QREAD/PC QWRITE com-
mands are executed, and then sets the
IORD/IOWR Request Flag in word n + 5 bit
14/15. When the user program in the CPU
Unit detects the ON status of the flag using
an LD instruction, it can access the words
using the IORD/IOWR (#FD00) instructions.
(See note 2.)

12 to
15

Transfer Data
Area

The memory area for the ASCII Unit PC
QREAD/PC QWRITE commands.

No. Data area

C200HX/HG/HE,
C200H, C200HS

CS1 Series

0 DM Area

1 IR Area CIO Area

2 LR Area Data Link Area

3 HR Area H000 to H099 in
Holding Area

4 AR Area H100 to H127 in
Holding Area

5 EM Area (bank number 0 only)

6 TC Area Timer Area

n + 9 00 to
15

First Transfer
Word
(address)

The first word to be transferred (CPU Unit
memory address) for the ASCII Unit’s PC
QREAD/PC QWRITE commands.

Word Bit Name Function Use
37

DM Area Allocations Section 3-2
3-2 DM Area Allocations

3-2-1 Overview
Each ASCII Unit is also allocated 100 words as shared memory from the CPU
Unit’s Data Memory Area. The unit number determines which 100 words are
allocated. The shared memory (100 words) in the ASCII Unit is divided into
two regions as follows:

• Setup Area (10 words): Words 0 to 9

• IORD/IOWR Area (90 words): Words 10 to 99

The ASCII Unit’s internal shared memory does not have a battery backup.
When the power supply is turned off, it will return to default values. Data from
the CPU Unit will be resent every time the power is turned on or the Unit is
restarted.

The first word allocated to the ASCII Unit in the DM area and the first word in
the shared memory in the ASCII Unit is “m.”

Note 1. The IORD/IOWR Area can be set to be transferred or not transferred in bits
08 to 11 of word m+1 in shared memory in the Setup Area.

2. The IORD/IOWR Area (m+10 to m+99) can be used as work bits when not
used for the transfer to the ASCII Unit as described in note 1.

DM Area Allocation C200HX/HG/HE, C200H, C200HS

Note Unit numbers A to F are used for the C200HG-CPU53-E/63-E/53-ZE/63-ZE
and C200HX-CPU54-E/64-E/54-ZE/64-ZE/65-ZE/85-ZE only.

CPU Unit ASCII Unit

DM Area

Shared
memory

Allocated in
Setup Area (10
words)

Transferred at power ON
or when Unit is restarted

Setup Area
(10 words)

Allocated in
IORD/IOWR
Area (90 words)
or work bits (See
note 2.)

Transferred at power ON
or when Unit is restarted
(See note 1.)

IORD/IOWR Area
(90 words)

100 words

Words

:

m
m+1
m+2

m+9
m+10

m+99

2
1

9
10

99

0

m = First word in DM Area.

:

Unit No. Words Unit No. Words Unit No. Words

0 DM 1000 to DM 1099 6 DM 1600 to DM 1699 A DM 2000 to DM 2099

1 DM 1100 to DM 1199 7 DM 1700 to DM 1799 B DM 2100 to DM 2199

2 DM 1200 to DM 1299 8 DM 1800 to DM 1899 C DM 2200 to DM 2299

3 DM 1300 to DM 1399 9 DM 1900 to DM 1999 D DM 2300 to DM 2399

4 DM 1400 to DM 1499 --- --- E DM 2400 to DM 2499

5 DM 1500 to DM 1599 --- --- F DM 2500 to DM 2599
38

DM Area Allocations Section 3-2
CS1-series PCs

Setup Area
(10 words)

The first 10 words (0 to 9) of the allocated 100 words in the DM area are the
ASCII Unit’s Setup Area. When power is turned ON or the Unit is restarted, it
will be possible to transfer the contents of these words from the CPU Unit to
the ASCII Unit.

The Setup Area consists of the following parameters. For details, refer to 3-2-
2 Overview of DM Allocations.

• Communications parameters for the ASCII Unit ports.

• Number of the program activated at startup.

• Division of the remaining 90 words into an IOWR Area and IORD Area.

• Transfer ON/OFF setting for the remaining 90 words from the CPU Unit to
the ASCII Unit at power ON or when the Unit is restarted.

IORD/IOWR Areas
(90 Words)

The 90 words (10 to 99) remaining out of the 100 words are called IORD/
IOWR Areas and are used for IOWR/IORD instructions from the CPU Unit.
Within the ASCII Unit, these are the areas that can be read/written using the
PC EGET/EPUT commands from the ASCII Unit.

Within these 90 words, you can set which words the CPU Unit can read using
the IORD instruction (i.e., the area written by the ASCII Unit via the PC EPUT
command called the IORD Area) and which words the CPU Unit can write
using the IOWR instruction (i.e., the area read by the ASCII Unit using the PC
EGET command called the IOWR Area).

You can also set whether or not the IORD and IOWR Areas in the DM words
allocated to the ASCII Unit in the CPU Unit are transferred to the ASCII Unit’s
IORD/IOWR Area when power is turned ON or the ASCII Unit is restarted.
This parameter is set in word m + 1 bits 08 to 11. If not transferred, the DM
area words (m+10 to m+99) can be used as word bits for other purposes in
programming.

Unit No. Words Unit No. Words Unit No. Words

0 D20000 to D20099 6 D20600 to D20699 A D21000 to D21099

1 D20100 to D20199 7 D20700 to D20799 B D21100 to D21199

2 D20200 to D20299 8 D20800 to D20899 C D21200 to D21299

3 D20300 to D20399 9 D20900 to D20999 D D21300 to D21399

4 D20400 to D20499 --- --- E D21400 to D21499

5 D20500 to D20599 --- --- F D21500 to D21599

Ladder program

First word

First word

Not used

CPU Unit ASCII Unit

BASIC

IORD (#00@@)

IOWR (#00@@)

Read

Write

IORD Area

IOWR Area

PC EPUT

PC EGET

Write

Read

Words

99

IORD/IOWR area

10
39

DM Area Allocations Section 3-2
Note Setting the IORD/IOWR Areas within the following ranges.

• Set the first word in the IORD Area, and the first word in the IOWR Area.

• The IORD Area and IOWR Area can be set in any order and the first part
of the allocated DM words can be left unused by either area.

3-2-2 Overview of DM Allocations
The first address in the DM words allocated in the CPU Unit is “m.”

C200HX/HG/HE, C200H, C200HS: m = DM 1000 + 100 × Unit No.
CS1-series PCs: m = D20000 + 100 × Unit No.

First word in IORD
Area

First word in
IOWR Area

Not used

IORD Area

IOWR Area

Words

 99

First word in
IOWR Area

First word in IORD
Area

Not used

IOWR Area

IORD Area

Words

99

10 10

Shared
memory
address

DM
address

Bit Name Function Settings (hex) ASCII Unit’s
default
(hex)

0 m 00 to
07

Program No. Sets the startup program number. 00: No.1
01: No.1
02: No.2
03: No.3
04: No.4

00

08 to
15

Automatic
transfer from
flash ROM

Determines whether the program is
read from the flash ROM to the user
memory area at power ON or when
the Unit is restarted.

00: Do not transfer
(user memory
mode)

5A:Transfer flash
ROM to user
memory area

00

01 m + 1 00 to
07

Startup mode Determines whether or not the pro-
gram runs automatically at power
ON or when the Unit is restarted.
When manual start is designated,
start using the START/STOP switch
on the front panel of the ASCII Unit
or the RUN command from the ter-
minal. (See page 20 for details on
the START/STOP switch.)

00: Manual start
5A:Automatic start

00

08 to
11

IORD/IOWR
Area transfer

Determines whether or not the CPU
Unit’s 90 words (DM m + 10 to m +
99) are sent to the ASCII Unit’s
shared memory (IORD/IOWR) area
at power on or restart.

0: No transfer
1: Transfer

0

12 to
15

Not used --- Set to 0 (OFF) 0
40

DM Area Allocations Section 3-2
02 m + 2 00 to
07

Port #1 baud
rate

Sets the baud rate for port #1. 00: 9,600
01: 300
02: 600
03: 1,200
04: 2,400
05: 4,800
06: 9,600
07: 19,200
08: 38,400 (bps)

00

08 to
15

Port #1 DMA
transmission
(C200H-
ASC31 only)

Sets DMA transmission for port #1.
(See page 48 for details on DMA.)

00: No DMA sent
5A:DMA sent

00

03 m + 3 00 to
07

Port #2 baud
rate

Sets the baud rate for port #2. 00: 9,600
01: 300
02: 600
03: 1,200
04: 2,400
05: 4,800
06: 9,600
07: 19,200
08: 38,400 (bps)

00

08 to
15

Port #2 DMA
transmission

Sets DMA transmission for port #2.
(See page 48 for details on DMA.)

00: No DMA sent
5A:DMA sent

00

04 m + 4 00 to
07

Terminal port
#3 baud rate

(C200H-
ASC31 only)

Sets the baud rate of terminal port
#3.

00: 9,600
01: 300
02: 600
03: 1,200
04: 2,400
05: 4,800
06: 9,600
07: 19,200 (bps)

00

08 to
15

Number of
transfer words
per cycle
(C200HX/HG/
HE or CS1
only)

Determines the maximum number of
transfer words per CPU Unit cycle
for PC READ/PC WRITE commands
(including @ variants.)

00: 20 words max.
5A:127 words max.

5A is available only
for the
C200HX/HG/HE or
CS1. (Not available
for remote I/O.)

00

05 m + 5 00 to
07

Not used --- --- 00

08 to
11

Screen size:
Width

Determines cursor movement in Edit
Mode.

0: 80 characters
1: 40 characters
2: 132 characters

0

12 to
15

Terminal
emulation

Sets the terminal emulation mode for
key operation, etc.

0: VT100 mode
1: FIT10 mode

0

06 m + 6 00 to
07

First word in
IOWR Area

Sets the first word in the IOWR Area
between address 10 and 99.

00: No IOWR Area
10 to 99: IOWR

first word

00

08 to
15

Not used

07 m + 7 00 to
07

First word in
IORD Area

Sets the first word in the IORD Area
between address 10 and 99.

00: No IORD Area
10 to 99: IORD first

word

00

08 to
15

Not used

08 m + 8 00 to
15

Not used

Shared
memory
address

DM
address

Bit Name Function Settings (hex) ASCII Unit’s
default
(hex)
41

DM Area Allocations Section 3-2
Note 1. Do not specify settings other than those listed in the Settings column
above.

2. When the start mode is set to start automatically, the message “Please
wait compiling...,” which is normally output to the terminal port when a pro-
gram is run, will not be output when the power is turned ON/OFF or when
the START/STOP switch is used.

3. When there is an error in the DM settings, the ERR indicator will be lit.
Since terminals cannot be connected when this indicator is lit, use a Pro-
gramming Console to confirm the error code, reset the DM settings cor-
rectly, and either turn the power OFF then ON again, or restart the ASCII
Unit.

09 m + 9 00 to
15

Not used

10 to 99 m + 10
to
m + 99

00 to
15

IORD Area and IOWR Area
(set first words at address 6 and 7)

00

Shared
memory
address

DM
address

Bit Name Function Settings (hex) ASCII Unit’s
default
(hex)
42

SECTION 4
Data Exchange with General-purpose External Devices

This section describes the ASCII Unit commands in conjunction with transmission control signals for opening and closing
communications ports and for sending and receiving data between the ASCII Unit and external devices.

4-1 Overview . 44

4-2 Opening a Communications Port . 44

4-2-1 OPEN# Command . 44

4-2-2 OPEN Command Specifications. 45

4-2-3 Control/Monitor Commands for Transmission Control Signals. . . . 46

4-2-4 Device Symbol . 46

4-3 Sending Data . 47

4-3-1 PRINT# Command . 47

4-3-2 DMA Data Transmission . 48

4-3-3 Transmission Control Signals . 48

4-4 Receiving Data . 51

4-4-1 INPUT# Command. 51

4-4-2 Transmission Control Signals . 51

4-4-3 INPUT$ Function . 52

4-5 Closing a Communications Port . 53

4-5-1 Transmission Control Signals . 53

4-5-2 Transmission Control Signal Timing Charts 53

4-6 Communications Errors . 59
43

Overview Section 4-1
4-1 Overview
The following operations are covered in this section.

4-2 Opening a Communications Port

4-2-1 OPEN# Command
A communications port is opened using the OPEN# command. The OPEN#
command specifies the device (peripheral device name), communications
parameters for the communications port, and the use of transmission control
signals.

Example

Operation Command/function

Opening a communications port OPEN command

Sending data PRINT command
(The LPRINT command executes device: LPRT.)

Receiving
data

CR terminator INPUT command

(The LINE INPUT command receives everything in one character variable).

Specified character
length

INPUT$ function

Closing a communications port CLOSE command

Communications error process-
ing

ON ERROR command, ERC command, ERR command, and RESUME command

ASCII Unit

Transmit buffer

Receive buffer

Communications
port #2

Communications parameters
Transmission control signals

General-purpose
external device

OPEN#2 . . .

Device symbol (peripheral device name)

OPEN #2, "COMU: 9600, 8, N, 2, CTS_XX, RTS_XX, DSR_XX, XN_XX"

Communications parameters for communications port

Operation of transmission control signals
44

Opening a Communications Port Section 4-2
4-2-2 OPEN Command Specifications
The following details are specified in the OPEN command.

Item Settings Detail

Device symbol (periph-
eral device name)

SCRN, LPRT,
EKPRT, NKPRT,
KYBD, COMU,
TERM

• Use of the transmission/receive buffer.
• Control of the transmission control signals.

Baud rate 300/600/1,200/2,400/4,800/9,600/19,200/38,400 bps (default: 9,600 bps)
(port 3 ≤ 19,200 bps)

Data length 7 or 8 bits (default: 8 bits)

Parity None, odd, or even (default: none)

Stop bits 1 or 2 bits (default: 2 bits).

RS-232C port
transmission
controls

CTS CTS_ON Executes RTS/CTS flow control for the receive buffer of the external device.
The ASCII Unit monitors the CTS signal during execution of the PRINT
command. When the CTS signal is OFF, data transmission is suspended.
When the CTS signal is ON, data transmission continues.

CTS_OFF RTS/CTS flow control is not executed. The ASCII Unit does not monitor the
CTS signal during execution of the PRINT command.

RTS RTS_ON Turns ON the RTS signal from the opening of the communications port until
it closes. When receiving data normally from the external device into the
receive buffer, RTS must be set to RTS_ON.

RTS_OFF Turns ON the RTS signal only during the execution of I/O commands
(PRINT and INPUT), turning it OFF at all other times. BASIC’s RTS control
is disabled.

RS-232C port
transmission
controls

DSR DSR_ON When output commands (such as PRINT or LPRINT) are being executed,
the ASCII Unit checks the DSR signal, and sends data if the DSR signal is
ON. If the DSR signal is OFF, the ASCII Unit waits to transmit until the DSR
signal turns ON. The BASIC indicator will flash slowly while the Unit is wait-
ing to transmit.

DSR_OFF The ASCII Unit does not check the DSR signal when output commands are
being executed.

RS-422A/485 port trans-
mission controls

CTS, RTS, DSR
not used
(invalid)

Xon/Xoff
(Not available for port 2 of
ASC21.)

XN_ON Controls Xon/Xoff flow to both the ASCII Unit’s receive buffer and the exter-
nal device’s receive buffer.

• ASCII Unit’s Receive Buffer
When the receive buffer of the ASCII Unit reaches 3/4th full (384 bytes), it
sends an Xoff signal, requesting the external device to suspend data
transmission. Once the Unit’s receive buffer drops to 1/4th full (128 bytes),
it sends an Xon signal, requesting the external device to resume data
transmission.

• External Device’s Receive Buffer
When the ASCII Unit receives an Xoff signal from the external device dur-
ing execution of a PRINT command, it suspends data transmission. When
it receives an Xon signal from the external device, it resumes data trans-
mission.

XN_OFF Xon/Xoff flow control disabled.
45

Opening a Communications Port Section 4-2
4-2-3 Control/Monitor Commands for Transmission Control Signals
When control of the transmission control signals is not specified in the OPEN
command (i.e., when they are set to OFF), they can be controlled and moni-
tored using the following commands.

4-2-4 Device Symbol
The following details are specified by the device symbol (peripheral device
name).

• I/O specifications (use of the transmission/receive buffer)

• Control of transmission control signals

• Output code for the PRINT command

Note For details on the output codes for the PRINT command, refer to 4-3-1
PRINT# Command.

Action Command Example Conditions

Turn RTS signal ON/OFF RTS RTS #1_SET Only possible when RTS_ON is specified in the
OPEN command.

Turn DTR signal ON/OFF DTR DTR #1_SET Possible when the port is open.

Monitor the DSR signal DSR IF DSR(1) THEN ... None

Monitor the CTS signal CTS IF CTS(1) THEN ... None

Device
symbol

Periphera
l device

I/O (send/receive) Transmission control signals

Communications port open I/O command
execution (PRINT

or INPUT)
Reception
by ASCII

Unit (using
receive
buffer)

Transmissio
n by ASCII
Unit (using
send buffer)

RTS DTR RTS DTR
RTS_OFF
in OPEN

command

RTS_ON in
OPEN

command

Port 1/
terminal

port

Port 2 RTS_ON
and

RTS_OFF
in OPEN

command

COMU General-
purpose
communi-
cation
device

Yes Yes OFF ON ON OFF ON No
change

TERM Terminal Yes Yes OFF ON ON OFF ON No
change

SCRN Display None Yes OFF ON OFF OFF ON No
change

LPRT
(See note.)

Printer None Yes OFF ON OFF OFF ON No
change

NKPRT
(See note.)

Printer None Yes OFF ON OFF OFF ON No
change

EKPRT
(See note.)

Printer None Yes OFF ON OFF OFF ON No
change

KYBD Keyboard Yes None OFF ON ON OFF ON No
change
46

Sending Data Section 4-3
Note The differences between LPRT, EKPRT and NKPRT are shown in the follow-
ing table.

Note When the Super ESC/P printer control code is used, both NKPRT and EKPRT
are supported.

PC-PR: Printer control code used by NEC’s PC-PR xx Series.

ESC/P: Printer control code supported by EPSON. Used in most print-
ers.

Super ESC/P: Printer control code that automatically switches between ESC/
P and PC-PR.

4-3 Sending Data

4-3-1 PRINT# Command
The PRINT# command sends data through the designated communication
port. For example, it can send command frames originally stored in variables,
print variables to the printer, and display data from variables on the screen.

Note The following apply when the device symbol is TERM, LPRT, or SCRN:

• If delimited with commas, output is divided into 9-character fields.

• If delimited with semi-colons or spaces, output is continuous.

• If there is no semi-colon at the end, then a new line is inserted after the
transmission has ended.

• In a numerical format, one space is placed at the start and finish. (The
first space is for the minus sign.)

Device symbol External device Details

LPRT When not outputting Chinese-
derived characters (Kanji)

No conversion from Shift JIS code to JIS code.

NKPRT When outputting Chinese-derived
characters, the printer control code
is “PC-PR” printer

Shift JIS code is converted to JIS code and
KI (Kanji In): [ESC]K (1B4B Hex)
KO (Kanji Out): [ESC]H (1B48 Hex)
are added.

EKPRT When outputting Chinese-derived
characters, the printer control code
is “ESC/P” printer

Shift JIS code is converted to JIS code and
KI (Kanji In): [FS]&(1C26 Hex)
KO (Kanji Out): [FS]. (1C2E Hex)
are added.

PRINT#2

General-purpose
external device

ASCII Unit
47

Sending Data Section 4-3
4-3-2 DMA Data Transmission
It is possible to transmit data using DMA (Direct Memory Access) depending
on the model of ASCII Unit and the communications port used.

Note At ports that are capable of DMA transmission, DMA transmission is enabled
or disabled in the DM Setup Area according to the following table.

For communications ports that do not transmit DMA data, the data is sent byte
by byte from memory to the communications port by the PRINT command.
This means that until the transmission is completed, the BASIC program is
stopped. For ports that do transmit DMA data, the PRINT command simply
provides the trigger, and the DMA controller processes the data transmission.
This allows the BASIC program to proceed to execute the next line, speeding
up processing. Therefore, use DMA transmission to speed up processing.

If DMA data transmission is enabled and the OPEN command is executed,
the RTS/CTS flow control and Xon/Xoff flow control settings will be enabled. If
CTS or Xon/Xoff flow control is enabled, DMA will be disabled. When flow
control settings are enabled and DMA data transmission is used, the trans-
mission must be completed using PRINT command.

The amount of DMA data that can be sent at one time is 255 bytes max.

To transmit data that is more than 255 bytes, write a program as follows:

Example A$ =: 200 bytes
B$ =: 100 bytes
PRINT A$;B$

This example will transmits 300 bytes of data.

Note DMA data transmission is a method of sending data directly to a communica-
tions port without using the MPU. Because this does not involve the MPU, the
ASCII Unit is able to continue executing the BASIC program as data is being
transmitted. Transmission of data is carried out by a dedicated circuit (the
DMA controller).

4-3-3 Transmission Control Signals
If the RTS signal is OFF when the PRINT# command is executed, RTS is
turned ON, and the processing will proceed as follows:

For OPEN Command with
CTS_ON, DSR_ON

If CTS and DSR are both ON, data will be transmitted. If DSR is OFF when
transmission starts, the BASIC indicator will flash slowly and the Unit will wait
to transmit data. If CTS turns OFF during data transmission, data transmis-
sion will stop and wait, and the BASIC indicator will flash slowly.

Model C200H-ASC11 C200H-ASC21 C200H-ASC31

Port Port #1 Port #2 Port #1 Port #2 Port #1 Port #2 Port #3

DMA
transmission
(See note.)

NO YES NO YES YES YES NO

Bits Name Setting (hex)

m + 2 bits 08 to 15 Port #1 DMA transmission
(C200H-ASC31 only)

00: DMA disabled (default)

5A: DMA enabled

m + 3 bits 08 to 15 Port #2 DMA transmission
(all models)

00: DMA disabled (default)
5A: DMA enabled
48

Sending Data Section 4-3
For OPEN Command with
CTS_ON, DSR_OFF

If CTS is ON, data will be transmitted. If CTS is OFF, data will not be transmit-
ted and the Unit will wait for CTS to turn ON; the BASIC indicator will flash
slowly. If CTS turns OFF during data transmission, data transmission will stop
and wait.

For OPEN Command with
CTS_OFF, DSR_ON

If DSR is ON at the start of transmission, data will be transmitted. If DSR is
OFF, data will not be transmitted, the BASIC indicator will flash slowly, and the
Unit will wait for DSR to turn ON.

For OPEN Command with
CTS_OFF, DSR_OFF

Data is transmitted irrespective of CTS and DSR.
49

Sending Data Section 4-3
Output Status by Device Symbol in the OPEN Command
Hex Code Meaning Communications port 1 Communications port 2

(port 1 for ASC31)
TERM/SCRN LPRT/

NKPRT/
EKPRT

COMU TERM SCRN LPRT/
NKPRT/
EKPRT

COMU

00 NUL Space Output Output Output Output Not sup-
ported

Output Output
01 SOH Start of heading

02 STX Start text

03 ETX End text
04 EOT End of

transmission

05 ENQ Enquiry
06 ACK Acknowledgment

07 BEL Bell

08 BS Backspace
09 HT Horizontal tab

0A LF Return (line field)

0B VT Vertical tab
0C FF Form forward

0D CR Carriage return

0E SO Shift out
0F SI Shift in

10 DLE Device line
expansion

11 XON Device control 1 /
Xon

12 DC2 Device control 2

13 XOFF Device control 3 /
Xoff

14 DC4 Device control 4

15 NAK Negative
acknowledgment

16 SYN Sync signal

17 ETB End transmission
block

18 CAN Cancel

19 EM End medium
1A SUB Substitute

character

1B ESC Expansion
1C IS4 File isolation

character

1D IS3 Group isolation
character

1E IS2 Record isolation
character

1F IS1 Unit isolation
character
50

Receiving Data Section 4-4
4-4 Receiving Data
Data is received using the INPUT# command or the INPUT$ (<numeral
expression>[,#<port expression>])) function.

4-4-1 INPUT# Command
Use the INPUT# command to store data received from the receive buffer in
variables using the CR code as a terminator. This allows reception of CR-
delimited communications responses and input data from the keyboard. The
BASIC indicator on the front panel will flash slowly until the CR code is
entered. If data is not received within a certain time, INPUT# can be quit by
using this command after the WAIT command. See 5-4 Time Processing.

Example INPUT #2, A$
Data from communications port #2’s receive buffer up until the CR code termi-
nator is stored in character variable A$.

Example INPUT #2, A$, B$
Data from communications port #2’s receive buffer delimited by commas is
stored in character variables A$ and B$.

Note CR or LF is not received as data for the INPUT # command.

4-4-2 Transmission Control Signals
If the RTS signal is ON, received data will be stored in the receive buffer inde-
pendent of the INPUT command. When the INPUT command is executed, the
data in the receive buffer will be stored in each variable, using the CR code as
the terminator.

RTS will turn ON if the INPUT command is executed when the RTS signal is
OFF. If data is received, it will be stored in the receive buffer, and then stored
in each variable using the CR code as the terminator. (CTS and DSR are not
checked.)

If the receive buffer overflows, the allocated I/O area ports (1, 2, and terminal
port) will turn ON error flags and indicators.

Note 1. Use Xon/Xoff flow control to ensure that the ASCII Unit receive buffer does
not overflow.

2. Choose one of the following flow controls according to the external devices
to ensure that the receive buffers of the external devices do not overflow.

ASCII Unit

Variable

CR
terminator

Receive
buffer

General-purpose
external device

INPUT#2

BASIC program
51

Receiving Data Section 4-4
• Use CTS_ON with the OPEN command and monitor the CTS signal
for RTS/CTS flow control.

• Use XN_ON with the OPEN command and perform Xon/Xoff flow con-
trol.

3. When an ON COM interrupt is used, the baud rate of all ports will be as
follows:

Port 1 + port 2 ≤ 38.4 Kbps

If the baud rate is set to exceed this condition, a PORT CONFIGURATION
ERROR (error code 0055) will be generated when compiling.

4-4-3 INPUT$ Function
The INPUT$(character_length, port) function is used to store a fixed number
of characters from the receive buffer in one string variable.

This function enables read communications data with terminators other than
CR, specified numbers of bar code characters, a specified number of bytes
from the receive buffer, etc. The INPUT$(character_length, port) function can
be used in conjunction with the ON COM command (communications inter-
rupt) or ON KEY command (key interrupt), so that when a communications
interrupt or key interrupt occurs, it is possible to store a specified number of
characters from the receive buffer to a variable.

Until the specified number of characters is received, the BASIC indicator on
the front panel of the Unit will flash slowly, signifying that it is awaiting input.

If the specified number of characters is not received within a certain time,
INPUT$ can be quit by using this function after the WAIT command. See 5-4
Time Processing.

Example A$ = INPUT$(10, #2)
Ten characters of data is stored from communications port #2 to A$.

Example Reception of Communications Response Frame

When a terminator other than CR is used, the communication data is received
using the INPUT$ function.

A$ = INPUT$(LOC(2), #2)
All data in the communications receive buffer is stored in character variable
A$.

ASCII Unit

Variable

Receive
buffer General-purpose

external device

A$ = INPUT$(n, #2)

Specified
character
length only
52

Closing a Communications Port Section 4-5
Note 1. If 256 bytes or more of data is stored in the receive buffer, or the receive
buffer if empty, and the data is retrieved using A$ = INPUT$(LOC(2), #2),
an ILLEGAL FUNCTION CALL ERROR will be generated. Therefore, use
the following program to retrieve the data.

I% = 0
A% = LOC(2)
WHILE (A% <> 0)

IF (A%>255) THEN A% = 255
A$(I%) = INPUT$ (A%, #2)
I% = I%+1
A% = LOC(2)

WEND

4-5 Closing a Communications Port
Communications ports are closed using the CLOSE command.

When a transmission device has been specified using the OPEN command
and the CLOSE command is executed, the data remaining in the transmit
buffer is sent before the port is closed.

When a reception device has been specified using the OPEN command and
the CLOSE command is executed, the data remaining in the receive buffer is
cleared.

All communications ports are also closed by the END, CLEAR, and NEW
commands. They are not closed by the STOP command.

4-5-1 Transmission Control Signals

4-5-2 Transmission Control Signal Timing Charts
After turning ON the power or restarting the Unit, and until each port is
opened using the OPEN# command, the device symbol (peripheral device
name) for each port is as follows:

Transmission Control
Signal Status

The statuses of the transmission control signals (RTS, DTR, DSR, and CTS)
at each point of time are changed as shown in the following table according to
the device symbol (peripheral device name) and transmission control signal
operation specified in the OPEN# command.

Model C200H-ASC11 C200H-ASC21 C200H-ASC31

Port Port #1 Port #2 Port #1 Port #2 Port #1 Port #2 Port #3

RTS OFF --- OFF

DTR ON No
change

ON --- No change ON

Model Port Device symbol
(peripheral device name)

C200H-ASC11

C200H-ASC21

Port #1 TERM

Port #2 LPRT

C200H-ASC31 Port #1 LPRT

Port #2 LPRT

Port #3 TERM
53

Closing a Communications Port Section 4-5
RTS Signal
Device symbol

(peripheral
device name)

Transmission
control signal

operation
setting

Executing
RUN

Ports opened
by OPEN#
command

Receiving data
with INPUT#
command or

INPUT$
function

Sending data
with PRINT#
command

Ports closed

Port #1: TERM,
COMU, or
KYBD
(Port #3 for
ASC31)

RTS_ON ON to OFF OFF to ON ON ON ON to OFF
RTS_OFF ON to OFF OFF Switches from

OFF to ON,
then back OFF
again after
receiving data.

Switches from
OFF to ON.
(For CTS_ON
and DSR_ON,
checks CTS
and DSR, and if
they are both
ON, turns RTS
OFF after
sending data)

OFF

Port #1: KYBD
(Port #3 for
ASC31)

RTS_ON ON to OFF OFF to ON ON --- ON to OFF

RTS_OFF ON to OFF OFF Switches from
OFF to ON,
then back OFF
again after
receiving data.

--- OFF

Port #2: COMU
(Ports #1 and
#2 for ASC31)

RTS_ON OFF OFF to ON ON ON ON to OFF

RTS_OFF OFF OFF Switches from
OFF to ON,
then back OFF
again after
receiving data.

Switches from
OFF to ON.
(For CTS_ON
and DSR_ON,
checks CTS
and DSR, and if
they are both
ON, turns RTS
OFF after
sending data)

OFF

Port #2: KYBD
(Ports #1 and
#2 for ASC31)

RTS_ON ON to OFF OFF to ON ON --- ON to OFF
RTS_OFF ON to OFF OFF Switches from

OFF to ON,
then back OFF
again after
receiving data.

--- OFF

Port #1: SCRN
and LPRT
(Port #3 for
ASC31)

RTS_ON ON to OFF OFF to ON --- ON ON to OFF
RTS_OFF ON to OFF OFF --- Switches from

OFF to ON.
(For CTS_ON
and DSR_ON,
checks CTS
and DSR, and if
they are both
ON, turns RTS
OFF after
sending data)

OFF

Port #2: SCRN
and LPRT
(Ports #1 and
#2 for ASC31)

RTS_ON OFF OFF to ON --- ON ON to OFF

RTS_OFF OFF OFF --- Switches from
OFF to ON.
(For CTS_ON
and DSR_ON,
checks CTS
and DSR, and if
they are both
ON, turns RTS
OFF after
sending data)

OFF
54

Closing a Communications Port Section 4-5
DTR Signal

CTS and DSR Signals CS is monitored constantly if CTS_ON is set. DSR is only checked when
printing starts.

Note 1. The CTS signal is checked when data is being transmitted by the PRINT
command if CTS_ON is used. If CTS is OFF, data transmission is stopped.
If CTS is ON, transmission will resume (RTS/CTS flow control performed
at the receive buffer of the peripheral devices).

2. The DSR signal is checked when the PRINT command is started if
DSR_ON is used. If DSR is OFF, the Unit will wait to send, and if DSR is
ON, data will be transmitted.

Device symbol
(peripheral

device name)

Executing RUN Ports opened by
OPEN#

command

Receiving data
with INPUT#
command or

INPUT$ function

Sending data
with PRINT#
command

Ports closed

Port #1: TERM
and COMU
(Port #3 for
ASC31)

ON ON ON ON ON

Port #2: COMU
(Ports #1 and #2
for ASC31)

OFF OFF to ON ON ON ON to OFF

Port #1: KYBD
(Port #3 for
ASC31)

ON ON ON --- ON

Port #2: KYBD
(Ports #1 and #2
for ASC31)

OFF OFF to ON ON --- ON to OFF

Port #1: SCRN
and LPRT
(Port #3 for
ASC31)

ON ON to OFF --- OFF OFF to ON

Port #2: SCRN
and LPRT
(Ports #1 and #2
for ASC31)

OFF OFF --- OFF OFF

Device symbol
(peripheral

device name)

Transmission
control signal

operation
setting

Executing
RUN

Ports opened
by OPEN#
command

Receiving data
with INPUT#
command or

INPUT$
function

Sending data
with PRINT#
command

Ports closed

Port #1: TERM,
COMU, SCRN,
and LPRT
(Port #3 for
ASC31)

Port #2: COMU,
SCRN, and
LPRT
(Ports #1 and
#2 for ASC31)

CTS_ON No check No check No check If CTS is OFF,
data
transmission is
stopped.

(See note 1.)

No check

CTS_OFF No check No check No check No check No check
DSR_ON No check No check No check If DSR is ON,

data is
transmitted.
(See note 2.)

No check

DSR_OFF No check No check No check No check No check
55

Closing a Communications Port Section 4-5
Timing Charts Device Symbol: TERM
Port #1/Port #3 (ASC31): TERM

Device Symbol: COMU
Port #1: COMU (ASC11, ASC21)

CTS CTS_ON No check No check No check Check No check No check
(during send)

CTS_OFF No check No check No check No check No check No check

DSR DSR_ON No check No check No check Check No check No check

DSR_OFF No check No check No check No check No check No check

Command
Mode

Open Receive data Send data Close

OFF

RTS-OFF ON

RTS RTS_ON ON

RUN
Command
Mode

OFF

DTR ON

OFF

CTS CTS_ON No check No check No check Check No check No check
(during send)

CTS_OFF No check No check No check No check No check No check

DSR DSR_ON No check No check No check Check No check No check

DSR_OFF No check No check No check No check No check No check

Command
Mode

Open Receive data Send data Close

OFF

RTS-OFF ON

RTS RTS_ON ON

RUN
Command
Mode

OFF

DTR ON

OFF
56

Closing a Communications Port Section 4-5
Port #2: COMU or
Port #1: COMU for ASC31

Device Symbol: KYBD
Port #1: KYBD (ASC11 or ASC21)

CTS CTS_ON No check No check No check Check No check No check
(during send)

CTS_OFF No check No check No check No check No check No check

DSR CTS_ON No check No check No check Check No check No check

CTS_OFF No check No check No check No check No check No check

Command
Mode

Open Receive data Send data Close

OFF

ON

RTS RTS_ON ON

RUN

Command
Mode

OFF

ON

OFF Status depends on DTR command

RTS_OFF

DTR

CTS CTS_ON No check No check No check No check No check

CTS_OFF No check No check No check No check No check

DSR DSR_ON No check No check No check No check No check

DSR_OFF No check No check No check No check No check

Command
Mode

Open Receive data Send data Close

OFF

RTS_OFF ON

RTS RTS_ON ON

RUN

Command
Mode

OFF

DTR ON

OFF

None

None

None
57

Closing a Communications Port Section 4-5
Port #2: KYBD

Device Symbol: SCRN or LPRT
Port #1: SCRN or LPRT

CTS CTS_ON No check No check No check No check No check

CTS_OFF No check No check No check No check No check

DSR DSR_ON No check No check No check No check No check

DSR_OFF No check No check No check No check No check

Command
Mode

Open Receive data Send data Close

OFF

RTS_OFF ON

RTS RTS_ON ON

RUN

Command
Mode

OFF

DTR ON

OFF

None

None

Status depends on DTR command

CTS CTS_ON No check No check Check No check No check
(during send)

CTS_OFF No check No check No check No check No check

DSR DSR_ON No check No check Check No check No check

DSR_OFF No check No check No check No check No check

Command
Mode

Open Receive data Send data Close

OFF

RTS_OFF ON

RTS RTS_ON ON

RUN

Command
Mode

OFF

OFF

None

None

None

DTR ON
58

Communications Errors Section 4-6
Port #2: SCRN or LPRT

4-6 Communications Errors
When a communications error occurs while a BASIC program is being exe-
cuted, the ERR1 or ERR2 indicator on the ASCII Unit will be lit and at the
same time the CPU Unit’s port 1/2 error flag (bit 04/05 of word n+5) will be
turned ON (be set to 1). Execution of the BASIC program will continue. If the
ON ERROR command has been used in the BASIC program, the program will
be diverted to the specified interrupt subroutine when a communications error
occurs.

If another error occurs during the execution of the error interrupt subroutine
however, the BASIC program will stop executing (regardless of whether the
error affects the error subroutine). If the following situation is likely, program
execution may be stopped, so be careful when using the ON ERROR com-
mand. Alternatively, do not use the ON ERROR command in a situation like
the one below, where execution of the BASIC program should be continued
even if a communications error occurs.

• Other errors occur during an interrupt subroutine due to communications
errors.

Note ON ERROR Command
The ON ERROR command is used for processing with other errors, so it will
be necessary to use the IF-type statements for processing. When error pro-
cessing is complete, use the RESUME command to return to the origin of the
diversion and continue processing. Error status can be cleared after error pro-
cessing is complete by using the ERC command.

CTS CTS_ON No check No check Check No check No check
(during send)

CTS_OFF No check No check No check No check No check

DSR DSR_ON No check No check Check No check No check

DSR_OFF No check No check No check No check No check

Command
Mode

Open Receive data Send data Close

OFF

RTS_OFF ON

RTS RTS_ON ON

RUN

Command
Mode

OFF

DTR ON

OFF

None

None

Status depends on DTR command
59

Communications Errors Section 4-6
The ERR function can be used to determine the type of error that occurred.
Since communications errors can be detected from the BASIC program, retry
processing is easily performed from the BASIC program.

ON ERROR GOTO *EINT

*EINT

Main program

Error processing
60

SECTION 5
Processing

This section provides examples of processing character strings, bits, receive buffers, looping, and interrupts.

5-1 Processing Character Strings . 62

5-2 Processing Bits . 62

5-3 Processing Receive Buffers. 62

5-4 Time Processing . 63

5-5 Interrupt Functions . 64

5-6 Loop Processing . 67
61

Processing Character Strings Section 5-1
5-1 Processing Character Strings

Example The following code will find the position of “STX” in response data R$, retrieve
the characters from there to “ETX” and store them in A$.

Example If the two characters after the fourth character from the start of response data
A$ are 00, The following line will jump to line 1000 as a correct response.

5-2 Processing Bits

Note 1. One bit will be set without changing the other bits.

2. When transferring bit data to the PC, turn ON/OFF the required bit with
these commands and then use the PC PUT command.

5-3 Processing Receive Buffers

Process Programming

Retrieving n characters from beginning of
A$

B$ = MID$(A$, 1, n) or
B$ = LEFT$(A$, n)

Retrieving n characters from character
number m

B$ = MID$(A$, m, n)

Retrieving n characters from end of A$ B$ = RIGHT$(A$, n)

Searching for character string from char-
acter number m in A$ and getting position
of first character

B = INSTR(m, A$, character_string)

Getting number of characters in A$ B = LEN(A$)

Converting character string A$ to numeric
value

B = VAL(A$)

Converting numeric value B to character
string A$

A$ = STR$(B)

100 STX$ = CHR$(&H02) Generate STX.

110 ETX$ = CHR$(&H03) Generate ETX.

120 A = INSTR(1, R$, STX$) Find the position of STX$ in R$.

130 B = INSTR(1, R$, ETX$) Find the position of ETX$ in R$.

140 A$ = MID$(R$, A, B–A+1) Retrieve the character string from STX$ to
ETX$ in R$ and store it in A$.

150 IF MID$(A$,4,2)=“00” THEN 1000

Process Programming

Turning ON/OFF 1 bit of a variable. BITON A%, 3
(Turns ON bit 3 of variable A%.)

BITOFF A%, 3
(Turns OFF bit 3 of variable A%.)

Process Programming

Obtaining the number of characters in the
receive buffer

A = LOC(1)
(Stores the number of characters held in
the communications port #1 receive
buffer in A.)

Executing a process if the number of
characters in a receive buffer is not 0
(i.e.,if it is not empty)

100 A = LOC(1)
110 IF A<>0 THEN 200
200

Process A
62

Time Processing Section 5-4
5-4 Time Processing

Note If a BASIC interrupt occurs during the wait state caused by the WAIT com-
mand, the wait monitor timer will be suspended throughout the time of the
interrupt.

Process Program

Storing a time in T$ (HH:MM:SS) T$ = TIME$

Storing hours in H$ (HH) H$ = LEFT$(TIME$, 2) or H$ = MID$(TIME$, 1, 2)

Storing minutes and seconds in MS$ (MM:SS) MS$ = MID$(TIME$, 4, 5)

Executing
process A at
fixed intervals

Using TIME$ interrupt, interrupt
subroutine is executed every
minute (HH:MM:00) when the
seconds equal zero.

Using TIMER interrupt, interrupt
subroutine executes process A
after every sixty seconds.

Standby
processing

If response is not received within
three seconds after COMMAND
(C$) transmission, process A is
executed.

If data is not completely trans-
ferred from CPU Unit within ten
seconds after execution of PC
READ, process A is executed.

100 ON TIME$ "**:**:00" GOSUB *A
110 TIME$ ON

500 *A

Process A

100 ON TIMER 600 GOSUB 500
110 TIMER ON

500

Process A

100 PRINT #1, C$
110 WAIT "3.0", 200
120 A$ = INPUT$(1, #1)

200
Process A

100 WAIT "10.0", 200
110 PC READ . . .

200
Process A
63

Interrupt Functions Section 5-5
5-5 Interrupt Functions
Interrupt Details Program Enable/disable/

stop commands
(See note 2.)

Communi-
cations
interrupts

The interrupt subroutine is executed when data is
received in the receive buffer. All data received is
stored in the receive buffer

ON COM n GOSUB
n: 1 or 2

COM n
(ON/OFF/STOP)
n: 1 or 2

The interrupt subroutine is executed when a speci-
fied character is received in the receive buffer. (Data
beyond the specified character is also received in the
buffer.) (See note 1.)

ON COM n
GOSUB, CODE = XX
n: 1 or 2

The interrupt subroutine is executed when a speci-
fied number of bytes is received in the receive buffer.
(Data beyond the specified number of bytes is also
received in the buffer.) (See note 1.)

ON COM n
GOSUB, BYTE = XX
n: 1 or 2

The interrupt subroutine is executed when a speci-
fied final character is received in the receive buffer
after a specified start character. (The string of char-
acters between the start character and final charac-
ter remains in the buffer. Data after the specified final
character is also received in the buffer.) (See note 1.)

ON COM n
GOSUB, HEAD = XX, TERM = YY
n: 1 or 2

The interrupt subroutine is executed when a speci-
fied number of characters is received in the receive
buffer after a specified start character. (The character
string from the specified start character to the speci-
fied number of characters remains in the receive
buffer, and the data after the specified number of
characters is also received in the receive buffer.)
(See note 1.)

ON COM n
GOSUB, HEAD = XX, BYTE = YY
n: 1 or 2

Key
interrupts

The interrupt subroutine is executed when a certain
key signal is input. (See note 3.)

ON KEY(n) GOSUB
n: 0 to 9

KEY n
(ON/OFF/STOP)
n: 0 to 9

PC
interrupts

Specified PC interrupt number interrupt subroutines
are executed by interrupts from the IOWR(#CC00)
instruction or IR/CIO words allocated to the ASCII
Unit in the PC. (See note 4.)
I/O Allocations: PC interrupts are triggered by the IR/
CIO words allocated to the ASCII Unit: IR/CIO n bit
04.
PC interrupt number is set in IR/CIO n + 2 bits 00 to
07.

IOWR(#CC00): Triggers a PC interrupt by sending
data.

ON PC GOSUB
n: 01 to 99

PC n
(ON/OFF/STOP)
n: 01 to 99

Timer
 interrupts

The interrupt subroutine is executed repeatedly each
time the timer times out (interval time). (Once exe-
cuted, the subroutine is repeated until TIME OFF is
specified.)

ON TIMER 300 GOSUB

A subroutine branch to the GOSUB
line number will occur 30 seconds
after this command is executed; the
subroutine branch is then repeated
each 30 seconds. Timer: 0 to
864000 (0.1-s unit)

TIMER
(ON/OFF/STOP)

On alarm
interrupts

The subroutine interrupt is executed when the timer
times out (one-shot timer). (No repetition after the ini-
tial execution.)

ON ALARM 300 GOSUB

A subroutine branch to the GOSUB
line number will occur once only, 30
seconds after this command is
executed.
Timer: 0 to 864000 (0.1-s unit)

ALARM
(ON/OFF/STOP)

Scheduled
interrupts

The interrupt subroutine is executed at a specified
time.

ON TIME$ = “@:@:@” GOSUB TIME$
(ON/OFF/STOP)

Error
interrupts

The interrupt subroutine is executed when an error
occurs.

ON ERROR GOTO
64

Interrupt Functions Section 5-5
Note 1. When an interrupt is generated upon receiving a specified number of char-
acters or data up to a specified character, all data is received in the receive
buffer. If the necessary number of characters is retrieved by the INPUT$
function, it is possible to use first-in/first-out (FIFO) processing to move that
group of characters to the front of the receive buffer.

2. One of the ON, OFF, or STOP commands must be specified for the inter-
rupt as shown in the column on relevant commands. The STOP command
prevents branch processing even if the interrupt has occurred; it simply
records the interrupt entry, and branching occurs with the subsequent ON
command.

3. Interrupts set for GOTO statements will wait until the current BASIC com-
mand has been executed.

4. IOWR#CC00 interrupts are not accepted while the ASCII Busy Flag is ON.

Interrupt Priority If more than one interrupt is generated at the same time, the interrupt subrou-
tines will be executed in the following order of priority.

Interrupt Priority Order Table

If further interrupts are generated during the execution of an interrupt subrou-
tine, they will be processed after execution of the current interrupt subroutine
has been completed, according to the interrupt priority order table shown
above. ON ERROR interrupts, however, will be executed immediately, even
during execution of other interrupt subroutines.

Example If ON COM 1 and ON ALARM interrupts are generated while an ON PC1
interrupt subroutine is being executed, the ON COM1 interrupt subroutine will
be executed after the ON PC1 interrupt subroutine has been completed, as
ON COM 1 has priority over ON ALARM. After the ONCOM 1 interrupt sub-
routine has finished executing, the ON ALARM interrupt subroutine will be
executed.

If a PC interrupt subroutine is generated while the ON COM 1 interrupt sub-
routine is being executed, the PC interrupt subroutine will take priority over the
ON ALARM interrupt.

If more than one interrupt is generated simultaneously or if another interrupt is
generated while a interrupt subroutine is being executed, one interrupt will be
recorded if this status is either ON or STOP.

Order of priority Interrupt

1 ON COM 1

2 ON COM 2

3 ON KEY 0

: :

12 ON KEY 9

13 ON PC 1

: :

111 ON PC 99

112 ON ALARM

113 ON TIMER

114 ON TIME$
65

Interrupt Functions Section 5-5
Application Example

The ON COM command is often used in conjunction with the INPUT$ function
as shown below. (STX% = &H02, ETX% = &H03, Receive data =
0<LOC(2)<255)

Example 1

Example 2

Example 3

Example 4

Example 5

200 ON COM 1 GOSUB 1000

210 COM 1 ON

Communications interrupt enabled

1000 Interrupt subroutine
RETURN

100 ON COM 2 GOSUB 500
110 COM 2 ON
120 GOTO 120
500 A$ = INPUT$(LOC(2),#2)
510 RETURN

If data is received, all the data in the receive
buffer is stored in A$.

100 ON COM 2 GOSUB 500, CODE = ETX%
110 COM 2 ON
120 GOTO 120
500 A$ = INPUT$(LOC(2), #2)
510 RETURN

If ETX% is received, all data in the receive
buffer is stored in A$.

100 ON COM 2 GOSUB 500, BYTE = 20
110 COM 2 ON
120 GOTO 120
500 A$ = INPUT$(20, #2)
510 RETURN

If 20 characters are received, 20 charac-
ters from the receive buffer are stored in
A$.

100 ON COM 2 GOSUB 500, HEAD = 02, TERM = 03
110 COM 2 ON
120 GOTO 120
500 A$ = INPUT$(LOC(2), #2)
510 RETURN

If ETX% is received from STX%, all data in
the receive buffer is stored in A$.

100 ON COM 2 GOSUB 500, HEAD=STX%, BYTE = 20
110 COM 2 ON
120 GOTO 120
500 A$ = INPUT$(LOC (2), #2)
510 A$ = RIGHT$(A$, 20)
520 RETURN

 If 20 characters are received from STX%,
20 characters from the receive buffer are
stored in A$.

Caution is required, because the the next
data may already have been placed in the
receive buffer.
66

Loop Processing Section 5-6
5-6 Loop Processing
Process Programming

Specified number of repetitions:
If no response is received within 3 s of trans-
mission of the command (C$), the command is
resent. If there is no response after 3 repeti-
tions, error processing will commence.

Repetition under set conditions:
A C$ command is executed and the command/
response reception are repeated as long as the
2 characters following the 4th character are 20
or less.

10 WHILE A <= 20
20 PRINT #2, C$
30 B$ = INPUT$(LOC(2), #2)
40 A$ = MID$(B$,4,2)
50 A =VAL(A$)
100 WEND

10 FOR A = 1 TO 3
20 PRINT #2, C$
30 WAIT "3.0", 50
40 A$ = INPUT$(1, #2): GOTO 1000
50 NEXT A
60

Error processing
67

SECTION 6
Data Exchange with the CPU Unit

This section describes procedures for exchanging data between the ASCII Unit and the CPU Unit, the transfer sequence,
instruction/command timing, and the use of various interrupts.

6-1 Overview of Data Exchanges . 70

6-1-1 Data Exchange Methods . 70

6-1-2 Sending Interrupts. 72

6-2 Selecting the Data Exchange Method . 74

6-3 Details of the Data Exchange Methods. 75

6-3-1 Data Exchange Method No. 1. 75

6-3-2 Data Exchange Method No. 2. 78

6-3-3 Data Exchange Method No. 3. 79

6-3-4 Data Exchange Method No. 4. 80

6-3-5 Data Exchange Method No. 5. 82

6-3-6 Data Exchange Method No. 6. 85

6-3-7 Data Exchange Method No. 7. 86

6-4 Data Exchange Time Charts . 87

6-4-1 PC READ/PC WRITE Timing . 87

6-4-2 PC READ@/PC WRITE@ Timing . 87

6-4-3 PC PUT/PC GET Timing . 88

6-4-4 IOWR (#00@@)/IORD (#00@@) Timing . 88

6-4-5 PC EPUT/PC EGET Timing. 88

6-4-6 IOWR (#FD00)/IORD (#FD00) and PC QREAD/PC QWRITE Timing 89

6-4-7 Combined IOWR (#00@@), IOWR (#CC00), ON PC GOSUB, and PC
EGET Timing . 89

6-4-8 Combined IOWR (#CC00), IORD (#00@@), ON PC GOSUB, and PC
EPUT Timing . 90

6-4-9 Sending Interrupts from CPU Unit to ASCII Unit: PC Interrupts . . 90

6-5 IOWR/IORD Instruction Specifications . 95

6-5-1 IOWR Instruction (SPECIAL I/O UNIT WRITE) 95

6-5-2 IORD Instruction (SPECIAL I/O UNIT READ) 102

6-5-3 Using the IOWR and IORD Instructions . 106

6-6 Restrictions for CS1-series PCs . 108

6-6-1 Using the Sync Time Set Bit for CS1-series PCs 109
69

Overview of Data Exchanges Section 6-1
6-1 Overview of Data Exchanges

6-1-1 Data Exchange Methods
The ASCII Unit can exchange data with the CPU Unit in the following five
ways.

1,2,3... 1. The CPU Unit designates its own read/write area in memory. If a PC
READ/WRITE command is then specified from the CPU Unit, the ASCII
Unit uses the PC READ/WRITE command to access the memory area in-
dicated by the CPU Unit.

2. The ASCII Unit independently accesses the CPU Unit I/O memory. The
CPU Unit’s user program is not required at all.

CPU Unit

Allocated I/O

ASCII Unit

Specify memory
read/write area

Write Bit/Read Bit
Allocated I/O

I/O memory Read/write

Next I/O refresh

MOV
PC READ

PC WRITE

Not required

I/O memory
read/write
area
specified by
the ASCII
Unit

CPU Unit ASCII Unit

I/O memory Read/write

Next I/O refresh

PC READ@

PC WRITE@
70

Overview of Data Exchanges Section 6-1
3. The CPU Unit and the ASCII Unit both access their own allocated words in
memory. (The ASCII Unit accesses its own data in 16-bit units via the PC
PUT/GET command.) The words allocated in the CPU Unit and memory
words in the ASCII Unit are exchanged during the I/O refresh period.

4. The ASCII Unit accesses its own shared memory via a PC EGET/EPUT
command. Asynchronously, the CPU Unit reads/writes the ASCII Unit’s
shared memory via an IORD (#00@@)/IOWR (#00@@) instruction. The
IORD (#00@@)/IOWR (#00@@) instructions are supported only by the
C200HX/HG/HE and CS1-series PCs.

I/O refresh

CPU Unit ASCII Unit

Allocated words

MOV PC PUT

PC GET

Allocated words

Shared
memory

CPU Unit ASCII Unit

Read/
write

Read/write

IOWR (#00@@)

IORD (#00@@)

PC EGET

PC EPUT
71

Overview of Data Exchanges Section 6-1
5. The ASCII Unit sets an IOWR Request Flag for the CPU Unit. When an
IOWR (#FD00) instruction is executed, the CPU Unit writes data. Alter-
nately, the ASCII Unit sets an IORD Request Flag for the CPU Unit. When
an IORD (#FD00) instruction is executed, the CPU Unit reads data (sup-
ported only by the C200HX/HG/HE and CS1-series PCs).

6-1-2 Sending Interrupts
There are two methods for sending interrupts from the CPU Unit to the ASCII
Unit. It is not possible to send interrupts to the CPU Unit from the ASCII Unit.

1,2,3... 1. Interrupts are sent during the I/O refresh period. An interrupt number is set
in the allocated IR/CIO area word, and when the PC Interrupt Bit goes ON,
the ON PC command branches to the specified line number.

Note PC interrupts are disabled while the ASCII Busy Flag is ON.

Memory area setting

IOWR/IORD
Request Flag

Variable

I/O refresh

CPU Unit ASCII Unit

Read/write

I/O Memory

IOWR (#FD00)

IORD (#FD00)

PC QREAD@

PC QWRITE@

Allocated words

Interrupt during
I/O refresh

ON PC (interrupt number)

GOSUB (line number)

Interrupt subroutine

CPU Unit ASCII Unit

Allocated words
72

Overview of Data Exchanges Section 6-1
2. An interrupt is sent at the execution of the IOWR (#CC00) instruction. The
IOWR (#CC00) instruction in the CPU Unit’s user program sends an inter-
rupt, the interrupt number is sent to the ASCII Unit, and the program
branches to the line number specified in the ON PC command. If the IOWR
(#00@@) instruction has previously set input data in the shared memory, it
is possible to access the shared memory via the PC EGET/EPUT com-
mand in the interrupt subroutine. This is supported only by the C200HX/
HG/HE and CS1-series PCs.

Note PC interrupts are disabled while the ASCII Busy Flag is ON.

Interrupt

Interrupt number

ON PC (interrupt number)

GOSUB (line number)

Interrupt subroutine

CPU Unit ASCII Unit

IOWR (#CC00)
73

Selecting the Data Exchange Method Section 6-2
6-2 Selecting the Data Exchange Method

Data access at I/O
refresh, or
read/write large
volume of data, or
if the CPU Unit is
other than a
C200HX/HG/HE or
CS1-series PC.

Data
read/write in
words.

Read/write data is
not affected by I/O
refresh when the
CPU Unit is a
C200HX/HG/HE or
CS1-series PC.

Asyn-
chro-
nous

CPU Unit and ASCII
Unit asynchronously
read/write to ASCII
Unit's shared
memory (to speed up
ASCII Unit
processing).

CPU Unit Data exchange
method number

(Do not need to be
specified in pairs .)

Syn-
chro-
nous

(High-spe-
ed data
exchange
possib le)

ASCII
to
CPU

On a trigger from the
ASCII Unit, the CPU
Unit reads/writes I/O
memory data to the
ASCII Unit when the
IOWR/IORD (#FD00)
instruction is
executed.

CPU
to
ASCII

The CPU Unit sends
an interrupt to the
ASCII Unit, and
reads/writes to the
shared memory via
the PC EGET/PC
EPUT commands in
the ASCII Unit
interrupt subroutine .
The CPU Unit
reads/writes the
ASCII Unit's shared
memory.

IOWR (#CC00)
(interrupt)

On a trigger from the
CPU Unit, the ASCII
Unit reads/writes the
memory (255 words
max.).

ASCII
alone

The ASCII Unit
reads/writes the CPU
Unit's memory
independently (255
words max.).

Read/write
data in bit(s).

CPU
to
ASCII

ASCII Unit

Asynchronous

YES IOWR (#00@@)
IORD (#00@@)

PC EGET
PC EPUT

YES IOWR (#FD00)
IORD (#FD00)

PC QREAD@
PC QWRITE@

IOWR (#00@@)
IORD (#00@@)

YES
ON PC GOSUB

PC EGET
PC EPUT

YES

MOV PC READ
PC WRITE

YES
None PC READ@

PC WRITE@

MOV
LD

PC PUT
PC GET

4., 5.

6.

7., 8.

1.

2.

3.

+

74

Details of the Data Exchange Methods Section 6-3
Comparison Chart of Data
Exchange Methods

The differences between the data exchange methods are shown in the table
below.

Note There are some restrictions in the memory area addresses that can be used
for methods 1 and 2. Refer to 6-6 Restrictions for CS1-series PCs for details.
Use methods 3 to 8 whenever possible.

6-3 Details of the Data Exchange Methods
6-3-1 Data Exchange Method No. 1

The ASCII Unit reads/writes the CPU Unit memory during the I/O refresh
period on a trigger from the CPU Unit.

This method allows the exchange of comparatively large volumes of data with
a maximum of 255 words, although it will cause the ASCII Unit to be on
standby for some time. It is possible with any CPU Unit.

Data ex-
change
method

CPU Unit
instructions

ASCII Unit
commands

Acces-
sing
Unit

Access
trigger

Transfer
timing

ASCII
program

Max. no. of transfer words

Per
command

Per cycle

1 MOV etc.
(specify
memory
read/write area
for
execution of
PC WRITE/PC
READ
commands)

PC WRITE
PC READ
(Reads/writes
the CPU Unit’s
I/O memory)

ASCII
Unit

CPU
Unit

At I/O refresh Pauses at
execution of
PCWRITE/
PCREAD until
completion of
transfer.

PC WRITE/
PC READ: 255
words

Using a
C200HX/HG/
HE or
CS1-series PC,
and when the
number of bytes
transferred per
cycle set in the
Setup Area (Bits
08 to 15 of DM
m + 4) is 5A:
127words
00: 20words

2 Programming
not required

PC WRITE@
PC READ@
(Reads/writes
CPU Unit
memory)

ASCII
Unit

ASCII
Unit

At I/O refresh Pauses at
execution of
PC WRITE@/
PC READ@,
until completion
of transfer.

PCWRITE@/
PCREAD@:
255 words

3 MOV, LD, etc. PC GET
PC PUT
(Reads/writes
allocated
IR/CIO area
words)

Either Either At I/O refresh Execution does
not stop.

PC PUT: 1word
PC GET:
2words

PC PUT: 1word
PC GET:
2words

4, 5 IOWR
(#00@@)
IORD (#00@@)
(C200HX/HG/
HE or
CS1-series PC
only)

PC EGET
PC EPUT
(Reads/writes
to ASCII Unit’s
shared
memory)

CPU
Unit

Either At IOWR/IORD
(#00@@)
execution

Execution does
not stop.

PC EGET/
PC EPUT:
90words
IOWR/IORD
(#00 @@): 90
words

No restrictions

6 IOWR (#FD00)
IORD (#FD00)
(C200HX/HG/
HE or
CS1-series PC
only)

PC QREAD@
PC QWRITE@

CPU
Unit

ASCII
Unit

At IOWR/IORD
(#FD00)
execution

Pauses at
execution of
PC QREAD/
PC QWRITE
until IOWR/
IORD (#FD00)
has been
executed.

PC QREAD/
PC QWRITE:
128 words
IOWR, IORD
(#FD00):
128words

No restrictions

7, 8 IOWR
(#00@@)
IORD (#00@@)
+ IOWR
(#CC00)
(C200HX/HG/
HE or
CS1-series PC
only)

ON PC
GOSUB
PC EGET/
EPUT

CPU
Unit

CPU
Unit

At IOWR/IORD
execution

Execution does
not stop.

No restrictions
75

Details of the Data Exchange Methods Section 6-3
PC READ When the ASCII Unit receives an ON Write Bit from the CPU Unit, it reads the
memory words specified in the allocated IR/CIO words, and stores the con-
tents in the specified variable.

1,2,3... 1. Request using the PC READ command.

2. Write Bit turned ON using the OUT instruction in the ladder diagram.

3. During the I/O refresh period, the Write Bit (IR/CIO n bit 01) from the CPU
Unit to the ASCII Unit turns ON.

4. At the next I/O refresh period, the ASCII Unit reads data and the ASCII
Busy Flag is turned ON by the system.

5. When the ASCII Busy Flag changes to ON, the Write Bit is turned OFF in
the ladder diagram.

6. Once the PC READ command’s data transfer has been completed, the
ASCII Busy Flag is turned OFF by the system.

The following example is for a C200HX/HG/HE PC.

CPU Unit

#❍❍❍❍

#❍❍❍❍

ASCII Busy
Flag

n + 3: IR 103
n + 4: IR 104

IR n bit 01 (Unit
No. 0: IR 10001)

3. Write Bit (trigger)
at I/O refresh

Transfer Data Area (e.g., DM)
No. of Transfer Words (e.g., 3)

3. Allocated I/O
(at I/O refresh)

First word of the read I/O
memory at PC READ (e.g., 100)

ASCII Unit

1.

4. Via PC READ command

3 words 255 words max. per
command

At next I/O refresh ASCII Unit on standby up
until here.

20 words max. per cycle (except as shown below)

127 words max. per cycle (C200HX/HG/HE or CS1-series PC and
number of transfer bytes per cycle is 127 words
at DM m + 4 in the Setup Area)

2.

IR n+5
bit 00
76

Details of the Data Exchange Methods Section 6-3
PC WRITE When the ASCII Unit receives an ON Read Bit from the CPU Unit, it writes the
contents of the specified variable to the I/O memory area specified in the allo-
cated I/O.

1,2,3... 1. Request by PC WRITE command.

2. Read Bit turned ON via the OUT command in the ladder diagram

3. During the I/O refresh period, the Read Bit (n bit 02) from the CPU Unit to
the ASCII Unit turns ON.

4. At the next I/O refresh period, the ASCII Unit writes data (ASCII Busy Flag
goes ON).

5. When the ASCII Busy Flag changes to ON, the Read Bit turned OFF in the
ladder diagram.

6. Once the PC WRITE command data transfer has been completed, the
ASCII Busy Flag is turned OFF by the system.

The following example is for a C200HX/HG/HE PC.

CPU Unit

#❍❍❍❍

#❍❍❍❍

ASCII Busy
Flag

IR n bit 01 (Unit
No. 0: IR 10002)

2. 3. Read Bit (trigger) at I/O
refresh

ASCII Unit

1.

Transfer data area (e.g., DM)

No. of transfer words (e.g., 3)

n + 3: IR 103
n + 4: IR 104

Specified
words

3. Allocated IR words
(at I/O refresh)

First word of write I/O memory at
PC WRITE (e.g., 200)

4. Via PC WRITE command

3 words
255 words max. per
command

At next I/O refresh ASCII Unit on standby
until here.

20 words max. per cycle (except as shown below)

127 words max. per cycle (C200HX/HG/HE or CS1-series
PC and number of transfer bytes
per cycle is 127 words at DM m +
4 in the Setup Area)

IR n+5
bit 00
77

Details of the Data Exchange Methods Section 6-3
6-3-2 Data Exchange Method No. 2
The ASCII Unit independently reads/writes the CPU Unit memory during the I/
O refresh period.

PC READ@ The ASCII Unit reads the CPU Unit memory as specified in the PC READ@
command.

1,2,3... 1. PC READ@ command executed.

2. The ASCII Unit reads data during the I/O refresh period (the ASCII Busy
Flag goes ON).

3. When the PC READ@ command data transfer is completed, the ASCII
Busy Flag goes OFF.

The following example is for a C200HX/HG/HE PC.

PC WRITE@ The ASCII Unit writes to the CPU Unit’s internal I/O memory, as specified in
the PC WRITE@ command.

1,2,3... 1. PC WRITE@ command executed.

2. The ASCII Unit writes data during the I/O refresh period (the ASCII Busy
Flag goes ON).

3. When the PC WRITE@ command data transfer is completed, the ASCII
Busy Flag goes OFF.

CPU Unit ASCII Unit

2. Via PC READ command

255 words max.

ASCII Unit on standby
until here.

None

20 words max. per cycle (except as shown below)

127 words max. per cycle (C200HX/HG/HE or CS1-series PC and when
number of transfer words per cycle is 127
words in DM m + 4 in the Setup Area)

1.

At I/O refresh

DM 0300

0301

0302

PC READ "@D, 300, 3, S3H4"; B (1)

B (1)

B (2)

B (3)
78

Details of the Data Exchange Methods Section 6-3
The following example is for a C200HX/HG/HE PC.

6-3-3 Data Exchange Method No. 3
Single-bit or multibit data is read/written during the I/O refresh period from
either the ASCII Unit or the CPU Unit.

PC PUT The ASCII Unit converts decimal data to hexadecimal data and stores it at
allocated word IR/CIO n + 6. It writes decimal values from –32768 to 32767.

1,2,3... 1. PC PUT command executed.

2. The ASCII Unit writes data during the I/O refresh period.

The ASCII Unit is on standby
during the transfer.

CPU Unit ASCII Unit

2. Via PC WRITE command

At I/O refresh

255 words max.

None

DM 0200

0201

0202

1.

20 words max. per cycle (except as shown below)

127 words max. per cycle (C200HX/HG/HE or CS1-series PC
and number of transfer bytes per cycle
is 127 words at DM m + 4 in the Setup
Area)

PC WRITE "@D, 200, 3, S3H4"; B (1)

B (1)

B (2)

B (3)

2. I/O refresh

2. I/O refresh

At PC PUT

n + 6
bit 03

CPU Unit ASCII Unit

None

At PC PUT

1.

1.

n+6 0000000011110001
15 0

0000000011110001

PC PUT A%
BIT ON A%, 3
A%=0

15 0

n+6

PC PUT 241

n+6
15 8 7 3 015 8 7 3 0

n+6
1 1
79

Details of the Data Exchange Methods Section 6-3
PC GET The ASCII Unit converts the allocated word IR/CIO n bits 0 to 15 from hexa-
decimal data to decimal data, and stores them in the first variable. It also con-
verts the word IR/CIO n + 1 bits 0 to 15 from hexadecimal to decimal data and
stores them in the second variable.

1,2,3... 1. Data set during I/O refresh period.

2. At the execution of the PC GET command, the ASCII Unit reads the spec-
ified data.

6-3-4 Data Exchange Method No. 4
The ASCII Unit and CPU Unit both asynchronously read/write to the ASCII
Unit’s shared memory.

PC EGET Using the PC EGET command, the ASCII Unit reads the IOWR Area of its
shared memory area to a specified variable. Asynchronously, the CPU Unit
writes specified memory area data to the ASCII Unit’s shared memory areas
using the IOWR instruction.

1,2,3... 1. Using the IOWR (#00@@) instruction, write data to the ASCII Unit’s shared
memory area.

2. Using the PC EGET command, read data from the shared memory area.

The following example is for a C200HX/HG/HE PC.

1. I/O refresh

At PC GET

CPU Unit ASCII Unit

None

2.

2.
15

15

0

0

15

15

0

0

A

B

n

n+1

PC GET A, B

n+1

n

CPU Unit ASCII Unit10500
n + 5
bit 00

ASCII
Busy Flag

DM 0300
0301
0302
0303

Offset from
the IOWR Area initial
address specified at
DM m+ 6.

Set DM 0300 as
the first word.

No. of write words (BCD)
Unit No.

90 words
max.

1. IOWR instruction

When @@ is 00

Shared memory
(IOWR Area)

1'.
PC EGET command
(See note.)

Transfer at IOWR execution

DM Setup Area First word of the
IOWR Area
(At power ON or
restart)

90 words
max.

DM m + 6
m + 7

:

IOWR
#0000

DM0300
#0004 0004

PC EGET #0, 4, "1H4, 1H4, 2H4; A, B, C$

10
11
12
13

39

A
B

C$

0 0 1 0
0 0 4 0

(See note 2)
80

Details of the Data Exchange Methods Section 6-3
Note 1. The PC EGET/EPUT commands can synchronize with the PC as they are
executed by interrupts from the PC. PC interrupts are possible via IOWR
instruction (control code #CC00) and allocated IR/CIO area words (word
IR/CIO n bit 04 and word IR/CIO n + 2 bits 00 to 07).

2. The IOWR instruction is structured as shown below for the CS1-series
PCs. The number of write words must be specified as a hexadecimal value.

PC EPUT The ASCII Unit writes the contents of specified variables to its shared memory
IORD Area using the PC EPUT command. Asynchronously, the CPU Unit
reads data from the ASCII Unit’s shared memory and writes it to the specified
I/O memory area using the IORD instruction.

1,2,3... 1. Write data to the shared memory area using the PC EPUT command.

2. Read data from the ASCII Unit’s shared memory area when the IORD
(#00@@) instruction is executed in the ladder diagram.

The following example is for a C200HX/HG/HE PC.

Note 1. The PC EGET/EPUT commands can synchronize with the PC as they are
executed by interrupts from the PC. PC interrupts are possible via IOWR
instruction (control code #CC00) and allocated IR/CIO area words (word
IR/CIO n bit 04 and word IR/CIO n + 2 bits 00 to 07).

IOWR (223)

#0000

D00300

#00040000 0004 0000
Unit No.
No. of write words
(Hex)

CPU Unit ASCII Unit

10500
n + 5 bit 00

ASCII
Busy Flag

DM 0300
0301
0302
0303

Offset from
first word set in the IORD
Area as DM m + 7.

Set DM 0300 as
the first word.

No. of read words
(BCD)

Unit No.

90 words
max.

1'. IORD instruction

When @@ is 00

Shared memory
(IORD Area)

1.
PC EPUT command
(See note 1.)

Transfer at IORD execution

DM Setup Area
First word of the
IORD Area
(At power ON or restart)

90 words
max.

DM m + 6
m + 7

:

IORD

#0004

0 0 1 0
0 0 5 0

DM0300

0004

PC EPUT #0, 4, "1H4, 1H4, 2H4; A, B, C$

50
51
52

99

53

A
B

C$

#0000

(See note 2)
81

Details of the Data Exchange Methods Section 6-3
2. The IORD instruction is structured as shown below for the CS1-series
PCs. The number of read words must be specified as a hexadecimal value.

6-3-5 Data Exchange Method No. 5
On a trigger from the ASCII Unit, the CPU Unit reads/writes memory data to
the ASCII Unit by executing an IOWR/IORD (#FD00) instruction.

PC QREAD (Combined
with IOWR (#FD00))

The ASCII Unit sets an IOWR Request Flag in the CPU Unit in bit 15 of IR/
CIO n + 5. When the CPU Unit detects the ON status of the flag, it will execute
the IOWR (#FD00) instruction. Based on IR/CIO n + 8 and n + 9, it writes the
specified words to the ASCII Unit.

1,2,3... 1. At I/O refresh, the ASCII Unit sends an IOWR Request Flag to the CPU
Unit by the system.

2. Data is written to the ASCII Unit when the IOWR (#FD00) instruction is ex-
ecuted in the ladder diagram.

3. As a result of the PC QREAD command, the received data is read to a
specified variable.

The following example is for a C200HX/HG/HE PC.

Note 1. IORD and IOWR instructions cannot be used for ASCII Units on Slave
Racks.

IORD (222)

#0000

#00040000

D00300

0004 0000
Unit No.
No. of read words
(Hex)

CPU Unit ASCII Unit

ASCII
Busy Flag

No. of write
words (BCD)

Unit No.

128 words max.

Control code
DM 0300 set as
first word

1. IOWR Request Flag (trigger)

1. Allocated words in IR Area

3 words from
DM 0300

ASCII Unit on standby until
completion of IOWR execution.

I/O refresh

DM 0300

0301

0302

Allocated I/O

3 words

2. IOWR instruction

Transfer at IOWR execution

3.

At the same time

I/O refresh

10515
IOWR
#FD00

DM0300
#0003

0003

PC QREAD "@D, 300, 3, S3H4"; B (1)

n+5 @
15

n+8
n+9

n+8
n+9

B (1)

B (2)

B (3)

0 0 0 3
0 3 0 0 0 3 0 0

0 0 0 3

10500
n + 5 bit 00 (See note 2)

(See note 3)

@

82

Details of the Data Exchange Methods Section 6-3
2. The IOWR instruction is structured as shown below for the CS1-series
PCs. The number of write words must be specified as a hexadecimal value.

3. The data set in words n+8 and n+9 by PC QREAD is used only as monitor
data by the CPU Unit. The data that is actually transferred is specified in
an operand of the IOWR instruction. This aspect of operation differs from
that of the PC READ@ command, which reads data from the operand
specified for it. For the CS1 Series, the range that can be addressed for PC
QREAD differs from the range for IOWR, making it necessary to use dum-
my addresses when executing PC QREAD if it cannot address the required
words directly. (The CPU Unit will not monitor the words when dummy ad-
dresses are used.) In the above example, the address of the first word,
D07000 cannot be specified for PC QREAD even though it can be speci-
fied for IOWR. Here, a dummy address, like @D,0, can be used for PC
QREAD.

PC QWRITE (Combined
with IORD (#FD00))

The ASCII Unit sends an IORD Request Flag to the CPU Unit by bit 14 of IR/
CIO n + 5. When the CPU Unit detects the ON status of the flag, it will execute
the IORD instruction. Based on IR/CIO n + 8 and n + 9, it reads the words
from the ASCII Unit.

1,2,3... 1. At I/O refresh, the ASCII Unit sends an IORD Request Flag to the CPU
Unit by the system.

2. Data is prepared for transmission from the specified variable by the PC
QWRITE command.

3. Data is read from the ASCII Unit when the IORD (#FD00) instruction is ex-
ecuted in the ladder diagram.

IOWR (223)

#FD00

D00300

#00030000 0003 0000
Unit No.
No. of write words
(Hex)
83

Details of the Data Exchange Methods Section 6-3
The following example is for a C200HX/HG/HE PC.

Note 1. IORD and IOWR instructions cannot be used for ASCII Units on Slave
Racks.

2. The IORD instruction is structured as shown below for the CS1-series
PCs. The number of read words must be specified as a hexadecimal value.

3. The data set in words n+8 and n+9 by PC QWRITE is used only as monitor
data by the CPU Unit. The data that is actually transferred is specified in
an operand of the IORD instruction. This aspect of operation differs from
that of the PC WRITE@ command, which reads data from the operand
specified for it. For the CS1 Series, the range that can be addressed for PC
QWRITE differs from the range for IORD, making it necessary to use dum-
my addresses when executing PC QWRITE if it cannot address the re-
quired words directly. (The CPU Unit will not monitor the words when
dummy addresses are used.) In the above example, the address of the first
word, D07000 cannot be specified for PC QWRITE even though it can be
specified for IORD. Here, a dummy address, like @D,0, can be used for PC
QWRITE.

CPU Unit ASCII Unit

ASCII
Busy Flag No . of read words

(BCD)
Unit No.

128 words max.

Control code

DM 0300 as
first word

1. IORD Request Flag (trigger)

1. Allocated words in IR area

3 words from
DM 0300

The ASCII Unit on standby until completion of
IORD execution.

Allocated I/O

3 words

2. IORD instruction

Transfer at IORD execution

14

DM 0300

0301

0302

I/O refresh

At the same time

I/O refresh

10514
IORD
#FD00
#0003

DM0300

0003

n+5 @
14

n+8
n+9

n+8
n+9

B (1)

B (2)

B (3)

PC QWRITE "@D , 300, 3, 1H4, 1H4, 1H4";

B (1), B (2), B (3)

0 3 0 0
0 0 0 3

0 3 0 0
0 0 0 3

10500
n + 5 bit 00 (See note 2)

(See note 3)

@

IORD (222)

#FD00

#00030000

D00300

0003 0000

Unit No.
No. of read words
(Hex)
84

Details of the Data Exchange Methods Section 6-3
6-3-6 Data Exchange Method No. 6
After the CPU Unit has written to the ASCII Unit’s shared memory area, it
sends an interrupt to the ASCII Unit, and during the interrupt subroutine, the
ASCII Unit reads from the shared memory.

Note See 6-4-9 Sending Interrupts from CPU Unit to ASCII Unit: PC Interrupts for
details on PC interrupts.

1,2,3... 1. The CPU Unit writes to the ASCII Unit shared memory area (IOWR Area)
when the IOWR instruction (#00@@) is executed in the ladder diagram.

2. The CPU Unit sends an interrupt to the ASCII Unit when the IOWR instruc-
tion (#CC00) is executed in the ladder diagram.

3. Once the interrupt is received by the ASCII Unit, data is read in the ASCII
Unit via the PC EGET command.

The following example is for a C200HX/HG/HE PC.

Note 1. The following IOWR instruction would be used if the ASCII Unit was unit
number 0 and the interrupt number was 2.

2. The structure of the IOWR instruction for the CS1-series PCs is shown be-
low.

Inter-
rupt

Shared memory
(IOWR Area)

3. Read

CPU Unit ASCII Unit

1. Write

2.

3.

IOWR
#00@@

IOWR
#CC00

a
#@001

ON PC a GOSUB

PC EGET(See notes 1, 2)

IOWR

#CC00

#0002

#0001 0 001
Always 0001.

Unit No.

Control code

Interrupt number

IOWR (223)

#CC00

#0002

#00010000 0001 0000
Unit No.
Always 0001.

Interrupt number (BCD)
85

Details of the Data Exchange Methods Section 6-3
6-3-7 Data Exchange Method No. 7
The CPU Unit sends an interrupt to the ASCII Unit, and the ASCII Unit writes
data to the shared memory. After the completion of the interrupt subroutine,
the CPU Unit reads data from the shared memory.

Note See 6-4-9 Sending Interrupts from CPU Unit to ASCII Unit: PC Interrupts for
details on PC interrupts.

1,2,3... 1. The CPU Unit sends an interrupt to the ASCII Unit when the IOWR instruc-
tion (#CC00) is executed in the ladder diagram.

2. The ASCII Unit receives the interrupt and writes data to the shared mem-
ory using a PC EPUT command.

3. When a change is detected in the Interrupt Subroutine Completed Flag (1
to 0 or 0 to 1), the shared memory is read when the IORD instruction
(#00@@) is executed in the ladder diagram.

The following example is for a C200HX/HG/HE PC.

Note Refer to the note for method 6 on the previous page.

Interrupt

Shared memory
(IORD Area)

3. Read

CPU Unit ASCII Unit

2. Write

1.

Interrupt subroutine
completion

2.

IOWR
#CC00

a
#@001

DIFD A

DIFU B

IORD
#00@@

ON PC a GOSUB

PC EPUT

A

B

(See note)
86

Data Exchange Time Charts Section 6-4
6-4 Data Exchange Time Charts

6-4-1 PC READ/PC WRITE Timing
After a trigger is sent from the CPU, data is transferred at the next I/O refresh
period. After receiving a PC WRITE or PC READ command, the ASCII Unit
puts the BASIC program on standby until the data transfer is complete.

6-4-2 PC READ@/PC WRITE@ Timing
Data transfer occurs during the I/O refresh period immediately after the exe-
cution of the PC READ@/PC WRITE@ command. The ASCII Unit puts the
BASIC program on standby until the completion of the PC READ@/PC
WRITE@ command.

Write Bit set in ladder diagram
(e.g., using the OUT instruction)

Write Bit
Transfer on PC
READ command *

ASCII Busy
Flag

Write Bit

: I/O refresh
(same below)

* If the number of transfer words
specified in the PC READ command is
more than the max. no. of transfer words
per cycle (set in DM m + 4 bits 08 to 15),
they will be transferred in separate
cycles.
*If the number of transfer words is
completed within one cycle, the ASCII
Busy Flag will not turn ON.

ASCII Unit

CPU Unit

PC READ

RUN WAIT (Data
transfer standby)

WAIT
(Write Bit standby)

RUN

Transfer on PC
READ@ command*

ASCII
Busy Flag

* If the number of transfer words as specified in the
PC READ@ command is more than the max. no.
of transfer words per cycle (set in DM m + 4 bits 08
to 15), they will be transferred in separate cycles.

ASCII Unit

CPU Unit

PC READ@
command execution

RUNWAIT (Data
transfer standby)
87

Data Exchange Time Charts Section 6-4
6-4-3 PC PUT/PC GET Timing
Data is written during the I/O refresh period immediately after the execution of
the PC PUT command. The ASCII Unit BASIC program continues execution.
Data is read at the I/O refresh immediately after the execution of the PC GET
command.

6-4-4 IOWR (#00@@@@@@@@)/IORD (#00@@@@@@@@) Timing
Data transfer occurs immediately after the IOWR (#00@@)/IORD (#00@@)
instruction is executed. The ASCII Unit BASIC program continues execution.

6-4-5 PC EPUT/PC EGET Timing
The internal shared memory is read/written to immediately when the execu-
tion of the PC EPUT/PC EGET command. The ASCII Unit’s BASIC program
continues execution.

ASCII
Unit

CPU
Unit

RUN

Allocated
I/O refresh

PC PUT

ASCII
Unit

CPU
Unit

RUN

PC GET

ASCII
Busy Flag

ASCII Unit

CPU Unit

RUN

IOWR (#00@@) instruction execution

Transfer of data to the shared memory
area by the IOWR (#00@@) instruction

ASCII Unit

CPU Unit

RUN (internal writing)

PC EPUT
command execution
88

Data Exchange Time Charts Section 6-4
6-4-6 IOWR (#FD00)/IORD (#FD00) and PC QREAD/PC QWRITE Timing
Data transfer occurs as soon as a trigger arrives from the ASCII Unit and the
IOWR (#FD00)/IORD (#FD00) command is executed. The ASCII Unit is on
standby from the execution of the PC QREAD/PC QWRITE command until
the execution of the IOWR (#FD00)/IORD (#FD00) command.

6-4-7 Combined IOWR (#00@@@@@@@@), IOWR (#CC00), ON PC GOSUB, and PC
EGET Timing

Data is transferred immediately by the IOWR (#00@@) instruction. The IOWR
(#CC00) instruction sends an interrupt to the ASCII Unit. The ASCII Unit
receives data via the PC EGET command in an interrupt subroutine. Data
transfer in the CPU Unit is completed within 1 cycle.

ASCII Busy
Flag

IOWR Request
Flag

ASCII Unit

CPU Unit

PC QREAD

RUN RUN

IOWR (#FD00)
instruction execution

IOWR Request
Data transfer by the
IOWR instruction

Note The ASCII Busy Flag turns ON for PC QREAD only.
It does not turn ON for PC QWRITE.

WAIT

UASCII Unit

CPU Unit

ON PC
GOSUB

R N

IOWR (#00@@)

Transfer by the
IOWR instruction

Subrou-
tine
branch

IOWR (#CC00)

PC EGET
89

Data Exchange Time Charts Section 6-4
6-4-8 Combined IOWR (#CC00), IORD (#00@@@@@@@@), ON PC GOSUB, and PC
EPUT Timing

The IOWR (#CC00) instruction sends an interrupt to the ASCII Unit. The inter-
rupt subroutine is executed immediately andwrites to the shared memory
using the PC EPUT command. At the next I/O refresh period, the completion
of the interrupt subroutine is transferred to the CPU Unit, and at the next cycle
data is transferred by the IORD (#00@@) instruction.

6-4-9 Sending Interrupts from CPU Unit to ASCII Unit: PC Interrupts
There are two methods for sending PC Interrupts as described below.

Using PC Interrupt Bit The CPU Unit sets an interrupt number in the ASCII Unit in the allocated
words in the IR/CIO area. When the PC Interrupt Bit turns ON, an interrupt is
sent. The ASCII Unit executes the interrupt subroutine if the interrupt number
is the same as the ON PC command interrupt number. When the interrupt
subroutine has been completed, the Interrupt Subroutine Completed Flag is
toggled (OFF to ON or ON to OFF).

UASCII Unit

CPU Unit

ON PC
GOSUB

R N

IORD (#00@@)

Transfer by the IOWR
instruction

Subrou-
tine
branch

IOWR (#CC00)

PC EPUT

Completion of
the interrupt
subroutine

Interrupt subroutine
RETURN

CPU Unit ASCII Unit

n + 2 n + 2

n + 5 n + 5

PC Interrupt Bit

Interrupt by the
allocated I/O

Interrupt
number
(01 to 99 BCD) At I/O refresh

Toggles after completion
of the subroutine

n
Bit 04

n

At I/O refresh

PC Interrupt Subroutine Completed Flag

7 0

Bit 01

Bit 04

7 0

Bit 01

ON PC a

a

GOSUB
MOV

Interrupt No.
 n+2

PC Interrupt Bit

aPC ON
90

Data Exchange Time Charts Section 6-4
Using IOWR Interrupt:
Control Code: #CC00
(C200NX/HG/HE and
CS-1seried PCs only)

The CPU Unit indicates an interrupt number to the ASCII Unit by using the
IOWR (#CC00) instruction, and sends an interrupt. The ASCII Unit executes
the interrupt subroutine which matches the interrupt number in an ON PC
command. When the interrupt subroutine is completed, the Interrupt Subrou-
tine Completed Flag is toggled (OFF to ON or ON to OFF). This method is
supported only by the C200HX/HG/HE and CS1-series PCs.

The following example is for a C200HX/HG/HE PC.

When using the PC Interrupt Bit described on the previous page, the interrupt
is sent as soon as the IOWR instruction is executed, in contrast to interrupting
using the PC Interrupt Bit (described on previous page), by which the interrupt
is sent during the I/O refresh period. For this reason, high-speed interrupts to
the ASCII Unit occur in the same cycle, not in the next cycle.

By combining the IOWR/IORD (#00@@) instruction at the CPU Unit with the
PC EGET/PC EPUT commands in the ASCII Unit’s interrupt subroutine,
reads/writes between the CPU Unit and the ASCII Unit can occur within a sin-
gle cycle.

The following is an example of a program.

Note 1. The following IOWR instruction would be used if the ASCII Unit was unit
number 0 and the interrupt number was 2.

2. The structure of the IOWR instruction for the CS1-series PCs is shown be-
low.

IOWR
interrupt

001 fixed

Toggle after completion
of subroutine

At IOWR execution

CPU Unit ASCII Unit

Interrupt subroutine
RETURN

Interrupt
number
(01 to 99
BCD)

Unit No.

At I/O refresh

n + 5 n + 5

PC Interrupt Subroutine Completed Flag

Bit 01 Bit 01

ON PC a GOSUBIOWR
#CC00 aPC ON

0001
#0001

a

(See notes 1, 2)

IOWR

#CC00

#0002

#0001 0 001
Always 0001.
Unit No.

Control code

Interrupt number

IOWR (223)

#CC00

#0002

#00010000 0001 0000
Unit No.
Always 0001.

Interrupt number (BCD)
91

Data Exchange Time Charts Section 6-4
Interrupt by PC Interrupt Bit

Note Areas within dotted lines denote retry processing when PC interrupt has failed
due to conditions such as a PC OFF (stop interrupt) condition in the ASCII
Unit. If an interrupt is not accepted due to PC OFF condition when attempting
to execute the interrupt by turning ON the PC Interrupt Bit (word n bit 04), the
Interrupt Fail Flag (word n + 5 bit 09) will be set to ON (1) for one scan in the
next cycle.

Execution condition
ON for 1 cycle

n + 5 bit
09

PC Interrupt
Fail Flag

Interrupt Subroutine
Completed Flag

n bit 04 PC
Interrupt Bit

Detect toggled
flag

Interrupt
subroutine
completion
processing

PC interrupt enabled
condition

Interrupt subroutine

n + 5
bit 01

1.

2.

3.

4.

5.
6.

7.

CPU Unit ASCII Unit

MOV
a

n+2

A

B

DIFU A

DIFD B

1000

100

110

ON PC a GOSUB 1000

PC

RETURN

a ON

PC Interrupt Bit

PC Interrupt Number

PC Interrupt Subroutine
Completed Flag toggles
(OFF to ON or ON to OFF)

1.

2. n

n + 2

n + 5

I/O refresh

3. 4.

5.6.

4

7 0

1

a

92

Data Exchange Time Charts Section 6-4
IOWR (#CC00) Interrupt: C200HX/HG/HE or CS1-series PCs Only

Note Areas within dotted boxes denote retry processing when PC interrupt has
failed due to conditions such as a PC OFF (stop interrupt) condition in the
ASCII Unit. If an IOWR (#CC00) interrupt is sent but not accepted, the PC
Interrupt Fail Flag will be set to ON (1) for one scan in the next cycle. The
operation of the PC Interrupt Fail Flag when an interrupt is not accepted is
explained next.

Execution condition ON
for 1 cycle

Interrupt Subroutine
Completed Flag

Detect toggled
flag

Interrupt
subroutine
completion
processing

Interrupt subroutine
n+5
bit 01

1.

2.

2.

3.

4.

5.

6.

CPU Unit ASCII Unit

Equals Flag

Interrupt permissionPC Interrupt Fail Flag

ASCII Busy Flag

IOWR
#CC00

a

#0001

25506 D

DIFU A

DIFD B

A

B

100

110

1000

RETURN

ON PC a GOSUB 1000

PC ONa
93

Data Exchange Time Charts Section 6-4
Timing Charts

Interrupt Execution for PC Interrupt Bit

Interrupt Execution for IOWR (#CC00) Interrupts

As shown above, interrupts using the IOWR (#CC00) instruction can be pro-
cessed in one cycle less than interrupts using the PC Interrupt Bit.

1., 2.
MOV or OUT instruction

7.
DIFU instruction

Completion
processing

Interrupt Enable
Flag
PC Interrupt
Number

Interrupt
subroutine
completion

Interrupt
subroutine

Interrupt
Subroutine
Completed Flag

PC Interrupt Fail Flag

CPU Unit

ASCII Unit

ON PC
GOSUB +
PC ON

RETURN

3.

4.
5.

6.

1

0

0

6.
DIFU instruction

Interrupt

Interrupt
subroutine

CPU Unit

ASCII Unit

ON PC
GOSUB +
PC ON

4. RETURN

2.

3.

5.

1.
IOWR Interrupt

Interrupt subroutine
completion

Time

I/O refresh

Completion
processing
94

IOWR/IORD Instruction Specifications Section 6-5
Interrupt Failure (Same for PC Interrupt Bit Interrupts and IOWR (#CC00) Interrupts)

PC Interrupt Subroutine Completed Flag Changes

Note The time chart shown here indicates the flag operations which are different
from the PC flag operations.

6-5 IOWR/IORD Instruction Specifications
The IOWR/IORD instructions are available only with the C200HX/HG/HE and
CS1-series PCs. They cannot be used for ASCII Units on Slave Racks.

6-5-1 IOWR Instruction (SPECIAL I/O UNIT WRITE)

The IOWR instruction can be used with the ASCII Unit in the following four
ways.

Interrupt Enable Flag
PC Interrupt Number

Interrupt Fail

The Interrupt Fail Flag turns ON at the
next cycle after an interrupt is not
received from the PC even though the
PC Interrupt Bit has turned ON. It stays
ON for only one cycle, then turns OFF.

1., 2.
MOV or OUT instruction

PC Interrupt
Subroutine
Completed Flag

PC Interrupt
Fail Flag

CPU Unit

ASCII Unit

4. ON PC
GOSUB

3.

The PC Interrupt Fail Flag may turn ON
sooner for IOWR (#CC00) interrupts
because PC interrupt notification is
included in the instruction.

IOWR (#CC00)

Toggles at completion of
each PC interrupt
subroutine

Start Finish

PC interrupt
subroutine

PC interrupt
subroutine

Start Finish

PC Interrupt
Subroutine
Completed Flag

n + 5
bit 01

(OFF to ON or ON to OFF)

C: Control code

S: (First source word)

D: Destination Unit No., (No. of Transfer Words)

The parts inside parentheses change according
to the control code.

IOWR

C

S

D

95

IOWR/IORD Instruction Specifications Section 6-5
Writing to the ASCII Unit’s Variables

Data

Value
(4-digit hex.)

C:

Details Combination

#FD00 Allocated IR/CIO area words IR/CIO n + 8 and
IR/CIO n + 9 are transferred to the ASCII Unit's
variable.

Must be used in combination
with the ASCII Unit's PC
QREAD@ command.

S: First source word in CPU Unit memory, from IR/CIO n+8 and IR/CIO n+9.

D:
15 12 11 0

Unit No. of the ASCII Unit (0 to F)

No. of Transfer Words (001 to 128 from IR/CIO n + 8) from CPU Unit to ASCII Unit

C200HX/HG/HE

Item Detail

PC C200HX/HG/HE

Operand S

IR Area 1 IR 000 to IR 235

SR Area 1 SR 236 to SR 255

SR Area 2 SR 256 to SR 299

IR Area 2 IR 300 to IR 511

HR Area HR 00 to HR 99

AR Area AR 00 to AR 27

LR Area LR 00 to LR 63

TC Area TC 000 to TC 511

TR Area ---

DM Area DM 0000 to DM 6655

EM Area ---

Indirect DM
addresses

*DM 0000 to DM 6655

Constants ---
96

IOWR/IORD Instruction Specifications Section 6-5
Writing to the Shared Memory of the ASCII Unit

Item Detail

PC CS1

Operand S

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without
bank

E00000 to E32767

EM Area with bank En_00000 to En_32767 (n = 0 to C)

Indirect DM/EM
addresses in binary

@D00000 to @D32767
@E00000 to @E32767
@En_00000 to @En_32767 (n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767 (n = 0 to C)

Constants #0000 to #FFFF (binary)

Data Registers ---

Directly addressing
Index Registers

Indirect addressing
using Index Regis-
ters

,IR0 to ,IR15
–2048 to +2047 ,IR0 to ,IR15
DR0 to 15, IR0 to IR15
,IR0 to ,IR15+(++)
– (– –) IR0 to IR15

D:
15 4 3 0

Unit No. of the ASCII Unit (0 to F)

CS1-series PCs

0 0 0

D+1:
15 0

No. of Transfer Words (0001 to 0080 Hex
from CIO n + 8) from CPU Unit to ASCII Unit

D: Rightmost 4 digits
D+1 : Leftmost 4 digits

Specified word data of the specified memory
area is transferred to the first word* + @@ of the
ASCII Unit's shared memory IOWR Area.

*The first word in IOWR Area is set in DM m + 6
allocated in the DM Setup Area.

C:

Details Combination

#00@@ Can be used in combination
with the ASCII Unit's PC EGET
command. Can also be used
on its own.

S: First source word in CPU Unit memory.

Value
(4-digit hex.)
97

IOWR/IORD Instruction Specifications Section 6-5
Data

Item Detail

PC C200HX/HG/HE

Operand S

IR Area 1 IR 000 to IR 235

SR Area 1 SR 236 to SR 255

SR Area 2 SR 256 to SR 299

IR Area 2 IR 300 to IR 511

HR Area HR 00 to HR 99

AR Area AR 00 to AR 27

LR Area LR 00 to LR 63

TC Area TC 000 to TC 511

TR Area ---

DM Area DM 0000 to DM 6655

EM Area ---

Indirect DM
addresses

*DM 0000 to DM 6655

Constants ---

Item Detail

PC CS1

Operand S

CIO Area CIO 0000 to CIO 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A000 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without
bank

E00000 to E32767

EM Area with bank En_00000 to En_32767 (n = 0 to C)

Indirect DM/EM
addresses in binary

@D00000 to @D32767
@E00000 to @E32767
@En_00000 to @En_32767 (n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767 (n = 0 to C)

Constants #0000 to #FFFF (binary)

Data Registers ---

Directly addressing
Index Registers

Indirect addressing
using Index Regis-
ters

,IR0 to ,IR15
–2048 to +2047 ,IR0 to ,IR15
DR0 to 15, IR0 to IR15
,IR0 to ,IR15+(++)
– (– –) IR0 to IR15
98

IOWR/IORD Instruction Specifications Section 6-5
D:
15 1211 0

Unit No. of the ASCII Unit (0 to F)

No. of transfer words (001 to 090, limited by DM setting m +6/m +7)
from the CPU Unit to the ASCII Unit

C200HX/HG/HE

D:
15 4 3 0

Unit No. of the ASCII Unit (0 to F)

CS1-series PCs

0 0 0

D+1:
15 0

No. of transfer words (0001 to 005A Hex, limited by DM
setting m +6/m +7) from the CPU Unit to the ASCII Unit

D: Rightmost 4 digits
D+1 : Leftmost 4 digits
99

IOWR/IORD Instruction Specifications Section 6-5
Interrupts to the ASCII Unit

Value (4-digit
hex.)

C:

Details Combination

#CC00 Sends an interrupt from the CPU Unit to the
ASCII Unit.

Must be used in combination
with the ASCII Unit's ON PC
(Interrupt Number) command.

S: Interrupt Number (corresponds to the ASCII Unit's ON PC (Interrupt Number) command).

D:
15 12 11 0

Unit No. of the ASCII Unit (0 to F)

Always 001

0 0 1

C200HX/HG/HE

D:
15 4 3 0

Unit No. of the ASCII Unit (0 to F)

CS1-series PCs

0 0 0

D+1:
15 0

Always 0001

10 0 0

D: Rightmost 4 digits
D+1 : Leftmost 4 digits
100

IOWR/IORD Instruction Specifications Section 6-5
Clearing Errors in the ASCII Unit

Flags

Value (4-digit
hex.)

C:

Details

#EC00 The current error status is cleared and the current errors
are registered in the error history table as old errors.

S: Always #0000

D:
15 12 11 0

Unit No. of the ASCII Unit (0 to F)

Always 001

0 0 1

D:
15 4 3 0

Unit No. of the ASCII Unit (0 to F)

CS1-series PCs

0 0 0

D+1:
15 0

Always 0001

10 0 0

C200HX/HG/HE

D: Rightmost 4 digits
D+1 : Leftmost 4 digits

Value
(see note)

ON OFF

Instruction
Execution Error
Flag
(ER) (SR 25503)

• The number of transfer words
is not in BCD, or it is 0 words
or greater than 128 words

• The indirectly addressed DM
address is greater than 6656
or not BCD.

• The Unit No. of the ASCII
Unit is outside the range 0 to
F, or is on a SYSMAC BUS
Slave Rack.

• The number of transfer words
is not BCD.

• The instruction was not
correctly completed.

C, S, and D settings are correct.

Carry Flag
(CY) (25504)

--- ---

Greater Than
Flag
(GR) (25505)

--- ---

Equals Flag (EQ)
(25506)

Writing was correctly
completed.

Writing was not correctly
completed.
101

IOWR/IORD Instruction Specifications Section 6-5
Note SR Area addresses for the C200HX/HG/HE, C200H, and C200HS are given
in parentheses.

6-5-2 IORD Instruction (SPECIAL I/O UNIT READ)

There are two methods of using the IORD instruction for the ASCII Unit as fol-
lows:

Reading from ASCII Unit Variables

Less Than Flag
(LE) (25507)

--- ---

Overflow Flag
(OF) (25404)

--- ---

Underflow Flag
(UF) (25405)

--- ---

Negative Flag
(N) (25402)

--- ---

Value
(see note)

ON OFF

C: Control code

S: Source Unit No., No. of transfer words

D: First destination word

IORD

C

S

D

Value (4-digit
hex.)

C:

Details Combination

#FD00 Transfers from the ASCII Unit's variable to the
words specified in the allocated IR/CIO area
words IR/CIO n + 8 and IR/CIO n + 9.

Must be used in combination
with the ASCII Unit's PC
QWRITE@ command.

S:
15 12 11 0

Unit No. of the ASCII Unit (0 to F).

No. of transfer words (001 to 128 from IR/CIO n + 8) from the ASCII Unit to
the CPU Unit.

C200HX/HG/HE
102

IOWR/IORD Instruction Specifications Section 6-5
Data

S:
15 4 3 0

Unit No. of the ASCII Unit (0 to F)

CS1-series PCs

0 0 0

S+1:
15 0

No. of transfer words (0001 to 0080 Hex from CIO n+8)
from the ASCII Unit to the CPU Unit.

D: First destination word in CPU Unit's I/O memory from CIO n+8 and CIO n+9.

S: Rightmost 4 digits
S+1 : Leftmost 4 digits

Item Detail

PC C200HX/HG/HE

Operand D

IR Area 1 IR 000 to IR 235

SR Area 1 SR 236 to SR 252

SR Area 2 SR 256 to SR 299

IR Area 2 IR 300 to IR 511

HR Area HR 00 to HR 99

AR Area AR 00 to AR 27

LR Area LR 00 to LR 63

TC Area TC 000 to TC 511

TR Area ---

DM Area DM 0000 to DM 6143

EM Area ---

Indirect DM
addresses

*DM 0000 to DM 6655

Constants ---

Item Detail

PC CS1

Operand D

CIO Area 0000 to 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without
bank

E00000 to E32767

EM Area with bank En_00000 to En_32767 (n = 0 to C)

Indirect DM/EM
addresses in binary

@D00000 to @D32767
@E00000 to @E32767
@En_00000 to @En_32767 (n = 0 to C)
103

IOWR/IORD Instruction Specifications Section 6-5
Reading from the ASCII Unit’s Shared Memory

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767 (n = 0 to C)

Constants ---

Data Registers ---

Directly addressing
Index Registers

Indirect addressing
using Index
Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to ,IR15
DR0 to 15, IR0 to IR15
,IR0 to ,IR15+(++)
– (– –) IR0 to IR15

Item Detail

Value
(4-digit hex.)

C:

Details Combination

#00@@ Data in the specified number of words is transferred
from the first word* + @@ in the IORD Area of the ASCII
Unit's shared memory to the specified words in the CPU
Unit memory.
*Set in DM m + 7 word allocated in the DM Setup area.

May be used in combination with
the ASCII Unit's PC EPUT
command. May also be used on
its own.

S:

15 12 11 0

Unit No. of the ASCII Unit (0 to F).

No. of transfer words (001 to 090, limited by DM setting m + 6/m + 7) from
the ASCII Unit to the CPU Unit.

C200HX/HG/HE

S:
15 4 3 0

Unit No. of the ASCII Unit (0 to F)

CS1-series PCs

0 0 0

S+1:
15 0

No. of transfer words (0001 to 005A Hex, limited by DM setting m + 6/m + 7)
from the ASCII Unit to the CPU Unit.

D: First destination word in the CPU Unit's I/O memory.

S: Rightmost 4 digits
S+1 : Leftmost 4 digits
104

IOWR/IORD Instruction Specifications Section 6-5
Data

Item Detail

PC C200HX/HG/HE

Operand D

IR Area 1 IR 000 to IR 235

SR Area 1 SR 236 to SR 252

SR Area 2 SR 256 to SR 299

IR Area 2 IR 300 to IR 511

HR Area HR 00 to HR 99

AR Area AR 00 to AR 27

LR Area LR 00 to LR 63

TC Area TC 000 to TC 511

TR Area ---

DM Area DM 0000 to DM 6143

EM Area ---

Indirect DM
addresses

*DM 0000 to DM 6655

Constants ---

Item Detail

PC CS1

Operand D

CIO Area 0000 to 6143

Work Area W000 to W511

Holding Bit Area H000 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D00000 to D32767

EM Area without
bank

E00000 to E32767

EM Area with bank En_00000 to En_32767 (n = 0 to C)

Indirect DM/EM
addresses in binary

@D00000 to @D32767
@E00000 to @E32767
@En_00000 to @En_32767 (n = 0 to C)

Indirect DM/EM
addresses in BCD

*D00000 to *D32767
*E00000 to *E32767
*En_00000 to *En_32767 (n = 0 to C)

Constants ---

Data Registers ---

Directly addressing
Index Registers

Indirect addressing
using Index
Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to ,IR15
DR0 to 15, IR0 to IR15
,IR0 to ,IR15+(++)
– (– –) IR0 to IR15
105

IOWR/IORD Instruction Specifications Section 6-5
Flags

Note SR Area addresses for the C200HX/HG/HE, C200H, and C200HS are given
in parentheses.

6-5-3 Using the IOWR and IORD Instructions
1,2,3... 1. To allow retry processing if data transfer using the IOWR/IORD instructions

fails, be sure to set a self-holding bit in the execution conditions and pro-
gram the Equals Flag (SR 25506 for the C200HX/HG/HE) to release the
bit when the Equals Flag is ON (1).

2. Program an NC condition for the ASCII Busy Flag (IR/CIO n+5 bit 00) as
an execution condition so that the ASCII Unit does not execute an IOWR/
IORD instruction during data transfer with the CPU Unit.

Value
(see note)

ON OFF

Instruction
Execution Error
Flag
(ER) (25503)

• The number of transfer words
is not in BCD, or it is 0 words
or is greater than 128 words

• The indirectly addressed DM
address is greater than 6656
or not BCD.

• The destination Unit No. is
outside the range 0 to F, or is
on a SYSMAC BUS Slave
Rack.

• The number of transfer words
is not BCD

C., S., and D. settings are
correct.

Carry Flag
(CY) (25504)

--- ---

Greater Than
Flag
(GR) (25505)

--- ---

Equals Flag
(EQ) (25506)

Reading was correctly
completed.

Reading was not correctly
completed.

Less Than Flag
(LE) (25507)

--- ---

Overflow Flag
(OF) (25404)

--- ---

Underflow Flag
(UF) (25405)

--- ---

Negative Flag
(N) (25402)

--- ---
106

IOWR/IORD Instruction Specifications Section 6-5
Note Only one IOWR/IORD instruction (control code #FD00) can be executed dur-
ing a single cycle.

Note 1. The Equals Flag (SR 25506 for the C200HX/HG/HE) turns ON when pro-
cessing to the ASCII Unit by IOWR/IORD instructions has finished normal-
ly. It remains OFF when processing to the ASCII Unit does not finish
normally. After turning ON, it turns OFF at the execution of the next IOWR/
IORD instruction. Since the Equals Flag will change at the execution of oth-
er instructions/commands as well (such as comparison instructions) be
careful when writing programs.

Normal Completion

Abnormal Completion

2. The ASCII Busy Flag (IR/CIO n + 5 bit 00) turns ON when the ASCII Unit
is exchanging data with the CPU Unit.

Execution
conditions

n+5 bit
00

ASCII Busy
Flag

Equals Flag
(See note 1.)

IOWR
C
S
D

B

25506

B

A

A

IOWR/IORD instruction
execution

When ON at previous
ladder instruction

Equals Flag

Time
I/O refresh

1

0

Set to allow retry of
IOWR/IORD instruction

IOWR/IORD instruction
execution

When ON at previous
ladder instruction

Equals Flag

Time
I/O refresh

1

0

107

Restrictions for CS1-series PCs Section 6-6
6-6 Restrictions for CS1-series PCs
There are five methods that can be used to transfer data between the CPU
Unit and an ASCII Unit. Refer to 6-2 Selecting the Data Exchange Method for
details. When an ASCII Unit is used with a CS1-series PC, however, there are
addressing restrictions for some of these methods, as shown in the following
table.

The specific restrictions are as follows:

1,2,3... 1. Method 1: There are restrictions in the areas and words that can be ad-
dressed when using allocated words in memory to transfer data.

2. Method 2: There are restrictions in the areas and words that can be ad-
dressed when using PC WRITE@ or PC READ@ in the BASIC program
in the ASCII Unit to transfer data.

3. Method 4, 5: IOWR and IORD can be used to transfer data to any memory
area words in the CS1-series CPU Unit. Dummy addresses may have to
be used in PC QWRITE@ or PC QREAD@.

Method 1: PC WRITE or PC READ
Any words that can be addressed using the allocated words n+3 and n+4 can
be used for data transfer. Possible addresses are shown in the following table.

Note Other addresses cannot be accessed directly in CS1-series CPU Unit mem-
ory. Use methods 3 to 5 for other addresses.

Method CPU Unit ASCII Unit Area restrictions

1 MOV and other
instructions

PC WRITE or
PC READ

Yes

2 No programming
required

PC WRITE@ or
PC READ@

Yes

3 MOV and other
instructions

PC GET or PC
PUT

None

4 IOWR (#00@@) or
IORD(#00@@)

PC EGET or
PC EPUT

None

5 IOWR (#FD00) or
IORD(#FD00)

PC QWRITE@ or
PC QREAD@

None, but dummy addresses
may need to be used for PC
QWRITE@ or PC QREAD@

Area CS1 address
(see note)

Designation method

Area (bits 12
to 15 in word
n+3, 1 BCD

digit)

First word address
(bits 00 to 15 in

word n+4,
4 BCD digits)

DM Area D00000 to D06655 0 0000 to 6655

CIO Area CIO 0000 to
CIO 0511
(except CIO 0281)

1 0000 to 0511
(except 0281)

Data Link Area (in
CIO Area)

CIO 1000 to
CIO 1063

2 0000 to 0063

Holding Bit Area,
part 1

H000 to H099 3 0000 to 0099

Holding Bit Area,
part 2

H100
(except H 101)

4 0000
(except 0001)

H102 to H127 0002 to 0027

EM Area, bank 0 E0_00000 to
E0_06143

5 0000 to 6143

Timer Area T0000 to T0511 6 0000 to 0511
108

Restrictions for CS1-series PCs Section 6-6
Method 2: PC READ@ or PC WRITE@
The addresses shown in the following table can be specified for PC READ@
or PC WRITE@.

Note Other addresses cannot be accessed directly in CS1-series CPU Unit mem-
ory. Use methods 3 to 5 for other addresses.

Method 3: PC GET or PC PUT
There are no restrictions.

Method 4: Reading/Writing Shared Memory in ASCII Unit Using PC EGET/PC EPUT or IOWR/IORD #00
There are no restrictions.

Note The number of read/write words for IOWR/IORD must be specified in hexa-
decimal for the CS1 Series.

Method 5: IOWR/IORD #FD00 and PC QREAD@/PC QWRITE@
There are no restrictions in the words that can be transferred and the words
specified for the IOWR/IORD #FD00 instruction will take priority, The
addresses specified for the PC QREAD@/PC QWRITE@ commands will be
stored in words n+8 and n+9 for monitoring by the CPU Unit. If addresses are
specified for IOWR/IORD #FD00 that cannot be specified for PC QREAD@/
PC QWRITE@, then use dummy addresses in PC QREAD@/PC QWRITE@.

The CPU Unit will not monitor the specified words when dummy addresses
are used.

Note The number of read/write words for IOWR/IORD must be specified in hexa-
decimal for the CS1 Series.

6-6-1 Using the Sync Time Set Bit for CS1-series PCs
The clock (RTC) in the ASCII Unit can be changed to the time set in the Cal-
endar/Clock Area (AR 18 to AR 21) in C200HX/HG/HE CPU Units by turning
ON the Sync Time Set Bit (word n, bit 05). With CS1-series PCs, however, the
equivalent area (the Clock Data Area) is in words A351 to A354, so the clock
will not be set correctly even if the Sync Time Set Bit is turned ON. To enable
using the Sync Time Set Bit with CS1-series PCs, insert the following instruc-
tions into the program. (This requires that the ladder program is being exe-

Area CS1 address
(see note)

Designation method

Code First word address

DM Area D00000 to D06655 @D 0000 to 6655

CIO Area CIO 0000 to
CIO 0511
(except CIO 0281)

@R 0000 to 0511
(except 0281)

Data Link Area (in
CIO Area)

CIO 1000 to
CIO 1063

@L 0000 to 0063

Holding Bit Area,
part 1

H000 to H099 @H 0000 to 0099

Holding Bit Area,
part 2

H100
(except H 101)

@A 0000
(except 0001)

H102 to H127 0002 to 0027

EM Area, bank 0 E0_00000 to
E0_06143

@E 0000 to 6143

Timer Area T0000 to T0511 @G 0000 to 0511
109

Restrictions for CS1-series PCs Section 6-6
cuted to use the Sync Time Set Bit, i.e., it cannot be used in PROGRAM
mode.)

In the physical memory structure, words H118 to H121 in the CS1-series CPU
Units correspond to words AR 18 to AR 21 in C200HX/HG/HE CPU Units.
The above XFER instruction uses this information to enable using the Sync
Time Set Bit with CS1-series PCs by transferring the time data in the normal
CS1-series words to those used by the ASCII Unit (the time format is the
same for both CS1-series and C200HX/HG/HE CPU Units).

XFER

 #0004

 A351

 H118

Always ON Flag
110

SECTION 7
Editing BASIC Programs

This section describes the procedures for editing, saving, starting, and stopping BASIC programs. An overview of BASIC
program configuration, language definitions, and the use of various BASIC commands, statements, and functions is
provided as well.

7-1 Programming Procedure . 112

7-1-1 Editing BASIC Programs . 112

7-1-2 Saving BASIC Programs . 116

7-1-3 Transferring BASIC Programs Between ASCII Unit and Terminal. 117

7-2 Character Variable Space Allocations. 118

7-3 Starting/Stopping the BASIC Program . 120

7-3-1 Starting the Program. 120

7-3-2 Stopping the Program . 120

7-3-3 Stopping the Program at a Specified Line Number 120

7-3-4 Continuing the Program after Stopping at a Line. 120

7-4 Program Configuration . 121

7-4-1 Command Execution Modes. 121

7-4-2 Programs, Lines, and Statements . 121

7-4-3 Character Set. 123

7-4-4 Constants. 123

7-4-5 Variables . 125

7-4-6 Variable Arrays . 125

7-4-7 Type Conversion . 126

7-4-8 Expressions . 127

7-5 List of BASIC Commands . 129

7-6 BASIC Commands . 139

7-7 User-defined BASIC Functions. 231

7-8 Debugging . 232

7-8-1 Overview. 232

7-8-2 Breakpoint Function (BRKPT). 232

7-8-3 Step Function (STEP) . 233

7-8-4 Variable Monitor Function (WATCH) . 233

7-8-5 Trace Function (TRON and TRACE) . 234
111

Programming Procedure Section 7-1
7-1 Programming Procedure
7-1-1 Editing BASIC Programs

The following procedure shows how to edit BASIC programs using Windows
95 Hyperterminal communications software on a personal computer used as
a terminal.

Connections and Default Settings

1,2,3... 1. Make sure that the user memory default switch is turned OFF (set to the
left). If the default switch is turned ON (set to the right) and power is turned
ON, the memory will return to the default settings (be formatted). This
switch should always be turned OFF, except when processing errors.

2. Mount the ASCII Unit to the Backplane.

3. Turn OFF the power to the CPU Unit, and connect the RS-232C port (COM
1 in this example) to communications port #1 for the C200H-ASC11/
ASC21 or the terminal port for the C200H-ASC31 using an RS-232C ca-
ble.

4. Set the switches on the front panel of the ASCII Unit as follows:

• Unit No. switch.

• Set the START/STOP switch to START.

• Terminating resistor switch, 2-wire/4-wire switch. (Only set when using
communications port #2 of the C200H-ASC21.)

5. Turn ON the power to the CPU Unit.

6. Using a PC peripheral device (such as a Programming Console), perform
the following operations.

a) Create an I/O table

b) Set the DM Area of the CPU Unit (DM m to m + 7). (See 3-2 DM Area
Allocations for details.)

User memory default switch: OFF (left)

Back panel

OFF ON

ASCII Unit

RS-232C cable

ASCII Unit

COM 1

Port #1 or terminal port
112

Programming Procedure Section 7-1
c) Once the settings are completed, turn ON the power, or using a PC pe-
ripheral device (such as Programming Console), toggle the ASCII
Unit’s Restart Bit from OFF to ON to OFF again.

Connecting to the Terminal

1,2,3... 1. In Windows 95, click Start and then point to Programs.

2. Point to Accessories and then click Hyperterminal.

3. Double click on the Hyperterminal icon.

A message asking whether to install a modem will be displayed. Select
“No.“

4. The Connection Settings dialog box will be displayed. Enter your name.

5. The Telephone No. dialog box will be displayed. In the connection method
field, select the personal computer’s communications port number. Point to
Direct to COM 1, and then click OK. The COM 1 Properties dialog box
will be displayed.

6. In the Port Settings field, specify the following settings. (If the settings are
already correct, then click OK.)

Baud rate: 9,600 bps
Data bits: 8
Parity: None
Stop bits: 2 bits
Flow control: Xon/Xoff

Note The default communications settings are 9,600 bps, 8-bit data, no
parity, 2 stop bits, and no flow control for the ASCII Unit communica-
tions port #1 and the terminal port.

7. Point to File and then click Properties. The [Your Name] Properties dia-
log box will appear.

8. Select VT100 in the Emulation field of the Settings sheet, then click OK.

9. Press the Ctrl+X Keys on the computer keyboard.
When the following message is displayed at the terminal, connection is
completed.

Note The above message is displayed only when the Ctrl+X Keys are
pressed for the first time after the CPU Unit power is turned ON. If
the terminal is disconnected and then reconnected, only the prompt
“>” will be displayed.

10. If the connection has not been successfully made, check the following.

• Cable connections (whether the computer is connected to the port cor-
rectly)

ASCII Unit
Programming
Console

C200H-ASCII UNIT Version 1.0x 1998/04/17

(c)Copyright OMRON Corporation 1998

READY

>

113

Programming Procedure Section 7-1
• That the communications parameters are the same for the ASCII Unit
and terminal (DM m + 2 or m + 4 contain the terminal communications
parameters)

• If the ERR indicator on the front panel of the ASCII Unit is lit, indicating
there is an error in word n + 7 (bits 00 to 11: Error Code, bits 12 to 15:
Error Type), correct the error, reset the CPU Unit power supply, and
then press the Ctrl+X Keys.

Refer to SECTION 3 IR/CIO and DM Area Allocations for specific word al-
locations.

The “>” prompt may not always be displayed properly after stopping a BA-
SIC program to open a port using the Start/Stop Switch. If the prompt is
not displayed, enter Ctrl + X before continuing terminal operations.

Inputting Programs Perform the following steps to input a BASIC program directly into the ASCII
Unit.

1,2,3... 1. Input New and press the Enter Key to clear the ASCII Unit’s program.

>NEW_

Note The ASCII Unit has four program areas (No. 1 to 4) within the user
memory area (RAM). Programs input using the default settings will
be input in program area 1. To input a program into another area,
switch to the desired program area executing the PGEN command
as shown in the following example.

Example:
>PGEN 2 (Program area 2 will become the active program area.)

2. Input Auto and press the Enter Key to automatically display line numbers.

>NEW
>AUTO_

3. Input the BASIC program.

Example:
>NEW
>AUTO
10 A$=CHR$(67)
20 PRINT A$
30_

To quit AUTO, press the Ctrl+X Keys.

Note a) Execute the LIST command to display the BASIC program that
has been written.

b) Execute the PNAME command to name the program that has
been written. See 7-6 BASIC Commands for details on the
PNAME command.
Example: >PNAME “SAMPLE”

(In this example, SAMPLE will be the program name.)

c) Execute the PINF command to display the information on the
ASCII Unit’s user memory area (RAM). See 7-6 BASIC Com-
mands for details on the PINF command.

Example: >PINF ALL

>PINF ALL
P1 : [R/W] 76 bytes
P2 : [R/W] 0 bytes
P3 : [R/W] 0 bytes
P4 : [R/W] 0 bytes
114

Programming Procedure Section 7-1
LIB : 0 bytes
I–CODE : 41 bytes

Transferring the BASIC
Program Using a Text
Editor

Perform the following steps to transfer a BASIC program to the ASCII Unit
after compiling it using a text editor:

1,2,3... 1. Edit the program using a text editor such as the Note Pad, and save it in
text format.

2. Set the START/STOP switch to STOP and input New to clear the ASCII
Unit’s program.

3. Input the LOAD command to put the ASCII Unit into file transmission wait
state. The BASIC indicator (green) will flash quickly.

4. Point to Hyperterminal and then Transfer, and click Transmit text file to
transmit the saved file to the ASCII Unit. The file will be stored in the active
program No. area and overwrite any existing files.

5. Input Ctrl + C when the transfer has been completed. The prompt (>) will
be displayed again.
The T/R indicator will go out when the transfer has been completed.

Precautions Be sure to use the flow control or send delay setting when transmitting files to
the ASCII Unit using Transmit text file. Not doing so may cause errors in file
reception.

Example: Setting Flow Control

At the terminal: In the Port settings field, specify Xon/Xoff for the flow con-
trol.

At the ASCII Unit: Set the Xon/Xoff control to ON when inputting the LOAD
command.

LOAD #1, “TERM: 9600, 8, N, 2, CTS_OFF, RTS_OFF, DSR_OFF,
XN_ON”

When executing a program, the ASCII Unit reads the source program and cre-
ates intermediate code. Memory is consumed by creating intermediate code.
When writing comparatively large programs, occasionally execute RUN and
check the memory consumption by executing PINF ALL.

Closing the Terminal

1,2,3... 1. To save the connection information (session), point to File and then Save
as....

2. To close the hyperterminal, point to File and then Close Hyperterminal.
A message will be displayed asking whether to disconnect the modem.
Click “OK.”

Reconnection Procedures

1,2,3... 1. Double-click the icon (session file) that was created.

or Point to File and then to Open. Select the session file.

2. A message will be displayed asking whether to install a modem. Select
“No.”

3. Enter the Ctrl+X Keys. If the previous message is displayed, the connec-
tion has been successfully made.
115

Programming Procedure Section 7-1
7-1-2 Saving BASIC Programs
Writing the BASIC
Program to Flash ROM

The BASIC programs in the user memory (RAM) area can be written to the
flash ROM in the ASCII Unit by entering the ROMSAVE command from the
terminal.

>ROMSAVE

Reading the BASIC
Program from Flash ROM

The BASIC programs in the flash ROM of the ASCII Unit can be read to the
user memory (RAM) area of the ASCII Unit by entering the ROMLOAD com-
mand from the terminal.

>ROMLOAD

Automatically Reading the
Program in Flash ROM at
Power ON

The programs in the flash ROM can be automatically read to the user memory
(RAM) area when power is turned ON or when the Unit is restarted, by setting
bits 08 to 15 of word DM m to 5Ahex in the DM Setup Area allocated to the
Unit.

!WARNING Never turn OFF the power supply of the PC while data is being written to flash
memory by the ROMSAVE command until the completion display is shown at
the terminal. By turning OFF the power supply, there is a possibility that the
flash ROM will be electrically destroyed and that it will no longer be capable of
storing data.

Do not turn OFF the power supply or restart the PC while data is being read
from the flash ROM by the ROMLOAD command or automatically being trans-
ferred at startup. ROMLOAD command execution has been completed when
the prompt appears on the terminal. Automatic transfer at startup has been
completed when the command input prompt appears on the terminal. (Auto-
matic transfer will be performed when power is turned ON or the Unit is
restarted if the Startup Mode in the DM Area words allocated to the ASCII
Unit is set for automatic transfer.)

Also, if the IOWR or IORD instruction is being used in the ladder program in
the CPU Unit to exchange data with the ASCII Unit, always stop ladder pro-
gram execution before writing to the flash ROM from the BASIC program
using ROMSAVE.

!Caution Do not turn OFF

ASCII Unit

User memory area

All programs

Flash ROM

Write

ASCII Unit

User program area

All programs

Flash ROM

Read at
power ON
116

Programming Procedure Section 7-1
7-1-3 Transferring BASIC Programs Between ASCII Unit and Terminal

Transferring BASIC Programs to the Terminal
Use the following procedure to send BASIC programs from the user memory
(RAM) of the ASCII Unit to the terminal.

Terminal: VT100 Mode (Windows: Hyperterminal)

1,2,3... 1. Connect the terminals and input “SAVE #1” or “SAVE #3” (for C200H-
ASC31 only) and then press the Enter Key. (See note.)

Example:

SAVE #1, “TERM: 9600, 8, n, 2, CTS_OFF, RTS_OFF, DSR_OFF,
XN_ON”

2. Enable the text data receiving mode at the terminal. (See note.)

3. When the terminal indicates that it is waiting to receive data, press the
Ctrl+C Keys. When the ASCII Unit begins to transfer data, the T/R indicator
will flash. (See note.)

4. Once the ASCII Unit has finished transferring all the data, end the text data
receiving mode at the terminal.

5. Press the Ctrl+C Keys to display the prompt again.

Note If a password has been set in the BASIC program with the PWORD com-
mand, use the following procedure.

1,2,3... 1. Input “SAVE #1” or “SAVE #3” (for C200H-ASC31 only) and press the En-
ter Key. “PASSWORD” will be displayed at the ASCII Unit. Input the pass-
word.

2. Enable the text data receiving mode at the terminal.

3. When the terminal is ready to receive data, press the Ctrl+C Keys.
Steps 4 and 5 are the same as for the above procedure.

Terminal: FIT10 Mode

1,2,3... 1. Set the START/STOP switch to STOP.

2. Input “SAVE #1” or “SAVE #3” (for C200H-ASC31 only) and press the En-
ter Key at the terminal. The ASCII Unit will be in a transfer wait state. This
is indicated by the flashing BASIC indicator. (See note.)

Example:

SAVE #1, “TERM: 9600, 8, n, 2, CTS_OFF, RTS_OFF, DSR_OFF,
XN_ON”

3. Enable the text data receiving mode at the terminal.

4. Set the START/STOP switch to START. When the ASCII Unit begins trans-
ferring data, the T/R indicator will flash.

5. Once the ASCII Unit has finished transferring all the data, set the START/
STOP switch to STOP, and the prompt will appear again.

6. End the text data receiving mode at the terminal.

Note If a password has been set in the BASIC program, “PASSWORD” will be dis-
played at the ASCII Unit. Input the password and press the Enter Key. Once
the ASCII Unit is in a transfer wait state, continue with the same procedure.
117

Character Variable Space Allocations Section 7-2
Writing Data from the Terminal to the ASCII Unit
To write BASIC programs from the terminal to the user memory (RAM) of the
ASCII Unit, execute the LOAD command, and transfer the text file once the
ASCII Unit is in a transfer wait state.

BASIC Program Transfer Commands

7-2 Character Variable Space Allocations
When executing the BASIC program in a C200H-ASC11/ASC21/ASC31
ASCII Unit, the method can be selected for allocating space for character vari-
ables to user memory. The following two methods are available.

Note For numeric variables, the size of the variable area is fixed based on the type,
and is therefore allocated in user memory using the static (fixed) method out-
lined below.

Static (Fixed) Method When compiling the BASIC program, space for all character variables in the
BASIC program will be statically reserved in user memory.

Setting
At the beginning of the BASIC program, the maximum character variable con-
tent to be used in the BASIC program is specified using the OPTION
LENGTH command. The maximum length can be specified from 1 to 255
characters.

Content
The space for character variables is reserved statically and therefore free
memory cannot be generated as with the dynamic method. Even if not actu-
ally used, the space allocated for all variables will still be used.

Restrictions with this method are outlined below:

Operation Command Example

Transferring
BASIC programs
between the termi-
nal and ASCII Unit

Terminal-to-ASCII
Unit user memory
(RAM)

LOAD >LOAD #1

ASCII Unit user
memory
(RAM)-to-terminal

SAVE >SAVE #1

Transferring
BASIC programs
between flash
ROM and the
ASCII Unit

Flash
ROM-to-ASCII Unit
user memory (RAM)

ROMLOAD >ROMLOAD

ASCII Unit user
memory
(RAM)-to-flash ROM

ROMSAVE >ROMSAVE

User memory

While compiling, the area for all
character variables is statically
reserved in user memory.

Variable area
118

Character Variable Space Allocations Section 7-2
• The maximum length specified for the character variable content using
the OPTION LENGTH command cannot be exceeded. If the maximum is
exceeded, the amount of data over the limit will not be stored in the string
variable “truncated.”

• For the static method, once the variable type is specified under a particu-
lar variable name, that variable cannot be changed to a different type
under the same name during execution of the program.

• For the static method, the DEF (variable type declaration) command can-
not be executed more than once for the same variable name during the
program.

• For the static method, at compile time, the memory size for the array vari-
able is allocated statically, based on the number of subscripts. Therefore,
only a fixed number of DIM command subscripts can be specified.
Numeric expressions or numeric variables cannot be specified. (For the
dynamic method, it is possible to alter the number of subscripts as
required by using numeric expressions or numeric variables during the
program to specify the number of subscripts.)

Dynamic (Free) Method While executing the BASIC program, the space for each character variable in
the BASIC program is reserved dynamically in user memory.

Setting
The OPTION LENGTH command is not used.

Content
Only the required amount of user memory is used. If the size of the variable
becomes larger during the execution of the BASIC program, the space that
had been reserved will be released once and then reserved again. (The
released area will become free area of that size.)

If the allocation cannot be made when trying to reserve the space again, due
to insufficient user memory capacity, an error will be generated and the pro-
gram will be stopped. In such cases, it is necessary to change the program
and the way in which the character variables are used, or use the ON ERROR
command to free some memory.

Note The ASCII Unit is operated differently, depending on which of the two above
methods is used. The differences are as follows:

• The compile time is longer for the static method than for the dynamic
method.

• Conversely, when substituting character variables in the dynamic method,
user memory release or allocation processing may be generated. There-
fore, the execution time for commands is sometimes longer than for the
static method.

BASIC program
execution

User memory
While executing the BASIC
program, the space for each
character variable in the BASIC
program is reserved dynamically
in user memory.

Variable area

Variable area
119

Starting/Stopping the BASIC Program Section 7-3
• Place the PWORD command at the beginning of a statement if it is used
with an OPTION LENGTH command.

7-3 Starting/Stopping the BASIC Program

7-3-1 Starting the Program
Selecting the Program
Number

When transferring DM data allocated in the CPU Unit to the ASCII Unit at
power up or start up, the start program number is specified in bits 00 to 07 of
DM m in the DM Setup Area allocated to the Unit. Refer to SECTION 3 IR/CIO
and DM Area Allocations for specific word allocations.

00: No. 1 01: No. 1

02: No. 2 03: No. 3

04: No. 4

Use the PGEN command to change the program number from the terminal.

Example: >PGEN 2 (The program area will switch to number 2.)

Starting the Program

1,2,3... 1. If starting from the terminal, make sure that the START/STOP switch on the
front panel of the Unit is in START position, and input the RUN command
from the terminal.

2. If using the START/STOP switch on the front panel of the Unit, toggle the
START/STOP switch from STOP to START.

3. If starting automatically when power is turned ON or when the Unit is re-
started, set the START/STOP switch on the front of the Unit to START, and
set bits 08 to 11 of DM m + 1 to 5Ahex (automatic start) in the DM Setup
Area allocated to the Unit. Refer to SECTION 3 IR/CIO and DM Area Allo-
cations for specific word allocations.

7-3-2 Stopping the Program
Press the Ctrl+X Keys to stop the program from the terminal.

If the port connected to the terminal has been opened as a COMU device or
an output device, the program cannot be stopped by pressing the Ctrl+X
Keys.

or Turn OFF the START/STOP switch on the front panel of the Unit.

7-3-3 Stopping the Program at a Specified Line Number
Perform one of the following steps to stop the program from the terminal.

• Input RUN TO and the line number, and run the program.

• Input the BRKPT command, set the break point, and run the program.

• Input the STEP command and only run the specified lines.

or In the program, set a STOP command at the specified line number before run-
ning the program.

7-3-4 Continuing the Program after Stopping at a Line
1,2,3... 1. Input the CONT command from the terminal.

2. Input the STEP command for the desired number of lines.
120

Program Configuration Section 7-4
7-4 Program Configuration
A BASIC program consists of commands, statements, and functions.

Basic Statements designate and control the flow of programs and are gener-
ally used in program lines within a program. Statements are executed by the
RUN command and can be executed directly from a terminal without line num-
bers.

Basic Commands are usually entered from the command line and control
operations external to the program, such as printing and listing. Commands
are executed when the ASCII Unit is in Command Mode. They cannot be
used in the program and executed with the RUN command.

Functions are self-contained programs which accept one or more argu-
ments, perform predefined calculations, and return a result(s). There are pre-
defined BASIC functions for arithmetic and string operations as well as user-
defined functions. Functions cannot be used on their own, but must be com-
bined with statements.

7-4-1 Command Execution Modes
There are two modes for executing commands.

Command Mode By entering a command and pressing the Enter Key when “>” is displayed on
the terminal screen, the command will be immediately executed. The com-
mand input standby condition is called Command Mode.

Program Mode A line is created by inputting a BASIC command with a line number at the
beginning and pressing the Enter Key. A program consists of a collection of
these lines. The execution of commands using these programs is called Pro-
gram Mode.

7-4-2 Programs, Lines, and Statements
A BASIC program consists of a collection of lines. A line is made up of one or
more statements, and a statement can contain a function.

Line Numbers • Every BASIC program line begins with a line number. (When there is no
line number, the program is executed directly.)

BASIC Language

Commands

Statements

Functions

User-defined
functions

Built-in functions

General statements

Device control statements

BASIC functions

Arithmetic functions

Character string functions

Special functions

Statement

Program

Line

Line

Line

Statement

Line No.

Comment

Separated by colons (:) Statement

Statement

Function
121

Program Configuration Section 7-4
• All inputs up until the Enter Key is pressed are stored in the user memory
as a single line, in the order of line numbers. Execution is carried out in
the order of line numbers. Line numbers are also used as references for
branching destinations such as GOSUB and GOTO, and arguments in
LIST and DEL.

• Line numbers must be between 0 and 65535. Each line is written in
ascending order of magnitude of the line numbers.

• A line consists of up to 255 characters (including the line number and
spaces).

Note A period (.) may be used in DELETE, LIST, and EDIT commands to refer to
the current line number of a program (the most recently entered or displayed
line number).

Examples of the use of the period: LIST.
EDIT.
DEL 100–.

Labels Labels are used in place of line numbers in GOTO and GOSUB commands.
At the point being labeled, alphabetic characters must follow an asterisk (*) as
the line’s first statement. The maximum length of a label is 16 characters,
including the asterisk. Text strings that begin with reserved words cannot be
used. When characters continue after a label in a line, they are separated by a
colon (:). When two identical label names exist, the label in the line with the
lowest line number is referred to.

Example

Note If the line number of the branch destination is specified, the line number will
also have to be corrected when editing the program. By using labels, it is not
necessary to correct the line number, making program revisions quicker and
more effective. If text strings starting with reserved words are used as labels,
a SYNTAX ERROR will occur.

Statements • Statements can occur alone or they can contain functions.

• If there is more than one statement on the same line, separate the state-
ments with a colon (:).

Example:
10 FOR L=1 TO 100: J=L*I: PRINT J: NEXT L
Line No. Statement 1 Statement 2 Statement 3 Statement 4

Comments Input comments after single quotations (’).

Note Comments cannot be used in lines containing the DATA command.

Line number [Label:] Statement Statement ['Comment] CR: :

10 ON COM 1 GOSUB *ABC

100 *ABC
Label

Label
122

Program Configuration Section 7-4
7-4-3 Character Set
The BASIC character set comprises alphabetical characters, numeric charac-
ters, and special characters.

The alphabetic characters in BASIC are the uppercase and lowercase letters
of the alphabet. The numeric characters in BASIC are the digits 0 through 9.

The following special characters are recognized by BASIC:

SP (space) ! ” # $ & ’ () * + , – . / : ; < = > ? [\] ^ _

7-4-4 Constants
The following can be used as constants.

Character Constants A character constant is a character string enclosed by double quotation marks
(”). It can be up to 255 characters long. If it contains no characters, it is called
an “empty character string” or the null string.

Example: “CF–BASIC”

Integer Constants There are two types of integers:

• Short integers (16-bit)

• Long integers (32-bit)

Decimal Constants

Whole numbers between –32,768 and 32,767 can be used for short integers,
and whole numbers between –2,147,483,648 and 2,147,483,647 can be used
for long integers. An optional percent sign (%) for an integer, and an “and”
sign (&) for a long integer can be added to specifically indicate an integer con-
stant. Integer constants do not have decimal points.

Example: 1234 –1234 12% (integer) 12345678& (long integer)

Octal Constants

Octal numbers 0 to 7 beginning with the prefix “&” and between &0 and
&177777 can be used for integers. For long integers, between &0 and
&37777777777 can be used.

Example:& 0127 &7777

Hexadecimal Constants

Hexadecimal numbers 0 to F (0 to 9, A to F) beginning with the prefix “&H”
and between &H0000 and &HFFFF can be used for integers. Between &H0
and & HFFFFFFFF can be used for long integers.

Example: &H5E &HBF4

Short integer

Constant Character

Numeric Integer Decimal
Octal
Hexadecimal

Floating-point Single-precision

Double-precision

Long integer Decimal
Octal

Hexadecimal
123

Program Configuration Section 7-4
Floating Point Constants These are positive or negative numbers that are expressed in exponential for-
mat. E (single-precision) or D (double-precision) is entered after the mantissa,
and then the exponent is entered.

Example: For the value 12,300,000, the following equations apply.
= 1.23 × 10,000,000
= 1.23 × 107

= 1.23E + 7 (single-precision)
= 1.23D + 7 (double-precision)

1.23 is the mantissa and E + 7 or D + 7 is the exponent.

Single Precision

This type of constant is stored with seven-digit precision and is output as a
six-digit constant with the seventh digit rounded off within the range of ±1.2 ×
10–38 to ±3.4 × 10–38. It is represented by one of the following methods:

• As a number with six or fewer digits: 1234.5

• As a number in exponential form using E: –1.2E+3

• As a number with the character “!” at the end: 2.34!

Double Precision

This type of constant is stored with 16-digit precision and is output with up to
15 digits or less with the 16th digit rounded off within the range of ±2.23 × 10–

308 to ±1.79 × 10–308. It is represented by one of the following methods:

• As a number with seven or more valid digits: 1.23456789

• As a number in exponential form using D: –1.2D–3

• As a number with the character “#” at the end: 2.34#

Note Precautions on Real Numbers:
A real number expressed in the floating point format is advantageous in allow-
ing a wide range of numbers to be handled. However, not all numbers are
necessarily expressed correctly due to the nature of the binary expression
and as a result, some of them are expressed in approximate values. There-
fore, most of the values and calculation results stored in memory contain
some amount of error. Although this error is normally so small that it cannot
cause any problem, it may be interpreted as a large error depending on the
application.
For example, when the number is truncated below the decimal point after mul-
tiplying “0.1” by 10, the result of “1” will be expected. However, “0.1” is stored
in the memory as an approximate value of “0.0999...” because it cannot be
expressed in the binary format. When this value of “0.0999...” is multiplied by
10, the result will be “0.999...” When the number is truncated below the deci-
mal point, the result will be “0”.
The solutions to this problem vary depending on the application. When
reviewing design proposals, check if a desired operation can be achieved by
using the integer type or if desired integers can be obtained by rounding the
calculation results.
124

Program Configuration Section 7-4
7-4-5 Variables
Variables are names used to represent values that are used in a BASIC pro-
gram. The value of a variable may be assigned as the result of calculations or
explicitly by the programmer with an assignment statement. If no value is
assigned to a numeric variable, it is assumed to be zero. If no value is
assigned to a character variable, it is assumed to be the null string.

Variables are made up of the variable name and the type declarator.

Variable Name A variable may be up to 255 alphanumeric characters long. All characters are
valid. No variable can start with “FN” or a BASIC command name.

If a parameter begins with a reserved word, a SYNTAX ERROR will occur.
TOTAL and ABSOL, for example, cannot be used because they include
reserved words TO and ABS.

Type Declarator The variable TYPE can be declared. This is done using a type declarator that
is placed after the variable name. Even if two variables have the same name,
they will be treated differently if they are declared as different types of vari-
ables.

Note There is a second way to declare variable types. The BASIC statements
DEFINT, DEFLNG, DEFSTR, DEFSNG, and DEFDBL may be used to declare
the types for certain variable names, starting with a certain letter. By default,
all variables are declared as single-precision.

7-4-6 Variable Arrays
An array is a group of values of the same TYPE (either numeric or alphabetic)
that is stored and referenced as a unit by the same variable name. Each ele-
ment in an array has a unique position and is referenced by the name of the
array subscripted with an integer or integer expression.

There can be many dimensions to an array. The most common types are
one-, two-, and three-dimensional arrays. The number of dimensions of an

Single-precision (!)

Variable Character

Numeric

Real number

Double-precision (#)

Short integer (%)

Long integer (&)

Integer (%, &)

Variable

up to 255 characters
starting with an
alphabetic character

Variable name +

Character variable: $
Short integer: %
Long integer: &
Single-precision real: !
Double-precision real: #

Type declarator

% Short Integer Uses 2 bytes per variable. Example: A%

& Long integer Uses 4 bytes per variable Example: A&

! Single-precision real Uses 4 bytes per variable. Example: A or A!

Double-precision real Uses 8 bytes per variable. Example: A#

$ Character Uses up to 255 characters. Example: A$
125

Program Configuration Section 7-4
array and the length of its name are dictated by the amount of available mem-
ory. An array has one subscript for each dimension in the array.

For example, T(4) would reference the fourth element in the one-dimensional
array T. R(2,3) would reference the value located in the second row and third
column of the two-dimensional array R.

The maximum number of dimensions of an array is 255. The maximum num-
ber of elements per dimension is 32767. The array size and number of dimen-
sions must be declared with the DIM statement. The subscript value zero is
the position of the first element in an array. All elements of an array must be of
the same TYPE. When an array is declared, numeric arrays are initialized as
zero, and alphabetic arrays are initialized as null strings. When a variable
array is used without being declared, it will be declared as a one-dimensional
array with elements 0 to 10, or 1 to 10 depending on the option base.

Note In this example, the option base = 0

Example:
DIM A$(3) This array is the one-dimensional, alphabetic A$ variable
array. The following 4 variables can be used.

DIM B(2,3) This array is the two-dimensional, numerical B variable array.
The following 12 variables can be used.

7-4-7 Type Conversion
When necessary, BASIC will automatically convert a numeric constant from
one TYPE to another. The following rules apply.

1,2,3... 1. If the numeric data on the right side of an assignment statement differs
from the type of data on the left side, the right side is converted to match
the left. Character data, however, cannot be converted to numerical data,
or vice versa without using functions (VAL, STR$)

Example:
A = 12.3: if A is an integer, then “12” is assigned to A.

2. Double-precision data is converted to single-precision data when assigned
to a single-precision variable.

Example:
If “A” is a single-precision variable and the statement:

LET A = 12.3456789# occurs in a program, then 12.3456789# will be con-
verted to a single-precision number and then assigned to “A.” (A value
rounded to 6 digits will be displayed.)

3. When an arithmetic operation is performed using both single-precision and
double-precision values, the single-precision value is converted to double-
precision first, and then the operation is performed. Therefore, the result is
a double-precision value.

Example:
10#/3 (double-precision)

4. In logic operations, all numeric data is first converted into long-integer data
unless both inputs are short integers. If any value cannot be converted into

A$(0) A$(1) A$(2) A$(3)

B(0,0) B(1,0) B(2,0)

B(0,1) B(1,1) B(2,1)

B(0,2) B(1,2) B(2,2)

B(0,3) B(1,3) B(2,3)
126

Program Configuration Section 7-4
a long integer within the range of –2147483648 to 2147483647, an over-
flow error will occur.

Example:
LET A = NOT 12.34, –13 is assigned as A.

5. When a real number is converted into an integer, the value is rounded.

Example:
A = 12.3: “12” is assigned to A.
B = 12.6: “13” is assigned to B.

7-4-8 Expressions
Expressions refer to constants, variables, and functions that have been com-
bined by operators. Numeric values, variables, or characters alone can also
form expressions. There are four types of expressions.

• Arithmetic

• Relational

• Logical

• Character

Of these, the first three produce numeric values as a result and are thus
called “numeric expressions.” The last type is called a “character expression.”

Character Operators A character expression is made up of character constants and variables that
are linked with the character operator “+.” Instead of adding characters
together, the “+” operator links the characters together to form one character
string.

Input: A$ = “CF”
B$ = “BASIC”
PRINT A$ + “–” + B$

Output: CF–BASIC” is displayed.

Arithmetic Operators An arithmetic expression is made up of constants, variables, and functions
combined using arithmetic operators. A list of valid arithmetic operators is
shown in the following table.

If A or B is a real number in an expression using the \ or MOD operator, the
decimal part is first rounded up to convert the real number into an integer, and
then the operation is performed.

Expression Character operator

Numeric expression

Relational operator

Arithmetic operator

Logical operator

Arithmetic operator Example Operation

+ A + B Addition

– A – B, –A Subtraction or negation

* A * B Multiplication

/ A / B Real number division

\ A \ B Integer division

MOD A MOD B Remainder after integer division

^ A ^ B Exponentiation
127

Program Configuration Section 7-4
Relational Operators Relational operators compare two values. The output is “–1” (&HFFFF) if the
two values are equal and “0” if they are not.

Logical Operators Logical operators perform tests on multiple relations, bit manipulations, or
Boolean operations. The logical operator returns a bitwise result that is either
“true” (not 0) or “false” (0). In an expression, logical operations are performed
after arithmetic and relational operations. The outcome of a logical operation
is determined as shown in the following table. The operators are listed in the
order of precedence.

Relational operator Example Operation

= A = B Equal

< >, > < A < > B Not equal

< A < B Less than

> A > B Greater than

< =, = < A < = B Less than or equal to

> =, = > A > = B Greater than or equal to

Logical Operator Description, Example, and Result

NOT (negation) A NOT A

1
0

0
1

AND (logical product) A B A AND B

1 1
1 0
0 1
0 0

1
0
0
0

OR (logical sum) A B A OR B

1 1
1 0
0 1
0 0

1
1
1
0

XOR (exclusive-OR) A B A XOR B

1 1
1 0
0 1
0 0

0
1
1
0

EQV (equivalence) A B A EQV B

1 1
1 0
0 1
0 0

1
0
0
1

IMP (implication) A B A IMP B

1 1
1 0
0 1
0 0

1
0
1
1

128

List of BASIC Commands Section 7-5
7-5 List of BASIC Commands
The following table lists all BASIC commands alphabetically and gives an out-
line for each. See 7-6 BASIC Commands for further details on each com-
mand.

Square brackets ([and]) in the syntax column indicate items that can be omit-
ted. Normal brackets ({ and }) indicate items that can be repeated. (See 7-6
BASIC Commands for further details on syntax.)

Command Syntax Details Command Statement Function Page

@IF @IF <numeric expression>
THEN
<program>
ELSE
<program>
ENDIF

Selects either THEN and
the following characters,
or ELSE and the
following characters,
based on the results of a
numeric expression.

General 138

ABS ABS (numeric expression) Determines the absolute
value of the value given
by the argument.

Arithmetic
operation

139

ACOS ACOS (numeric expression) Determines the arc
cosine of the value given
by the argument.

Arithmetic
operation

139

ALARM ON/
OFF/STOP

ALARM ON or
ALARM OFF or
ALARM STOP

Enables, disables, or
stops a one-shot timer
(ON ALARM) interrupt.

General 140

ASC ASC (character expression) Determines the ASCII
code of the first character
of the character string
given by the argument.

Character
string

140

ASIN ASIN (numeric expression) Determines the arc sine
of the value given by the
argument.

Arithmetic
operation

141

ATN ATN (numeric expression) Determines the arc
tangent of the value given
by the argument.

Arithmetic
operation

141

AUTO AUTO [line
number][increment]

Automatically generates
numbers at the beginning
of lines (if not specified,
increment = 10)

Command 141

BITOFF/BITON BITOFF <integer variable>,
<bit position>
BITON <numeric variable>,
<bit position>

Turns OFF or ON bit
position (0 to 31) of
integer numeric
variables.

General 142

BRKPT BRKPT [SET <line number>

or
BRKPT [DEL <line number>

or

BRKPT [DEL ALL]
BRKPT

Sets (SET), deletes
(DEL), and displays a list
of breakpoints when no
arguments are given.

Command 142

CDBL CDBL (numeric expression) Converts a value to a
double-precision value
real number.

Arithmetic
operation

143

CHR$ CHR$ (numeric expression) Finds a character that
corresponds to the ASCII
code (integer) given by
the argument.

Character
string

143

CINT CINT (numeric expression) Rounds off and changes
into a short integer

Arithmetic
operation

144
129

List of BASIC Commands Section 7-5
CLEAR CLEAR Initializes numeric and
character variables and
closes all ports.

General 144

CLNG CLNG (numeric expression) Converts a value to a
long integer.

Arithmetic
operation

144

CLOSE CLOSE [#port number] Closes a port. Device
control

145

CLS CLS [#port number] Clears the screen. Device
control

145

COM ON/OFF/
STOP

COM [port number] ON or
COM [port number] OFF or
COM [port number] STOP

Enables, disables, or
stops a communication
interrupt (ON COM).

General 145

CONT CONT Resumes execution of a
program that has
stopped.

Command 146

COS COS (numeric expression) Determines the cosine of
the value given by the
argument.

Arithmetic
operation

146

CSNG CSNG (numeric expression) Converts to single-
precision real number.

Arithmetic
operation

146

CTS CTS (port number) Reads CS signal status. Special 147

DATA DATA [Constant{,constant}] Defines the numeric and
character constants
assigned using the READ
command.

General 147

DATE$ DATE$ [=“YY/MM/DD”] Sets or gives date. Special 147

DAY DAY [=numeric expression] Sets or gives day. Special 148

DEF FN DEF FN Name
[(argument[,argument,...])]=
expression

Defines a BASIC function
written by the user.

General 148

DEFINT/
DEFLNG/
DEFSNG/
DEFDBL/
DEFSTR

DEFINT character [–
character]{character [–
character]} or
DEFLNG character [–
character]{character [–
character]} or
DEFSNG character [–
character]{character [–
character]} or
DEFDBL character [–
character]{character [–
character]} or
DEFSTR character [–
character]{character [–
character]}

Declares variable types
as integer, long integer,
single-precision, double-
precision or character.

General 149

DEL DEL [line number 1] [–[line
number 2]]

Deletes part of the
program line.

Command 149

DIM DIM variable name
(maximum subscript)
{maximum
subscript}){variable
name(maximum
subscript{maximum
subscript})}

Specifies the array
variable dimensions and
the maximum value for
the subscript. For
character string
variables, the maximum
number of characters can
be specified.

General 150

DMA DMA (port number) Determines transmitting/
not transmitting for DMA
data transmission.

Special 151

Command Syntax Details Command Statement Function Page
130

List of BASIC Commands Section 7-5
DSR DSR (port number) Reads status of DR
signal.

Special 151

DTR DTR (port number) SET or
DTR (port number) RESET

Sets/resets ER signal. Device
control

151

EDIT EDIT [Line number] Edits one line of the
program.

Command 152

END END Terminates program
execution and closes all
ports.

General 153

EOF EOF (port number) Checks if the reception
port buffer for the
specified port is empty.

Special 153

ERC ERC Deletes the error code in
the Error Log Table, or
deletes the error status
being generated.

General 153

ERL ERL Determines the line
number being executed
at the point that an error
is generated.

Special 154

ERR ERR Determines the error
code generated by the
error.

Special 154

ERROR ERROR <error number> Simulates the error
generation.

General 155

EXP EXP (numeric expression) Determine the
exponential of a numeric
expression.

Arithmetic
operation

155

FCS FCS (character expression,
[FCS type])

Determines the error
check code for the
character expression.

Arithmetic
operation

156

FIX FIX (numeric expression) Determines the integer
part of value given by the
argument.

Arithmetic
operation

157

FOR ... TO ...
STEP TO NEXT

FOR <variable> = <numeric
expression> TO <numeric
expression>
[STEP <numeric
expression>]: <program>
NEXT variable {,variable}

or
FOR <variable> = <numeric
expression> TO <numeric
expression>
[STEP <numeric
expression>] line end
program NEXT variable
{,variable}

Repeats the loop from
FOR to NEXT a specified
number of times.

General 158

FRE FRE Assigns the amount of
unused user memory.

Special 158

GOSUB TO
RETURN

GOSUB line number to
RETURN
or

GOSUB label to RETURN

Calls up and executes
subroutines, and returns
on RETURN command.

General 159

GOTO GOTO <line number> or
<label>

Branches to specified line
number or label.

General 159

Command Syntax Details Command Statement Function Page
131

List of BASIC Commands Section 7-5
HEX$ HEX$ (numeric expression) Changes the decimal
value given by the
argument to a
hexadecimal character
string.

Character
string

160

IF IF <numeric expression>
THEN[statement{:statement}
or <line number> or <label>]
GOTO <line number> or
<label> [ELSE[statement
{:statement} or <line
number> or <label>]}

Selects an executable
statement or destination
based on the results of a
numeric expression.

General 161

INKEY$ INKEY$ [#port number] Finds the characters that
have been newly
received by the reception
buffer of a specified port.

Special 161

INPUT INPUT[;] [#port number,]
[“prompt”;]
variable{,variable}
INPUT [#port number,]
[“prompt”,] variable
{,variable}

Reads data separated by
carriage returns from the
reception buffer of a
specified port into a
specified variable.

General 162

INPUT$ INPUT$ (number of
characters [,#port number])

Reads a string of
characters of a specified
number of characters
from reception buffer of
specified port.

Special 163

INSTR INSTR ([search start
position,] <character
expression 1>, <character
expression 2>)

Searches for character
expression 2 in character
expression 1, and obtains
the position of the first
character.

Character
string

163

INT INT (numeric expression) Rounds down a decimal
fraction to the nearest
integer.

Arithmetic
operation

164

INTRB INTRB Determines the line
number being executed
when an interrupt is
generated.

Special 164

INTRR INTRR Determines the original
interrupt type in an
interrupt subroutine.

Special 165

INTRS INTRS Determines the line
number that defined the
generated interrupt.

Special 165

KEY ON/OFF/
STOP

KEY [key number] ON or
KEY [key number] OFF

or
KEY [key number] STOP

Enables, disables or
stops a key input interrupt
(ON KEY).

General 166

LEFT$ LEFT$ (<character
expression>, <character
number>)

Finds the specified
number of characters
beginning from the
leftmost character of the
character string.

Character
string

166

LEN LEN (character expression) Determines the number
of characters in a
character string.

Character
string

166

LET [LET] <variable
name>=<expression>

Assigns the value of an
expression to a variable
name.

General 167

Command Syntax Details Command Statement Function Page
132

List of BASIC Commands Section 7-5
LINE INPUT LINE INPUT[;] [#port
number,] [“prompt”;]
character variable

Reads one line of data
from the reception buffer
of a specified port into
the character variable.

General 167

LIST LIST [line number 1] [–line
number 2]

Displays the program. Command 168

LLIST LLIST [line number 1] [–line
number 2]

Outputs the program to
the printer.

Command 169

LOAD LOAD #<port number>
[communications conditions
character expression]

Transfers a program from
the terminal to the ASCII
Unit user memory.

Command 170

LOC LOC (port number) Provides the number of
bytes of data stored in the
reception buffer of a
specified port.

Special 170

LOG LOG (numeric expression) Determines a natural
logarithm.

Arithmetic
operation

170

LPRINT
[USING]

LPRINT [#port number]
[USING print format;]
expression {[,]expression}

or

LPRINT [#port number]
[USING print format;]
expression {[;]expression}

or
LPRINT [#port number]
[USING print format;]
expression
{ [space]expression}

Assigns LPRT as the
device symbol (using the
specified format), and
outputs the expression
value to a specified port.

General 171

MID$ MID$ (<character
expression>, <character
position> [number of
characters])

Fetches the specified
number of characters
from a specified
character position.

Character
string

172

MID$ MID$ (<character
expression>, <character
position> [,number of
characters])=<character
expression>

Replaces the number of
characters from a
specified character
position with specified
character string.

General 173

MODEL MODEL Determines ASCII Unit
model.

Special 173

NEW NEW Deletes the program
currently being used and
clears all variables.

Command 174

OCT$ OCT$ (numeric expression) Converts decimal value
to an octal character
string.

Character
string

175

ON ALARM ON ALARM <time
expression>
GOSUB <line number>

or
ON ALARM <time
expression>
GOSUB <label>

Branches to interrupt
subroutine after one-shot
timer.

General 176

ON COM
GOSUB

ON COM [port number]
GOSUB <line number>

or

ON COM [port number]
GOSUB <label>

Branches to interrupt
subroutine when
interrupted by specified
port.

General 177

Command Syntax Details Command Statement Function Page
133

List of BASIC Commands Section 7-5
ON ERROR
GOTO LINE
NUMBER

ON ERROR GOTO <line
number>

or

ON ERROR GOTO <label>

Branches to interrupt
subroutine when error is
generated.

General 178

ON NUMERIC
EXPRESSION
GOSUB OR
GOTO

ON <numeric expression>
GOSUB <line number>
{,<line number> or <label>}

or
ON <numeric expression>
GOSUB <label> {,<line
number> or <label>}
or

ON <numeric expression>
GOTO <line number> {,<line
number> or <label>}

or

ON <numeric expression>
GOTO <label>{,<line
number> or <label>}

Branches to specified line
number based on value
of numeric expression.

General 179

ON KEY GOTO
OR GOSUB

ON KEY [key number]
GOTO <line number> or
<label>

or

ON KEY [key number]
GOSUB <line number> or
<label>

Branches to interrupt
subroutine on specific
key input.

General 180

ON PC GOSUB ON PC [interrupt number]
GOSUB <line number >

or
ON PC [interrupt number]
GOSUB <label>

Branches to interrupt
subroutine when
interrupted from PC.

General 181

ON TIME$ ON TIME$= <time character
expression>
GOSUB <line number> or
<label>

Branches to interrupt
subroutine at a certain
time.

General 182

ON TIMER ON TIMER <time
expression> GOSUB <line
number> or <label>

Branches to interrupt
subroutine after interval
time has expired, and
repeats this process.

General 183

OPEN OPEN #<port number>;
“device symbol :[baud
rate[,data length[parity[stop
bit[,CS_ON or OFF[,RS_ON
or OFF[,DS_ON or
OFF[,XN_ON or OFF]]]]]]]]”

Opens a specified port
under specified
conditions (device type,
communications
conditions, control signal
operation)

Device
control

184

OPTION BASE OPTION BASE 0 or OPTION
BASE 1

Designates the first
number of the array
variable subscript as 1 or
0.

General 186

OPTION
LENGTH

OPTION LENGTH <numeric
expression>

Sets the maximum length
(1 to 255) for character
string variable content.

General 187

PC EGET PC EGET #<shared memory
address>, <read number of
words>,“format{,format}”;
variable{,variable}

Reads data from shared
memory of ASCII Unit
itself to the variables.

General 188

Command Syntax Details Command Statement Function Page
134

List of BASIC Commands Section 7-5
PC EPUT PC EPUT #<shared memory
address>, <write number of
words>,“format{,format}”;
<numeric expression>
{<numeric expression>}

Writes shared memory
data of ASCII Unit itself.

General 189

PC GET PC GET variable name 1
[,variable name 2]

Reads the output data
value from the PC’s
allocated I/O to the
variables.

General 190

PC ON/OFF/
STOP

PC [interrupt number] ON or
PC [interrupt number] OFF
or
PC [interrupt number] STOP

Enables, disables, or
stops a PC interrupt.

General 187

PC PUT PC PUT
<numeric expression>

Writes the numeric
expression value to the
input data area of the
allocated I/O in the PC.

General 190

PC QREAD@ PC QREAD”@area,
address, <read number of
words>, PC format {,PC
format} ,variable {,variable}

Generates a request to
execute an IOWR
instruction at the PC, and
reads the specified I/O
memory area.

General 191

PC QWRITE@ PC QWRITE”@area,
address, <write number of
words>, PC format {,PC
format}, numeric expression
{,numeric expression}

Generates a request to
execute an IORD
instruction at the PC, and
writes data to the
specified I/O memory
area.

General 193

PC READ OR
PC READ@

PC READ” PC format {,PC
format}”; variable {,variable}
or
PC READ” @ area, address,
<read number of words>, PC
format {,PC format}”;
variable {variable}

Converts the format of
data written from the PC
and reads it.

General 195

PC WRITE
(“@”)

PC WRITE” PC format {,PC
format}”; variable {,variable}
or
PC WRITE” @area,
address, <write number of
words>, PC format {,PC
format}”; variable {variable}

Converts the format of
the numeric expression
value and transfers it to
the PC.

General 200

PEEK PEEK (address) Reads the contents of a
specified memory
address.

Special 205

PGEN PGEN
<numeric expression>

Switches to the program
area number to be used.

Command 205

PINF PINF [ALL]
or

PINF [Program No.]

Displays information on
the user memory area.

Command 206

PMEM PMEM ON

or
PMEM OFF

Switches between
enabling and disabling
write protection for the
user memory area.

Command 207

PNAME PNAME “program name” Assigns or cancels a
program name.

Command 207

POKE POKE address,value Writes data to specified
address in the user
memory.

General 208

Command Syntax Details Command Statement Function Page
135

List of BASIC Commands Section 7-5
PRINT [USING] PRINT [#port number]
[USING print format;]
expression {[,]expression}
PRINT [#port number]
[USING print format;]
expression {[;]expression}

or
PRINT [#port number]
[USING print format;]
expression {[space]
expression}

Outputs expression value
to specified port (in the
specified format).

General 208

PWORD PWORD <character
expression>

Assigns a password to
the BASIC program area.

General 210

RANDOM RANDOM (expression) Changes a random
sequence based on a
random number seed
given by the expression.

General 210

READ READ variable name
[,variable name. . .]

Reads data defined using
the DATA command into a
variable.

General 211

REM REM (comment statement) Inserts a comment
statement in a program.

General 211

RENUM RENUM [new line number]
[,old line number]
[,increment]]

Reallocates line numbers
in the program.

Command 212

RESTORE RESTORE [line number]

or

RESTORE [label]

Specifies the line number
of the DATA command
that is starting to be read
using the READ
command.

General 212

RESUME RESUME [line number]

or

RESUME [NEXT]

Resumes program
execution after an error
handling procedure has
been performed.

General 213

RIGHT$ RIGHT$ (character
expression, number of
characters)

Finds the specified
number of characters
from the rightmost
character of the character
string.

Character
string

213

RND RND [(numeric expression)] Determines a random
number between 0 and 1.

Arithmetic
operation

214

ROMLOAD ROMLOAD Reads the BASIC
program from flash ROM
and stores it in user
memory (RAM).

Command 214

ROMSAVE ROMSAVE Stores BASIC program
from user memory (RAM)
in flash ROM.

Command 215

ROMVERIFY ROMVERIFY Compares BASIC
programs in RAM and
flash ROM.

Command 215

RTS RTS #port number SET or
RTS #port number RESET

Sets/resets the RS
signal.

Device
control

216

RUN RUN [first line number] [TO
final line number]

Starts executing a
program, and continues
executing until a specified
final line number.

Command 216

Command Syntax Details Command Statement Function Page
136

List of BASIC Commands Section 7-5
SAVE SAVE #port number
[communications conditions
character expression]

Reads the BASIC
program in user memory
area to terminal.

Command 217

SEARCH SEARCH (integer type array
variable, numeric expression
1, [numeric expression 2]
[,numeric expression 3]

Searches an integer
array for the specified
value. Returns the array
subscript of the first
instance found.

Special 217

SGN SGN (numeric expression) Determines the sign of an
argument.

Arithmetic
operation

218

SIN SIN (numeric expression) Determines the sine
(SIN) given by the
argument.

Arithmetic
operation

218

SPACE$ SPACE$ (number of
characters)

Creates a string of
spaces of the length of
the number of characters.

Character
string

218

SPC SPC (numeric expression) To output a number of
spaces in a PRINT or
LPRINT statement.

Character
string

219

SQR SQR (numeric expression) Calculates the square
root.

Arithmetic
operation

219

STEP STEP [numeric expression] Executes the specified
number of lines in BASIC
program.

Command 220

STOP STOP Terminates program
execution.

General 220

STR$ STR$ (numeric expression) Converts the numeric
value into a character
string.

Character
string

221

STRING$ STRING$ (numeric
expression, numeric
expression) or
STRING$ (numeric
expression, character
expression)

Finds a character string
of the specified number
of characters.

Character
string

221

TAB TAB (digit position) Outputs blank space until
the specified digit
position in the PRINT and
LPRINT commands.

Character
string

222

TAN TAN (numeric expression) Determines the tangent
(TAN) of the value given
by the argument.

Arithmetic
operation

222

TIME$ TIMES$ [“HH:MM:SS”] Sets or gives the time. Special 222

TIME$ ON/OFF/
STOP

TIME$ ON or
TIME# OFF or
TIME$ STOP

Enables, disables. or
stops a time interrupt.

General 223

TIMER ON/
OFF/STOP

TIMER ON or
TIMER OFF or
TIMER STOP

Enables, disables, or
stops a interval timer
interrupt.

General 223

TRACE TRACE Displays the contents of
the trace buffer.

Command 224

TROFF TROFF Cancels the tracing of the
following line numbers.

General 224

TRON TRON [M] Starts tracing the
following line numbers.
Outputs to the trace
buffer when the M option
is used.

General 225

Command Syntax Details Command Statement Function Page
137

List of BASIC Commands Section 7-5
VAL VAL (character expression) Converts a character
string into a numeric
value.

Character
string

225

VARPTR VARPTR (variable name) Determines or returns the
memory address where
the variable is stored.

Special 226

WAIT WAIT “waiting time”[,line
number]

Sets the monitoring time
until execution of
following instruction is
completed.

General 227

WATCH WATCH [SET variable name]
or WATCH [DEL variable
name]

Sets (SET), deletes
(DEL), or displays the list
(when not displayed) of
the variables for the
WATCH command.

Command 228

WHILE/WEND WHILE <numeric
expression> <program>
WEND

Repeats the program
body as long as the
expression is not 0.

General 229

Command Syntax Details Command Statement Function Page
138

7-6Section BASIC Commands

7-6 BASIC Commands

This section explicitly defines the functions, commands and statements of the
BASIC language and gives examples of their use. The conventions used to
describe the syntax of the BASIC Language are:
1. <> brackets in the syntax denote a term that is expanded elsewhere in

the table. e.g. <expression> means that the definition of an expression
can be found elsewhere in the table.

2. [] brackets surround optional items. e.g. pinf [<Program number>]
means that the Program number is optional in the pinf command.

3. BASIC keywords and pre-defined functions are written in boldface, e.g.,
in the example above pinf is a BASIC keyword.

4. A choice between several selections is denoted by () parentheses. If
parentheses are to be entered as they are, they will be denoted by ().
The items to be selected are separated by a vertical bar, | .

5. When the differences between two selections is too great they will be
shown in a separate RHS entry.

6. Repetition is denoted by {} brackets. Items enclosed in these brackets
are repeated zero or more times. e.g. data <data field> {, <data field>}

7. Items enclosed in quotes, “”, should be entered as they are written.

@if
Syntax: @IF <numerical expression> THEN [(<program>] [ELSE [(<program>]] ENDIF
Description: Statement. Controls the flow of a program based on the results of an numerical expression.

This statement differs from the IF statement in that it supports multiple line statements. @IF
statements can be nested.

Remarks: The results of <numerical expression> determine which branch of the conditional
statement is executed. If the result of the <numerical expression> is non-zero (TRUE) then
the statements after THEN are executed, otherwise the statements after ELSE are executed.

It is the user’s responsibility to ensure that an ENDIF is encountered.

If there is no ELSE statement then execution will continue with the next statement.

All @IF statements must be terminated by an ENDIF. If an ENDIF is encountered before a
corresponding @IF or if the program ends without encountering an ENDIF (if an @IF has
already been encountered), the “mismatch: @IF / ENDIF” error (code B029) will occur.

Examples: > 10 A= -5
> 20 @IF A<0 THEN
> 30 B = -A
> 40 PRINT “ABS OF “; A; “ IS “; B
> 50 ELSE
> 60 PRINT “ABS OF “; A; “ IS”; A
> 70 PRINT “END”
> 80 ENDIF
> 90 END
> RUN
ABS OF -5 IS 5

See also: IF

139

7-6 Section BASIC Commands

abs
Syntax: ABS(<numerical expression>)
Description: Function. Calculates the absolute value of a numerical expression.
Remarks: <numerical expression> may be any short or long integer, single-precision floating point or

double-precision floating point expression. The range of the input argument, and therefore
the output is equivalent to the allowable range of a double precision floating point.

The return type is the same as that of the argument.

Examples: > 10 A = -4
> 20 PRINT ABS(A)
> RUN
4

See also:

acos
Syntax: ACOS(<numerical expression>)
Description: Function. Calculates the arc cosine of a numerical expression.
Remarks: <numerical expression> may be any integer, single-precision floating point or double-

precision floating point expression. The valid range for the input is [-1, 1].

The return type is single-precision floating point if the argument is of type integer or
single-precision floating point. If the argument is of type double-precision floating point
then the return type is also double-precision floating point. The return value is in radians
and will be in the range [0, π]

Examples: > 10 A = 0.4
> 20 PRINT ACOS(A)
> RUN
1.15928

See also: ASIN, ATN

140

7-6Section BASIC Commands

alarm on/off/stop
Syntax: ALARM (ON | OFF | STOP)
Description: Statement. Enables, disables or stops the time interrupt

ON enables the interrupt. When this statement is executed the ON ALARM interrupt is
unmasked. If an ALARM interrupt occurs program execution branches to the defined
GOSUB routine for interrupt processing.

OFF disables the interrupt. All subsequent ALARM interrupts are ignored.

STOP masks and enables the interrupt. If an interrupt is received, it is stored in memory
but program execution is not branched to the interrupt subroutine. Program execution
will be branched to the stored interrupt’s subroutine when the interrupt is unmasked with
the ALARM ON statement.

Remarks:

Note
:

1. Only one ON ALARM interrupt may be valid. If more than one is set in a
program then the last one executed is valid.

2. After branching processing the ALARM interrupt, the interrupt is disabled and
all subsequent ALARM interrupts are ignored until it is re-enabled with the
ALARM ON statement.

3. The ALARM ON/OFF/STOP statements can be executed only after the ON
ALARM statement has been executed.

4. Interrupts are disabled immediately after execution of ON ALARM GOSUB.
Examples: > 10 ON ALARM 30 GOSUB 1000

> 20 ALARM ON
> 30 GOTO 30
> 1000 PRINT “ALARM INTERRUPT OCCURRED”
> 1010 RETURN
> RUN
ALARM INTERRUPT OCCURRED

See also: ON ALARM

asc
Syntax: ASC(<string expression>)
Description: Function. Returns the character code of the first character in the <string expression>.

The return value is an integer representing the ASCII character code of the first
character in the string expression.

Remarks:

Note
:

1. The return value will be in the range: [0…255]

Examples: > 10 B$ = "B"
> 20 PRINT ASC(B$)
> RUN
66

See also: CHR$

141

7-6 Section BASIC Commands

asin
Syntax: ASIN(<numerical expression>)
Description: Function. Calculates the arc sine of a numerical expression.
Remarks: <numerical expression> may be any integer, single-precision floating point or double-

precision floating point expression. The valid range of the input argument is [-1, 1].

The return type is single-precision floating point if the argument is of type integer or
single-precision floating point. If the argument is of type double-precision floating point
then the return type is also double-precision floating point. The return value is in radians
and will be in the range [-π/2, π/2]

Examples: > 10 A = 0.4
> 20 PRINT ASIN(A)
> RUN
.411517

See also: ACOS, ATN

atn
Syntax: ATN(<numerical expression>)
Description: Function. Calculates the arc tangent of a numerical expression.
Remarks: <numerical expression> may be any integer, single-precision floating point or double-

precision floating point expression. The return value is in radians and will be in the range
[-π/2, π/2]

The return type is single-precision floating point if the argument is of type integer or
single-precision floating point. If the argument is of type double-precision floating point
then the return type is also double-precision floating point.

Examples: > 10 A = 0.4
> 20 PRINT ATAN(A)
> RUN
.380506

See also: ACOS, ASIN

auto
Syntax: AUTO [<line number>] [, [<increment>]]
Description: Command. Automatically generates line numbers for program lines as they are being

input.
<line number> is an integer in the range: [1…65535].

<increment> is an integer in the range: [1…65535].

auto begins line numbering at the line specified by <line number> and increments
subsequent lines by <increment>. Both <line number> and <increment> default to 10.

Remarks:

Note
:

1. The AUTO statement can be cancelled with CTRL-X.
2. An asterisk (*) immediately after the specified line number denotes that an

already existing line number could be overwritten.
3. A new line number can be entered by typing the new line number followed

by the CR key. If the CR key is pressed without entering a new program line
next line number in the sequence will be displayed.

Examples: > AUTO 10,10
See also: EDIT

142

7-6Section BASIC Commands

bitoff/biton
Syntax: BITOFF <integer variable> , <bit position>

BITON <integer variable> , <bit position>
Description: Statement. turns ON (1) or OFF (0) the specified bit of an integer variable.

<bit position> is an integer expression returning a value in the range: [0…31]. Remarks:

Note
:

1. A <bit position> of zero specifies the least significant bit.
2. A value in the range [0…15] can be used for an integer <bit position> and a

value in the range [0…31] can be used for a long integer <bit position>.
Examples: > 10 N% = 182

> 20 PRINT N%
> 30 BITON N%,3
> 40 PRINT N%
> 50 BITOFF N%,5
> 60 PRINT N%
> RUN
182
190
158

See also:

brkpt
Syntax: BRKPT [(SET | DEL)] (<line number> | ALL)
Description: Command. Sets, deletes or lists breakpoints in the BASIC debugger.
Remarks: <line number> is any valid line in the BASIC program. Valid range: [1…65535].

SET sets a breakpoint at the specified <line number>.
DEL deletes the breakpoint from the specified <line number>.

If the BRKPT command is used without SET or DELETE it lists all the currently set
breakpoints. If a line number is specified that does not exist, then an “Undefined Line
Number” error (code B008) will occur. A maximum of 255 breakpoints can be set at any
given time.

On reaching a program line that has a breakpoint set the execution will stop before
executing that line.

If BRKPT SET ALL is executed, a “NO SUPPORT” error will occur.
The setting of the maximum of 255 breakpoints may not be possible if there is insufficient
free space in the memory area. A breakpoint can be set while executing an interrupt
program to stop the program, but the program cannot be restarted from the location of
the breakpoint.

Examples: > BRKPT SET 200
See also: CONT, STEP, STOP, END

143

7-6 Section BASIC Commands

cdbl
Syntax: CDBL (<numerical expression>)
Description: Function. Converts the <numerical expression> into a double-precision floating point.
Remarks: <numerical expression> may be any integer, single-precision floating point or double-

precision floating point expression.

If the <numerical expression> is an integer or single-precision floating-point integer, then
CDBL will convert it to a double-precision floating-point integer. If the <numerical
expression> is already a double-precision floating-point integer, then the precision of the
returned value will be the same as it was before conversion.

Even after conversion to a double-precision floating-point integer, only the digits for
single precision may sometimes be shown. The number, however, will have the number
of digits required for double precision.

If the number contains consecutive zeros, only the digits for single precision may
sometimes be output, as described above.

Examples: > 10 A# = CDBL(22)/CDBL(7)
> 20 B# = 22!/7!
> 30 PRINT A#, B#
> RUN
3.14285714285714 3.14286

See also: CINT, CSNG

chr$
Syntax: CHR$ (<numerical expression>)
Description: Function. Converts the <numerical expression> into a character.

<numerical expression> may be any integer in the range: [0…255]. Non-integer
numerical expressions are rounded to the nearest integer. The decimal equivalent of the
ASCII character code is used and converted to the corresponding character.

Remarks:

Note
:

1. If the integer expression lies out with the specified range an “Illegal Function
call” (code B005) or “Overflow” (code B006) error will result.

2. The ASC function is the opposite of CHR$.
3. As an example of the rounding function, CHR$(67.4) returns ‘C’ and

CHR$(67.5) returns ‘D’.
Examples: > 10 A$ = CHR$(67)

> 20 PRINT A$
> RUN
C

See also: ASC

144

7-6Section BASIC Commands

cint
Syntax: CINT (<numerical expression>)
Description: Function. Converts the <numerical expression> into an integer.

<numerical expression> may be any integer, single-precision floating point or double-
precision floating point. the valid range of the input is the valid range of a short integer:
[-32768... 32767]

Remarks:

Note
:

1. Fractions are rounded up if positive and down if negative. For instance
CINT(67.5) returns 68 but CINT(-67.5) returns -68 not -67.

Examples: > 10 A% = CINT(67.45)
> 20 B% = CINT(67.55)
> 30 PRINT A%, B%
> RUN
67 68

See also: CDBL, CLNG, CSNG, FIX, INT

clear
Syntax: CLEAR
Description: Statement. Initializes all numeric and character variables.

All numerical variables are initialized to 0. All character strings are initialized to be empty. Remarks:

Note
:

Refer to 7-2 Character Variable Space Allocations for details on allocating space
in the character variable area.
Dynamic Method:
1. All values = 0. Delete all temporary memory blocks.
2. Close all ports that are open.
3. For character variables, all temporary holding areas will be reset.
Static Method:
1. Close all ports that are open and set all values to 0.
2. Fixed memory areas in user memory will remain held, but the values within

these areas will be cleared.
Examples: CLEAR
See also:

clng
Syntax: CLNG (<numerical expression>)
Description: Function. Converts the <numerical expression> into a long integer.

<numerical expression> may be any integer, single-precision floating point or double-
precision floating point. the valid range of the input is the valid range of a long integer:
[-2147483648... 2147483647]

Remarks:

Note
:

1. Fractions are rounded up if positive and down if negative. For instance
CLNG(67.5) returns 68 but CLNG(-67.5) returns -68 not -67.

Examples: 10 A&= CLNG(40000.45)
20 B&= CLNG(40000.55)
30 PRINT A&, B&
> RUN
40000 40001

See also: CDBL, CINT, CSNG, FIX, INT

145

7-6 Section BASIC Commands

close
Syntax: CLOSE [# <port expression>]
Description: Statement. Closes a communications port..

<port expression> is an expression returning an integer in the range: [1… 3]. It is also
possible in this command to omit the # preceding the port expression.

On closing a port, the data remaining in the output buffer of the communications port is
sent, the data in the input buffer of the communications port is cleared.

If the port expression is omitted, all open ports will be closed. Once the port has been
closed it cannot be used for data transfer until it has been opened again. The END and
NEW commands automatically close the communications ports. The STOP command does
not.

Remarks:

Note
:

1. Port #3 corresponds to the terminal port of the ASC31.
2. If Port #3 is specified on the ASC11 or ASC21 an “ILLEGAL FUNCTION

CALL” error (code B005) will result.
3. For the status of the RTS and DTR signal lines on closing a port, refer to 4.5.2

Transmission Control Signal Timing Chart.
Examples: CLOSE #2
See also: END, NEW, OPEN

cls
Syntax: CLS [# <port expression>]
Description: Statement. Clears the screen.

<port expression> is an expression returning an integer in the range: [1… 3].

If the port number is omitted, the number of the terminal port will be used (#1 for the
C200H-ASC11/21 and #3 for the C200H-ASC31).

Remarks:

Note
:

1. Port #3 corresponds to the terminal port of the ASC31.
2. If Port #3 is specified on the ASC11 or ASC21 an “ILLEGAL FUNCTION

CALL” error (code B005) will result.
Examples: CLS
See also:

com on/off/stop
Syntax: COM [<port expression>] (ON | OFF | STOP)
Description: Statement. Enables, disables, or stops the interrupt defined by the ON COM interrupt

statement.
<port expression> is an expression returning an integer in the range: [1… 2].

If the port number is omitted, the port number will be #1.

ON enables the interrupt. If a COM interrupt occurs while the interrupt is enabled, program
execution branches to the defined subroutine for interrupt processing.

OFF disables the interrupt. All subsequent ON COM interrupts are ignored.

STOP masks and enables the interrupt. If an interrupt is received, it is stored in memory
but program execution is not branched to the interrupt subroutine. Program execution will
be branched to the stored interrupt’s subroutine when the interrupt is unmasked with the
COM ON statement.

Remarks:

Note
:

1. The COM ON/OFF/STOP statement can only be executed after an ON COM
statement has been executed.

2. Interrupts are disabled immediately after execution of ON COM GOSUB.
Examples: COM 1 STOP
See also: ON COM

146

7-6Section BASIC Commands

cont
Syntax: CONT
Description: Command. Resumes execution of the BASIC program after CTRL+X, after execution of

END, STEP or STOP statements, after encountering a breakpoint or after the occurrence of
an error.

Remarks: Execution of the BASIC program resumes at the point after the break occurred. If the
program has been changed or if the break occurs during data transfer with an external
device then the BASIC program cannot be resumed. If there is a break during the
execution of an interrupt program, the program cannot be resumed using the CONT
command. When the BASIC program cannot be resumed a “CANNOT CONTINUE” error
message (code B017) will result.

Examples: CONT
See also: STEP, STOP, END, BRKPT

cos
Syntax: COS (<numerical expression>)
Description: Function. Calculates the cosine of a numerical expression.

<numerical expression> may be any integer, single-precision floating point or double-
precision floating point.

The return type is single-precision floating point if the argument is of type integer or
single-precision floating point. If the argument is of type double-precision floating point
then the return type is also double-precision floating point.

The return value will be in the range [-1, 1].

Remarks:

Note
:

1. The argument should be specified in radians.

Examples: > 10 A = 0.4
> 20 PRINT COS(A)
> RUN
.921061

See also: SIN, TAN

csng
Syntax: CSNG(<numerical expression>)
Description: Function. Converts a numerical expression into a single-precision floating point.
Remarks: <numerical expression> may be any integer, single-precision floating point or double-

precision floating point expression.

If the <numerical expression> is an integer or double-precision floating point type then
CSNG will convert it to a single-precision floating point type. If the <numerical expression>
is already a single-precision floating point then the precision of the returned value will be
the same as it was before conversion.

Examples: > 10 A# = 1.23456789
> 20 A! = A#
> 30 B! = CSNG(A#)
> 40 PRINT A#, A!, B!
> RUN
1.23456789 1.23457 1.23457

See also: CDBL, CINT

147

7-6 Section BASIC Commands

cts
Syntax: CTS(<port expression>)
Description: Function. Reads the CTS line of the specified communications port.

<port expression> is an expression returning an integer in the range: [1… 3].

CTS returns -1 if the CTS line of the specified port is active and 0 if the CTS line is not
active.

Remarks:

Note
:

1. Port #3 corresponds to the terminal port of the ASC31.
2. If Port #3 is specified on the ASC11 or if port #2 or port #3 is specified on

ASC21 an “ILLEGAL FUNCTION CALL” error (code B005) will result.
Examples: > 10 IF CTS(2) THEN PRINT(“PORT 2 IS READY”)
See also: DSR. DTR, RTS

data
Syntax: DATA [<data field> {, <data field>}]
Description: Statement. Defines numeric and character constants that can be used in subsequent

read statements
<data field> is any valid numerical or character constant.

In order to include the ‘,’, ‘:’ and ‘(space)’ characters in data fields they must be enclosed
in quotes.

The DATA statement is usually used in conjunction with the READ statement. The
constants’ type and order are specified by the READ statement and the variables’ type
and order must match.

The data defined in these statements will be read in order by READ statements. When the
last data item in a DATA statement is read then the next data item read will be the first
data item in the following DATA statement, if it exists.

The variable type in the READ statement must correspond to the type of data read from
the DATA statement.

Remarks:

Note
:

Comments cannot be attached to DATA statements.

Examples: > 10 DATA 10, "HELLO", 1.6, "WORLD"
> 20 READ A, B$, C, D$
> 30 PRINT B$+" "+D$
> 40 PRINT A+C
> RUN
HELLO WORLD
11.6

See also: READ, RESTORE

date$
Syntax: DATE$ [= <date string expression>]
Description: System variable. Returns the date of the internal clock or sets the internal clock’s date.
Remarks: <date string expression> is an absolute date in the format “yy/mm/dd”. Where yy is the

year and has a valid range [00…99], mm is the month and has a valid range [01…12]
and dd is the day and has a valid range [01…31]. If the <date string expression> is not a
valid date then an “ILLEGAL FUNCTION CALL” error (code B005) will occur.

If used on its own the DATE$ statement returns the current date of the system clock in the
format specified above.

Examples: DATE$ = “97/06/26”
See also: DAY, TIME$

148

7-6Section BASIC Commands

day
Syntax: DAY [= <numerical expression>]
Description: System variable. Returns the current day of the week or sets the day of the week.

<numerical expression> is an integer expression representing the day of the week. The
days of the week are represented in the following way:

Day
code

Day

0 Sunday
1 Monday
2 Tuesday
3 Wednesday
4 Thursday
5 Friday

6 Saturday

Remarks:

If the <numerical expression> is not within the range specified in the table above then an
“ILLEGAL FUNCTION CALL” error (code B005) will occur.

Once the DAY variable has been set, it is automatically incremented by 1 with each
passing day (repeating the cycle 0 through 6).

The DAY variable has no relationship with the internal clock, it is quite possible to set a
DAY that is inconsistent with the current DATE$

Examples: DAY = 4
See also: DATE$, TIME$

def fn
Syntax: DEF FN<function name>[(<variable name 1> [, <variable name n>])] = <expression>
Description: Statement. Declares a user defined BASIC function.

<function name> is the name of the defined function. It may be any valid BASIC variable
name.

<Variable name 1> [, <variable name n>] is an optional list of arguments that may be
input to the user defined function. Any valid variable name may be used as an input
argument. It is not possible to have arguments with the same name as the function being
defined (i.e., <variable name 1>).

The <expression> is the constant or string expression that uses <Variable name 1>
[, <variable name n>].

Remarks:

Note
:

1. The type of variable used when the function is called as a BASIC function
must match the variable used when the function was defined with the DEF
FN statement. A “TYPE MISMATCH” error (code B013) will occur if the
variable types do not match.

2. The defined basic function is called by entering FN + the function name. For
example, A = FNMYFUNC(1,2) will call the MYFUNC function defined in the
example below.

3. The result of the user-defined function must be assigned a variable when the
function is called. A “SYNTAX ERROR IN LINE …” error (code B002) will
occur if a variable is not assigned.

Examples: > 10 DEF FNMYFUNC(A,B) = A+B
> 20 PRINT FNMYFUNC(1,2)
> RUN
 3

See also:

149

7-6 Section BASIC Commands

def int/lng/sng/dbl/str
Syntax: DEF (INT | LNG | SNG | DBL | STR) <letter> [- <letter>] {, <letter> [- <letter>]}
Description: Statement. Defines the type of variables beginning with the specified letters..
Remarks: The variables can be declared to be of type short integer (INT), long integer (LNG),

single-precision floating point (SNG), double-precision floating point (DBL) or string (STR).

An variables beginning with the letters specified, or in the range of letters specified will
be assigned to be of the declared type.

If the type is declared using the type definition characters (%, &, !, # or $) then this will
take precedence over the types declared using DEF INT/LNG/SNG/DBL/STR.

If no type declarators are used all numeric variables are assumed to be single-precision
floating point.

When the OPTION LENGTH statement is used in a program, a variable name defined
by a DEF statement cannot be used before the DEF statement.

Examples: > 10 DEFINT A
> 20 A = 1.2
> 30 PRINT A
> RUN
 1

See also:

del
Syntax: DEL ((<line number> | .) [- [(<line number> | .)]]
Description: Command. Deletes the specified program lines.

<line number> is any valid line in the BASIC program. Valid range: [1…65535]. Remarks:

Note
:

1. A period (.) can be used instead of the current line number.
2. The first number in any given range must be less than the second number

of that range. If this is not true then an “ILLEGAL FUNCTION CALL” error
(code B005) will result.

Examples: DEL 100-200 deletes a range of lines from 100 to 200 inclusive.
DEL 100- deletes a range of lines from 100 to the end of the program.
DEL -600 deletes a range of lines from the beginning of the program to line 600

See also:

150

7-6Section BASIC Commands

dim
Syntax: DIM <variable> (<array index> {, <array index>}) {,<variable> (<array index> {, <array

index>})}[<maximum number of characters>]
Description: Statement. Specifies the order of the array and the maximum value for the array variable

subscripts. Allocates the necessary memory for the array.
The <variable> is any valid variable name. When array variables are declared, the
constant array variables are initialized to 0 and character string array variables are
initialized to NULL. An array may have up to 255 subscripts (dimensions), but an array
cannot be declared that is larger than the available memory in the ASCII Unit.

The <array index> is any valid integer in the range: [0…65535]. A constant must be used
when the static method is used for character variable area allocation.

The default value for the <array index> is 10 when an array variable is used without the
DIM statement (without declaring the array).

The <maximum number of characters> can be used to specify the maximum number of
characters when the array variables are string variables, but this is valid only when the
static method is used for character variable area allocation.

Remarks:

Note
:

1. An array variable allows multiple elements of data to be specified with a
single variable name. The data element is specified by the number in
parentheses after the variable name (constant or string type). This element
number is called the subscript. An array with one subscript is one
dimensional, an array with two subscripts is two dimensional, and so on.

2. The statement DIM A$(3) declares a one-dimensional array of string
variables with variable name A$. The following four variables can be used:
A$(0), A$(1), A$(2), and A$(3).

3. The statement DIM B(3,2) declares a two-dimensional array of constant
variables with variable name B. The following twelve variables can be used:
B(0,0), B(1,0), B(2,0), B(3,0), B(0,1), B(1,1), B(2,1), B(3,1), B(0,2), B(1,2),
B(2,2), and B(3,2).

4. Array subscripts begin from 0 as shown in the examples above. If arrays are
to be started with subscript 1, use the OPTION BASE statement.

Examples: > 10 DIM A(5)
> 20 FOR I = 0 TO 5
> 30 A(I) = I
> 40 PRINT A(I)
> 50 NEXT I
> RUN
0
1
2
3
4
5

See also: OPTION BASE/LENGTH

151

7-6 Section BASIC Commands

dma
Syntax: DMA(<port expression>)
Description: Function. Reads the DMA status of the specified communications port.

<port expression> is an expression returning an integer in the range: [1…2].

DMA returns -1 if DMA is active for the specified port and 0 if DMA is not active.

Remarks:

Note
:

1. If the port expression is outside the specified range or if it refers port #1 on
ASC11 or ASC21 an “ILLEGAL FUNCTION CALL” error (code B005) will
result.

Examples: IF DMA(2) THEN PRINT “DMA OF PORT 2 IS ACTIVE”
See also:

dsr
Syntax: DSR(<port expression>)
Description: Function. Reads the DSR line of the specified communications port.

<port expression> is an expression returning an integer in the range: [1… 3].

DSR returns -1 if the DSR line of the specified port is active and 0 if the DSR line is not
active.

Remarks:

Note
:

1. Port #3 corresponds to the terminal port of the ASC31.
2. If Port #3 is specified on the ASC11 or if port #2 or port #3 is specified on

ASC21 an “ILLEGAL FUNCTION CALL” error (code B005) will result.
Examples: IF DSR(2) THEN PRINT “DSR OF PORT 2 IS ACTIVE”
See also: CTS, DTR, RTS

dtr
Syntax: DTR # <port expression> (SET | RESET)
Description: Statement. Sets or resets the DTR line of the specified communications port.

<port expression> is an expression returning an integer in the range: [1… 3].

If accompanied with the SET command the ER line is made active, if the RESET command is
used then the ER becomes inactive. This command can only be used if the port is open.

Remarks:

Note
:

1. Port #3 corresponds to the terminal port of the ASC31.
2. If Port #3 is specified on the ASC11 or if port #2 or port #3 is specified on

ASC21 a “BAD PORT NUMBER” error (code 0050) will result.
Examples: DTR #2 SET
See also: CTS, DSR, RTS

152

7-6Section BASIC Commands

edit
Syntax: EDIT (<line number> | .)
Description: Command. Edits the specified line(s) of the BASIC program.

Allows editing of the BASIC program. If only one line number is specified then the editor
will be in single-line edit mode. Characters can be inserted, deleted, or copied in the
specified line and the cursor can be moved.
When "EDIT." is input, the most recently displayed line or most recently input line will be
displayed.

It is also possible to edit programs that have been input with the PNAME command.

The following edit keys can be used during edit.

Key Action
Right Key (→) Moves the cursor to the right. If the cursor is already

at the last position in the line then this key has no
effect.

Left Key (←) Moves the cursor to the left. If the cursor is already at
the first position in the line then this key has no effect.

Down Key (↓) Inputs the line currently being edited and displays the
next program line. If the Down Key is pressed when
the bottom line is already displayed, editing is
terminated, and the editor returns to command mode.

Up Key (↑) Inputs the line currently being edited and displays the
previous program line. If the Up Key is pressed when
the top line is already displayed, editing is terminated,
and the editor returns to command mode.

CTRL+ O
(Insert or
Overwrite)

Toggles the editor between insert and overwrite
mode, the status of insert mode is not shown.

DEL or BS Deletes the character to the left of the cursor, moving
subsequent characters in the buffer to the left. This
key has no effect at the beginning of a line.

RETURN The carriage return key enters the line currently being
edited to the BASIC program.
When the line number being displayed is changed and
the return key is pressed, a new line will be created
with the new line number.

CTRL+X Quits editing and returns to command mode. If a line
is currently being edited, it will return to its original
contents.

Remarks:

Note
:

1. When just the line numbers are edited, the contents of the line before editing
are copied as the contents of the line after editing.

2. If the specified line number does not exist then an “UNDEFINED LINE
NUMBER” error (code B008) will occur.

Examples: EDIT 200 This edits line 200 of the active program
See also:

153

7-6 Section BASIC Commands

end
Syntax: END
Description: Statement. Terminates program execution and returns to the command mode. All

currently open ports are closed.
Remarks: END can be used anywhere in a BASIC program. Like the CLOSE statement, the data

remaining in the output buffer of the communications port is sent and the data in the input
buffer of the communications port is cleared. The END statement can be omitted from the
end of the program, but the ports will not be closed in this case.

Examples: > 10 INPUT A
> 20 @IF A = 1 THEN GOSUB 1000
> 30 ELSE
> 40 PRINT “A WAS NOT 1”
> 50 ENDIF
> 60 END
> 1000 PRINT “A WAS 1”
> 1010 RETURN

See also: STOP

eof
Syntax: EOF(<port expression>)
Description: Function. Checks if the input buffer of the specified port is empty..

<port expression> is an expression returning an integer in the range: [1… 3].

EOF returns -1 if the input buffer of the specified port is empty and 0 not.

Remarks:

Note
:

1. The port specified must be open and configured for input.
2. Port #3 corresponds to the terminal port of the ASC31.
3. If Port #3 is specified on the ASC11 or ASC21 an “ILLEGAL FUNCTION

CALL” error (code B005) will result.
Examples: IF EOF(2) THEN PRINT “PORT 2 IS EMPTY”
See also:

erc
Syntax: ERC
Description: Statement. Clears errors from the error history table in the ASCII Unit.
Remarks: When ERC is executed as a command, all of the errors are cleared from the error history

table.

When ERC is executed as a statement in the program, the current error status is cleared
and those current errors are registered in the error history table as old errors.

ERC cannot be used to clear errors 90 to 99 (DM setting errors).

The error code table is a table that records the error codes of up to 30 errors that have
occurred in the ASCII Unit. The error codes indicate the type of error which has occurred.
Refer to 9-1 List of Error Messages for details on error codes.

Examples: ERC
See also: ERL, ERR

154

7-6Section BASIC Commands

erl
Syntax: ERL
Description: System Variable. Stores the line number executing at the time an error occurred.

ERL is a read-only system variable; it cannot be assigned a value.

ERL can be helpful in error processing when used with ERR and the ON ERROR GOTO
statement. The contents of ERR and ERL can be checked from an error-processing
interrupt subroutine and the information (error code and line number) can be used for
error processing.

Remarks:

Note
:

1. ERL will have a value 0 if statements causing an error are executed at the
command prompt.

2. When an error occurs, the flow of the program can be controlled by using the
ERL function in an interrupt subroutine.

Examples: > 10 ON ERROR GOTO 1000
> 20 A=A/0
> 30 END
> 1000 PRINT "ERROR #";ERR;" OCCURRED AT LINE ";ERL
> 1010 END
> RUN
ERROR #11 OCCURRED AT LINE 20

See also: ERC, ERR

err
Syntax: ERR
Description: System Variable. Stores the error code after an error has occurred.

ERR is a read-only system variable; it cannot be assigned a value.

ERR can be helpful in error processing when used with ERL and the ON ERROR GOTO
statement. The contents of ERR and ERL can be checked from an error-processing
interrupt subroutine and the information (error code and line number) can be used for
error processing.

Remarks:

Note
:

1. ERR will have a default value of 0 if no error has occurred.
2. When an error occurs, the flow of the program can be controlled by using the

ERR function in an interrupt subroutine.
Examples: > 10 ON ERROR GOTO 1000

> 20 A=A/0
> 30 END
> 1000 PRINT "ERROR #";ERR;" OCCURRED AT LINE ";ERL
> 1010 END
> RUN
ERROR #11 OCCURRED AT LINE 20

See also: ERC, ERL

155

7-6 Section BASIC Commands

error
Syntax: ERROR <error number>
Description: Statement. Simulates the occurrence of an error.
Remarks: <error number> is any valid error number in the range: [1…255].

If a system error or a BASIC program error number is used the relevant error code will be
put in the IR n+7 word and, if applicable, the error message will be printed to the screen.

If an error number is specified that does not contain an error description, for instance an
undefined user-defined error or a system error code that is not used, then an
“UNDEFINED ERROR” error code will occur.

For both system and user errors it is possible to define error handling using the ON
ERROR GOTO statement.

ERROR and ON ERROR GOTO can be used together to simulate the occurrence of an error
and test the operation of an error-processing program in an interrupt subroutine.

Examples: > 10 ON ERROR GOTO 1000
> 20 ERROR 6
> 30 END
> 1000 PRINT "ERROR #";ERR;" OCCURRED AT LINE ";ERL
> 1010 END
> RUN
ERROR #6 OCCURRED AT LINE 20

See also: ON ERROR GOTO, ERL, ERR, ERC

exp
Syntax: EXP(<numerical expression>)
Description: Function. Calculates the exponential of a numerical expression with base e.
Remarks: <numerical expression> may be any integer, single-precision floating point or double-

precision floating point.

The return type is single-precision floating point if the argument is of type integer or
single-precision floating point. If the argument is of type double-precision floating point
then the return type is also double-precision floating point.

Examples: > 10 A = EXP(1)
> 20 PRINT A
> RUN
2.71828

See also:

156

7-6Section BASIC Commands

fcs
Syntax: FCS(<string expression>[, <fcs type>])
Description: Function. Calculates the frame checksum of a string expression.

The FCS is calculated by performing one of the following operations on all bytes in the
string expression.

The type of FCS calculation is selected by <fcs type>. This is an integer value in the
range: [0…9]. The following calculations can be performed. The type of the return
depends on whether a BINARY or ASCII calculation is requested. BINARY calculations return
integers and ASCII calculations return character strings.

FCS code data <fcs
type>

Calculation
method Data type Number of

bytes
0 Binary 1
1

LRC
ASCII 2

2 Binary 2
3

CRC-CCITT
ASCII 4

4 Binary 1
5

SUM (1 byte)
ASCII 2

6 Binary 2
7

SUM (2 bytes)
ASCII 4

8 Binary 2

9
CRC-16

ASCII 4

Remarks:

Note
:

1. The calculation logic for CRC-CCITT is XMODEM.
2. The calculation logic for CRC-16 is MODBUS. For example, character string

data is handled as follows:

“1 2 3 4” = 31 32 33 34
 xn + xn-1…x1 = x0

Examples: > 10 B$ = “RD89”
> 20 PRINT FCS(B$, 1)
> RUN
17
 See also:

157

7-6 Section BASIC Commands

fix
FIX(<numerical expression>) Syntax:
Function. Returns the integer part of the numerical expression specified as the argument.Description:
<numerical expression> may be any integer, single-precision floating point or double-
precision floating point.

The return type is the type of argument.

Remarks:

Note: 1. Returns the integer part without rounding down or up after the decimal
point.

2. If the argument value is positive, FIX will return the same value as INT. If
the argument value is negative, FIX will return a value of 1 more than INT.
For example, for FIX(-6.1), -6 is returned.

3. If the integer part of the argument is a value outside the range of ±8388607,
the argument will be output without change.

Examples: > 10 A = FIX(6.1)
> 20 B = FIX(6.9)
> 30 C = FIX(-6.1)
> 40 D = FIX(-6.9)
> 50 PRINT A,B,C,D
> RUN
6 6 -6 -6
INT See also:

158

7-6Section BASIC Commands

for to step / next
FOR <variable> = <numeric expression 1> TO <numeric expression 2> [STEP <numeric
expression 3>] (: | <end-of-line>) <program> NEXT <variable> {,<variable>}

Syntax:

Statement. Allows the program segment between the FOR and the NEXT statement to be
repeated a number of times.

Description:

Remarks: The FOR statement specifies the beginning of the loop and the NEXT statement specifies
the end of the loop. The loop is executed a specified number of times depending on the
value of the expressions in the FOR statement.

<Variable> is used as a counter and is incremented by the amount specified by <numeric
expression 3> after the STEP statement each time the loop is executed. The initial value
of the variable is equal to <numeric expression 1> in the FOR statement. The execution of
the loop terminates when the value of <variable> surpasses that of <numeric expression
2> defined after the TO statement.

If the STEP increment is zero the loop is executed indefinitely.

If the initial value of the variable is greater than the TO value then the increment specified
must be negative, if not then the loop is never executed.

The NEXT statement can be used to terminate more than one FOR loop by specifying
more than one loop counter variable. For instance if two nested loops terminate at the
same point then one NEXT statement specifying both variables can be used. Care must
be taken to terminate nested loops in the correct order.

Example : 10 FOR A = 1 TO 10
 20 FOR B = 1 TO 10
 30 PRINT A, B
 40 NEXT B, A
The variable(s) used in the NEXT statement must correspond to that used in the FOR
statement(s)

Examples: > 10 FOR A=1 TO 3
> 20 PRINT A
> 30 NEXT A
> RUN
1
2
3
WHILE/WEND See also:

fre
FRE Syntax:
System Variable. Reports amount of free user memory . Description:
FRE is a read-only system variable; it cannot be assigned a value. The result is the
amount of available user memory, in bytes.

Remarks:

Note
:

1. The result is the total user memory available, there is no differentiation
between program and data memory areas.

Examples: > 10 PRINT “THE FREE USER MEMORY IS “; FRE; “ BYTES”
> RUN
THE FREE USER MEMORY IS 204656 BYTES.
 See also:

159

7-6 Section BASIC Commands

gosub
GOSUB (<line number> | <label>) … RETURN Syntax:
Statement Branches unconditionally to and returns from the subroutine specified by the
line number or label.

Description:

Remarks: <line number> is the first line number in the subroutine and may be any valid line number
in the range: [0 …65535]. If the line number specified does not exist in the program then
an “UNDEFINED LINE NUMBER” error will occur.

<label> is a BASIC program label. It references a line number somewhere in the BASIC
program.

The RETURN statement will cause the subroutine to branch back and begin execution at
the next valid line from the original calling line.

If the specified line number or label is a non-executable statement, program execution
will continue at the next line.

Subroutines may be called from other subroutines (nested subroutines), the only limit is
the free user memory.

To prevent inadvertent entry to a subroutine it is advisable to precede the entry to the
subroutine with END, STOP or GOTO statements.

Examples: > 70 INPUT C
> 80 IF C=1 THEN GOSUB 1000
> 90 IF C=2 THEN GOSUB 2000
> 100 GOTO 70
> 1000 CLS
> 1010 PRINT "1 SELECTED"
> 1020 RETURN
> 2000 CLS
> 2010 PRINT "2 SELECTED"
> 2020 RETURN
> RUN
>?1<CR>
1 SELECTED
?
END, GOTO, STOP See also:

goto
GOTO (<line number> | <label>) Syntax:
Statement Branches unconditionally to the specified line number or label. Description:

Remarks: <line number> is any valid line number in the range: [1 …65535]. If the line number
specified does not exist in the program then an “UNDEFINED LINE NUMBER” error will
occur.

<label> is a BASIC program label. It references a line number somewhere in the BASIC
program.

Examples: > 10 INPUT A
> 20 PRINT HEX$(A)
> 30 GOTO 10
> RUN
?11
B
?
GOSUB See also:

160

7-6Section BASIC Commands

hex$
HEX$(<numerical expression>) Syntax:
Function Converts the numerical expression into a hexadecimal character string. Description:
The numerical expression must be in the range: [-2147483648…2147483647].

The resulting character string will be in the hexadecimal range: [0…FFFFFFFF].

Remarks:

Note
:

1. Single-precision or double-precision floating point expressions will be
truncated before the conversion.

2. If a floating point value is within the short integer range, the value will be
converted to a hexadecimal integer. If the floating point value is within the
range of a long integer, the long integer will be converted to a hexadecimal.
If the value is outside the long integer range, an “OVERFLOW” error (code
B006) will occur.

Examples: > 10 PRINT "DEC", "HEX"
> 20 FOR I = 1 TO 16
> 30 PRINT I,HEX$(I)
> 40 NEXT I
> RUN
DEC HEX
 1 1
 2 2
 3 3
 4 4
 5 5
 6 6
 7 7
 8 8
 9 9
 10 A
 11 B
 12 C
 13 D
 14 E
 15 F
 16 10
>
OCT$ See also:

161

7-6 Section BASIC Commands

if
IF <numerical expression> (THEN [(<statement> {: <statement>} | <line number> |
<label>)] | GOTO (<line number> | <label>)) [ELSE [(<statement> {: <statement>} | <line
number> | <label>)]]

Syntax:

Statement. Controls the flow of a program based on the results of an numerical
expression. This statement differs from the @IF statement in that it supports statements
only on a single line.

Description:

Remarks: The results of <numerical expression> determines which branch of the conditional
statement is executed. If the result of the <numerical expression> is not zero then the
statements after THEN are executed, otherwise the statements after ELSE are executed.

<label> is a BASIC program label. It references a line number somewhere in the BASIC
program.

If there is no ELSE statement then execution will continue with the next statement.

If a valid line number is used instead of statements after the THEN or ELSE clauses then
execution will continue at the specified line number. The GOTO statement can be used in
conjunction with a valid line number for the same purpose.

Nesting of IF statements is limited only by the length of the line. The IF statements must
fit in one line.

Examples: > 10 A = 3
> 20 IF A=2 THEN PRINT A IS 2” ELSE PRINT “A IS NOT 2”
> RUN
A IS NOT 2
@IF See also:

inkey$
INKEY$ [#<port expression>] Syntax:
Function Returns the next character in the specified port buffer. Description:
If the specified port buffer is empty a NULL string is returned. Any character, except
CTRL-X, can be returned by INKEY$

Remarks:

Note
:

1. If the port expression is not specified the terminal port is default.

Examples: > 10 IF INKEY$ <> "Q" GOTO 10
> 20 PRINT "QUIT!"
> 30 END
 See also:

162

7-6Section BASIC Commands

input
INPUT[;] [# <port expression>,][<prompt> (; | ,)]<variable> {, <variable>} Syntax:
Statement. Accepts input to a specified variable or variables during program execution. Description:
<port expression> is an expression returning an integer in the range: [1… 3]. If the <port
expression> is omitted, the terminal port’s port number is the default (port #1 for the
ASC11/21 or port #3 for the ASC31).

<prompt> is an optional text string that is output to the terminal to prompt for the input. If
the prompt is followed by a semi-colon then a ‘?’ will be appended, this can be
suppressed by using a comma after the prompt string. If the port specified is not
configured as a “TERM” or a “COMU” port then the prompt and the ? will be suppressed.
(When the ? is not to be displayed for a “COMU” port, use the LINE INPUT statement.)

Strings input to the INPUT statement need not be surrounded by quotes.

The <variables> specified to receive the input can be any valid variable name. The
number of values entered must be the same as the number of variables specified in the
INPUT statement and the type of each value entered at the prompt must correspond to the
types of the variables specified in the INPUT statement. otherwise a “NO SUPPORT” error
(code 0064) will result. Input is terminated by a carriage return.

Multiple values can be input by separating them by commas.

Remarks:

Note
:

1. If the port expression is not specified the terminal port is default.
2. Port #3 corresponds to the terminal port of the ASC31.
3. If Port #3 is specified on the ASC11 or ASC21 an “ILLEGAL FUNCTION

CALL” error (code B005) will result.
4. Execution of the BASIC program will be paused and the BASIC LED

indicator on the front of the Unit will flash slowly until the <CR> code is input.
5. If an interrupt occurs while the INPUT statement is waiting for an input and

the interrupt is not disabled or stopped, the interrupt subroutine will be
processed immediately. Program execution will resume from the INPUT
command when the interrupt subroutine has been completed.

6. If a semi-colon is added after the INPUT, the cursor will remain on the same
row after input.

7. When the terminator section of the receive data is CR + LF, only CR will be
accepted as the INPUT statement, so LF will remain in the receive buffer.

Examples: > 10 INPUT “ENTER YOUR NAME : “, A$
> 20 PRINT “HELLO “;A$
> 30 END
> RUN
ENTER YOUR NAME : FRED <CR>
HELLO FRED
LINE INPUT, WAIT See also:

163

7-6 Section BASIC Commands

input$
INPUT$ (<numerical expression> [, #<port expression>]) Syntax:
Function Reads a string of characters from the specified port. Description:
<numerical expression> is an integer expression indicating the number of input
characters to be accepted. The valid range is : [1…255]. The system will wait until the
specified number of characters have been input. The result is the specified number of
characters.

<port expression> is an expression returning an integer in the range: [1… 3].

All characters, excluding CTRL-X, can be read using INPUT$. (INPUT$ can read the CR and
LF codes which cannot be read by the INPUT and LINE INPUT statements.)

Remarks:

Note
:

1. If the port expression is not specified the terminal port is default.
2. Port #3 corresponds to the terminal port of the ASC31.
3. If Port #3 is specified on the ASC11 or ASC21 an “ILLEGAL FUNCTION

CALL” error (code B005) will result.
4. If an interrupt occurs while the INPUT$ function is waiting for an input and

the interrupt is not disabled or stopped, the interrupt subroutine will be
processed immediately. Program execution will resume from the
INPUT$ command when the interrupt subroutine has been completed.

5. Execution of the BASIC program will be paused and the BASIC LED
indicator on the front of the Unit will blink slowly until the specified number of
characters have been input.

Examples: > 10 OPEN #1, "TERM:"
> 20 A$ = INPUT$(10,#1)
> 30 PRINT A$
WAIT See also:

instr
INSTR ([<numerical expression>,] <string expression 1>,<string expression 2>) Syntax:
Function Returns the position of the first occurrence of one string within another string. Description:
<numerical expression> is the starting position in the string to be searched. Valid range:
[1…255].

<string expression 1> is the string to be searched.

<string expression 2> is the desired string.

If the starting position is omitted then the search will begin from the first character of the
string to be searched. If the starting position is greater than the length of the search
string then 0 is returned. If the desired string cannot be found 0 is returned. If the desired
string is null, the result of the function is 1 or the starting position, if specified.

If <string expression 1> is null, 0 will be returned.

Remarks:

Note: 1. The search is case-sensitive. This means the function differentiates
between upper and lower case strings.

Examples: > 10 A = INSTR(2, “HELLO WORLD”, “WORLD”)
> 20 PRINT A
> RUN
7
 See also:

164

7-6Section BASIC Commands

int
INT(<numerical expression>) Syntax:
Function Returns the truncated integer part of a numerical expression. Description:
<numerical expression> may be any integer, single-precision floating point or double-
precision floating point.

The return type is integer.

INT returns the largest integer value that is less than or equal to the argument.

Remarks:

Note
:

1. If the value of the argument is positive INT returns the same value as FIX, if
the value of the argument is negative INT returns a value 1 less than FIX.

2. If the integer part of the argument is a value outside the range of ±8388067,
the argument will be output without change.

Examples: > 10 A = INT(6.1)
> 20 B = INT(6.9)
> 30 C = INT(-6.1)
> 40 D = INT(-6.9)
> 50 PRINT A,B,C,D
> RUN
6 6 -7 -7
FIX See also:

intrb
INTRB Syntax:
System Variable. Stores the number of the line that was executing when the interrupt
occurred.

Description:

Remarks: INTRB is a read-only system variable; it cannot be assigned a value.

The value of INTRB is the line number of the line that was executing when an interrupt
occurred.

The INTRB function returns the line number where the program branch occurred when
the interrupt was generated and execution branched to the interrupt subroutine.

Examples: > 10 ON KEY 1 GOSUB 1000
> 20 KEY ON
> 30 GOTO 30
> 1000 PRINT “YOU PRESSED A KEY”
> 1010 PRINT “THE BASIC LINE NUMBER THAT WAS INTERRUPTED BY THIS
ROUTINE IS LINE “; INTRB
> 1020 RETURN
INTRR, INTRS See also:

165

7-6 Section BASIC Commands

intrr
INTRR Syntax:
System Variable. Stores a number indicating the source of the interrupt. Description:
INTRR is a read-only system variable; it cannot be assigned a value.

The value of INTRR is set only in the interrupt routine, outside the interrupt routine INTRR is
0.

The following table shows the relationship between the value of and INTRR the interrupt
source.

Remarks:

INTRR Interrupt Source
1,2 COM1, COM2
3,4 Not used
5 ALARM
6 TIMER
7 TIME$

10-19 KEY (0 TO 9)
20-100 Not used
101-199 ERROR (1 TO 99)

200 Not used

201-299 PC (1 TO 99)

Examples: > 10 ON KEY 1 GOSUB 1000

> 15 KEY ON
> 20 GOTO 20
> 1000 PRINT “YOU PRESSED A KEY”
> 1010 PRINT “THE SOURCE OF THIS INTERRUPT IS TYPE “; INTRR
> 1020 RETURN
INTRB, INTRS See also:

intrs
INTRS Syntax:
System Variable. Stores the number of the program line that has set up the interrupt
processing routine.

Description:

Remarks: INTRS is a read-only system variable; it cannot be assigned a value.

On initialization of the BASIC program the value of INTRS is set to 0. In the interrupt
subroutine, INTRS contains the number of the program line which defined the interrupt that
jumped to the interrupt subroutine.

The value of INTRS is set when program execution jumps to the interrupt subroutine and
reverts to its original value when program execution is returned by the RETURN statement.

Examples: > 10 ON KEY 1 GOSUB 1000
> 20 KEY ON
> 30 GOTO 30
> 1000 PRINT “YOU PRESSED A KEY”
> 1010 PRINT “THIS ISR WAS SET-UP IN LINE “; INTRS; “ OF THE BASIC PROGRAM”
> 1020 RETURN
INTRB, INTRR See also:

166

7-6Section BASIC Commands

key on/off/stop
KEY [<key expression>] (ON | OFF | STOP) Syntax:
Statement. Enables, disables or stops the KEY interrupt Description:

Remarks: <key expression> is an integer expression returning a value in the range : [0…9]. This
number refers to the number keys on the keyboard. For instance, in the above example
the interrupt connected to the ‘5’ key on the keyboard is enabled. If the <key expression>
is omitted then the action is performed for all keys.

ON enables (unmasks) the KEY interrupt. Until KEY OFF is executed, program execution
will automatically branch to the defined subroutine for interrupt processing when a KEY
interrupt occurs.

OFF disables the interrupt. All subsequent KEY interrupts are ignored.

STOP masks and enables the interrupt. All subsequent KEY interrupts are held until they
are unmasked by KEY ON.

The KEY ON/OFF/STOP statements can be executed only after the ON KEY statement has
been executed.

Examples: > 10 ON KEY 1 GOSUB 1000
> 15 KEY ON
> 20 GOTO 20
> 1000 PRINT “YOU PRESSED A KEY”
> 1010 PRINT “THE BASIC LINE NUMBER THAT WAS INTERRUPTED BY THIS
ROUTINE IS LINE “; INTRL
> 1020 RETURN
ON KEY GOSUB/GOTO See also:

left$
LEFT$ (<string expression>, < numerical expression>) Syntax:
Function Returns the specified number of characters starting from the leftmost position in
a string expression.

Description:

Remarks: <string expression> is the string to be searched.

<numerical expression> is the number of characters to be returned. Valid range:
[0…255].

If the number of characters to be returned is 0 then a null string is returned. If the number
of characters to be returned is greater than the number of characters in the search string
then the entire search string is returned.

Examples: > 10 A$ = LEFT$("HELLO WORLD", 5)
> 20 PRINT A$
> RUN
HELLO
MID$, RIGHT$ See also:

167

7-6 Section BASIC Commands

len
LEN (<string expression>) Syntax:
Function Returns the number of characters in a string expression. Description:
<string expression> is the input string to be counted.

If the string expression is empty then the number of characters returned is 0.

Remarks:

Note
:

1. Non-printing characters and blanks are included in the count.

Examples: > 10 A = LEN(“HELLO WORLD AGAIN”)
> 20 PRINT A
> RUN
17
 See also:

let
[LET] <variable> = <expression> Syntax:
Statement. Assigns a value of the <expression> on the right hand side of the statement
to the variable on the left hand side of the expression.

Description:

Remarks: The keyword LET is optional in the assignment statement. It is sufficient to use the “=”
character for assignment.

Assigning character expressions to numeric variables and vice-versa result in a “TYPE
MISMATCH” error (code B013).

If the numerical expression on the right hand side of the assignment is a different type
to the variable on the left hand side then the expression on the right hand side is
converted to the type of the variable on the left hand side before assignment.

Examples: > 10 LET A = 12.34
> 20 PRINT A
> RUN
12.34
>
 See also:

168

7-6Section BASIC Commands

line input
LINE INPUT [;][# <port expression>,][<“prompt”> (;|,)]<character variable> Syntax:
Statement. Inputs an entire line of characters from the keyboard, or some other input
device, without delimiters.

Description:

<port expression> is an expression returning an integer in the range: [1… 3].

If the <port expression> is omitted the default terminal port is assumed.

<prompt> is an optional text string that is output to the terminal to prompt for the input. If
the port specified is not configured as a “TERM” or a “COMU” port then the prompt will
be suppressed. Unlike the INPUT statement the ‘?’ is only possible by including it in the
prompt.

All input will be assigned to the character variable until a carriage return is entered. The
maximum length of the character string is 255 characters. while waiting for input the
BASIC LED will be blinking.

Commas and colons are treated as part of the input string.

Remarks:

Note
:

If a semi-colon is added after the LINE INPUT, the cursor will remain on the
same row after input.

Examples > 10 OPEN #1, “TERM:”
> 20 LINE INPUT #1, “ENTER YOUR FULL NAME : ”; A$
> 30 PRINT “HELLO ”;A$
> 40 END
> RUN
ENTER YOUR FULL NAME : JOE BLOGGS<CR>
HELLO JOE BLOGGS
>
INPUT See also:

169

7-6 Section BASIC Commands

list
LIST [(<line number> | .)][-[(<line number> | .)]] Syntax:
Command. To list the program in the current memory area to screen. Description:
<line number> is any valid BASIC program line number in the range: [1…65535].

The combination of <line numbers> and dashes specifies the lines that will be listed.

1. If a single line number is given then only that line will be listed.

2. If a range of lines is specified (two line numbers separated by a dash) then that
entire range will be listed.

3. If a line number followed by only a dash is specified then all program lines from the
specified line number to the end of the program will be listed.

4. If a dash is followed by a line number then all program lines from the beginning of
the program to the specified line number will be listed.

5. If only a . (dot) is used the line entered, or displayed, last will be listed.

If the output of list does not fit on a screen device it will be scrolled, displaying only the
last most lines.

The output of the LIST statement can be interrupted using either the CTRL+X or CTRL+B
keys. If CTRL+B is used output can be resumed by pressing CTRL+B again.

The difference between LIST and LLIST is as follows:
LIST outputs to port #1 on the ASC11 and ASC21 and port #3 on the ASC31.
LLIST outputs to port #2.

If the port is not configured correctly for output then a “CANNOT WRITE TO A
READ_ONLY DEVICE” error (code 0059) may occur.

Remarks:

Note
:

The output port is port #1 on ASC11 and ASC21 and port #3 on ASC31

Examples: > LIST 100-200
100 REM THIS IS THE BEGINNING OF A SECTION TO BE LISTED
110 PRINT “HELLO WORLD”
200 REM THIS IS THE END OF A SECTION TO BE LISTED
>
LLIST See also:

170

7-6Section BASIC Commands

llist
LLIST [(<line number> | .)][-[(<line number> | .)]] Syntax:
Command. To list the program in the current memory area to LPRT: Description:
<line number> is any valid BASIC program line number in the range: [1…65535].

The combination of <line numbers> and dashes specifies the lines that will be listed.

1. If a single line number is given then only that line will be listed.

2. If a range of lines is specified (two line numbers separated by a dash) then that
entire range will be listed.

3. If a line number followed by only a dash is specified then all program lines from the
specified line number to the end of the program will be listed.

4. If a dash is followed by a line number then all program lines from the beginning of
the program to the specified line number will be listed.

5. If only a . (dot) is used the line entered, or displayed, last will be listed.

The output of the LLIST statement can be interrupted using the CTRL+X or CTRL+B keys. If
CTRL-B is used output can be resumed by pressing CTRL+B again.

LLIST will be executed under the following conditions even if the OPEN command is not
specified: “CTS_ON, RTS_OFF, DSR_ON”

The difference between LIST and LLIST is as follows:
LIST outputs to port #1 on the ASC11 and ASC21 and port #3 on the ASC31.
LLIST outputs to port #2.

If the port is not configured correctly for output then a “CANNOT WRITE TO A
READ_ONLY DEVICE” error (code 0059) may occur.

Remarks:

Note: The output port is port #2 on ASC11, ASC21 and ASC31.
Examples: > LLIST 100-200

>
LIST See also:

171

7-6 Section BASIC Commands

load
LOAD # <port expression> [,<“communication definition string expression”>] Syntax:
Command. Loads an ASCII program to the ASCII Unit. Description:
<port expression> is an expression returning an integer in the range: [1… 3].

See the OPEN statement for a description of the <communication definition string
expression>.

The communications conditions specified by the LOAD command’s <communication
definition string expression> are valid while the LOAD command is being executed. The
original conditions are valid again after execution of the LOAD command is completed.

Remarks:

Note
:

1. Port #3 corresponds to the terminal port of the ASC31.
2. If Port #3 is specified on the ASC11 or ASC21 an “ILLEGAL FUNCTION

CALL” error (code B005) will result.
3. The transfer can be interrupted during the LOAD operation by toggling the

start/stop switch from start to stop.
Refer to 7-1 Programming Procedure for details on this procedure and for
information about loading a BASIC program to the ASCII Unit.

Examples: > NEW
> LOAD #1, “COMU:9600,8,N,2”
> LIST
10 REM THIS IS THE SAMPLE PROGRAM THAT WAS LOADED
20 PRINT “HELLO WORLD”
>
OPEN, SAVE See also:

loc
LOC (<port expression>) Syntax:
Function Returns the number of bytes in the input buffer of the specified communications
port.

Description:

<port expression> is a numerical expression returning a valid port number. Valid Range:
[1…3].

Remarks:

Note
:

1. The port must be opened for input.
2. Port #3 corresponds to the terminal port of the ASC31.
3. If Port #3 is specified on the ASC11 or ASC21 an “ILLEGAL FUNCTION

CALL” error (code B005) will result.
Examples: > 10 OPEN #2, “COMU:”

> 20 A = LOC(2)
> 30 PRINT A
 See also:

172

7-6Section BASIC Commands

log
LOG (<numerical expression>) Syntax:
Function. Calculates the natural logarithm of a numerical expression. Description:
<numerical expression> must be greater than 0.

The return type is single-precision floating point if the argument is of type integer or
single-precision floating point. If the argument is of type double-precision floating point
then the return type is also double-precision floating point.

Remarks:

Note: When the argument value is limited to single-precision, it will become
1.03849E+34.

Examples: > 10 A = 0.4
> 20 PRINT LOG(A)
> RUN
-.916291
 See also:

lprint
LPRINT [# <port expression>][USING “<print format>”;]
<expression>{(,|;|<space>)<expression>}

Syntax:

Statement. Outputs data or text to a communications port. The device will be the LPRT
regardless of the settings in the OPEN command.

Description:

Remarks: <port expression> is an expression returning an integer in the range: [1 or 2].

<expression> is any valid numerical or character expression.

If the <expressions> are separated by semicolons or spaces, and no formatting is used,
they are output one immediately after the other on the output. If they are separated by
commas they are output with a tab character separating them on the output stream.

If the terminating comma, or semicolon, is omitted a carriage return is appended at the
end of the output.

All numerical expressions are output with a space character either side of the
expression. The space before the numerical expression can be used for an optional
minus sign.

If no expressions are specified this statement outputs a carriage return on the output.

An optional format string can be used by applying the USING statement. The <print
format> string is a string expression containing the following control characters.

When specifying several expressions, the format for each expression must be separated
by a space. If there is no space, expression may not be output in the correct format.

173

7-6 Section BASIC Commands

Format type Code Description
! Prints only the first character of a string.
&& Prints the first n characters, where n is the number of

blanks enclosed between & plus 2.

String

@ Prints the corresponding character string.

Indicates a digit position.
. Inserts a decimal point at any desired place
+ Specifies the position of the sign of the numeric value.
- If specified at the end of the numeric value it specifies that

the sign for negative numbers is suffixed to numeric value.
** Fills the left-most unused positions of the numeric value

with *. Also if - is specified at the end of a number then *
will fill the sign position if the value is positive.

\\ Prefixes \ at the beginning of the numeric value. \ allocates
space for one digit position.

**\ A combination of ** and \\.
, Separates the integer portion of a numeric value by a

comma every three digits from the right of the integer part.
^^^^ When specified at the end of a numeric field it specifies

that exponential format should be used. The exponential
format is (E+nn,D+nn).

^^^^^ When specified at the end of a numeric field it specifies
that specification format should be used. The specification
format is (E+nnn,D+nnn).

 Numerical

_ Allows the printing of the above special characters in the
format string. If the special character is preceded by the ‘_’
it is printed as normal.

If the port number is omitted then port #1 is assumed for the PRINT statement and port #2
is assumed for the LPRINT statement.
If the specified port is not configured as an output device then a “CANNOT WRITE TO A
READ-ONLY DEVICE” error (code 0059) will occur.
LPRINT will execute according to the “CTS_ON, RTS_OFF, DSR_ON” status, even if the
OPEN command is not specified.

Note
:

1. The port must be opened for output.
2. If the specified number of digits to be output is greater that that specified in

the numerical format a% will be output before the numerical value.
3. If <expression> does not correspond to the <print format> string then a

“TYPE MISMATCH” error (code B013) will occur.
Examples: > 10 LINE INPUT “ENTER A STRING : “; A$

> 20 OPEN #2, “LPRT:”
> 30 LPRINT #2, A$
> 40 PRINT “THE STRING YOU ENTERED - “;A$;” - WAS SENT TO THE PRINTER”
> RUN
ENTER A STRING : TEST
THE STRING YOU ENTERED - TEST - WAS SENT TO THE PRINTER
PRINT, WAIT See also:

174

7-6Section BASIC Commands

mid$
MID$ (<string expression>, < numerical expression 1>[, < numerical expression 2>]) Syntax:
Function Returns the specified number of characters starting from the specified position
in a string expression.

Description:

Remarks: <string expression> is the string to be searched.

<numerical expression 1> is the starting position in the string to be searched. Valid
range: [1…255].

<numerical expression 2> is the number of characters to be returned. Valid range:
[0…255].

If the number of characters to be returned is 0, or if the starting position is greater than
the length of the search string, then a null string is returned. If the number of characters
to be returned is greater than the number of characters remaining in the search string
then the entire search string from the starting position is returned.

If <numerical expression 2> is omitted, or exceeds the number of characters to the right
of the starting position, then all of the characters to the right of the starting position are
returned.

Examples: > 10 A$ = “HELLO WORLD AGAIN”
> 20 B$ = MID$ (A$, 7, 5)
> 30 PRINT B$
> RUN
WORLD
LEFT$, RIGHT$ See also:

mid$
MID$ (<string 1>, < numerical expression 1>[, < numerical expression 2>]) = <string 2> Syntax:
Statement Replaces a portion of one string expression with another string expression. Description:

Remarks: <string 1> is the string where the characters from <string 2> should be replaced.

<string 2> is the string variable containing the letters to be replaced in <string 1>

<numerical expression 1> is the starting position for replacing characters in <string 1>.
Valid range: [1…255].

<numerical expression 2> is the number of characters from <string 2> to be inserted.
Valid range: [0…255]. If this is omitted all of the characters from <string 2> will be
inserted in <string 1>.

No matter if <numerical expression 2> is omitted or not the total length of the original
<string 1> cannot be exceeded.

<numerical expression 1> cannot specify a character position that exceeds the number
of characters in <string 1>.

Examples: > 10 A$ = “HELLO WORLD”
> 20 MID$(A$, 7, 5)=”AGAIN”
> 30 PRINT A$
RUN
HELLO AGAIN
LEFT$, RIGHT$, MID$ (function) See also:

175

7-6 Section BASIC Commands

model
MODEL Syntax:
System Variable. This read-only variable gives the model of the current ASCII Unit. Description:

Remarks: Returns the model of the current ASCII Unit.

1: ASC11

2: ASC21

3: ASC31

Examples: > 10 IF MODEL=1 THEN PRINT “THIS UNIT IS AN ASC11” : GOTO 50
> 20 IF MODEL=2 THEN PRINT “THIS UNIT IS AN ASC21” : GOTO 50
> 30 IF MODEL=3 THEN PRINT “THIS UNIT IS AN ASC31” : GOTO 50
> 40 PRINT “UNKNOWN MODEL OF ASCII UNIT”
> 50 END
> RUN
THIS UNIT IS AN ASC21
 See also:

new
NEW Syntax:
Command. Clears the program and all variables in the current memory area. Description:

Remarks: This statement is used to clear a program area before beginning to write a new program.
All ports are closed, all variables are cleared and the current program is deleted.

Programs that are protected with a PNAME statement cannot be erased with NEW. The
program name must first be cleared using PNAME “ ”. Attempts to clear a program
protected with PNAME will result in a “PROTECTED PROGRAM” error (code 0062).

If memory is write protected with PMEM then NEW cannot clear the memory area. The
write protection must first be turned OFF with PMEM OFF.

The NEW command will work even if the program is password protected using PWORD.

Examples: > 10 REM DUMMY PROGRAM
> 20 A = 5
> LIST
10 REM DUMMY PROGRAM
20 A = 5
> NEW
> LIST
>
PINF, PNAME, PMEM, PWORD See also:

176

7-6Section BASIC Commands

oct$
OCT$(<numerical expression>) Syntax:
Function Converts the numerical expression into an octal character string. Description:
The numerical expression must be in the range: [-2147483648…2147483647].

The resulting character string will be in the octal range: [0…7777777777].

Remarks:

Note
:

1. Single-precision or double-precision floating point expressions will be
truncated before the conversion.

Examples: > 10 PRINT "DEC", "OCTAL"
> 20 FOR I = 1 TO 20
> 30 PRINT I, OCT$(I)
> 40 NEXT I
> RUN
DEC OCTAL
 1 1
 2 2
 3 3
 4 4
 5 5
 6 6
 7 7
 8 10
 9 11
 10 12
 11 13
 12 14
 13 15
 14 16
 15 17
 16 20
 17 21
 18 22
 19 23
 20 24
>
HEX$ See also:

177

7-6 Section BASIC Commands

on alarm
ON ALARM <time expression> GOSUB (<line number> | <label>) Syntax:
Statement. An interrupt is generated after the specified time elapses. When the specified
time has elapsed after execution of ON ALARM, program execution branches to the
interrupt subroutine at the specified line number.

Description:

Remarks: <time expression> is an integer expression with a result in the range : [1…864000].

The units specified in the time expression are 0.1 seconds. This gives a total alarm range
of 24 hours.

<line number> specifies the start of the interrupt subroutine (ISR).

<label> is a BASIC program label. It references a line number somewhere in the BASIC
program.

The ISR should be terminated by a RETURN statement. When the RETURN statement is
reached execution will resume at the statement after the statement that was originally
interrupted.

ALARM interrupts are decrementing timer interrupts. The timer begins counting down from
the time specified in the ON ALARM statement. When the timer reaches zero, program
execution branches to the defined interrupt subroutine.

The ALARM interrupts are one-shot interrupts. Once program execution has branched to
the specified interrupt subroutine, the ALARM interrupt is invalid and another interrupt will
not occur until another ON ALARM statement is executed and its specified time elapses. In
this sense, ALARM interrupts are unlike the TIMER interrupts, which are “repetitive”
interrupts.

Only one ON ALARM interrupt can be valid at any one time. If two or more ON ALARM
statements are set in a single program, only the last ON ALARM statement’s interrupt will
be valid.

While the ALARM interrupt subroutine is being executed, other incoming interrupts will be
recorded but not executed. These stopped interrupts will be executed in order of their
priority after the ALARM interrupt subroutine has been completed.

For more information on writing interrupts in BASIC refer to 5-5 Interrupt Functions.

Examples: > 10 A=0
> 20 ON ALARM 30 GOSUB 1000
> 30 ALARM ON
> 40 IF A=0 THEN GOTO 40
> 50 PRINT “END”
> 60 END
> 1000 PRINT “INTERRUPT OCCURRED”
> 1010 A = 1
> 1020 RETURN
> RUN
INTERRUPT OCCURRED
END
ALARM (ON | OFF | STOP), ON TIMER See also:

178

7-6Section BASIC Commands

on com
ON COM [<port expression>] GOSUB (<line number> | <label>) [, (CODE [= <code
expression>] | BYTE = <byte expression>) | HEAD = <code expression> , (TERM [= <code
expression >] | BYTE = <byte expression >)]

Syntax:

Statement. Defines an interrupt subroutine to handle interrupts from the communication
ports and interrupt formats. There are 5 possible formats: 1) Interrupt after reception of
any kind of data, 2) Reception of the specified character, 3) Reception of the specified
number of bytes, 4) Reception of the specified header character and terminating
character, or 5) Reception of the specified header character and number of bytes.

Description:

Remarks: <port expression> is an expression returning an integer in the range: [1… 2].
If <port expression> is omitted ON COM operates on all ports.

<line number> specifies the line at the start of the interrupt subroutine (ISR).

<label> is a BASIC program label. It references a line number at the start of the ISR.

The ISR should be terminated by a RETURN statement. When the RETURN statement is
reached execution will resume at the statement that was originally interrupted.

In the body of the ISR the user should check the contents of the buffer before
manipulating the data. It is possible that the ON COM has been held pending and in the
meantime the buffer data has been changed.

<code expression> defines an ASCII code for a single byte character. Valid range is
[0…255].
<byte expression> defines a number of bytes that can be entered before the interrupt takes place.
Valid range is [1…255].

ON COM interrupts can be used in 5 different ways:

1. ON COM [<port>] GOSUB xxxx

2. ON COM [<port>] GOSUB xxxx, CODE = xx

3. ON COM [<port>] GOSUB xxxx, BYTE = yy

4. ON COM [<port>] GOSUB xxxx, HEAD = xx1, TERM = xx2

5. ON COM [<port>[GOSUB xxxx, HEAD = xx, BYTE = yy

Case (1): Interrupt occurs when communication port buffer receives any character.

Case (2): Interrupt occurs for a specific character xx. If xx is omitted then the default
character string to initiate the interrupt is a CR.

Case (3): Interrupt occurs after a specified number of characters have been received, i.e.
on the yyth byte. The number specified must be in the range [1…255].

Case (4): Interrupt is enabled after the starting character xx1 is received and occurs after
the terminating character xx2 is received. All characters from xx1 to xx2 are retained in
the communication buffer. If the terminating character xx2 is omitted the default
character string to initiate the interrupt is a CR.

Case (5): Interrupt is enabled after the starting character xx is received and occurs after
yy characters have been received. All yy characters from xx are retained in the
communication buffer.

Once an interrupt has been serviced all subsequent BASIC interrupts are STOPped until
the RETURN statement has been executed.

On executing the corresponding ON COM ISR, all subsequent BASIC interrupts are
STOPped, i.e. held pending during execution of the ISR. After the ISR has returned,
pending interrupts are executed and the BASIC interrupts are returned to their previous
states. Only one interrupt of the same type as the currently active interrupt can be held
pending, subsequent interrupts of that type are lost.

179

7-6 Section BASIC Commands

For more information on writing interrupts in BASIC refer to the ON COM and ON PC
examples in 5.5 Interrupt Functions.

1. The port must be opened for input. Note
: 2. Set the baud rate in the communications parameters as follows:

Port #1 + port #2 � 38.4 bps
Examples: > 10 ON COM 2 GOSUB 1000

> 20 COM ON
> 30 GOTO 30
> 1000 PRINT “COMMUNICATIONS INTERRUPT OCCURRED”
> 1010 A$ = INPUT$(LOC(2), #2)
> 1020 PRINT A$; “ RECEIVED”
> 1030 RETURN
COM (ON | OFF | STOP) See also:

on error
ON ERROR GOTO (<line number> | <LABEL>) Syntax:
Statement. Defines an interrupt subroutine to handle error processing. Description:

Remarks: <line number> is any valid line number in the range : [0…65535]. It specifies the first line
in the error processing interrupt service routine. ON ERROR GOTO 0 disables the error
processing routine.

<label> is a BASIC program label. It references a line number somewhere in the BASIC
program.

When an error occurs the error code is assigned to the system variable ERR and the line
number containing the source of the error is stored in the system variable ERL.

The ON ERROR command cannot be used to branch to an interrupt subroutine for errors
with error codes 80 to 99.

Errors that occur during error processing cannot be handled by the BASIC error
processing routine - they will be handled as normal by the system error handler. This will
display an error message to the terminal and execution will terminate.

For more information on writing interrupts in BASIC refer to the ON COM and ON PC
examples in 5.5 Interrupt Functions. While a command is being executed, the interrupt
waits.

Examples: > 10 ON ERROR GOTO 1000
> 20 ERROR 2
> 30 END
> 1000 PRINT “A SYNTAX ERROR HAS OCCURRED IN LINE “;ERL
> 1010 END
> RUN
A SYNTAX ERROR HAS OCCURRED IN LINE 20
ERC, ERL, ERR, ERROR, RESUME See also:

180

7-6Section BASIC Commands

on <expression>
ON <numerical expression> (GOTO | GOSUB) (<line number> | <label>) {, (<line number>
|<label>)}

Syntax:

Statement. Branches to one of the specified subroutines depending on the value of a
numerical expression.

Description:

Remarks: The value of the <numerical expression> determines which subroutine will be executed.

The <line number> specifies the starting position of the subroutine.
A <label> can be used instead of a line number after a GOSUB statement.

If the value of the expression is 1 then first branch will be taken, if 2 then the second
branch will be taken, and so on.

The valid range of the expression is : [1…255]. If the value of the expression is out of this
valid range then an “ILLEGAL FUNCTION CALL” error (code B005) will result.

If the value of the expression is 0 or if the value of the expression exceeds the number of
branches after the GOTO/GOSUB then execution will continue with the next statement. If
the GOSUB statement is used for branching then the subroutine should be terminated with
a RETURN statement.

Examples: > 10 FOR I = 1 TO 3
> 20 ON I GOSUB 100,200,300
> 30 NEXT I
> 40 END
> 100 PRINT “1”
> 110 RETURN
> 200 PRINT “2”
> 210 RETURN
> 300 PRINT “3”
> 310 RETURN
> RUN
1
2
3
 See also:

181

7-6 Section BASIC Commands

on key
ON KEY [<key expression>] (GOTO | GOSUB) (<line number> | <label>) Syntax:
Statement. An interrupt subroutine is executed when the specified key (0 to 9) is input
from the keyboard. (Valid only when a terminal is connected.)

Description:

Remarks: <key expression> is an integer expression returning a value in the range : [0…9]. there
should only be one ON KEY GOTO/GOSUB statement for each <key expression>. If the <key
expression> is omitted the interrupt is activated for all key inputs.

<line number> specifies the line at the start of the interrupt subroutine (ISR).

<label> is a BASIC program label. It references a line number somewhere in the BASIC
program.

If the GOSUB statement is used for branching, the ISR should be terminated by a RETURN
statement. When the RETURN statement is reached execution will resume at the
statement after the statement that was originally interrupted.

A value outside this range results in a “FORMAT ERROR” (code B067).

The interrupt will be on standby when the PC READ/PC WRITE (including @) commands are
executing for an ON KEY GOSUB statement.

The port connecting the keyboard must first be opened using an OPEN statement.

Pressing the “1” key on the keyboard will execute the key(1) branch, pressing the “2” key
will execute the key(2) branch, and so on. During the execution of ON KEY GOSUB routines
all BASIC interrupts are STOPped until the RETURN statement has been executed.

On executing the corresponding ON KEY ISR, all subsequent BASIC interrupts are
stopped, i.e. held pending during execution of the ISR. After the ISR has returned,
pending interrupts are executed and the BASIC interrupts are returned to their previous
states. Only one interrupt of the same type as the currently active interrupt can be held
pending, subsequent interrupts of that type are lost.

For more information on writing interrupts in BASIC refer to the ON COM and ON PC
examples in 5.5 Interrupt Functions.

Examples: > 10 ON KEY 1 GOSUB 60
> 20 ON KEY 2 GOSUB 80
> 30 ON KEY 3 GOSUB 100
> 40 KEY ON
> 50 GOTO 50
> 60 PRINT "1 PRESSED"
> 70 RETURN
> 80 PRINT "2 PRESSED"
> 90 RETURN
> 100 PRINT "3 PRESSED"
> 110 RETURN
> RUN
KEY (ON | OFF | STOP) See also:

182

7-6Section BASIC Commands

on pc
ON PC [<interrupt number>] GOSUB (<line number> | <label>) Syntax:
Statement. Executes the specified interrupt number’s interrupt subroutine in response to
allocated I/O interrupts or IOWR (#CC00) instruction interrupts from the PC (CPU Unit).

Description:

Remarks: The <interrupt number> is an integer expression returning a value in the range : [1…99].

If the <interrupt number> is omitted then the interrupt subroutine will be executed for any
PC interrupt.

The default value of the interrupt number in IR n+2 is 00. This means that no PC
interrupt has been requested.

The <line number> specifies the line at the start of the interrupt subroutine (ISR).
A <label> can be used instead of a line number after a GOSUB statement.

PC interrupts are enabled by the PC ON statement and disabled by the PC OFF statement.
The PC STOP statement masks and enables the PC interrupts so the interrupts are
recorded but the ISRs are not executed until the next PC ON statement unmasks the
interrupts.

The ISR should be terminated by a RETURN statement. When the RETURN statement is
reached, execution will resume at the statement where the program was interrupted.

The PC can initiate a BASIC interrupt by either of the following methods:

1. Allocated I/O (PC Interrupt Flag) Interrupts
The PC interrupt number can be set in the PC’s CPU Unit by turning ON the
corresponding bit in IR n+2 bits 00 to 07. By turning bit 04 of IR n (the PC Interrupt
Flag) from OFF to ON at the same time, the specified PC interrupt will be executed if
PC interrupts have been enabled.

2. IOWR (#CC00) Instruction Interrupts
When the interrupt number is indicated to the ASCII Unit by the IOWR (#CC00)
instruction from the PC’s CPU Unit, the specified PC interrupt will be executed if PC
interrupts have been enabled.

PC interrupts cannot be executed if the ASCII Busy Flag is set. To execute an interrupt
the ASCII Busy Flag should be checked.

While the PC interrupt subroutine is being executed, other incoming interrupts will be
recorded but not executed. These stopped interrupts will be executed in order of their
priority after the PC interrupt subroutine has been completed.

For more information on PC interrupts, refer to 6-3 Details of the Data Exchange
Methods.

For more information on writing interrupts in BASIC, refer to the ON COM and ON PC
examples in 5-5 Interrupt Functions.

Examples: > 10 ON PC 1 GOSUB 70
> 20 ON PC 2 GOSUB 90
> 30 ON PC 3 GOSUB 110
> 50 PC ON
> 60 GOTO 60
> 70 PRINT "PC INTERRUPT #1"
> 80 RETURN
> 90 PRINT " PC INTERRUPT #2"
> 100 RETURN
> 110 PRINT " PC INTERRUPT #3"
> 120 RETURN
> 130 END
PC (ON | OFF | STOP) See also:

183

7-6 Section BASIC Commands

on time$
ON TIME$ = <time string expression> GOSUB (<line number> | <label>) Syntax:
Statement. Defines an interrupt subroutine to handle time$ interrupts. Description:

Remarks: <time string expression> is an absolute time in the format “hh:mm:ss”. Where hh has a
range [00…23], mm has a range [00…59] and ss has a range [00…59].

Wildcards, specified using ‘*’, can be used to define multiple time interrupts, for instance:

“02:30:**” means that from 0230 hrs 60 interrupts will occur at one second intervals.

“02:3*:00” means that from 0230 hrs 10 interrupts will occur at one-minute intervals.

<line number> specifies the start of the interrupt subroutine (ISR).

<label> is a BASIC program label. It references a line number somewhere in the BASIC
program.

The time$ interrupts are enabled by the TIME$ ON statement and disabled by the
TIME$ OFF statement. The TIME$ STOP statement masks and enables the time$ interrupts
so the interrupts are recorded but the ISRs are not executed until the next TIME$ ON
statement unmasks the interrupts.

The ISR should be terminated by a RETURN statement. When the RETURN statement is
reached, execution will resume at the statement where the program was interrupted.

Only one time$ interrupt can be valid at any one time. If two or more ON TIME$ statements
are set in a single program, only the last ON TIME$ statement’s interrupt will be valid.

While the time$ interrupt subroutine is being executed, other incoming interrupts will be
recorded but not executed. These stopped interrupts will be executed in order of their
priority after the time$ interrupt subroutine has been completed.

For more information on writing interrupts in BASIC, refer to the ON COM and ON PC
examples in 5-5 Interrupt Functions.

Examples: > 10 ON TIME$ = “08:00:00” GOSUB 100
> 20 TIME$ ON
> 30 GOTO 30
> 100 PRINT “WAKE-UP!!!”
> 110 RETURN
TIME$ (ON | OFF | STOP), ON ALARM See also:

184

7-6Section BASIC Commands

on timer
ON TIMER <time expression> GOSUB (<line number> | <label>) Syntax:
Statement. Defines an interrupt subroutine to handle recurring timer interrupts.
When the specified time has elapsed after execution of ON TIMER, program execution
branches to the specified interrupt subroutine. After completion of the interrupt
subroutine, the timer is reset and the subroutine will be executed again after the
specified time has elapsed. The subroutine will be executed repeatedly until the TIME OFF
statement is executed.

Description:

Remarks: <time expression> is an integer expression with a result in the range : [1…864000].

The units specified in the time expression are 0.1 seconds. This gives a total alarm range
of 24 hours.

<line number> specifies the start of the interrupt subroutine (ISR).

<label> is a BASIC program label. It references a line number somewhere in the BASIC
program.

The timer interrupts are enabled by the TIMER ON statement and disabled by the TIMER
OFF statement. The TIMER STOP statement masks and enables the timer interrupts so the
interrupts are recorded but the ISRs are not executed until the next TIMER ON statement
unmasks the interrupts.

The ISR should be terminated by a RETURN statement. When the RETURN statement is
reached, execution will resume at the statement where the program was interrupted.

Timer interrupts are decrementing timer interrupts. The timer begins counting down from
the time specified in the timer statement. When the timer reaches zero, program
execution branches to the defined interrupt subroutine as long as the interrupt is enabled
(not masked).

Timer interrupts are “repetitive” interrupts. The timer interrupt remains valid after program
execution has branched to the specified ISR, so the same ISR will be executed
repeatedly each time that the timer counts down to zero. The timer interrupts will repeat
until they are disabled with the TIMER OFF statement, thus these are interval timer
interrupts. In this sense, timer interrupts are unlike the alarm interrupts, which are “one-
shot” interrupts.

Examples: > 5 T = 0
> 10 ON TIMER 300 GOSUB 100
> 20 TIMER ON
> 30 GOTO 30
> 100 T = T+300
> 110 PRINT T; “ MILLISECONDS HAVE ELAPSED SINCE THE START OF
EXECUTION.”
> 120 RETURN
TIMER (ON | OFF | STOP) See also:

185

7-6 Section BASIC Commands

open
OPEN # <port expression>, <“communication definition string expression”> Syntax:
Statement. Opens a communication port with the specified device, port communications
conditions, and transfer control signal specifications.

Description:

Remarks: <port expression> is an expression returning an integer in the range: [1… 3]. If the port
expression is omitted, port #1 is the default.

The <communication definition expression> is a string containing the following
elements:

 “<device>:[<baud rate> [, <data length> [, <parity> [, <stop bits> [, CS [, RS [, DS [,
XN]]]]]]]]]”

If any of the elements of the <communication definition expression> are omitted, the
following default setting is used:

The <communication definition expression> format of the C200H-ASC02 is still
supported but new BASIC programs should use the new format.

<device> describes the type of the device which is connected to the port. The following
table shows the input and output buffer usage and transfer control signal (RS and ER)
status for each type of the device.

“xxxx

When the port is opened
During execution of I/O
commands (PRINT#,
INPUT#)

RS RS
Device

Peripheral
devices
(external
devices)

Buffer used At
RS_OFF
under
OPEN#
command

At
RS_ON
under
OPEN#
command

ER

At
RS_ON/OFF
under
OPEN#
command

ER

TERM Terminal Both send and
receive buffers OFF ON Unchan

ged ON Unchan
ged

SCRN Display Send buffer
only OFF ON Unchan

ged ON Unchan
ged

KYBD Keyboard Receive buffer
only OFF ON Unchan

ged ON Unchan
ged

COMU

General
communic
ations
devices

Both send and
receive buffers OFF ON Unchan

ged ON Unchan
ged

LPRT Printer Send buffer
only OFF ON Unchan

ged ON Unchan
ged

EKPRT Printer Send buffer
only OFF ON Unchan

ged ON Unchan
ged

NKPRT Printer Send buffer
only OFF ON Unchan

ged ON Unchan
ged

, 8, N, 2, yy, yy, yy, yy”

 to page 175
 ecified in the DM settings

 Refer
 Sp

186

7-6Section BASIC Commands

The <baud rate> can be set to 300, 600, 1200, 2400, 4800, 9600, 19200, or 38400. The
default baud rate setting is 9600 bps.

The <data length> can be set to 7 or 8. If omitted the default data length is 8 bits.

The <parity> can be set to N (none), E (even), or O (odd). If omitted the default parity is
N (none).

The number of <stop bits> can be set to 1 or 2. If omitted the default number of stop bits
is 2.

The CS, RS, DS and XN fields determine whether these signal lines will be used to control
communications.

CS = CS_ON: The ASCII Unit will monitor CTS signal during PRINT commands.

CS = CS_OFF: The ASCII Unit will not monitor CTS signal during PRINT commands.

RS = RS_ON: The ASCII Unit will turn ON the RTS signal when the communications port
is opened and it will remain ON until the port is closed. BASIC RS control is disabled.

RS = RS_OFF: The ASCII Unit will turn ON the RTS signal only when I/O commands such
as PRINT and INPUT are being executed. The RTS signal will be OFF at other times.

DS = DS_ON: The ASCII Unit will check the DSR signal when the input commands (PRINT,
LPRINT) are executed. If the DSR signal is ON then the device is assumed to be ready. If
the DSR signal is OFF then the device is assumed to be unable to communicate and the
ASCII Unit will wait until the DSR signal turns ON.

DS = DS_OFF: The ASCII Unit will not check DSR signal when the port is opened.

XN = XN_ON: Specifies that Xon/Xoff flow control will be used for both the ASCII Unit’s
input buffer and the peripheral device’s input buffer.

When the ASCII Unit is receiving data, the Unit will send the Xoff code will be sent when
its input buffer is 3/4 full (384 bytes) requesting the other device to pause the data
transfer. When the buffer drops to 1/4 full (128 bytes) the Xon code will be sent to
request resumption of the data transfer.

When the ASCII Unit is sending data, the Unit will stop sending data when an Xoff
signal is received while a PRINT command is being executed. The Unit will resume
sending data when the Xon signal is received.

X = XN_OFF: Specifies that Xon/Xoff flow control will not be used.

The default values for CS, RS, DS, and XN are the values of the devices that have been
opened.

When a LOAD or SAVE command is executed, the communication parameters specified
in that command will be valid for the duration of the command. The original
communications parameters will be restored after completion of the LOAD or SAVE
command.

Note: 1. Port #3 corresponds to the terminal port of the ASC31.
2. If Port #3 is specified on the ASC11 or ASC21 an “ILLEGAL FUNCTION

CALL” error (code B005) will result.
3. Refer to the C200H-ASC02 Operation Manual for details on the

communications settings for the ASC02.
Examples: > 10 OPEN #2, “COMU:9600, 8, N, 2, CS_ON, RS_OFF, DS_OFF, XN_OFF”

> 20 PRINT #2, “HELLO WORLD”
See also: CLOSE, LOAD

187

7-6 Section BASIC Commands

The following defaults will be used for the devices if the communications parameters and valid signals are not
specified.

Device name Baud rate Data format Valid signals
TERM CS_OFF, RS_ON,

DS_OFF, XN_OFF
SCRN CS_ON, RS_ON,

DS_OFF, XN_OFF
KYBD CS_ON, RS_ON,

DS_OFF, XN_OFF
COMU

DM Area settings 8-bit, no parity, 2 stop
bits

CS_ON, RS_ON,
DS_OFF, XN_OFF

LPRT
EKPRT
NKPRT

CS_OFF, RS_ON,
DS_ON, XN_OFF

Note: The CS, RS, DS, and XN signals are not relevant for port #2 of the C200H-ASC21.

option base
Syntax: OPTION BASE (0 | 1)
Description: Statement. Declares the default subscript for the first array element.
Remarks: The OPTION BASE declaration can be made only once; before any variables have been

declared. If the declaration is not made the first element in an array has subscript 0 by
default.

Examples: > 10 OPTION BASE 1
> 20 DIM A(2)
> 30 FOR I = 0 TO 1
> 40 A(I) = I
> 50 NEXT I
> 60 FOR I = 0 TO 1
> 70 PRINT A(I)
> 80 NEXT I
> RUN
BAD SUBSCRIPT ERROR IN LINE 40
> 10 OPTION BASE 1
> 20 DIM A(2)
> 30 FOR I = 1 TO 2
> 40 A(I) = I
> 50 NEXT I
> 60 FOR I = 1 TO 2
> 70 PRINT A(I)
> 80 NEXT I
RUN
1
2

See also: DIM

188

7-6Section BASIC Commands

option length
Syntax: OPTION LENGTH <numerical expression>
Description: Statement. Declares the maximum length for string variables and sets the static method

for allocation of memory to string variables.
<numerical expression> specifies the maximum length of the string variables. It has a
valid range of [1…255]. Put the OPTION LENGTH statement in the first line of the program
or just after the PWORD statement if a PWORD statement is being used, too.

Remarks:

The dynamic allocation method is used when no settings have been made for the
allocation of memory to string variables. With this method, memory is reallocated in the
character string variable area as the program is being executed. When the OPTION
LENGTH statement is used to declare the required length, memory is allocated before the
program is executed, so memory is not reallocated in the character string variable area
as the program is being executed.

The OPTION LENGTH statement can be used only once. It must be used before any string
variables have been declared.

Examples: > 10 OPTION LENGTH 32
> 20 A$ = “THIS STRING IS LONGER THAN THE SPECIFIED LENGTH”
> 30 PRINT A$
> RUN
THIS STRING IS LONGER THAN THE S

See also: DIM

pc on/off/stop
Syntax: PC [<pc interrupt number>] (ON | OFF | STOP)
Description: Statement. Enables, disables or stops interrupts from the PC.
Remarks: <pc interrupt number> specifies which interrupt from the PC to turn ON, OFF or STOP.

There are 99 PC interrupts that can be defined. The valid range is [1…99]. If the <pc
interrupt number> is omitted this statement applies to all PC interrupts.

ON enables (unmasks) the PC interrupts. When a PC interrupt occurs, program execution
will be branched to the specified interrupt subroutine for interrupt processing. The PC
interrupts are enabled until they are disabled with the PC OFF statement.

OFF disables the interrupt. All subsequent PC interrupts are ignored.

STOP masks and enables the interrupt. If a PC interrupt is received, it is stored in memory
but program execution is not branched to the interrupt subroutine. Program execution will
be branched to the subroutine when the interrupt is unmasked with the PC ON statement.

The PC ON/OFF/STOP statements can be executed meaningfully only after the ON PC
statement has been executed.

Examples: > 10 ON PC 1 GOSUB 70
> 20 ON PC 2 GOSUB 90
> 30 ON PC 3 GOSUB 110
> 40 PC ON
> 50 GOTO 50
> 60 PRINT "PC INTERRUPT #1"
> 70 RETURN
> 80 PRINT " PC INTERRUPT #2"
> 90 RETURN
> 100 PRINT " PC INTERRUPT #3"
> 110 RETURN
ON PC See also:

189

7-6 Section BASIC Commands

pc eget
Syntax: [<result> =] PC EGET #<common memory address> , <number>, “<pc format> {, <pc

format>}”; <variable> {, <variable>}
Description: Statement. Reads data from the common memory area of the ASCII Unit.
Remarks: <common memory address> gives the starting address in common memory area of the

data to be read. It is an integer with a valid range of : [0…89].

<number> is the number of words of data to read. It is an integer value with a range of :
[1…90].

<pc format> gives the format of the variables that are retrieved. The allowable formats in
the format string are outlined in PC READ. Of course the complexity of the format string is
ultimately limited by the size of the input buffer allowed to enter a single program line.

<variable> is any valid variable name. It must be of the same type as specified in the
format string.

The PC EGET command can optionally return a <result> that can be assigned to a
variable. This <result> indicates the success, or otherwise of the PC EGET command. If
the <result> is 0 then the command was successfully carried out and the data read is
valid. If the <result> is -1 then the PC EGET could not be carried out because the common
memory area was being used by another PC EGET.

If the format string and the variable types do not match then a “FORMAT ERROR” (code
B067) will occur. Also if the format string specifies more memory than is allocated in the
common memory area then a “FORMAT ERROR” (code B067) will result.

The data in the common memory area should first be prepared by the IOWR #00xx
command in the PLC program. this command is used to write up to 90 words of data
from the PLC to the common data area of the ASCII Unit. There is no synchronisation
between the PC EGET command in the BASIC program and the IOWR #00xx command in
the PLC program.

For a detailed description of how to use the PC EGET statement and the IOWR #00xx PLC
command refer to 6.3. Details of the Data Exchange Methods.

Examples:

PC EGET #0, 4, “1H4, 1H4, 2H4”; A, B, C$

See also:

HEX 4 digits
HEX 4 digits

PC EPUT, PC GET

190

7-6Section BASIC Commands

pc eput
[<result> =] PC EPUT #<common memory address> , <number>, “<pc format> {, <pc
format>}”; <numerical expression> {, <numerical expression>}

Syntax:

Statement. Writes data to the common memory area of the ASCII Unit. Description:
<common memory address> gives the starting address in common memory area of
where the data should be written. It is an integer with a valid range of : [0…89].

Remarks:

<number> is the number of words of data to write. It is an integer value with a range of :
[1…90].

<pc format> gives the format of the variables that are retrieved. For full details of these
formats see the PC READ statement.

<numerical expression> is any valid BASIC is any valid numerical expression with an
integer result in the range : [-32768…32767]. If the value of the numerical expression is
not within this range then no action will result.

The PC EPUT command can optionally return a <result> that can be assigned to a
variable. This <result> indicates the success, or otherwise of the PC EPUT command. If
the <result> is 0 then the command was successfully carried out and the data is written
successfully. If the <result> is -1 then the PC EPUT could not be carried out because the
common memory area was being used by another PC EPUT or IORD #00xx command.

If the format string and the variable types do not match then a “FORMAT ERROR” (code
B067) will occur. Also if the format string specifies more memory than is allocated for
writing in the common memory area then a “FORMAT ERROR” (code B067) will result.

The data written to the common memory area by PC EPUT may be read by the IORD
#00xx command in the PLC program. this command is used to read up to 90 words of
data from the common data area of the ASCII Unit to the PLC. There is no
synchronisation between the PC EPUT command in the BASIC program and the IORD
#00xx command in the PLC program.

For a detailed description of how to use the PC EPUT statement and the IORD #00xx PLC
command refer to 6.3. Details of the Data Exchange Methods.

Examples:

PC EPUT #0, 4, “1H4, 1H4, 2H4”; A, B, C$

HEX 4 digits
HEX 4 digits

PC EGET, PC PUT See also:

191

7-6 Section BASIC Commands

pc get
Syntax: PC GET <variable> [,<variable>]
Description: Statement. Reads data from IR n bits 0 through 15 to the first variable and IR n+1 bits 0

through 15 to the second variable. The data is converted from hexadecimal to decimal.
Remarks: <variable> is any valid BASIC variable name. If the second <variable> is omitted only the

byte from IR n is read.

The hexadecimal value in bits 0-15 of IR n is converted to an integer decimal value [-
32768…32767] and assigned to the first variable specified in the PC GET statement.

The hexadecimal value in bits 0-15 of IR n+1 is converted to an integer decimal value
[-32768…32767] and assigned to the second variable specified in the PC GET statement.

For a detailed description of how to use the PC GET statement refer to 6.3. Details of the
Data Exchange Methods.

Examples:

See also: PC EGET, PC PUT

pc put
Syntax: PC PUT <numerical expression>
Description: Statement. Converts a decimal value to hexadecimal and writes the data to IR word n+6.

<numerical expression> is any valid BASIC is any valid numerical expression with an
integer result in the range : [-32768…32767]. If the numerical expression is not an
integer it will be rounded to an integer before transfer. If the value of the numerical
expression is not within this range then zero will be written to IR n+6.

Remarks:

The numerical expression is stored in IR n+6 in hexadecimal format.

The data will be written to the PC in the next I/O refreshing cycle after the PC PUT
statement is executed. Execution of the ASCII Unit’s BASIC program will not be paused.

Examples:

PC EPUT, PC GET See also:

192

7-6Section BASIC Commands

pc qread @
Syntax: [<result> =] PC QREAD “<data area>, <address>, <number>, <pc format> {, <pc format>}”;

<variable> {, <variable>}
Description: Statement. Reads data from the specified PC memory area by issuing an IOWR request

to the PC.
<data area> specifies which PC data area is to be used for the transfer. Any of the
following specifications for the data area are valid.

Data area
specifier

Remarks:

Data area Address Range

@R IR(SR) Area 0000 to 0255 - C200H
0000 to 0299 - C200HS
0000 to 0511 - C200HE/HG/HX

@A AR Area 0000 to 0027 - C200H/HS/HE/HG/HX
@D DM Area 0000 to 1999 - C200H

0000 to 6655 - C200HS/HE/HG/HX
@H HR Area 0000 to 0099 - C200H/HS/HE/HG/HX
@G TC Area 0000 to 0511 - C200H/HS/HE/HG/HX
@L LR Area 0000 to 0063 - C200H/HS/HE/HG/HX

<address> specifies the starting address of data transfer within the specified data area.
The starting address must be consistent with the address range of the specified data
area. If the address given lies outside the allowable range then a “FORMAT ERROR”
(code B067) will result.

<number> specifies the number of data words to be read from the starting address given.
The maximum number of data words that can be transferred using PC QREAD is 128
words. This is only possible with a C200HE/HG/HX PLC with no remote I/O. If any of the
data to be read lie outside the allowable range then a “FORMAT ERROR” (code B067)
error will result.

<pc format> gives the format of the variables that are retrieved. For full details of these
formats see the PC READ statement.

<variable> is any valid variable name. It must be of the same type as that specified in the
format string otherwise a “FORMAT ERROR” will result.

The PC QREAD command can optionally return a <result> that can be assigned to a
variable. This <result> indicates the success, or otherwise of the PC QREAD command. If
the <result> is 0 then the command was successfully carried out and the data is written
successfully. If the <result> is -1 then the PC QREAD could not be carried out because
another data transfer was active.

The PC QREAD statement should be used in conjunction with the CPU Unit’s IOWR
(#FD00) instruction. By executing the PC QREAD statement, the ASCII Unit requests
execution of the IOWR instruction (through bit 15 of IR n+5); the requested data will be
stored in the specified variables when it is transferred by the IOWR (#FD00) instruction.
The ASCII Unit will wait for the data transfer by the IOWR (#FD00) instruction.

The data area, starting address, and number of bytes must be the same in both the PC
QREAD statement and the IOWR instruction. If the starting address settings are different,
the setting in the IOWR instruction will be used. If the settings for the number of bytes
are different, an error (code 0081) will occur.

Refer to Section 6 Data Exchange with the CPU Unit for more details on how to use the
PC QREAD statement.

193

7-6 Section BASIC Commands

Examples:

 PC QREAD “@D, 200, 10, S10H4”; A(1)

PC QWRITE, PC READ, WAIT See also:

pc qwrite @
Syntax: [<result> =] PC QWRITE “<data area>, <address>, <number>, <pc format> {, <pc

format>}”; <numerical expression> {, <numerical expression>}
Description: Statement. Writes data to the specified PC memory area by issuing an IORD request to

the PC.
<data area> specifies which PC data area is to be used for the transfer. Any of the
following specifications for the data area are valid.

Data area
specifier

Data area Address Range

@R IR(SR) Area 0000 to 0255 - C200H
0000 to 0299 - C200HS
0000 to 0511 - C200HE/HG/HX

@A AR Area 0000 to 0027 - C200H/HS/HE/HG/HX
@D DM Area 0000 to 1999 - C200H

0000 to 6143 - C200HS/HE/HG/HX
@H HR Area 0000 to 0099 - C200H/HS/HE/HG/HX
@G TC Area 0000 to 0511 - C200H/HS/HE/HG/HX

Remarks:

LR Area 0000 to 0063 - C200H/HS/HE/HG/HX

@L

194

7-6Section BASIC Commands

<address> specifies the starting address of data transfer within the specified data area.
The starting address must be consistent with the address range of the specified data
area. If the address given lies outside the allowable range then a “FORMAT ERROR”
(code B067) will result.

<number> specifies the number of data words to write from the specified starting
address. The maximum number of data words that can be transferred using PC QWRITE is
128 words. This is only possible with a C200HE/HG/HX PLC with no remote I/O. If any of
the data to be read lie outside the allowable range then a “FORMAT ERROR” (code
B067) will result.

<pc format> gives the format of the variables that are retrieved. For full details of these
formats see the PC READ statement.

<numerical expression> is any valid BASIC is any valid numerical expression with an
integer result in the range : [-32768…32767]. If the numerical expression is not an
integer it will be rounded to an integer before transfer.

The PC QWRITE command can optionally return a <result>. This <result> indicates the
success, or otherwise of the PC QWRITE command. If the <result> is 0 then the command
was successfully carried out and the data is written successfully. If the <result> is -1 then
the PC QWRITE could not be carried out because another data transfer was active.

 The PC QWRITE statement should be used in conjunction with the CPU Unit’s IORD
(#FD00) instruction. By executing the PC QWRITE statement, the ASCII Unit requests
execution of the IORD instruction (through bit 14 of IR n+5) in preparation for the
transmission of the data from the specified variables. The data will be read from the
ASCII Unit when the IORD (#FD00) instruction is executed. The ASCII Unit will wait from
the time the PC QWRITE command is executed until the data is transferred by the IORD
(#FD00) instruction.

The data area, starting address, and number of bytes must be the same in both the PC
QWRITE statement and the IORD instruction. If the starting address settings are different,
the setting in the IORD instruction will be used. If the settings for the number of bytes are
different, an error (code 0081) will occur.

Refer to Section 6 Data Exchange with the CPU Unit for more details on how to use the
PC QWRITE statement.

Examples:

See also: PC QREAD, PC WRITE, WAIT

PC QWRITE “@D, 200, 5, 1H4 1H4 1H4 1H4 1H4”; A(1), A(2), A(3), A(4), A(5)

195

7-6 Section BASIC Commands

pc read
[<result> =] PC READ “<pc format> {, <pc format>}”; <variable> {, <variable>} Syntax:
Statement. When a PC READ request is received from the CPU Unit, the data is read from
the specified PC data area and stored in the specified variable with the specified PC
format.

Description:

The <pc format> indicates the data format of the specified data. The following table
shows the various data formats that can be specified.

Format Syntax Description
Treats the m words as BCD data and stores n digits of data
from each word in the variable.
m : the number of words
n : the number of digits read from each word (1 to 4)

Remarks:

n Digits read
1 digit 1 (bits 0-3)
2 digits 1-2 (bits 0-7)
3 digits 1-3 (bits 0-11)

4 digits 1-4 (bits 0-15)

I Format m I n

Treats the m words as hexadecimal data and stores n digits
of data from each word in the variable.
m : the number of words
n : the number of digits read from each word (1 to 4)

n Digits read
1 digit 1 (bits 0-3)
2 digits 1-2 (bits 0-7)
3 digits 1-3 (bits 0-11)

4 digits 1-4 (bits 0-15)

H Format m H n

Treats the m words as octal data and stores n digits of data
from each word in the variable.
m : the number of words
n : the number of digits read from each word (1 to 4)

n Digits read
1 digit 1 (bits 0-3)
2 digits 1-2 (bits 0-7)
3 digits 1-3 (bits 0-11)

4 digits 1-4 (bits 0-15)

O Format m O n

196

7-6Section BASIC Commands

Treats the m words as binary data, converts the nth bit of
each word to decimal, and stores the converted values in the
variable.
m : the number of words
n : the bit read from each word (0 to 15)

n Bit read
0 bit 0
1 bit 1
2 bit 2
3 bit 3
4 bit 4
5 bit 5

 B Format m B n

6 bit 6
7 bit 7

8 bit 8
9 bit 9
10 bit 10
11 bit 11
12 bit 12
13 bit 13
14 bit 14

15 bit 15

Treats the m words as ASCII data and stores the specified
character(s) in the string variable.
m : the number of words
n : the specified byte(s)

n Byte(s) read
1 byte 1 (bits 0-7)
2 byte 2 (bits 8-15)

3 bytes 1-2 (bits 0-15)

A Format m A n

S Format S m X
n

Treats the m words as the kind of data indicated by X (I, H,
O, or B) and stores each word’s data in the nth array variable.
m : the number of words
X : Data type (I, H, O or B as described above)
n : the number of elements (as described above)

197

7-6 Section BASIC Commands

With the A format, many words of data from the PC can be stored in a single ASCII Unit
variable, although a maximum of 127 words can be transferred at one time.

Except for the A and S formats, and where a character variable is used as the variable,
there must be a one-to-one correspondence between each word and variable. With the A
format, one format must be used with each variable. With the S format, one format must
be used with the variables in each array.

Except for the A and S formats, and where a character variable is used as the variable,
more than one variable can be associated with a single format.

If the “m” setting is omitted, the default setting is 1 word. The setting range for “m” is 1 to
255. For numerals it is 1 to 255, for characters it is 1 to 64.

String variables can be used to specify the format, but be sure to use uppercase
characters when specifying the format.

<variable> is any valid variable name. It must be of the same type as specified in the
format string and have as many elements as the number of words specified in the PC
READ statement.

As an option, the PC READ statement can return a <result>. This <result> indicates
whether the PC READ statement was successful or not. If the <result> is 0 then the
command was successfully carried out and the data is written successfully. If the
<result> is -1 then the PC READ could not be carried out, perhaps because another data
transfer was being performed.

When the ASCII Unit receives a PC READ request from the CPU Unit (through bit 1 of IR
n), the data from the data area location specified in IR n+3 and IR n+4 is read and stored
in the specified variables with the indicated pc format. The data is transferred at the next
I/O refreshing cycle, and the ASCII Unit will pause execution of the BASIC program until
the data transfer has been completed.

Refer to 6.3 Details of the Data Exchange Methods for more details on how to use the PC
READ statement.

 Note
:

1. If the amount of PC output data exceeds the size of variable, the excess
output data will be ignored.

2. If the size of variable exceeds the amount of PC output data, the read
operation will not be executed to the variable where the shortfall occurred.

3. A “FORMAT ERROR” will occur if the number of elements does not match
the PC format setting.

4. Before using a character-string variable for the variable setting, be sure to
read Appendix A Operating Precautions and Appendix C PC Format
thoroughly, as the character-string variable operate differently from those in
the previous C200H-ASC02.

Examples:

The starting address and number of words in the CPU Unit are specified in the following
words: IR n+3 and IR n+4.

See also:

ASCII Unit CPU Unit variables
4-digit HEX

PC QREAD, PC WRITE, WAIT

4-digit HEX
4-digit HEX

A(1)

A(2)

A(3)

198

7-6Section BASIC Commands

pc read@
Syntax: [<result> =] PC READ “<data area>, <address>, <number of words>, <pc format> {, <pc

format>}” ; <variable> {, <variable>}
Description: Statement. Allows the ASCII Unit to independently read data from the specified PC data

area. The data area, starting address, and number of words are all specified at the ASCII
Unit.
<data area> specifies which PC data area is the source for the transfer. Any of the
following specifications for the data area are valid.

Data area
specifier

Data area Address Range

@R IR(SR) Area 0000 to 0255 - C200H
0000 to 0299 - C200HS
0000 to 0511 - C200HE/HG/HX

@A AR Area 0000 to 0027 - C200H/HS/HE/HG/HX
@D DM Area 0000 to 1999 - C200H

0000 to 6655 - C200HS/HE/HG/HX
@H HR Area 0000 to 0099 - C200H/HS/HE/HG/HX
@G TC Area 0000 to 0511 - C200H/HS/HE/HG/HX
@E EM area 0000 to 6143 - C200HE/HG/HX

@L LR Area

0000 to 0063 - C200H/HS/HE/HG/HX

Remarks:

Note: The EM Area is supported by the C200HE/HG/HX only.

<address> specifies the starting address of data transfer within the specified data area.
The starting address must be consistent with the address range of the specified data
area. If the address given lies outside the allowable range then a “FORMAT ERROR”
(code B067) will result.

<number of words> specifies the number of data words to be read from the starting
address given. If any of the data to be read exceed the allowable range then a “FORMAT
ERROR” (code B067) will result. The valid setting range is 1 to 255 words.

<pc format> indicates the data format of the data to be read. Refer to the explanation of
<pc format> settings in the PC READ statement for details on the various data formats that
can be specified.

<variable> is any valid variable name. It must be of the same type as specified in the
format string and have as many elements as the number of words specified in the PC
READ@ statement.

199

7-6 Section BASIC Commands

The PC READ@ statement can return a <result>. This <result> indicates whether the PC
READ@ statement was successful or not. If the <result> is 0 then the command was
successfully carried out and the data is written successfully. If the <result> is -1 then the
PC READ@ could not be carried out, perhaps because another data transfer was being
performed.

With the PC READ@ statement, the ASCII Unit operates without direction from the CPU
Unit. The ASCII Unit specifies a location in one of the PC’s data area, reads the data,
and stores it in the specified variables according to the specified pc format. The data is
transferred at the next I/O refreshing cycle after execution of the PC READ@ statement;
the ASCII Unit will pause execution of the BASIC program until the data transfer has
been completed.

Refer to 6.3 Details of the Data Exchange Methods for more details on how to use the PC
READ@ statement.

Before using a character-string variable for the variable setting, be sure to read Appendix
A Operating Precautions and Appendix C PC Format thoroughly, as the character-string
variable operate differently from those in the previous C200H-ASC02.

Examples:

PC READ “@D, 200, 10, S10H4”; A(1)

PC QREAD, PC WRITE, WAIT See also:

200

7-6Section BASIC Commands

pc write
[<result> =] PC WRITE “<pc format> {, <pc format>}”; <numeric expression> {, <numeric
expression>}

Syntax:

Statement.Description: When a PC WRITE request is received from the CPU Unit, the variable data is
written to the specified PC data area in the specified PC format.
The <pc format> indicates the data format of the specified data. The following table
shows the various data formats that can be specified.

Remarks:

Format Syntax Description
Takes the first n digits of data from each of the m variables,
converts the data to BCD, and stores it in the first n digits of
the each of the m data area words.
m : number of words
n : number of digits written to each word (1 to 4)

I Format m I n

n Digits written
1 digit 1 (bits 0-3)

2 digits 1-2 (bits 0-7)
3 digits 1-3 (bits 0-11)
4 digits 1-4 (bits 0-15)

Takes the first n digits of data from each of the m variables,
converts the data to hexadecimal, and stores it in the first n
digits of the each of the m data area words.
m : number of words
n : number of digits written to each word (1 to 4)

H Format m H n

n Digits written
1 digit 1 (bits 0-3)

2 digits 1-2 (bits 0-7)
3 digits 1-3 (bits 0-11)
4 digits 1-4 (bits 0-15)

Takes the first n digits of data from each of the m variables,
converts the data to octal, and stores it in the first n digits of
the each of the m data area words.
m : number of words
n : number of digits written to each word (1 to 4)

O Format m O n

n Digits read
1 digit 1 (bits 0-3)

2 digits 1-2 (bits 0-7)
3 digits 1-3 (bits 0-11)
4 digits 1-4 (bits 0-15)

201

7-6 Section BASIC Commands

Treats the data in each of the m variables as decimal,
converts the data to binary, and stores only the nth bit’s value
(treating the rest as 0) in each of the m data area words.
m : number of words
n : bit specified in the word (0 to 15)

 B Format m B n

n Specified bit
0 bit 0

1 bit 1
2 bit 2

3 bit 3
4 bit 4

5 bit 5
6 bit 6
7 bit 7
8 bit 8
9 bit 9
10 bit 10
11 bit 11
12 bit 12
13 bit 13
14 bit 14
15 bit 15

Converts a string variable with 2×m characters to ASCII data
(2 characters for each word of data) and stores the data in
the m words. The value of n indicates whether the first byte,
second byte, or both are stored.
m : number of words
n : specified byte(s)

A Format m A n

n Byte(s)
1 byte 1 (bits 0-7)

2 byte 2 (bits 8-15)
3 bytes 1-2 (bits 0-15)

S Format S m X

n
Converts the data in the n array variables to the kind of data
indicated by X (I, H, O, or B) and stores the data in the m
data area words.
m : the number of words
X : Data type (I, H, O or B as described above)
n : the number of elements (as described above)

202

7-6Section BASIC Commands

With the A format, many words of data from the PC can be stored in a single ASCII Unit
variable, although a maximum of 127 words can be transferred at one time.

Except for the A and S formats, and where a character variable is used as the variable,
there must be a one-to-one correspondence between each word and variable. With the A
format, one format must be used with each variable. With the S format, one format must
be used with the variables in each array.

Except for the A and S formats, and where a character variable is used as the variable,
more than one variable can be associated with a single format.

If the “m” setting is omitted, the default setting is 1 word. The setting range for “m” is 1 to
255. For numerals it is 1 to 255, for characters it is 1 to 64.

String variables can be used to specify the format, but be sure to use uppercase
characters when specifying the format.

<numeric expression> is any valid variable name. It must be of the same type as
specified in the format string and have as many elements as the number of words
specified in the PC WRITE statement. If the value of the numeric expression is not an
integer, the non-integer portion will be truncated. Single-precision or double-precision
floating-point values will be converted to integer values.

The PC WRITE statement can return a <result>. This <result> indicates whether the PC
WRITE statement was successful or not. If the <result> is 0 then the command was
successfully carried out and the data is written successfully. If the <result> is -1 then the
PC WRITE could not be carried out, perhaps because another data transfer was being
performed.

When the ASCII Unit receives a PC WRITE request from the CPU Unit (through bit 2 of IR
n), data in the specified variables is written to the data area location specified in IR n+3
and IR n+4. The data is transferred at the next I/O refreshing cycle after the PC WRITE
request from the CPU Unit; the ASCII Unit will pause execution of the BASIC program
until the data transfer has been completed.

Before using a character-string variable for the variable setting, be sure to read Appendix
A Operating Precautions and Appendix C PC Format thoroughly, as the character-string
variable operate differently from those in the previous C200H-ASC02.

 Examples:

The starting address and number of words in the CPU Units are specified in the following
words: IR n+3 and IR n+4.
PC WRITE “S3HS”; A(1)

ASCII Unit CPU Unit
variables

See also: PC READ, PC QWRITE, WAIT

4-digit HEX

4-digit HEX
4-digit HEX

A(1)

A(2)

A(3)

203

7-6 Section BASIC Commands

pc write@
[<result> =] PC WRITE “<data area>, <address>, <number of words>, <pc format>
{, <pc format>}” ; <numeric expression> {, <numeric expression>}

Syntax:

Statement.Description: Allows the ASCII Unit to independently write data to the specified PC data
area. The data area, starting address, and number of words are all specified at the ASCII
Unit.
<data area> specifies which PC data area is the destination for the transfer. Any of the
following specifications for the data area are valid.

Remarks:

Data area
specifier

Data area Address Range

@R IR(SR) Area 0000 to 0255 - C200H
0000 to 0299 - C200HS
0000 to 0511 - C200HE/HG/HX

@A AR Area 0000 to 0027 - C200H/HS/HE/HG/HX
@D DM Area 0000 to 1999 - C200H

0000 to 6143 - C200HS/HE/HG/HX
@H HR Area 0000 to 0099 - C200H/HS/HE/HG/HX
@G TC Area 0000 to 0511 - C200H/HS/HE/HG/HX
@E EM area 0000 to 6143 - C200HE/HG/HX
@L LR Area 0000 to 0063 - C200H/HS/HE/HG/HX

Note: The EM Area is supported by the C200HE/HG/HX only.
<address> specifies the starting address of data transfer within the specified data area.
The starting address must be consistent with the address range of the specified data
area. If the address given lies outside the allowable range then a “FORMAT ERROR” will
result.

<number of words> specifies the number of data words to be written from the starting
address given. If the amount of the data to be written exceeds the allowable range then a
“FORMAT ERROR” (code B067) will result. For numerals it is 1 to 255, for characters it is
1 to 64.

<pc format> indicates the data format of the data to be read. Refer to the explanation of
<pc format> settings in the PC WRITE statement for details on the various data formats
that can be specified.

<numeric expression> is any valid variable name. It must be of the same type as
specified in the format string and have as many elements as the number of words
specified in the PC WRITE@ statement.

The PC WRITE@ statement can return a <result>. This <result> indicates whether the PC
WRITE@ statement was successful or not. If the <result> is 0 then the command was
successfully carried out and the data is written successfully. If the <result> is -1 then the
PC WRITE@ could not be carried out, perhaps because another data transfer was being
performed.

With the PC WRITE@ statement, the ASCII Unit operates without direction from the CPU
Unit. The ASCII Unit specifies a location in one of the PC’s data area and writes the data
from the specified variables according to the specified pc format. The data is transferred
at the next I/O refreshing cycle after execution of the PC WRITE@ statement; the ASCII
Unit will pause execution of the BASIC program until the data transfer has been
completed.

Refer to 6.3 Details of the Data Exchange Methods for more details on how to use the PC
WRITE@ statement.

Before using a character-string variable for the variable setting, be sure to read Appendix
A Operating Precautions and Appendix C PC Format thoroughly, as the character-string
variable operate differently from those in the previous C200H-ASC02.

204

7-6Section BASIC Commands

Examples:

PC WRITE “@D, 200, 5, 1H4, 1H4, 1H4, 1H4, 1H4”; A(1), A(2), A(3), A(4), A(5)

PC QREAD, PC WRITE, WAIT See also:

peek
PEEK (<address expression>) Syntax:
FunctionDescription: Returns the contents (converted from ASCII code to decimal) of a specified
address.
<address expression> is address to be PEEKed. Valid range: [&H0E000…&H3FFFF]. Remarks:

The result is an integer value representing the character code of the byte at the specified
address. The returned integer will be in the range [0…255].

1. Be sure to address the correct area. The user memory contains areas other
than the variable area. The other areas are used for other purposes, such as
program execution.

 Note
:

> 10 A = PEEK(&H30000) Examples:
> 20 PRINT A
> RUN
32
POKE See also:

pgen
PGEN <program expression> Syntax:
Command.Description: Selects which of the four BASIC program areas is the current area.
<program expression> is an integer in the range: [1…4]. If the program expression is out
of the allowable range an “ILLEGAL FUNCTION CALL” error (code B005) will result.

Remarks:

The name and the number of bytes currently used by the selected program area will be
displayed.

All subsequent commands entered at the terminal will operate on the currently active
program area.

> PGEN 1 Examples:
> LIST
10 REM THIS IS THE PROGRAM IN MEMORY AREA #1
20 PRINT “HELLO WORLD”
> PGEN 2
> LIST
10 REM THIS IS THE PROGRAM IN MEMORY AREA #2
20 PRINT “HELLO AGAIN WORLD”
>
PNAME, PINF, PMEM See also:

205

7-6 Section BASIC Commands

pinf
PINF [(ALL | <program expression>)] Syntax:
Command.Description: Displays information about the specified BASIC program area.
<program expression> is an integer in the range: [1…4]. If the program expression is
outside the allowable range an “ILLEGAL FUNCTION CALL” error (code B005) will
result.

Remarks:

Alternatively information about all BASIC program areas can be displayed by specifying
PINF ALL.

If no argument is supplied to the PINF command information about the current program
area will be provided.

The name of the specified program areas, their read/write status, number of bytes used,
number of bytes of intermediate code used, and available free space will be displayed as
shown below.

 P1 : NAME [R/W] NUMBER OF BYTES USED
 P2 : NAME [R/W] NUMBER OF BYTES USED
 P3 : NAME [R/W] NUMBER OF BYTES USED
 P4 : NAME [R/W] NUMBER OF BYTES USED
 LIB : NUMBER OF BYTES USED
 I_CODE : NUMBER OF BYTES USED

 AVAILABLE FREE SPACE

P1 through P4 are program numbers 1 through 4, a write-protect status of “R” is read-
only and “R/W” is read/write, “LIB” is system-reserved, and “I_CODE” is the intermediate
code.

The intermediate code of the program that will be executed is created when the ASCII
Unit is started (RUN). In some cases there is not enough memory available to create the
intermediate code, so it is advisable to execute the RUN command and check the size of
the I_CODE and the available free space. The memory available after creation of the
intermediate code can be used for applications such as the variable area.

> PINF ALL Examples:
P1 : TEST [R/W] 6523 BYTES
P2 : [R/W] 0 BYTES
P3 : [R] 2876 BYTES
P4 : MY_PROG [R] 23231 BYTES
LIB : 0 BYTES
I_CODE : 13046 BYTES
157890 BYTES FREE
>
PGEN, PMEM, PNAME See also:

206

7-6Section BASIC Commands

pmem
PMEM (ON | OFF) Syntax:
Command.Description: Turns write protection of the current BASIC program area ON or OFF.
The PMEM statement write protects the current BASIC program area. If protection is set
using PMEM ON then it is not possible to change or delete the BASIC program in the
current BASIC program area.

Remarks:

To remove write protection of the BASIC program area, execute PMEM OFF. The disabling
of RENUM cannot be set from PMEM.

> 10 REM THIS PROGRAM WILL BE PROTECTED Examples:
> PMEM ON
> DEL 10
PROTECTED PROGRAM
> PMEM OFF
> DEL 10
> LIST
>
DEL, EDIT, NEW, PGEN, PINF, PNAME. See also:

pname
PNAME <string expression> Syntax:
Command.Description: Assigns a name to the current BASIC program area.
<string expression> is any valid BASIC string with a maximum length of 8 characters. If
the name is longer than 8 characters it will be truncated. Upper and lower case
characters are distinguished in the names.

Remarks:

If a program area has been assigned a name using the PNAME statement then it is
protected against the effects of the NEW command. In other words it cannot be
overwritten. However it may still be edited using the EDIT and the DEL commands.

A name assigned to a program area may be removed by assigning an empty string as
the name in the PNAME statement. E.g. PNAME “ ”

> 10 REM THIS PROGRAM HAS A NAME Examples:
> PNAME “PROG1”
> PINF
P1 : PROG1 [R/W] 30 BYTES
>
DEL, EDIT, NEW, PGEN, PINF, LOAD. See also:

207

7-6 Section BASIC Commands

poke
POKE <address expression> , <numerical expression> Syntax:
Statement.Description: Writes one byte to the specified address.
<address expression> is the memory location that will be POKEd and is an expression
returning an integer in the range : [&H0E000…&H3FFFFF].

Remarks:

<numerical expression> is the byte of data that will be written to the specified address in
the range : [0…255].

The user should not POKE data to memory areas reserved for system use. Doing so may
cause the system to run out of control.

Do not write data to any addresses other than variable addresses using the POKE
command.

POKE &H25000, &H65 (&H25000 is a variable address) Examples:
PEEK See also:

print
PRINT [# <port expression>][USING <print format>;]<expression> {[(,|;|<space>)]
<expression>}

Syntax:

Statement.Description: Outputs data or text to a communications port.
<port expression> is an expression returning an integer in the range: [1… 3].
If the <port expression> is omitted, the terminal port (#1 in the ASC11/21, #3 in the
ASC31) is used as the default.

Remarks:

<Expression> is any valid numerical or character expression. If the expression does not
correspond to the <print format> string then a “TYPE MISMATCH” error (code B013) will
occur.

If the <expressions> are separated by semicolons or spaces, and no formatting is used,
they are output one immediately after the other on the output. If they are separated by
commas they are output with a tab character separating them on the output stream.

If the terminating comma, or semicolon, is omitted a carriage return is appended at the
end of the output.

All numerical expressions are output with a space character either side of the
expression. The space before the numerical expression can be used for an optional
minus sign.

If no expressions are specified this statement outputs a carriage return on the output.

An optional format string can be used by applying the USING statement. The <print
format> string is a string expression containing the following control characters.

If multiple expressions are set, make sure to include a space between the expression
and the corresponding format to be used. Otherwise the output may not follow the
correct format.

Format
type

Code Description

! Prints only the first character of a string.
&& Prints the first n characters, where n is the number of

blanks enclosed between & plus 2.

String

@ Prints the corresponding character string.

208

7-6Section BASIC Commands

Indicates a digit position.
. Inserts a decimal point at any desired place

 Numerical

+ Specifies the position of the sign of the numeric value.
- If specified at the end of the numeric value it specifies that

the sign for negative numbers is suffixed to numeric value.
** Fills the left-most unused positions of the numeric value

with *. Also if - is specified at the end of a number then *
will fill the sign position if the value is positive.

\\ Prefixes \ at the beginning of the numeric value. \ allocates
space for one digit position.

**\ A combination of ** and \\.
, Separates the integer portion of a numeric value by a

comma every three digits from the right of the integer part.
^^^^ When specified at the end of a numeric field it specifies

that exponential form should be used. The exponential
format is (E+nn,D+nn).

^^^^^ When specified at the end of a numeric field it specifies
that specification format should be used. The specification
format is (E+nnn,D+nnn).

_ Allows the printing of the above special characters in the
format string. If the special character is preceded by the ‘_’
it is printed as normal.

The number of digits including codes is indicated by the number of “#” symbols. If the
number of digits of data is less than the number indicated by the “#” symbols, the number
will displayed with more significant digits. If the number of digits of data is greater than
the number indicated by the “#” symbols, the number will displayed after a “%” symbol.

1. The port must be opened for output. Note
: 2. Port #3 corresponds to the terminal port of the ASC31.

3. If Port #3 is specified on the ASC11 or ASC21 an “ILLEGAL FUNCTION
CALL” error (code B005) will result.

4. If the specified number of digits to be output is greater that that specified in
the numerical format a “%” will be output before the numerical value.

It is possible to use DMA transfer for printing through port #1 of the ASC31 and
port #2 of the ASC11, ASC21 and ASC31. DM m+2 bits 08-15 specify whether or
not DMA is used for port #1 and DM m+3 bits 08-15 specify whether or not DMA
is used for port #2. A maximum of 255 bytes of data can be sent for each DMA
data transmission.

> 10 PRINT “HELLO WORLD” Example 1:
> RUN
HELLO WORLD
> 10 X=1234.56 Example 2:
> 20 PRINT USING “####.###”;X
> 30 PRINT USING “+####.###”;X
> 40 PRINT USING “X=#####.##”;X
> 50 PRINT USING “+###.#”;1234.5
> 60 END
> RUN
1234.560
+1234.560
X= 1234.56
%+1234.5
LPRINT, WAIT See also:

209

7-6 Section BASIC Commands

pword
PWORD <string expression> Syntax:
Statement.Description: Assigns a password to the BASIC program area.
<string expression> is any valid BASIC string with a maximum length of 32 characters. If
the name is longer than 32 characters it will be truncated. Passwords are case-sensitive.

Remarks:

The PWORD statement must be the first line of the BASIC program. The password will be
invalid if the PWORD statement is not at the beginning of the program.

Set the password after inputting the whole program. If the password is set at the
beginning of the program, the password will be required at the beginning.

If a BASIC program is protected with a PWORD statement then the password will be
requested for the following commands. If the password is incorrect then a “PASSWORD
INCORRECT” error (code 0069) will occur. If the password is correct then the command
will be executed as normal.

Even if a password is set using the PWORD statement, the program will not be protected
from the NEW command.

> 1 PWORD “ABRACADABRA” Examples:
> 20 PRINT “PROTECTED BY A PASSWORD”
> RUN
> PROTECTED BY A PASSWORD
> LIST
PASSWORD : ***********
1 PWORD “ABRACADABRA”
20 PRINT “PROTECTED BY A PASSWORD”
>
PNAME, PMEM See also:

random
RANDOM [<seed>] Syntax:
Statement.Description: Re-seeds the random number generator.
<seed> is a numerical expression that is used as the random number generator seed.
The valid range is: [-32768…32767].

Remarks:

If the RANDOM statement is used without a seed then the user will be prompted for it.

If the random number generator is not reseeded then the RND statement will begin the
same pseudo-random sequence each time the power is turned OFF. For better random
behavior the random number generator should be reseeded using the RANDOM statement
each time a program is executed.

> 10 RANDOM 654 Examples:
> 20 PRINT RND
> RUN
.234831
> PRINT RND
.969226
> RUN
.234831
RND See also:

210

7-6Section BASIC Commands

read
READ <variable> {, <variable>} Syntax:
Statement.Description: Reads values from DATA statements and assigns them to the specified
variables.
<variable> is any valid BASIC numeric or character variable name. Remarks:

READ statements must always be used in conjunction with DATA statements. If no
corresponding DATA statements exist, or if all of the data has been exhausted with READ
statements then an “OUT OF DATA” error (code B004) will occur.

The variables specified in the READ statements can be of any type, however the type must
match the type of the value in the corresponding DATA statement. If the type of the
variable in the READ statement does not match the type of the value in the DATA statement
then a “SYNTAX ERROR” will occur. The READ statement can read a numerical constant
as either a string or a number depending on the type of the variable used in the READ
statement. However, a string constant must always be read with a numerical string
variable.

When there are two or more DATA statements, they are treated as a single list of data
items and the constants in the DATA statements are read in the order that they appear in
the program. When the RESTORE statement is executed, data will be read again starting
from the first DATA statement.

If all data has been read and the RESTORE statement has not been executed then the next
READ will result in a “OUT OF DATA” error (code B004).

> 10 DATA 10, "HELLO", 1.6, "WORLD" Examples:
> 20 READ A, B$, C, D$
> 30 PRINT B$+" "+D$
> 40 PRINT A+C
> RUN
HELLO WORLD
11.6
DATA, RESTORE See also:

rem
REM [<comment string>] Syntax:
Statement.Description: Inserts non-executable comments in a program.
<comment string> is a freely definable string that need not be enclosed in quotes. It can
be as long as the maximum line length.

Remarks:

REM statements should be used to give titles to programs and to make useful comments
to make the program easier to understand.

All characters on the same line but after the REM statement are ignored. It is not
necessary to insert a space between the REM keyword and the comment string.

Comments can be added to the end of a line by using a colon to specify the start of a new
statement. Alternatively a single quote character can be used instead for the same effect.

The REM keyword cannot be used in DATA statements as it will be assumed to be a legal
data string.

> 10 REM TEST PROGRAM Examples:
 See also:

211

7-6 Section BASIC Commands

renum
RENUM [<new line number>][,[<old line number>][, <increment>]] Syntax:
Command.Description: Renumbers program lines.
<new line number> is the first line number to be used in the new sequence. It can be any
valid line number in the range : [1…65535]. If it is omitted then it has a default value of
10.

Remarks:

<old line number> is the first line number in the current program where renumbering
should begin from. It can be any valid line number in the range : [1…65535]. If it is
omitted then it defaults to the first line of the program.

<increment> is the increment to be used in the new sequence. It can be any valid integer
in the range : [1…65535]. If it is omitted then it has a default value of 10.

The RENUM statement also changes the line number references used in the program in
GOTO, GOSUB, IF...THEN...ELSE and RESTORE statements.

If the RENUM statement would cause an invalid program number then it is not executed.
An “ILLEGAL FUNCTION CALL” error (code B005) will result.

> 1 REM FIRST LINE Examples:
> 2 REM SECOND LINE
> 3 GOTO 3
> RENUM 100, 1
> LIST
100 REM FIRST LINE
110 REM SECOND LINE
120 GOTO 120
>
 See also:

212

7-6Section BASIC Commands

restore
RESTORE [(<line number> | <label>)] Syntax:
Statement.Description: Resets the next data item to first item in the DATA statement specified by the
line number.
<line number> is any valid line number in the BASIC program containing a DATA
statement. The valid range is : [1 65535].

Remarks:

<label> is a BASIC program label. It references a line number somewhere in the BASIC
program.

If the <line number> and <label> are omitted then the data pointer will be restored to the
first DATA statement in the BASIC program.

If the specified <line number> does not exist in the BASIC program, an “UNDEFINED
LINE NUMBER” error (code B008) will occur.

> 10 DATA 10, "HELLO", 1.6, "WORLD" Examples:
> 20 READ A, B$, C, D$
> 30 PRINT B$+" "+D$
> 40 PRINT A+C
> 50 RESTORE 10
> 60 READ A, B$, C, D$
> 70 PRINT A+C
> 80 PRINT B$+" "+D$
> RUN
HELLO WORLD
11.6
11.6
HELLO WORLD
DATA, READ See also:

213

7-6 Section BASIC Commands

resume
RESUME [(<line number> | NEXT)] Syntax:
Statement.Description: Resume program execution after an error handling operation.
<line number> is any valid line number in the BASIC program from which execution will
resume. The valid range is [0…65535].

Remarks:

If <line number> is omitted or set to 0, program execution will be continued at the
statement that caused the error.

If NEXT is specified execution will resume at the line after the line that caused the error.

> 10 B = 6 Examples:
> 20 ON ERROR GOTO 80
> 30 FOR A = 1 TO 10
> 40 PRINT A, B, A/B
> 50 B = B-1
> 60 NEXT A
> 70 END
> 80 PRINT "ERROR HAS OCCURRED"
> 90 B = 5
> 100 RESUME
 1 6 .166667
 2 5 .4
 3 4 .75
 4 3 1.33333
 5 2 2.5
 6 1 6
ERROR HAS OCCURRED
 7 5 1.4
 8 4 2
 9 3 3
 10 2 5
>
ERROR, ON ERROR See also:

right$
RIGHT$ (<string expression>, < numerical expression>) Syntax:
FunctionDescription: Returns the specified number of characters starting from the rightmost position
in a string expression.
<string expression> is the string to be searched. Remarks:

<numerical expression> is the number of characters to be returned. The valid range is :
[1…255].

If the number of characters to be returned is 0 then a null string is returned. If the number
of characters to be returned is greater than the number of characters in the search string
then the entire search string is returned.

> 10 A$ = RIGHT$("HELLO WORLD", 5) Examples:
> 20 PRINT A$
> RUN
WORLD
LEFT$, MID$ See also:

214

7-6Section BASIC Commands

rnd
RND [(<numerical expression>)] Syntax:
Function.Description: Returns a random number between 0 and 1.
<numerical expression> has a valid range: [-2147483648…2147483647]

If the <numerical expression> is negative the first number in the random number
sequence is returned.

If the <numerical expression> is omitted or positive then the next random number in the
sequence is returned.

If the <numerical expression> is zero then the last random number in the sequence is
repeated.

Remarks:

1. The random number sequence may be changed by using the RANDOM
function.

Note
:
> 10 RANDOM 654 Examples:
> 20 PRINT RND
> RUN
.234831
> PRINT RND
.969226
> RUN
.234831
RANDOM See also:

romload
ROMLOAD Syntax:
Command.Description: Restores BASIC programs from FlashROM to program areas in RAM.
All four BASIC program areas are restored from FlashROM. Remarks:

Refer to 7-1 Programming Procedure for precautions on restoring data from FlashROM.

If the ROMLOAD command is used while a program is executed, an “ILLEGAL FUNCTION
CALL” error will occur. If ROMSAVE has not been performed and the user attempts to
execute ROMLOAD from flash ROM, a “DATA TRANSFER CHECK SUM ERROR” will
occur.

> 10 REM THIS PROGRAM WILL BE SAVED Examples:
> ROMSAVE
> 10 REM THIS WILL BE OVERWRITTEN
> LIST
10 REM THIS WILL BE OVERWRITTEN
> ROMLOAD
> LIST
10 REM THIS PROGRAM WILL BE SAVED
>
ROMSAVE, ROMVERIFY See also:

215

7-6 Section BASIC Commands

romsave
ROMSAVE Syntax:
Command.Description: Saves BASIC programs in RAM to FlashROM.
All four BASIC program areas are saved from RAM to FlashROM. Remarks:
Refer to 7-1 Programming Procedures for precautions on saving data to FlashROM.

The ASCII Busy Flag will turn ON while the ROMSAVE command is executing (i.e., while
data is being written to FlashROM). During this time, data will not be received at ports,
and interface processing with the PC (I/O refreshing) will not be performed.

If the ROMSAVE command is used while a program is executed, an “ILLEGAL FUNCTION
CALL” error will occur.

> 10 REM THIS PROGRAM WILL BE SAVED Examples:
> ROMSAVE
> 10 REM THIS WILL BE OVERWRITTEN
> LIST
10 REM THIS WILL BE OVERWRITTEN
> ROMLOAD
> LIST
10 REM THIS PROGRAM WILL BE SAVED
>
ROMLOAD, ROMVERIFY See also:

romverify
ROMVERIFY Syntax:
Command.Description: Checks the consistency of the program stored in FlashROM with those
currently stored in RAM.
All four BASIC program in RAM are compared with those stored in FlashROM. Remarks:

If the contents do not match a “VERIFY ERROR” (code 0066) will occur. If the contents
are the same then there will be no output and the ASCII Unit will return to the command
prompt.

If the ROMVERIFY command is used while a program is executed, an “ILLEGAL
FUNCTION CALL” error will occur.

> 10 REM THIS PROGRAM WILL BE SAVED Examples:
> ROMSAVE
> VERIFY
> 10 REM THIS WILL BE OVERWRITTEN
> VERIFY
VERIFY ERROR
> ROMLOAD
> VERIFY
> LIST
10 REM THIS PROGRAM WILL BE SAVED
ROMLAOD, ROMSAVE See also:

216

7-6Section BASIC Commands

rts
RTS #<port expression> (SET | RESET) Syntax:
Statement.Description: Sets or resets the RTS line of the specified communications port.
<port expression> is an expression returning an integer in the range: [1…3].

If accompanied with the SET command the RTS line is made active, if the RESET command
is used then the RTS becomes inactive. The RTS statement can only be used with open
ports.

Remarks:

1. Port #3 corresponds to the terminal port of the ASC31. Note
: 2. If Port #3 is specified on the ASC11 or if port #2 or port #3 is specified on

ASC21 an “ILLEGAL FUNCTION CALL” error (code B005) will result.
RTS #2 SET Examples:
CTS, DSR, DTR See also:

run
RUN [<start line number>][TO <end line number>] Syntax:
Command.Description: Starts program execution.
<start line number> is any valid line number in the range : [1…65535]. If it is omitted then
it defaults to the first line in the BASIC program. If the <start line number> is used then
program execution will begin at the line number specified.

Remarks:

If the RUN command is used with the TO modifier then a breakpoint will be set at the
specified <end line number> and execution will terminate just before this point.

If a line number that does not exist is specified in a program, an “UNDEFINED LINE
NUMBER” error will occur.

The RUN command clears all variables and closes all open ports before beginning
execution of the program.

Program execution can be aborted by pressing CTRL+X, or by setting the START/STOP
toggle switch to STOP. If the switch is already at STOP when the RUN command is given
the program will not run, but the “CANNOT RUN WITH SWITCH IN STOP POSITION”
message is displayed.

Program execution can be halted from within the BASIC program using the END or the
STOP statements.

If the RUN command is executed immediately after programming is completed, a
message saying that the program is being compiled will be displayed.

The time required from when the RUN command is executed to when the program
actually starts to be executed may be delayed depending on the time taken to compile
the BASIC program and to perform garbage collection.

If a <start line number> or <end line number> that does not exist is specified in a
program, an “UNDEFINED LINE NUMBER” error will occur.

The RUN compile time for a 53-Kbyte (approx. 1,300 column) program is approximately
10 seconds. The time however, may differ depending on the commands that are used in
the program.

RUN Examples:
END, STOP See also:

217

7-6 Section BASIC Commands

save
SAVE # <port expression> [,“TERM:[<communication definition string expression>]”] Syntax:
Command.Description: Writes the BASIC program in the current program area to a communication
port.
<port expression> is an expression returning an integer in the range: [1… 3].

See the OPEN statement for a description of the <communication definition string
expression>.

The communications conditions specified by the SAVE command’s <communication
definition string expression> are valid while the SAVE command is being executed. The
original conditions are valid again after execution of the SAVE command is completed.

Remarks:

1. The procedure for reading a program stored in the ASCII Unit to a terminal
depends on whether the terminal mode of the connected port is VT-100 or
FIT-10. In either case, input from the terminal is disabled during the transfer.
Refer to 7-1 Programming Procedure for details on saving BASIC programs.

Note
:

2. Port #3 corresponds to the terminal port of the ASC31.
3. If Port #3 is specified on the ASC11 or ASC21 an “ILLEGAL FUNCTION

CALL” error (code B005) will result.
> SAVE #1, “TERM:9600,8,N,2,CS_OFF,RS_OFF,DS_OFF,XN_ON” Examples:
LOAD See also:

search
SEARCH (<integer array>, <numerical expression 1> [, <numerical expression 2>]
[, <numerical expression 3>])

Syntax:

Function.Description: Searches an specified array variable (one-dimensional array variables only) for
the occurrence of a specified value and returns the index of the first occurrence of that
value.
<integer array> is a one-dimensional array of integers to be searched. Remarks:

<numerical expression 1> is the expression to be searched for in the array. If this is not
an integer it is first rounded.

<numerical expression 2> this optional expression gives the starting index of the search
in the array. If omitted the starting index is assumed to be the first element in the array. If
OPTION BASE has been executed specifying that the first index is 1 and this expression is
0 then the search will start from the first element in the array, index 1.

<numerical expression 3> this optional integer expression gives the search increment.
For instance a value of 2 would suggest that every second element in the array is
searched. If omitted a value of 1 is assumed.

If an occurrence of the search string is not found then -1 is returned.

> 10 DIM ARRINT%(100) Examples:
> 20 FOR I = 1 TO 100
> 30 ARRINT%(I) = I MOD 10
> 40 NEXT I
> 50 A = SEARCH(ARRINT%, 7, 12, 1)
> 60 PRINT “7 IS FIRST FOUND AT POSITION “; A
> RUN
7 IS FIRST FOUND AT POSITION 17
 See also:

218

7-6Section BASIC Commands

sgn
SGN(<numerical expression>) Syntax:
Function.Description: Returns the sign of a numerical expression.
<numerical expression> may be any integer, single-precision floating point or double-
precision floating point.

Remarks:

SGN returns 1 if the numerical expression is positive and -1 if the numerical expression is
negative. If the numerical expression is zero SGN returns 0.

> 10 INPUT A% Examples:
> 20 IF SGN(A%) = 1 THEN PRINT "POSITIVE"
> 30 IF SGN(A%) = -1 THEN PRINT "NEGATIVE"
> 40 IF SGN(A%) = 0 THEN PRINT "ZERO"
> 50 GOTO 10
> RUN
? 1 <CR>
POSITIVE
? -34 <CR>
NEGATIVE
? 0 <CR>
ZERO
 See also:

sin
SIN(<numerical expression>) Syntax:
Function.Description: Calculates the sine of a numerical expression.
<numerical expression> may be any integer, single-precision floating point or double-
precision floating point.

The return type is single-precision floating point if the argument is of type integer or
single-precision floating point. If the argument is of type double-precision floating point
then the return type is also double-precision floating point.

Remarks:

1. The argument should be specified in radians. Note
:
> 10 A = 0.4 Examples:
> 20 PRINT SIN(A)
> RUN
.389418
COS, TAN See also:

space$
SPACE$ (<numerical expression>) Syntax:
Function.Description: Returns a character string containing the specified number of spaces.
<numerical expression> may be any integer expression with a valid range: [0…255]. Non-
integer expressions will be rounded.

Remarks:

If the numerical expression is 0 then a null string is returned.

> 10 A$ = “HELLO” + SPACE$(5) + “WORLD” Examples:
> 20 PRINT A$
> RUN
HELLO WORLD
SPC See also:

219

7-6 Section BASIC Commands

spc
SPC (<numerical expression>) Syntax:
Function.Description: Outputs blanks in a PRINT or LPRINT statement
<numerical expression> may be any integer expression with a valid range: [0…255].
Non-integer expressions will be rounded. If the expression is negative, 0 will be
assumed.

This function is used to output blanks in a PRINT or LPRINT statement. If the number of
blanks exceeds the terminal’s line width, the output will wrap around to the next line.

Remarks:

1. SPC must be used in conjunction with a PRINT or LPRINT statement. It cannot
be used on its own.

Note
:

2. If the numerical expression is greater than 255 then an “ILLEGAL
FUNCTION CALL” error (code B005) will result.

> 10 PRINT "HELLO";"WORLD" Examples:
> 20 PRINT "HELLO";SPC(5);"WORLD"
> RUN
HELLOWORLD
HELLO WORLD
TAB See also:

sqr
SQR (<numerical expression>) Syntax:
Function.Description: Calculates the square root of numerical expression.
<numerical expression> may be any integer, single-precision floating point or double-
precision floating point expression. If <numerical expression> is negative then an
“ILLEGAL FUNCTION CALL” error (code B005) will result.

Remarks:

The return type is single-precision floating point if the argument is of type integer or
single-precision floating point. If the argument is of type double-precision floating point
then the return type is also double-precision floating point.

When the argument value is limited to single-precision, the value will become
1.03849E+34.

> 10 A = 4 Examples:
> 20 PRINT SQR(A)
> RUN
2
 See also:

220

7-6Section BASIC Commands

step
STEP [<numerical expression>] Syntax:
Command.Description: Executes the specified number of lines of BASIC program.
<numerical expression> specifies the number of program lines to execute, it may be any
valid integer expression in the range [0…255]. If it is omitted a value of 1 is assumed.

Remarks:

The STEP command resumes execution at the line number after the last executed line. It
executes the number of lines specified before terminating execution. Execution can be
continued by issuing another STEP command or by using the CONT command.

If STEP is executed when there is no information about the last executed line, for instance
after an END, LOAD or EDIT command, then STEP will execute the first line of the program.

> 10 PRINT “STARTED” Examples:
> 20 STOP
> 30 PRINT “CONTINUING”
> 40 PRINT “CONTINUING”
> 50 PRINT “FINISHED”
> RUN
STARTED
BREAK EXECUTED IN LINE 20
> STEP 2
CONTINUING
CONTINUING
BREAK IN LINE 40
> CONT
FINISHED
>
CONT, RUN See also:

stop
STOP Syntax:
Statement.Description: Terminates execution of the BASIC program and returns to command mode.
The execution of the BASIC program will terminate and the message “BREAK
EXECUTED IN LINE <line number>“ will be displayed on the terminal.

Remarks:

Execution can be continued from the current line by using the CONT or the STEP
commands.

The BASIC variables will not be cleared and open ports will not be closed.

STOP Examples:
CONT, RUN, STEP See also:

221

7-6 Section BASIC Commands

str$
STR$ (<numerical expression>) Syntax:
Function.Description: Converts a numerical expression into a character string representation.
<numerical expression> may be any integer, single-precision floating point or double-
precision floating point expression.

Remarks:

If the expression is positive a space is prefixed to the character string representation. If
the numerical expression is negative a minus sign (-) is prefixed to the character string
representation.

The VAL function is the opposite of the STR function; it converts a character string into its
equivalent numerical expression.

> 10 FOR A = 1 TO 5 Examples:
> 20 A$ = STR$(A)
> 30 PRINT A$
> 40 NEXT A
> RUN
1
2
3
4
5
VAL See also:

string$
STRING$ (<numerical expression 1>, (<numerical expression 2> | <string expression>)) Syntax:
Function.Description: Outputs a specified number of a certain character.
<numerical expression 1> is the number of the specified character that should be in the
output string. It may be any integer, single-precision floating point or double-precision
floating point expression. Non-integer expressions will be rounded. Valid range: [0…255].
If this value is zero an empty string will be returned.

Remarks:

The second argument of STRING$ gives the character that should be repeated the
specified number of times in the output string. This can be specified as a character code
or as a character string. If specified as a character code the valid range is: [0…255]. If
specified as a character string the first character in the string will be assumed to be the
desired character.

Use the STRING$ function when you need to make a character string with a series of the
same character.

> 10 FOR A = 1 TO 5 Examples:
> 20 A$ = STRING$(A, "*")
> 30 PRINT A$
> 40 NEXT A
> RUN
*
**

SPACE$ See also:

222

7-6Section BASIC Commands

tab
TAB (<numerical expression>) Syntax:
Function.Description: Moves the cursor to a specified position on the terminal display in a PRINT or
LPRINT statement
<numerical expression> may be any integer expression with the valid range: [1…255].
Non-integer expressions will be rounded. If the value of the numerical expression
exceeds the number of characters per line, then the value of the numerical expression
will be divided by the number of characters per line and the remainder will be used.

Remarks:

If the current cursor position is already beyond the specified tab position then the cursor
will move to the specified position on the next line.

> 10 PRINT "H";TAB(0);"W" Examples:
> 20 PRINT "H";TAB(1);"W"
> 30 PRINT "H";TAB(2);"W"
> 40 PRINT "H";TAB(3);"W"
> 50 PRINT "HELL";TAB(4);"O"
> RUN
H
W
HW
H W
H W
HELLO
SPC See also:

tan
TAN (<numerical expression>) Syntax:
Function.Description: Calculates the tangent of a numerical expression.
<numerical expression> may be any integer, single-precision floating point or double-
precision floating point.

The return type is single-precision floating point if the argument is of type integer or
single-precision floating point. If the argument is of type double-precision floating point
then the return type is also double-precision floating point.

Remarks:

1. The argument should be specified in radians. Note
:
> 10 A = 0.4 Examples:
> 20 PRINT TAN(A)
> RUN
.422793
SIN, COS See also:

time$
TIME$ [= <time string expression>] Syntax:
System variable.Description: Returns the time of the internal clock or sets the time.
<time string expression> is an absolute time in the format “hh:mm:ss”. Where hh has a
range [00…23], mm has a range [00…59] and ss has a range [00…59]. If the <time
string expression> is not a valid time then an “ILLEGAL FUNCTION CALL” error (code
B005) will occur.

Remarks:

If used on its own the TIME$ statement returns the current time of the system clock.

TIME$ = “12:10:05” Examples:
DATE$, DAY See also:

223

7-6 Section BASIC Commands

time$ on/off/stop
TIME$ (ON | OFF | STOP) Syntax:
Statement.Description: Enables, disables or stops the time$ interrupt defined by the ON
TIME$ statement.
ON enables (unmasks) the time$ interrupt. When a time$ interrupt occurs, program
execution will be branched to the specified interrupt subroutine for interrupt processing.
The time$ interrupts are enabled until they are disabled with the TIME$ OFF statement.

Remarks:

OFF disables the interrupt. All subsequent time$ interrupts are ignored.

STOP masks and enables the interrupt. If a time$ interrupt is received, it is stored in
memory but program execution is not branched to the interrupt subroutine. Program
execution will be branched to the subroutine when the interrupt is unmasked with the
TIME$ ON statement.

The TIME$ ON/OFF/STOP statements can be executed only after the ON TIME$ statement
has been executed.
> 10 ON TIME$ = “08:00:00” GOTO 100 Examples:
> 20 TIME$ ON
> 30 GOTO 30
> 100 PRINT “WAKE-UP!!!”
> 110 RETURN
ON TIME$ See also:

timer on/off/stop
TIMER (ON | OFF | STOP) Syntax:
Statement.Description: Enables, disables or stops the timer interrupt.
ON enables (unmasks) the timer interrupt. When a timer interrupt occurs, program
execution will be branched to the specified interrupt subroutine for interrupt processing.
The timer interrupts are enabled until they are disabled with the TIMER OFF statement.

Remarks:

OFF disables the interrupt. All subsequent timer interrupts are ignored.

STOP masks and enables the interrupt. If a timer interrupt is received, it is stored in
memory but program execution is not branched to the interrupt subroutine. Program
execution will be branched to the subroutine when the interrupt is unmasked with the
TIMER ON statement.

The TIMER ON/OFF/STOP statements can be executed only after the ON TIMER statement
has been executed.

> 10 T = 0 Examples:
> 20 ON TIMER 30 GOSUB 100
> 30 TIMER ON
> 40 GOTO 40
> 100 T = T+3
> 110 PRINT T; “SECONDS HAVE ELAPSED SINCE THE START OF EXECUTION.”
> 120 RETURN
ON TIMER See also:

224

7-6Section BASIC Commands

trace
TRACE Syntax:
Command.Description: Displays the contents of the trace buffer.
When the TRON M command is executed, the program’s line numbers are stored in the
trace buffer as the program is executed. The trace buffer can contain up to 255 line
numbers. The trace buffer has a battery backup, so its contents are retained even if the
power is turned OFF. When necessary, the TRACE command can be used to output the
contents of the trace buffer to the terminal.

Remarks:

The contents of the trace buffer will be cleared when the NEW or TROFF command is
executed.

> TRON M Examples:
> 10 FOR A = 1 TO 5
> 20 PRINT A
> 30 NEXT A
> RUN
1
2
3
4
5
> TRACE
[10][20][30][10][20][30][10][20][30][10][20][30][10][20][30] [10][30]
TROFF, TRON See also:

troff
TROFF Syntax:
Command.Description: Turns OFF the line number trace
Stops the output of line numbers during the execution of a program. Remarks:

If the ASCII Unit is reset, powered OFF then ON, or if the NEW statement is executed then
the line number trace will automatically be turned OFF. When the line number trace is
turned OFF the trace buffer is reset.

> 10 TRON Examples:
> 20 FOR A = 1 TO 5
> 30 NEXT A
> 40 TROFF
> 50 FOR A = 1 TO 5
> 60 NEXT A
RUN
[20][30][20][30][20][30][20][30][20][30][20][40]
>
TRACE, TRON See also:

225

7-6 Section BASIC Commands

tron
TRON [M] Syntax:
Command.Description: Turns ON the line number trace. If the M option is specified the line numbers
will be output to a trace buffer.
The TRON command activates a debugging tool that displays program line numbers in the
order they are executed by the BASIC interpreter and in the time required to change line
numbers. If the M option is specified output will be redirected to a 255 element circular
trace buffer.

Remarks:

The trace buffer has a battery backup, so its contents are retained even if the power is
turned OFF. When necessary, the TRACE command can be used to output the contents
of the trace buffer to the terminal.

The line number trace facility can be turned OFF using the TROFF statement.

If the ASCII Unit is reset or if the NEW statement is executed then the line number trace
will automatically be turned OFF.

> 10 TRON Examples:
> 20 FOR A = 1 TO 5
> 30 NEXT A
> 40 TROFF
> 50 FOR A = 1 TO 5
> 60 NEXT A
RUN
[20][30][20][30][20][30][20][30][20][30][20][40]
>
TRACE, TROFF See also:

val
VAL (<string expression>) Syntax:
Function.Description: Converts a character string to a numerical expression.
<string expression> may be any character representation of a numeric value. If the
character representation does not represent a numeric value 0 will be returned.

Remarks:

All valid numeric expressions are acceptable, including hexadecimal, octal, single and
double precision floating point and exponential formatted numbers. Exponential
formatted numbers must be specified with an upper-case E or D.

Spaces in the numerical expression are ignored. The conversion will be terminated at the
first non-numerical character.

A value of 0 will be returned if the character string does not begin with a numeric
character (+, -, &, ., or a number). All numeric characters following a non-numeric
character will be ignored.

Leading whitespace is stripped from the character representation before conversion.

> 10 A$ = "2" Examples:
> 20 B$ = "3"
> 30 PRINT A$+B$
> 40 PRINT VAL(A$)+VAL(B$)
> RUN
23
 5
>
STR$ See also:

226

7-6Section BASIC Commands

varptr
VARPTR (<variable>) Syntax:
Function.Description: Returns the memory address of a variable argument.
<variable name> must represent a valid variable in the BASIC program that has already
had a value assigned to it.

Remarks:

The address of the value field in the identifier table is returned.

If the variable is an array variable, the memory address where the leftmost bit of the
memory block address of the array is stored will be returned as decimal data.

Refer to Appendix D Formats for Storing Variables in Memory for details on variable
storage formats.

> 10 A = 5 Examples:
> 20 PRINT VARPTR(A)
> RUN
12321
 See also:

227

7-6 Section BASIC Commands

wait
WAIT <wait string> [, <line number>] Syntax:
Statement.Description: Specifies a time-out for the statement following the WAIT statement.
<wait string> specifies the waiting time, after which a time-out will occur. It has the format
“ [<mm>:]<ss>.<t>” where :

Remarks:

<mm> specifies minutes, valid range is [00…59]. This field is optional.
<ss> specifies seconds, valid range is [00…59]. This field is mandatory.
<t> specifies tenths of seconds, valid range is [0…9]. This field is mandatory.

<line number> specifies the program line to continue execution after a time-out has
occurred. It can be any valid BASIC line number in the range : [1…65535]. If the line
number specified does not exist then an “UNDEFINED LINE NUMBER” error (code
B008) will occur.

If an illegal wait time is specified an “ILLEGAL FUNCTION CALL” error (code B005) will
occur.

The WAIT statement monitors the statement that immediately follows it. If it finishes
execution within the specified time then program execution will continue as normal. If not
then execution of the monitored statement will terminate and execution will continue.

If <line number> is specified then, in the event of a time-out, execution will continue at
the specified line number. If not then execution will continue with the statement
immediately following the monitored statement.

The WAIT statement can be used to monitor the following statements:

INPUT, INPUT$, LINE INPUT, PC READ, PC WRITE, PC QREAD, PC QWRITE, PRINT and LPRINT, FOR,
WHILE.

If other statements are monitored, and if time-out occurs, then a “NO SUPPORT” error
(code 0064) will occur.

If another BASIC interrupt occurs while the WAIT statement is active, that BASIC interrupt
subroutine will be executed. The WAIT timer will be paused while the interrupt subroutine
is being executed.

> 10 WAIT "00:1.5", 100 Examples:
> 20 INPUT A$
> 30 PRINT "HELLO ";A$
> 40 END
> 100 PRINT "TOO LATE..."
> 110 END
> RUN
? TOO LATE...
 See also:

228

7-6Section BASIC Commands

watch
WATCH [(SET | DEL) <variable name>] Syntax:
CommandDescription: . Sets, deletes or lists watched variables in the BASIC debugger. This
command can be used to identify the values of watched variables when the program
stopped.
<variable name> must represent a valid variable in the BASIC program that has already
had a value assigned to it. Up to 16 variables can be watched simultaneously. The
<variable name> cannot be specified as an array variable. If an array variable is specified
as the <variable name>, a “NO SUPPORT” error (code 0064) will occur. To monitor array
variables, use PRINT array variables.

Remarks:

WATCH SET is used to add variables to the watch list.

WATCH DEL is used to remove variables from the watch list.

If neither SET nor DEL are specified, the watch list will be listed.

Once the watch variables have been set, the value of the variables will be displayed every
time that the BASIC program is stopped.

After running RUN compile, specify the variables again using the WATCH command.

> WATCH SET A$ Examples:
> WATCH SET B
> 10 A$ = “”
> 20 FOR B = 1 TO 9
> 30 A$ = A$ + STR(B)
> 40 STOP
> 50 NEXT B
> RUN
BREAK IN LINE 40
A$ = 1
B = 1
> CONT
BREAK IN LINE 40
A$ = 1 2
B = 2
>
BRKPT, CONT, STEP, STOP See also:

229

7-6 Section BASIC Commands

while / wend
WHILE <numerical expression> <program> WEND Syntax:
Statement.Description: Conditionally repeats the series of statements enclosed between WHILE and
WEND.
The results of <numerical expression> determines the termination of the loop. If the
result of the <numerical expression> is zero (or FALSE) then the loop will terminate and
execution will resume at the line number following the WEND statement. If the <numerical
expression> is non-zero (or TRUE) then the loop will continue.

Remarks:

When the WEND statement is reached execution jumps back to the WHILE statement
containing the condition.

If the condition is never true then the statements in the WHILE/WEND loop will never be
executed.

Unlike FOR/NEXT loops that have a specified number of repetitions, the WHILE/WEND loops
have a repetition condition. For example, use a WHILE/WEND loop if a particular process is
needed to repeat until X=0 and the number of repetitions that are required is unknown.

WHILE/WEND must always be used in pairs. If a wend statement is encountered without a
corresponding while then a “MISMATCH: WHILE/WEND” error (code B024) will occur.

WHILE/WEND statements may be nested and the only limit on nesting is the amount of
available memory.

10 A = 0 Examples:
20 WHILE A<10
30 PRINT A
40 A = A+1
50 WEND
@IF, FOR See also:

230

User-defined BASIC Functions Section 7-7
7-7 User-defined BASIC Functions
User-defined BASIC functions are expressions created by the user in BASIC
and saved as user-defined functions. Other BASIC functions can be called up
and executed by their specified function name in the same way. Function
names, input variables, and expressions are declared using BASIC’s DEF FN
command.

User-defined BASIC
Function Procedure

1,2,3... 1. Declare the following details using the DEF FN command.

• BASIC function call name

• Variable name input to the BASIC function

• Expression

2. Execute the program using the BASIC function name.

User-defined BASIC
Function Definition
(DEF FN) Syntax

DEF FN function_name (variable_name[, variable_name]) = expression

Meaning

DEF FN declares a user-defined BASIC function. It sets the function name
(same restrictions as for variable names) and the variable names for input to
functions (more than one name is possible), and the expression.

Example:

BASIC Function Calls As for other functions, used-defined functions are called by specifying the
function name and then the variable(s) within parentheses.

Example: C = FNABC (A,B)

Note Text strings starting with reserved words cannot be used for function names.
The following characters cannot be used at the end of function names: $ % &
! #

Expression

Function name

DEF FNABC (A,B) = A+B

Variable
231

Debugging Section 7-8
7-8 Debugging

7-8-1 Overview
The debugging function allows you to stop the program at a specified line by
various methods so that the contents of variables can be monitored. It is also
possible to determine the position of the current line number.

Note The breakpoint function can be used to set a breakpoint in an interrupt sub-
routine, but it is not possible to continue executing the interrupt subroutine
after the breakpoint.

Breaks

Variable Monitor

Tracing the Current Line Number

Each of the following debugging functions are described below.

• Break point function

• STEP function

• Variable monitor function

• Trace function

7-8-2 Breakpoint Function (BRKPT)
When a breakpoint is set at a specified line using the BRKPT command, the
program will stop at that point. Once it has stopped, a message indicating a
break in execution and the current line number will be displayed at the termi-
nal. The ASCII Unit will switch to Command Mode. Up to 255 breakpoints can
be set. To restart the program from the breakpoint, enter the CONT command
from the terminal.

Syntax

BRKPT (SET | DEL) line_No.

Break at a
specified line

By command input
from the terminal

Break at multiple
lines (255 settings
max.)

Input BRKPT
command

Program error

Break after a
single line or
specified number
of lines

Input STEP
command

Execute up to the
specified line

Input the RUN TO
line no.

By internal
program command

Break at the
specified line

STOP command

Break conditionBreak condition

Variable content monitor
(16 variables max.)

By command input from
the terminal

Input WATCH command

By internal program command TRON command

Save in the trace buffer, then mon-
itor

TRON[M] command to TRACE command
input
232

Debugging Section 7-8
Meaning

BRKPT sets and deletes breakpoints. When no line is specified, the current
breakpoint settings are displayed.

Example

BRKPT SET 200: Sets breakpoint at line 200.
BRKPT DEL 100: Deletes breakpoint at line 100.
BRKPT: Displays the current breakpoint settings.
BRKPT DEL ALL: Deletes all the current breakpoint settings.

7-8-3 Step Function (STEP)
Each time the STEP command is executed, the program executes a single
line or a specified number of lines.

Syntax

STEP [numeric_expression]

Meaning

The specified number of lines are executed. If no number is specified, 1 line is
executed.

Example

STEP 5: 5 program lines are executed.
STEP: 1 program line is executed.

7-8-4 Variable Monitor Function (WATCH)
It is possible to monitor the contents of specified variables (except array vari-
ables) using the WATCH command. If the WATCH command is input, then
whenever the BASIC program breaks due to a STOP command, a STEP com-
mand, a breakpoint, or a program error, the display will indicate that a break
has occurred and the current line number, and then the value of the variable
to be monitored will be shown at the terminal. The variables are displayed in
order in which the WATCH commands were input. A maximum of 16 variables
can be monitored at one time.

Syntax

WATCH (SET | DEL) variable_name

Meaning

WATCH sets or deletes a specified variable to be monitored. When no vari-
able is specified, the list of currently monitored variables is displayed. A maxi-
mum of 16 variables can be monitored at one time. An array variable cannot
be specified for the variable name.

Example

WATCH SET A$: Sets A$ to be monitored.
WATCH DEL B: Stops monitoring B.
WATCH: Displays the current list of variables being monitored.

Examples of Variable Monitoring

WATCH SET B$: Sets B$ to be monitored
WATCH SET A: Sets A to be monitored
When there is a break at line number xxx after the RUN command,
BREAK IN LINE xxx
B$ = “ABCD”
A = 3
233

Debugging Section 7-8
Note Set the variables using the WATCH command after the program has been
compiled for the RUN command.

7-8-5 Trace Function (TRON and TRACE)
When the TRON command is executed, the executed program lines are dis-
played at the terminal in order of execution. This allows you to see execution
for programming such as for FOR to NEXT repetitions, and IF GOTO and
GOSUB subroutine branching. When using the TRON command with the M
option, trace data is stored in the trace buffer, and can be displayed at the ter-
minal later using the TRACE command.

The trace buffer can store a maximum of 255 lines (when 255 lines are
exceeded, lines are overwritten starting from the first line executed.)

Note Trace details stored in the trace buffer are backed up by a battery even after
the power supply is turned off. This means that they can be read afterwards
using the TRACE command. The trace buffer is cleared using the NEW or
TROFF command.

TRON Syntax TRON[M]

Meaning

TRON starts a trace of the lines that follow. After RUN, the executed lines are
displayed at the terminal enclosed in brackets []. If the option [M] is used, the
trace is output to the trace buffer. A maximum of 255 lines can be traced.

Example

TRON: Starts a trace of the lines that follow

TRON[M]: Starts a trace of the lines that follow, and stores the trace in the
trace buffer.

Examples of the Trace Function

RUN
[10][20][30][20][40]....: Lines were executed in the order [10][20][30][20][40].

TRACE Syntax TRACE

Meaning

TRACE displays the contents of the trace buffer at the terminal. Executed
lines are displayed sequentially inside square brackets [] in the order in which
they were executed.

Examples of the Trace Function

TRON M

TRACE
[10][20][30][20][40].....: Lines were executed in the order [10][20][30][20][40].

Note Only when the execution line number is changed, the line number is added to
the trace buffer. Therefore, if a line such as 100 GOTO 100 is executed,
TRACE will display [100] one time only.

A DEVICE UNAVAILABLE IN PORT X error will occur if line numbers dis-
played for traces are duplicated when displaying program trace results on the
terminal while executing an interrupt subroutine. If this occurs, use the M
option for the TRON command to store trace results in the trace buffer.
234

SECTION 8
Data Exchange Application Programs

This section provides examples of data exchange applications.

8-1 Asynchronous Processing . 236

8-2 High-speed Data Exchanges . 237

8-3 High-volume Data Exchanges. 239

8-4 Data Transfer: ASCII Unit to CPU Unit . 239

8-5 Bit Data Exchanges . 240
235

Asynchronous Processing Section 8-1
8-1 Asynchronous Processing
Example 1 The monitoring system allows measurement data (PV) from a controller to be

set whenever required in the shared memory of the ASCII Unit. The CPU Unit
reads this data from the ASCII Unit’s shared memory as required to monitor it.

Example 2 Here, various data is transferred between ASCII Units. The CPU Unit acts as
an intermediary.

ASCII Unit CPU Unit

Refreshes at high-speed the
measurement data from the controller to
the ASCII Unit’s shared memory using
the PC EPUT command.

→ Reads measurement data from the
ASCII Unit as required,using the IORD
(#00@@) instruction.

CPU Unit ASCII Unit ASCII Unit

Measurement
data

Shared
memory

Measurement
data

Shared
memory

IORD#
00@@

PC EPUT PC EPUT

ID tag

Machine

CPU Unit ASCII Unit No. 1 ASCII Unit No. 2

Shared
memory

Shared
memory

IORD# 00@@
IOWR# 00@@

PC EPUT PC EPUT
236

High-speed Data Exchanges Section 8-2
8-2 High-speed Data Exchanges
Example 1 When the ASCII Unit functions as a communications interface, the trigger

from the ASCII Unit enables CPU Unit processing to activate a trigger from
the CPU Unit.

In response to data from a bar code reader, an assembly robot is controlled
via CPU Unit processing.

CPU Unit ASCII Unit
Writes to shared memory using the PC EPUT command
(ASCII Unit No. 1).

Reads from shared memory using the PC EGET com-
mand (ASCII Unit No. 2).

IORD (#00@@) and IOWR (#00@@) executed
continuously.

Reads from the
shared memory of
ASCII Unit No. 1
to DM 0000 to DM
0009

Writes to the
shared memory of
ASCII Unit No. 2
from DM 0000 to
DM 0009

Unit No. 1,
10 words

Equals Flag

Unit No. 2,
10 words

IORD

#00@@
#1010

DM0000

IOWR

#00@@

DM0000

#2010

DM0000

DM0000

ASCII Unit CPU Unit

1 Sends an IORD Request Flag when
the bar code reader data is input.

→ Receives the IORD Request Flag,
and receives data via the IORD
(#FD00) instruction.

↓
2 After receiving the interrupt, the ASCII

Unit reads the data written to the
shared memory via the PC EGET
command in the interrupt subroutine,
and then issues commands to the
assembly robot.

← After processing, writes data to the
ASCII Unit shared memory via the
IOWR (#00@@) instruction, then
sends an interrupt to the ASCII Unit
via the IOWR (#CC00) instruction.

Shared
memory

CPU Unit ASCII Unit

Trigger

Inter-
rupt

Command

Bar code reader

Assembly robot

1.

2.

IORD#FD00

IOWR#00@@

IOWR#CC00

PC QWRITE@

ON PC GOSUB
PC EGET
237

High-speed Data Exchanges Section 8-2
Examples 2 When the ASCII Unit operates as a special BASIC processing unit, a trigger is
sent from the CPU Unit to the ASCII Unit, which after processing, sends a trig-
ger back to the CPU Unit.

The CPU Unit assigns arithmetic processing outside its capability to the ASCII
Unit, enabling high-speed processing for both Units by sharing the workload.

CPU Unit ASCII Unit

1 Writes data to the shared memory via
the IOWR (#00@@) instruction, then
sends an interrupt to the ASCII Unit
via the IOWR (#CC00) instruction.

→ Receives the interrupt, reads the data
written to the shared memory via the
PC EGET command in the interrupt
subroutine, then carries out special
arithmetic operations.

↓
2 At the completion of the interrupt sub-

routine (determined by checking the
Interrupt Subroutine Completed Flag),
reads from the shared memory via the
IORD (#00@@) instruction.

← Writes the result of the processing to
the shared memory via the PC EPUT
command; end of the interrupt sub-
routine.

Interrupt

CPU Unit ASCII Unit

Subroutine

Shared
memory

1.

2.

Operation

IOWR#00 @@

IOWR#CC00

IORD#00 @@

ON PC GOSUB

PC EGET

PC EPUT
RETURN
238

High-volume Data Exchanges Section 8-3
8-3 High-volume Data Exchanges
Example Large volumes of data can be transferred when high speed is not required by

sending production directions as recipe data (settings/parameters) to various
machines from the host computer.

8-4 Data Transfer: ASCII Unit to CPU Unit
Example 1 The ASCII Unit is used as a control unit to upload status monitoring data.

CPU Unit ASCII Unit

Sends a Write Bit to the ASCII Unit via
allocated IR/CIO words.

→ Reads the CPU Unit memory via the
PC READ command to a maximum of
255 words. During the I/O refresh
period (1 cycle), the maximum is127
words.

Allocated
I/O

CPU Unit ASCII Unit

Host Link or
Network

Trigger
MOV PC READ

ASCII Unit CPU Unit

Processes data from the sensor and
outputs it to the actuator. The ASCII
Unit uploads status monitoring data as
required via the PC WRITE@ com-
mand.

→ Reads status monitoring data.

Processing

Intelligent
sensor

Actuator

CPU Unit ASCII Unit

PC WRITE@
239

Bit Data Exchanges Section 8-5
Example 2 Multiple external devices are connected via the RS-422/485 ports, and polling
is used to send commands. The response data is stored in variable arrays
and uploaded to the CPU Unit as required.

8-5 Bit Data Exchanges
Example A measured temperature from a temperature controller sends an ON signal to

the CPU Unit once a certain temperature is reached.

ASCII Unit CPU Unit

Response data is stored in the variable
arrays. The ASCII Unit uploads as
required using the PC WRITE@
command.

→ Reads the response data.

CPU Unit ASCII Unit

Variable array

:

PC WRITE@

A (1)

A (n)
#1 #2 #n

ASCII Unit CPU Unit

After bit 01 of the numeric variable B% is
turned ON, B is set in word n + 6 via the
PC PUT command.

Reads word n + 6 bit 01.

CPU Unit ASCII Unit

n + 6
bit 01

Allocated
words

@IF Au100 THEN
B%=0
BITON B%, 1
PC PUT B%
ENDIF
240

SECTION 9
Clearing Error Messages

This section provides a list of error messages, probable causes and possible corrections.

9-1 List of Error Messages . 242

9-2 Troubleshooting . 248

9-2-1 Procedure for Dealing with Damage to the Program Memory. 251

9-3 CPU Unit Error Indicators . 252

9-3-1 Special I/O Unit Error List . 252

9-3-2 Useful Flags and Control Bits. 253

9-4 Reading and Clearing the Error Log . 254

9-4-1 Overview of Error Log Table . 254

9-4-2 Reading the Error Log Table . 255

9-4-3 Clearing Errors . 255

9-5 Maintenance . 255

9-5-1 Mounting Precautions. 255

9-5-2 Replacing Batteries. 256
241

List of Error Messages Section 9-1
9-1 List of Error Messages
If an error (BASIC error) is generated during the execution of a BASIC com-
mand, or a system error is generated, the error code is stored in bits 00 to 11,
and the error type is stored in bits 12 to 15 of the IR/CIO area (words n + 7) in
the CPU Unit. At the same time, the relevant error message is displayed on
the terminal. (Only an error code for errors 0080 to 0099 generated by the
CPU Unit interface is stored in words n + 7, and no error message is dis-
played.)

IR/CIO Area Allocation

Error Type and Code

Example Terminal
Display

Note If the execution of a BASIC program is stopped when the terminal port is con-
figured as a non-terminal device, the ASCII Unit will wait for a message to be
displayed. In this case, connect the terminal to the terminal port and press
Ctrl+X Keys, and the message will be displayed.

Word Bit Name Value

n +7 0 to 11 Error Code 000 to 255 BCD

12 to 15 Error Type B: BASIC error

0: System error

1: Port #1 communications error
2: Port #2 communications error

3: Terminal port communications error
(C200H-ASC31 only)

Error code 000 to 255

Error type: B: BASIC error
 0: System error
 1: Port #1 communications error
 2: Port #2 communications error
 3: Terminal port communications error (C200H-ASC31 only)

@@@@

Displayed when executed with a line number.

SYNTAX ERROR IN LINE XXXX
242

List of Error Messages Section 9-1
The various error types, codes, error messages and actions are as follows:

BASIC Errors

Error
code

Error message Probable cause Corrective measures

B001 NEXT WITHOUT FOR FOR command is missing. Confirm the FOR....NEXT combination.

B002 SYNTAX ERROR The program syntax is not correct.

A variable name or label name starts
with the same characters as a reserved
word (command name).

Correct the program line. Change the
variable or label name.

B003 RETURN WITHOUT GOSUB Encountered RETURN command
before the GOSUB command was exe-
cuted.

Confirm the GOSUB....RETURN syn-
tax.

B004 OUT OF DATA The data to be read by the READ com-
mand is missing. The number and type
of READ command variables and the
number and type of the DATA com-
mand constants do not match or
RESTORE command is not used.

Confirm the number and type of READ
command variables, and the number
and type of DATA command constants.

B005 ILLEGAL FUNCTION CALL Illegal statement or function call. Confirm the callout method for state-
ments and functions (syntax).

B006 OVERFLOW The numerical value exceeds the per-
missible range.

Check the numerical value range and
the variable type.

B007 OUT OF MEMORY Insufficient memory capacity. There is not enough user memory.
Check the status of memory use by
using PINF or other command, and
review the program, or free some mem-
ory.

B008 UNDEFINED LINE NUMBER Input line number is incorrect. Check the destination line number.

B009 BAD SUBSCRIPT ERROR The array variable subscript exceeds
the maximum value specified using the
DIM command.

Use a value within the maximum sub-
script value range specified using the
DIM command.

B010 DUPLICATE DEFINITION The definitions of array variables or
user-defined BASIC functions have
been duplicated.

Change one of the duplicated array
variables or user-defined BASIC func-
tions.

B011 DIVISION BY ZERO A division by zero has occurred. Check the division and correct the pro-
gram.

B012 ILLEGAL DIRECT Execution of a statement has been
attempted that is illegal in the Com-
mand Mode.

Can only be executed in a BASIC pro-
gram (Program Mode).

B013 TYPE MISMATCH The variable type does not match. Check the variable type.

B014 --- Not used ---

B015 --- Not used ---

B016 --- Not used ---

B017 CANNOT CONTINUE The program execution cannot be con-
tinued.

Restart the program using the RUN
command.

B018 UNDEFINED USER
FUNCTION

The user function is not defined. Define the user function using the
DEF FN command.

B019 NO RESUME There is no RESUME command in the
error interrupt subroutine within the ON
ERROR GOTO command.

Add a RESUME command.

B020 RESUME WITHOUT ERROR Although there is no error, the
RESUME command has been exe-
cuted.

Check the program.

0021 --- Not used ---

B022 MISSING OPERAND The required parameters (operands)
are missing.

Check the program syntax.
243

List of Error Messages Section 9-1
System Errors

Operational Errors

B023 FOR WITHOUT NEXT The NEXT command or the WHILE
command is missing.

Check the FOR...NEXT or
WHILE...WEND combinations.

B024 MISMATCH: WHILE/WEND The WEND or WHILE command is
missing.

Add a WEND or WHILE command.

B025 UNDEFINED SYMBOL The character is outside the permissi-
ble range or a label is missing.

Use a character within the permissible
range or check the program label.

B026 INVALID EXPRESSION An invalid expression has been used. Correct the expression.

B027 INVALID STATEMENT An invalid statement has been used. Correct the statement.

B028 --- Not used. ---

0029 MISMATCH: @IF/ENDIF @IF and ENDIF do not match. Check that @IF and ENDIF match.

Error
code

Error message Probable cause Corrective measures

Error
code

Error message Probable cause Corrective measures

0030 FATAL ERROR: BUS
ERROR

System error. (The ASCII Unit is not
operating properly.)

Turn OFF the power, and then turn ON
again. If the error persists, replace the
Unit.0031 FATAL ERROR: ADDRESS

ERROR

0032 FATAL ERROR: PRIVILEGE
VIOLATION

0033 FATAL ERROR:
UNINTIALISED INTERRUPT

0034 FATAL ERROR: SPURIOUS
INTERRUPT

0035 FATAL ERROR: ILLEGAL
INSTRUCTION

0036 RTC ACCESS ERROR Check battery and RTC. Otherwise,
exchange Unit.

0037 FATAL ERROR: MPU IN
LIMP MODE ERROR

Turn OFF the power, and then turn ON
again. If the error persists, exchange
the Unit.0038 FATAL DEBUG ERROR:

SYSTEM DEBUG ERROR IN
PORT XXXX

0039 --- Not used. ---

Error
code

Error message Probable cause Corrective measures

0040 BREAK EXECUTED IN LINE
XXXX

--- ---

0041 CANNOT RUN WITH
SWITCH IN STOP
POSITION

Attempted to execute the RUN com-
mand with the switch in the STOP posi-
tion.

Set the switch to START.

0042 USER BREAK Program stopped by user. ---

0043 FILE TRANSFER
INTERRUPTED

File transfer stopped while executing. ---

0044 PROGRAM MEMORY
ERROR

Corrupted memory. Toggle the START/STOP switch to ini-
tialize the memory and restart.

0045 --- Not used. ---

0046 --- Not used. ---

0047 --- Not used. ---

0048 --- Not used. ---

0049 --- Not used. ---
244

List of Error Messages Section 9-1
Note The @ indicates the port number generating the error.

Error
code

Error message Probable cause Corrective measures

0050 BAD PORT NUMBER The port number is incorrect. Check the port number.

0051 CANNOT READ FROM
WRITE-ONLY DEVICE

Inputting to a write-only external device. Check the port and external device
specifications.

0052 PORT ALREADY OPEN The port is already open. The same
port has been opened twice using the
OPEN command.

Delete one of the OPEN commands.

@053 PARITY ERROR
COMMUNICATING WITH
DEVICE

An error has been generated while
communicating with an external device.

Check the communications network.

@054 --- Not used. ---

0055 PORT CONFIGURATION
ERROR

Incorrect port communications
parameters.

If the ON COM interrupt is being used,
the port communications parameters
will not be set to proper values.

Check the communications parameters
for the port or check that the restrictions
on baud rate and communications
interrupt conditions for port 1 and 2
have not been exceeded.

@056 DIRECT STATEMENT When the LOAD command was
executed, a line with no line number
was discovered in the program being
transferred to the ASCII Unit.

Check the program being transferred to
the ASCII Unit.

0057 PORT IS NOT OPEN An unopened port number has been
used.

Open the port using an appropriate
OPEN command for the device symbol.

@058 FRAMING ERROR
COMMUNICATING WITH
DEVICE

Incorrect framing (framing for start bit +
data + parity + stop bit) for received
data read from the port.

Check whether or not the
communications conditions specified
using the OPEN command match the
framing of the external device.

0059 CANNOT WRITE TO READ
ONLY DEVICE

Attempted to write to a read-only
external device.

Check whether or not the device
symbol specified using the OPEN
command matches the external device
specifications.

0060 DEVICE UNAVAILABLE An invalid device symbol has been
used in the OPEN command.

Check the OPEN command device
symbol.

@060 DEVICE UNAVAILABLE IN
PORT@

I/O commands such as a PRINT
command may be in conflict with each
other due to an interrupt.

Correct the program so that I/O
commands do not compete.

0061 --- Not used ---
245

List of Error Messages Section 9-1
Execution Errors

Note The @ indicates the port number generating the error.

Error
code

Error message Probable cause Corrective measures

0062 PROTECTED PROGRAM Program is protected from the NEW
command.

When creating a new program using
the NEW command, delete the program
name using the PNAME“ ” command. If
PMEM ON has been specified, execute
the NEW command after executing
PMEM OFF.

@063 INCOMING DATA HAS
BEEN LOST

The data to be received has been lost. Reduce the baud rate or use flow
control.

0064 NOT SUPPORT There is no support.

Automatic transfer was specified even
though the program is not saved in
flash ROM

Check the positions of the OPTION
LENGTH command and other
commands for defining variables.
Check the positions of commands.

0065 FLASHROM ERROR There is an error with the flash ROM, or
nothing has been written to the flash
ROM.

Try again or replace the Unit.

0066 VERIFY ERROR Error generated when comparing and
verifying flash ROM

If there is no problem with the program
in the user memory (RAM), rewrite the
correct data to the flash ROM using the
ROMSAVE command.

B067 FORMAT ERROR The format or variable specifications for
the PC READ or PC WRITE command
are incorrect, or the number of transfer
words or the specified first transfer
word of the source in the IR/CIO area of
the CPU Unit are incorrect.

Check the contents of the PC READ/
PC WRITE command at the ASCII Unit
and words n + 3 and n + 4 in the IR/CIO
area.

0068 --- Not used. ---

0069 PASSWORD INCORRECT The password is incorrect. Input the correct password.

0070 DATA TRANSFER CHECK
SUM ERROR

Data sum error generated during data
transfer or nothing written in flash
ROM.

Perform the data transfer again.

0071 --- Not used. ---

0072 --- Not used. ---

0073 --- Not used. ---

0074 --- Not used. ---

0075 --- Not used. ---

0076 --- Not used. ---

0077 --- Not used. ---

0078 --- Not used. ---

0079 --- Not used. ---
246

List of Error Messages Section 9-1
PC Interface Errors

DM Setting Errors

Error
code

Error message Probable cause Corrective measures

0080 No message. The IOWR/IORD instruction is
incorrect.

Check the operands for the IOWR/
IORD instructions.

0081 No message. Incorrect number of transfer (read/
write) words in the IOWR/IORD
instruction.

Set the IOWR/IORD (#00@@)
instruction to a maximum of 90 words
and the IOWR/IORD (#FD00)
instruction to a maximum of 128 words.

0082 No message. Interrupt to the ASCII Unit using the
IOWR (#CC00) instruction is incorrect.

Check whether or not the
IOWR(#CC00) instruction interrupt
number matches the ON PC (interrupt
number) command.

0083 No message. When reading and writing to the shared
memory using the IOWR/IORD
(#00@@) instruction, the first read/write
word (offset word @@ from the
beginning of the IOWR/IORD Area) is
incorrect.

Check the offset word @@ in the IOWR/
IORD (#00@@) instruction and the first
words of the IOWR Area and IORD
Area (m + 6 and m + 7 in the DM Area
allocations).

0084 --- Not used. ---

0085 No message. ON PC interrupt number is out of range. Use 01 to 99.

0086 No message. The PC interrupt number is an illegal
BCD value.

Use a valid BCD value.

0087 --- Not used. ---

0088 --- Not used. ---

0089 --- Not used. ---

Error
code

Error message Probable cause Corrective measures

0090 No message. Incorrect setting for program number at
startup (DM Area allocations).

Set any between 00 and 04 (BCD).

0091 No message. Incorrect automatic transfer settings
from flash ROM (DM Area allocations).

Set either 00 or 5Ahex.

0092 No message. Incorrect Start Mode settings (DM Area
allocations).

Set either 00 or 5Ahex.

0093 No message. Incorrect initial value transfer settings
(DM Area allocations)

Set either 0 or 1 (BCD).

0094 No message. Not used (DM Area allocations). Set 0 (BCD).

0095 No message. Incorrect baud rate parameters for port
1, 2, or terminal (DM Area allocations).

Set any of 00 to 08 (BCD).

0096 No message. Incorrect number of transfer words per
cycle (DM Area allocations).

After checking that the PC is a
C200HX/HG/HE or CS1-series PC, set
either 00 or 5Ahex.

0097 No message. Invalid screen size or terminal mode. Set the specified value within the
proper range.

0098 No message. The first transfer word setting for the
IORD or IOWR Area is incorrect (DM
Area allocations).

Set either 00, or between 10 and 99
(BCD).

0099 No message. Invalid DMA option (port 1 or 2) Set either 00 or 5Ahex.
247

Troubleshooting Section 9-2
When an error is generated, the following commands are used to include an
error processing program within a BASIC program.

9-2 Troubleshooting
Error List

Situation Command Remarks

To branch to an interrupt subroutine when
an error has been generated.

ON ERROR GOTO command Include an error processing program in the
interrupt subroutine.

To obtain the error code that has been
generated.

ERR function Use this function in the interrupt subroutine
at the ON ERROR GOTO destination.

To obtain the line number where the error
occurred.

ERL function Use this function in the interrupt subroutine
at the ON ERROR GOTO destination.

To simulate error generation. ERROR command The action that is considered to have
generated the error for a specified error
code is performed.

Error Probable cause Possible correction

None of the indicators are lit. Power to the PC itself is turned OFF. Turn ON the PC power.

The ASCII Unit is not mounted
securely.

Mount the ASCII Unit securely.

One of the Special I/O Units is faulty.
(Waiting for the Special I/O Unit to start
up)
CPU Unit does not start operation.

Exchange the faulty Special I/O Unit.
The faulty Unit has “$” only displayed in
the Read I/O Table operation.
Before replacing the Unit, perform
Corrective Measure 1, given below.

The Special I/O Unit number occurs
twice.
(I/O Unit over)
In such cases, the CPU Unit will not
start operation.

Adjust the settings to ensure that the
unit numbers do not occur more than
once.
The unit number can be viewed using
Read I/O Table.

The refresh between the CPU Unit and
the ASCII Unit has not occurred
properly. (Special Unit error)
In such cases, only the ASCII Unit
stops operating.

After eliminating the cause of the fault,
Turn ON the corresponding Restart Bit
(OFF→ON→OFF).
If not restored after restarting, press
the Ctrl+X Keys.

Perform Corrective Measure 1, given
below.

An error has occurred in the Special I/
O Unit or the CPU Unit as a result of
damage to the BASIC program
memory.

Corrective Measure 1: Set the user
memory default switch on the back
panel of the ASCII Unit to the right
(ON) and turn the power OFF then ON
again. Set the default switch back to
the left and turn the power OFF then
ON again. If the ASCII Unit still does
not reset after this process, replace the
Unit.

ERR1/2/T indicator is lit.

(Port #1/port #2/terminal port
communications error.)

The connecting cable is not connected
to the device properly.

Connect the connecting cable correctly
and secure with screws.

The connecting cable is burnt out or
the connection at the connector is
faulty.

Repair or exchange the connecting
cable.

The baud rate or communications
parameters of the connected device
and the ASCII Unit do not match.

Match the baud rate and
communications parameters of the
connected device and the ASCII Unit.

ERR (error) indicator is lit. (System/
BASIC error)

Incorrect data has been set for the DM
Area in the PC.
Alternatively, a BASIC program
execution problem has been
generated.

Check the error code and error
message and take the appropriate
action for that error.
248

Troubleshooting Section 9-2
Note “Ctrl+X Keys” means to press the X Key while holding down the Ctrl Key.

ERR (error) indicator is flashing.
(Battery error)

The battery connector is disconnected. Connect the battery connector
properly.

The battery voltage has dropped. Replace with new battery.

All ERR indicators are flashing and
PROGRAM MEMORY ERROR
appears on the initial screen, and
pressing Ctrl+X Keys is ineffective.

The BASIC program memory is
destroyed.

Change the DM setting so that the
flash ROM is not read automatically at
startup and then toggle the START/
STOP switch on the front panel of the
Unit to START, STOP, and START
again. The BASIC program memory
will be cleared.

If the program is backed up in flash
ROM, the program memory can be
recovered afterwards using the
ROMLOAD command.

Error Probable cause Possible correction
249

Troubleshooting Section 9-2
Troubleshooting Flowchart

CPU Unit power ON

RUN indicator (green)

Lit

ERR indicator (red)

Lit

Flashing

Battery voltage is low
or battery is not
installed.

Replace the battery
with a new one or
connect the battery
connectors correctly.

System error or
BASIC error
generated.

Check the contents of words n + 7 allocated in
the IR/CIO Area in the CPU Unit using a PC pe-
ripheral device (such as Programming Console).

Bits 12 to 15: Error type
 B: BASIC error
 0: System error
 1: Port #1 communications error
 2: Port #2 communications error
 3: Terminal port communications error

Bits 0 to 11: Error code
 00 to 99 (BCD)

Not lit

Normal operation
(See note on the
next page.)

Not lit

All ERR indicators (red)

Not lit

Lit

The BASIC program
memory of the ASCII
Unit is damaged.

5-V power is not
supplied to the
ASCII Unit or the
MPU in the ASCII
Unit is out of control.

Toggle the START/
STOP switch from
STOP to START to
STOP to initialize the
memory.
If the program is
backed up in flash
ROM, execute the
ROMLOAD command
or set so that the flash
memory is automati-
cally read at startup.
The BASIC program
will be sent to the user
memory.

Check the power
supply or restart the
Unit.

Correct the DM set-
tings and restart
the Unit.

If the RUN indicator
and all the ERR indi-
cators are still ON,
replace the Unit.

BASIC error System error Communications port error

Correct the BASIC
program and perform
processing according
to the error code.

or
Check that the allo-
cated words in the DM
Setup Area are cor-
rect.

Restart the Unit.
If the ERR indi-
cator is still ON,
replace the Unit.

Check the communica-
tions conditions.

Examples:

Are the communications
parameters of the exter-
nal device the same as
those of the CPU Unit?

Is there an applications
problem caused by the
relationship of the BASIC
processing speed and the
communications proces-
sing?

Is noise causing prob-
lems in the communica-
tions cables?

Perform processing ac-
cording to the error code.

ERR indicator (red)

Check the allocated
DM settings on the
CPU side.

DM settings are in-
correct

If the RUN indica-
tor is still ON, fol-
low the procedure
used when the pro-
gram memory is
damaged.

Not lit

Lit

The BASIC program
memory of the ASCII
Unit is damaged.

If the auto-boot set-
ting (automatically
reads user program in
flash ROM at startup)
is set to 1 (DM bits 8
to 15 are set to 5
Hex), change the set-
ting to 0 (not automat-
ically read).

(See 9-1 List of Error
Messages for details.)

(See 9-1 List of Error
Messages for details.)
250

Troubleshooting Section 9-2
Note The following flowchart shows the BASIC indicator during normal operation.

9-2-1 Procedure for Dealing with Damage to the Program Memory
1,2,3... 1. Turn OFF the power supply to the PC and remove the ASCII Unit from the

Backplane.

2. Set the user memory default switch on the back panel of the ASCII Unit to
the right (ON) and attach the ASCII Unit to the Backplane.

3. Turn ON the power supply to the PC and check that all the indicators on
the ASCII Unit are flashing (except T/R). The CPU Unit is now ready for
operation. if the DM setting is set to automatically read the flash ROM at
startup (DM bits 8 to 15: 5A), set to 0 (flash ROM not automatically read).
(If the indicators are not flashing, replace the Unit.)

4. After checking that all the indicators are flashing, turn OFF the power sup-
ply to the PC and remove the ASCII Unit from the Backplane.

5. Set the user memory default switch on the back panel of the ASCII Unit to
the left (OFF), and attach the ASCII Unit to the Backplane.

6. Turn the power to the PC ON, and check that the RUN indicator is lit. (If the
RUN indicator is not lit, replace the Unit.)

7. Since the program memory is now set to default (all clear), programs need
to be transferred once more to RAM (by setting DM bits 8 to 15 to 5A, so
that flash ROM is read automatically at startup, etc.).

Note When performing the above procedure, make sure that the DM setting for
automatically reading the flash ROM at startup is not set to read (bits 8 to 15:
00). If the setting is already set to automatic (bits 8 to 15: 5A), set to 0 and
then perform the procedure.

Normal operation

BASIC indicator (green)

Lit

Not litFlashing

BASIC program is stopped.

BASIC program is being executed.Quick flashingSlow flashing

Waiting for transfer of
BASIC program.

Waiting for INPUT command, or
waiting for PRINT command, or
waiting for command input (in
command mode).
251

CPU Unit Error Indicators Section 9-3
9-3 CPU Unit Error Indicators
The CPU Unit of the C200H/HS, C200HX/HG/HE, or CS1-series PC monitors
errors that occur in the ASCII Unit as described in this section. The errors are
indicated for the ASCII Unit as a Special I/O Unit.

9-3-1 Special I/O Unit Error List
Error Error cause and operation Remedy

Waiting for Special I/
O Unit startup

The program memory of the ASCII Unit is damaged
or there is a hardware fault at a Special I/O Unit.
The PC will not begin operation in this condition.

Perform the procedure for damage to the pro-
gram memory. If the Unit still will not restart,
replace the Special I/O Unit where the error
occurred.
The faulty Unit will be indicated by a “$**”
character in the I/O Table Read operation.

I/O Unit over Two or more Special I/O Units have the same unit
number setting. The PC will not begin operation in
this condition.
The Special I/O Unit Error Flag (SR 25415) will be
ON.

Change the unit number settings to eliminate
duplications.

The unit numbers can be listed with the I/O
Table Read operation.

Special I/O Unit error Refreshing between the CPU Unit and Special I/O
Unit did not proceed normally. In this case, only the
faulty Unit won’t operate.
The Special I/O Unit Error Flag (SR 25415 for
C200H-family PCs; A40206 for CS1-series PCs)
will be ON.

With a C200H/HS PC, determine the unit
number of the faulty Unit from Error Flags
AR 0000 through AR 0009. Restart the Unit
by toggling the corresponding Restart Bit
(AR 0100 to AR 0109) after eliminating the
cause of the error.
With a C200HX/HG/HE PC, determine the
unit number of the faulty Unit from Error Flags
SR 28200 through SR 28215. Restart the
Unit by toggling the corresponding Restart Bit
(SR 28100 through SR 28115) after eliminat-
ing the cause of the error.
With a CS1-series PC, determine the unit
number of the faulty Unit from Error Flags
A41800 through A41815. Restart the Unit by
toggling the corresponding Restart Bit
(A50200 to A50215) after eliminating the
cause of the error.
If the Unit doesn’t restart after toggling the
Restart Bit, perform the procedure for dam-
age to the program memory. If the Unit still
will not restart, replace the Unit.
252

CPU Unit Error Indicators Section 9-3
9-3-2 Useful Flags and Control Bits
Special I/O Unit Error
Flags

The PC error flags in the following tables will indicate the following errors.

• Duplicated unit numbers on Special I/O Units

• Refreshing between the CPU Unit and Special I/O Unit didn’t proceed
normally.

Note *Of the C200HX/HG/HE CPU Units, used only in the C200HX/HG-CPU5@-
(Z)E C200HX/HG-CPU6@-(Z)E.

Special I/O Unit Restart
Bits

To restart a Special I/O Unit, toggle (OFF → ON → OFF) the corresponding
Restart Bit shown in the following table. These bits can be used to restart the
Unit without turning off the power supply.

Flag address Function

C200H/HS C200HX/HG/HE CS1

Errors Unit
Number

Duplication

AR 0000 SR 28200 A41800 A41100 ON when an error occurred in Unit 0.

AR 0001 SR 28201 A41801 A41101 ON when an error occurred in Unit 1.

AR 0002 SR 28202 A41802 A41102 ON when an error occurred in Unit 2.

AR 0003 SR 28203 A41803 A41103 ON when an error occurred in Unit 3.

AR 0004 SR 28204 A41804 A41104 ON when an error occurred in Unit 4.

AR 0005 SR 28205 A41805 A41105 ON when an error occurred in Unit 5.

AR 0006 SR 28206 A41806 A41106 ON when an error occurred in Unit 6.

AR 0007 SR 28207 A41807 A41107 ON when an error occurred in Unit 7.

AR 0008 SR 28208 A41808 A41108 ON when an error occurred in Unit 8.

AR 0009 SR 28209 A41809 A41109 ON when an error occurred in Unit 9.

--- SR 28210 A41810 A41110 ON when an error occurred in Unit A (10).*

--- SR 28211 A41811 A41111 ON when an error occurred in Unit B (11).*

--- SR 28212 A41812 A41112 ON when an error occurred in Unit C (12).*

--- SR 28213 A41813 A41113 ON when an error occurred in Unit D (13).*

--- SR 28214 A41814 A41114 ON when an error occurred in Unit E (14).*

--- SR 28215 A41815 A41115 ON when an error occurred in Unit F (15).*

Model Flag address Function

C200HX/HG/HE(-Z)
C200H/HS

SR 25415 ON when an error occurred in a
Special I/O Unit.

CS1 A40206

A40113 ON with the same unit number
has been assigned to more
than one Special I/O Unit.

Bit address Function

C200H/HS C200HX/HG/HE CS1

AR 0100 SR 28100 A50200 Restarts Unit 0.

AR 0101 SR 28101 A50201 Restarts Unit 1.

AR 0102 SR 28102 A50202 Restarts Unit 2.

AR 0103 SR 28103 A50203 Restarts Unit 3.

AR 0104 SR 28104 A50204 Restarts Unit 4.

AR 0105 SR 28105 A50205 Restarts Unit 5.

AR 0106 SR 28106 A50206 Restarts Unit 6.

AR 0107 SR 28107 A50207 Restarts Unit 7.

AR 0108 SR 28108 A50208 Restarts Unit 8.
253

Reading and Clearing the Error Log Section 9-4
Note *Of the C200HX/HG/HE CPU Units, used only in the C200HX/HG-CPU5@-
(Z)E C200HX/HG-CPU6@-(Z)E.

Program memory in the ASCII Unit may be destroyed if the ASCII Unit is
restarted while it is executing startup processing after the power supply is
turned ON. Program restarts so that they will not occur during startup pro-
cessing.

Example:

9-4 Reading and Clearing the Error Log

9-4-1 Overview of Error Log Table
The ASCII Unit has an error log table which contains up to of 30 errors. When
an error occurs, the error code and type are stored in the Error Log Table.

AR 0109 SR 28109 A50209 Restarts Unit 9.

--- SR 28110 A50210 Restarts Unit A (10).*

--- SR 28111 A50211 Restarts Unit B (11).*

--- SR 28112 A50212 Restarts Unit C (12).*

--- SR 28113 A50213 Restarts Unit D (13).*

--- SR 28114 A50214 Restarts Unit E (14).*

--- SR 28115 A50215 Restarts Unit F (15).*

Bit address Function

C200H/HS C200HX/HG/HE CS1

User-defined restart bit BASIC RUN Flag

Word n+5, bit 07

Special I/O
Unit Restart
Bit

ASCII Unit

Error log
table

Newest

Up to 30

When toggling word n bit 06,
the previous error type/code
is called.

Allocated I/O (n + 7)
When an error is generated, the newest
error type/code is recorded on the Error
Log Table.

New/old error flag

By toggling this bit back and forward between 1 and 0,
the previous error type/code is displayed on the Error
Log Table in n + 7.

Error type/code

Error type/code

Error type/code

Allocated I/O (n + 5)

Allocated I/O (n)

Error type/code

Error type Error code
254

Maintenance Section 9-5
9-4-2 Reading the Error Log Table
The Error Log Table is reflected in the Allocated I/O as shown below. There-
fore, the table can be read from the CPU Unit via the Allocated I/O.

• When an error is generated, the newest error code and error type is set to
n + 7 words in the IR/CIO Area Allocations.

• To trace past error codes and error types, refer to the Error Log Table
when toggling the Allocated I/O word n bit 06 from 1 to 0 and 0 to 1. The
previous error code and error type will be set to n+7 words. If there are no
older errors the n + 7 words will become 00hex once and then return to the
newest error.

Note The ERR function is used when an error is generated and that error
code is to be read in the BASIC program.

• The error that has been read can be monitored to determine whether or
not it originated after the program was run (i.e., old or new error informa-
tion) by using word n + 5 bit 08 in the IR/CIO Area. This bit matches each
error type/code for the error log.

9-4-3 Clearing Errors
Errors are cleared using the ERC command as follows:

By executing the ERC command while in Command Mode, the error status at
that point will be deleted and the error types and codes in the Error Log Table
will also be cleared.

Clearing Errors from the
ASCII Unit

The IOWR (SPECIAL I/O UNIT WRITE) instruction can be executed with a
control code of #EC00 to delete error status (such as with ERC in program
mode). The generated error type and code will remain in the Error Log Table.

Clearing Error Codes
Using BASIC Commands

The ERC command can be executed in Program Mode to delete the current
error status. The deleted error type/codes will remain in the Error Log Table.
These errors will all be given the status “old.”

9-5 Maintenance

9-5-1 Mounting Precautions
• Turn OFF the power before exchanging ASCII Units.

• After exchanging ASCII Units, confirm again that the new Unit is not faulty.

• If the ASCII Unit has a fault, the user memory area (RAM) in the ASCII
Unit and the BASIC program or library functions in the flash ROM cannot
be read in some cases. Save the compiled BASIC program and library
functions on an external device (e.g., personal computer).

IOWR

C

S

D

C: #EC00
S: Any (data must be 0000)
C200HX/HG/GE
D: Bits 12 to 15: Unit number (0 to F)
 Bits 00 to 11: 001hex

CS1-series PCs
D: Bits 00 to 03: Unit number (0 to F)
D+1: 0001hex
255

Maintenance Section 9-5
9-5-2 Replacing Batteries
1,2,3... 1. Turn OFF the power. (If the power is already OFF, turn ON the power for at

least one minute and then turn it OFF again.)

2. Press down on the lock lever of the Backplane with a screwdriver, and re-
move the ASCII Unit.

3. Remove the cover of the battery case on the back panel of the ASCII Unit
using a flat screwdriver.

4. Unclip the battery connectors, and replace the batteries. This operation
must be completed within five minutes.

5. Replace the battery case cover.

6. Mount the ASCII Unit to the Backplane.

Replacement Batteries Name: Battery Set
Model: C200H-BAT 09

Battery Life and
Replacement Time • The effective period (maximum life) of a battery is five years at an ambient

temperature of 25°C, whether or not the ASCII Unit is connected to elec-
tricity. If the ambient temperature is too high, the life of the batteries will be
shortened.

• Replace the ASCII Unit within one week of the ERROR indicator flashing
(red) on the front panel of the unit. Once the ERROR indicator starts to
flash (red) on the front panel of the unit, the Battery Error Flag (word n+5
bit 06) will turn ON. Use this flag for battery maintenance.

Note Having a spare ASCII Unit and battery available will enable quick and smooth
repairs on faulty Units.

Securely hold
the lead wires
and pull off the
connector
using sufficient
force.
256

Appendix A
Operating Precautions

Changing from C200H-ASC02

Execution Time
The time required by the C200H-ASC11/ASC12/ASC31 to execute commands is different from the C200H-
ASC02. Therefore, the execution time of BASIC programs will depend on the ASCII Unit being used.

Machine Language Programs
Programs created on the C200H-ASC02 using machine language cannot be used with the C200H-ASC11,
C200H-ASC21, or C200H-ASC31 ASCII Unit.

Integer Format
In the C200H-ASC11/ASC21/ASC31, real numbers (single-precision and double-precision) are in floating-point
constant format. Since the standard has changed to conform to IEEE-754, the results of operations using real
numbers may change. If precise operations are required, use double-precision variables for the arguments.

Example: 10 A# = 0.9 + 0.1
20 A = ACOS (A#)

Command Competition in Interrupt Processing
In the C200H-ASC02, an interrupt cannot be generated while a BASIC program command is being executed.
This is possible, however, for the C200H-ASC11/ASC21/ASC31. Therefore, if an interrupt is generated while a
command is being executed and the same command is included in the interrupt subroutine, there will be com-
petition between the two commands and operations will not run smoothly (e.g., if an interrupt is generated
while the PRINT command is executing and the interrupt subroutine contains the PRINT, INPUT, LINE INPUT
command for the same port). To stop competition between commands from occurring, exclusively control inter-
rupts by using control commands to enable, disable, and stop execution.

Handling Communications Errors
In the C200H-ASC02, the BASIC program will not stop executing due to a communications error. In the same
way, if a communications error is generated with the C200H-ASC11/ASC21/ASC31 and the ON ERROR com-
mand is not used, the BASIC program will not stop executing. The BASIC program will stop executing, how-
ever, if the ON ERROR command is used and a new error (not a communications error) is generated while an
error interrupt subroutine is being executed.

Internal Bit Allocations
The functions of the words and bits allocated in memory have changed. Make sure to check the allocations
when using ladder programs in the CPU Unit. Functions and operations for the ASCII Busy Flag have changed,
so exercise caution when using this flag.

ASCII Unit System Setup
The method of setting up the ASCII Unit system has changed from using the DIP switch on the back of the Unit
to using 10 words at the beginning of the DM Allocation Area. Use a PC peripheral device to set the allocated
DM words in the CPU Unit.
257

Operating Precautions Appendix A
Communications Transmission Code and Transfer Control Signal
Depending on the device code specifications for the OPEN command, the limitations of the codes output when
executing the PRINT command have changed (all transmission codes have been changed to outputs except
for those specified using the TERM command for port 2). In the same way, depending on the device code spec-
ifications for the OPEN command, the operations of the transfer control signals (timing chart) have been
changed. Check the interface and external devices (See SECTION 4 Data Exchange with General-purpose
External Devices).

Terminal Emulation Mode Selection
If the same terminal used with the C200H-ASC02 is to be used with the C200H-ASC11/ASC21/ASC31 and it
supports VT100 mode, use VT100 mode. If the terminal does not support VT100 mode, use FIT10 mode.

Using PC READ/PC WRITE (Including @) Character-string
Variables
In the C200H-ASC02, when character-string variables are used for the variable with the PC READ/PC WRITE
(including @) commands, the first four characters in the character string are written, and only these four char-
acters are read to the variable. For the C200H-ASC11/ASC21/ASC31, all of the characters stored in the vari-
able are written and word data up to 255 characters can be read.

Example: C200H-ASC02

PC READ “@D,0,5,5H4” ; A$,B$,C$,D$,E$

Example: C200H-ASC11/ASC21/ASC31

PC READ “@D,0,5,5H4” ; A$(Five words of data will be read from A$.)

The following example show the difference in operations between the C200H-ASC02 and the C200H-ASC11/
ASC21/ASC31 when the following format is used.

Example: PC READ “@D,0,5,5H4” ; A$(0)

C200H-ASC02: The first word will be stored in A$(0).

C200H-ASC11/ASC21/ASC31: Five words of data will be stored in A$(0).

If changing from the C200H-ASC02 to the C200H-ASC11/ASC21/ASC31, the program will also need to be
changed as the operations are different.

Example 1

Before changing:

10 PC READ “@D,0,10,S10H4” : A$(0)

Executing this program with a C200H-ASC11/ASC21/ASC31 will generate a FORMAT ERROR.

After changing:

10 PC READ “@D,0,10,S10H4” : A (0)
20 FOR I=0 TO 9 : A$(I)=RIGHT$ (“0000” + HEX$(A(I)),4) : NEXT I

Example 2

Before changing:

10 PC READ “@D,0,5,5H4” ; A0$,A1$,A2$,A3$,A4$

After changing:

10 PC READ “@D,0,5,5H4” ; A$
20 A0$=MID$(A$,1,4)
30 A1$=MID$(A$,5,4)
40 A2$=MID$(A$,9,4)
50 A3$=MID$(A$,13,4)
60 A4$=MID$(A$,17,4)

When using a C200H-ASC11/ASC21/ASC31, PC and DM data can be easily sent to and from peripheral
devices.
258

Operating Precautions Appendix A
Example

Example 3

Before changing:

10 PC READ “@D,0,255,100A3,100A3,55A3” ; A$,B$,C$

If the above syntax is used for a C200H-ASC11/21/31, a FORMAT ERROR will occur.

After changing:

10 PC READ “@D,0,100,100A3” ; A$
20 PC READ “@D,0,100,100,100A3” ; B$
30 PC READ “@D,0,200,55,55A3” ; C$

A maximum of 127 transfer words can be placed into multiple variables by separate the transfer values using
the MID$ function in the same way as shown in Example 2.

Before changing:

10 PC READ “@D,0,4,2A3,2A3” ; A$,B$

After changing:

10 PC READ “@D,0,4,4A3” ; A$
20 A$=MID$(A$,5,4)
30 A$=MID$(A$,1,4)

For the C200H-ASC11/21/31, only one character-string variable can be used for each variable. The multiple
settings that could be performed for the C200H-ASC02 are not possible. For details on the formats for other
PCs, refer to Appendix C PC Format.

Terminal Operations

Terminal Software Limitations
VT100 mode can be used as a terminal emulation mode for the C200H-ASC11/ASC21/ASC31. Nevertheless,
even if the terminal software used supports VT100 mode, the limitations of the actual terminal software func-
tions may result in some ASCII Unit functions being unavailable. (For example, the Cursor Keys on the Hyper-
terminal for the Japanese version of WINDOWS 95 cannot be used.)

EDIT Command Restrictions
Do not continuously press the Up and Down Cursor Keys when using them to move lines being edited with the
EDIT command. Doing so will add the Up or Down Cursor Key code to the edited lines.

Executing Programs
In the C200H-ASC02, the BASIC source program is executed as it is input. To improve the execution speed of
the BASIC program in the C200H-ASC11/ASC21/ASC31, once a BASIC source program is input, it is compiled
to an intermediate code (a simpler code that identifies the command contents) and then it is executed. There-
fore, if the RUN command is executed using the C200H-ASC11/ASC21/ASC31, there is a delay while compil-
ing is being performed before the actual program is executed. The RUN compiling time is approximately 10
seconds in the 53-KB (approx. 1,300 lines) program. This time will vary according to the commands used in the
program. The intermediate code is regenerated the first time the program is executed after the program (area)
is changed.

DM 0000

DM 0001

DM 0002

1234

5678

9ABC

100 PC READ "@D,0,3,3H4";A$

110 SD$=HEAD$+A$+TERM$

120 PRINT SD$

A$"123456789ABC"
259

Operating Precautions Appendix A
Saving Programs
Never turn OFF the power to the PC while writing the program to flash ROM using the ROMSAVE command
(until the command prompt is displayed at the terminal). Doing so will damage the flash ROM and saving data
may be no longer possible. Therefore, be sure not to disconnect power to the PC while the ROMSAVE com-
mand is being executed.

RS-422A/485 Ports
Port 2 (RS-422A/485) of C200H-ASC21 can be used in 1:N communications, however, full-duplex communica-
tions are not possible with this port.

FCS Command Error Check Code Arithmetic Operation
The calculations for CRC-16 and CRC-CCITT used with the FCS command to determine the error check code
of the character expressions is described below. Check that the equations are the same as those for the exter-
nal devices.

CRC-CCITT: Using XMODEM
All 8-bit data is placed in series, it is then divided by a specific 17-bit binary value (1, 0001, 0000, 0010, 0001),
and the remainder (16-bit) is used as the error check code as shown below. The initial value is 0 (16 bits all 0).

CRC-16: Using MODBUS
All 8-bit data is placed in series, it is then divided by a specific 17-bit binary value (1, 0001, 0000, 0010, 0001),
and the remainder (16-bit) is used as the error check code as shown below. The initial value is –1 (16 bits all 1).

Baud Rate for Receive Data Interrupt
When an ON COM interrupt is used, the baud rate of all ports will be as follows:

Port 1 + port 2 ≤ 38.4 Kbps

If the baud rate is set to exceed this condition, a PORT CONFIGURATION ERROR will be generated.

8 bits
MSB LSB

First data

Data

Final data

8 bits
MSB LSB

First data

Data

Final data
260

Operating Precautions Appendix A
Baud Rate for PC Data Transfer
A maximum of 127 words of data can be transmitted in one cycle. If executing PC READ/PC WRITE with data
of a comparatively large size (such as 127 words) and the data is being received using a high baud rate (19.2
kbps or higher), the overlap of data being received and sent will extend the time required to complete the trans-
mission and the cycle time at the PC will also be extended. The effect on the PC cycle time can be minimized
by transmitting a maximum of 20 words per cycle.

Operations after Aborting Program Execution
If a BASIC program that is being executed with an open communications port is aborted by pressing the
Ctrl + X Keys, and data has already been received at the communications port, the return of the prompt after
the LIST display command is executed may be delayed. To stop the delay, after the program execution has
been aborted input the CLOSE command, and then execute the LIST display command.

Executing BASIC Interrupts during Command Execution
When a BASIC program is stopped due to the wait status of a command such as WAIT, a BASIC interrupt will
occur (ON COM, ON PC, etc.) but only one interrupt subroutine will be executed for all BASIC interrupts. All
other interrupts will held and a record made of each.

Program Startup Time
If a program is saved to ROM using ROMSAVE immediately after being debugged, the program memory may
contain garbage. This may cause delays in starting program execution after turn ON the power supply. If this
occurs, save the program at a terminal, load the program from the terminal, and then use ROMSAVE.

Power Interruptions or Restarts during Program Memory Operations
Do not allow PC power to be interrupted or restart the CPU Unit while program memory operations are being
performed, including those for LOAD, SAVE, ROMLOAD, ROMSAVE, autoboot, and compiling for RUN. Pro-
gram memory may be destroyed, preventing further operation.

Consumption of User Memory through Repetition of Subroutine
Branching
Observe the following precautions when using the following two items in combination.

• 1: Subroutine using the GOSUB or interrupt command (ON COM, ON KEY, ON PC, ON TIMER, ON
ALARM, ON TIME$, or ON ERROR)

• 2: GOTO, ON ERROR GOTO/RESUME, ON KEY GOTO, or WAIT command

When the subroutine using the GOSUB or interrupt command (1 above) is forced to branch using the GOTO
command (2 above), data will remain in the stack area, consuming the user memory area inside the ASCII
Unit. When this branching is repeated, an OUT OF MEMORY error (B007), one of the BASIC errors, will occur
or the stack area will overflow, which may result in a malfunction of the system operation.

Be sure to design the program so that it always returns to the subroutine after branching using the GOTO com-
mand and exits from the subroutine using the RETURN command. Refer to the following example.

Example:
10 ON ERROR GOTO 100
20 PRINT FRE
30 GOSUB 1000
90 END
100 PRINT ERR,ERL;
110 RESUME 20
1000 A=1/0 ’Divide by zero
1010 RETURN
261

Operating Precautions Appendix A
In the above example, the subroutine will be branched from the 1,000th line to the 100th line using the ON
ERROR GOTO command if an error occurs.

In this case, exit from the subroutine by changing the 110th line from RESUME 20 (to resume from the 20th
line after error processing) to RESUME NEXT (to resume from the line following the line that caused an error.)

ASCII Unit Operation when Program Memory is Damaged
When program memory is damaged a PROGRAM MEMORY ERROR or a Special Unit error on the PC side
will occur and CPU Unit operation will be held. The PC can be restarted by using the default switch on the back
panel of the ASCII Unit. In this situation, the program memory will be forcibly initialized, so always be sure to
use ROMSAVE to save programs to flash ROM memory after inputting them. Refer to Reading the BASIC Pro-
gram from Flash ROM in 7-1 Programming Procedure, for details on how to load the saved program to flash
ROM.
Be careful when overwriting data in the user memory area using the POKE command, as damage to the pro-
gram memory may result. When damage to the program memory is caused by the use of the POKE command,
a memory error may not occur immediately.
262

Appendix B
Comparison with C200H-ASC02

The following table provides details of the differences between the C200H-ASC11/ASC21/ASC31 and the
C200H-ASC02 ASCII Units. For an overview of the comparison, see 1-5 Comparison with Previous ASCII
Units.

Item C200H-ASC02 C200H-ASC11/21/31
Executing programs Executes the source

program as it has been input
as soon as RUN is executed.

Generates intermediate
code for the source program
before executing it, so there
is a short delay between
when RUN is executed and
the program is executed.

Memory Allocation in the character
variable area

Dynamic method. The user can select between
a static (fixed) method and a
dynamic (free) method,
depending on whether the
OPTION LENGTH command
is used.

Defragmentation
(reorganization of unused
areas)

Executed while program is
executing.

Executed when the RUN
command is executed.

Setting memory areas Memory areas specified
using the FRE command.

None

Communications Communications buffers Receive buffer: 256 bytes

Transmit buffer: 256 bytes

Receive buffer: 512 bytes

Transmit buffer: 512 bytes

ER (DTR) code Controlled by the system. Also can be controlled by the
DTR command in the
program instead of the
system.

Indicator showing that data
is waiting to transmit.

The ERR indicator is lit. BASIC indicator flashes
slowly.

Limiting the output code
when executing the PRINT
command, depending on the
device code specifications
for the OPEN command.

Depending on the code,
some codes are not output,
and some are output with LF
added.

The TERM command cannot
be used for communications
port #2. Otherwise, there is
no limitation on outputs.

DMA (Direct Memory
Access) data transmission
when sending data with the
PRINT command.

Not available. (DMA
transmission is not available.
Depending on the software,
send data and stop the
BASIC program execution.)

Available. (DMA
transmission can be enabled
or disabled. While software
data transmission is being
performed, parallel hardware
data transmission is possible
by using a trigger from the
software.

Exchanging data with the
CPU Unit

Number of data words that
can be exchanged using PC
READ/PC WRITE (including
@) in one cycle of the CPU
Unit

20 words max. 20 words or 127 words max.
(available for C200HX/HG/
HE or CS1-series PCs only)

Amount of data that can be
exchanged using I/O
allocation.

CPU-to-ASCII Unit: 8 bits

ASCII-to-CPU Unit: 8 bits

CPU-to-ASCII Unit: 32 bits

ASCII-to-CPU Unit: 16 bits

Monitoring errors generated
in the ASCII Unit from the
CPU Unit.

Not available Available

Storing data in character-
string variables for such
commands as PC READ and
PC WRITE.

Only the first 4 characters
are read or written for each
character variable.

Up to 255 characters can be
read or written for each
character variable.
263

Flags/Control Bits Software Restart Bit Yes No

Read Bit and PC Interrupt Bit Uses the Write Bit. The Read Bit and the PC
Interrupt Bit are different.

ASCII Busy Flag Changes status when the
PC interrupt is generated.

Does not change when the
PC interrupt is generated.
Instead, the PC Interrupt Fail
Flag changes if the PC
interrupt fails.

Interrupts Multiple interrupts Yes. If an XXX ON command
occurs, or another interrupt
is generated while executing
an interrupt subroutine, the
executing interrupt
subroutine is stopped, and
the next interrupt subroutine
is branched to.

No. If another interrupt is
generated while executing
an interrupt subroutine, the
next subroutine is executed
after the first interrupt
subroutine execution is
completed. The interrupt will,
however, stop executing
immediately when an ON
ERROR interrupt is
generated.

Multiple interrupts are
executed in the order that
they were generated.

The next interrupt subroutine
is executed according to
order of priority.

Executing interrupts Even if a BASIC interrupt
occurs while a command is
being executed, it will not
branch into the interrupt
subroutine. Branching will
only occur after the
command has been
executed.

When a BASIC interrupt
occurs while a command is
being executed, the interrupt
subroutine will be executed,
but only once.

Processing speed Execution time depending on
destination of GOSUB and
GOTO commands.

Changes according to the
distance from the current line
to the destination.

Same time for all
destinations.

Commands RND command Random number generator logic is different.

WAIT command Timer does not stop while
interrupt subroutine is being
executed.

Timer stops while interrupt
subroutine is being
executed.

PRINT USING command Display will change depending on the USING format.

Number range Integer range –32768 to 32767 –2147483648 to
2147483647

Single-precision real number
range

–1.70141E + 38 to 1.70141E
+ 38

±1.2 ×10–38 to 3.4 × 1038

Double-precision real
number range

–1.701411834604692D + 38
to 1.701411834604692D +
38

±2.2 × 10–308 to 1.79 × 10308

Precision of arithmetic
function results.

Single-precision Single or double-precision

Saving to/reading from ROM Uses the LOAD command to
read from EEPROM.

Reads from /writes to the
flash ROM and user memory
(RAM) using the ROMLOAD
and ROMSAVE commands.

Item C200H-ASC02 C200H-ASC11/21/31

Appendix C
PC Format

PC Format
When the ASCII Unit reads from and writes to the I/O memory data of the CPU Unit or the shared memory of
the ASCII Unit itself using the following commands, it recognizes the data format of the I/O memory or shared
memory. The ASCII Unit uses this data format when reading data from the I/O memory or the shared memory
into the ASCII Unit variable or writing data from the ASCII Unit variable to the I/O memory or the shared mem-
ory. To allow such read-write operation, the data format must be specified. This specified data format is called
the PC format.

Target Commands
For CPU Unit I/O Memory Data: PC READ/PC WRITE, PC READ@/ PC WRITE@,

PC QREAD@/ PC QWRITE@ commands
For ASCII Unit Shared Memory Data: PC EPUT/ PC EGET commands

• In the A format, multiple PC words can correspond to one ASCII Unit variables, with a maximum of 127
words for one variable.
For formats other than A, S, and where the variable is a character variable, there must be one variable cor-
responding to each word.
In the A format, one variable corresponds to one format.
In the S format, one array variable corresponds to one format.
For formats other than A, S, and where the variable is a character variable, multiple variables can be allo-
cated to one format.

• When “m” is omitted, one word is assumed.
Words from 1 to 64 (1 to 127 for A format) and numerals from 1 to 255 can be handled at one time.
Formats and subcommands can be specified as character variables.

Reading Data from CPU Unit I/O Memory or ASCII Unit Shared Memory to
ASCII Unit Variable

Name Format Meaning Example

I (BCD) format mIn When variables
are numerals:

m = 1 to 255

n = 1 to 4

When variables
are characters:

m = 1 to 255
(see note 1)
n = 1 to 4

The following
must be true
when variables
are characters:
m x n < 256

Data of m words is regarded as
BCD data, and the data from the
rightmost 1 to n digits of each
word is stored in each variable.

2I3:
Data of 2 words is regarded as
BCD, and the data from the
rightmost 1 to 3 digits of each
word (bits 00 to 11) is stored in 2
variables.
265

PC Format Appendix C
H (hexadecimal)
format

mHn When variables
are numerals:

m = 1 to 255

n = 1 to 4
When variables
are characters:

m = 1 to 255
(see note 1)

n = 1 to 4

The following
must be true
when variables
are characters:
m x n < 256

Data of m words is regarded as
hexadecimal data, and the data
from the rightmost 1 to n digits
of each word is stored in each
variable.

2H3:
Data of 2 words is regarded as
hexadecimal, and the data from
the rightmost 1 to 3 digits of
each word (bits 00 to 11) is
stored in 2 variables.

O (octal) format mOn When variables
are numerals:

m = 1 to 255
n = 1 to 4

When variables
are characters:
m = 1 to 255
(see note 1)

n = 1 to 4
The following
must be true
when variables
are characters:
m x n < 256

Data of m words is regarded as
octal data, and the data from the
rightmost 1 to n digits of each
word is stored in each variable.

2O3:
Data of 2 words is regarded as
octal, and the data from the
rightmost 1 to 3 digits of each
word (bits 00 to 11) is stored in 2
variables.

B (bit) format mBn When variables
are numerals:

m = 1 to 255
n = 0 to 15

When variables
are characters:
m = 1 to 255
(see note 1)

n = 1 to 15
The following
must be true
when variables
are characters:
No. of
characters <
256

Data of m words is regarded as
binary data, and the nth bit of
data from each word only is
converted to decimal data (other
bits are regarded as 0) and
stored in each numeric variable.

2B3:
Data of 2 words is regarded as
binary, and the 3rd bit of data
from each word only is
converted to decimal data (other
bits are regarded as 0) and
stored in each numeric variable.

A (ASCII) format mAn m = 1 to 255
(see note 2)

m = 127 or less
if n = 1 to 2

Data of m words is regarded as
ASCII data, and the data
specified as leftmost or
rightmost in each n word stored
in 1 character variable.
n = 1: Rightmost byte
n = 2: Leftmost byte
n = 3: Leftmost and rightmost
bytes

2A3:
Data of 2 words is regarded as
ASCII data, and the leftmost and
rightmost bytes of each word (4
characters total) is stored in 1
character variable.

Name Format Meaning Example
266

PC Format Appendix C
Note 1. For versions up to V1.02, m = 1 to 64. The version is shown on the terminal startup display.

2. For versions up to V1.02, m = 1 to 127. The version is shown on the terminal startup display.

Reading Data from ASCII Unit Variable to CPU Unit I/O Memory or ASCII
Unit Shared Memory

S (array
variable) format

SmXn
Note: X is any of
I,H,O or B.

m = 1 to 255
n = same as
specified format

Data of m words is regarded as
data in the specified format
(BCD, hexadecimal, octal, or
bit), and the data from each
word is stored in n array
variables. Character string
arrays cannot be used as
variables.

S2I2:
Data of 2 words is regarded as
BCD data and data from each
word is stored in 2 array
variables.

Name Format Meaning Example

Name Format Meaning Example

I (BCD) format mIn When variables
are numerals:

m = 1 to 255

n = 1 to 4

When variables
are characters:

m = 1 to 64

n = 1 to 4

Data from the rightmost 1 to n
digits of m variables is
converted to BCD data, and
saved to the rightmost 1 to n
digits of each word for m words.

2I3:
Data from the rightmost 1 to 3
digits of 2 words is converted to
BCD data, and saved to the
rightmost 1 to 3 digits of each
word for 2 words.

H (hexadecimal)
format

mHn When variables
are numerals:

m = 1 to 255

n = 1 to 4
When variables
are characters:

m = 1 to 64
n = 1 to 4

Data from the rightmost 1 to n
digits of m variables is
converted to hexadecimal data,
and saved to rightmost 1 to n
digits of each word for m words.

2H3:
Data of the rightmost 1 to 3
digits of 2 words is converted to
hexadecimal data, and stored in
the rightmost 1 to 3 digits of
each word for 2 words.

O (octal) format mOn When variables
are numerals:

m = 1 to 255
n = 1 to 4

When variables
are characters:
m = 1 to 64

n = 1 to 4

Data from the rightmost 1 to n
digits of m variables is
converted to octal data, and
saved to the rightmost 1 to n
digits of each word for m words.

2O3:
Data of the rightmost 1 to 3
digits of 2 words is converted to
octal data, and stored in the
rightmost 1 to 3 digits of each
word for 2 words.

B (bit) format mBn When variables
are numerals:
m = 1 to 255

n = 0 to 15

Each of m numeric variables is
regarded as decimal, and
converted to binary data, and
the nth bit of data from each
word only (other bits are
regarded as 0) is stored to each
word for m words.

2B3:
Each of 2 numeric variables is
regarded as decimal and
converted to binary data, and
the 3rd bit of data from each
word (other bits are regarded as
0) only is stored in each of 2
words.
267

PC Format Appendix C
Up to 255 words can be transferred at one time. For integer variables, however, only a maximum of 50 to 60
words can be transferred at one time. The following restrictions apply:

• A maximum of 255 characters can be written in one line.

• One variable must correspond to each word for integer variables.

Example: H format

Up to 79 variables using 3 characters per variable (236 ÷ 3 = 79) can be written. Therefore, a maximum of 59
words can be transferred at one time.

PC READ Format Conversion Examples

I Type Format

A (ASCII) format mAn m = 1 to 127
n = 1 to 3

Two ×m characters from the
beginning of 1 character
variable are converted into
ASCII data (2 characters
correspond to 1 word), and is
stored in the leftmost/rightmost
byte position in each word
specified by n.

n = 1: Rightmost byte (leftmost
byte is 00 hex)

n = 2: Leftmost byte (rightmost
byte is 00 hex)

n = 3: Leftmost and rightmost
bytes

2A3:
The first 4 characters in 1
character variable is converted
to ASCII data, and stored to the
leftmost and rightmost bytes of
each word for 2 words.

S (array
variable) format

SmXn

Note: X is any of
I,H,O or B.

m = 1 to 255

n = similar to
each specified
format.

Data of n array variables is
converted to a data format
specified by X (any of BCD,
hexadecimal, octal, or bit) and
stored to each of m words.
Character string arrays cannot
be used as variables.

S2I2:
Data from 2 array variables is
converted to hexadecimal and
stored in each of 2 words.

Name Format Meaning Example

1000 PC READ "59H4"; A0, A1, A2, . . . , B0, B1, . . . ,

19 characters 236 characters max.

1 2 3 4

5 6 7 8

n

n + 1

PC word data Integer
variables

PC READ "I1"; J → J = 4
PC READ "I2"; J → J = 34
PC READ "I3"; J → J = 234
PC READ "I4"; J → J = 1234

Character
variables

PC READ "I1"; A$ → A$ = "4"
PC READ "I2"; A$ → A$ = "34"
PC READ "I3"; A$ → A$ = "234"
PC READ "I4"; A$ → A$ = "1234"
PC READ "2I4"; A$ → A$ = "12345678"
268

PC Format Appendix C
H Type Format

O Type Format

B Type Format

8 9 A B

PC word data Integer
variables

PC READ "H1"; J → J = &HB = 11
PC READ "H2"; J → J = &HAB = 171
PC READ "H3"; J → J = &H9AB = 2475
PC READ "H4"; J → J = &H89AB = −30293

Character
variables

PC READ "H1"; A$ → A$ = "B"
PC READ "H2"; A$ → A$ = "AB"
PC READ "H3"; A$ → A$ = "9AB"
PC READ "H4"; A$ → A$ = "89AB"
PC READ "2H4"; A$ → A$ = "89ABCDEF"

C D E F

n

n + 1

1 2 3 4 n

n + 1

PC word data Integer
variables

PC READ "O1"; J → J = &4 = 4
PC READ "O2"; J → J = &34 = 28
PC READ "O3"; J → J = &234 = 156
PC READ "O4"; J → J = &1234 = 668

Character
variables

PC READ "O1"; A$ → A$ = "4"
PC READ "O2"; A$ → A$ = "34"
PC READ "O3"; A$ → A$ = "234"
PC READ "O4"; A$ → A$ = "1234"
PC READ "2O4"; A$ → A$ = "12341234"

1 2 3 4

C 1 2 2

PC word data

Integer
variables

PC READ "B1"; J → J = 2
PC READ "B2"; J → J = 0
PC READ "B5"; J → J = 32
PC READ "B14"; J → J = 16384
PC READ "B15"; J → J = -32768

Character
variables

PC READ "B1"; A$ → A$ = "2"
PC READ "B2"; A$ → A$ = "0"
PC READ "B5"; A$ → A$ = "32"
PC READ "B14"; A$ → A$ = "16384"
PC READ "B15"; A$ → A$ = "−32768"
PC READ "2B15";A$ → A$ = "−32768-32768"

C 1 2 2
269

PC Format Appendix C
A Type Format
If the integer variable type does not match, an error will be generated.

S Type Format

5 1 5 2

PC word data

Character
variables

PC READ "2A1"; A$ → A$ = "RT"
PC READ "2A2"; A$ → A$ = "QS"
PC READ "2A3"; A$ → A$ = "QRST"

5 3 5 4

Q: &H51
R: &H52
S: &H53
T: &H54

0 1 2 3

PC word data

Integer variables
(In I type format)

PC READ "S4I4"; A (1) → A (1) = 123
→ A (2) = 4567
→ A (3) = 8901
→ A (4) = 2345

4 5 6 7

8 9 0 1

2 3 4 5 Note: Character-string array variables cannot be used.
270

PC Format Appendix C
Examples of PC WRITE Format Conversions

I Type Format

0 0 0 4

PC word data

Integer variables ← J = 1234

PC WRITE "I1"; J

PC WRITE "I2"; J

PC WRITE "I3"; J

PC WRITE "I4"; J

0 0 3 4

0 2 3 4

1 2 3 4

0 0 0 1

Character variables ← A$ = "1234"

PC WRITE "I1"; A$

PC WRITE "I2"; A$

PC WRITE "I3"; A$

PC WRITE "I4"; A$

0 0 1 2

0 1 2 3

1 2 3 4

1 2 3 4

 ← A$ = "12345678"PC WRITE "2I4"; A$
5 6 7 8
271

PC Format Appendix C
H Type Format

0 0 0 B

PC word data

Integer variables ← J = −30293 = &H89AB

PC WRITE "H1"; J

PC WRITE "H2"; J

PC WRITE "H3"; J

PC WRITE "H4"; J

0 0 A B

0 9 A B

8 9 A B

0 0 0 8

Character variables ← A$ = "89AB"

PC WRITE "H1"; A$

PC WRITE "H2"; A$

PC WRITE "H3"; A$

PC WRITE "H4"; A$

0 0 8 9

0 8 9 A

8 9 A B

8 9 A B

 ← A$ = "89ABCDEF"PC WRITE "2H4"; A$
C D E F
272

PC Format Appendix C
O Type Format

B Type Format

If the character variable type does not match an error will be generated.

Relationship between Format and Variables

For Bn, if n bit is ON when the variables will be displayed in binary numbers, turn ON PC bit n and turn OFF
other bits. If the variable n bit is turned OFF, turn OFF all the PC bits.

Example: –32749 = &H8013 = 1000 0000 0001 0011
B0, B1, B4, B15: ON
B2, B3, B5 to B14: OFF

0 0 0 4

PC word data

Integer variables ← J = 668 = &1234

PC WRITE "O1"; J

PC WRITE "O2"; J

PC WRITE "O3"; J

PC WRITE "O4"; J

0 0 3 4

0 2 3 4

1 2 3 4

0 0 0 1

Character variables ← A$ = "1234"

PC WRITE "O1"; A$

PC WRITE "O2"; A$

PC WRITE "O3"; A$

PC WRITE "O4"; A$

0 0 1 2

0 1 2 3

1 2 3 4

PC WRITE "2O4";A$ ← A$ = "12341234"
1 2 3 4

1 2 3 4

0 0 0 1

PC word data

Integer variables ← J = −32749 = &H8013

PC WRITE "B0"; J

PC WRITE "B1"; J

PC WRITE "B4"; J

PC WRITE "B15"; J

0 0 0 2

0 0 1 0

8 0 0 0
273

PC Format Appendix C
A Type Format
If the integer variable type does not match, an error will be generated.

S Type Format

Note 1. Numeric variables and character variables can be used together for PC READ and PC WRITE com-
mands if the character variable is at the end of the format as follows:
Example: PC READ “@D,0,2,H4,H4”; B, A$
If the command format is written as PC READ “@D,0,2,H4,H4”; A$, B, a FORMAT ERROR will be
generated. The above combination cannot be used if array variables have been used as variables for
PC WRITE.

2. Character-string array variables cannot be used with the S-type format. Use the following format to
read or write character data.
Example: PC READ “@D,0,2,10,10H4”; A$

3. Only one character-string variable can be used in the variable list, so multiple strings are not possible.

4. If using “mA1, mA2” when writing ASCII variables in A–type format to I/O memory in the CPU Unit,
provide 2 x m characters in the character variable.

5. Negative values cannot be written using the I–type format for PC WRITE. A format error will occur.

0 0 5 1

PC word data

Character variables ← A$ = "QRST"

PC WRITE "2A1"; A$

PC WRITE "2A2"; A$

PC WRITE "2A3"; A$

0 0 5 2

5 1 0 0

5 2 0 0

5 1 5 2

5 3 5 4

Q: &H51
R: &H52
S: &H53
T: &H54

9 8 7 6

PC word data
← A (1) = 9876

Integer variables ← A (2) = 5432

(In I type format) ← A (3) = 1098

← A (4) = 7654
5 4 3 2

1 0 9 8

7 6 5 4

PC WRITE "S4I4"; A (1)

Example 1: PC WRITE "@D,0,4,4A,4A1";("1234"+"1234")

Example 2: A$= 1234"
PC WRITE "@D,0,4A,4A1";(A$+A$)

Dummy data
274

Appendix D
Formats for Storing Variables in Memory

Variables are stored to memory in the following ways, depending on the variable type.

• Short Integer Variables

• Long Integer Variables

• Single-precision Real Number Variables

• Double-precision Real Number Variable

• Character String Variable

Address
15 0
MSB LSB

15 0
S D

1 bit 15 bits

S: Sign (0: positive, 1: negative)
D: Numeric value

Address
15 0
MSB

15 0
S D

1 bit 31 bits

S: Sign (0: positive, 1: negative)
D: Numeric value

LSB

Address
15 0
S

31 0
S E

1 bit 8 bits

S: Sign (0: positive, 1: negative)
E: Exponent (offset: 127)
M: Mantissa

LSB
E M

M
M

23 bits

15 0
S

63 0
S E

1 bit 11 bits

S: Sign (0: positive, 1: negative)
E: Exponent (offset: 1023)
M: Mantissa

LSB

E M
M

M

52 bitsM
M

15 0
Maximum length

• Add empty bytes and adjust so that there will be an
even number of memory bytes for each variable.

• The character data section not being used beyond
the current length contains undefined data.

Current length
First character

8

Second character

7

Final character
275

Formats for Storing Variables in Memory Appendix D
• Array Variables

A (0)

A (1)

A (2)

A (n)

+ 0

+ n

For one-dimensional arrays

• As an element of the array, each variable is stored
in memory in order.

B (0, 1)

B (0, 2)

B (x, y)

B (0, 0)
+ 0

+ n

For two-dimensional arrays

• For multi-dimensional arrays, the rightmost sub-
script is stored in memory, in the order of alteration.
276

Formats for Storing Variables in Memory Appendix D
VARPTR (Variable Name)

Function
Assigns the memory address where the variable value is stored.

Notation Example
B& = VARPTR (A)

Details
• Assigns the memory address to the area where variable data specified for the variable name is stored.

• Shows the address of the pointer to where character data is stored for character variables.

Relationship between Variable Type and VARPTR Address

Rightmost 8 bits

Short integer variable

Leftmost 8 bits Address

Rightmost position of stored address

Leftmost position of stored address

String array

Address

8 bits

Long integer variable

Leftmost 8 bits Address

8 bits

Rightmost 8 bits

Double-precision real number variable

Address

Rightmost 8 bits of fixed point

Signal and exponent

Middle 8 bits of fixed point

Rightmost 8 bits of fixed point

Single-precision real number variable

Address

Leftmost 7 bits of mantissa

Signal and exponent

Leftmost 7 bits of mantissa
277

Formats for Storing Variables in Memory Appendix D
Leftmost memory
block address

Integer array variable

A$ (0) address

Character string array variable

A$ (2) address

Address

Rightmost memory
block address

A$ (3) address

A$ (n) address

Longest Current

length

1 character 2 characters

8 0

+0

+n

Leftmost memory
block address Address

Rightmost memory
block address

8 0

31 0

A$ (0)

A$ (2)

A$ (3)

A$ (n)

15 0

+0

+n

15 0
278

Appendix E
Command Execution Time Samples

Assignments

Statements

Assignment Execution
time (ms)

A=1 0.19

A%=1 0.14

A=A + 1 0.41

A=A – 1 0.41

A=A*1 0.39

A=A/1 0.41

A=A\1 0.36

A=A MOD 2 0.35

A=A∧ 2 0.52

A%=NOT A% 0.20

A%=A% AND 1 0.28

A%=A% OR 1 0.28

A%=A% XOR 1 0.28

A%=A% EQV 1 0.28

A%=A% IMP 1 0.28

Statement Execution time
(ms)

@IF A=0 THEN B=0 ELSE B=1 ENDIF (true and false) 0.45

BITON C%, 0 / BITOFF C%, 0 0.12

CLOSE 0.60

FOR I=1 TO 10000: NEXT I (for one loop) 0.14

FOR I%=1 TO 10000: NEXT I% (for one loop) 0.07

GOSUB *TEST* TEST: RETURN 0.13

GOTO 0.03

IF A=0 THEN B=0 ELSE B=1 (true and false) 0.45

INPUT #2, A$ 200 characters Approx. 20.0

LET 0.19

LINE INPUT #2, A$ 200 characters Approx. 30.0

OPEN #2, “COMU:” 1.06

PC EGET #0, 90, “S90I4”; A (0) 7.8

PC EPUT #0, 90, “S90I4”; A (0) 8.4

PC GET I, J 0.34

PC PUT I 0.17

PC QREAD “@D,0,10,10I4”; A,B,C,D,E,F,G,H,I,J (See note 2.) 11.5

PC QWRITE “@D,0,10,10I4”; A,B,C,D,E,F,G,H,I,J (See note 2.) 8.8

PC READ “I4”; A(See note 1.) 7.5

PC READ “5I4”; A,B,C,D,E(See note 1.) 7.6

PC READ “10I4”; A,B,C,D,E,F,G,H,I,J (See note 1.) 7.7

PC READ “63H4”; A$ (See note 1.) 41.9
279

Command Execution Time Samples Appendix E
Note 1. The execution time includes the time required for handshaking with the PC. Scan time is usually 2 ms
(approx.).
Transfer of less than 20 words:

2 × PC scan times max.
@: 1 × PC scan time max.
Transfer of more than 20 words (C200H Mode):

INT ((No. of transfer words – 1)/20) + 2 × PC scan times max.
@: INT ((No. of transfer words – 1)/20) + 1 × PC scan time max.
Transfer of more than 127 words (C200H-HX/HG/HEPC Mode):

INT ((No. of transfer words – 1)/127) + 2 × PC scan times max.
@: INT ((No. of transfer words – 1)/127) + 1 × PC scan time max.

2. The execution time includes the time required for handshaking (IORD or IOWR execution) with the
PC.

Functions

PC WRITE “I4”; A (See note 1.) 3.9

PC WRITE “5I4”; A,B,C,D,E (See note 1.) 4.2

PC WRITE “10I4”; A,B,C,D,E,F,G,H,I,J (See note 1.) 7.7

PC WRITE “63H4”; A$ (See note 1.) 20.7

PC READ “@D,0,1,I4” A (See note 1.) 5.8

PC READ “@D,0,5,5I4”; A,B,C,D,E (See note 1.) 5.9

PC READ “@D,0,10,10I4”; A,B,C,D,E,F,G,H,I,J (See note 1.) 7.8

PC READ “@D,0,63,63H4”; A$ (See note 1.) 32.7

PC READ “@D,0,63,63H4”; A$ (α mode) (See note 1.) 30.8

PC WRITE “@D,0,1,I4” A (See note 1.) 4.0

PC WRITE “@D,0,5,5I4”; A,B,C,D,E (See note 1.) 4.0

PC WRITE “@D,0,10,10I4”; A,B,C,D,E,F,G,H,I,J (See note 1.) 7.7

PC WRITE “@D,0,63,63H4”; A$ (See note 1.) 20.7

PC WRITE “@D,0,63,63H4”; A$ (α mode) (See note 1.) 9.0

PRINT A$ (9,600 bps, 255 characters) Normal mode:
Approx. 300

DMA mode:
Approx. 5

REM 0.03

WHILE A < 100 : A = A + 1 : WEND (for one loop) 0.67

Statement Execution time
(ms)

Function Execution
time (ms)

A=ABS(–1.5) 0.22

A=ACOS(0.5) 1.72

A%=ASC(”A”) 0.16

A=ASIN(0.5) 1.7

A=ATN(0.5) 0.74

B#=CDBL(1) 4.7

D$=CHR$(&H41) 0.45

C%=CINT(0.5) 0.24

A=COS(0.5) 0.92

A=CSNG(0.1#) 0.22

A=EXP(5) 1.05
280

Command Execution Time Samples Appendix E
A$=STRING$(250,”A”) B$=FCS(A$,1)
Horizontal parity

1.0

C%=FIX(1.1) 0.26

D$=HEX$(1) 0.5

INPUT$(100,#2) 3.0

C%=INT(1.1) 0.25

D$=LEFT$(”ASCII”,2) 0.51

A%=LEN(”ASCII”) 0.17

A%=LOC(2) 0.22

A=LOG(5) 1.0

D$=MID$(”ASCII”,1,1) 0.62

D$=OCT$(&051) 0.54

D$=RIGHT$(”ASCII”,2) 0.5

A=SIN(0.5) 0.73

A=SQR(2) 0.66

D$=STR$(1) 0.64

A=TAN(3) 1.01

A%=VAL(”A”) 0.2

Function Execution
time (ms)
281

Appendix F
Sample Programs

1) Transferring PC Data from the ASCII Unit

Ladder Program

Basic Program
100 PC WRITE “5I4”; A,B,C,D,E

The 5 words of data starting with the first transfer word DM 0000 are read as BCD data and stored (read) in the
5 variables A, B, C, D, E.

2) Transferring PC Data from the PC to the ASCII Unit

Ladder Program
A ladder program is not required.

Basic Program
100 PC READ “@D,0,5,5I4”; A,B,C,D,E

Five words of data starting with DM 0000 from the CPU Unit are read as BCD data and each fourth digit (16-
bit) of data are stored (read) in the 5 variables A, B, C, D, E.

3) Transferring ASCII Unit Data from the ASCII Unit to the PC

Ladder Program

Basic Program
100 PC WRITE “3I4”; A,B,C

The 3 variables A, B, and C (4-digit data) is converted to BCD data and transferred (written) to the correspond-
ing 4 digits (16 bits) of 3 words in the CPU Unit, beginning with the above first transfer word (DM 0010).

ASCII Busy
Flag

No. of transfer words
DM Area: 5 words

First transfer word
DM 0000

Execution
command

Write Bit

MOV #0005 103

10001

MOV #0000 104

(PC READ)

Execution com-
mand

ASCII Busy Flag

Read Bit

No. of transfer words
DM Area: 3 words

First transfer word
DM 0010

MOV #0010 104

MOV #0003 103

10500

10002 (PC WRITE)
283

Sample Programs Appendix F
4) Transferring ASCII Unit Data from the ASCII Unit to the PC

Ladder Program
A ladder program is not required.

Basic Program
100 PC WRITE “@D,10,3,3I4”; A,B,C

The 3 variables A, B, and C (4-digit data) is converted to BCD data and transferred (written) to the correspond-
ing 4 digits (16 bits) of 3 words in the CPU Unit, beginning with the first transfer word (DM 0010).

5) Transferring Data Asynchronously from PC to ASCII Unit:
C200HX/HG/HE PCs Only

Ladder Program

Basic Program
100 PC QREAD “@D,0,5,5I4”; A,B,C,D,E

The 5 words of data that were transferred using the IOWR(FD00) command are converted to BCD and stored
in the 5 variables A, B, C, D, E as 4-digit (16-bit) data.

6) Transferring Data Asynchronously from ASCII Unit to PC:
C200HX/HG/HE PCs Only

Ladder Program

Basic Program
100 PC QWRITE “@D,0,3,3I4”; A,B,C

The 3 variables A, B, and C (4-digit data) is converted to BCD data and is ready for transferring to the 3 words
in the CPU Unit, beginning with DM 0000.

IOWR Request Flag

@IOWR #FD00 D0000 #0005

10515 10500

ASCII Busy Flag 5 words of data beginning with
DM 0000 are transferred (writ-
ten) to the ASCII Unit of Unit
No. 0.

IORD Request Flag

10514
@IORD #FD00 #0003 D0000

10500

ASCII Busy Flag

3 words of data beginning with
DM 0000 are transferred (read)
from the ASCII Unit of Unit No.
0.
284

Sample Programs Appendix F
ASCII Unit Processing as PC Coprocessor

Ladder Program

Basic Program
100 ON PC 1 GOSUB *PINT
110 PC ON
:
:
200 *PINT
210 PC EGET #0,2,”2I4”; A,B
220 C%=A+B
230 PC EPUT #0,1,”I4”; C%
240 RETURN

Execution
command

ASCII Busy Flag

Execution
command

PC Interrupt Subroutine
Completed Flag

DM 1006 = 0010
DM 1007 = 0050

Inputting data to ASCII Unit
2 words of data beginning with DM 0000 are transferred to the leading address
+00 of the IOWR Area in the shared memory of the ASCII Unit of Unit No. 0

PC interrupt No.
Interrupt No. 0 (same No. as the ON PC command)

PC interrupt
Interrupt from the CPU Unit to the ASCII Unit
(interrupt No. as the ON PC command)

PC interrupt subroutine completion check

Processing result

00100

00101

10501

10500
@IOWR #0000 D0000 #0002

@IOWR #CC00 000 #0001

IORD #0000 #0001 D0100

MOV #0001 000

DIFU 00100

DIFD 00101

PC Interrupt Failed Flag

10509
285

Appendix G
Wiring RS-232C or RS-422A/485 Cable

Connectors

Cable Processing (End
connected to FG)

See the diagrams for the lengths required in each step.

1,2,3... 1. Cut the cable to the required length.

2. Peel the sheath using a razor blade without damaging the shield weaving.

3. Remove the shield using scissors.

4. Peel the core wire of each wire using a stripper.

5. Fold back the shield wire.

6. Wrap aluminum foil tape on top of the folded shield.

25 mm

Aluminum
foil tape.
287

Wiring RS-232C or RS-422A/485 Cable Connectors Appendix G
Soldering
Solder as described next.

1. Place a heat-shrinking tube around each wire.

2. Presolder each wire and to its connector pin.

3. Solder each wire firmly in place.

4. Move the heat-shrinking tube to the soldered section and shrink the tube by heating it.

Assembling Hood
Assemble the connector hood as shown below.

Soldering iron

Heat-shrinking tube
(Internal diameter: 1.5, r=10)

1 mm

Heat-shrinking tube

Connected to FG

Aluminum foil tape

Not connected to FG
288

Appendix H
Reserved Words

Reserved word

@IF GO RENUM EQV INTRS

ALARM HELP RESET IMP INTRR

ALL IF RESTORE MOD LEFT$

AUTO INPUT RESUME NOT LEN

BASE KEY RETURN OR LOC

BITOFF LENGTH ROMLOAD XOR LOG

BITON LET ABS MID$

BRKPT LIB ROMSAVE ACOS MODEL

CLEAR LINE ROMVERIFY ASC OCT$

CLOSE LIST RTS ASIN PEEK

CLS LLIST RUN ATN RIGHT$

COM LOAD SAVE CDBL RND

CONT LPRINT SET CHR$ SEARCH

DATA MAP STEP CINT SGN

DEF NEW STOP CLNG SIN

DEFDBL NEXT SUB COS SPACE$

DEFINT OFF SYSBACK CSNG SPC

DEFLNG ON SYSLOAD CTS SQR

DEFSNG OPEN SYSMOVE DATE$ SSTACK

DEFSTR OPTION THEN DAY STR$

DEL PC TIMER DMA STRING$

DIM PGEN TO DSR TAB

DTR PINF TROFF EOF TAN

EDIT PMEM TRON ERL TIME$

EGET PNAME TRACE ERR TIME

ELSE POKE USING EXP STRING

END PRG VAL FCS STACK

ENDIF PRINT VARPTR FIX WDT

EPUT PUT WAIT FRE BYTE

ERASE PWORD WATCH HEX$ CODE

ERC QREAD WEND INKEY$ HEAD

ERROR QWRITE WHILE INPUT$ TERM

FN RANDOM WRITE INSTR

FOR READ INT

GET REM AND INTRB
289

Index

Numerics
2-wire/4-wire switch

(WIRE), 21

A
arithmetic expressions, 127

ASCII communications
with Peripheral Devices, 2

asynchronous data exchanges, 236

auto start (5A)
and START/STOP switch, 20

Automatic transfer setting, 40

B
Bar Code Reader

connecting, 26

BASIC
commands, 121
functions, 121
statements, 121

BASIC commands
execution times, 279
listed alphabetically, 129

BASIC errors, 243

BASIC functions
user-defined functions, 231

BASIC programs
continuing, 120
debugging, 232
editing, 12, 112
inputting programs, 114
processing examples, 61
programming, 14
reading from flash ROM, 116
sample programs, 283
saving to flash ROM, 116
starting, 120
starting and stopping, 20
stopping, 120
transferring, 115, 117

battery
replacement, 256

bit processing, 62

breakpoint function (BRKPT), 232

BRKPT command, 232

C
C200H-ASC02

comparison of functions and operation, 263

cable wiring, 287

cables
processing, 287
soldering, 288

character constant
definition, 123

character expressions, 127

character strings
processing, 62

character variables
allocating space, 118

clearing error messages, 241

clearing errors
with the IOWR instruction, 255

Command Mode, 121

commands
BASIC commands listed alphabetically, 129
execution times for BASIC commands, 279

comments
inputting in BASIC programs, 122

communications
communications interrupts, 64
connections, 24
multiport communications, 2
with Peripheral Devices, 2, 4

communications cables
wiring, 287

communications errors, 59

Communications interrupts, 64

communications port
closing, 53
opening, 44

connections, 24

connectors
hood, 288

constants
in BASIC programs, 123

control bits
Error Code Read Bit, 33
PC Interrupt Bit, 33, 90
Read Bit, 33
Special I/O Unit Restart Bits, 253
Sync Time Set Bit, 33
Write Bit, 33

CPU Unit
exchanging data, 69

CPU Units
compatible CPU Units, 5

D
data exchange
291

Index
applications, 235
ASCII Unit to CPU Unit, 239
asynchronous processing, 236
bit data exchanges, 240
from CPU Unit through shared memory, 85
high-speed, 237
high-volume, 239
receiving data, 51
selecting data exchange method, 74
sending data, 47
timing charts, 87
to CPU Unit through shared memory, 86
with external devices, 43
with PC EGET/PC EPUT commands, 80
with PC PUT/PC GET commands, 79
with PC QREAD/PC QWRITE commands, 82
with PC READ/PC WRITE commands, 75
with PC READ@/PC WRITE@ commands, 78
with the CPU Unit, 69

debugging BASIC programs, 232

device symbol, 46

Digital Operator
connecting, 27

DM Area allocations, 38

DM setting errors, 247

DMA data transmission, 48

E
EDIT command

precautions, 259

ERC command, 59

ERR function, 60

Error Code and Type, 37

error codes
errors listed by error code, 243

error indicators
CPU error indicators, 252

error log
reading and clearing, 254

errors
BASIC errors, 243
clearing error messages, 241
clearing with IOWR instruction, 101
clearing with the IOWR instruction, 255
communications errors, 59
DM setting errors, 247
execution errors, 246
operational errors, 244
PC Interface errors, 247

execution errors, 246

execution times
for BASIC commands, 279

expressions
definition, 127

external devices
connecting, 14
exchanging data, 43

F–H
flags

ASCII Busy Flag, 36
BASIC RUN Flag, 36
Battery Error Flag, 36
Interrupt Fail Flag, 95
IORD Request Flag, 36
IOWR Request Flag, 36
PC Interrupt Fail Flag, 36
PC Interrupt Subroutine Completed Flag, 36
Port 1 Error Flag, 36
Port 2 Error Flag, 36
Special I/O Unit error flags, 253
System BASIC Error Flag, 36
Terminal Port Error Flag, 36

floating point constants
definition, 124

high-speed data exchanges, 237

high-volume data exchanges, 239

I
ID Controller

connecting, 27

indicators, 19
troubleshooting errors, 248

INPUT# command, 51

INPUT$ function, 52

inputs
from the ASCII Unit to the CPU Unit, 35
Input Data, 37

installation, 22

integer constants
definition, 123

internal configuration, 5
internal layout, 7
interrupt functions, 64

interrupt failure, 95

interrupt priority, 65

interrupts
sending interrupts from the CPU Unit, 72

IORD Area
first word setting, 41

IORD instruction
reading ASCII Unit variables, 102
reading from shared memory, 104
292

Index
IORD/IOWR Area transfer setting, 40

IORD/IOWR Areas, 39

IOWR Area
first word setting, 41

IOWR instruction
clearing errors in ASCII Unit, 101
sending interrupts, 100
writing ASCII Unit variables, 96
writing to shared memory, 97

IOWR/IORD instructions
specifications, 95

IR Area allocations, 30

L
labels

definition, 122

LED indicators, 19
troubleshooting errors, 248

line number
definition, 121

logical expressions, 128

loop processing, 67

M–N
machine language programs, 257

maintenance, 255

manual start (00)
and START/STOP switch, 20

modes
command execution modes, 121

multiport communications, 2
nomenclature, 18

O
ON ERROR command, 59

OPEN# command, 44

operation
basic operating procedures, 12

operational errors, 244

operators, 127

OPTION LENGTH command, 118

outputs
from the CPU Unit to the ASCII Unit, 32
Output Data, 33

P
PC format, 265

PC Interface errors, 247

Peripheral Device
general connections, 26
specifying with device symbol, 46

Peripheral Devices
ASCII communications with, 2

personal computer
use as a terminal, 26

Port #1 baud rate setting, 41

Port #1 DMA transmission setting, 41

Port #2 baud rate setting, 41

Port #2 DMA transmission setting, 41

precautions
for Terminal operations, 259
operating precautions, 257
when changing from C200H-ASC02, 257
with PC READ/PC WRITE, 258

PRINT# command, 47

program memory
dealing with lost/damaged memory, 251

Program Mode, 121

program number setting, 40

R
receive buffer processing, 62

receiving data, 51

relational expressions, 128

Restart Bits
Special I/O Unit Restart Bits, 253

RS-232C connections, 24

RS-422A/485 connections, 25

S
sample programs, 283

sending data, 47

settings
in the Setup Area, 40

Setup Area, 39

soldering, 288

Special I/O Unit Area
word allocation, 30, 31

specifications, 7
for IORD and IOWR, 95
functional and performance, 7
general, 7

START/STOP switch, 20

Startup mode setting, 40

statements
definition, 122
293

Index
STEP command, 233

step function (STEP), 233

SYSMAC BUS Slave Racks
restrictions on, 5

system configuration, 3

T
Terminal

transferring BASIC programs, 117

terminal
using personal computer as a terminal, 26

Terminal emulation setting, 41

Terminal port #3 baud rate setting, 41

Terminating Resistance switch
(TERM), 21

time processing, 63

timing charts
for data exchanges, 87
for transmission control signals, 53

TRACE command, 234

trace function (TRON and TRACE), 234

transmission control signals
controlling, 46
timing charts, 53
when receiving data, 51

when sending data, 48

TRON command, 234

troubleshooting, 248

troubleshooting BASIC programs, 232

troubleshooting error messages, 241

troubleshooting flowchart, 250

U
unit number switch

(MACHINE No.), 21

user memory
DM Area allocations, 38
formatting, 21
IR Area allocations, 30

User Memory Default Switch, 21

V–W
variable arrays, 125

variable monitor function (WATCH), 233

variables, 125
storage format, 275

WATCH command, 233

wiring communications cables, 287
294

295

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Cat. No. W306-E1-3A

Revision code

Revision code Date Revised content

1 September 1998 Original production

2 July 1999 Additions made for CS1 Series.

3 June 2000 Pages 5 and 23: C200H-CPU02-E added to the table.
Page 20: C200H-CPU01-E/02-E/03-E added to the table.
Page 37: EM Area bank number added to word n+8.
Page 109: Section 6-6-1 Using the Sync Time Set Bit added.
Page 114: Description on stopping an open program added to the end of Con-
necting the Terminal.
Page 115: Description on T/R indicator added to the end of step 5.
Page 116: Cautionary information on power supply changed.
Pages 191 and 193: Table for C200H/HS/HE/HG/HX changed to one for
C200HE/HG/HX.
Page 216: Information added to the end of Remarks.
Page 233: Description on DEVICE UNAVAILABLE IN PORT X error added to
Trace.
Page 254: Precautionary note on restarting added to Special I/O Unit Restart
Bits.
Page 260: Description on program startup time and power interruptions/restart
added to Executing BASIC Interrupts during Command Execution.
Page 274: Notes 4 and 5 added.
Page 288: List of reserved words added as Appendix H.

	Title
	CONTENTS
	PRECAUTIONS
	1 Intended Audience
	2 General Precautions
	3 Safety Precautions
	4 Operating Environment Precautions
	5 Application Precautions

	SECTION 1 - Introduction
	1-1 Overview
	1-2 System Configuration
	1-3 Internal Configuration
	1-4 Specifications
	1-5 Comparison with Previous ASCII Units
	1-6 Basic Operating Procedures
	1-6-1 Editing BASIC Programs
	1-6-2 BASIC Programming Procedure
	1-6-3 Connection and Transfer to External Devices

	SECTION 2 - Installation
	2-1 Nomenclature and Functions
	2-1-1 Names of Parts
	2-1-2 Front Panel
	2-1-3 Rear Panel

	2-2 Installation
	2-2-1 Installation Method
	2-2-2 Connections
	2-2-3 General-purpose Peripheral Device Connections

	SECTION 3 - IR/CIO and DM Area Allocations
	3-1 IR/CIO Area Allocations
	3-1-1 Overview
	3-1-2 Overview of IR/CIO Area Allocations

	3-2 DM Area Allocations
	3-2-1 Overview
	3-2-2 Overview of DM Allocations

	SECTION 4 - Data Exchange with General-purpose External Devices
	4-1 Overview
	4-2 Opening a Communications Port
	4-2-1 OPEN# Command
	4-2-2 OPEN Command Specifications
	4-2-3 Control/Monitor Commands for Transmission Control Signals
	4-2-4 Device Symbol

	4-3 Sending Data
	4-3-1 PRINT# Command
	4-3-2 DMA Data Transmission
	4-3-3 Transmission Control Signals

	4-4 Receiving Data
	4-4-1 INPUT# Command
	4-4-2 Transmission Control Signals
	4-4-3 INPUT$ Function

	4-5 Closing a Communications Port
	4-5-1 Transmission Control Signals
	4-5-2 Transmission Control Signal Timing Charts

	4-6 Communications Errors

	SECTION 5 - Processing
	5-1 Processing Character Strings
	5-2 Processing Bits
	5-3 Processing Receive Buffers
	5-4 Time Processing
	5-5 Interrupt Functions
	5-6 Loop Processing

	SECTION 6 - Data Exchange with the CPU Unit
	6-1 Overview of Data Exchanges
	6-1-1 Data Exchange Methods
	6-1-2 Sending Interrupts

	6-2 Selecting the Data Exchange Method
	6-3 Details of the Data Exchange Methods
	6-3-1 Data Exchange Method No. 1
	6-3-2 Data Exchange Method No. 2
	6-3-3 Data Exchange Method No. 3
	6-3-4 Data Exchange Method No. 4
	6-3-5 Data Exchange Method No. 5
	6-3-6 Data Exchange Method No. 6
	6-3-7 Data Exchange Method No. 7

	6-4 Data Exchange Time Charts
	6-4-1 PC READ/PC WRITE Timing
	6-4-2 PC READ@/PC WRITE@ Timing
	6-4-3 PC PUT/PC GET Timing
	6-4-4 IOWR (#00@@)/IORD (#00@@) Timing
	6-4-5 PC EPUT/PC EGET Timing
	6-4-6 IOWR (#FD00)/IORD (#FD00) and PC QREAD/PC QWRITE Timing
	6-4-7 Combined IOWR (#00@@), IOWR (#CC00), ON PC GOSUB, and PC EGET Timing
	6-4-8 Combined IOWR (#CC00), IORD (#00@@), ON PC GOSUB, and PC EPUT Timing
	6-4-9 Sending Interrupts from CPU Unit to ASCII Unit: PC Interrupts

	6-5 IOWR/IORD Instruction Specifications
	6-5-1 IOWR Instruction (SPECIAL I/O UNIT WRITE)
	6-5-2 IORD Instruction (SPECIAL I/O UNIT READ)
	6-5-3 Using the IOWR and IORD Instructions

	6-6 Restrictions for CS1-series PCs
	6-6-1 Using the Sync Time Set Bit for CS1-series PCs

	SECTION 7 - Editing BASIC Programs
	7-1 Programming Procedure
	7-1-1 Editing BASIC Programs
	7-1-2 Saving BASIC Programs
	7-1-3 Transferring BASIC Programs Between ASCII Unit and Terminal

	7-2 Character Variable Space Allocations
	7-3 Starting/Stopping the BASIC Program
	7-3-1 Starting the Program
	7-3-2 Stopping the Program
	7-3-3 Stopping the Program at a Specified Line Number
	7-3-4 Continuing the Program after Stopping at a Line

	7-4 Program Configuration
	7-4-1 Command Execution Modes
	7-4-2 Programs, Lines, and Statements
	7-4-3 Character Set
	7-4-4 Constants
	7-4-5 Variables
	7-4-6 Variable Arrays
	7-4-7 Type Conversion
	7-4-8 Expressions

	7-5 List of BASIC Commands
	7-6 BASIC Commands
	7-7 User-defined BASIC Functions
	7-8 Debugging
	7-8-1 Overview
	7-8-2 Breakpoint Function (BRKPT)
	7-8-3 Step Function (STEP)
	7-8-4 Variable Monitor Function (WATCH)
	7-8-5 Trace Function (TRON and TRACE)

	SECTION 8 - Data Exchange Application Programs
	8-1 Asynchronous Processing
	8-2 High-speed Data Exchanges
	8-3 High-volume Data Exchanges
	8-4 Data Transfer: ASCII Unit to CPU Unit
	8-5 Bit Data Exchanges

	SECTION 9 - Clearing Error Messages
	9-1 List of Error Messages
	9-2 Troubleshooting
	9-2-1 Procedure for Dealing with Damage to the Program Memory

	9-3 CPU Unit Error Indicators
	9-3-1 Special I/O Unit Error List
	9-3-2 Useful Flags and Control Bits

	9-4 Reading and Clearing the Error Log
	9-4-1 Overview of Error Log Table
	9-4-2 Reading the Error Log Table
	9-4-3 Clearing Errors

	9-5 Maintenance
	9-5-1 Mounting Precautions
	9-5-2 Replacing Batteries

	APPENDIX
	A - Operating Precautions
	B - Comparison with C200H-ASC02
	C - PC Format
	D - Formats for Storing Variables in Memory
	E - Command Execution Time Samples
	F - Sample Programs
	G - Wiring RS-232C or RS-422A/485 Cable Connectors
	H - Reserved Words

	INDEX
	Revision History

