CV500-VP213/217/223/227-E
Personal Computer Unit

Technical Manual

Revised October 1995

o m

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to the product.

/\ DANGER! Indicates information that, if not heeded, is likely to resultin loss of life or serious
injury.

&WARNING Indicates information that, if not heeded, could possibly result in loss of life or
serious injury.

&Caution Indicates information that, if not heeded, could result in relatively serious or mi-
nor injury, damage to the product, or faulty operation.

OMRON Product References

All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Trademarks

Microsoft C, MS-DOS, Quick BASIC, and Quick C are all registered trademarks of Microsoft Corpora-
tion.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1,2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

© OMRON, 1995

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.

TABLE OF CONTENTS

SECTION 1
Communications and Control Functions..............

1-1 Featuresot e e
1-2 Communications/Control SEIVICES v vttt e et e et
1-3 Selecting @ SEIVICE . ..ottt ettt e e e e e e e
1-4 Communications/Control Service Details. i,

SECTION 2
Software Configuration and Driver Installation........

2-1 0 OULHNE oottt e e e e e
2-2 General Procedurest e
2-3 Program Disk Configurationttt e
2-4 Changing the Quick Library Versiono enenan ..
2-5 Copying Files ... oo e
2-6 Installing Device DIIVErSttt e e e e

SECTION 3
CPUBusLibrarycciiiiiiiiiinnreennnnccnnans

3-1 Communication withthe PC i e
3-2 Before Using BASIC i e e
3-3 BASIC FUNCHONS ..ottt ettt et e et e et et e e
3-4 Before Using C ..ottt e e e e e e
G T O 11 et o) 4 13

SECTION 4
CPUBUSDIIVEL «vviiitiittiiteereenoeesennonasnns

4-1 IntrodUCHiONttt e
4-2 The FINS Format i e e e
4-3 Usingthe CPU Bus DIiverttt e
4-4 CPU Bus Driver Operations LiStot
4-5 CPU Bus Driver Operationsttt et et
4-6 FINS Commands Serviced by Driverst
4-7 Sample Programs
4-8 Measuring CPU Bus Access Performance i,

SECTION 5
FINSLibrarycciiiiitiiiiinerieennacecnnnnsans

5-1 0 IntroduCtionttt e
5-2 BASIC Program and FINS Library Structurettt
5-3 Processing Flow ... oo oo e
5-4 Usingthe FINS Libraryt et et
5-5 FINS Library Operationsot e ettt et eeaenn
5-6 Sample Programs

SECTION 6
FINS DrivVer ...vvtittinreeeeeeeeenoeeseasonnnnnss

6-1 INtroductiont e
6-2 Processing Flow e
6-3 Usingthe FINS Drivert e e e e e
6-4 FINS Driver Operationsttt ittt eens
6-5 Sample Programst

SECTION 7

RS-232CCOmmunicatiOns ® 6 0 & 0
7-1 RS-232C Port Specificationsc.iniintin ittt

N AN e

13

14
14
15
16
16
16

19

20
24
25
45
45

77

78
78
82
85
85
98
104
117

121

122
122
123
124
126
132

137
138
138
141
142
147

155

156

vii

viii

TABLE OF CONTENTS

7-2 Serial Communications Library 156
7-3 Communications Control Functionsttt 157
7-4 RS-232C Baud Rate Limitationsttt 163
7-5 RS-232CResponse EIrorsttt e 164

SECTION 8

Controlling User Indicatorscc000veeee.. 169

8-1 The User Indicatorsottt e et et et et et e 170
8-2 Sample Program e 171

SECTION 9
Using ErrorLogsccciiiiiiiiinnnnnneeeeeess 173

O-1 Err0r Logs « oottt 174
9-2 Writing Error Recordst e 174
9-3 Reading Error Records e 176
9-4 Errors at BIOS Startup e 177

SECTION 10
Precautionscoveeeeeeeeeeceeceseaseseaseseas 179

10-1 Operating Environmentttt 180
10-2 Differences from the CV500-VP111/121-E Unitsc.coiiniiiinnn .. 180
10-3 Other Precautionsttt e e e e 181
Appendices
A Memory Configurationttt et 183
B I/O Configurationttt e e e e 185
C InterTUPES . .ottt e e e e 189
D Error Codest e 191
E FINS Commands to the CV500-VP2jj-E e 193
F FINS Commands to CV-series PCs i 195
G Troubleshooting with FINS Response Codesovvininin it 197
H PC Memory Configurationc.tntuntn ettt et et 203
I Hard Disk Interface Board Settingsc.oninin e 205

Glossarycviiiiiiiiiinnnnrcscnnscncnnnenaes 207
Indexoviiiiiiiiiiinnnnnnteeccnsnnnnnnssaaass 211
Revision Historycoviiiiinniiinnnrecnnnneess 215

About this Manual:

This manual describes the programming of the CV500-VP21[J-E Personal Computer Units including the
installation of system files and the designing of application software, and consists of the sections de-
scribed below.

Please read this manual completely and be sure you understand the information provided before attempt-
ing to program and operate a CV500-VP2[][J-E Personal Computer Unit. You must also read the Person-
al Computer Unit Operation Manual and be sure you understand the content provided within it before at-
tempting to program and/or operate a Personal Computer Unit.

Section 1 introduces the communications and control functions that can be used with the Personal Com-
puter Unit and provides instructions on how to use each of the functions.

Section 2 provides general information on the software and explains how to install the CPU Bus Driver
and FINS Driver.

Section 3 describes the BASIC and C commands that are used to communicate between the Personal
Computer Unit and the local or remote Programmable Controllers.

Section 4 introduces the CPU Bus Driver and describes the FINS commands used in the CPU Bus Driver.
Section 5 describes the FINS library.

Section 6 describes the FINS driver.

Section 7 describes the RS-232C communications functions and how to use them.

Section 8 describes how to use the error log, which records errors that occur during operation of the Unit.

Section 9 describes some important differences between the CV500-VP1[11-E and CV500-VP2[][]-E
versions of Personal Computer Unit and general precautions when setting up and using the Units.

The Appendices provides information on memory configuration, 1/0 configuration, interrupts, error
codes, FINS commands, troubleshooting with FINS response codes, PC memory configuration, and
Hard Disk Interface Board settings.

&WARNING Failure to read and understand the information provided in this manual may result in
personal injury or death, damage to the product, or product failure. Please read each
section in its entirety and be sure you understand the information provided in the section
and related sections before attempting any of the procedures or operations given.

ix

SECTION 1
Communications and Control Functions

This section introduces the communications and control functions that can be used with the Personal Computer Unit, and

provides instructions on how to use each of the functions. Use this section to determine the functions needed for your system
configuration.

T-1 FeatUures . . oo oottt e e e e e e 2
1-2 Communications/Control SEIVICESo vttt e et et 2
1-3 Selecting @ SEIVICE . ..ottt ettt e e e e e e e 4
1-3-1 Required Functions i e 4
1-3-2 Libraries, Drivers, and Programming Languages......................... 5
1-4 Communications/Control Service Details. i, 6
1-4-1 CyClC SEIVICE . ¢ . v i ettt et e e e e e e e et et e 6
1-4-2 BEvent ServViCettt e e e 7
1-4-3 CPUBUSLINK Serviceouiitii ittt it et e 11

Communications/Control Services Section 1-2

1-1 Features

High-speed Communication

Communications with other
Hierarchies

Communications with all
CPU Bus Units

Simplified Programs

The Personal Computer Unit’'s communications/control functions have the fol-
lowing features.

The Personal Computer Unit communicates with the PC through the CPU bus,
providing high-speed communications compared to an RS-232C or other inter-
faces. Almost 8K-bytes of data can be transferred at one time depending on the
type of communications servicing being used.

The Personal Computer Unit can communicate through the network up to three
hierarchies.

The Personal Computer Unit can communicate easily with other Personal Com-
puter Units, BASIC Units, and any other CPU Bus Unit within a three-hierarchy
network.

The CPU Bus Library executes all of the complicated CPU bus communications
procedures. All the user needs to do is set the parameters in the function when it
is loaded in the program, and the CPU bus can be used automatically.

BASIC and C Libraries are provided. Furthermore, the CPU Bus Driver, FINS
Driver, and FINS Library are supported for users who want to use other program-
ming languages or require more precise control of communications.

1-2 Communications/Control Services

Event Service

Cyclic Service

CPU Bus Link Service

The following table shows the three communications/control services that can
be used through the CPU bus interface.

No. Service Explanation

1 Event service Communication possible with Programmable Controller and
other Units in the local node, as well as with other
Programmable Controllers and Units through the network.

2 Cyclic service | Communication possible with the Programmable Controller
in the local node.
3 CPU Bus Link | Communication possible with Programmable Controller and
service other CPU Bus Units in the local node.

These three services are described briefly below. Refer to -4 Communications/
Control Service Details for more details.

Event service communication is accomplished with OMRON’s FINS command/
response protocol, and can be used to control other Units and obtain data from
other Units. Refer to the FINS Command Reference Manual (W227) for details.

Event servicing is the only communications/control service that can be used with
the CPU Bus Library. Users programming with only the BASIC or C CPU Bus
Library don’t need to know the details of the three services. Proceed directly to
Section 2 Software Configuration and Driver Installation after reading 1-3 Se-
lecting a Service.

Use the cyclic service for communications (similar to a data link) between the
Personal Computer Unit and the local-node PC.

This service periodically reads data from other CPU Bus Link Units in the local
node; it is useful for monitoring the most recent data or operating status of the
CPU Bus Link Units in the local node. The CPU Bus Driver must be used.

Communications/Control Services

Section 1-2

Effective Service Range

are as follows:

\
| - ——— (3CPUBUsLink Service — — —
. »
| |
| | |
. \
. SNT|SLK| vP |cPU| |
|| \
I \
I \
o — @ |
| | \
} | _ Node#t | = t—— J (2) Cyclic Service
\
\
| Network #1
\
| Node #2 Node #3
\
\
} SNT | SLK CPU SLK CPU
\
\
\ Node #1
\
\
| Network #2
\
\ Node #2 Node #3
\
\
\
‘ SNT CPU SNT | SLK CPU
\
\
| Node #1
\
\
| Network #3
} Node #2 Node #3
\
\
} SLK CPU SLK CPU
\
\
\

The effective ranges of the three types of communications and control service

Each of these three types of service uses a dedicated data area within the Per-
sonal Computer Unit. Therefore the amount of data that can be processed at one
time for any of the services depends on the size of its respective data area.

The cyclic area is the largest, followed in order by the event area and the CPU
bus link area. (Refer to the illustration below.) For example, when exchanging
large amounts of data with a Programmable Controller in the same node, effi-

3

Selecting a Service Section 1-3

cient execution can be achieved by using cyclic service. Likewise, when ex-
changing data with a CPU Bus Link Unit in the same node, a greater volume of
data can be handled by the event service than by the CPU Bus Link service.

The area used by the system is included in these areas. Refer to 1-4 Commu-
nications/Control Service Details for information on the maximum amount of
each data area that can be used at one time.

The following diagram shows the relative sizes of each service-dedicated data
area of the Personal Computer Unit.

(1) Event area (2) Cyclic area (3) CPU Bus Link area

4 Kbytes 8 Kbytes 512 bytes

1-3 Selecting a Service

This section provides the information necessary to select the type of commu-
nications service most suitable for your system configuration and describes the
libraries, drivers, and programming language to used with the selected service.

1-3-1 Required Functions

The following table shows the special features of each service. Select the ser-
vice that has the most functions needed in your system configuration.

Service Inter-network | Compatible Units Amount of
communication data/transfer
Event Up to three All CPU Bus Units | 2013 bytes
hierarchies (including FINS header)
Cyclic Not possible Only the CPU 3987 words
CPU Bus Link | Not possible All CPU Bus Units | 8 words
Event Service Other special features of the event service are listed below.
1,2, 3. 1. This is the only service that can communicate with other networks.

2. Programming is simple with the provided BASIC and C libraries.

3. High-level communications and control can be performed using the CPU
Bus Driver, FINS Driver, and FINS Library.

Cyclic Service Other special features of the cyclic service are listed below.
1,2, 3... 1. This service allows a simple data-link type of communication between the

local CPU and the Personal Computer Unit.

2. Useful for exchanging a large amount of data with the CPU at one time.

3. Communication is not possible with Units other than the CPU.

Selecting a Service

Section 1-3

CPU Bus Link Service
1,2, 3...

CPU Bus Link Service

Other special features of the CPU Bus Link service are listed below.
1. Data can be exchanged periodically (every 10 ms) with other CPU Bus Link
Units in the same node.
2. Useful for periodically exchanging data between Personal Computer Units.
3. Useful when periodically reading the CPU’s system data.
4. Transfers arelatively small amount of data compared to the other services.
This service periodically reads data from other CPU Bus Link Units in the local

node; it is useful for monitoring the most recent data or operating status of the
CPU Bus Link Units in the local node. The CPU Bus Driver must be used.

1-3-2 Libraries, Drivers, and Programming Languages

The following table shows the libraries and drivers required to use each service,
and a reference for more details. Refer to 1-4 Communications/Control Service
Details for more details on each service.

Service Library (language) and Driver Reference
Event CPU Bus Library (BASIC, C) Section 3
(See note.) CPU Bus Driver Section 4

FINS Library (BASIC) Section 5
FINS Driver Section 6
Cyclic CPU Bus Driver Section 4
CPU Bus Link | CPU Bus Driver Section 4

Note The CPU Bus Driver must be installed in the system even when the CPU Bus

Programming Languages

Services and Libraries for
BASIC Users

Library or Driver?

The CPU Bus Driver and
FINS Driver

Library, FINS Library, and FINS Driver are being used, because communica-
tions take place through the CPU Bus Driver.

The following table shows the programming languages that are supported.

Operating BASIC Cc
System
DOS Quick BASIC 4.5 (Microsoft) | MS-C 6.0, MS-C 7.0 (Microsoft)
Quick C 2.5 (Microsoft)

Use the CPU Bus Driver or FINS Driver when using a programming language
other than the ones listed above. Choose a language that can use MS-DOS
function calls and 8086 software interrupts.

Users who wish to program in BASIC should use event servicing. Programs can
be created easily when the CPU Bus Driver is used.

If the FINS Library is used, programs can be created that use FINS commands
for communication and control.

Ifa CPU Bus Library is used programs can be created and communications/con-
trol operations can be performed easily. If relatively simple operations are being
performed, such as transferring data to and from the CPU, the time required to
create programs can be reduced if the CPU Bus Library is used.

On the other hand, the Drivers and FINS Library allow precise and complicated
control operations that can’t be achieved with the CPU Bus Library.

When using event servicing, these two drivers basically perform the same func-
tion. The difference is in the headers used for data transmission and reception.
When the FINS Driver is used, it isn’t necessary to know the data format of the
header, so itis easy to use the service through the CPU bus; however, the event
service is the only service that can be used when the FINS Driver is used.

Use the information provided in this section to select the service, library, driver,

and programming language most suitable for your system, refer to the appropri-
ate sections for more details on these items, and proceed with programming.

Communications/Control Service Details Section 1-4

1-4 Communications/Control Service Details

1-4-1 Cyclic Service

Cyclic service provides a data link-type connection between the Personal Com-
puter Unit and the local-node Programmable Controller. By means of this ser-
vice, data from a Programmable Controller in the same node can be handled as
if it were data being processed in the Personal Computer Unit. Therefore this
service is effective for monitoring and controlling data in the Programmable Con-
troller (such as the contents of data areas).

Personal Computer Unit's
Programmable Controller area Cyclic area

Area for reading Program-
IOM area mable Controller’'s IOM area

Area for writing to Program-

DM area mable Controller’'s IOM area

Area for reading Program-
mable Controller’s DM area

Area for writing to Program-
mable Controller's DM area

This service can either read Programmable Controller data (in word units) into
the cyclic area of the Personal Computer Unit, or write data from the cyclic area
of the Personal Computer Unit into the Programmable Controller. Therefore,
when using this service, it is necessary to specify the data area address of the
Programmable Controller involved in the data transfer, as well as the direction of
transfer. (The direction will be either reading or writing, as seen from the Person-
al Computer Unit.)

Regardless of the direction of data transfer (i.e., Programmable Controller to
Personal Computer Unit or Personal Computer Unit to Programmable Control-
ler), the maximum number of data transfer locations that can be specified at one
time with this service is six, and the maximum total length of data that can be
specified for transfer is 4,096 words. Within that total, 109 words are used by the
system, so the maximum number of words that can be utilized by the user is
3,987.

Communications/Control Service Details Section 1-4

1-4-2 Event Service

1,2, 3.

Service Request
Command/Response

Note

Event service can execute communications with Programmable Controllers and
other devices both within and outside of the node. It can control those devices
and obtain information from them.

By means of setting the routing table, communications can be conducted
through the network, and itis possible to control and exchange data with devices
in other networks (up to a maximum of three hierarchical levels).

X Y 4

A B C D E F G

M @ 3) 4)

X to Z: Network address
A to G: Network node address

Given that the Personal Computer Unit’s node is (1), communications
will be possible with devices in node (5) via networks X, Y, and Z.

(Communications will also be possible with devices in nodes (1) through (4).

In addition, even if the routing table is not set, communications can still be con-
ducted within the same node. It is therefore possible, within the node, to refer-
ence present status such as connection information and to access the Program-
mable Controller’s variable areas.

In general, when event service is used, devices are controlled and information is
referenced in the following way. The event service executes a command with a
request with respect to the device that it wants to control or reference information
from. The response to the request (e.g., the referenced information, or whether
the control was properly executed) is then received from the device.

In other words, the event service communications procedure consists of the fol-
lowing steps:
1. Service request command is transmitted to a device that offers a service.
2. Response to the request is received from the device that offers the service.
This communications procedure is the same for other devices as well, so service
request commands can also be transmitted from other devices to the Personal

Computer Unit. In such cases, the Personal Computer Unit will transmit a re-
sponse to the request to the device that sent the service request command.

Refer to Appendix H PC Memory Configuration for details on the PC data areas
that can be specified by the user.

These conform to Programmable Controller FINS commands, and the contents
of a command will vary according to the contents of the service requested. In
addition, the contents of the response will vary according to the command. Refer
to the FINS Command Reference Manual (W227) for details.

The system, however, will return responses with respect to the commands listed
below. Thus there is no need to create responses for these commands.

Commands Eliciting System Response

No. Command
Read Controller Information
Read Time Information
Write Time Information
Loopback Test

Read Error Log

Clear Error Log

DA WIN| =

Communications/Control Service Details Section 1-4

We will now consider this communications processing procedure in more con-
crete terms.

Command from Personal Computer Unit

1,2,3... 1.

Command from Another Device

1,2, 3. 1.

1. Command transmitted 5. Command transmitted
(by the CPU Bus Driver)
. . CPU — + . | Device
User Bus receiving
-~ Driver <—=—— | command
5. Analvsi 3. Response received Response received
-Analysis 4, Response returned (See note 1)

(by the CPU Bus Driver)

The user creates a request command corresponding to the service re-
quested, specifies the device offering the service, and requests the CPU
Bus Driver to transmit the command.

At this point, control is returned to the program.

. The CPU Bus Driver receives the “transmit command” request from the

user, and transmits the specified request command to the specified device.

. In order to receive the response to the command that was transmitted, the

user requests “receive response” of the CPU Bus Driver.

. The CPU Bus Driver returns to the user the response data received from the

device to which the command had been transmitted.

. The user analyzes the contents of the response that is received.
Note 1.

The response from the destination device is received in the CPU Bus Driv-
er’s reception buffer whether or not the user receives the response.

. Steps 1, 3, and 5 are performed by the program.

3. Data analyzed 2. Command data returned 1. Command received
and response created (by the CPU Bus Driver) (See note.)
- CPU <~ <« | Device
User Bus receiving
—_— Driver ——— | command

4. Response transmitted 5. Response transmitted
(by the CPU Bus Driver)

In order to receive the request command from the other device, the user re-
quests “receive command” of the CPU Bus Driver.

. In response to the “receive command” requested by the user, the CPU Bus

Driver returns to the user the command data it has received from the other
device.

. The user analyzes the command data that is received, and creates corre-

sponding response data.

. Along with creating the response data, the user specifies the device which is

the source of the request command, and requests “transmit response” of the
CPU Bus Driver.

. The CPU Bus Driver receives the “transmit response” from the user, and

transmits the specified response data to the specified device.

Note The command reception from the device is executed regardless of
the user request. This service request command/response can
handle a maximum of 2,048 bytes of data. The system uses 36 bytes,
so the maximum amount of data that can be utilized by the user is

Communications/Control Service Details Section 1-4

Reception Processing

Note

2,012 bytes. The beginning of the 2,012 bytes is used for ICF data.
Refer to 4-2 The FINS Format for details.

Event service will be processed as outlined above, and the object of commu-
nications can be any device connected through the networks. In other words, the
device that is to be the object of communications is determined by the user of the
service.

The question, then, will be how to specify the location of that device. This is done
by means of the three types of addresses explained below. (The address of the
Personal Computer Unit is indicated in the same way.)

Network Address

The network address is the address of the network to which the device belongs.
(Network address $00 indicates the same network.)

$00 Same network address
Node Address

Within a given network, each device also has a node address. The following
codes have special meanings.

$00 Same node address
SFF Broadcast to all nodes on specified network (See note 2.)
Unit Address

Within a given node, each device has a unit address, specified by the absolute
address.

Example: CPU Bus Unit #0 will have an address of $10.

The following codes have special meanings.

$00 Unit address of Programmable Controller
$10 to $2F CPU Bus Units

$FD Peripheral Tools (e.g., FIT)

SFE Communications Units (See note 2.)

1. The actual way in which these addresses are specified will vary according to
the drivers and libraries that are used. Please refer to the sections covering
drivers and libraries.

(e.g., SYSMAC NET, SYSMAC LINK)

2. These codes can be used to specify a destination device, but can’t be used
to specify the same device, i.e., the device can’t use these codes to specify
itself.

Reception of commands and responses is executed automatically by the CPU
Bus Driver.

Number of Reception Buffers

The CPU Bus Driver has 14 internal reception buffers. (Fourteen is the default,
but the number of reception buffers can be specified in the device driver options.
Refer to Section 2 Software Configuration and Driver Installation for details.)

Among these reception buffers, there is no distinction in terms of whether they
are used for commands or responses. Data is received and stored in one of the
buffers. For example, if the data received is a command (as shown in the illustra-
tion below), the buffer will be used as a command reception buffer.

The same will apply if the data received happens to be a response. Therefore, a
total of up to 14 commands and responses can be saved internally. If a com-

9

Communications/Control Service Details Section 1-4

10

mand or response is received after that point, it cannot be saved and an error will
occur. The CPU Bus ERR indicator will light, and the error will be logged.

Nodata [W-[|-[|-[]-[- -0)-C-C-C-0C0-C1-CI-0] 14

Command 0

Response l 0
One command received

|

Nodata [|-[|-[|- |- |- -]-C-)-CI-C)-C1-[] 13
Command ||}
Response

o =

Managing Reception Buffers

The CPU Bus Driver classifies received data into commands and responses,
and saves the data internally until a request is executed for either “receive com-
mand” or “receive response.” Thus, for example, when a “receive command” re-
quest is executed (as shown in the illustration below), the leading data stored
internally as command data will be returned to the user.

When even a portion of the received data is read, that data will be discarded.
Then when the next request is executed, the next data will be returned. There-
fore, when it is preferable that the received data not be lost, it is recommended
that the maximum length reception buffer be secured, and that the maximum
number of bytes be requested.

Nodata [|-[J-[|-[]J-[J-[J-[J-[]-[] 9
Command -]-[] l 3
Response [|-[] 2

command request

|

No data CI-U-0U-TU - 0-C0-C1-T -]-M Seenote 1 10
Command [|-[] 2
Response [|-[| 2
User B See note 2

1. After datais copied to the user’s specified area, that buffer will be made a “no
data” buffer.

2. Inresponse to the command reception request, the leading data of the com-
mand will be carried over.

Communications/Control Service Details Section 1-4

1-4-3 CPU Bus Link Service

CPU bus link service periodically reads data from every device within the same
node, so it is effective for regular monitoring of new data and operating status of
all the devices in the node. The data read by this service is data from the Pro-
grammable Controller and from all the devices within the same node. Altogether,
256 words of data (in word units) can be read.

SYSNET | SYSLINK VP CPU

128 words of data
‘ 8 words of data

8 words of data

Within this, a maximum of 128 words (including information reserved for the sys-
tem) from the Programmable Controller and eight words each for Unit numbers
0 through 15 can be read.

CPU Bus Link Area Contents:

Word 000 System-reserved information
Word 008
—— Information from
Programmable Controller
Word 128
Unit #0
Word 136
Unit #1
: — Information from devices
Unit #14 (8 words/Unit)
Unit #15
Word 256

Therefore, when transmitting Personal Computer Unit information to another
device, a maximum of eight words can be written into the CPU bus link area and
information can be provided.

Data can be written only to the portion of the CPU Bus Link Area assigned to the
Personal Computer Unit’s unit number. Also, the CPU Bus Link must be enabled
in the PC Setup (letter I) in order to use this service.

The information obtained from the Programmable Controller (excluding that por-
tion reserved for system use) or from other devices by means of this service de-
pends on the contents of the CPU and devices. Therefore, when using this ser-
vice to exchange information with other devices, the data contents must be
settled in advance.

Regardless of the content of the information from a device, it can be recognized
based on that information whether or not that device is currently participating in
the CPU bus link service. The leading bit of the data area from each device can
be checked, and if the bitis ON it indicates that the device is participating in the
CPU bus link service.

The driver will automatically control the status of this flag when the user writes
data to the CPU bus link area; the user shouldn’t change the flag’s status.

11

Communications/Control Service Details Section 1-4

Example: Unit #0

Word 128 Ifbit D15 of word 128 is ON, then
J Unit #0 will be in operation.

Word 136

Information reserved for the system is also received from the Programmable
Controller. This information is configured as eight words of data. By reading this
data, the user can obtain the status, time, etc., of the Programmable Controller
at the time the data is read.

Note Evenwhenthe CPU bus link service is stopped, itis still possible to read the sys-
tem reserved information.

The information reserved for system use is as shown below.

Word 00
PC mode system sw Referto Note below.
Word 01 Minute Minute BCD (0 to 59)
Second Second BCD (0 to 59)
Word 02 Date Date BCD (1 to 31)
Word 03 Hour Hour BCD (0 to 23)
or Year Year BCD (0 to 99)
Month Month BCD (1to12)
Word 04 _
Day Day BCD (0 to 6) 0 : Sunday
Word 05
Reserved area 1
Word 06
Reserved area 2
Word 07

Reserved area 3

Note Programmable Controller Mode and System Switch Contents:

15 14 13 12 11 1 8 7 6 5 4 3 2 1 0
\15\-\-\12\11\ to ‘7‘6‘—‘4‘3‘2‘1‘0‘

The meaning when each bit is turned ON is as follows:
15: KEY-SW system protected

12 Memory card write-protected
11: UM read-protected

07: Fatal error occurred

06: Non-fatal error occurred

04: PC is operating
03: RUN mode

02: MONITOR mode
01: DEBUG mode
00: PROGRAM mode

12

SECTION 2
Software Configuration and Driver Installation

This section provides general information on the software and explains how to install the CPU Bus Driver and FINS Driver.

2-1 0 OULHNE oottt e e e e e e 14
2-2 General Proceduresot 14
2-3 Program Disk Configurationt 15
2-4 Changing the Quick Library Versiono .. 16
2-5 Copying Files . ..o e 16
2-6 Installing Device DIIVErsottt e e et e e e 16

13

General Procedures Section 2-2

2-1 Outline

As described in Section 1, the Personal Computer Unit CPU Bus Driver and li-
braries are composed of the following software.

* CPU Bus Library
* CPU Bus Driver
* FINS Library

* FINS Driver

This section describes the driver installation and file duplication required to use
these drivers and libraries, and diagrams the software configuration of the pro-
gram disk provided with the Personal Computer Unit.

When using Quick Basic 4.2, refer to 2-4 Changing the Quick Library Version for
the procedure required to modify the Quick Library.

The CPU Bus Library, FINS Library, and FINS Driver all communicate through
the CPU Bus Driver, so the CPU Bus Driver must be installed even when the oth-
er libraries and driver are used.

2-2 General Procedures

The following procedure is generally followed when using Personal Computer
Unit's CPU Bus Driver and CPU Bus Library to design application software.
1,2 3. 1. Install the CPU Bus Driver and CPU Bus Library.
Refer to 2-5 Copying Files.
2. Design the application program.

The program files to be used will vary according to the language that is to be
used for designing the program and the services that are to be employed.

Service/Program file Language used Reference
Event service used. BASIC or C Section 3 CPU Bus
CPU Bus Library used. Library
Event service used. Design with BASIC. | Section 5 FINS Library
FINS Library used.

Event service used. Design with C or Section 6 FINS Driver
FINS Driver used. assembler.

Event service, Cyclic service, | Design with C or Section 4 CPU Bus
or CPU Bus link service used. | assembiler. Driver

CPU driver used.

3. Start the application program.

14

Program Disk Configuration

Section 2-3

2-3 Program Disk Configuration

Root Directory

(Device driver)

The Personal Computer Unit CPU bus device drivers and libraries are stored on
the program disk (3.5-inch 2HD, 1.44 MB format).

For details on the installation disk configuration, refer to Appendix C in the CV
Personal Computer Unit Operation Manual (W219).

The configuration of the program disk is as follows:

— \DEV————RESET.EXE- - - - - - - - - - - Personal Computer Unit Reset Command
— SBUS.SYS- - ---------- CPU Bus Driver
—— MEMDSK.386- - - - - - - - - - Device driver for MS-Windows

(RS-232C library directory)

Small model library

—\CSIO csiosLuB - """ T T
CSIOCLIB- - ------~~---~ Compact model library
CSIOMLIB- -~~~ -~~~ -~~~ --~-- Medium model library
csioLLB-------------- Large model library

(FINS driver/library directory)

—\PRG ———— DGIOX.COM- - - - - - - - - - - - - FINS driver
[PCDGSUB.LIB-----------~- Quick BASIC library (compiler)
—— PCDGSUBQLB - - - - - - - - - - - Quick BASIC library (interpreter)
— TO42BAT - -~~~ -~~~ - - - -~ Batch file used to convert
PCDGSUB.QLB to Ver. 4.2.
(Sample programs)

\SAMPLE

(CPU Bus Library directory)

— \CVLIB \BASIC BASLIBLIB- -~~~ "~~~ - Quick BASIC library (compiler)
——BASLIBQLB - - - - - - Quick BASIC library (interpreter)
—— TO42BAT. . . - .- - - Batch file used to convert
(Sample programs) PCDGSUB.QLB to Ver. 4.2.
— \SAMPLE
——\C—————+—CLBSLIB--------- - Small model library
— CLBC.LB---------- Compact model library
—— CLIBM.LIB- - - - - - - - - - Medium model library
—— CLIBL.LIB ---------- Large model library
(Sample programs)

— \SAMPLE

15

Installing Device Drivers

Section 2-6

2-4 Changing the Quick Library Version

1,2, 3.

The CPU Bus and FINS Quick Libraries are for Quick BASIC 4.5. Use the follow-
ing commands to modify the libraries when they are used with Quick BASIC 4.2.
The batch files used to issue the following commands are contained in each di-
rectory.

CPU Bus Library

lib baslib *baslib * pcinit * pcmsg * pcrdwr *_ subfunc
*intdos * int86 *strcpy *itoa *xtoa *dosret;

link /Q baslib+_pcint+_pcmsg+_pcrdwr+_subfunc+
intdos+int86+strcpy+itoat+xtoa+dosret, baslib.qlb,

nul, bglb42.1lib;

CPU Bus Library

lib pcdgsub *pcdgsub *int86 *intdos *dosret;

link /Q pcdgsub+int86+intdos+dosret, pcdgsub.glb, nul,
bglb42.1ib;

Precautions
Users who modify the quick libraries should take the following steps:

1. Use Quick BASIC 4.2 for lib, link, and bglb42.lib.
2. Copy pcdgsub.lib, baslib.lib, and bglb42.lib into the current directory.

2-5 Copying Files

Designing with Quick BASIC

Designing with C or
Assembler

Before using the Personal Computer Unit's CPU Bus Driver, CPU Bus Library,
FINS Driver, and FINS Library, copy the following files from the program disk to
the drive that is to be used.

PCDGSUB.LIB
PCDGSUB.QLB
BASLIB.LIB
BASLIB.QLB

Copy the following files when the FINS Driver is used:
DGIOX.COM
RESET.EXE

Copy the following files when CPU Bus Driver is used:

CLIBS.LIB CLIBM.LIB

CLIBC.LIB CLIBL.LIB
The CPU Bus Driver (SBUS.SYS) is installed in ROM (Drive E). SBUS.SYS
must be copied when SBUS.SYS is to be used in a drive other than Drive E.
Copy the FINS Driver (DGIOX.COM) when the FINS Driver is used. Refer to2-6
Installing Device Drivers for details.

2-6 Installing Device Drivers

Installing the CPU Bus
Driver

16

The CPU Bus Driver (SBUS.SYS) must be installed in the system in order to use
the Personal Computer Unit's communications functions. Both the CPU Bus
Driver and FINS Driver must be installed when the FINS driver is being used.

Be sure to install the CPU Bus Driver in the system when a system disk is being
modified or a new CONFIG.SYS file is being created. Install both the CPU Bus
Driver and FINS Driver when the FINS driver is being used.

Add the following line to the CONFIG.SYS file to install the CPU Bus Driver.

DEVICE=n:\SBUS.SYS /V65 /C3 /B12

L L

Drive name Options

Installing Device Drivers

Section 2-6

Options

Installing the FINS Driver

Be sure toinsertthe SBUS.SYS line after the keyboard driver, otherwise it will be
impossible to exit by pressing the ESC Key.

Change the drive name when a SBUS.SYS file other than the one in drive E is

used.

Example: When SBUS.SYS is Copied to Drive F and Used.

DEVICE=F:<directory>\SBUS.SYS option

The following options can be specified for SBUS.SYS.

/Vnn

/Cnn

/Bnn

When a direct request is executed, the specification is made with the
interrupt signal “nn.” Specify a number from 60 to 65 for the interrupt
signal (interrupt signal 60H to 65H). If a number outside of that range is
specified, the direct request processing will not be executed.

Refer to 4-3 Using the PCU Bus Driver for details on direct requests.
When the FINS Driver, FINS Library, or CPU Bus Library are used, “65”
must be specified.

This option specifies the retry counter for CPU bus I/O area access
rights acquisition. For the retry counter, specify a number from 0to 10. If
a number outside of that range is specified, the driver will regard it as
“10.” If the option is not specified, no retries will be executed.

Increase this setting if communications are stopped by PC Busy errors.

This option specifies the number of reception buffers (1 to 14) for the
event service. The default is 14.

Lowering this number reduces the amount of memory taken up by the
CPU Bus Driver.

When the FINS Driver is used, the following line must also be added to CON-
FIG.SYS. (It must be added after the SBUS.SYS specification.)

DEVICE=n:\DGIOX.COM
(n: Drive name)

Note Be sure to add the FINS Driver after the CPU Bus Driver.

17

SECTION 3
CPU Bus Library

This section describes the BASIC and C commands that are used to communicate between the Personal Computer Unit and
the local or remote Programmable Controllers. These commands enable access to and control of Programmable Controller
memory contents, status, and error information.

3-1 Communication withthe PC 20
3-1-1 CPUBuUSLIbrary e e 20
3-1-2 CPUBus Library Contentso.itini ittt i e 23
3-1-3 Disk Configurationttt e 23
3-1-4 General Development Procedure i, 23
3-2 Before Using BASIC i e 24
3-2-1 FUNCHIONS .ottt e e e e e 24
3-2-2 Using Library Functions i i 24
3-2-3 Executing in Interpreter Format i 25
3-2-4 Executing in Compiler Format i ... 25
3-3 BASIC FUNCHONS ...ttt ettt e et e e e e e et e e 25
3-4 Before Using C ..ottt e e e e e 45
3-4-1 FUNCHONS ..ottt e e e e e e e 45
3-4-2 Using Library Functions i i 45
3-5 CFRUNCHONS . .ottt ettt e e e e e e e e 45

19

Communication with the PC Section 3-1

3-1 Communication with the PC

The Personal Computer Unit can communicate with Programmable Controllers
and CPU Bus Units over Programmable Controller networks by means of the
CPU bus interface. A CPU Bus Library, storing function subroutines that can be
used with BASIC and C programming languages, is provided for
communications via the CPU bus interface.

3-1-1 CPU Bus Library

The features of the CPU Bus Library are described in this section, along with an
example of how it can be used.

Features
The CPU Bus Library provides the following features.

High-speed Communications Communications with the Programmable Controller are conducted through the
CPU bus. Communications are much faster via the CPU bus than by other
means, such as RS-232C. You can transmit approximately 2 KB of information
at a time, at a baud rate of 16 Mbps.

Network Communications By specifying network addresses and nodes, you can communicate across
three network levels, the any local network and any interconnected network that
is not separated by more than one other network.

Easy Programming The complex communications procedures of the CPU bus are all executed by
the CPU Bus Library. When using library function in a program, it is only
necessary to set the parameters. This makes it simple to use network
communications without having specific knowledge of communications

procedures.
CPU Bus Unit As long as they are within the three network levels, the Personal Computer Unit
Communications can easily communicate not only with other Personal Computer Units but also

with BASIC Units and any other CPU Bus Units.

Error Log Access If an error should occur, you can easily access the error log in the Programmable
Controller to help troubleshoot the problem.

CPU Bus Communications
The CPU Bus Library has an interface that can be used with BASIC or C. By
creating programs with these languages, communications can be easily
executed using the CPU bus. An example is shown below of using a program
created in BASIC to write data into a Programmable Controller area and then
read data back from the same area.

In this program, functions are executed in the following order.

1,2,3... 1. PCOPEN
The CPU bus is opened (making it available for use), and preparations are
made for communications with the Programmable Controller.

PCOPEN (RTN$%)

T

The results of the open are returned.

20

Communication with the PC Section 3-1

When using the CPU bus for communications, you must execute this
function first.

Personal Computer Unit Programmable
Controller

CPU bus

2. PCWRITE
Data is written into a data area of the Programmable Controller. The data
area location into which the data is to be written and the data format can be
specified by means of parameters (e.g., SUBFMT $). In this case, two words
are written to D000OO.

NE%=0 : Network address
NO%=0 : Node address
VALUES (1) ="1001" . Write data 1
VALUES (2) ="2002" . Write data 2
SUBFMTS =" @D,0,2,$2I” : Data area location

Size to be written
Data format
PCWRITE (NE%,NO%,SUBFMTS$,VALUES (1),RTN%)

The results of the write are returned.

Personal Computer Unit Programmable
Controller

PCWRITE

CPU bus

21

Communication with the PC

Section 3-1

22

3. PCREAD
Data is read from the data area of the Programmable Controller. The data
area location from which the data is to be read and the data format can be
specified by means of parameters (e.g., SUBFMT $).

NE%=0 . Network address
NO%=0 : Node address
VALUES (1) =" " :

VALUES (2) =" " :

SUBFMTS$ =" @D,0,2,$2I” : Data area location

Size to be read
Data format
PCREAD (NE%,NO%,SUBFMTS,VALUES (1),RTN%)

The results of the read
processing are returned.

Data is returned.

Personal Computer Unit Programmable
Controller

PCREAD

CPU bus

4. PCCLOSE
The CPU bus is closed. When you have finished using the library, you must
execute this function.

PCCLOSE (RTN%)

T

The results of the close are returned.

Personal Computer Unit Programmable
Controller

PCCLOSE

CPU bus

Communication with the PC Section 3-1

CPU Bus Library Functions
The following functions are included in the CPU Bus Library.

Name Operation
PCOPEN Opens the CPU bus.
PCCLOSE Closes the CPU bus.
PCREAD Reads data from a Programmable Controller data area.
PCWRITE Writes data into a Programmable Controller data area.
PCMSRD Receives a message from another Unit.
PCMSWR Sends a message to another Unit.
PCSTAT Accesses and controls Programmable Controller status.
PCMODE Changes Programmable Controller operating modes.

3-1-2 CPU Bus Library Contents

The CPU Bus Library is configured of the software shown below. Communica-
tions with the Programmable Controller can be executed by calling external
functions from programs created with these languages.

CPU Bus BASIC Library
The CPU bus BASIC library can be used with Microsoft’s Quick BASIC 4.5.

CPU Bus C Library
The CPU bus C library can be used with Microsoft's C compilers (MS-C 6.0, 7.0)
There are four types, according to memory model.

3-1-3 Disk Configuration

The CPU Bus Library is stored in directory \CVLIB of PROGRAM DISK. The file
configuration is as follows:

\CVLIB\C

CLIBC.LIB Library for MS-C (compact model)
CLIBS.LIB Library for MS-C (small model)
CLIBM.LIB Library for MS-C (medium model)
CLIBL.LIB Library for MS-C (large model)
\CVLIB\BASIC

BASLIB.LIB Library for Quick BASIC (for compiler)
BASLIB.QLB Library for Quick BASIC (for interpreter)

3-1-4 General Development Procedure

The general procedure for developing a program using the CPU Bus Library is
as follows:

1,2, 3. 1. Copy the necessary file(s).
The file(s) that is required will vary according to the programming language
that is to be used for program development. Use the COPY command to
copy the appropriate file(s) to the drive that is to be used for development.

Developing with MS-C or assembler:
CLIBC.LIB (compact model)
CLIBS.LIB (small model)

CLIBM.LIB (medium model)

CLIBL.LIB (large model)

Developing with Quick BASIC:
BASLIB.LIB (when developing with compiler)
BASLIB.QLB (when developing with interpreter)
2. Set the CPU Bus Driver into the MS-DOS system.
The CPU Bus Driver (SBUS.SYS) is already in Drive F in the Personal Com-
puter Unit. When newly creating the MS-DOS system file, CONFIG.SYS,

23

Before Using BASIC

Section 3-2

you must insert the following line to install the CPU Bus Driver (SBUS.SYS).
(When starting from the built-in ROM, F:\CONFIG.SYS is used.)

Refer to 2-6 Installing Device Drivers for details on the parameters.
DEVICE = E:\SBUS.SYS /V65

The CPU Bus Diriver is installed in the Personal Computer Unit’s built-in
ROM Disk beforehand.

The “/V65” is for system use and must be added.

. Create the programs.

For further instructions on using libraries, refer to the remainder of this
manual.

3-2 Before Using BASIC

This section will explain how to use the CPU Bus Library for BASIC. The version
of BASIC that can use the CPU Bus Library is Quick BASIC.

3-2-1 Functions

The following table lists the available functions.

Name Operation Reference
PCOPEN Opens the CPU bus. p. 26
PCMSRD | Receives a message from another Unit. p. 26
PCMSWR | Sends a message to another Unit. p. 29
PCREAD Reads data from a Programmable Controller data area. | p. 31
PCWRITE | Writes data to a Programmable Controller data area. p. 35
PCSTAT Accesses and controls Programmable Controller status. | p. 40
PCMODE | Changes the Programmable Controller operating p. 43

modes.
PCCLOSE | Closes the CPU bus. p. 44

3-2-2 Using Library Functions

To use library functions, program according to the following procedure. With
Quick BASIC, the library itself cannot be loaded at the source level.

24

1,2, 3.

1. Specify a library function. (Program example 1)
Specify a function with the following statement.
DECLARE SUB <function name> CDECL ALIAS “<actual function name>”
You can declare any function name. The actual function name is the function
name in the library.

2. Use CALLS to call the library function. (Program example 2)

Program Examples

DECLARE SUB PCOPEN CDECL ALIAS ”_b_ pcopen”
DECLARE SUB PCMSRD CDECL ALIAS ”_b pcmsrd”
DECLARE SUB PCMSWR CDECL ALIAS ” b pcmswr”
DECLARE SUB PCREAD CDECL ALIAS ” b pcread”
DECLARE SUB PCWRITE CDECL ALIAS ” b pcwrite”
DECLARE SUB PCSTAT CDECL ALIAS ”_b pcstat”
DECLARE SUB PCMODE CDECL ALIAS ”_b_ pcmode”
DECLARE SUB PCCLOSE CDECL ALIAS ”_b pcclose”

CALLS PCOPEN (RTN%)

M

)

BASIC Functions Section 3-3

3-2-3

3-2-4

3-3

Executing in Interpreter Format

The procedure for executing an existing program with the BASIC interpreter is
as follows:

1,2,3... 1.InputQB/I BASLIB and then press the Enter Key. Quick BASIC will start
BASLIB.
2. Load and execute the program.
Note The QuickBASIC library was created using QuickBASIC 4.2. If you are program-

ming the Personal Computer Unit with any other version, remake baslib.qlb us-
ing the following command lines.

lib baslib *baslib * pcinit *_ pcmsg *_ pcrdwr *_ subfunc
*intdos *int86 *strcpy *itoa *xtoa *dosret;

link/Q baslib+ pcinit+ pcmsg+ pcrdwr+
subfunc+intdos+int86+strcpy+itoa+xtoa+dosret,baslib.qlb,
nul,bglb45.1ib;

You will also need to create a new library for each version corresponding to the
bglb45.lib portion. For version 4.2, this file would be bglb42.lib.

Executing in Compiler Format

The procedure for first compiling and then executing an existing program is as
follows:

1,2, 3. 1. Input BC <program name>.BAS /0; and then press the Enter Key. The
program will be compiled and an object file will be created. If you add /D after
the /O, you can abort program execution in progress by means of Crtl-C.

2. Input LINK/EX/NOE <program name> + BASLIB.LIB <program
name>.EXE,NUL, ; and then press the Enter Key. The BASIC library will
be linked to the object file, and an imperative command will be created.

3. Execute EXE, the command that was created.

BASIC Functions

This section will explain the functions available in the BASIC library.

Headings
Each function will be covered in terms of the following headings.

Purpose An outline of the function’s operation will be provided.

Specifiers When functions are defined with Quick BASIC, the specifiers are the names,
in the library, of the functions that are to be used.

Format This is the format for functions used in a program. Function names used in
the format sections are temporary names defined for the functions. It is not
necessary to use these names.

Parameters The meanings of the parameters used in the function’s format are given.
When the word “input” is enclosed in parentheses next to a given parameter,
it will indicate that a value for the parameter is to be input by the user.
Likewise, “output” will indicate that the function will return a value for the
parameter. A chart will show each parameter’s format, range, and type.

Comments Parameter contents and setting precautions will be explained.

Returned Values The meanings of the values returned by the functions will be given. Based on
these values you can determine whether functions have executed correctly
or whether errors have been generated.

Related Functions This provides the names of other functions related to the function being

described. You can refer to the other functions in order to gain a better
understanding of the one in question.

25

BASIC Functions

Section 3-3

Program Examples

One or more examples will be given of programs in Quick BASIC. Program
files are kept in directory \CVLIB\BASIC\SAMPLE on the program disk.

PCOPEN CPU BUS OPEN
Purpose This function opens the CPU bus so that it can be used.
Specifiers Operation number: 00H (0)

Library function name: _b_pcopen
Format PCOPEN (RTN%)
Parameters RTN%: Returned value (output)

Parameters Format Contents
RTN% Integer After execution of the function, the results will be
entered as an integer.

Comments Must be executed first to use the CPU bus.

Returned Values

Related Functions

Program Examples

RTN% Meaning
0 Ended normally.
CPU Bus Driver is not installed.
2 Bus is already open.
PCCLOSE

In this example, the CPU Bus Library is opened and closed.
Thkkkhkkhkhkkhkkkhkkhkkkhkkkkhkhkkhkhkkhkkkhkkhkhkkhkkkkkhkkhkkkikkkkkkkk*x*%

r* BASIC LIBRARY SAMPLE PROGRAM *
r* QUICK BASIC *

Thkkkkkkkkkkhkhkhkhkhkhkhkkhkhkhkkhkhhhhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkkkk*x*%

4

DECLARE SUB pcopen CDECL ALIAS ”_b_ pcopen”
DECLARE SUB pcclose CDECL ALIAS " _b pcclose”

CALLS pcopen(rtn?)

IF rtn% <> 0 THEN
PRINT "pcopen error : rtn = "; rtn%
GOTO finish

END IF

CALLS pcclose(rtn%)

finish:
PRINT "Exit sample program.”
END
PCMSRD RECEIVE MESSAGE
Purpose With this function, messages can be received from other Units.
Specifiers Operation number: 01H (1)
Library function name: _b_pcmsrd
Format PCMSRD (NE%,NO%,UN%,CT%,VALUES,DSZ%,T%,RTNS)

26

BASIC Functions Section 3-3
Parameters NE% : Source network address (output)
NO% : Source node address (output)
UN% : Source unit address (output)
CT% : Number of actual reception bytes (output)
VALUES : Reception buffer (input/output)
DSZ% Number of bytes requested for reception (input)
T% : Timer value (input)
RTN% : Returned value (output)
Parameters Format Contents
NE% Integer 0to 127
NO% Integer SYSMAC NET, Ethernet: 0 to 127
SYSMAC LINK: 0 to 62 (see note 1)
UN% Integer Absolute address (see note 2)
CT% Integer Length of message actually received (see note 1)
VALUES$ String Space for the number of bytes specified by DSZ%
DSZ% Integer Maximum length for message received
T% Integer 0 to 32767 (Unit: x110 ms)
RTN% Integer Status entered as integer after execution of function.
Note 1. The maximum length varies according to the type of network through which
the message is transmitted.
2. For CPU Bus Units, the value will be offset by 10 hexadecimal. For example,
the UN% for CPU Bus Unit #4 will be &H14.
Comments When a message is received, the network address, node address, and unit

address of the Unit that sent the message will be entered respectively in
NE%, NO%, and UN%, and the message length will be entered in CT%.

Dummy data (such as spaces) for the number of bytes requested for reception
(DSZ%) must be assigned in advance for the variable VALUES$, and the memory
area for the received data must be available. If it is not available, an error will be
generated. The maximum setting for DSZ% is 538 bytes.

For the variable T%, assign integer values from 0 to 32767 (in units of 110 ms) for
the reception waiting time. If “0” is specified, there will be no waiting time.

This function will be ended once a single message of any length has been
received, even if no message for the number of bytes requested for reception
(DSZ%) is received. In addition, if a message of a size exceeding the DSZ% is
received, the DSZ% portion of the message will be returned to the user and the
remainder will be discarded.

This function uses command 0901 of the FINS commands. When this functionis
executed, the Unit will standby for a message that has command code 0901; all
other commands will be disregarded until the message with command code
0901 is received.

The following diagram shows the format for FINS command 0901. Use this for-
mat when transmitting from outside the Personal Computer Unit.

|od|o1| : | Data

Command code Data length

The following example shows the command format needed to send “ABCDEF.”

[ogo1odog4 B[o,O[€]

27

BASIC Functions

Section 3-3

Returned Values

Related Functions

Program Examples

28

Return the following response to the message source if the Personal Computer
Unit received the message normally.

CEED

RTN% Meaning
0 Ended normally.
1 Library is not open.
3 Programmable Controller or Repeater is busy. Try again.
5 There is a parameter error.
6 Message cannot be received from specified Unit
8 There is an error in the routing tables.
PCMSWR

In this example, a 20-byte message is received from another Unit.

Thkkkkkkkkkkhkhkhkhkhkhkhkhkhkkhkhkhkhhhhhhhkhkhkhkhkhkhkkhkhkhkhkhkhkhkkkkkkkkkk*x*%

r %

r %

BASIC LIBRARY SAMPLE PROGRAM *
QUICK BASIC *

Thkkhkhhhhhkhkhhkhkhkhkhkhkhkhkhhhhhhhhhhhhhhdhdhdhdhddhkhkhkhkhhhhhddxdxddddx%x

4

finish:

DECLARE SUB pcopen CDECL ALIAS ”_b_ pcopen”
DECLARE SUB pcmsrd CDECL ALIAS ”_ b pcmsrd”
DECLARE SUB pcclose CDECL ALIAS ”_b pcclose”

CALLS pcopen(rtn%)
IF rtn%<>0 THEN

PRINT "pcopen error : rtn = "; rtn%
GOTO finish
END IF
dsz% = 20 'Number of bytes for reception
time% = 100 'Timer value
d$ = STRINGS (20, " ") ’Reception buffer

CALLS pcmsrd(ne%,no%,un%,ct%,ds$,dsz%,times,rtn%)
IF rtn%<>0 THEN

PRINT "pcmsrd error : rtn = ”; rtn%
ELSE
PRINT "Source network address: ”; ne$
PRINT "Source node address: "; no$%
PRINT ”"Source unit address: ”; un%
PRINT "“Number of bytes for reception: ”;
PRINT "Reception message: "; d$
END IF

CALLS pcclose(rtn%)

PRINT ”“Sample program finished”
END

BASIC Functions Section 3-3
PCMSWR SEND MESSAGE
Purpose With this function, messages can be transmitted to specified Units.
Specifiers Operation number: 02H (2)
Library function name: _b_pcmswr
Format PCMSWR (NE%,NO%,UN%,CT$%,VALUES,RTNS)
Parameters NE% : Destination network address (input)
NO% : Destination node address (input)
UN% : Destination unit address (input)
CT% : Number of bytes for transmission (input)
VALUES$: Reception buffer (input)
RTN% : Returned value (output)
Parameters Format Contents
NE% Integer 0to 127
NO% Integer SYSMAC NET, Ethernet: 0 to 127
SYSMAC LINK: 0 to 62 (see note 1)
UN% Integer Specifies absolute address (see note 2)
CT% Integer Length of transmission message (1 to 538)
VALUES String Transmission string of length specified by CT%
RTN% Integer Status entered as integer after execution of function.
Note 1. The maximum length varies according to the type of network through which
the message is transmitted.
2. For CPU Bus Units, the unit number will be offset by 10 hexadecimal. For
example, the UN% for CPU Bus Unit #4 will be &H14.
Comments Data for the number of bytes requested for reception (CT%) will be assigned

in advance for the variable VALUES$. If there is no transmission data, an error
will be generated.

This function will not be ended until the message has been completely received
at the destination (i.e., until a response has been returned from the destination).
The function may end, however, due to the Repeater being busy.

This function uses command 0901 of the FINS commands, and messages can
be transmitted to BASIC Units.

This function uses command 0901 of the FINS commands. When executing this
function, send the FINS message with the format shown in the following dia-
gram.

|od|o1| : | Data

Command code Data length

The following example shows the command format needed to send “ABCDEF.”

[ogo1odog4 B[o,O[€]

When the destination Unit isn’t a Personal Computer Unit and the message is
received normally, return the following response addressed to the Personal
Computer Unit.

0¢ 01

29

BASIC Functions

Returned Values

Related Functions

Program Examples

30

Section 3-3
RTN% Meaning
0 Ended normally.
1 Bus is not open.
2 Network address is invalid.
3 Programmable Controller or Repeater is busy. Try again.
5 There is a parameter error.
7 Ended abnormally
PCMSRD

In this example, the message "Message sent” is transmitted to another
Unit.

Thkkkkkkkkkkhkhkhkhkhkhkhkhkhkkhkhkhhhhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkkkkk*%

r* BASIC LIBRARY SAMPLE PROGRAM *
r* QUICK BASIC *

Thkkhkhhhhhkhhhhkhkhkhkhkhkhkhhhhhhhhhhhhhhdhdhdhddkhkhkhkhkhhhhdddddxkddx%x

r

DECLARE SUB pcopen CDECL ALIAS ”_ b pcopen”
DECLARE SUB pcmswr CDECL ALIAS ”_ b pcmswr”
DECLARE SUB pcclose CDECL ALIAS ”_b pcclose”

CALLS pcopen(rtn¥%)
IF rtn%<>0 THEN

PRINT "pcopen error : rtn = ”; rtn$%
GOTO finish
END IF
RETRY:
ne% =1 'Network address
no% =1 'Node address
ung = &H14 *Unit address (Unit #4)
ctg = 14 'No. of transmission bytes
d$ = "Transmission message:” ’Transmission message
PRINT "“"Message sent: ”; d$
CALLS pcmswr(ne%,no%,un%,ct%,d$,rtng)
IF rtn%=3 GOTO RETRY
IF rtn%<>0 THEN
PRINT "pcmswr error : rtn = "; rtn%
END IF
CALLS pcclose(rtn%)
finish:

PRINT ”“Sample program finished”
END

BASIC Functions Section 3-3

PCREAD READ AREA
Purpose This function reads data from a data area of a Programmable Controller.
Specifiers Operation number: 03H (3)

Library function name: _b_pcread

Format PCREAD (NE$%,NO%,SUBFMT$,VALUES (1),RTN%)
PCREAD (NE$%,NO%,SUBFMT$,VALUE%(1),RTN%)

Parameters NE% : Source network address (input/output)
NO% : Source node address (input/output)
SUBFMT$. Subformat (input)
VALUES$ (1) : Reception buffer (string) (input/output)
VALUE% (1) : Reception buffer (numeral) (input/output)

RTN% : Returned value (output)
Parameters Format Contents

NE% Integer 0to 127

NO% Integer SYSMAC NET, Ethernet: 0 to 127
SYSMAC LINK: 0 to 62 (see note)

SUBFMT$ String Refer to the comments below.

VALUES$ (1) | String Array variable: 1 must be entered in the
parentheses.

VALUE% (1) |Integer Array variable: 1 must be entered in the
parentheses.

RTN% Integer Status entered as integer after execution of function.

Note The maximum length varies according to the type of network through which the
message is transmitted.

Comments If the source node is in the same network, then use 0 for NE%.
If the source node is the same, then use 0 for NE% and NO%.
Use array variables VALUE $ (1) or VALUE % (1) specified with SUBFMT$.

For the variable SUBFMTS$, assign strings (subformats) that specify the read
area, data conversion method, and so on.

Subformats can be in the following forms:

” [SUB, START, NUM,] FMT [[FMT....]"

The contents inside of the brackets can be omitted. FMT can specify multi-
ple items. Character types ($) and integer types (%), however, cannot be
present. In addition, if the contents inside of the brackets are omitted, only
one integer type (%) can be specified.

SUB : Subcommand

START : Beginning word for read
NUM : Number of words to be read
FMT : Storage format

Note Characters for SUBFMT $ must all be in upper case.

For SUB (subcommand), set the Programmable Controller data area.

31

BASIC Functions Section 3-3
Subcommands
Subcommand Specified area Word/bit addresses | Data unit
@R ClO Area 0to 2,555 Word
@A Auxiliary Area (A) 0to 511 Word
(A256 to A511 are read only.)

@TN Transition Flags (read only) | 0to 1,023 Bit
@ST Step Flags (read only) 0to 1,023 Bit
@TF Timer Flags (read only) 0to 1,023 Bit
@T Timer present values 0to 1,023 Word
@CF Counter Flags (read only) 0to 1,023 Bit
@C Counter present values 0to 1,023 Word
@D DM 0 to 24,575 Word
@EO0 Expansion DM (EM) Bank 0 | 0 to 32,765 Word
@E1 Expansion DM (EM) Bank 1 | 0 to 32,765 Word
@E2 Expansion DM (EM) Bank 2 | 0 to 32,765 Word
@E3 Expansion DM (EM) Bank 3 | 0 to 32,765 Word
@E4 Expansion DM (EM) Bank 4 | 0 to 32,765 Word
@E5 Expansion DM (EM) Bank 5 | 0 to 32,765 Word
@E6 Expansion DM (EM) Bank 6 | 0 to 32,765 Word
@E7 Expansion DM (EM) Bank 7 | 0 to 32,765 Word
@SG CPU Bus Link Area (G) 0 to 255 Word

32

The ranges shown for word and bit numbers are for the CV1000 Programmable
Controller. Refer to the CV-series PC Operation Manual: Ladder Diagrams
(W202) for address ranges for other PCs.
If SUB, START, and NUM are designated, then data will be read from the area
specified by the subcommand. The designated number of words will be read,
starting with the beginning word for the read.
SUB, START, and NUM must all be designated or all omitted. The user can’t des-
ignate just one or two of these values.
If SUB, START, and NUM are omitted, the PCREAD function won’t read the Pro-
grammable Controller’s data area; operation will be controlled by the PC’s
SEND(192) command. When SEND(192) is executed, the read will be executed
according to operands specified for SEND(192).
The Personal Computer Unit will standby for the SEND(192) command. (The
standby state can be cancelled by pressing the Esc Key.) One integer type (%)
can be specified for the storage format. The network and node addresses of the
Programmable Controller that executed SEND(192) will be entered in NE% and
NO%.
The range for NUM (number of words to be read) is 1 to 256.
FMT (storage format) is a character string that interprets the data from the words
that are read, and specifies the conversion method for storing the data in
memory.
Data conversion by FMT will be as follows:

a) The contents of the Programmable Controller data will be interpreted

according to specifications. (Data that cannot be interpreted according
to specifications will be regarded as 0.)

b) The data will be converted to numerals or character strings.

c) It will be stored in array variables.
The FMT form will be:
{% or $} n{l, H, O, or A}
In n, the number of words to be read with this storage format is specified. If n is
not specified, it will be regarded as 1.

BASIC Functions Section 3-3
Storage Format (FMT) Chart
FMT Interpretation Data storage form
%nl Decimal integer Integer
%nH Hexadecimal integer Integer
%n0O Octal integer Integer
$nl Decimal integer String expressing decimals
$nH Hexadecimal integer String expressing hexadecimals
$n0O Octal integer String expressing octals
$nA 2-character ASCII code Two characters

1,2, 3.

The following are examples of the storage formats.

1. I-type (Decimal) Formats (%nl, $nl)
Programmable Controller word data: 1234
Character types: PCREAD (...."”...$11,” VALUES$ (1))
— VALUES$ (1) ="1234”
Integer types: PCREAD (...."...%11,” VALUE% (1))
— VALUE% (1) =1234
2. H-type (Hexadecimal) Formats (%nH, $nH)
Programmable Controller word data: 89AB
Character types: PCREAD (...."...$1H,” VALUES$ (1))
— VALUES (1) ="89AB”
Integer types: PCREAD (...."...%1H,” VALUE% (1))
— VALUE% (1) =&H89AB = -30293
3. O-type (Octal) Formats (%nO, $n0O)
Programmable Controller word data: 1234
Character types: PCREAD (....”...$10,” VALUES$ (1))
— VALUES$ (1) ="1234”
Integer types: PCREAD (...."...%10,” VALUE% (1))
— VALUE% (1) =&01234 = 668
4. A-type (ASCIl code) Format ($nA)
Programmable Controller word data: 5152
Character types: PCREAD (....”...$1A,” VALUES$ (1))
— VALUES$ (1) ="QR”
The ASCII codes for Q and R are &H51 and &H52 respectively.
When multiple words are read in A-type format, they will all be stored in VAL-
UES$ (1).
When character datais specified for FMT, it is necessary to make an array decla-
ration, for the number of FMT characters, for the character array variable VAL-
UES$ () as a reception buffer. In addition, it is necessary to assign, in advance,
dummy data (e.g., spaces) for the FMT contents, and to reserve memory space.
The number of bytes for the assigned dummy data will be as follows, with “n”
being the number of FMT words read:
I, H, and O types: 4 bytes
A type: 2 x n bytes
Example: PCREAD (NE%, NO%, @R, 100, 5, $2I, $3I,” VALUES$ (1))
$2| — Stored in VALUES$ (1) and VALUES$ (2).
$31 — Stored in VALUES$ (3), VALUES$ (4), and VALUES (5).
Therefore, five VALUES () array elements must be provided.
Example: PCREAD (NE%, NO%, @D, 100, 2, $2A,” VALUES$ (1))
$2A — 2 x 2-byte VALUES$ (1) areas are required.
When numeral data is specified for FMT, it is necessary to make an array
declaration of an integer array variable VALUE% (), the same size as NUM or
the total number of FMT words read (n).

33

BASIC Functions

Section 3-3

Returned Values

Related Functions

Program Examples

34

Example: PCREAD (NE%, NO%, @R, 100, 5, %2, %3l,” VALUE% (1))
%2l — Stored in VALUE% (1) and VALUE% (2).

%3l — Stored in VALUE% (3), VALUE% (4), and VALUE% (5).
Therefore, five VALUE% () array elements must be provided.

The number of words actually read will be the number of words specified by
NUM. Be sure to set the total number of words designated by “n” of FMT so that
is the same as the NUM value.

If the total number of words designated by “n” of FMT is greater than the
reception buffer, operation will not be guaranteed. If it is smaller than the
reception buffer, data cannot be read into the remaining portion of the reception
buffer.

RTN% Meaning
0 Ended normally.
1 Bus is not open.
2 Network address is invalid.
3 Programmable Controller or Repeater is busy. Try again.
4 Ended by Esc Key.
5 There is a parameter error.
7 Ended abnormally.
8 There is an error in the routing table.
PCWRITE

In this example, data is read from words 0 to 3 in the DM area of the Pro-
grammable Controller at network address 1 and node address 2. The data is
displayed as characters and numerals.

Thkkkkkhkkkkkkhkhkhkhkhkhkhkhkkhkkhkhhhhhhhhkhkhkhkhkhkhkkhkhkhkhkhkhkhkkkkkkkkkk*x*%

r* BASIC LIBRARY SAMPLE PROGRAM *
r* QUICK BASIC *

Thkkhkhhhhhkhkhhhkhkhkhkhkhkhkhhhhhhhhhhhhhhdhdhkhdhdhkhkhkhkhkhhhhhdddxdxkddx%x

4

DECLARE SUB pcopen CDECL ALIAS ”_b_ pcopen”
DECLARE SUB pcread CDECL ALIAS ”_ b pcread”
DECLARE SUB pcclose CDECL ALIAS ”_b pcclose”

DIM value%(100), value$(100)

CALLS pcopen(rtn¥%)
IF rtn%<>0 THEN

PRINT "pcopen error : rtn = ”; rtn$%
GOTO finish
END IF
RETRYO:
ne% = 1 'Network address
no% = 2 'Node address
FOR i% = 1 TO 4
value$(i%) = STRINGS (4, ”) 'Read
buffer
NEXT

CALLS pcread(ne%,no%,”eD,0,4,$2I,$2H, value$(l),rtn%)
IF rtn%=3 GOTO RETRYO
IF rtn%<>0 THEN
PRINT "pcread error : rtn = ”; rtn%
ELSE

BASIC Functions

Section 3-3

PRINT "Word 0 data ($2I):"”;value$(1l)
PRINT "“Word 1 data ($2I):";value$(2)
PRINT "Word 2 data ($2H):";value$(3)
PRINT "Word 3 data ($2H):";value$(4)

END IF

RETRY1:
CALLS pcread(ne%,no%,”eD,0,4,%2I,%2H, value%(l),rtn%)
IF rtn%=3 GOTO RETRY1
IF rtn%<>0 THEN

PRINT "pcread error : rtn = ”; rtn%
ELSE

PRINT "Word 0 data (%2I):”;value%(1l)

PRINT "Word 1 data (%2I):”;value%(2)

PRINT "Word 2 data (%2H):”;value%(3)

PRINT "Word 3 data (%2H):”;value%(4)
END IF

CALLS pcclose(rtn%)

finish:
PRINT "Exit sample program.”
END
PCWRITE WRITE AREA
Purpose This function writes data to a data area of a Programmable Controller.
Specifiers Operation number: 04H (4)
Library function name: _b_pcwrite
Format PCWRITE (NE%,NO%,SUBFMTS,VALUES (1),RTN%)
PCWRITE (NE%,NO%,SUBFMTS$,VALUE% (1),RTN%)
Parameters NE% : Destination network address (input/output)
NO% : Destination node address (input/output)
SUBFMT$: Subformat (input)
VALUES$ (1) : Reception buffer (string) (input)
VALUE% (1) : Reception buffer (numeral) (input)
RTN% : Returned value (output)
Parameters Format Contents
NE% Integer 0to 127
NO% Integer SYSMAC NET, Ethernet: 0 to 127
SYSMAC LINK: 0 to 62 (see note)
SUBFMT$ String Refer to the comments below.
VALUES$ (1) | String Array variable: 1 must be entered in the
parentheses.
VALUE% (1) |Integer Array variable: 1 must be entered in the
parentheses.
RTN% Integer Status entered as integer after execution of function.
Note The maximum length varies according to the type of network through which the
message is transmitted.
Comments If the destination node is in the same network, then use 0 for NE%.

If the destination node is the local Programmable Controller, then use 0 for NE%
and NO%.

Use array variables VALUE $ (1) or VALUE % (1) specified with SUBFMT$.

For the variable SUBFMTS$, assign strings (subformats) that specify the write
area, data conversion method, and so on.

35

BASIC Functions

Section 3-3

Subcommands

36

Subformats can be in the following form:

“[SUB, START, NUM,] FMT [,[FMT....]"

The contents inside of the brackets can be omitted. FMT can specify multi-
ple items. Character types ($) and integer types (%), however, cannot be
present. In addition, if the contents inside of the brackets are omitted, only
one integer type (%) can be specified.

SUB : Subcommand

START : Beginning word for writing
NUM : Number of words to be written
FMT . Storage format

Note Characters for SUBFMT $ must all be in upper case.

For SUB (subcommand), set the Programmable Controller data area.

Subcommand Specified area Word/bit addresses | Data unit
@R ClO Area 0to 2,555 Word
@A Auxiliary Area (A) 0to 511 Word
(A256 to A511 are read only.) | 0 to 1,023

@TN Transition Flags (read only) | 0to 1,023 Bit
@ST Step Flags (read only) 0to 1,023 Bit
@TF Timer Flags (read only) 0to 1,023 Bit
@T Timer present values 0to 1,023 Word
@CF Counter Flags (read only) 0to 1,023 Bit
@C Counter present values 0 to 24,575 Word
@D DM 0 to 32,765 Word
@EO0 Expansion DM (EM) Bank 0 | 0 to 32,765 Word
@E1 Expansion DM (EM) Bank 1 | 0 to 32,765 Word
@E2 Expansion DM (EM) Bank 2 | 0 to 32,765 Word
@E3 Expansion DM (EM) Bank 3 | 0 to 32,765 Word
@E4 Expansion DM (EM) Bank 4 | 0 to 32,765 Word
@E5 Expansion DM (EM) Bank 5 | 0 to 32,765 Word
@E6 Expansion DM (EM) Bank 6 | 0 to 32,765 Word
@E7 Expansion DM (EM) Bank 7 | 0 to 32,765 Word
@SG CPU Bus Link Area (G) 0 to 255 Word

The ranges shown for word and bit numbers are for the CV1000 Programmable
Controller. Refer to the CV-series PC Operation Manual: Ladder Diagrams
(W202) for address ranges for other PCs.

If SUB, START, and NUM are designated, then data will be written from the area
specified by subcommand. The designated number of words will be read,
starting with the beginning word for writing.

SUB, START, and NUM must all be designated or all omitted. The user can’t des-
ignate just one or two of these values.

If SUB, START, and NUM are omitted, the PCWRITE function won’t write data to
the Programmable Controller’s data area; operation will be controlled by the
Programmable Controller’'s RECV(193) command.

When RECV(193) is executed, the Programmable controller will be able to re-
ceive the data and the data will be written to the data area. The Personal Com-
puter Unit will standby until the RECV(193) command is executed. (The standby
state can be cancelled by pressing the Esc Key.) One integer type (%) can be
specified for the storage format. The network and node addresses of the Pro-
grammable Controller that executed RECV(193) will be entered in NE% and
NO%.

The range for NUM (number of words to be written) is 1 to 256.

BASIC Functions

Section 3-3

1,2, 3..

FMT (storage format) is a character string that specifies the conversion method
when data stored in the transmission buffer is written to a Programmable Con-
troller area in the designated data format.

Data conversion by FMT will be as follows:

a) Data stored in array variables serving as a transmission buffer will be
converted to the designated data format.

b) The data will be written to the Programmable Controller area.
The FMT form will be:
{% or $} n{l, H, O, or A}
In n, the number of words to be written with this storage format is specified.
Storage Format (FMT) Chart

FMT Data stored in transmission Format of data written to Pro-
buffer grammable Controller area
%nl Integer Decimal
%nH Integer Hexadecimal
%n0O Integer Octal
$nl String expressing decimals Decimal
$nH String expressing hexadecimals Hexadecimal
$nO String expressing octals Octal
$nA 2n characters 2-character ASCII code

The following are examples of the respective storage formats.

1. I-type (Decimal) Formats (%nl, $nl)
Character data: VALUES$ (1) = "1234”
PCWRITE (...."...$11,” VALUES$ (1))
or
Numeral data: VALUE% (1) = 1234
PCWRITE (...."...%11,” VALUE% (1))
Results: Programmable Controller word data: 1234
2. H-type Formats (%nH, $nH)
Character data: VALUES (1) = "89AB”
PCWRITE (...."...$1H,” VALUES$ (1))
or
Numeral data:VALUE% (1) = &H89AB = -30293
PCWRITE (...."...%1H,” VALUE% (1))
Results: Programmable Controller word data: 89AB
3. O-type Formats (%n0O, $n0O)
Character data: VALUES$ (1) = "1234”
PCWRITE (...."”...$10,” VALUES (1))
or
Numeral data: VALUE% (1) = $01234 = 668
PCWRITE (...."...%10,” VALUE% (1))
Results: Programmable Controller word data: 1234
4. A-type Format ($nA)
Character data: VALUE$ (1) ="QR”
PCWRITE (...."...$1A,” VALUES$ (1))
The ASCII codes for Q and R are &H51 and &H52 respectively.
7Results: Programmable Controller word data: 5152
When character data is specified for FMT, it is necessary to make an array
declaration for the number of FMT characters for the character array variable
VALUES () as atransmission buffer. In addition, it is necessary to assign data in
advance for FMT contents. The number of bytes for the assigned transmission

data will be as follows, with “n” being the number of FMT words written.

37

BASIC Functions

Section 3-3

Returned Values

Related Functions

38

I, H, and O types: 4 bytes

A type: 2 x n bytes

Example: PCWRITE (NE%, NO%, "@R, 100, 5, $2I, $3I,” VALUES (1))

$2| — Transmission data necessary for VALUES$ (1) and VALUES$ (2).

$3l — Transmission data necessary for VALUES$ (3), VALUES$ (4), and VALUE$
(5).

Example: PCWRITE (NE%, NO%, "@D, 100, 2, $2A,” VALUES$ (1))

$2A — 2 x 2 byte region is necessary for VALUES (1).

When numeral data is specified for FMT, it is necessary to make an array
declaration of the integer array variable VALUE% (), just the same as NUM, and
to assign transmission data.

Example: PCWRITE (NE%, NO%, "@R, 100, 5, %2I, %3l,” VALUE% (1))
%2] — Transmission data necessary for VALUE% (1) and VALUE% (2).

%3l — Transmission data necessary for VALUE% (3), VALUE% (4), and
VALUE% (5).

Therefore, five VALUE% () array elements must be provided.

The number of words actually written will be the number of words specified by

NUM. Be sure to set the total number of words designated by “n” of FMT so that
is the same as the NUM value.

If the total number of words designated by “n” of FMT is greater than the
transmission buffer, operation cannot be ensured. If it is smaller than the
transmission buffer, data cannot be read into the remaining portion of the
transmission buffer.

RTN% Meaning

Ended normally.

Bus is not open.

Network address is invalid.

Programmable Controller or Repeater is busy. Try again.
Ended by Esc Key.

There is a parameter error.

Ended abnormally.

There is an error in the routing table.

OINO|hWON =O

PCREAD

BASIC Functions Section 3-3

Program Examples In this example, data is written to words 0 to 3 in the DM area of the Pro-
grammable Controller at network address 1 and node address 2.
Thkkkhkkhkhkkhkkkhkkhkkkhkkhkhkhkhkkhkhkkhkkkhkkhkhkkhkkkkkhkkhkhkkhkkkkkkkk*x*%
" BASIC LIBRARY SAMPLE PROGRAM *
"% QUICK BASIC *

Thkkkkkkkkkkkhkhkhkhkhkhkhkhkkhkkhkhhhhhhhhkhkhkhkhkhkhkkhkhkhkhkhkhkhkkhkkkkkkkk*x%

r

DECLARE SUB pcopen CDECL ALIAS ”_b_ pcopen”

DECLARE SUB pcwrite CDECL ALIAS ”_b pcwrite”
DECLARE SUB pcclose CDECL ALIAS ”_b pcclose”

DIM value%(100), value$(100)

CALLS pcopen(rtn%)
IF rtn%<>0 THEN

PRINT "pcopen error : rtn = ”; rtn$%
GOTO finish
END IF
RETRYO:
ne% =1 'Network address
no% = 2 'Node address
value$(l) = ”1001"” 'Write data
value$(2) = "2002" 'Write data
value$(3) = ”3003" 'Write data
value$(4) = ”4004" 'Write data

CALLS pcwrite(ne%,no%,”@D,0,4,$2I,$2H, value$(l),rtn%)
IF rtn%=3 GOTO RETRYO
IF rtn%<>0 THEN

PRINT "pcwrite error : rtn = ”; rtn%
END IF
RETRY1:
value%(1l) = 500 'Write data
value%(2) = 600 'Write data
value%(3) = 700 'Write data
value%(4) = 800 'Write data

CALLS pcwrite(ne%,no%,”@D,0,4,%2I,%2H, value%(l),rtn%)
IF rtn%=3 GOTO RETRY1
IF rtn%<>0 THEN
PRINT "pcwrite error : rtn = ”; rtn%
END IF

CALLS pcclose(rtn%)

finish:
PRINT "Exit sample program.”
END

39

BASIC Functions

Section 3-3

PCSTAT PROGRAMMABLE CONTROLLER STATUS
Purpose This function accesses and controls Programmable Controller status.
Specifiers Operation number: 05H (5)
Library function name: _b_pcstat
Format PCSTAT (NE%,NO%,MAIN%,RECS,VALUES,RTNS)
PCSTAT (NE%,NO%,MAIN%,REC%,VALUE%,RTN%)
Parameters NE% : Network address (input)
NO% : Node address (input)
MAIN% : Command (input)
REC% : Number of records read (input/output)
VALUES$: Storage buffer (string) (input/output)
VALUE% : Storage buffer (numeral) (input/output)
RTN% : Returned value (output)
Parameters Format Contents
NE% Integer 0to 127
NO% Integer SYSMAC NET, Ethernet: 0 to 127
SYSMAC LINK: 0 to 62 (see note)
MAIN% Integer 0 to 3 (Refer to the comments below.)
REC% Integer 0to 20
VALUES$ String Refer to the comments below.
VALUE% Integer Refer to the comments below.
RTN% Integer Status entered as integer after execution of function.
Note The maximum length varies according to the type of network through which the
message is transmitted.
Comments If the node is in the same network, then use 0 for NE%.

40

If the local Programmable Controller is being controlled, then use 0 for NE% and
NO%.

For the variable MAIN%, assign an integer from 0 to 3 as shown in the following
table.

MAIN% Operation
Read Controller Status

Clear Error

Read Error Log
Clear Error Log

WIN|=|O

For the variable REC%, assign an integer from 0 to 20. This parameter will only
be valid, however, when “2” is assigned for MAIN%. If “0” is assigned for REC%,
and the present total number of history records is from 1 to 20, then the number
of records actually read will be stored in REC%.

The value assigned to MAIN% will determine whether the storage buffer will be
the character variable VALUES$ or the numeral variable VALUE%.

When MAIN% is 0 or 2

The character variable VALUES will be taken as the storage buffer. Provide the
memory area by assigning in advance characters (e.g., spaces) for the
necessary number of bytes. If the memory area is not provided, an error will be
generated. If “0” is assigned for MAIN%, 26 bytes will be provided. If “2” is as-
signed, 10 bytes will be provided for the error log 1 record. Refer to page 66 for
the format and meaning of the data stored.

When MAIN% is 1
For the integer variable VALUE%, assign the FAL number for clearing errors.

BASIC Functions Section 3-3

When MAIN% is 3
The storage buffer will not be used, so no matter what value is assigned it will be
ignored. The variable description, however, cannot be omitted.

Returned Values

RTN% Meaning

Ended normally.

Bus is not open.

Network address is invalid.

Programmable Controller or Repeater is busy. Try again.
There is a parameter error.

Ended abnormally.

N oW N =0

41

BASIC Functions

Section 3-3

Program Examples

42

In this example, the status is read for the Programmable Controller at
network address 1 and node address 2, and then errors are cleared.

Thkkkkkkkkkkhkhkhkhkhkhkhkhkhkkkhkhhhhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkkkk*x*%

%

r%

BASIC LIBRARY SAMPLE PROGRAM *
QUICK BASIC *

Thkkhkhhhhkhkhhhhkhkhkhkhkhkhkhhhhhhhhhhhhhdhdhdhdhddhkhkhkhkhkhkhhhdddxddxddx%x

r

RETRYO:

RETRY1:

finish:

DECLARE SUB pcopen CDECL ALIAS ”_b_ pcopen”
DECLARE SUB pcstat CDECL ALIAS ”_b pcstat”
DECLARE SUB pcclose CDECL ALIAS ”_b pcclose”

CALLS pcopen(rtn%)
IF rtn%<>0 THEN

PRINT "pcopen error : rtn = ”; rtn$%
GOTO finish

END IF

ne% = 1 'Network address

no% = 2 "Node address

main% = 0 'Command (read status)

rec% = 0

value$ = STRINGS(30 ,” ") 'Read buffer

CALLS pcstat(ne%, no%, main%, rec%, value$,rtn%)
IF rtn%=3 GOTO RETRYO
IF rtn%<>0 THEN

PRINT "pcstat error : rtn = ”; rtn%
ELSE
PRINT "Read status..0..1..2..3..4..5..6..7..8";
PRINT ”"..9..a..b..c..d..e..f”
PRINT " N
FOR I = 1 TO 26
IF (I MOD 16) = 1 THEN
PRINT""
PRINT " .o "y
END IF
B$ = MIDS$(values,I,1l)
PRINT” " ; RIGHTS (”0"”+HEXS$ (ASC(BS$)),2);
NEXT
PRINT""
END IF
maing = 1 *Command (clear error)
value% = 2 'Reset FAL no.
PRINT "Reset FAL no.:"”;value$%

CALLS pcstat(ne%, no%, main%, rec%, value%,rtn%)
IF rtn%=3 GOTO RETRY1
IF rtn%<>0 THEN
PRINT "pcstat error : rtn = ”; rtn%
END IF

CALLS pcclose(rtn%)

PRINT "Exit sample program.”
END

BASIC Functions

Section 3-3

PCMODE PROGRAMMABLE CONTROLLER MODE
Purpose This function changes the Programmable Controller’s mode (PROGRAM,
DEBUG, MONITOR, and RUN).
Specifiers Operation number: 06H (6)
Library function name: _b_pcmode
Format PCMODE (NE%,NO%,MODE%,RTN%)
Parameters NE% : Network address (input)
NO% : Node address (input)
MODE% : Programmable Controller mode (input)
RTN% : Returned value (output)
Parameters Format Contents
NE% Integer 0to 127
NO% Integer SYSMAC NET, Ethernet: 0 to 127
SYSMAC LINK: 0 to 62 (see note)
MODE% Integer 0 to 3 (Refer to the comments below.)
RTN% Integer 0 to 3 (Refer to the comments below.)
Note The maximum length varies according to the type of network through which the
message is transmitted.
Comments If the node is in the same network, then use 0 for NE%.

Returned Values

If the local Programmable Controller is being controlled, then assign 0 for NE%
and NO%.

For the variable MODE%, assign an integer from 0 to 3.

MODE% Operation
0 Puts Programmable Controller in PROGRAM Mode (operation
stopped).
Puts Programmable Controller in DEBUG Mode.
2 Puts Programmable Controller in MONITOR Mode.
3 Puts Programmable Controller in RUN Mode.
RTN% Meaning

Ended normally.

Bus is not open.

Network address is invalid.

Programmable Controller or Repeater is busy. Try again.

There is a parameter error.

N OOWw N =0

Ended abnormally.

43

BASIC Functions Section 3-3

Program Examples In this example, the Programmable Controller at network address 1, node
address 2, is placed in DEBUG Mode.

Thkkkkkkkkkkhkhkhkhkhkhkhkhkhkkhkkkhkhhhhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkkkk*x*%

r* BASIC LIBRARY SAMPLE PROGRAM *
r* QUICK BASIC *

Thkkhkhhhhhkhkhhkhkhkhkhkhkhkhkhhhhhhhhhhhhhhdhdhdhdhdhdhkhkhkhkhhhhhdddxdxkdx%x

r

DECLARE SUB pcopen CDECL ALIAS ”_ b pcopen”
DECLARE SUB pcmode CDECL ALIAS ”_ b pcmode”
DECLARE SUB pcclose CDECL ALIAS ”_b pcclose”

CALLS pcopen(rtn%)
IF rtn%<>0 THEN

PRINT "pcopen error : rtn = ”; rtn%
GOTO finish
END IF
RETRYO:
ne% = 1 'Network address
no% = 2 'Node address
mode% = 1 'Mode
PRINT”Mode value: ”;mode%
CALLS pcmode(ne%, no%, mode%, rtn%)
IF rtn%=3 GOTO RETRYO
IF rtn%<>0 THEN
PRINT "pcmode error : rtn = ”; rtn%
END IF
CALLS pcclose(rtn%)
finish:
PRINT "Exit sample program.”
END
PCCLOSE CLOSE CPU BUS
Purpose This function terminates usage of the CPU bus.
Specifiers Operation number: 07H (7)
Library function name: _b_pcclose
Format PCCLOSE (RTN%)
Parameters RTN% : Returned value (output)
Parameters Format Contents
RTN% Integer Status entered as integer after execution of function.
Comments This function must be executed at the end to terminate use of the CPU bus.
Be sure to designate RTN%. If the argument is omitted, an error will be
generated.
Returned Values
RTN% Meaning
0 Ended normally.
1 Bus is not open.
Related Functions PCOPEN
Program Examples For a program example, refer to page 26, PCOPEN.

44

C Functions

Section 3-5

3-4 Before Using C

3-4-1 Functions

This section will explain how to use the CPU Bus Library for C.

The following table lists the available functions.

Name Operation Reference
pcopen() Opens the CPU bus. p. 46
pcmsrd() Receives a message from another Unit. p. 46
pcmswr() Sends a message to another Unit. p. 49
pcread() Reads data from a Programmable Controller data p. 51

area.
pcwrite() Writes data into a Programmable Controller data area. | p. 58
pcstat() Accesses and controls Programmable Controller p. 65
status.
pcmode() Changes Programmable Controller operating modes. | p. 73
pcclose() Closes the CPU bus. p. 75

3-4-2 Using Library Functions

1,2, 3.

1. Declare each function when creating the source file for the application
software.

2. Create an execution program by linking with the library (CLIBx.LIB) when
compiling.

Note The functions used depend on the program model that is created. There are four

3-5 C Functions

Headings

Purpose
Specifiers

Format

Parameters

Comments

Returned Values

Related Functions

Program Examples

sects of functions available, depending on the model size.

Example: Creating Execution Program SAMPLE.EXE (Small Model) from
Source File SAMPLE.C

CL/cSAMPLE.Cciiiin, Creates object.
LINK SAMPLE.OBJ,SAMPLE.EXE,NUL,CLIBS Links library.

This section will explain the functions available in the C library.

Each function will be covered in terms of the following headings.
An outline of the function’s operation will be provided.

When functions are defined with Quick BASIC, the specifiers are the names,
in the library, of the functions that are to be used.

This is the format for functions used in a program.

The meanings of the parameters used in the function’s format are given. A
chart will show each parameter’s format, range, and type.

Parameter contents and setting precautions will be explained.

The meanings of the values returned by the functions will be given. Based on
these values you can determine whether functions have executed correctly
or whether errors have been generated.

This is the names of other functions related to the function being described.
You can refer to the other functions in order to gain a better understanding of
the one in question.

One or more examples will be given of programs in Quick BASIC. Program
files are kept in directory \CVLIB\C\SAMPLE in the program disk.

45

C Functions

Section 3-5

pcopen()

OPEN CPU BUS

Purpose
Format
Parameters

Comments

Returned Values

Related Functions

Program Examples

pemsrd()

This function opens the CPU bus so that it can be used.
unsigned int pcopen()
None

The CPU bus is declared to be open. When you want to use other functions
of the CPU Bus Library, you must execute pcopen () first.

Value Meaning
0 Ended normally.
CPU Bus Driver is not installed.
2 Bus is already open.
pcclose

In this example, the CPU bus is opened and then closed.

/**'k*******-k********-k***********************/

/* Open processing */
/**********'k********************************/

extern unsigned int pcopen();
extern unsigned int pcclose();

void main(void)

{
printf (”"Opening bus \n”);
switch(pcopen()) { /*Open*/
case 0:
printf(”Opened normally. \n”);
break;
case 1:
printf (”"Driver not installed \n”);
break;
case 2:
printf(”"Already open \n”");
break;
}
pcclose(); /*Close*/
}

RECEIVE MESSAGE

Purpose

Format

Parameters

46

With this function, messages can be received from other Units.

unsigned int pcmsrd (ne, no, un, bytes, val, dsz, timer)
unsinged char far *ne;

unsigned char far *no;

unsigned char far *un;

unsigned int far *bytes;

unsigned char far *val;

unsigned int dsz;

unsigned int timer;

ne : “far” pointer for storage area of source network address

no : “far” pointer for storage area of source node address

un : “far” pointer for storage area of source node address

bytes : “far” pointer for storage area of actual number of reception bytes

C Functions Section 3-5

val : “far” pointer for reception buffer
dsz : Number of bytes requested for reception
timer : Timer value
Parameters Format Contents
ne Integer 0to 127
no Integer SYSMAC NET, Ethernet: 0 to 127
SYSMAC LINK: 0 to 62 (see note)
un Integer Absolute address
bytes Integer Length of message actually received
val String Beginning address for reception buffer
dsz Integer Maximum length for message received (1 to 538)
timer Integer 0 to 32767 (Unit: x110 ms)

Note The maximum length varies according to the type of network through which the
message is transmitted.

Comments The source unit address is specified by absolute address. The absolute ad-
dress is the unit number + $10. For example, if a CPU Bus Unit’s unit number
is set to 4, its absolute address would be $14.

When pcmsrd () is executed, the Personal Computer Unit will receive a
message from any Unit. When a message is received, the network address,
node address, and unit address of the receiving Unit will be stored respectively
in the areas indicated by ne, no, and un. The length of the message will be stored
in the area indicated by “bytes.”

Assign a value for the reception waiting time to the variable timer. The reception
waiting time can be set within a range of 0 to 65535, in units of 110 ms. If the
message cannot be received within the waiting time, a timeout (returned value:
6) will result. If “0” is set, arriving messages will be received and there will be no
waiting time.

This function will be ended once a single message of any length has been
received, even if no message for the number of bytes requested for reception
(dsz%) is received. In addition, if a message of a size exceeding the dsz% is
received, the dsz% portion of the message will be returned to the user and the
remainder will be discarded.

This function uses command 0901 of the FINS commands. When this functionis
executed, the Unit will standby for a message that has command code 0901.

The following diagram shows the format for FINS command 0901. Use this for-
mat when transmitting from outside the Personal Computer Unit.

|09: o1| : | Data

Command code Data length

The following example shows the command format needed to send “ABCDEF.”

|09:01|00:06|A :B |c :D |E :F |

Return the following response to the message source if the Personal Computer
Unit received the message normally.

09 01|00 00

47

C Functions

Section 3-5

Returned Values

Related Functions
Program Examples

48

Value Meaning
0 Ended normally.
1 Bus is not open.
3 The Programmable Controller is busy. Please retry.
5 The argument is not correct.
6 No message was received from the specified Unit. A timeout occurred.
8 There is an error in the routing tables.
pecmswr

In this example, a message will be received from another Unit.
/**'k*******'k'k*******************************/
/* Message receive processing */
/**'k*******'k'k*******************************/
extern unsigned int pcopen();
extern unsigned int pcclose();
extern unsigned int pcmsrd();

unsigned char buf[3000];

void main(void)

{
int ret;
unsigned char ne;
unsigned char no;
unsigned char un;
int timer=50;
int bytes;
int dsz;
int i;

printf ("Message reception \n”);
printf(”“ret = %d\n”,ret = pcopen());

if (ret == 1) {
printf(”Driver not installed \n”);
exit();

}

dsz=100;

printf (”"Request to receive message of %d bytes
\n”,dsz);
printf (”"Reception waiting time is %d in units of
110 ms \n”,timer);

switch(pcmsrd((unsigned char far *)é&ne,
(unsigned char far *)& no, (unsigned char far *)
&un, (unsigned char far *)&bytes, (unsigned char
far *)buf, dsz, timer)) {
case 0:
printf ("PCMSRD normal \n”);
printf (”"Network 0x%x\n”, ne);
printf (”"Node 0x%x\n”, no);
printf(”Unit 0x%x\n”, un);
printf (”Number of reception bytes
$d\n” ,bytes)
for (i = 0; i < bytes ; i++)
printf (”0x%02x ”,buf[i]);

C Functions Section 3-5

printf(”\n");
break;

case 1l:
printf ("PCOPEN not executed \n”);
break;

case 3:

printf (”"Programmable Controller busy
\n");

break;

case 5:
printf (”"Improper argument passed \n”);
break;

case 6:
printf (”"Message not received \n”);
break;

case 8:
printf (”"Routing table error \n");
break;

}

pcclose();

}

pcmswr ()

SEND MESSAGE

Purpose
Format

Parameters

Comments

Note

With this function, messages can be transmitted to other Units.

unsigned int pcmswr (ne, no, un, bytes, &val)
unsigned char ne;
unsigned char no;
unsigned char un;
unsigned int byte;
unsigned char far *val;
ne : Destination network address
no : Destination node address
un : Destination unit address
bytes : Number of bytes requested for tfransmission
val : Reception buffer
Parameters Format Contents
ne Integer 0to 127
no Integer SYSMAC NET, Ethernet: 0 to 127
SYSMAC LINK: 0 to 62 (see note)
un Integer Specifies absolute address.
bytes Integer 1to 538
val String Transmission buffer beginning address

The maximum length varies according to the type of network through which the
message is transmitted.

The unit address is specified by the unit number + $10 (the absolute ad-
dress). For example, if a CPU Bus Unit’s unit number is set to 5, its absolute
address will be $15.

When pcmswr () is executed, the Personal Computer Unit will transmit a
message only to the designated Unit.

This function will not be ended until the message has been completely received
at the destination (i.e., until a response is returned to the transmission source).
This function uses command 0901 of the FINS commands, so messages can be
transmitted to BASIC Units.

49

C Functions

Section 3-5

Returned Values

Related Functions

Program Examples

50

This function uses command 0901 of the FINS commands. When this functionis
executed, a message with command code 0901 is sent. The format of FINS
command 0901 is shown in the following diagram.

|os%o1| : | Data

Command code Data length

The following example shows the command format needed to send “ABCDEF.”

[ogo1odog4 B[o,O[€]

When the destination Unit isn’t a Personal Computer Unit and the message is
received, return the following response addressed to the Personal Computer

Unit.
[og0fod 0
Value Meaning
0 Ended normally.
1 Bus is not open.
2 Network address is invalid.
3 Programmable Controller or Repeater is busy. Try again.
5 The argument is not correct.
7 Ended abnormally.
pcmsrd

In this example, the 10-bit message “0123456789” is transmitted to another
Unit.

/***/

/* Message transmission processing */
/***/

unsigned char Dbuf[] = ”"0123456789";

extern unsigned int pcopen();

extern unsigned int pcclose();

extern unsigned int pcmswr();

void main(void)

{
int ret;
unsigned char ne=0x01;
unsigned char no=0x01;
unsigned char un=0x15
int bytes=10;
int i;

printf(”“ret = %d\n”,ret = pcopen());

if (ret == 1) {
printf (”"Driver not installed \n”);
exit();

}

printf (”"Message transmission \n”);

printf (”"Network 0x%x\n”, ne);

C Functions

Section 3-5

pcread()

printf(”"Node 0x%x\n”, no);
printf (”Unit 0x%x\n”, un);
printf(”"Will transmit message of %d bytes to

\n\n”,bytes);

printf(”"Transmission data is as follows: \n\t”);
for (i = 0; i < bytes; i++)

printf (”0x%02x ”,buf[i]);
printf (”\n\n");

switch (pcmswr(ne, no, un, bytes, (unsigned char
far *)buf)) {

case O0:
printf ("PCMSWR normal \n”);
break;
case 1:
printf (”"PCOPEN not executed \n”);
break;
case 2:
printf (”"Network address error \n”);
break;
case 3:
printf (”"Programmable Controller busy \n”);
break;
case 5:
printf (”"Improper argument passed \n”);
break;
case 7:
printf (”Ended abnormally \n”);
break;
}
pcclose();

READ AREA

Purpose

Format

Parameters

This function reads data from a data area of a Programmable Controller.

unsigned

unsigned
unsigned
unsigned
unsigned
or

unsigned

ne
no

int pcread (ne, no, sub format, val[,val...])
char ne;

char no;

char far *sub format;

int fat *val; (1)

char far *val; (2)

: Source network address
: Source node address

sub_format : Subformat

val : Reception buffer

Parameters Format Contents

ne Integer 0to 127

no Integer SYSMAC NET, Ethernet: 0 to 127

SYSMAC LINK: 0 to 62 (see note)

sub_format String Refer to comments.

val (1) Integer Reception buffer beginning address
val (2) String

S1

C Functions

Section 3-5

Note The maximum length varies according to the type of network through which the

message is transmitted.

Comments For val, specify the beginning address for the area that is to store the data
that is read. Depending on the number of words read, and the storage
format, several val may be specified. In addition, val may be either integer
type or character type.

For the variable sub_format, assign character strings for the various
specifications for the data to be read. The character strings that can be assigned
for sub_format are as follows:
Sub_format Forms
[sub, start, num,] format [, format...]
Each string is separated by commas. The contents inside of the brackets
may be omitted. Several formats may be specified.
sub: Subformat
start: Beginning word for reading
num: Number of words to be read
format: Storage format
Note Characters for sub_format must all be in upper case.
For sub, set the Programmable Controller data area type.

Subcommands

Subcommand Specified area Word/bit addresses Data unit
@R CIO Area 0 to 2,555 Word
@A Auxiliary Area (A) 0to 511 Word

(A256 to A511 are read only.)

@TN Transition Flags (read only) 0to 1,023 Bit

@SN Step Flags (read only) 0to 1,023 Bit

@TF Timer Flags (read only) 0to 1,023 Bit

@T Timer present values 0to 1,023 Word
@CF Counter Flags (read only) 0to 1,023 Bit

@C Counter present values 0to 1,023 Word
@D DM 0 to 24,575 Word
@EO0 Expansion DM (EM) Bank 0 0to 32,765 Word
@E1 Expansion DM (EM) Bank 1 0to 32,765 Word
@E2 Expansion DM (EM) Bank 2 0to 32,765 Word
@E3 Expansion DM (EM) Bank 3 0to 32,765 Word
@E4 Expansion DM (EM) Bank 4 0to 32,765 Word
@E5 Expansion DM (EM) Bank 5 0to 32,765 Word
@E6 Expansion DM (EM) Bank 6 0to 32,765 Word
@E7 Expansion DM (EM) Bank 7 0to 32,765 Word
@SG CPU Bus Link Area (G) 0to 255 Word

52

Note

1. Commands must be specified in upper case.

2. The ranges shown for word and bit numbers are for CV1000 Programmable
Controllers. Refer to the CV-series PC Operation Manual: Ladder Diagrams
(W202) for address ranges for other PCs.

Start specifies the beginning address, in the area designated by the
subcommand, from which data is to be read. If the data is to be read from the top
of the designated area, then set this to “0.”

Num specifies how many words are to be read, beginning with the address
designated by start. This can be set from 1 to 256.

Sub, start, and num data takes on meaning only when it is all complete. No part
can be omitted. It is possible, however, for the data to be omitted completely. In

C Functions

Section 3-5

that case, the pcread () function will not read Programmable Controller areas.
Instead, data can be read from the Programmable Controller by means of
SEND(192). That is, when SEND(192) is executed at the Programmable Con-
troller, the data that is transmitted from the Programmable Controller is read.
Until SEND(192) is executed at the Programmable Controller, execution will
wait. (Wait status can be ended by pressing the Esc Key.) One integer type (%)
can be specified for the storage format. The external variables cv_netadr and
cv_nodadr respectively are assigned the network address and the node
address of the Programmable Controller executing SEND(192). When execut-
ing via SEND(192), add the following two lines at the top of the program.

extern unsigned char cv_netadr;
extern unsigned char cv_nodadr;

Format is a character string that interprets one word of data that is read and
specifies the conversion method for storing the data in memory.

Data conversion by format will be as follows:

a) The contents of the Programmable Controller data will be interpreted
according to specifications. (Data that cannot be interpreted according
to specifications will be regarded as 0.)

b) The data will be converted to numerals or character strings.
c) It will be stored in the reception buffer.

The format form will be:
{% or $} n{l, H, O, or A}

In n, the number of words to be read with this storage format is specified. If n is
not specified, it will be regarded as 1.

Note The number of words actually read will be the number of words specified bynum.
Be sure to set the total number of words designated by n of format such that is
the same as the num value.

Storage Formats

Format

Operation and storage method

%nl

Interprets read data as decimal, and stores it as numerals. Data that cannot be interpreted as decimal
will be regarded as “0.” A single word of data will be stored in a single val variable. If a numeral of 2 or
greater is specified for n, then n number of val variables will be required. The variable val type will be
numeral for unsigned int far *.

%nH

Interprets read data as hexadecimal, and stores it as numerals. Data that cannot be interpreted as
hexadecimal will be regarded as “0.” Specifications regarding val are the same as for %nl/.

%n0

Interprets read data as octal, and stores it as numerals. Data that cannot be interpreted as octal will
be regarded as “0.” Specifications regarding val are the same as for %nl/.

%Snl

Interprets read data as decimal, and stores it as numerals. Data that cannot be interpreted as decimal
will be regarded as “0.” Read data will be stored in array variable val []. If two or more numerals are
specified for n, then n number of arrays will be required for the variable val []. The variable val [] type
will be numeral for unsigned int far *.

%SnH

Interprets read data as hexadecimal, and stores it as numerals. Data that cannot be interpreted as
hexadecimal will be regarded as “0.” Specifications regarding val are the same as for %Snl/.

%Sn0O

Interprets read data as octal, and stores it as numerals. Data that cannot be interpreted as octal will
be regarded as “0.” Specifications regarding val are the same as for %nl/.

$nl

Interprets read data as decimal, and converts it to character strings for storage. Data that cannot be
interpreted as decimal will be regarded as “0.” A single word of data will be stored in a single val
variable. If a numeral of 2 or greater is specified for n, then n number of val variables will be required.
A single word (two bytes) of data will be converted to a 4-byte character string expressing a 4-digit
numeral. Thus four bytes of data area will be required for a single variable val. The variable val type
will be character for unsigned char far *.

$nH

Interprets read data as hexadecimal, and stores it as numerals. Data that cannot be interpreted as
hexadecimal will be regarded as “0.” Specifications regarding val are the same as for $nl.

$n0O

Interprets read data as octal, and stores it as numerals. Data that cannot be interpreted as octal will
be regarded as “0.” Specifications regarding val are the same as for $nl.

53

C Functions Section 3-5

Format Operation and storage method

$nA Interprets read data as ASCII, and converts it to character strings for storage. Data read into array
variable val [] will be stored. A single word (two bytes) of data will be converted to a 2-byte character
string. Thus a data area of n x 2 bytes will be required for an array variable val []. The variable val
type will be character, for unsigned char far *.

$Snl Interprets read data as decimal, and converts it to character strings for storage. Data that cannot be
interpreted as decimal will be regarded as “0.” Read data will be stored in array variable val []. If two
or more numerals are specified for n, then n number of arrays will be required for the variableval []. A
single word (two bytes) of data will be converted to a 4-byte character string expressing a 4-digit
numeral. Thus a data area of n x 4 bytes will be required for an array variable val []. The variable val
type will be character for unsigned char far *.

$SnH Interprets read data as hexadecimal, and converts it to character strings for storage. Data that cannot
be interpreted as hexadecimal will be regarded as “0.” Specifications regarding val are the same as
for $Snl.

$Sn0O Interprets read data as octal, and converts it to character strings for storage. Data that cannot be
interpreted as octal will be regarded as “0.” Specifications regarding val are the same as for $Snl.

$SnA Interprets read data as ASCII, and converts it to character strings for storage. Data read into array

variable val [] will be stored. A single word (two bytes) of data will be converted to a 2-byte character
string. Thus a data area of n x 2 bytes will be required for an array variable val []. The variable val
type will be character, for unsigned char far *.

Conversion Examples

Examples are given below, according to the various storage formats, of
converting data that has been read.

1,2, 3. 1. I-type (Decimal) Format
Read data 12345678

Numerals
unsigned int vall, val2;
unsigned int far *pl, *p2;
pl = (unsigned int far *)&vall;
p2 (unsigned int far *)&val2;
pcread(..."”...,%21",pl,p2);
Results
vall = 1234
val2 = 5678
Numeral Array
signed int val[2]
unsigned int far *p;

0x04d2
0xl1l62e

p = (unsigned int far *)val;

pcread(...,"...,%821",p);

Results

val[0] = 1234 = 0x04d2

val[l] = 5678 = 0xl62e
Characters

unsigned char vall[4],val2([4];
unsigned char far *pl,*p2;

pl = (unsigned char far *)vall;

P2 = (unsigned char far *)val2;
pcread(...,"...,$21",pl,p2);

Results

vall[0] = "1’ = 0x31; vall[l] = "2’ = 0x32;
vall[2] = '3’ = 0x33; vall[3] = 4’ = 0x34;
val2[0] = '5" = 0x35; val2[l] = '6’' = 0x36;
val2[2] = '7' = 0x37; val2[3] = '8’ = 0x38;

Character Array
unsigned char val[8];
unsigned char far *p;

54

C Functions Section 3-5

P = (unsigned char far *)val;
pcread(...,"...,$S21",p);

Results

val[0] = "1’ = 0x31; val[l] = "2’ = 0x32;
val[2] = '3’ = 0x33; val[3] = "4’ = 0x34;
val[4] = '5’ = 0x35; val[5] = "6’ = 0x36;

val[6] = 7' = 0x37; val[7] = '8’ = 0x38;
2. H-type (Hexadecimal) Format
Read data 789ABCDE

Numerals
unsigned int vall, val2;
unsigned int far *pl, *p2;
pl = (unsigned int far *)&vall;
p2 (unsigned int far *)&val2;
pcread(..."”...,%2H",pl,p2);
Results
vall = 0x789%a
val2 O0xbcde

Numeral Array
unsigned int val[2];
unsigned int far *p;

p = (unsigned int far *)val;
pcread(...,"...,%S2H",p);
Results
val[0] = 0x789a
val[l] = Oxbcde

Characters

unsigned char vall[4],val2[4];
unsigned char far *pl,*p2;

pl = (unsigned char far *)vall;

p2 = (unsigned char far *)val2;

pcread(...,"...,$2H",pl,p2);

Results

vall[0] = '7' = 0x37; vall[l] = '8’ = 0x38;

vall[2] = "9’ = 0x39; vall[3] = 'A’' = 0x41;

val2[0] = 'B’' = 0x42; val2[l] = 'C’' = 0x43;

val2[2] = 'D’' = 0x44; val2[3] = 'E' = 0x45;
Character Array

unsigned char val[8];

unsigned char far *p;

P = (unsigned char far *)val;

pcread(...,"...,$S2H",p);

Results

val[0] = "7’ = 0x37; val[l] = '8’ = 0x38;

val[2] = "9’ = 0x39; val[3] = 'A’' = 0x41;

val[4] = 'B’ = 0x42; val[5] = 'C’ = 0x43;

val[6] = 'D’ = 0x44; val[7] = 'E’' = 0x45;
3. O-type (Octal) Format
Read data 12345670

Numerals
unsigned int vall, val2;
unsigned int far *pl, *p2;
pl = (unsigned int far *)&vall;
p2 (unsigned int far *)&val2;
pcread(..."”...,%20",pl,p2);

55

C Functions Section 3-5
Results
vall = 01234 = 0x029c
val2 = 05670 = 0xObb8
Numeral Array
unsigned int val[2];
unsigned int far *p;
p = (unsigned int far *)val;
pcread(...,"...,%520",p);
Results
val[0] = 01234 = 0x029c
val[l] = 05670 = 0x0bb8
Characters
unsigned char vall[4],val2[4];
unsigned char far *pl,*p2;
pl = (unsigned char far *)vall;
p2 = (unsigned char far *)val2;
pcread(...,"...,$20",pl,p2);
Results
vall[0] = "1’ = 0x31; vall[l] = '2' = 0x32;
vall[2] = "3’ = 0x33; vall[3] = "4’ = 0x34;
val2[0] = '5' = 0x35; val2[l] = "6’ = 0x36;
val2[2] = '7' = 0x37; val2[3] = "0’ = 0x30;
Character Array
unsigned char vall[8];
unsigned char far *p;
p = (unsigned char far *)val;
pcread(...,"...,$520",p);
Results
val[0] = "1’ = 0x31; val[l] = 2’ = 0x32;
val[2] = '3’ = 0x33; val[3] = "4’ = 0x34;
val[4] = '5’ = 0x35; val[5] = "6’ = 0x36;
val[6] = 7' = 0x37; val[7] = "0’ = 0x30;
4. A-type (ASCII Code) Format
Read data 51525354
Characters
unsigned char vall[4];
unsigned char far *pl;
pl = (unsigned char far *)vall;
pcread(...,"...,$2A",pl);
Results
vall[0] = 'Q’ = 0x51; vall[l] = 'R’ = 0x52;
vall[2] = 'S’ = 0x53; vall[3] = 'T’' = 0x54;
Character Array
unsigned char val[4];
unsigned char far *p;
p = (unsigned char far *)val;
pcread(...,"...,$S2A",p);
Results
val[0] = 'Q’ = 0x51; val[l] = 'R’ = 0x52;
val[2] = 'S’ = 0x53; val[3] = 'T' = 0x54;

56

C Functions

Section 3-5

Returned Values

Related Functions

Program Examples

Value Meaning

Ended normally.

Bus is not open.

Network address is invalid.

Programmable Controller or Repeater is busy. Try again.
Ended by Esc Key.

The argument is not correct.

Ended abnormally

There is an error in the routing tables.

OINO|~lWOWND =|O

pcwrite

In this example, data is read from DM words 0 to 2 of a Programmable Con-
troller at the same node.
/***/

/* Data area read processing */
/'k'k'k*******'k'k*******************************/

extern unsigned int pcopen();

extern unsigned int pcclose();

extern unsigned int pcread();

#define INT SIZE 2 /* % */
#define WORD 3 /* WORD */

void main(void)
{
int ret;
int 1i,3;
unsigned char sub[80];
unsigned char far *subp;
unsigned int Dbuf[WORD][INT SIZE]; /* 3 words */
unsigned int far *bufp;
unsigned char ne=0;
unsigned char no=0;

bufp = (unsigned int far *)&buf[0][0];

printf(”“ret = %d\n”,ret = pcopen());

if (ret == 1) {
printf (”Driver not installed \n”);
exit();

}

subp = (unsigned char far *)&sub[0];

strcpy(sub, “€D,0,3,%S3H");
printf(”"Data area read processing \n”);

printf (”"Network 0x%x\n”, ne);
printf (”"Node 0x%x\n”, no);
printf (”"Programmable Controller area will be
read\n\n");
printf(”Specified command for reading is \’%s\’
\n”, sub);

switch (pcread(ne, no, subp, bufp)) {

57

C Functions

Section 3-5

pcwrite()

follows:
\n");
}

case 0:
printf ("PCREAD normal \n”);
printf(”Data from words read is as
\n\t");
for (i =0; i < 3; i++)
printf (”0x%04x ", *bufp++);
break;
case 1:
printf (”"PCOPEN not executed \n”);
break;
case 2:
printf (”"Network address error \n”);
break;
case 3:
printf (”"Programmable Controller busy

break;

case 4:
printf (”"Ended by Esc Key \n”);
break;

case 5:
printf (”"Improper argument passed \n”);
break;

case 7:
printf (”"Ended abnormally \n”);
break;

case 8:
printf (”"Routing table error \n");
break;

}

pcclose();

WRITE AREA

Purpose

Format

Parameters

58

This function writes data to the data area of a Programmable Controller.

unsigned int pcwrite (ne, no, sub format, val[,val...])

unsigned char ne;
unsigned char no;
unsigned char far *sub format;

unsigned int far *val; (1)
or
unsigned char far *val; 2

ne
no

: Destination network address
. Destination node address

sub_format : Subformat

val

: Transmission buffer

C Functions

Comments

Subcommands

Section 3-5

Parameters Format Contents
ne Integer 0to 127
no Integer SYSMAC NET, Ethernet: 0 to 127

SYSMAC LINK: 0 to 62 (see note)
sub_format String Refer to comments.
val (1) Integer
val (2) String Transmission buffer beginning address

Note The maximum length varies according to the type of network through which the
message is transmitted.

For val, specify the beginning address for the area that is to store the data
that is written. Depending on the number of words written and the storage
format, several val may be specified. In addition, val may be either integer
type or character type.

For the variable sub_format, assign character strings for the various
specifications for the data to be written. The character strings that can be
assigned for sub_format are as follows:

Sub_format Forms

[sub, start,

num,] format [, format...]

Each string is separated by commas. The contents inside of the brackets
may be omitted. Several formats may be specified.

sub: Subformat

start:
num:

Beginning word for writing
Number of words to be written

format: Storage format

Note Characters for sub_format must all be in upper case.

Note

Subcommand Specified area Word/bit addresses | Data unit
@R CIO Area 0 to 2,555 Word
@A Auxiliary Area (A) 0to 511 Word
(A256 to A511 are read only.)

@TN Transition Flags (read only) 0to 1,023 Bit
@ST Step Flags (read only) 0to 1,023 Bit
@TF Timer Flags (read only) 0to 1,023 Bit
@T Timer present values 0to 1,023 Word
@CF Counter Flags (read only) 0to 1,023 Bit
@C Counter present values 0to 1,023 Word
@D DM 0 to 24,575 Word
@EO0 Expansion DM (EM) Bank 0 | 0 to 32,765 Word
@E1 Expansion DM (EM) Bank 1 | 0 to 32,765 Word
@E2 Expansion DM (EM) Bank 2 | 0 to 32,765 Word
@E3 Expansion DM (EM) Bank 3 | 0 to 32,765 Word
@E4 Expansion DM (EM) Bank 4 | 0 to 32,765 Word
@E5 Expansion DM (EM) Bank 5 | 0 to 32,765 Word
@E6 Expansion DM (EM) Bank 6 | 0 to 32,765 Word
@E7 Expansion DM (EM) Bank 7 | 0 to 32,765 Word
@SG CPU Bus Link Area (G) 0to 255 Word

1. Commands must be in upper case.

2. The ranges shown for word and bit numbers are for CV1000 Programmable
Controllers. Refer to the CV-series PC Operation Manual: Ladder Diagrams

W202) for address ranges for other PCs.

59

C Functions

Section 3-5

3. The CPU Bus Link Area cannot be designated for the local Programmable
Controller. Specify ne =0, no = 0, and word = 128+unit number x 8 +8 words.

Start specifies the beginning address, in the area designated by the
subcommand, from which data is to be written. If the data is to be written from the
top of the designated area, then set this to “0.”

Num specifies how many words are to be written, beginning with the address
designated by start. This can be set from 1 to 256.

Sub, start, and num data takes on meaning only when it is all complete. No part
can be omitted. It is possible, however, for the data to be omitted completely. In
that case, the pcwrite () function will not write to Programmable Controller areas.
Instead, data can be written to the Programmable Controller by means of
RECV(193). That is, when RECV(193) is executed at the Programmable Con-
troller, the Programmable Controller will prepare to receive and the data is then
written. Until RECV(193) is executed at the Programmable Controller, execution
will wait. (Wait status can be ended by pressing the Esc Key.) One integer type
(%) can be specified for the storage format. The external variables cv_netadr
and cv_nodadr respectively will be assigned the network address and the node
address of the Programmable Controller executing RECV(193). When execut-
ing via RECV(193),add the following two lines at the top of the program.

extern unsigned char cv_netadr;
extern unsigned char cv_nodadr;

Format is a character string that specifies the method of conversion in order to
write into a Programmable Controller area, in the designated data type, the data
stored in the transmission buffer.

Data conversion by format will be as follows:

a) The data stored in the transmission buffer will be converted to the
designated data type. (When converting to numerals, overflow portions
will be ignored.)

b) The data will be written to the Programmable Controller area.

The format form will be:
{% or $} n{l, H, O, or A}
In n, the number of words to be read with this storage format is specified.

Note The number of words actually written will be the number of words specified by
num. Be sure to set the total number of words designated byn of format such that
is the same as the num value.

Storage Formats

Format

Operation and storage method

%nl

Regards write data as numerals and expands it to decimal (BCD conversion) for writing. At the time of
expansion to decimal, overflow portions will be ignored. A single word of data will be stored in a single
variable val. Thus n number of variable val will be required. The variable val type will be numeral for
unsigned int far *.

%nH

Regards write data as numerals and expands it to hexadecimal for writing. At the time of expansion to
decimal, overflow portions will be ignored. Specifications regarding val are the same as for %nl.

%n0

Regards write data as numerals and expands it to octal for writing. At the time of expansion to octal,
overflow portions will be ignored. Specifications regarding val are the same as for %nl.

%Snl

Regards write data as numerals and expands it to decimal (BCD conversion) for writing. At the time of
expansion to decimal, overflow portions will be ignored. Write data will be regarded as being stored in
array variable val []. For array variable val [] with n number of arrays, it is necessary to specify one
array. The variable val [] type will be numeral for unsigned int far *.

%SnH

Regards write data as numerals and expands it to hexadecimal for writing. At the time of expansion to
decimal, overflow portions will be ignored. Specifications regarding val are the same as for %Snl.

%Sn0O

Regards write data as numerals and expands it to octal for writing. At the time of expansion to octal,
overflow portions will be ignored. Specifications regarding val are the same as for %Snl.

60

C Functions Section 3-5

Format Operation and storage method

$nl Regards write data as characters and expands it to decimal (BCD conversion) for writing. At the time
of expansion to decimal, overflow portions will be ignored. A single word of data will be stored in a
single variable val. Thus n number of variable val will be required. Four bytes of data will become a
single word (two bytes) of data. Thus four bytes of data area will be required for a single variable val.
The variable val type will be character for unsigned char far *.

$nH Regards write data as characters and expands it to hexadecimal for writing. At the time of expansion
to decimal, overflow portions will be ignored. Specifications regarding val are the same as for $nl.

$n0O Regards write data as characters and expands it to octal for writing. At the time of expansion to octal,
overflow portions will be ignored. Specifications regarding val are the same as for $nl.

$nA Regards write data as ASCII code and expands it for writing. Data from n words is stored in a single

variable val. Two bytes of data will become a single word (two bytes) of data. Thus variable val will
require a data area of n x 2 bytes. The variable val type will be character for unsigned char far *.

$Snl Regards write data as characters and expands it to decimal (BCD conversion) for writing. At the time
of expansion to decimal, overflow portions will be ignored. Write data will be regarded as being stored
in array variable val []. Four bytes of data will become a single word (two bytes) of data. Thus it will
be necessary to specify a character array variable val [] which has n x 4 arrays. The variable val type
will be character for unsigned char far *.

$SnH Regards write data as characters and expands it to hexadecimal for writing. At the time of expansion
to decimal, overflow portions will be ignored. Specifications regarding [] are the same as for$Snl.

$Sn0O Regards write data as characters and expands it to octal for writing. At the time of expansion to octal,
overflow portions will be ignored. Specifications regarding [] are the same as for $Snl.

$SnA Regards write data as ASCII code and expands it for writing. Write data will be regarded as being

stored in array variable val []. Two bytes of data will become a single word (two bytes) of data. Thus it
will be necessary to specify a character array variable val [] which has a data area of n x 2 bytes. The
variable val type will be character for unsigned char far *.

Conversion Examples
Examples are given below, according to the various storage formats, of
converting data that has been read.
1,2, 3... 1. I-type (Decimal) Format
Data written to Programmable Controller 12345678

Numerals
unsigned int vall, val2;
unsigned int far *pl, *p2;

vall 1234;

val2 = 5678;

pl = (unsigned int far *)&vall;

p2 = (unsigned int far *)&val2;

pcwrite(...”...,%21",pl,p2);
Numeral Array

unsigned int val[2];

unsigned int far *p;

val[0] = 1234;

val[l] 5678;

p = (unsigned int far *)val;

pcwrite(...,"”...,%821",p);
Characters

unsigned char vall[4],val2[4];

unsigned char far *pl,*p2;

vall[0] = "1’ = 0x31; vall[l] = 2’ = 0x32;
vall[2] = '3’ = 0x33; vall[3] = "4’ = 0x34;
val2[0] = '5' = 0x35; val2[l] = 6’ = 0x36;
val2[2] = '7' = 0x37; val2[3] = '8’ = 0x38;

pl = (unsigned char far *)vall;

61

C Functions Section 3-5

p2 = (unsigned char far *)val2;

pcwrite(...,"...,$21",pl,p2);
Character Array

unsigned char val[8];

unsigned char far *p;

val[0] = "1’ = 0x31; val[l] = 2’ = 0x32;
val[2] = '3’ = 0x33; val[3] = "4’ = 0x34;
val[4] = '5’ = 0x35; val[5] = "6’ = 0x36;
val[6] = 7' = 0x37; val[7] = '8’ = 0x38;
p = (unsigned char far *)val;

pcwrite(...,"”...,$82I",p);
2. H-type (Hexadecimal) Format
Data written to Programmable Controller 789ABCDE

Numerals
unsigned int vall, val2;
unsigned int far *pl, *p2;

vall = 0x789a

val2 = 0Oxbcde

pl = (unsigned int far *)&vall;

P2 = (unsigned int far *)&val2;

pcwrite(...”...,%2H",pl,p2);
Numeral Array

unsigned int val[2];
unsigned int far *p;

val[0] = 0x789a
val[l] = Oxbcde
p = (unsigned int far *)val;

pcwrite(...,”...,%S2H",p);

Characters
unsigned char vall[4],val2[4];
unsigned char far *pl,*p2;

vall[0] = 7' = 0x37; vall[l] = '8’ = 0x38;
vall[2] = "9’ = 0x39; vall[3] = 'A’' = 0x41;
val2[0] = 'B’ = 0x42; val2[l] = 'C’' = 0x43;
val2[2] = 'D’' = 0x44; val2[3] = 'E' = 0x45;
pl = (unsigned char far *)vall;
p2 = (unsigned char far *)val2;
pcwrite(...,"”...,$2H",pl,p2);

Character Array
unsigned char val[8];
unsigned char far *p;
val[0] = "7’ = 0x37; val[l] = '8’ = 0x38;
val[2] = "9’ = 0x39; val[3] = 'A’' = 0x41;
val[4] = 'B’ = 0x42; val[5] = 'C’' = 0x43;
val[6] = 'D’ = 0x44; val[7] = 'E’' = 0x45;

P = (unsigned char far *)val;
pcwrite(...,"”...,$S2H",p);

3. O-type (Octal) Format
Data written to Programmable Controller 12345670

62

C Functions

Section 3-5

Numerals
unsigned int vall, val2;
unsigned int far *pl, *p2;

vall 01234;

val2 = 05670;

pl = (unsigned int far *)&vall;
p2 = (unsigned int far *)&val2;
pcwrite(...”...,%20",pl,p2);

Numeral Array
unsigned int val[2];
unsigned int far *p;

val[0] = 01234;

val[l] 05670;

p = (unsigned int far *)val;
pcwrite(...,”...,%820",p);

Characters
unsigned char vall[4],val2[4];
unsigned char far *pl,*p2;

vall[0] r1r 0x31; vall[l]
vall[2] 3’ 0x33; vall[3] 4
val2[0] 57 0x35; val2[1] "6’
val2[2] = '7' = 0x37; val2[3] = '0"
pl = (unsigned char far *)vall;
p2 = (unsigned char far *)val2;

pcwrite(...,"...,$20",pl,p2);

121

Character Array
unsigned char val[8];
unsigned char far *p;

val[0] = "1’
val[2] "3 0x33; val[3] "4
val[4] 57 0x35; val[5] "6’
val[6] r7' = 0x37; val[7] = ‘0’
p = (unsigned char far *)val;
pcwrite(...,”...,$820",p);

4. A-type (ASCII Code) Format
Data written to Programmable Controller 51525354

0x31; val[l] r2' =

Characters
unsigned char val[4];
unsigned char far *p;

val[0] = 'Q’ 0x51; val[l] = 'R’ =
val[2] 's’ = 0x53; val[3] 'Y=
P = (unsigned char far *)val;
pcwrite(...,"...,$2A",p);

Character Array
unsigned char val[4];
unsigned char far *p;

val[0] = 'Q’ 0x51; val[l] = 'R’ =
val[2] 'S’ = 0x53; val[3] ' o=

0x32;
0x34;
0x36;
= 0x30;

0x32;
0x34;
0x36;

= 0x30;

0x52;
0x54;

0x52;
0x54;

63

C Functions

Section 3-5

Returned Values

Related Functions
Program Examples

64

P = (unsigned char far *)val;
pcwrite(...,”...,$S2A",p);

Value Meaning
0 Ended normally.
1 Bus is not open.
2 Network address is invalid.
3 Programmable Controller or Repeater is busy. Try again.
4 Ended by Esc Key.
5 The argument is not correct.
7 Ended abnormally.
8 There is an error in the routing table.
pcread

In this example, data is read from DM words DO0000 to DO0002 of a Pro-
grammable Controller at the same node.
/***/

/* Data area write processing */
/***/

extern unsigned int pcopen();

extern unsigned int pcclose();

extern unsigned int pcwrite();

void main(void)
{
int ret, i
unsigned char sub[20];
static unsigned char buf[8] =
{0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38};
unsigned char far *subp;
unsigned char far *bufp;
unsigned char ne=0;
unsigned char no=0;

printf(”"ret = %d\n”,ret = pcopen());

if (ret == 1) {
printf (”"Driver not installed \n”);
exit();

}

subp = (unsigned char far *)sub;

bufp = (unsigned char far *)buf;

strcpy(sub, “€D,0,3,%S3H");
printf (”"Data area write processing \n”);

printf (”"Network 0x%x\n”, ne);
printf(”Node 0x%x\n”, no);
printf(” Programmable Controller area will be
written to \n\n");
printf(”Specified command for writing is \’%s\
\n”, sub);
printf (”"Write data:");
for (i =0; i < 8; i++)
printf(”%02x ”,buf[i]);
printf (”\n\n");

C Functions Section 3-5

switch (pcwrite(ne, no, subp, bufp)) {
case 0:
printf ("PCWRITE normal \n”);
break;
case 1:
printf (”"PCOPEN not executed \n”);
break;
case 2:
printf (”"Network address error \n”);
break;
case 3:
printf (”"Programmable Controller busy
\n");
break;
case 4:
printf(”"Ended by Esc Key \n”);
break;
case 5:
printf (”"Improper argument passed \n”);
break;
case 7:
printf (”Ended abnormally \n”);
break;
case 8:
printf (”"Routing table error \n”);
break;
}
pcclose();
}
pcstat() PROGRAMMABLE CONTROLLER STATUS
Purpose This function accesses and controls Programmable Controller status.
Format unsigned int pcstat (ne, no, mcmd, ch, val)

unsigned char ne;
unsigned char no;
unsigned char mcmd;
unsigned char far *ch;

unsigned int far *val; (1)

or

unsigned char far *val; (2)

Parameters ne : Network address

no : Node address

mcmd : Command

ch : Number of records read

val . Storage buffer

Parameters Format Contents

ne Integer 0to 127

no Integer SYSMAC NET, Ethernet: 0 to 127
SYSMAC LINK: 0 to 62 (see note)

mcmd Integer 0 to 3 (Refer to comments.)

ch Integer 0to 20

val (1) Integer Refer to comments.

val (2) String Refer to comments.

65

C Functions

Section 3-5

Note The maximum length varies according to the type of network through which the

message is transmitted.

Comments For memd, assign the data to be controlled with respect to the Programmable
Controller. The control items are shown below, according to the value for
memd.

mcmd Control item
0 Controller status readout
1 Error clearing
2 Error Log readout
3 Error Log clearing
The values for ch and val will change according to the value for mcmd. The
assigned values for mcmd and the set values for ch and val are explained next.
1,2, 3... 1. Read Controller Status (When memd = 0)
This lets the user know the present status of the Programmable Controller
(current errors, for example). Controller status data is configured in 26 by-
tes, as shown in the chart below. Set for val the beginning address of the
26-byte data reception area. In this case, ch will not be used, so set dummy
data.
1 byte 1 byte 2 bytes 2 bytes 2 bytes 2 bytes 16 bytes
Operating | Mode Fatal error | Non-fatal Message Present Error message
status information | error notice FAL No.
information
0 25

66

The content of each data section is as follows:
* Operating Status

$00: Stopped (User program not being executed)
$01: Running (User program being executed)
$80: CPU waiting
* Mode
$00: PROGRAM Mode
$01: DEBUG Mode
$02: MONITOR Mode
$04: RUN Mode

* Fatal Error Information
The meanings the bits in the 2-byte area are as follows:

Bit Meaning when bit is ON
00 Watchdog timer error
01 to 05 Not used
06 FALS error
07 SFC fatal error
08 Cycle time too long
09 Program error
10 I/O setting error
11 I/O capacity exceeded
12 CPU bus error
13 Duplicate number error
14 I/O bus error
15 Memory error

C Functions Section 3-5

* Non-fatal Error Information
The meanings the bits in the 2-byte area are as follows:

Bit Meaning when bit is ON
00, 01 Not used
02 Momentary power interruption
03 CPU Bus setting error
04 Battery error
05 SYSMAC BUS error
06 SYSMAC BUS/2 error
07 CPU Bus Unit error
08 Not used
09 I/O verification error
10 Not used
11 SFC non-fatal error
12 Indirect DM BCD error
13 JMP error
14 Not used
15 FAL error

* Message Notice
When a particular bit turns ON, it indicates that there is a message.

Bit Meaning when bit is ON
00 Message No. 0
01 Message No. 1
02 Message No. 2
03 Message No. 3
04 Message No. 4
05 Message No. 5
06 Message No. 6
07 Message No. 7

* Present FAL No.
The error with the highest current priority is indicated. If there is no FAL or
FALS error, the value will be $ 00.

* Error Message
The error message for the present FAL No. is indicated. If there is no FAL
or FALS error, or if there is no message for the present FAL number, then
spaces will be entered. The value is $ 4100 greater than the FAL or FALS
number.

2. Error Clearing (When memd = 1)
This clears current FAL or FALS errors. For val, specify the beginning ad-
dress of the area in which the FAL number to be cleared is stored. In this
case, ch will not be used, so set dummy data. This operation will be ended
normally even if there is no error for the specified FAL number.

3. Error Log Readout (When mcmd = 2)
This lets the user know the history of errors that have occurred at the Pro-

67

C Functions

Section 3-5

grammable Controller. A single error log record consists of 10 bytes, as

shown in the following table.

No. of bytes Item
Error code
Content
Min/sec
Day/time
Year/month

NDNINDINDININ

Up to 20 error records can be read at one time. For ch, specify the beginning
address of the area for which the number of records are to be read. Forval,
set the beginning address of the reception area (the number of error records
to be read x 10 bytes). When returning from this function, the number of re-
cords actually read will be stored in the area set by ch. If “0” is specified for
the number of records read (ch), then all current records will be stored in the
area set by ch. (Nothing will be stored in val.)

4. Error Log Clearing (When memd = 3)

This clears the error log stored in the Programmable Controller. ch and val

are not used, so assign dummy data.

Returned Values

Value Meaning

Ended normally.

Bus is not open.

Network address is invalid.

Programmable Controller or Repeater is busy. Try again.

The argument is not correct.

N oW N =0

Ended abnormally.

Program Examples In this example, the status of the Programmable Controller is read.
/~k-k-k******~k-k-k**************************-k-k***/

/* Status: Controller information readout */
/***/

extern unsigned int pcopen();
extern unsigned int pcclose();
extern unsigned int pcstat();

void main(void)

{
int ret,i,j;
unsigned char val[26];
area */
unsigned char far *valp;
unsigned char dmy;
unsigned char far *dmyp;
unsigned char ne=0;
*/

unsigned char no=0;
unsigned int mcmd = 0;

(unsigned char far
(unsigned char far

valp
dmyp

ret = pcopen();

/* Status storage

/* Dummy */
/* Network address

/* Node address */
/* Main command */

*)&val[O0];
*)&dmy;

printf (”"pcopen() ret = %d\n”,ret);

if (ret == 1) {

68

C Functions

Section 3-5

}

printf(”
printf(”
printf(”
printf(”

switch (
case 0:

printf (”Driver not installed \n”);
exit();

Controller status readout \n\n”);
Network 0x%x\n”, ne);

Node 0x%x\n”, no);
Programmable Controller will be read \n\n");

pcstat(ne, no, mcmd, dmyp, valp)) {

printf (”"PCSTAT normal \n”);
printf(”Controller information is as follows: \n");
printf (”"Operating status (lbyte) : 0x%02x\n”,

val[0]);

printf (”"Mode (lbyte) : 0x%02x\n”, val[l]);
printf (”“Fatal error information (2 bytes) : 0x%02x

0x%02x\n",
pri

val[2], val[3]);
ntf(”Non—-fatal error information (2 bytes)

0x%02x 0x%02x\n”, val[4], val[5]);
tf("Message Y/N (2 bytes) : 0x%02x 0x%02x\n”,
val[6], val[7]);
printf (”"Present FAL ©No. (2 bytes) : 0x%02x
0x%02x\n"”, val[8], val[9]);
printf (”"Error message (16 bytes) : \n\t”);

prin

for (

i 10; i < 26; i++)

printf(”%02x ", val[i]);
(

printf (”\n\n");
break;
case 1:
printf ("PCOPEN not executed \n”);
break;
case 2:
printf (”"Network address is invalid \n”);
break;

case 3

printf (”"Programmable Controller busy \n”);

break
case 5

.
I

printf (”"Improper argument passed \n”);

break
case 7

.
4

printf (”"Ended abnormally \n”);

break

}

pcclose

}

«
’

()i

In this example, a Programmable Controller error is cleared.

/*-k-k*****
/*

/********
extern un
extern un
extern un

-k******************************/

Status: Error clearing */
***********************************/
signed int pcopen();
signed int pcclose();
signed int pcstat();

void main(void)

{

69

C Functions Section 3-5

int ret;

unsigned char val[2]; /* FAL No. setting
area */

unsigned char far *valp;

unsigned char dmy; /* Dummy */

unsigned char far *dmyp;

unsigned char ne=0; /* Network address
*/

unsigned char no=0; /* Node address */

unsigned int mcmd = 1; /* Main command */

printf (”"Error clearing \n\n”);

if (pcopen() == 1) {
printf (”"Driver not installed \n”);
exit();

}

val[0] = O0xff;
val[l] = Oxfe;
/* Present error clearing */

printf (”"Network 0x%x\n”, ne);
printf(”Node 0x%x\n”, no);

printf (" Programmable Controller errors will

be cleared \n\n");
printf (”"Specified FAL No. is 0x%02x 0x%02x\n”,

val[0], val[l]);
valp = (unsigned char far *)&val[O0];
dmyp = (unsigned char far *)&dmy;

switch (pcstat(ne, no, mcmd, dmyp, valp)) {
case 0:

printf (”"PCSTAT normal \n”);

break;
case 1l:

printf ("PCOPEN not executed \n”);

break;

case 2:

printf (”"Network address is invalid \n”);
break;

case 3:

printf (”"Programmable Controller busy \n”);
break;

case 5:

printf (”"Improper argument passed \n”);
break;

case 7:

printf (”"Ended abnormally \n”);

break;

}

pcclose();
}
In this example, the Programmable Controller’s error log is read.
/***/

/* Status: Error Log readout */

70

C Functions Section 3-5

/*-k'k*******-k********-k***********************/

extern unsigned int pcopen();
extern unsigned int pcclose();
extern unsigned int pcstat();

void main(void)

{

int ret,i,j;

unsigned char val[20][10]; /* Error Log storage
history */

unsigned char far *valp;

unsigned char ch=0; /* Controller status

readout */
unsigned char far *chp;

unsigned char ne=0; /* Network number */
unsigned char no=0; /* Node number */
unsigned int mcmd = 2; /* Main command */

printf ("Error Log readout \n”);

if (pcopen() == 1) {
printf (”"Driver not installed \n”);
exit();

}

ch = 20;

printf (”"Network 0x%x\n”, ne);
printf(”"Node 0x%x\n”, no);
printf(”Will read first error log for
Programmable Controller \n”);
printf (”“Number of history readouts requested is

¢d \n”, ch);
valp = (unsigned char far *)&val[0][O0];
chp = (unsigned char far *)&ch;
switch (pcstat(ne, no, mcmd, chp, valp)) {
case O0:

printf (”"PCSTAT normal \n\n”);
printf (”"Actual number of histories read is %d
\n\n”, ch);
if (ch > 0) {
printf (”"Error Log data read is as
follows: \n");
for (i = 0; i < ch; i++) {
printf(”No. %d error log: ”,i+l);
for (j = 0; j < 10; j++)
printf (”0x%02x ”,val[i][]j]);
printf(”\n");
}
} else
printf (”"Error Log is not stored \n”);
printf(”\n");
break;
case 1l:
printf ("PCOPEN not executed \n”);

71

C Functions Section 3-5
break;
case 2:
printf ("Network address is invalid \n”);
break;
case 3:
printf (”"Programmable Controller busy \n”);
break;
case 5:
printf (”"Improper argument passed \n”);
break;
case 7:
printf (”"Ended abnormally \n”);
break;
}
pcclose();
}
In this example, the error log is cleared.
/*'k'k********'k*******************************/
/* Status: Error Log clearing */
/*'k'k********'k*******************************/
extern unsigned int pcopen();
extern unsigned int pcclose();
extern unsigned int pcstat();
void main(void)
{
int ret,i,j;
unsigned char dmy; /* Dummy */
unsigned char far *dmyp;
unsigned char ne=0; /* Network number */
unsigned char no=0; /* Node number */
unsigned int mcmd = 3; /* Main command */
if (pcopen() == 1) {
printf (”Driver not installed \n”);
exit();
}

72

printf (”"Error Log clearing \n\n”);

printf (”"Network 0x%x\n”, ne);

printf(”Node 0x%x\n”, no);

printf(” Programmable Controller error log will
be cleared \n\n");

dmyp = (unsigned char far *)&dmy;

switch (pcstat(ne, no, mcmd, dmyp, dmyp)) {
case 0:

printf ("PCSTAT normal \n”);

break;

case 1l:

printf (”"PCOPEN not executed \n”);

break;

case 2:

printf ("Network address is invalid \n”);
break;

C Functions

Section 3-5

pcmode()

case 3:

printf (”"Programmable Controller busy \n”);
break;

case 5:

printf (”"Improper argument passed \n”);
break;

case 7:

printf (”"Ended abnormally \n”);

break;

}

pcclose();

PROGRAMMABLE CONTROLLER MODE

Purpose

Format

Parameters

Comments

Returned Values

Program Examples

Note

This function changes the Programmable Controller’s mode (PROGRAM,
DEBUG, MONITOR, and RUN).

unsigned int pcmode (ne, no, mode)

unsigned char ne;
unsigned char no;
unsigned char mode;

ne : Network address
no : Node address
mode : Programmable Controller mode

Parameters Format Contents

ne Integer 0to 127

no Integer SYSMAC NET, Ethernet: 0 to 127
SYSMAC LINK: 0 to 62 (see note)

mode Integer Refer to comments.

The maximum length varies according to the type of network through which the
message is transmitted.

For mode, the following four operating modes can be set.

mode Operating mode
PROGRAM Mode (operation stopped)
DEBUG Mode

MONITOR Mode

RUN Mode

WIN|=|O

Value Meaning
Ended normally.

Bus is not open.

Network address is invalid.

Programmable Controller or Repeater is busy. Try again.
The argument is not correct.

N OOWw N =0

Ended abnormally

In this example, the Programmable Controller’s mode will be changed.
/***/

/* Mode change processing */
/***/

73

C Functions Section 3-5
extern unsigned int pcopen();
extern unsigned int pcclose();
extern unsigned int pcstat();
void main(void)
{
int ret;
unsigned char ne=0; /* Network address
*/
unsigned char no=0; /* Node address */
unsigned int mode; /* Mode */
ret = pcopen();
printf(”"pcopen() ret = %d\n”,ret);
if (ret == 1) {
printf(”Driver not installed \n”);
exit();
}
printf (”"Mode change processing \n”);
printf (”"Network 0x%x\n”, ne);
printf (”"Node 0x%x\n”, no);
printf(” Programmable Controller’s mode will

74

be changed \n\n");

printf(”0: PROGRAM Mode (trace) \n”);
printf(”1: DEBUG Mode \n”);
printf(”2: MONITOR Mode \n");
printf(”3: RUN Mode \n”");

printf (”Change to which mode?”);
scanf (”%d”, &mode) ;

switch (pcmode(ne, no, mode)) {

invalid \n");

\n");
\n");
}

case 0:
printf (”PCMODE normal \n”);
break;
case 1l:
printf ("PCOPEN not executed \n”);
break;
case 2:
printf ("Network address is
break;
case 3:

printf (”"Programmable Controller busy

break;
case 5:
printf (”"Improper argument passed
break;
case 7:
printf (”"Ended abnormally \n”);
break;
}
pcclose();

C Functions Section 3-5

pcclose() CLOSE CPU BUS
Purpose This function terminates usage of the CPU bus.

Format unsigned int pcclose()

Parameters None

Comments Use this function to close the CPU bus. When quitting from within the pro-

gram, this command must be executed.

Returned Values

Value Meaning
0 Ended normally.
1 Bus is not open.
Related Functions pcopen
Program Examples For a program example, refer to page 46, pcopen.

75

SECTION 4
CPU Bus Driver

The CPU Bus Driver provides efficient communications through the CPU bus. This section introduces the CPU Bus Driver
and describes the FINS commands used in the CPU Bus Driver.

4-1 IntroduCtionttt e 78
4-2 The FINS Format i e e 78
4-2-1 FINS Commandsouiiniiiiniitii it 79
4-2-2 FINS RESPONSE . .« ottt ittt ettt e e e e e e ettt e 80
4-2-3 FINS Command/Response Example oo, 81
4-3 Usingthe CPUBUS DrIiverot e e 82
4-3-1 Accessby Opening a Driver......... ..ottt .. 83
4-3-2 Direct REqQUESt . ..o vttt e 84
4-3-3 LIMitations o.u ittt e 84
4-4 CPU Bus Driver Operations List 85
4-5 CPU Bus Driver Operationsttt ettt eeeeenn 85
4-5-1 Cyclic Service Transmission Address, Length, and Direction 85
4-5-2 Readingthe CycliC Areattt ieeaeaenn 86
4-5-3 Writing to the CycliC AT€ao vunt i 87
4-5-4 Transmitting FINS Commands, 88
4-5-5 Transmitting FINS Responsesc.oouiininnininiinnennen... 89
4-5-6 Receiving FINS Commandsottt 90
4-5-7 Receiving FINS RESPONSEs ovtitit ittt ie e eeee e 91
4-5-8 Branching Upon Completion of FINS Command Transmission 92
4-5-9 Branching Upon Completion of FINS Response Transmission 92
4-5-10 Branching Upon Completion of FINS Command Reception 93
4-5-11 Branching Upon Completion of FINS Response Reception 93
4-5-12 Setting Timeout Valuesttt e 94
4-5-13 Flushing Reception Buffers 94
4-5-14 Reading Information Reserved for System 94
4-5-15 Readingthe Link Areattt e e 95
4-5-16 Writingtothe Link Area it 96
4-5-17 User Timer Service Processingiuititninininnnenenen.. 97
4-5-18 Resetting the Personal Computer Unit oo, 97
4-5-19 Unit Address Inquiryooiuinit i i 97
4-5-20 Reception Status InqUiryoouiin i e 98
4-6 FINS Commands Serviced by Driverst 98
4-6-1 Read Controller Information (0501).......... 99
4-6-2 Read Time Information (0701) 100
4-6-3 Write Time Information (0702)o, 100
4-6-4 Loopback Test (0801)ooouiii i i 101
4-6-5 Read Error Log (2102) oot 102
4-6-6 Clear Error Log (2103) oottt 103
4-7 Sample Programs 104
4-8 Measuring CPU Bus Access Performanceo, 117
4-8-1 CyClC SEIVICE .« v vttt ettt et e et e e e e e e e e 118
4-8-2 EVENESEIVICE ...ttt e e e e 118
4-8-3 CPUBuUSLINK SErvicec.vvuiiin i 119

77

The FINS Format

Section 4-2

4-1 Introduction

Installing the CPU Bus
Driver

In order to conduct efficient communications using services via the CPU bus in-
terface, the user can employ the CPU Bus Driver.

When this driver is installed, the three types of service listed below can be re-
ceived. Thus the user can conduct communications without being aware of the
CPU bus interface.

Name Explanation

Cyclic service Communication possible with Programmable Controller in
the same node.

CPU bus link service | Communication possible with Programmable Controller and
other devices in the same node.

Event service Communication possible with Programmable Controller and
other devices in the same node, as well as with other
Programmable Controllers and devices throughout the
same network and other networks.

Refer to 1-4 Communications/Control Service Details for more details on these
services.

The CPU Bus Driver (SBUS.SYS) is recorded in the CONFIG.SYS file in drive F
in advance. Be sure that SBUS.SYS is recorded in the active CONFIG.SYS file
when a system disk is being modified or a new CONFIG.SYS file is being
created.

Add the following line to the CONFIG.SYS file to record the CPU Bus Driver. Re-
fer to 2-6 Installing Device Drivers for details on other SBUS.SYS parameters.
(The F:\CONFIG.SYS file is used when the Unit is started from Built-in ROM.)

DEVICE=E:\SBUS.SYS /V65

L

The CPU Bus Driver is recorded in the Personal Computer Unit’s Built-in ROM
(drive E) in advance.

Drive name

4-2 The FINS Format

78

Note

This section explains the FINS command/response format used for event serv-
icing when the CPU Bus Driver is used. Event service can communicate with
other devices on a network. To communicate with a particular device, itis neces-
sary to specify that device’s network address, node address, and Unit number
address.

In addition, when receiving a command from another device, it will not be pos-
sible to return a response unless it is known where the command was trans-
mitted from. AFINS (Factory Interface Network System) formatis thus used with
this driver to specify the transmission source and destination. Refer to the FINS
Command Reference Manual (W227) for more details.

This format incorporates the information essential for communications in front of
the command or response data that is to be actually transmitted. Based on this
information, the transmission destination can be determined and the transmis-
sion source can be confirmed.

When using event service with this driver, edit the data in FINS format and leave
the processing to the driver. The maximum length of data that can be processed
by event service is the total length of the FINS format.

From this point on, the explanation of the FINS format, and particularly the desig-
nation of the transmission destination, will be divided into command format
(FINS command) and response format (FINS response).

The FINS Format Section 4-2

4-2-1 FINS Commands

The FINS commands have the data format shown below, and the transmission
destination and data to be transmitted are specified according to this format.
Command transmission and reception are always executed in this format.

1B 1B 1B 1B 1B 1B
‘ ICF ‘ RSV ‘GCNT‘ DNA ‘ DA1 ‘ DA2 ‘

1B 1B 1B 1B 1B 1B
‘ SNA ‘ SA1 ‘ SA2 ‘ SID ‘ MRC‘ SRC ‘DATA‘

ICF Information Control Field:
Specifies contents for controlling FINS command. This field indicates whether a
response should be sent from the destination device. A “0” requests aresponse;
a “1” indicates a response is not required.

RSV Reserve:
Reserved area. As a rule, the contents will be $00.
This area is sometimes used in communications with SYSMAC BUS/2 and BA-
SIC Units.

GCNT Number of Times Through Gateway (Bridge):
The gateway cannot be passed through more than this number of times.

Note When a command is transmitted from the Personal Computer Unit, this field is
set by the driver and cannot be set by the user.

DNA Destination Network Address:

This specifies the network address of the transmission destination. This address
is the final target location address. (A setting of $00 indicates that the destination
network is the same as the source network.)

$00: Same network address

DA1 Destination Node Address:

This specifies the node address of the transmission destination. This address is
the final target location address. The following codes have special meanings.

$00: Same node address
$FF: Broadcast to all nodes on specified network
DA2 Destination Unit Address:

The unit address for the transmitted data is specified by the absolute address.
(Add $10 to the unit number to calculate the absolute address.)

Example: Special /0 Unit #0 will have an address of $10.

This address is the final target location address. The following codes have spe-
cial meanings.

$00 Unit address of Programmable Controller
$10 to $2F CPU Bus Units
SFD Peripheral Tools (e.g., FIT)
SFE Communications Units
(e.g., SYSMAC NET, SYSMAC LINK)
SNA Transmission Source Network Address:

This specifies the network address of the source of the transmitted data.

Note When a command is transmitted from the Personal Computer Unit, this field is
set by the driver and cannot be set by the user.

SA1 Transmission Source Node Address:
This specifies the node address of the source of the transmitted data.

79

The FINS Format

Section 4-2

SA2

SID

MRC

SRC

DATA

Note

Note

When a command is transmitted from the Personal Computer Unit, this field is
set by the driver and cannot be set by the user.

Transmission Source Unit Address:
This specifies the unit address of the source of the transmitted data.

When a command is transmitted from the Personal Computer Unit, this field is
set by the driver and cannot be set by the user.

Service ID:

The same service ID number is used in a command and the response to that
command. Use the service ID to distinguish between several commands andre-
sponses.

Main Request Class:

This classifies the service. Refer to the FINS Command Reference Manual
(W227) for details.

Sub-request Class:

This specifies the service details. Refer to the FINS Command Reference
Manual (W227) for details.

Data:

This is the data determined by MRC and SRC. Refer to the FINS Command Ref-
erence Manual (W227) for details.

4-2-2 FINS Response

ICF

RSV

GCNT

DNA to SA2

80

Note

Note

Note

When a FINS command is issued to another device, a corresponding response
can be returned from that device. In addition, when a command requiring a re-
sponse is transmitted to the Personal Computer Unit from another device, a re-
sponse must be returned to that device from the Personal Computer Unit. The
data format for the response is as shown below.

1B 1B 1B 18 1B 1B 1B 1B
‘ ICF ‘ RSV ‘GCNT‘ DNA ‘ DA1 ‘ DA2 ‘ SNA ‘ SA1 ‘

1B 1B 1B 1B 1B 1B
‘ SA2 ‘ SID ‘MRC‘ SRC ‘MRES‘SRES‘DATA‘

Information Control Field:

Specifies contents for controlling FINS command.
When a command is transmitted from the Personal Computer Unit, this field
is set by the driver and cannot be set by the user.

Reserve:

Reserved area

When a response is transmitted from the Personal Computer Unit, specify the
same contents as for the RSV of the FINS command that was received.

Number of Times Through Gateway (Bridge):
The gateway cannot be passed through more than this number of times.

When a command is transmitted from the Personal Computer Unit, this field is
set to 2 by the driver and cannot be set by the user.

Just as for the FINS command described above, this specifies the transmission
destination and source addresses.

When a response is transmitted from the Personal Computer Unit, replace the
following items of the FINS command that was received and specify the re-
sponse data.

DNA <= SNA: Network address

DA1 <= SA1: Node address
DA2 <= SA2: Unit address

The FINS Format

Section 4-2

SID

MRC

SRC

MRES

SRES

DATA

Note

Note

Note

Service ID:
This specifies an identifier for recognizing request source processes.

When a response is transmitted from the Personal Computer Unit, specify the
same contents as for the SID of the FINS command that was received.

Main Request Class:
This specifies the service classification.

When a response is transmitted from the Personal Computer Unit, specify the
same contents as for the MRC of the FINS command that was received.

Sub-request Class:
This specifies the service details.

When a response is transmitted from the Personal Computer Unit, specify the
same contents as for the SRC of the FINS command that was received.

Main Response Code:

This code indicates the response (i.e., normal, error, error details) to a request.
Refer to the FINS Command Reference Manual (W227) for details. When re-
turning aresponse from the Personal Computer Unit, enter the result of the com-
mand execution.

Sub-response Code:

This code indicates detailed information that cannot be adequately expressed
by the main response code. Refer to the FINS Command Reference Manual
(W227) for details. When returning a response from the Personal Computer
Unit, enter the result of the command execution.

Data:

This is the part of the service indicating the results. Refer to the FINS Command
Reference Manual (W227) for details.

4-2-3 FINS Command/Response Example

Example: Reading PC Time Information in the Same Node
The following FINS command is transmitted to a Programmable Controller ad-
dress within the same node.

ICE RSV GCNT DNA DA1 DA2
| $00 | s00 | 00 | $00 | $00 | 00 |

SNA SA1 SA2 SID MRC SRC
‘ $00 ‘ $00 ‘ $00 ‘ $01 ‘ $07 ‘ $01 ‘

The following response is returned to the Personal Computer Unit from the Pro-
grammable Controller in the same node. The Programmable Controller time in-
formation can be recognized by analysis of these codes. In this case, the Per-
sonal Computer Unit’s unit number is 0.

ICF RSV _GCNT DNA DA1 DA2 SNA SA1
| s41 | s00 | $02 | s00 | s00 | $10 | 00 | s00 |

SA2 SID MRC SRC MRES SRES
\ $00 ‘ $01 ‘ $07 ‘ $01 ‘ $00 ‘ $00 ‘

Year Month Date Hour Minute Second Day
| s94 | s10 | so1 | $12 | $34 | s00 | $03 |

Programmable Controller time information:
1994, October 1, Sunday, 12:34:00

81

Using the CPU Bus Driver

Section 4-3

The DA2 value of $10 indicates that the response is addressed to the Personal
Computer Unit, and the SID value of $01 indicates that the response corre-
sponds to the command shown above. The MRES and SRES values of $00 are
the normal response codes. Refer to the FINS Command Reference Manual
(W227) for more details.

4-3 Using the CPU Bus Driver

Opening and Accessing the
Driver Through MS-DOS

Direct Request Without
Going Through MS-DOS

There are two methods, described below, for using the CPU Bus Driver.

First of all, the driver is opened through MS-DOS, and the “file handle” file identi-
fier is obtained.

When the driver services are employed, I/O requests are executed based on this
file handle.

With this method, driver services are used without going through MS-DOS, but
rather by executing system interrupts directly.

Differences Between I/O Requests by Opening Driver and Direct Requests

User

Driver opened and 1/O request executed Direct request

1. Driver opened

!

File handle 2. 1/O request

with file handle Direct request based

on interrupt number
(software interrupt)

-t . - - - - - - -

MS-DOS

To driver
specified
based on
filehandle

- . - . - - - - - . - - -

'

CPU bus driver functions

82

Using the CPU Bus Driver

Section 4-3

Additional Information Opening and Closing

In our own lives, let us consider how we utilize abook. First of all, from among a large number
of books, we must get the book that contains the material that we want to utilize. Once we
have the book, we look it over and extract that portion of the contents that we need. Ifthe mate-
rial is not needed, we return the book to its original spot and the contents of the book then
cannot be utilized.

The situation is much the same with a driver. If we want to utilize a driver through MS-DOS,
firstwe must get (or, in other words, open) the driver. Then, by means of afile identifier thathas
been obtained, the driver is specified and utilized. When the operation is finished, the driveris
closed. Once the driver has been closed, it can no longer be used and must be reopened in
order to be used again.

Open 1/O request Close

These respective methods are described below.

4-3-1 Access by Opening a Driver

Opening the Driver Finds the file handle.

Call Procedure:
AH = 3DH
AL = 02H (File access mode)
DS:DX = Leading address of path name (“CVIF”)

INT 21H
Return:
When Carry is Set (Error)
AX =02H File does not exist.
AX = 03H Path name is invalid.
AX = 04H There are too many files open.
AX = 05H Access was denied.
AX =0CH Access code is invalid.

When Carry is Not Set
AX = File handle (normal termination)

Closing the Driver Closes the driver.

Requesting /O

Call Procedure:
AH = 3EH
BX = File handle
INT 21H
Return:
When Carry is Set (Error)
AX = 06H File handle is invalid.

When Carry is Not Set
AX = 00H Normal termination

Prepares the prescribed /O parameters, and makes the request using the file

handle.
Call Procedure:

AH = 44H
AL = 03H

83

Using the CPU Bus Driver

Section 4-3

4-3-2 Direct Request

4-3-3 Limitations

BX = File handle

CX = Number of bytes in data buffer

DS:DX = Data buffer segment: offset

(Refer to 4-5 CPU Bus Driver Operations for details on the data buffer.)
INT 21H

Return:

When Carry is Set (Error)

AX =01H Function is invalid.

AX = 05H Access was denied.

AX = 06H File handle is invalid.

AX = 0DH Data is invalid (data buffer error).
When Carry is Not Set

AX = 00H Normal termination

AX =FFH Improper command

AX = Other Error status (Refer to 4-5 CPU Bus Driver Operations for
details.)

Prepares the prescribed I/O parameters, and makes the request using the inter-
rupt table.

Call Procedure:

AH = xxH Operation number (Refer to 4-4 CPU Bus Driver Opera-
tions List for details.)
CX = Number of bytes in data buffer
DS:DX = Data buffer segment: offset
(Refer to 4-5 CPU Bus Driver Operations for details on the data buffer.)
INT xxH Empty interrupt table number (60H to 65H)

(The table to be used is specified by CONFIG.SYS.)

Return:

When Carry is Set (Error)

AX =01H Function is invalid.

AX = 05H Access was denied.

AX = 0DH Data is invalid (data buffer error).
When Carry is Not Set

AX = 00H Normal termination

AX = Other Error status (Refer to 4-5 CPU Bus Driver Operations for
details.)

Each service has the following timing standards. Refer to4-8 Data Transmission
Timing for details.

Service Time required
Cyclic service 7 ms (when 256 words are read or written)
Event service 20 ms from issuance of FINS command to receipt of the

response (when 997 DM words are read)

CPU Bus Link service | 10 ms (when there are no other CPU Bus Link Units)

Do not mask the interrupts (IRQ10 and IRQ11) when the event service’s func-

tions are used.

84

CPU Bus Driver Operations

Section 4-5

4-4 CPU Bus Driver Operations List

Number Service Summary

01H Cyclic service Specifies the area to be read or written.

02H Reads specified area.

03H Writes to specified area.

04H Event service Transmits FINS command.

05H Transmits FINS response.

06H Transmits request to receive FINS
command.

07H Transmits request to receive FINS response.

08H Saves branch entry address when
transmission of FINS command is complete.

09H Saves branch entry address when
transmission of FINS response is complete.

0AH Saves branch entry address when reception
of FINS command is complete.

0BH Saves branch entry address when reception
of FINS response is complete.

OCH Sets reception timeout value.

ODH Flushes reception buffer.

OEH CPU Bus Link service | Reads information reserved for system.

OFH Reads link data.

10H Writes link data.

11H Other services Branches to specified entry address after
time specified by user has elapsed.

12H Resets Personal Computer Unit.

13H Inquires regarding address of Unit itself.

14H Inquires regarding reception status of FINS
commands and responses.

4-5 CPU Bus Driver Operations

This section will explain CPU Bus Driver operations, including contents of data
buffers when these operations are used, as well as the return values, for each of
the operations. The command numbers given in this section will match the op-
eration numbers given in 4-4 CPU Bus Driver Operations List.

4-5-1 Cyclic Service Transmission Address, Length, and Direction

Parameter Format

© O N O g »~h 0N

(Command) 01

Reserve (00)

Transmission direction

Cyclic area set number (1 to 6)

PC'’s real space address (least-significant byte)

(most-significant byte)

Transmission length

Transmission Direction:

85

CPU Bus Driver Operations Section 4-5

This sets the direction in which data will be transmitted.

0: Programmable Controller — Personal Computer Unit
Other than 0: Personal Computer Unit — Programmable Controller

Cyclic Area Set Number:

This is the number for specifying the cyclic area that is to set the transmis-
sion status. It can be set within a range of 1 to 6.
PC’s Real Space Address:
This is the real space address of the Programmable Controller that is to
execute cyclic service. It can be set within a range of $400000 to $4FFFFF.
For the area, IOM, DM, or EM can be specified, but UM cannot.
Transmission Length:
This is the cyclic area transmission length. It is specified in word units. An
error will be generated if the sum of all the transmission lengths allocated to
the set numbers exceeds 3,987 words. The default settings will be as fol-
lows:
Bit: Number 1
PC — Personal Computer Unit: 15 words ($400BB8)
Personal Computer Unit = PC: 10 words ($400BD6)
If “0” is set, the setting for the specified cyclic area will be cleared.

Return Status (AX) 00H: Normal termination
01H: Incorrect set number
02H: Incorrect real space address
03H: Total transmission length overflow (3,987 words max.)
0AH: Memory access error

Operation This operation sets the address and transmission length for the Programmable
Controller executing cyclic service. A total of 12 places can be set simultaneous-
ly, including six for transmission from the Programmable Controller to the Per-
sonal Computer Unit and six for transmission from the Personal Computer Unit
to the Programmable Controller. When the setting is made, it will overwrite the
previous status of the relevant specified bit number and transmission length.
This operation only sets the status of the cyclic service, and does not read or
write data. Once these settings are made, they are valid until the Personal Com-
puter Unit is reset; they aren’t cleared by the closing processes.

4-5-2 Reading the Cyclic Area

Parameter Format

0 (Command) 02

1 Reserve (00)

2 Cyclic area set number (1 to 6)

3 Reserve (00)

4 Cyclic data reception buffer address

5 I Offset |
6 - Cyclic data reception buffer address |
7 T Segment

: —— Number of words requested to be read —
10 I Number of words actually read -
11

Cyclic Area Set Number:

This is the number for specifying the cyclic area that is to read data. It can be
set within a range of 1 to 6.

86

CPU Bus Driver Operations

Section 4-5

Return Status (AX)

Operation

Cyclic Data Reception Buffer Address:

This is the leading address of the buffer for storing cyclic data that is read.
Number of Words Requested to be Read:

This is the number of words of cyclic data requested to be read.
Number of Words Actually Read:

This is the area for storing the number of words that are actually read.

00H: Normal termination

01H: Set number incorrect

02H: Reception buffer address incorrect
03H: Number of words requested incorrect
0AH: Memory access error

0BH: Programmable Controller busy

OCH: Parity error

From the real space address of the Programmable Controller set by the speci-
fied cyclic area set number, the number of words requested will be read and then
stored in the specified reception buffer. At that time, the actual number of words
read will be stored in the area specified for that purpose.

If the specified number of words to be read should exceed the number of words
set for the cyclic area, then code 03H (number of words requested incorrect) will
be generated. The only valid areas are ones that have had the transmission
direction set to Programmable Controller — Personal Computer Unit (0) with op-
eration number 01.

4-5-3 Writing to the Cyclic Area

Parameter Format

(Command) 03

Reserve (00)
Cyclic area set number (1 to 6)
Reserve (00)

Cyclic data storage buffer address

Offset

Cyclic data storage buffer address

Segment

© O N O O~ WD =+ O

Number of words requested to be written —

-
o

Number of words actually written —

—_
—_

Cyclic Area Set Number:

This is the number for specifying the cyclic area for writing data. It can be set
within a range of 1 to 6.

Cyclic Data Reception Buffer Address:

This is the leading address of the buffer for storing cyclic data that is written.
Number of Words Requested to be Written:

This is the number of words of cyclic data requested to be written.
Number of Words Actually Written:

This is the area for storing the number of words that are actually written.

87

CPU Bus Driver Operations

Section 4-5

Return Status (AX)

Operation

00H: Normal termination

01H: Set number incorrect

02H: Data storage buffer address incorrect
03H: Number of words requested incorrect
0AH: Memory access error

0BH: Programmable Controller busy

The data indicated by the data storage buffer address will be written to the real
space address of the Programmable Controller set by the specified cyclic area
set number, for the number of words requested. At that time, the actual number
of words written will be stored in the area specified for that purpose.

If the specified number of words to be written should exceed the number of
words set for the cyclic area, then code 03H (number of words requested incor-
rect) will be generated. The only valid areas are ones that have had the transmis-
sion direction set to Personal Computer Unit — Programmable Controller (non-
zero) with operation number 01.

4-5-4 Transmitting FINS Commands

Parameter Format

Return Status (AX)

Operation

88

(Command) 04
Reserve (00)
FINS command storage buffer address
T Offset |
- FINS command storage buffer address
- Segment

— Number of bytes requested for transmission —

[Number of bytes actually transmitted R

© O N O o b~ 0N =2 O

FINS Command Storage Buffer Address:

This is the leading address of the buffer for storing transmitted FINS com-
mands.

Number of Bytes Requested for Transmission:

This is the number of bytes requested for the FINS command. Specifies the
total number of bytes from the ICF.

Number of Bytes Actually Transmitted:
This is the area for storing the number of bytes actually transmitted.

00H: Normal termination

01H: Command storage buffer address incorrect

02H: Number of words requested incorrect
(i.e., fewer than 14 or more than 2012 bytes)

03H: Transmission destination network address incorrect

0AH: Memory access error

0BH: Programmable Controller busy error
Retry transmission or increase the number of retries. (Refer to 2-6
Installing Device Drivers for details on the number of retries.)

The data stored in the FINS command storage buffer address (in conformity with
Programmable Controller FINS commands) is analyzed, the corresponding ICF,
GCNT, SNA, SA1, and SA2 are set, and the number of bytes requested is trans-
mitted to the specified address. At that time, the actual number of words written
will be stored in the area specified for that purpose. A response to the trans-

CPU Bus Driver Operations

Section 4-5

mitted FINS command can be received by means of a “receive FINS response”
request.

If “branch entry address upon completion of command transmission” is set, then
control will be transferred to the specified address after the transmission is com-
plete.

4-5-5 Transmitting FINS Responses

Parameter Format

Return Status (AX)

Operation

(Command) 05
Reserve (00)
FINS response storage buffer address
T Offset |
- FINS response storage buffer address]
o Segment

— Number of bytes requested for transmission —

— Number of bytes actually transmitted —

© O N O O~ WO D =+ O

FINS Command Storage Buffer Address:

This is the leading address of the buffer for storing transmitted FINS re-
sponses.

Number of Bytes Requested for Transmission:

This is the number of bytes requested for the FINS response. Specifies the
total number of bytes from the ICF.

Number of Bytes Actually Transmitted:
This is the area for storing the number of bytes actually transmitted.

00H: Normal termination

01H: Command response storage buffer address incorrect

02H: Number of words requested incorrect
(i.e., fewer than 14 or more than 2012 bytes)

03H: Transmission destination network address incorrect

0AH: Memory access error

0BH: Programmable Controller busy error
Retry transmission or increase the number of retries. (Refer to 2-6
Installing Device Drivers for details on the number of retries.)

The data stored in the FINS command storage buffer address is analyzed, the
corresponding ICF and GCNT are set, and the number of bytes requested is
transmitted to the specified address. At that time, the actual number of words
written will be stored in the area specified for that purpose.

This transmission request is used when a FINS command transmitted from
another device is received and a response is transmitted to the source of the
transmitted command. To receive the FINS command from the other device, use
a “receive FINS command” request.

If “branch entry address upon completion of command transmission” is set, then
control will be transferred to the specified address after the transmission is com-
plete.

89

CPU Bus Driver Operations Section 4-5
4-5-6 Receiving FINS Commands
Parameter Format
(Command) 06
Timeout processing
FINS command storage buffer address
Offset
FINS command storage buffer address
Segment

Return Status (AX)

Operation

90

— Number of bytes requested for transmission —

— Number of bytes actually transmitted —

© O N O O~ WO D =+ O

Timeout Processing:

0: Waits to receive until the timeout value has elapsed.
(The timeout value is set with command 0C.)
Other than 0: Waits to receive until Esc Key is pressed.

FINS Command Reception Buffer Address:

This is the leading address of the buffer for storing FINS commands that are
received.

Number of Bytes Requested for Reception:
This is the number of bytes requested for receiving a FINS command.
Number of Bytes Actually Received:

This is the area for storing the number of actual bytes stored in the reception
buffer.

00H: Normal termination
01H: Command reception buffer address incorrect
02H: Number of bytes requested incorrect
(i.e., fewer than 14 or more than 2012 bytes)
0AH: Memory access error
OCH: Parity error
OEH: Forcibly ended by Escape Key
OFH: Timeout error

A FINS command transmitted from another device is received, and the number
of bytes requested is stored in the specified FINS command reception buffer. At
that time, the actual number of bytes stored in the buffer will be stored in the area
specified for that purpose.

This reception request is used when a FINS command transmitted from another
device is received. To transmit a response to the data received, use a “transmit
FINS response” request.

If no command is received from any device when this command reception re-
quest is made, the Unit will wait to receive a command until the timeout value set
with command 0C has elapsed (if timeout processing has been specified) or until
the Esc Key is pressed (if timeout processing hasn’t been specified).

Timeout Processing Specified

Waiting-to-receive status will remain in effect until the time period registered with
command 0C has elapsed. If acommand is received during that period, the data
that is received will be stored in the specified buffer. If no commandis received, a
timeout error will occur.

CPU Bus Driver Operations

Section 4-5

Timeout Processing Not Specified

Waiting-to-receive status will remain in effect regardless of the time period regis-
tered with command 0C. If a command is received, the data that is received will
be stored in the specified buffer. An exit can be forced during that period by
pressing the Escape Key.

If even a portion of the command data that has been received is read, the com-
mand data will be cleared.

4-5-7 Receiving FINS Responses

Parameter Format

Return Status (AX)

Operation

(Command) 07
Timeout processing
| FINS response reception buffer address]
Offset
T FINS response reception buffer address
I Segment

—— Number of bytes requested for transmission —

© O N O g » 0N =2 O

I Number of bytes actually transmitted R

Timeout Processing:

0: Waits to receive until timeout value has elapsed.
(The timeout value is set with command 0C.)
Other than 0: Waits to receive until Esc Key is pressed.

FINS Response Reception Buffer Address:

This is the leading address of the buffer for storing FINS responses that are
received.

Number of Bytes Requested for Reception:
This is the number of bytes requested for receiving a FINS response.
Number of Bytes Actually Received:

This is the area for storing the number of actual bytes stored in the reception
buffer.

00H: Normal termination
01H: Command response reception buffer address incorrect
02H: Number of bytes requested incorrect
(i.e., fewer than 14 or more than 2012 bytes)
0AH: Memory access error
0BH: Parity error
OEH: Forcibly ended by Escape Key
OFH: Timeout error

A FINS response to a service requested of another device is received, and the
number of bytes requested for receiving the response is stored in the specified
FINS response reception buffer. At that time, the actual number of bytes stored
in the buffer will be stored in the area specified for that purpose.

This reception request is used when a FINS response to a service requested of
another device is received. To request a service of another device, use a “trans-
mit FINS command” request.

If no command is received from any device when this command reception re-
quest is made, the Unit will wait to receive a command until the timeout value set
with command 0C has elapsed (if timeout processing has been specified) or until
the Esc Key is pressed (if timeout processing hasn’t been specified).

91

CPU Bus Driver Operations Section 4-5

Timeout Processing Specified

Waiting-to-receive status will remain in effect until the time period registered with
command 0C has elapsed. If aresponse is received during that period, the data
thatis received will be stored in the specified buffer. If no commandis received, a
timeout error will occur.

Timeout Processing Not Specified

Waiting-to-receive status will remain in effect regardless of the time period regis-
tered with command OC. If a response is received, the data that is received will
be stored in the specified buffer. An exit can be forced during that period by
pressing the Escape Key.

If even a portion of the command data that has been received is read, the com-
mand data will be cleared.

4-5-8 Branching Upon Completion of FINS Command Transmission

Parameter Format

(Command) 08

Reserve (00)

Entry address upon completion of command transmission
Offset

Entry address upon completion of command transmission

a »h WO N =2 O

Segment

Entry Address Upon Completion of Command Transmission:
This is the leading address of the process that will be executed when the
command transmission has been completed.
Return Status (AX) 00H: Normal termination

Operation This operation registers the user entry address for branching when the FINS
command transmission has been completed. If this address is set to “0,” the reg-
istered user entry address will be cleared.

Note 1. For user routines, use the same stack area.

2. When user routine processing has been completed, return control with FAR
RET.

3. In the process that is executed, the ds register points out the data segment
of the driver. The register will be returned to its original status after the pro-
cess is completed.

4-5-9 Branching Upon Completion of FINS Response Transmission

Parameter Format

(Command) 09

Reserve (00)

0

1

2 Entry address upon completion of response transmission

3 T Offset |
4

5

Entry address upon completion of response transmission

Segment

Entry Address Upon Completion of Response Transmission:

This is the leading address of the process that will be executed when the
response transmission has been completed.

Return Status (AX) 00H: Normal termination

92

CPU Bus Driver Operations Section 4-5

Operation This operation registers the user entry address for branching when the FINS re-
sponse transmission has been completed. If this address is set to “0,” the regis-
tered user entry address will be cleared.

Note 1. For user routines, use the same stack area.

2. When user routine processing has been completed, return control with FAR
RET.

3. In the process that is executed, the ds register points out the data segment
of the driver. The register will be returned to its original status after the pro-
cess is completed.

4-5-10 Branching Upon Completion of FINS Command Reception

Parameter Format

(Command) 0A(H)
Reserve (00)

Entry address upon completion of command transmission
Offset

Entry address upon completion of command transmission

a »h WO N =+ O

Segment

Entry Address Upon Completion of Command Reception:
This is the leading address of the process that is executed when the com-
mand reception has been completed.
Return Status (AX) 00H: Normal termination

Operation This operation registers the user entry address for branching when the FINS
command reception has been completed. If this address is set to “0,” the regis-
tered user entry address will be cleared.

Note 1. For user routines, use the same stack area.

2. When user routine processing has been completed, return control with FAR
RET.

3. In the process that is executed, the ds register points out the data segment
of the driver. The register will be returned to its original status after the pro-
cess is completed.

4-5-11 Branching Upon Completion of FINS Response Reception

Parameter Format

(Command) 0B(H)
Reserve (00)

Entry address upon completion of response transmission
Offset

Entry address upon completion of response transmission

a »h WO N =2 O

Segment

Entry Address Upon Completion of Response Reception:
This is the leading address of the process that is executed when the re-
sponse reception has been completed.
Return Status (AX) 00H: Normal termination

Operation This operation registers the user entry address for branching when the FINS re-
sponse reception has been completed. If this address is set to “0,” the registered
user entry address will be cleared.

93

CPU Bus Driver Operations

Section 4-5

Note 1. For user routines, use the same stack area.

2. When user routine processing has been completed, return control with FAR

RET.

3. In the process that is executed, the ds register points out the data segment
of the driver. The register will be returned to its original status after the pro-

cess is completed.

4-5-12 Setting Timeout Values

Parameter Format

Return Status (AX)
Operation

(Command) 0C(H)

Reserve (00)

—— Timeout value

w NN =+ O

Timeout Value:

This is the timeout value used when data reception is requested. The setting
can be made within a range of 0 to 65,535 (in units of 110 ms).

OOH Normal termination

This operation registers the time period for waiting-to-receive when a FINS com-
mand or a FINS response reception is requested. The timeout value is set in
units of 110-ms. If “0” is registered, the Unit will not wait to receive the transmis-

sion. The default for the timeout value is 0 ms.

4-5-13 Flushing Reception Buffers

Parameter Format

Return Status (AX):

Operation

0 (Command) 0D(H)
1 Reserve (00)
2
——— Parameters —
3
Parameters:

Specifies which reception buffers are to be flushed. (The reception buffers

are allocated by the driver.)

0: Reception buffer for command data
1: Reception buffer for response data

2: Reception buffer for both command and response data

O0H: Normal termination
01H: Parameter values incorrect

This operation flushes (clears) the specified reception buffers, according to the

specified parameters.

4-5-14 Reading Information Reserved for System

Parameter Format

9

(Command) OE(H)

Reserve (00)

a »h WO N =2 O

System-reserved information reception buffer address

System-reserved information reception buffer address

Offset

Segment

CPU Bus Driver Operations

Section 4-5

Return Status (AX)

Operation

System-reserved Information Reception Buffer Address:

This is the leading address of the buffer for storing system-reserved in-
formation that is read.

00H: Normal termination

01H: Reception buffer address incorrect
0AH: Memory access error

OCH: Parity error

This operation reads information reserved for the system and stores it in the spe-
cified reception buffer. The system-reserved information is configured in eight
words, so fixed 8-word blocks are read. This operation can be performed even
when the CPU bus link service is stopped.

Refer to 1-4-3 CPU Bus Link Service for details on the system-reserved informa-
tion.

4-5-15 Reading the Link Area

Parameter Format

Return Status (AX)

Operation

0 (Command) OF (H)
1 Reserve (00)
2
I Beginning word for reading CPU bus link area —
3
4 Read data reception buffer address
5 Offset
6 Read data reception buffer address
7 Segment
8
—— Number of words requested to be read —
9
10
I Number of words actually read R
11

Beginning Word for Reading CPU Bus Link Area:

This is the beginning word of the CPU bus link area for reading data. (It can
be set within a range of word 0 to word 255.)

Read Data Reception Buffer Address:

This is the leading address of the buffer for storing the link data that is read.
Number of Words Requested to be Read:

This is the number of words of link data that is requested to be read.
Number of Words Actually Read:

This is the area for storing the number of words that is actually read.

00H: Normal termination

01H: Beginning word incorrect

02H: Reception buffer address incorrect
03H: Number of words requested incorrect
0AH: Memory access error

OCH: Parity error

From the CPU bus link area address corresponding to the specified beginning
word, the number of words requested will be read and then stored in the speci-
fied reception buffer. At that time, the actual number of words read will be stored
in the area specified for that purpose. If the specified number of words to be read
should exceed the CPU bus link area, then code 03H (number of words re-
quested incorrect) will be generated.

95

CPU Bus Driver Operations Section 4-5
4-5-16 Writing to the Link Area
Parameter Format
0 (Command) 10(H)
1 Reserve (00)
2 I Beginning word for writing to CPU bus link area -
3
4 CPU bus link data storage buffer address
5 Offset
6 CPU bus link data storage buffer address
7 Segment
8 .
—— Number of words requested to be written —
9
10)
I Number of words actually written —
11

Return Status (AX)

Operation

96

Beginning Word for Writing to CPU Bus Link Area:

This is the beginning word of the CPU bus link area for writing data. (It can be
set within a range of word 0 to word 7.)

CPU Bus Link Data Storage Buffer Address:

This is the leading address of the buffer where the CPU bus link data that is
to be written is stored.

Number of Words Requested to be Written:

This is the number of words of link data that is requested to be written.
Number of Words Actually Written:

This is the area for storing the number of words that is actually written.

00H: Normal termination

01H: Beginning word incorrect

02H: Data storage buffer address incorrect
03H: Number of words requested incorrect
0AH: Memory access error

The data indicated by the data storage buffer address will be written to the CPU
bus link area address corresponding to the specified beginning word, for the
number of words requested. At that time, the actual number of words written will
be stored in the area specified for that purpose. If the specified number of words
to be written should exceed the CPU bus link area, then code 03H (number of
words requested incorrect) will be generated.

CPU Bus Driver Operations Section 4-5

4-5-17 User Timer Service Processing

Parameter Format

0 (Command) 11(H)

1 Reserve (00)

2 Timer interrupt service

3l Entry address Offset |
A []
5 o Segment

6

7

— Timer/counter (110 ms) —

Timer Interrupt Service Entry Address:

This is the leading address of the process that is started when the time peri-
od specified by the timer/counter has elapsed.

Timer/Counter:
This is the time period until the timer is started. It can be set within a range of
0 to 65,535, in 110-ms units.
Return Status (AX) 00H: Normal termination

Operation This operation registers the user entry address for starting after the time period
specified by the timer/counter has elapsed. If this address is set to “0,” the regis-
tered user entry address will be cleared. If the user entry address is registered,
timer monitoring will begin immediately.

Note 1. For user routines, use the same stack area.

2. When user routine processing has been completed, return control with FAR
RET.

3. In the process that is executed, the ds register points out the data segment
of the driver. The register will be returned to its original status after the pro-
cess is completed.

4-5-18 Resetting the Personal Computer Unit

Parameter Format

0 (Command) 12(H)
1 Reserve (00)
Return Status (AX) 0AH: Memory access error
Operation This operation resets the Personal Computer Unit and is just like performing an

AR reset from the PC. Cyclic service settings and CPU bus link service contents
are initialized, and the routing table is read again.

4-5-19 Unit Address Inquiry

Parameter Format

(Command) 13(H)
Reserve (00)

Local unit address
Reserve (00)

w N =2 O

Local Unit Address:
The unit address of the Personal Computer Unit is stored in this area.

Return Status (AX) 00H: Normal termination
Operation This operation returns the Personal Computer Unit’s (local unit’s) unit address.

97

FINS Commands Serviced by Drivers Section 4-6

4-5-20 Reception Status Inquiry

Parameter Format

Return Status (AX)

Operation

o

(Command) 14(H)

1 Timeout processing

Timeout Processing:

0: Waits to receive until timeout value has elapsed.
(The timeout value is set with command 0C.)
Other than 0: Waits to receive until Esc Key is pressed.

04H: Reception command data present
05H: Reception response data present
OEH: Forcibly ended by Escape Key
OFH: Timeout error

This operation inquires regarding the present status of event data reception.
When both command data and event data have been received, the response
data reception status is given priority in being returned.

If neither command data nor response data have been received, the Unit will
wait to receive a command until the timeout value set with command 0C has
elapsed (if timeout processing has been specified) or until the Esc Key is
pressed (if timeout processing hasn’t been specified).

Timeout Processing Specified

Waiting-to-receive status will remain in effect until the time period registered with
command 0C has elapsed. If a command or response is received during that pe-
riod, then that will be reported. If no command is received, a timeout error will
occur.

Timeout Processing Not Specified

Waiting-to-receive status will remain in effect regardless of the time period regis-
tered with command 0C. If a command or response is received, then that will be
reported. An exit can be forced during that period by pressing the Escape Key.

This operation only inquires regarding the reception status, and does not actual-
ly read the data. Therefore reception requests for commands or responses can
be executed based on the returned values of this operation.

4-6 FINS Commands Serviced by Drivers

98

Note

With event service, when a service is requested of the Personal Computer Unit
by another device (i.e., when the Personal Computer Unit receives the com-
mand), the response processing will be executed in the CPU Bus Driver with re-
spect to several commands, and aresponse will be returned to the source of the
transmission.

Therefore, because the commands that the user can receive by means of a
“command reception request” may be commands other than those processedin
the CPU Bus Driver, it may be necessary for the user to execute the response
processing and return the response to the source of the transmission.

The commands for which response processing is executed in the CPU Bus Driv-
er are explained below, along with the response contents.

1. The service request PDU is the format, from MRC onwards, of the FINS
command created at the time of requesting a service.

2. The service response PDU is the format, from MRC onwards, of the FINS
response when a response is transmitted or received with respect to a ser-
vice request.

FINS Commands Serviced by Drivers Section 4-6

Commands for which response processing is executed by driver are as follows.

No. MRC | SRC Command contents
$05 $01 Read Controller Information
$07 $01 Read Time Information

$07 $02 Write Time Information

$08 $01 Loopback Test

$21 $02 Read Error Log

$21 $03 Clear Error Log

DA WIN| =

4-6-1 Read Controller Information (0501)

Operation This operation inquires regarding the format and version of the Personal Com-
puter Unit and the version of the driver.
Service Request PDU
1B 1B
$05 | $01

L SRC
MRC
MRC (1 Byte):
Main Request Classification. Read Device Information is indicated by $05.
SRC (1 Byte):
Sub-request Classification. Read Controller Information is indicated by $01.
Service Response PDU
1B 1B 1B 1B 208 208

‘ MRC ‘ SRC ‘ MRES‘ SRES‘

Version
Format

MRC (1 Byte):
Main Request Classification. The response to Read Device Information is
indicated by $05.

SRC (1 Byte):
Sub-request Classification. The response to Read Controller Information is
indicated by $01.

MRES (1 Byte):
Main Response Code. $00 is always returned.

SRES (1 Byte):
Sub-response Code. $00 is always returned.

Model (20 Bytes):
The Personal Computer Unit model is returned in ASCII code, with a maxi-
mum of 20 bytes. If the full 20 bytes is not needed, the remaining portion will
be filled with spaces.

Version (20 Bytes):
The Personal Computer Unit OS and the CPU Bus Driver version are re-

turned in ASCII code, with a maximum of 20 bytes. If the full 20 bytes is not
needed, the remaining portion will be filled with spaces.

99

FINS Commands Serviced by Drivers Section 4-6

4-6-2 Read Time Information (0701)

Operation This operation inquires regarding Personal Computer Unit’s time information.

Service Request PDU
1B 1B

$07 | $01

L—— SRC
MRC

MRC (1 Byte):
Main Request Classification. Access Time Information is indicated by $07.
SRC (1 Byte):
Sub-request Classification. Read Time Information is indicated by $01.
Service Response PDU
1B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B

‘ MRC ‘ SRC ‘MRES‘ SRES‘ Year ‘Month‘ Date ‘ Hour ‘Minute‘Second‘ Day ‘

MRC (1 Byte):
Main Request Classification. The response to Access Time Information is
indicated by $05.
SRC (1 Byte):
Sub-request Classification. The response to Read Time Information is indi-
cated by $01.
MRES (1 Byte):
Main Response Code. $00 is always returned.
SRES (1 Byte):
Sub-response Code. $00 is always returned.
Year (Two Rightmost Digits) to Second:
The time information that is read is returned as 1-byte pieces of BCD data.
Day:
Information on the day of the week is coded as follows:

$00=Sunday, $01=Monday, $02=Tuesday, $03=Wednesday,
$04=Thursday, $05=Friday, $06=Saturday

4-6-3 Write Time Information (0702)

Operation This operation writes time information to the Personal Computer Unit.

Service Request PDU
1B 1B 1B 1B 1B 1B 1B 1B 1B

‘ $07 ‘ $02 ‘ Year ‘Month‘ Date ‘ Date‘ Hour‘Minute‘Second‘

L—— SRC
MRC

MRC (1 Byte):

Main Request Classification. Access Time Information is indicated by $07.
SRC (1 Byte):

Sub-request Classification. Write Time Information is indicated by $02.
Year (Two Rightmost Digits) to Minute:

100

FINS Commands Serviced by Drivers Section 4-6

The time information to be written is indicated by 1-byte pieces of BCD data.
Second:

The second information to be written is indicated by 1-byte pieces of BCD
data. This parameter is optional and can be omitted.

Day:

Information on the day of the week is coded as follows:
$00=Sunday, $01=Monday, $02=Tuesday, $03=Wednesday,
$04=Thursday, $05=Friday, $06=Saturday

This parameter is optional and can be omitted.

Service Response PDU
1B 1B 1B 1B

‘ MRC ‘ SRC ‘ MRES‘ SRES‘

MRC (1 Byte):
Main Request Classification. The response to Access Time Information is
indicated by $07.

SRC (1 Byte):
Sub-request Classification. The response to Write Time Information is indi-
cated by $02.

MRES (1 Byte):
Main Response Code. $00 is returned when correct, and $11 when there is
an error.

SRES (1 Byte):
Sub-response Code. The cause of the error is reported.

$00: Normal termination
$01: Command format error
$02: Parameter error

Note The Personal Computer Unit reads the the PC’s clock and sets the time auto-
matically when the CPU driver is installed.

4-6-4 Loopback Test (0801)

Operation
This operation indicates the connected devices, and conducts a loopback test

with each of the devices.

Service Request PDU
1B 1B

\ $08 \ $01 ‘ Test data

L—— SRC
MRC

MRC (1 Byte):

Main Request Classification. Communications Tests are indicated by $08.
SRC (1 Byte):

Sub-request Classification. The Loopback Test is indicated by $01.
Test Data:

This is the arbitrary test code.

Service Response PDU
1B 1B 1B 1B

‘ MRC ‘ SRC ‘ MRES‘ SRES‘ Test data ‘

101

FINS Commands Serviced by Drivers Section 4-6

MRC (1 Byte):
Main Request Classification. The response to Communications Tests is in-
dicated by $08.

SRC (1 Byte):
Sub-request Classification. The response to Loopback Test is indicated by
$01.

MRES (1 Byte):
Main Response Code. $00 is returned when correct, and $11 when there is
an error.

SRES (1 Byte):
Sub-response Code. The cause of the error is reported.

$00: Normal termination
$01: Command format error

Test Data:

Data the same as that transmitted by service requestis returned. The length
of the test data is the same as the service request PDU.

4-6-5 Read Error Log (2102)

Operation
This operation inquires regarding error information generated at the Personal
Computer Unit. The error information is erased from the system after it is read.
Service Request PDU
1B 1B

| s21 | so2 | |

\— Number of records to read
Beginning record number
SRC

MRC

MRC (1 Byte):
Main Request Classification. Error Logging Operations are indicated by
$21.

SRC (1 Byte):
Sub-request Classification. Read Error Log is indicated by $02.

Beginning Record Number (2 Bytes):

This indicates the first record number to be read. Each record consists of 10
bytes of data, and stores information on a single error.

The first record number is $0000. When the error history is read from a later
record (greater than $0000), all earlier records will be erased.

Number of Records to Read (2 Bytes):
This indicates the number of records to be read.

Service Response PDU
1B 1B 1B 1B 2B 2B 2B

‘ MRC ‘ SRC ‘MRES‘ SRES‘ Error log data

Number of records read
Number presently stored
Maximum number of records

MRC (1 Byte):

102

FINS Commands Serviced by Drivers Section 4-6

Main Request Classification. The response to Error Logging Operations is
indicated by $21.

SRC (1 Byte):
Sub-request Classification. The response to Read Error Log is indicated by
$02.

MRES (1 Byte):

Main Response Code. $00 is returned when correct, and $11 when there is
an error.

SRES (1 Byte):
Sub-response Code. The cause of the error is reported.

$00: Normal termination
$01: Command format error
$02: Parameter error

Maximum Number of Records (2 Bytes):

This indicates the maximum number of error records that can be stored.
Number Presently Stored (2 Bytes):

This indicates the number of items remaining after reading the error log.
Number of Records Read (2 Bytes):

The number of records actually read is returned.
Error Log Data:

Error records are stored in the format shown below.

1B

—————— Errortype ————— Seenote 1.
1B
1B

————— Errorcode ———— See note 2.
1B
1B | Error generated Minute
1B » Second
1B » Date

— BCD format

1B » Hour
1B » Year (rightmost two digits)
1B ” Month

Note 1. Content and Meaning of Error Types

bit bit
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o[ofofofofo]t[1]ofoofof-]of-]-]

1/O error 7‘

CPU bus communications error

Error at BIOS startup————

When the error log is read with the Personal Computer Unit's ERRLOG.EXE
program, bits 8 and 9 will be 0 (OFF).

2. For a list of error codes, refer to the appendices.

4-6-6 Clear Error Log (2103)

Operation This operation resets the error log generated at the Personal Computer Unit.

103

Sample Programs Section 4-7

Service Request PDU
1B 1B

$21 $03

L—— SRC
MRC

MRC (1 Byte):
Main Request Classification. Error Logging Operations are indicated by
$21.
SRC (1 Byte):
Sub-request Classification. Clear Error Log is indicated by $03.
Service Response PDU
1B 1B 1B 1B

‘ MRC ‘ SRC ‘ MRES‘ SRES‘

MRC (1 Byte):
Main Request Classification. The response to Error Logging Operations is
indicated by $21.

SRC (1 Byte):
Sub-request Classification. The response to Clear Error Log is indicated by
$03.

MRES (1 Byte):

Main Response Code. $00 is always returned.
SRES (1 Byte):

Sub-response Code. $00 is always returned.

4-7 Sample Programs

Sample programs using the CPU Bus Driver are provided below.

1 /***/

2 /* CPU Bus Driver */

3 /* */

4 /* Cyclic Service Sample Program */

5 /***/

6 #include <dos.h>

7 #include <stdio.h>

8

9 typedef void far *farptr;

10

11 union REGS inregs,outregs; /*1/O register structure*/

12 int fd; / *File handle* /

13 char length; /*Number of bytes for IOCTL transmission* /
14 static char buf[l6]; / *Data buffer for IOCTL*/
15

16 static char driver id[] = "CVIF"; / *Driver name* /

17 static char d_addrset[]
18 static char d datread[]
19 static char d datwrit[]

{ 10, 0x01, 0x00 }: /*Setstransmission status*/
{ 12, 0x02, 0x00 }: /*Datareading*/
{ 12, 0x03, 0x00 }: /*Data writing*/

20

21 void errclose();
22

23 void

Sample Programs Section 4-7

24 main()

25 ¢

26 int i;

27 register char *bufp;

28 register short *sp;

29

30 inregs.h.ah = 0x3d; /*QOpens driver.* /

31 inregs.h.al = 0x02; / *Read/write mode* /

32 inregs.x.dx = (short)driver_id;

33 intdos(&inregs, &outregs); /*int21h*/

34 if (outregs.x.cflag !=0)/{

35 printf (”Driver not loaded./n");

36 printf(”/tError code = 0x%x/n”,outregs.x.ax);

37 exit(1l);

38 }

39 fd = outregs.x.ax; /*Acquires file handle.* /

40

41 strncpy (buf,&d addrset[1],2); / *Sets cyclic service status*/
42 length = d_addrset[0];

43 bufp = &buf[2];

44 *bufp++ = 0; /*Transmission direction, bus driver to Unit* /

45 *bufp++ = 1; /*Set number* /

46 * (long*)bufp = (long)0x00404000; / *Sets real address of bus driver*/
47 bufp += 4;

48 * (short*)bufp = 10; / *Sets transmission length* /

49 if (ioctl())

50 errclose();

51

52 strncpy (buf,&d addrset[1],2); / *Sets cyclic service status*/
53 length = d_addrset[0];

54 bufp = &buf[2];

55 *bufp++ = 1; /*Transmission direction, Unit to bus driver* /

56 *bufp++ = 1; /*Set number* /

57 * (long*)bufp = (long)0x00404000; / *Sets real address of bus driver=*/
58 bufp += 4;

59 * (short*)bufp = 10; / *Sets transmission length* /

60 if(ioctl())

61 errclose();

62

63 strepy (buf,&d _datwrit[1],[2]); / *Writing cyclic area* /

64 length = d_datwrit[0];

65 bufp = &buf[2];

66 *bufp++ = 1; /*Set number*/

67 *bufp++ = 0; /*Reserve*/

68 strcpy (databuf,”1234567890abcdefghij”);

69 * (long*)bufp = (long)(farptr)databuf; / *Sets writing data buffer= /
70 bufp += 4;

71 * (short*)bufp = 10; /*Sets number of words requested for writing* /
72 if (ioctl())

73 errclose();

74 printf (”The number of words actually written is %d.

/n" ,*(short*)&buf[10]);

75

76 strncpy (buf,&d _datread[1],[2]); /*Reading cyclic area*/

77 length = d_datread[0];

78 bufp = &buf[2];

105

Sample Programs Section 4-7

79 *bufp++ = 1; /*Set number* /

80 *bufp++ = 0; /*Reserve* /

81 * (long*)bufp = (long)(farptr)databuf; / *Sets receiving buffer address*/
82 bufp += 4;

83 * (short*)bufp = 10; / *Sets number of words requested for reading* /
84 if (ioctl())

85 errclose();

86

87 printf (”Data received in the DM area /n”);

88 sp = (short*)databuf; /*Displays received data*/

89 for (i = *(short*)s&buf[10];——1i> = 0;)

90 printf ("0x%x",*sp++);

91 printf(”/n");

92

93 inregs.h.ah = 0x3e; / *Closes driver.* /

94 inregs.x.bx = fd;

95 intdos (&inregs, &outregs); /*int21h*/

96 }

97

98 int

99 ioct()

100 ¢

101 inregs.x.ax = 0x4403; /*1/O request* /

102 inregs.x.bx = fd;

103 inregs.x.cx = length; / *Sets number of bytes for transmission.* /
104 inregs.x.dx = (short)buf; / *Sets parameter buffer address.* /
105 intdos (&inregs, &outregs);

106 if (outregs.x.cflag||outregs.x.ax)

107 return(l);

108 return(0);

109 }

110

111 void

112 errclose()

113 ¢

114 printf (”IOCTL error/n");

115 printf (”/tcmd=0x%x carry=0x%x AX=0x%x/n",

116 buf[0],outregs.x.cflag,outregs.x.ax);
117 inregs.h.ah = 0x3e; / *Closes driver.* /

118 inregs.x.bx = fd;

119 intdos(&inregs, &outregs); /*int 21h*/

120 exit(2);

121}

1 /***/
2 /* CPU Bus Driver */
3 /* */
4 /* Event Transmission Sample Program */
5 /***/
6 #include <dos.h>

7 #include <stdio.h>

8 #include <time.h>

9

10 typedef unsigned char uchar;

11 typedef unsigned short ushort;
12 typedef void far *farptr;

Sample Programs

Section

4-7

14
15
16
17
18
19
20
21
22
23

union
union
int
int
char
uchar
uchar
char
char
char

reception.*/

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

char

REGS inregs,outregs;

REGS inregs2,outregs?2;

fd;

rcnt;

length;

mbuf[15], *buf;

recvbuf[2048];

cmd04hdr[] = {0xa,0x04,0x00};
cmd07hdr[] = {0xa,0x07,0x00};
cmdObhdr[] = {0x6,0x0b,0x00};

cmdllhdr(] {0x8,0x11,0x00};

/*Assembler function declarations* /

extern
extern
extern

int f-sense(),c—sense();
void f-set(),f-cls();

void c—inc(),c—dec(),c—-cls()

void cmd04(),cmd07(),cmd0b(),cmdll(),

void far

jmpOba (), far jmplla();

void disp recv(),ioctl();

void far
void far
void
void

void

{

inregs.h.
inregs.h.
inregs.x.

*jmpObadr[] = {jmpOba};
*jmplladr[] = {jmplla};
timetime(int);

moritime (double¥*);

main()

ah = 0x3d; /*Opens file.*/
al = 0x02; / *read/write* /
dx = (short)”CVIF”;

intdos(&inregs, &outregs); /*int21hx/
if (outregs.x.cflag !=0)

printf (”Driver not loaded.errcode

else{

fd = outregs.x.ax;

/*1/O register structure*/

/*1/O register structure*/

/*File handle*/

/ *Transmission counter*/

/*Number of ioctl transmission digits* /

/ *ioctl buffer= /

/ *Reception buffer* /

/ *Transmits event/FINS command.* /

/ *Receives event/FINS response.* /

/ *Branches at completion of FINS response

/ *Registers time-up branch entry address.* /

$x/n"outregs.x.ax);

/ *Saves file handle.* /

rcnt = 0; /*SID counter*/

f cls(); /*Clears flag.* /

c_cls(); /*Clears counter.* /

cmdOb () ; /*Branches at completion of FINS response reception.* /
cmdll(); / *Registers time—up branch entry address.*/

do{

if(!c_sense()){

timetime(2); /*110ms*/
cmd04 () ; / *Transmits event/FINS command.* /
}telse{
cmd07(); / *Receives event/FINS response.*/
c_dec();
}
}
while(!f sense()||c_sense());
inregs.h.ah = 0x3e; / *Closes file.* /
inregs.x.bx = fd;

/ *Response reception—-complete entry address* /
/*Time-up branch entry address*/
/*WAIT function (54.9 ms)*/

107

Sample Programs Section 4-7

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

108

intdos(&inregs, &outregs); /*int21hx/

}
}
/*FINS command transmission processing* /
void cmd04 ()
{
char *adr;
static char finsdata[] = {
/* ICF,RSV,GCNT,DNA,DAl,DA2,SNA,SALl,SA2,SID*/
o, o, O, o, o0, Ox1i4,0, 0, 0, O,
/* MRC, SRC,DATA*/

0x11,0x12,1,2};

buf = mbuf;

length = *cmdO04hdr; /*Number of ioctl transmission digits* /
adr = cmdO04hdr;

strncpy (buf,++adr, 2); /*Command* /

buf+=2;

(uchar)famsdata[9] = (uchar)rcnt++; /*SID*/

* (long*)buf = (long) (farptr)finsdata; /*Command buffer*/
buf += 4;
((ushort)buf) = 14; /*Number of bytes requested for transmission* /
ioctl();
if (outregs.x.ax)
printf (”Command transmission Code error: %d/n”,outregs.x.ax);

}
/ *FINS response processing* /
void cmd07 ()
{
char *adr;
buf = mbuf;
length = *cmd07hdr; /*Number of ioctl transmission digits* /
adr = cmdO7hdr;
strncpy (buf,++adr, 2); /*Command* /
buf++;
* ((uchar*)buf)++ = 1; / *Timer monitoring: 0: Yes; Other: No*/
((long)buf)++ = (long) (farptr)recvbuf; /*Command bufferx/
* ((ushort*)buf) = 1000; /*Number of bytes requested for reception* /

ioctl();
if (!outregs.x.ax)
disp recv(*(short*) (mbuf+8));/*Displays data received.*/

else
printf (”"Response reception Code error: %d/n”,outregs.x.ax);
}
/ *Branch processing at completion of FINS response reception* /
void cmdO0b ()
{
char *adr;
buf = mbuf;
length = *cmdObhdr; /*Number of ioctl transmission digits* /

adr = cmdObhdr;

Sample Programs

Section 4-7

125
126
127
128
129
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

strncpy (buf,++adr,2);
buf+=2;

(long)buf = (long) (farptr)impObadr[0];

ioctl();
if (outregs.x.ax)

/*Command* /

/ *Reception—-complete entry address* /

printf (*Branch at completion of response reception Code
error:*:%d/n”,outregs.x.ax);

;pragma check_stack(off)
void far jmpObal()
{ .
c_inc();
}

#pragma check stack(on)

/ *User timer service setting processing* /

void cmdll ()
{
char *adr;
buf = mbuf;

length = *cmdllhdr;
adr = cmdllhdr;
strncpy (buf,++adr,2);

buf+=2;

(long)buf = (long) (farptr)implladr[0];
buf += 4;

((ushort)buf) = 200;

ioctl();

if (outregs.x.ax)

/*Number of ioctl transmission digits* /
/*Command* /
/*Timer interrupt entry address*/

/*Timer value* /

printf (User timer set Code error::%d/n”,outregs.x.ax);

}

#pragma check stack(off)

void far jmplla()

{
f set();

}

#pragma check_ stack(on)

void ioctl()

{
inregs.x.ax = 0x4403;/*SEND*/
inregs.x.bx = fd;
inregs.x.cx = length;
inregs.x.dx = (short)mbuf;

intdos(&inregs, &outregs);
if (outregs.x.cflag!=0){

printf (”MS-DOS system error*/n”);
/ *Closes file.* /

inregs.h.ah = 0x3e;
inregs.x.bx = fd;

intdos(&inregs, &outregs);

exit(2);

void disp recv(j)

/*int 21h*/

109

Sample Programs Section 4-7

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

0 o Ul WN P

20

intj;
{

register int i,k;

printf (”"Number of bytes of real data received = %d/n/n”,j);
printf(”/t/t0 1 2 3 456 78 9 abcdef /n");
printf (”"Reception data = /t");
for (i=0,k=0;i<j;i++){
printf (”%02x"”,recvbuf[i]);
k++;
if (k==16){
printf(”/n/t/t");
k =0;
}
}
printf(”/n");
}
void timetime(c)
{
double nowtime;
double aftertime;
moritime(&nowtime);
moritime(&aftertime);
for(; (aftertime—nowtime)<=c;)
moritime(&aftertime);
}
void moritime(t)
double *t;

! inregs2.h.ah=0;
int86 (0xla, &inregs2, &outregs2);
*t=(double)outregs2.x.dx;
}
/***/
/* CPU Bus Driver */
/* */
/* Event Reception Sample Program */
/***/
#include <dos.h>
#include <stdio.h>

typedef unsigned char uchar;
typedef unsigned short ushort;
typedef void far *farptr;

union REGS inregs,outregs; /*1/O register structure*/

int fd; / *File handle* /

char length; /*Number of ioctl transmission digits* /
uchar mbuf[15], *buf; / *ioctl buffer*/

uchar recvbuf[2048]; / *Reception buffer*/

char cmd05hdr[] = {0xa,0x05,0x00}; /*Transmits event/FINS response.*/
char cmdO6hdr[] = {0xa,0x06,0x00}; /*Receives event/FINS command.*/
char cmdOahdr[] = {0x6,0x0a,0x00}; /*Branches atcompletion of event/FINS

reception.*/

21
22

110

char cmdOchdr([]
char cmdllhdr]]

{0x4,0x0c,0x00}; /*Setseventtimeout value.*/
{0x8,0x11,0x00}; /*Registerstime-up branch entry address.*/

Sample Programs Section 4-7
23

24 /*Assembler function declarations* /

25 extern int f-sense(),c—sense();

26 extern void f-set(),f-cls();

27 extern void c—inc(),c—dec(),c—cls()

28 void cmd05(),cmd06(),cmdOc(),cmdll(),

29 void far jmpOaa(),far jmplla();

30 void disp recv(),ioctl();

31

32 void far *jmpOaadr[] = {jmpOaa}; / *Entry address at completion of reception* /
33 void far *Jjmplladr[] = {jmplla}; / *Time-up branch entry address*/
34

35 void main()

36 {

37 inregs.h.ah = 0x3d; /*Opens file.* /

38 inregs.h.al = 0x02; / *read/write* /

39 inregs.x.dx = (short)”CVIF”;

40 intdos (&inregs, &outregs); /*int21hx/

41 if (outregs.x.cflag !=0){

42 printf (”"Driver not loaded.errcode = %x/n”outregs.x.ax);
43 exit(1l);

44 }

45 else{

46 fd = outregs.x.ax; /*Saves file handle.* /

47 c_cls();

48 f cls();

49 cmdOa(); / *Branches at completion of event/FINS reception.* /
50 cmdOc () ; / *Sets event timeout value.* /

51 cmdl1(); / *Registers time-up branch entry address.*/
52 do{

53 if(c_sense()){

54 c_dec();

55 cmd06 () ; / *Receives event/FINS command.* /
56 cmd05 () ; / *Transmits event/FINS response.* /
57 }

58 }

59 while(!f sense()||c_sense());

60

61 inregs.h.ah = 0x3e; / *Closes file.* /

62 inregs.x.bx = fd;

63 intdos (&inregs, &outregs); /*int21h*/

64 }

65 }

66

67 / *Event service and FINS response transmission processing* /

68 void cmd05 ()

69 {

70 char *adr;

71 static char finsdata[] = {

72 /* ICF,RSV,GCNT,DNA,DAl,DA2,SNA,SALl,SA2,SID*/

73 o, o, o, o, o0, O, 0, O, O, O,

74 /% MRC, SRC,MRES, SRES, RES—DATA*/

75 0x11,0x12,0,0,3,4};

76

77 buf = mbuf;

78 length = *cmd05hdr; /*Number of ioctl transmission digits* /

111

Sample Programs Section 4-7

79 adr = cmdO5hdr;

80 strncpy (buf,++adr, 2); /*Command* /

81 buf+=2;

82 finsdata[0] = recvbuf[0] /*ICF*/

83 finsdata[l] = recvbuf[6] /*RSV=*/

84 finsdata[3] = recvbuf[6] /*DNA*/

85 finsdata[4] = recvbuf[7] /*DA1*/

86 finsdata[5] = recvbuf[8] /*DA2*/

87 finsdata[9] = recvbuf[9] /*SID*/

88 finsdata[10] = recvbuf[10] /*MRC=*/

89 finsdata[ll] = recvbuf[l1l] /*SRC*/

90 *(long*)buf = (long) (farptr)finsdata; /*Buffer address*/

91 buf += 4;

92 * ((ushort*)buf) = 16; /*Number of bytes requested for transmission* /
93 ioctl();

94 if (outregs.x.ax)

95 printf (”"Response transmission Code error:%d/n”,outregs.x.ax);
96 }

97

98 /*FINS command reception request* /

99 void cmd07 ()

100 ¢

101 char *adr;

102

103 buf = mbuf;

104 length = *cmdO6hdr; /*Number of ioctl transmission digits* /
105 adr = cmdO6hdr;

106 strncpy (buf,++adr,2); /*Command* /

107 buf+=2;

108 * (long*)buf = (long) (farptr)recvbuf; /*Reception buffer address*/

109 buf += 4;

110 * ((ushort*)buf) = 1000; /*Number of bytes requested for reception* /
111 ioctl();

112 if (!outregs.x.ax)

113 disp_recv(*(short*) (mbuf+8)); /*Displays data received.* /

114 else

115 printf (Command reception Code error:%d/n”,outregs.x.ax);

116 }

117

118 /*Branch processing at completion of FINS command reception* /

119 void cmdOa ()

120 {

121 char *adr;

122

123 buf = mbuf;

124 length = *cmdOahdr; / *Number of ioctl transmission digits* /
125 adr = cmdOahdr;

126 strncpy (buf,++adr,2); /*Command* /

127 buf+=2;

128 *(long*)buf = (long) (farptr)impOaadr[0]; /*Reception-complete entry address*/
129 ioctl();

130 if (outregs.x.ax)

131 printf (*Branch at completion of command reception Code
error:%d/n”,outregs.x.ax);

132}

133 #pragma check stack(off)

112

Sample Programs Section 4-7

134 void far jmpOaa()

135 {

136 c_inc();

137 '}

138 #pragma check stack(on)

139

140 /*Eventtimer setting processing* /

141 wvoid cmdOc ()

142 ¢

143 char *adr;

144

145 buf = mbuf;

146 length = *cmdOchdr; /*ioctlNumber of ioctl transmission
digits*/

147 adr = cmdOchdr;

148 strncpy (buf,++adr,2); /*Command* /
149 buf+=2;

150 * ((ushort*)buf) = 100; / *Timeout value* /
151 ioctl();

152 if (outregs.x.ax)

153 printf (Timer value setting Code error:%d/n”,outregs.x.ax);
154 }

155

156 /*User timer service setting processing* /

157 wvoid cmdll ()

158 {

159 char *adr;

160

161 buf = mbuf;

162 length = *cmdllhdr; /*Number of ioctl transmission digits* /
163 adr = cmdllhdr;

164 strncpy (buf,++adr,2); /*Command* /
165 buf+=2;

166 *(long*)buf = (long) (farptr)implladr[0]; /*Timer interrupt entry address*/
167 buf += 4;

168 * ((ushort*)buf) = 100; / *Timer value* /
169 ioctl();

170 if (outregs.x.ax)

171 printf (User timer setting Code error:%d/n”,outregs.x.ax);
172}

173 #pragma check stack(off)

174 void far jmplla()

175 {

176 f set();

177 }

178 #pragma check stack(on)

179

180 wvoid ioctl()

181 {

182 register int 1i;

183

184 inregs.x.ax = 0x4403; /*SEND~*/

185 inregs.x.bx = fd;

186 inregs.x.cx = length;

187 inregs.x.dx = (short)mbuf;

188 intdos(&inregs, &outregs);

113

Sample Programs Section 4-7

189 if (outregs.x.cflag!=0){

190 printf (”MS-DOS system error*/n”);

191 inregs.h.ah = 0x3e; /*Closes file* /

192 inregs.x.bx = fd;

193 intdos(&inregs, &outregs); /*int21hx/

194 exit(2);

195 }

196 }

197

198 void disp recv(j)

199 intj;

200 {

201 register int i,k;

202

203 printf (”"Number of bytes of real data received = %d/n/n”,j);
204 printf(”/t/t0 1 2 3 4 56 78 9 abcde f/n");

205 printf (”"Reception data = /t");

206 for(i=0,k=0;i<j;i++){

207 printf (”%02x"” ,recvbuf[i]);

208 k++;

209 if (k=16){

210 printf(”/n/t/t");

211 k = 0;

212 }

213 }

214 printf(”/n");

215 }

1 /*********'k***************************************/

2 /* CPU Bus Driver */

3 /* */

4 /* CPU Bus Link Service Sample Program */

5 /*********'k***************************************/

6 #include <dos.h>

7 #include <stdio.h>

8

9 typedef void far *farptr;

10

11 union REGS inregs,outregs; /*1/O register structure*/

12 int fd; /*File handle* /

13 char length; /*Number of IOCTL transmission digits* /
14 static char buf[16],databuf[512]; /*Data buffer for (OCTL*/

15

16 static char driver id[] = "CVIF"; / *Driver name=* /
17 static char d rsvread[] = {6,0x0e,0x00}; / *Reads reserved information.* /
18 static char d lnkread[] = {12,0x0£f,0x00}; / *Reads link area.*/
19 static char d lnkwrit[] = {12,0x10,0x00}; / *Writes link area.* /
20 static char d gokiadr[] = {4,0x13,0x00}; / *Inquires regarding unit address.* /
21

22 void errclose();

23

24 void

25 main()

26 {

27 int i;

28 char goki;

29 register short *bufp;

114

Sample Programs Section 4-7

30

31 inregs.h.ah = 0x3d; /*Opens driver.* /

32 inregs.h.al = 0x02; / *Read/write mode* /

33 inregs.x.dx = (short)driver_id;

34 intdos(&inregs, &outregs); /*INT 21H*/

35 if (outregs.x.cflag){

36 printf (”"Driver not loaded./n”);

37 printf(”/tError code = 0x%x/n”outregs.x.ax);

38 exit(1l);

39 }

40 fd = outregs.x.ax; /*Acquires file handle.* /

41

42 strncpy (buf,&d rsvread[l],2); / *Reads information reserved for system.* /
43 length = d_rsvread[0];

44 bufp = (short*)&buf[2];

45 * (long*)bufp = (long) (farptr)databuf; /*Sets reception buffer address.*/
46 if(ioct())

47 errclose();

48

49 printf (System-reserved information data/n”);

50 bufp = (short*)databuf; / *Displays data received.* /

51 for(i=8;-1i>=0;)

52 printf (”0x%x"”,*bufp++);

53 printf(”/n");

54

55 strncpy (buf,&d lnkwrit[1],2); / *Writes CPU bus link area.*/

56 length = d lnkwrit[0];

57 bufp = (short*)&buf[2];

58 *bufp++=0; /*Sets beginning word for writing.* /
59 strcpy(databuf,”0123456789%abcdef”);

60 * (long*)bufp = (long) (farptr)databuf; /*Sets buffer for written data.*/

61 bufp+=2;

62 *bufp=8; / *Sets number of words requested for writing.* /
63 if(ioct())

64 errclose();

65 printf (The number of words actually written is %d./n”,
(short)&buf[10]);

66

67 strncpy (buf, &d_gokiadr[1l],2); / *Inquires regarding unit address.* /
68 length = d_gokiadr[0];

69 if(ioct())

70 errclose();

71 goki=buf[2]; / *for Special 1/O Unit* /

72 printf (The unit address is 2%d./n”,goki);

73

74 strncpy (buf,&d lnkread[1l],2); /*Reads CPU bus link area.*/

75 length = d_lnkread[0];

76 bufp = (short*)&buf[2]

77 *bufp++=goki*8+128; /*Sets beginning word for reading.* /
78 * (long*)bufp = (long)(farptr)databuf; /*Sets reception buffer address.*/
79 bufp+=2;

80 *bufp=8; / *Sets number of words requested for reading.* /
81 if(ioct())

82 errclose();

83

84 printf (Unit number data read/n”);

115

Sample Programs Section 4-7

85 bufp = (short*)databuf; / *Displays data received.* /
86 for(i=*(short*)&buf[10];-1>=0;)

87 printf (”0x%x"”,*bufp++);

88 printf(”/n");

89

90 inregs.h.ah = 0x3e; / *Closes driver.* /

91 inregs.x.bx = fd;

92 intdos(&inregs, &outregs); /*INT 21Hx*/

93 }

94

95 int

96 ioctl()

97 {

98 inregs.x.ax = 0x4403; /*l/O request*/

99 inregs.x.bx = fd;

100 inregs.x.cx = length; / *Sets number of bytes to receive.* /
101 inregs.x.dx = (short)buf; / *Sets parameter buffer address.* /
102 intdos(&inregs, &outregs);

103 if (outregs.x.cflag| |outregs.x.ax)

104 return(l);

105 return(0);

106 }

107

108 void

109 errclose()

110 {

111 printf (”IOCTL error*/n”);

112 printf(”/tcmd=0x%x carry=0x%x AX=0x%x/n");

113 buf[0],outregs.x.cflag,outregs.x.ax);
114 inregs.h.ah = 0x3e; / *Closes driver.* /

115 inregs.x.bx = fd;

116 intdos(&inregs, &outregs); /*INT 21H*/

117 exit(2);

118 }
;**********'k**

;* S Bus Interface Communications Driver *

. % *

’

;* Sample program for branch at completion and user timer *
;***
_TEXT segment byte public ‘code’

assume cs:_ TEXT

assume ds: TEXT

public f set, f sense, f cls, endflg

public ¢ _inc, c_dec, c_sense, c_cls, cnt
;*'k*********'k*************************
Hid Flag set processing *
;*'k*********'k*************************
_f set proc near

mov cs: endflqg,l1l

ret
_f set endp

;*'k*********'k*************************

Hid Flag sense processing *
;*************************************

_f sense proc near
mov ax,cs:_endflg

116

Measuring CPU Bus Access Performance Section 4-8

ret

_f sense endp
;*************************************

i * Flag clear processing *
;*-k********-k**************************

_f cls proc near

xXor ax,ax
mov cs:_endflg, ax
ret

_f cls endp

;*-k***********************************

P * Counter increment processing *
;*************************************
_c_inc proc near

inc cs:_cnt

ret
_c_inc endp
;*-k'k*******-k'k*************************
Hd Counter decrement processing *
;*************************************
_c_dec proc near

dec cs:_cnt

ret
_c_dec endp

;*-k***********************************

H Counter sense processing *
;*************************************
_C_sense proc near

mov ax,cs:_cnt

ret
_c_sense endp

;*-k***********************************

Hid Counter clear processing *
;*************************************

_c_cls proc near

XOor ax,ax
mov cs:_cnt, ax
ret

_c_cls endp
;*************************************

P * Flag and counter *
;*-k'k-k******-k'k*************************

_endflg dw 0

_cnt dw 0
_TEXT ends
end

4-8 Measuring CPU Bus Access Performance

This section explains how to measure the performance of the CPU bus. The per-
formance will vary depending on the program and the configuration of Units,
such as I/O Units and CPU Bus Units. The processing time of a CV1000 is used
in these examples.

117

Measuring CPU Bus Access Performance Section 4-8

4-8-1 Cyclic Service

Example

4-8-2 Event Service

118

This example shows how to measure the time required to read or write data in
the PC’s DM Area, from the issuance of the command (02 or 03) to the comple-
tion of the operation. Refer to 4-5-2 Reading the Cyclic Area for details on com-
mand 02 or 4-5-3 Writing to the Cyclic Area for details on command 03.

The time required to read/write the data is:
Number of words x 2 us + 420 us + The CV1000’s processing time

Function issued Function completed
| |
Personal Computer Unit _| ,7
cviooo | [
| |
CV1000 service starts Completed

Time

Refer to Section 6 of the CV-series PC Operation Manual: Ladder Diagrams for
details on the CV1000’s processing time. In these examples, the Personal Com-
puter Unit is the only CPU Bus Unit connected to the CV1000.

The minimum processing time for the Personal Computer Unit is 1.8 ms, and
occurs when the request for peripheral processing is received immediately.

The maximum processing time for the Personal Computer Unit is 7.0 ms, and
occurs when the request for peripheral processing encounters the maximum
delay. There will be an additional delay for program execution when the CV1000
is set for synchronous operation.

Use the following equation to calculate the time required to read 1000 words of
DM data when the CV1000 is set for synchronous operation and the Personal
Computer Unit is the only CPU Bus Unit connected.

1000 x 2 us + 420 us + (1.8t0 7.0 ms) = 4.22t0 9.42 ms

This example shows how to measure the time required to read or write data in
the PC’s DM Area, from the issuance of command 04 to the reception of the re-
sponse with command 07. Refer to 4-5-4 Transmitting FINS Commands for de-
tails on command 04 or 4-5-7 Receiving FINS Responses for details on com-
mand 07.

The time required to read/write the data is:
Number of words x 2 x 1.6 us + 1.5 ms + The CV1000’s processing time

Measuring CPU Bus Access Performance Section 4-8

Example

In this case, the response reception was executed in the Personal Computer
Unit before the CV1000’s processing was completed.

Command issuance

completed

Response Response

reception reception

C(_)mmand starts completed

issued
Personal Computer Unit
CV1000
CV1000 service starts Completed

Time

Refer to Section 6 of the CV-series PC Operation Manual: Ladder Diagrams for
details on the CV1000’s processing time. In these examples, the Personal Com-
puter Unit is the only CPU Bus Unit connected to the CV1000.

The minimum processing time for the Personal Computer Unit is 1.8 ms, which
occurs when the request for peripheral processing is received immediately and
the processing is completed within one event service.

The maximum processing time for the Personal Computer Unit is 15.8 ms
(1.8+5.2+1.8+5.2+1.8 ms), which occurs when the request for peripheral pro-
cessing encounters the maximum delay and processing isn’t completed in two
event services. Depending on the command, there will be an additional delay of
the cycle time required for program execution.

Use the following equation to calculate the time required to read 500 words of
DM data when the CV1000 is set for synchronous operation and the Personal
Computer Unit is the only CPU Bus Unit connected.

500x2x 1.6 us+1.5ms + (1.8t0 15.8 ms) =4.9t0 18.9 ms

4-8-3 CPU Bus Link Service

The CPU Bus Link service must be enabled in the CV1000’s PC Setup (letter I).
The service is always executed once every 10 ms.

119

SECTION 5
FINS Library

This section describes the FINS Library.

5-1 IntrodUCtiONttt e 122
5-2 BASIC Program and FINS Library Structureo ittt 122
5-3 Processing Flowo e 123
5-3-1 Processing Procedure 1 i e 123
5-3-2 Processing Procedure 2 124
5-4 Usingthe FINS Libraryttt et et 124
5-4-1 Designing with Quick BASIC i 124
5-4-2 Designing with BASIC Other than Quick BASIC 125
5-5 FINS Library Operationsc.eutunen ettt e et 126
5-5-1 SOPEN:INitializecouiun it e e ens 126
5-5-2° SCLOSE: ClIOSE vttt ittt e e e e e 126
5-5-3 SSEND: Transmitoovunt ittt e e e 126
5-5-4 SRECV: Receive (Without Timer Monitoring) 128
5-5-5 SRCVT: Receive (With Timer Monitoring) ...t 130
5-6 Sample Programs 132

121

BASIC Program and FINS Library Structure Section 5-2

5-1 Introduction

Installing the CPU Bus
Driver

Note

When BASIC is used for programming, drivers such as the CPU Bus Driver can-
not be used because settings to the register are required. The FINS Library al-
lows the BASIC user, as well, to utilize event service through the CPU bus inter-
face.

1. Event serviceis the only service that can be utilized when the FINS Library is
used. For details regarding event service, refer to 1-4-2 Event Service.

2. The FINS Library operates using the CPU Bus Driver. Therefore the CPU
Bus Driver must be installed in order to use the library.

3. The FINS Library doesn’t have to be installed. This library is compatible with
Microsoft’'s Quick BASIC 4.5. Refer to 2-4 Changing the Quick Library Ver-
sion when using Quick BASIC 4.2.

The CPU Bus Driver (SBUS.SYS) is recorded in the CONFIG.SYS file in drive F
in advance. Be sure that SBUS.SYS is recorded in the active CONFIG.SYS file
when a system disk is being modified or a new CONFIG.SYS file is being
created.

Add the following line to the CONFIG.SYS file to record the CPU Bus Driver. Re-
fer to 2-6 Installing Device Drivers for details on other SBUS.SYS parameters.
(The F:\CONFIG .SYS file is used when the Unit is started from Built-in ROM.)

DEVICE=E:\SBUS.SYS /V65

L

Drive name

The CPU Bus Driver is recorded in the Personal Computer Unit’s Built-in ROM
(drive E) in advance.

5-2 BASIC Program and FINS Library Structure

122

Note

When the FINS Library is installed in a BASIC program, the structure will be as
shown below.

Before installation After installation
BASIC program BASIC program
FINS Library

As is illustrated above, when the FINS Library is installed the programs regis-
tered in the library can be linked with the user’s BASIC program to enlarge the
load module. In addition, when a program registered in the library is called by the
BASIC program, that program will run and services will be available to the BA-
SIC program through the CPU bus interface.

For instructions on using the FINS Library, refer to 5-4 Using the FINS Library.

Processing Flow Section 5-3

5-3 Processing Flow

This section will describe the communications procedure (flow) when commu-
nications are executed using the FINS Library.

When the FINS Library is used, the only service that can be employed is event
service.

The communications procedure when event service is used is as follows:

1,2 3. 1. Service request command is transmitted to a device offering a service.

2. Response to the service requested is received from the device offering the
service.

Since this is the communications procedure for event service, the procedure will
be the same when the FINS Library is used. In the case of the library, however,
the service is processed using the CPU Bus Driver. Thus the communications
data will be transmitted and received via the CPU Bus Driver.
The communications data handled by the FINS Library conforms to the portion
of the Programmable Controller mailbox command from MRC onwards. A maxi-
mum of 2,002 bytes of data can be transmitted.
The contents of FINS commands will vary depending on the contents of the ser-
vice requested. In addition, the contents of the response will vary according to
the command.

Refer to the FINS Command Reference Manual (W227) for more details.

5-3-1 Processing Procedure 1

When a Request Command is Transmitted from the Personal Computer Unit to
a Device that Offers a Service, and a Response is Received from that Device

1. Transmission 2. Command transmitted. 3. Command transmitted.
T T T Transmission
User FINS Library CPU Bus Driver destination
- - - - - -
4. Reception 5. Response received. Response received.
8. Analysis 7. Edited response returned. 6. Response returned. (See Note)
1,2, 3... 1. The user creates a request command corresponding to the service thatis to

be requested, and then specifies the device offering the service and
calls“transmit” from the FINS Library.

2. The BASIC interface library receives the request from the user and requests
“transmit command” of the CPU Bus Interface Communications Driver.

3. The CPU Bus Driver receives the “transmit command” request from the
FINS Library, and transmits the specified request command to the specified
device.

4. In order to receive aresponse to the transmitted command, the BASIC user
calls “receive response” from the FINS Library.

5. The FINS Library receives the request from the user, and requests “receive
response” of the CPU Bus Driver.

6. In answer to the “receive response” requested by the FINS Library, the CPU
Bus Driver returns to the FINS Library the response data it has received
from the command destination.

7. The FINS Library receives the response data from the CPU Bus Driver and
edits it into a form usable by BASIC, and then returns it to the user.

8. The BASIC user analyzes the contents of the response that was received.

Note The response reception from the transmission destination will be
executed regardless of user request.

123

Using the FINS Library Section 5-4

5-3-2 Processing Procedure 2

When a Request Command is Received from Another Device, and a Response
is Transmitted to the Source of the Command Transmission

1. Reception 2. Command received. Command data received.
5. Analyzed and response 4. Edited command data (See Note)
created returned. 3. Command data returned.
T T T Transmission
User FINS Library CPU Bus Driver destination
- - - - - -
6. Transmission 7. Response transmitted. 8. Response transmitted.
1,2, 3. 1. In order to receive a request command from another device, the user calls

“receive” from the FINS Library.

2. The FINS Library receives the request from the user, and requests “receive
command” of the CPU Bus Driver.

3. Inanswer to the “receive command” requested by the FINS Library, the CPU
Bus Driver returns to the FINS Library the command data it has received
from the other device.

4. The FINS Library receives the command data from the CPU Bus Driver and
edits it into a form usable by BASIC, and then returns it to the user.

5. The BASIC user analyzes the command data that is received, and creates
corresponding response data.

6. Along with creating the response data, the BASIC user specifies the source
of the request command and calls “transmit” from the FINS Library.

7. The FINS Library receives the request from the user, and requests “transmit
response” of the CPU Bus Interface Communications Driver.

8. The CPU Bus Driver receives the “transmit response” request from the FINS
Library, and transmits the specified response data to the specified device.

Note The command reception from the other device will be executed re-
gardless of user request.

5-4 Using the FINS Library

Usage of the FINS Library will vary depending on the version of BASIC being
used. Explanations are provided below both for Quick BASIC and other forms of

BASIC.
5-4-1 Designing with Quick BASIC
Copying Files Copy the applicable file from the System Floppy Disk to the System Disk.

PCDGSUB.LIB (When designing with compiler)
PCDGSUB. QLB (When designing with interpreter)

The way to start up with the interpreter is as follows:
0OB/L PCDGSUB
For detailed instructions, refer to the Quick BASIC manual.
Linking to the Library When compiling the BASIC program, link to PCDGSUB.LIB and create an
executive module.
Example: Creating SMP . EXE from SAMP.BAS

BC SMP.BAS,,NUL,;
LINK/NOE SMP.OBJ+PCDGSUB.
LIB,,NUL.;

124

Using the FINS Library

Section 5-4

Calling Method

Example

Calling is performed by means of the following procedure.
DECLARE SUB func CDECL ALIAS "realname”
CALL func(argument)

Note func is the name of the function called; the “real name” is the name
used in the library.

The correspondences of function names and the names used in the library are
shown in the table below. Use these names when calling.

Operation number Function name Name used in library
O0H SOPEN _binit

01H SCLOSE _bclose

02H SSEND _xsend_dat

03H SRECV _xXrecv_rs()

04H SRCVT _xXrecv_rsl

100 DECLARE SUB SOPEN CDECL ALIAS ” binit”
110 DECLARE SUB SRCVT CDECL ALIAS " xrecv_rsl”

120 CALLS SOPEN(RST%)

180 D$=STRINGS (255,"")

190 CALLS SRCVT(NA$%,DA%,UN%,TYPE%,SID%,D$,CT%,RSTS,RC%,TIMS)

5-4-2 Designing with BASIC Other than Quick BASIC

Copying Files

Modifying and Using the
FINS Library

The form of BASIC available to the user through the FINS Library on the System
Floppy Disk is Quick BASIC. The FINS Library must be modified, therefore, in
order to utilize other forms of BASIC. The way to modify and use the FINS Li-
brary is explained below.

Copy the following files from the System Floppy Disk to the System Disk:

PCDGMAIN.OBJ
PCDGSUB.C
BASICIF.H

The Designed BASIC will be linked with the FINS Library. First, rewrite the for-
mat (str structure) of the string descriptor in BASICIF . H so that it agrees with
the designed BASIC.

struct str { /*Quick BASIC*/
int len; /*String length* /
char *adr; / *Character-type data storage area*/

}i /*Leading offset address*/
Compile based on the medium model, and create the library.
Example: Compiling with MS-C

cl/c/AM/Zp/Op/Gs pcdgsub.c
lib pcdgsub.lib—-+pcdgsub.obj;

Use the library created above, when compiling the BASIC program according to
the instructions given on page 124, Designing with Quick BASIC, to link with the
created library and create an execution form.

125

FINS Library Operations

Section 5-5

5-5 FINS Library Operations

This section will explain FINS Library operations, and give the contents of argu-
ments and return data when each of these operations is used.

Operation Summary
O0H | Initialize Initializes the service. From that point on,
transmission or reception requests cannot be
accepted.
01H | Close Carries out exit processing for the service.

From that point on, transmission or reception
requests cannot be accepted.

02H | Transmit Transmits a service request command, or a
response to a service request, to another
device.

03H | Receive Receives commands from other devices, and

(without timer monitoring) | receives responses to transmissions sent by
the Unit itself. (Without timer monitoring:
Reception is aborted by pressing the Escape

Key.)
04H | Receive Receives commands from other devices, and
(with timer monitoring) receives responses to transmissions sent by

the Unit itself. (With timer monitoring)

5-5-1 SOPEN: Initialize

Operation
Operation Number
Format

Argument

Explanation

Opens the CPU Bus Driver, and initializes the service.
00
CALLS SOPEN(RST%) (QuickBASIC)(_binit)

(Output) RST%: Return status

0: Normal termination
-3: Already open.
-16: CPU Bus Driver not loaded.

When using this library operation, be sure to perform it at the beginning of the
program. Also be sure to initialize when reusing library operations after the CPU
Bus Driver has been closed. The reception buffers will be cleared at this time.

5-5-2 SCLOSE: Close

Operation
Operation Number
Format
Arguments

Explanation

Closes the CPU Bus Driver and ends the service.
01

CALLS SCLOSE(QuickBASIC) (_bclose)
None

Once “close” has been executed, the FINS Library operations cannot be used
again until initialization.

5-5-3 SSEND: Transmit

Operation

Operation Number

Format

Arguments

126

Transmits a service request command, or a response to a service request, to
another device.

02

CALLS SSEND(NA%,DA%,UN%,TYPE$,SID%,D$,RST%) (QuickBASIC)
(_xsend-dat)

(Input) NA% Transmission destination network address
(Input) DA% Transmission destination node address

FINS Library Operations

Section 5-5

Explanation

(Input) UN% Transmission destination unit address
(Input) TYPE® Command (0)/Response (1)
(Input) sID% Service ID (0 to 255)

(Input) D% Transmission data
(Input) RsT%$ Command

00 Transmission end

01 Transmission continue

02 Transmission buffer problem
(Output) RST% Return status

0 Normal termination

-1 Argument error

Destination device address error
Other destination device exists
(With “transmission continue” specified, NA%, DA%, UN% are
different from before.}
Command error (RST% is outside of 00 to 02 range.)
-2 Not open
-9 Number of transmission bytes error
(Outside of 2 to 2,002-byte range. This includes exceeding 2,002
bytes with “transmission continue” specified.)
-22 Abnormal termination

Transmission data is sent to the specified destination device as data corre-
sponding to the Command/Response (TYPE$%) designation.

If the service ID (SID) is specified at the time the command is sent, that data will
be returned from the destination device as the SID of the response to the com-
mand. Thus the correspondence between the command and the response can
be determined by means of specifying the SID.

(When transmitting a response, specify the SID so that it is the same as the SID
of the command.)

The transmission data conforms to the portion of the FINS command from MRC
onwards.

The meanings of the communicating device address designations are explained
below. Refer to the FINS Command Reference Manual (W227) for more details
on the contents of FINS commands.

Network Address
This is the network address of the transmission destination, and indicates the
final target location address. The following code has a special meaning.

$00: Same network address

Node address
This is the node address of the transmission destination, and indicates the final
target location address. The following codes have special meanings.

$00: Same node address
$FF: Broadcast to all nodes on specified network

Unit address
This is the unit address of the transmission destination, and the final target loca-
tion address is specified by the absolute address.
Example: Special /0 Unit #0 will have an address of $10.
The following codes have special meanings.
$00: Unit address of Programmable Controller
$10 to $2F: CPU Bus Units

$FD: Peripheral Tools (e.g., FIT)
$FE: Communications Units (e.g., SYSMAC NET, SYSMAC LINK)

127

FINS Library Operations Section 5-5

When the data to be transmitted equals or exceeds the character-type variable
size (255 bytes), the transmission procedure will be as follows. In this example,
700 bytes of data are transmitted.

1,2 3. 1. The first 255 bytes of data are transmitted with command (RST%) = 01.

Transmission data

255 bytes

This portion of data is transmitted.

2. The next portion of data is transmitted with command (RST%) = 01.

Transmission data

255 bytes

This portion of data is transmitted.

3. Step 2. is repeated until no more data remains to be transmitted.

4. When the last portion of data is reached, it is transmitted by command
(RST%) = 00.

Transmission data

Final data — 190 bytes

The final data is transmitted.

Ifthe data to be transmitted is less than the character-type variable size, it can be
transmitted by step 4. alone.

If the data transmission has already been started, and you want to abort the
transmission and discard the data, then send any arbitrary data by command
(RST%) = 02.Both the data that was already being transmitted by “transmis-
sion continue” and the arbitrary data that was sent at the end will be discarded.
To transmit arequest command to another device and receive aresponse to that
request command, use the receive operation.

5-5-4 SRECV: Receive (Without Timer Monitoring)

Operation Receives commands from other devices, and receives responses to transmis-
sions sent by the Unititself. The waiting-to-receive time is not monitored, and the
waiting-to-receive status is forcibly ended by pressing the Escape Key.

Operation Number 03

Format CALLS SRECV (NA%,DA%,UN%,TYPE%,SID%,D$,RST%,RC%)
(QuickBASIC) (_Xrcv_rso)

Arguments (Output) NA% Transmission source network address
(Output) DA% Transmission source node address

128

FINS Library Operations

Section 5-5

Explanation

(Output) uUN% Transmission source unit address

(Output) TYPE® Type of data received: Command (0)/Response (1)
(Output) s1D% Service ID of data received (0 to 255)

(Input) DS Reception buffer (Secure the area in advance.)
(Output) D2 Reception data

(Output) cTs Number of reception data bytes stored in D$
(Output) RST% Return status

0 Normal termination

-2 Not open.

-1 Forcibly ended by Escape Key.
-22 Abnormal termination

(Output) Rc2 Reception buffer size insufficient:
Number of bytes of data remaining that cannot be stored

A command from another device, or a response to a request command trans-
missions sent by the Unit itself, is received. Along with the data type that is re-
ceived, the data is stored in the reception buffer.

If some other data is already being received at the time of this reception request,
the data is returned will be returned to the user according to the following rules.

When Only Command Data is Received
The command data that is received will be returned to the user in the order in
which it is received.

When Only Response Data is Received
The response data that is received will be returned to the user in the order in
which it is received.

When Command and Response Data are Received Together

Firstthe response data that is received will be returned to the user in the order in
which it is received. When there is no more response data to return, then the
command data that is received will be returned to the user in the order in which it
is received.

The service ID (s1ID) here is the same as that specified at the time of command
transmission, and will be returned from the destination device as the SID of the
response to that command. Thus the correspondence between the command
and the response can be recognized by means of specifying the SID.

The transmission data conforms to the portion of the FINS command from MRC
onwards. Refer to the FINS Command Reference Manual (W227) for more de-
tails on the contents of FINS commands.
In addition, the location of the source of the transmitted data will be stored in the
transmission source address area, and the number of bytes actually stored in
the buffer will be stored in the area for the amount of data received.
The meanings of the transmission source address designations are explained
below.
Network Address
This is the network address of the transmission source. The following code has a
special meaning.

$00: Same network address
Node address
This is the node address of the transmission source. The following code has a
special meaning.

$00: Same node address
Unit address
This is the unit address of the transmission destination, and is stored by the ab-
solute address.

Example: Special /0 Unit #0 will have an address of $10.

129

FINS Library Operations

Section 5-5

The following codes have special meanings.

$00: Unit address of Programmable Controller
$10 to $2F: CPU Bus Units

When the data that is received equals or exceeds the character-type variable
size (255 bytes), the character-type variable size portion will be stored in the re-
ception buffer, and the remaining portion will be returned to the user as a data
remainder amount. That remaining data can be returned to the user by means of
requesting to receive the request command again.

Reception Data

255 bytes Remaining data not stored

This portion of data This data will be returned 255 bytes at a time, with
will be returned. subsequent requests to receive request commands.

To receive a request command from another device and transmit a response to
that command, use “transmission request.”

If no data is received from any device when this “receive command” request is
executed, waiting-to-receive status will occur.

If a command is received during waiting-to-receive, the data that is received will
be stored in the specified buffer. An exit can be forced during that period by
pressing the Escape Key.

5-5-5 SRCVT: Receive (With Timer Monitoring)

Operation

Operation Number

Format

Arguments

Explanation

130

Note

Receives commands from other devices, and receives responses to transmis-
sions sent by the Unit itself. The waiting-to-receive time is monitored.

04

CALLS SRCVT(NA%,DA%,UN%,TYPE%,SID%,D$,CT%,RST%,RCS, TIMS)
(QuickBASIC) (_xrcv_rst)

(Output) NA% Transmission source network address

(Output) DA% Transmission source node address

(Output) uUN% Transmission source unit address

(Output) TYPE? Type of data received: Command (0)/Response (1)
(Output) s1D% Service ID of data received (0 to 255)

(Input) DS Reception buffer (Secure the area in advance.)
(Output) D2 Reception data

(Output) cTs Number of reception data bytes stored in D$
(Output) RST% Return status

0 Normal termination
-2 Not open.

-25 Reception timeout
-22 Abnormal termination

(Output) Rs% Reception buffer size insufficient: Number of bytes of data re-
maining that cannot be stored
(Input) TIM% Waiting-to-receive timer value (unit: 110 ms)

If TIM? is set to O, there will be an immediate return when there is no data in the
system’s reception buffer, and RST% = -25 (reception timeout) will occur.

A command from another device, or a response to a request command trans-
missions sent by the Unit itself, is received. Along with the data type that is re-
ceived, the data is stored in the reception buffer.

FINS Library Operations

Section 5-5

If some other data is already being received at the time of this reception request,
the data is returned will be returned to the user according to the following rules.

When Command Data Only is Received
The command data that is received will be returned to the user in the order in
which it is received.

When Response Data Only is Received
The response data that is received will be returned to the user in the order in
which it is received.

When Command and Response Data are Received Together

Firstthe response data that is received will be returned to the user in the order in
which it is received. When there is no more response data to return, then the
command data that is received will be returned to the user in the order in which it
is received.

The service ID (SID) here is the same as that specified at the time of command
transmission, and will be returned from the destination device as the SID of the
response to that command. Thus the correspondence between the command
and the response can be recognized by means of specifying the SID.

The transmission data conforms to the portion of the FINS command from MRC
onwards. Refer to the FINS Command Reference Manual (W227) for more de-
tails on the contents of FINS commands.

In addition, the location of the source of the transmitted data will be stored in the
transmission source address area, and the number of bytes actually stored in
the buffer will be stored in the area for the amount of data received.

The meanings of the transmission source address designations are explained
below.

Network Address
This is the network address of the transmission source. The following code has a
special meaning.

$00: Same network address

Node Address
This is the node address of the transmission source. The following code has a
special meaning.

$00: Same node address

Unit Address
This is the unit address of the transmission destination, and is stored by the ab-
solute address.

Example: CPU Bus Unit #0 will have an address of $10.
The following codes have special meanings.

$00: Unit address of Programmable Controller
$10 to $2F: CPU Bus Units
$FD: Peripheral tools (e.g., FIT)

When the data that is received from another device equals or exceeds the char-
acter-type variable size (255 bytes), the character-type variable size portion will
be stored in the reception buffer, and the remaining portion will be returned to the

131

Sample Programs Section 5-6

user as a data remainder amount. That remaining data can be returned to the
user by means of requesting to receive again.

Reception Data

255 bytes Remaining data not stored

This portion of data This datawill be returned 255 bytes at atime, with sub-
will be returned. sequent requests to receive request commands

To receive a request command from another device and transmit a response to
that command, use “transmission request.”

If no data is received from any device when this request to receive is executed,
waiting-to-receive status will remain in effect until the time specified for the wait-
ing-to-receive timeout has elapsed.

If acommand is received during waiting-to-receive, the data that is received will
be stored in the specified buffer. If data cannot be received, a reception timeout
will occur.

5-6 Sample Programs

The following pages provide sample programs using the FINS Library with Quick

BASIC.

1 '/-k*******-k**/

2 '/* FINS BASIC Library Sample Program */

3 ’/* QUICK BASIC */

4 '/* (Receiving) */

5 '/-k*******-k**/

6 DEFINT A-%

7 /*QOperation number setting* /
8 DECLARE SUB SOPEN CDECL ALIAS " binit” / *Initialization* /
9 DECLARE SUB SCLOSE CDECL ALIAS " bclose” /*End processing* /
10 DECLARE SUB SRECV CDECL ALIAS " xrecv_rs0” / *Without timer monitoring* /
11 DECLARE SUB SRCVT CDECL ALIAS " xrecv_rsl” / *With timer monitoring* /
12 DECLARE SUB SSEND CDECL ALIAS " xsend dat” / *Transmission request* /
13

14 CLS

15 CALLS SOPEN(RST%) / *Initialization* /
16 IF RST%<>0 THEN

17 PRINT”Driver not installed”:GOTO FINISH

18 END IF

19
20 GOSUB RECV /*Command reception processing* /
21 GOSUB SEND / *Response transmission processing* /
22 FINISH:
23 CALLS SCLOSE /*Close*/
24 PRINT:PRINT”BASIC Interface Sample Program”
25 END
26

27 Thkkkkkkhkhhhhkhkkhhkhhhhhkhhhhhhxrhhhhkx

28 '* Command reception processing *
29 IThkkkkkhkkkhkhkkhhkkhkhkhkkhkkhkkhkkkhkkkhkhkkkhkkkkikkk,kx*x*k*%

30 RECV:
31 TIM3=0
32 RCVFLG%=0

132

Sample Programs Section 5-6

33 INPUT”Input waiting—-to-receive timer value:”,TIMS%

34 INPUT”...processing to begin:”,X$

35 RECV1:

36 D$=SPACES (255) / *Buffer area secured for reception* /
37

38 ‘Command reception

39 CALL SRCVT(NA%,DA%,UN%,TYP%,SID%,D$,CT%,RSTS,RCS,TIMS)
40 IF RST%<>0 THEN

41 PRINT”Command reception error”;RST%:GOTO*FINISH
42 END IF

43

44 PRINT

45 PRINT ”“Command reception data”

46 PRINT ”“Transmission source network address:”;NA%

47 PRINT "Transmission source node address:"” ;DA%

48 PRINT ”"Transmission source Unit number:”;UN%

49 PRINT "Type of data received:”;TYP%

50 PRINT ”Service ID:"”;SID%

51 PRINT "Bytes of data received:”;CT%

52 PRINT ”"Bytes of data remaining:”;RC%

53 PRINT "Reception data.. ..0..1..2..3..4..5..6..7..8";
54 PRINT ”"..9..a..b..c..d..e..f"”

55 PRINT " .7

56 FOR I=1 TO CT%

57 IF(I MOD 16)=1 THEN PRINT:PRINT” .o

58 B$=MID$(D$,I,1)
59 PRINT””;RIGHTS (”0”+HEXS$ (ASC(BS$)),2);

60 NEXT

61 PRINT

62 IF RCVFLG%=0 THEN /*Command keep for response* /
63 CMDS=LEFTS$ (D$,2) /*(MRC,SRC)*/

64 RCVFLG%=12

65 END IF

66 IF RC%>0 THEN GOTO RECV1 /*When there is data remaining* /
67 PRINT ”“Command reception Normal termination”

68 RETURN

69

TO ’"**,kkhkhkkhhhhhhhhhhdhhhrhhhhhrrhhhhhrx

71 '* Response transmission processing *
72 Tk kkkkhkhhkkhkkhkkhhhkhk khhkkhk khkkhk,,khkk,k,k*k,k,k*x*x**%

73 SEND:
74 RST%=0 /*Command end*/
75 TYP%=1 / *Response* /
76 D$=CMD$+CHR$ (0)+CHRS$ (0)
77 CALL SSEND(NA%,DA%,UN%,TYP%,SID%,D$,RST%) /*Response reception* /
78 IF RST%$<>0 THEN
79 PRINT”Response transmission error”;RST%:GOTO*FINISH
80 END IF
81
82 PRINT:PRINT”Response transmission Normal termination”
83 RETURN

1 ’/*********'k********'k******************************/

2 '/* FINS BASIC Library Sample Program */

3 ’/* QUICK BASIC */

4 '/* (Transmitting) */

5 ’/***/

133

Sample Programs Section 5-6

o o IR N @)}

9
10

DEFINT A-Z

/ *Qperation number setting* /
DECLARE SUB SOPEN CDECL ALIAS ” binit” / *Initialization* /
DECLARE SUB SCLOSE CDECL ALIAS ” bclose” /*End processing*/

DECLARE SUB SRECV CDECL ALIAS " xrecv_rs0” /*Reception request (without timer

monitoring) * /

11

DECLARE SUB SRCVT CDECL ALIAS ” xrecv_rsl” /*Reception request (with timer

monitoring) * /

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

DECLARE SUB SSEND CDECL ALIAS ”_xsend_dat” /*Command/response transmission*/
CLS
CALLS SOPEN(RST%) / *Initialization* /
IF RST%<>0 THEN
PRINT”Driver not installed”:GOTO FINISH
END IF
GOSUB SEND /*Command transmission processing* /
GOSUB RECV / *Response reception processing* /
FINISH:
CALLS SCLOSE /*Close*/
PRINT:PRINT”BASIC Interface Sample Program END”
END
IT'hkkkkkkkkkkhkkhkkkhkkkkkhkkkkkikkkkk,kk*,*x
'* Response reception processing *
IT'hkkkkkkkkkkhkkhkhkkkhkkkkkhkkhkkkikkkkk,kk*,*%

TIM%$=100
D$=SPACES (255) / *Buffer area secured for reception* /
'Response reception
CALL SRCVT(NA%,DA%,UN%,TYP%,SID%,D$,CT%,RST%,RC%,TIMS)
IF RST%$<>0 THEN
PRINT”Response reception error”;RST%:GOTO*FINISH
END IF
PRINT
PRINT "Response reception data”
PRINT ”“"Transmission source network address:”;NA%
PRINT ”"Transmission source node address:” ;DA%
PRINT ”"Transmission source Unit number:”;UN%
PRINT "Type of data received:”;TYP%
PRINT ”Service ID:"”;SID%
PRINT ”"Bytes of data received:”;CT%
PRINT ”"Bytes of data remaining:”;RC%
PRINT "Reception data.. ..0..1..2..3..4..5..6..7..8";
PRINT ”..9..a..b..c..d..e..f”
PRINT " L7
FOR I=1 TO CT%
IF(I MOD 16)=1 THEN PRINT:PRINT” .7
B$=MIDS$(D$,I,1)

55 PRINT””;RIGHTS (”0”+HEXS (ASC(B$)),2);

56
57
58
59

134

NEXT

PRINT

IF RC%>0 THEN GOTO RECV /*When there is data remaining* /
PRINT "Response reception Normal termination”

Sample Programs Section 5-6

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

RETURN

Thkkhkhhkhkhhhhhhhhdhdddddddhhhhdddxdxdxddddx%x

'* Command transmission processing *
R E R EEEEEEEEE ST EEEEEEREEESEEEEEEEEEEEE

SEND:

PRINT

INPUT”Transmission destination network address:”,NA%
INPUT”Transmission destination node address:”,DA%
INPUT”Transmission destination Unit number:”,UN$%
INPUT”Input transmission data.”,WRKS’

INPUT”...processing to begin”,hx$

RST%=0 'Command end

TYP%=3 'Command transmission

SID%=0 'Service ID

D$=CHRS$ (&H9)+CHRS (&H1)+CHRS (0)+CHRS (LEN (WRKS)) +WRK$

CALLS SSEND(NA%,DA%,UN%,TYP%,SID%,D$,RSTY) /*Command transmission* /

IF RST%<>0 THEN
PRINT”Command transmission error”;RST%:GOTO*FINISH
END IF

PRINT:PRINT”Command transmission Normal termination”
RETURN

135

SECTION 6
FINS Driver

This section describes the FINS Driver and FINS Driver operations, and provides sample programs using these operations.

6-1 INtroductiont 138
6-2 Processing FlOW e 138
6-2-1 Processing Procedure 1t 139
6-2-2 Processing Procedure 2 140
6-3 Using the FINS Driver e e e i 141
6-3-1 Opening and Accessing the Driver through MS-DOS 141
6-4 FINS Driver Operationsttt ettt 142
6-4-1 Imitialize (01) 142
6-4-2 Transmit (02)ot e 143
6-4-3 Receive (03) ...t 145
6-5 Sample Programs e 147
6-5-1 Transmittingottt e 147
6-5-2 RECEIVING ..ttt ittt e 150

137

Processing Flow

Section 6-2

6-1

Introduction

Note

Installing the CPU Bus
Driver and FINS Driver

When services are used via the CPU bus interface, the CPU Bus Driver can be
used as the driver. When this driver is used for event service, however, it is nec-
essary to be aware of the header’s data format at the time of transmission or re-
ception.

When the FINS Driver is used for event service, on the other hand, that is not
required. Thus the FINS Driver makes it easy to use services via the CPU bus
interface.

1. When the FINS Driver is used, the only service that can be employed is
event service. For cyclic service or CPU bus link service, use the CPU Bus
Interface Communications Driver. For details concerning types of service,
refer to 1-4 Communications/Control Services.

2. The FINS Driver operates using the CPU Bus Driver, so the CPU Bus Driver
must be installed before the FINS Driver.

3. The FINS Driver accesses by means directly requesting interrupt number
65H, so /V65 must be specified when the CPU Bus Driver is installed.

4. Sample programs must compiled as follows:
CL /Zp<source filename>

The CPU Bus Driver (SBUS.SYS) is recorded in the CONFIG.SYS file in drive F
in advance. Be sure that SBUS.SYS is recorded in the active CONFIG.SYS file
when a system disk is being modified or a new CONFIG.SYS file is being
created.

Add the following line to the CONFIG.SYS file to record the CPU Bus Driver. Re-
fer to 2-6 Installing Device Drivers for details on other SBUS.SYS parameters.
(The F:\CONFIG.SYS file is used when the Unit is started from Built-in ROM.)

DEVICE=E:\SBUS.SYS /V65

L

The CPU Bus Driver is recorded in the Personal Computer Unit’s Built-in ROM
(drive E) in advance.

Be sure to include the /V65 parameter when using the FINS Driver
(DGIOX.COM). Add the following line to the CONFIG.SYS file to record the
FINS Driver. This line must be placed after the SBUS.SYS line.

Drive name

DEVICE=n:\DGIOX.COM

L

Drive name

6-2 Processing Flow

138

1,2, 3.

This section will describe the communications procedure (flow) when commu-
nications are executed using the FINS Library.

When the FINS Library is used, the only service that can be employed is event
service.

The communications procedure when event service is used is as follows:

1. Service request command is transmitted to a device offering a service.

2. Response to the service requested is received from the device offering the
service.

This is the communications procedure for event service, so the procedure will be
the same when the FINS Library is used. In the case of the library, however, the
service is processed using the CPU Bus Driver. Thus the communications data
will be transmitted and received via the CPU Bus Driver.

Processing Flow

Section 6-2

The communications data handled by the FINS Library conforms to the portion
of the PC’s FINS command from MRC onwards. A maximum of 2,002 bytes of
data can be transmitted.

The contents of the PC’s FINS commands will vary depending on the contents of
the service requested. In addition, the contents of the response will vary accord-
ing to the command.

Refer to the FINS Command Reference Manual (W227) for more details.

6-2-1 Processing Procedure 1

The following diagram shows the procedure followed when a Request Com-
mand is Transmitted from the Personal Computer Unit to a Device that Offers a
Service, and a Response is Received from that Device

1. Transmission 2. Command transmission request 3. Command transmitted.
T T T Transmission
User FINS Driver CPU Bus Driver destination
- - - - - -
4. Reception 5. Response reception request Response received.
8. Analysis 7. Response returned. 6. Response returned. (See note)
1,2, 3... 1. The user creates a request command corresponding to the service thatis to

be requested, and then specifies the device requesting the service and re-
quests “transmit command” from the FINS Driver.

. The FINS Driver receives the request from the user and requests “transmit

command” of the CPU Bus Driver.

. The CPU Bus Interface Driver receives the “transmit command” request

from the FINS Driver, and transmits the specified request command to the
specified device.

. In order to receive a response to the transmitted command, the user re-

quests “receive response.”

. The FINS Driver receives the request from the user, and requests “receive”

of the CPU Bus Driver.

. In answer to the “receive response” requested by the FINS Driver, the CPU

Bus Driver returns to the FINS Driver the response data it has received from
the command destination.

. The FINS Driver receives the response data from the CPU Bus Driver and

returns it to the user.

. The user analyzes the contents of the response that was received.

Note The response from the destination Unit will be received by the CPU
Bus Driver even if the user doesn’t request it.

139

Processing Flow

Section 6-2

6-2-2 Processing Procedure 2

140

The following diagram shows the procedure followed when a Request Com-
mand is Received from Another Device, and a Response is Transmitted to the
Source of the Command Transmission

1. Reception 2. Command received. Command data received.
5. Analyzed and response 4. Edited command data (See note)
created. returned. 3. Command data returned.
T T T Transmission
User FINS Driver CPU Bus Driver destination
- - - - - -
6. Transmission 7. Response transmitted. 8. Response transmitted.

1,2, 3.

. In order to receive a request command from another device, the user re-

guests “receive command” of the FINS Driver.

. The FINS Driver receives the request from the user, and requests “receive

command” of the CPU Bus Driver.

. In answer to the “receive command” requested by the FINS Driver, the CPU

Bus Driver returns to the FINS Driver the command data it has received from
the other device.

. The FINS Driver receives the command data from the CPU Bus Driver and

edits it into a form usable by BASIC, and then returns it to the user.

. The user analyzes the command data that is received, and creates corre-

sponding response data.

. Along with creating the response data, the user specifies the source of the

request command and calls “transmit” from the FINS Driver.

. The FINS Driver receives the request from the user, and requests “transmit

response” of the CPU Bus Driver.

. The CPU Bus Driver receives the “transmit response” request from the FINS

Driver, and transmits the specified response data to the specified device.

Note The command reception from the other device will be executed re-
gardless of user request.

Using the FINS Driver Section 6-3

6-3 Using the FINS Driver

This section will explain how to use FINS Driver.

6-3-1 Opening and Accessing the Driver through MS-DOS

First of all, the driver is opened through MS-DOS, and the “file handle” file identi-
fier is obtained. When the driver services are employed, 1/O requests are
executed based on this file handle.

User

Driver opened and 1/O request executed.

1) Driver opened. File handle 2) 1/O request with file handle

-— . - .- - - -

To specified driver

MS-DOS based on file handle

-— e e e e e - - - - - -

-— - -

FINS Driver operations

The procedure for using the FINS Driver is as outlined below.

Opening the Driver File handle is found.
Call procedure:

AH = 3DH
AL = 02H File access mode
DS:DX = Leading address of path name (“‘FINS”)

INT 21H
Return:
When Carry is Set (Error)
AX =02H File does not exist.
AX =03H Path name is invalid.
AX = 04H There are too many files open.
AX = 05H Access was denied.
AX =0CH Access code is invalid.

When Carry is Not Set
AX = File handle (normal termination)

141

FINS Driver Operations

Section 6-4

Closing the Driver

Requesting I/O

The driver is closed.
Call Procedure:

AH = 3EH
BX = File handle
INT 21H
Return:
When Carry is Set (Error)
AX = 06H File handle is invalid.
When Carry is Not Set
AX = 00H Normal termination

The prescribed I/O parameters are prepared, and the request is made using the
file handle.

Call Procedure:

AH = 44H

AL = 03H

BX = File handle

CX = Number of bytes in data buffer

DS:DX = Data buffer segment: offset

(Refer to 6-4 FINS Driver Operations for details on the data buffer.)
INT 21H

Return:
When Carry is Set (Error)
AX =01H Function is invalid.
AX = 05H Access was denied.
AX = 06H File handle is invalid.

AX = 0DH Data is invalid (data buffer error).
When Carry is Not Set

AX = 00H Normal termination

AX =81H Invalid operation to FINS Driver

AX = 85H Access to FINS Driver denied.

AX = 86H Invalid file handle to FINS Driver

AX = 8DH Invalid data to FINS Driver
(parameter error)

AX = FFH Improper command

AX = Other Return status (described later)

6-4 FINS Driver Operations

6-4-1 |Initialize (01)

Parameter Format

142

This section will explain FINS Driver operations, including contents of data buff-
ers when these operations are used, as well as the return values, for each of the
operations.

Operation Summary
01H | Initialize Initializes the service.
02H | Transmit Transmits a request command, or a response, to another
device.
03H | Receive Receives request commands from other devices, and
requests to receive responses.

0 (Operation code) 01H

FINS Driver Operations

Section 6-4

Operation Code
Return Status

Operation
6-4-2 Transmit (02)

Parameter Format

Return Status (AX)

Specify 01(HEX).
AX= 00H Normal termination

This operation clears the reception buffers and initializes the service status.

(Operation code) 02H

—— Transmission buffer address
Offset

Segment

— Transmission buffer size —

Command (0)/Response (1)
SID(0 to 255)

Transmission destination network address

10 Transmission destination node address

1 Transmission destination unit address

Operation Code:
Specify 02(HEX).
Transmission Buffer Address:

This specifies the leading address of the buffer where the transmission data
is stored.

Transmission Buffer Size:
Transmission data size is expressed in number of bytes.

Transmitting a command: 210 2,002 bytes
Transmitting a response: 4 to 2,002 bytes
Command/Response:

This specifies either command data or response data to be transmitted.
SID:

This specifies the service ID (SID) when data is transmitted. The SID can be
set within a range of 0 to 255. If the SID is specified at the time the command
is sent, the same SID will be returned from the destination device in the re-
sponse to the command. Thus the correspondence between the command
and the response can be determined from the SID.

Transmission Destination Network Address:

This specifies the network address of the device to which data is to be trans-
mitted. If “0” is specified, transmission will be within the same network.

Transmission Destination Node Address:

This specifies the node address of the device to which data is to be trans-
mitted. If “0” is specified, transmission will be within the same node.

Transmission Destination Unit Address:
This specifies the unit address of the device to which data is to be trans-
mitted. If “0” is specified, transmission will be within the same unit.

O0H: Normal termination
41H: Argument specification error
FFH: Abnormal termination

143

FINS Driver Operations

Section 6-4

Operation

144

Note

This operation transmits data stored in the area specified by the transmission
buffer address to the specified destination device as either a command or re-
sponse, according to the specification. The amount of data transmitted is speci-
fied by the size of the transmission buffer.

Correspondence Between Command/Response and Types of Data:

Command/Response Data
00(HEX) Request command transmitted to another device
01(HEX) Response data returned to another device

The transmission data conforms to the portion of the PC’s FINS from MRC (main
request) onwards. Refer to the FINS Command Reference Manual (W227) for
more details on the contents of FINS commands.

The meanings of the transmission destination address designations are ex-
plained below.
Network Address
This is the network address of the transmission destination. The following code
has a special meaning.

$00: Same network address
Node Address
This is the node address of the transmission destination. The following codes
have special meanings.

$00: Same node address

$FF: Broadcast to all nodes on specified network
Unit Address
This is the unit address of the transmission destination. Add $10 to a CPU Bus
Unit’s unit number to calculate the Unit’s unit address.

Example: CPU Bus Unit #0 will have an address of $10.
The following codes have special meanings.

$00: Unit address of Programmable Controller

$10 to $2F: CPU Bus Units

$FD: Peripheral Tools (e.g., FIT)
$FE: Communications Units (e.g., SYSMAC NET, SYSMAC LINK)

1. When the data to be transmitted is a response, use the same address
(transmission source address) that was specified when the command was
received.

2. When transmitting a command that requires a response, use a reception re-
quest (response) to receive the response.

FINS Driver Operations Section 6-4
6-4-3 Receive (03)
Parameter Format
0 (Operation code) 03H
1 Timer setting (O=enabled, 1=disabled)
2
—— Reception buffer address
3 Offset
S
5| Segment
6
- — Reception buffer size]
8 Timer set value
9 Command (0)/Response (1)
10 SID(0 to 255)
11 Transmission source network address
12 Transmission source node address
13 Transmission source Unit address
14
15 — Number of bytes received 7

Operation Code (Input):
Specify 03(HEX).
Timer Setting (Input):
This setting indicates whether or not the Unit will wait for a specified time for
data reception. The timer set value is described below.
0: Timer setting enabled
1: Timer setting disabled (When the timer setting is disabled, the Unit will
wait to receive after the Escape Key is pressed.)
Reception Buffer Address (Input):
This specifies the leading address of the buffer where the reception data is
stored.
Reception Buffer Size (Input):
Reception data size is expressed in bytes.
Receiving a response: 4 to 2,002 bytes
Receiving a command: 2 to 2,002 bytes
Timer Set Value (Input):
This setting (0 to 255) specifies the time that the Unit will wait to receive data.
The timer set value is specified in 110-ms units, so the set value can be set
from O to 28.05 s. If the set value is 0, the Unit won’t wait at all.
The set value is used only when the timer setting is enabled.
Command/Response (Output):
This setting indicates whether the data being received is a command from

another device or a response to a command transmitted from the Personal
Computer Unit.

0: Command
1: Response

SID (Output):
The service ID (SID) is used to match responses with their corresponding
commands. If a command is received from another device, return the same
SID to the source. The SID can be set within a range of 0 to 255.

145

FINS Driver Operations

Section 6-4

Return Status (AX)

Operation

146

Transmission Source Network Address (Output):

Returns the transmission source network address of the received data.
Transmission Source Node Address (Output):

Returns the transmission source node address of the received data.
Transmission Source Unit Address (Output):

Returns the transmission source unit address (absolute address) of the re-
ceived data.

Number of Bytes Received:
Returns the number of bytes of data received.

00H: Normal termination

11H: Timeout

12H: Reception cancelled by pressing the Escape Key
41H: Argument specification error

FFH: Abnormal termination

This operation receives data and stores it along with a code identifying the type
of data (command or response). The data is stored in the area specified by the
reception buffer address. The amount of data is specified by the size of the re-
ception buffer.

If data is being received at the time of this reception request, the data will be re-
turned to the user according to the following rules.

When Only Command Data is Received
The command data that is received will be returned to the user in the order in
which it is received.

When Only Response Data is Received
The response data that is received will be returned to the user in the order in
which it is received.

When Command and Response Data are Received Together

Firstthe response data that is received will be returned to the user in the order in
which it is received. When there is no more response data to return, then the
command data that is received will be returned to the user in the order in which it
is received.

Correspondence Between Command/Response and Types of Data:

Command/Response Data
00(HEX) Response to a command transmitted from the Unit
01(HEX) Command from another device

The reception data conforms to the portion of the FINS command from MRC on-
wards. Refer to the FINS Command Reference Manual (W227) for more details
on the contents of FINS commands.

At this point, the location of the source of the transmitted data will be stored in the
transmission source address area and the number of bytes actually stored in the
buffer will be stored in the area for the number of bytes received.
The meanings of the transmission source address designations are explained
below.
Network Address
This is the network address of the transmission source. The following code has a
special meaning.

$00: Same network address
Node address.
This is the node address of the transmission source. The following code has a
special meaning.

$00: Same node address

Sample Programs

Section 6-5

Unit Address

This is the unit address of the transmission destination, and is stored by the ab-
solute address. Add $10 to a CPU Bus Unit’s unit number to calculate the Unit's
unit address.

Example: CPU Bus Unit #0 will have an address of $10.
The following codes have special meanings.

$00: Unit address of Programmable Controller
$10 to $2F: CPU Bus Units

When receiving a request command from another device and transmitting a re-
sponse back, use a transmission request (response).

If no data has been received when reception is requested and the “timer setting”
is enabled, the Unit will wait until data is received or the time specified in the “tim-
er set value” elapses. If the timer times out, return status AX=11H will be retur-
ned.

If no data has been received when reception is requested and the “timer setting”
is disabled, the Unit will wait until data is received or the Escape Key is pressed.
If the Escape Key is pressed, return status AX=12H will be returned.

If even a portion of the data received is stored in the specified buffer, that data will
be cleared.

6-5 Sample Programs

1,2, 3.

6-5-1 Transmitting
Sample Program Name
Compiling Command

Program Outline

1,2, 3.

The following pages provide sample programs using the FINS Driver. These
sample programs can be found on the program disk.

The sample programs will be outlined in the following order:

1. Sample program name
2. Compiling command
3. Program outline

net_send.c
CL/Zp net_send.c
The program has the following parts:

1. Opening the FINS Driver
2. Initializing the reception buffer

3. Transmitting the command (The network address, node address, and unit
address are fixed in the program.)

4. Receiving the response
5. Displaying the response data received
6. Closing the FINS Driver

1 /***/
2 /* */
3 /* FINS Driver Sample Program (Transmitting) */
4 /* */
5 /* */
6 /* */
7 /***/
8

9 #include <dos.h>

10 #include <stdio.h>

11

147

Sample Programs Section 6-5
12 #define MAX 2002

13 #define CMD 0

14 #define RSP 1

15

16 typedef void far *farptr;

17 typedef unsigned char uchar;

18 typedef unsigned int unit;

19 typedef unsigned short ushort;

20

21 struct cmd02{ /*Transmission* /

22 uchar s_cmd; /*Command 02*/

23 uchar far *bp; / *Transmission buffer address* /

24 ushort req byte; /*Transmission buffer size* /

25 uchar wrtype; / *Type of data transmitted (0: Command/1: Response)* /
26 uchar sid; /*SID*/

27 uchar net_add; /*network add* /

28 uchar nod_add; /*node add*/

29 uchar port_add; /*port add* /

30 }i

31

32 struct cmd03{ / *Reception*/

33 uchar s_cmd; /*Command 03*/

34 uchar timflg; / *Timer monitor flag (Monitoring: 0: Yes/1: No)*/
35 uchar far *bp; / *Reception buffer address* /

36 ushort req_byte; / *Reception buffer size*/

37 uchar u_timer; /*Timer value*/

38 uchar rdtype; / *Type of data received (0: Command/1: Response)* /
39 uchar sid; /*SID*/

40 uchar net add; /*network add*/

41 uchar nod_add; /*node add*/

42 uchar port add; /*port add* /

43 uchar rd _byte;

44}

45

46 union REGS inregs,outregs;
47 unit fd;

48 unit length;

49 unit *buf;
50 static unsigned char rdt[MAX];
51 static unsigned char sdt[MAX]=
52 /*MRC SRC=*/

53 oxo09,0x01,0,10,1,2,3,4,5,6,7,8,9,0
54}

55

56

57 void errclose();
58

59 void

60 main()

61 {

62 uchar init;

63 struct cmd02 snd;
64 struct cmd03 rcv;
65 int i;

66

67 /*

148

/*Number of bytes actually received= /

/*1/O register structurex*/
/ *File handle*/

/*Number of bytes to be transmitted* /

/ *Reception data buffer* /
/ *Transmission data buffer* /

/ *Initialization packet* /

/*Transmission request packet* /
/ *Reception request packet* /

Sample Programs Section 6-5

68 ** |nitialization

69 */

70 inregs.h.ah 0x3d; /*QOpens driver. (1)*/
71 inregs.h.al 0x02;

72 inregs.x.dx =(uint)”FINS”;

73 intdos(&inregs, &outregs);

74 if (outregs.x.cflag!=0)

75 printf (”"Driver not loaded./n”);

76 printf(”/tError code = 0x%x/n”outregs.x.ax);
77 exit(1);

78 }

79 fd = outregs.x.ax; / *Saves file handle.* /
80

81 init = 0x01; /*Initializes. (2)*/

82 length = 1;
83 buf = (uint*)&init;
84 if (ioctl())

85 errclose();

86

87 /*

88 ** Command data transmission

89 */

90 snd.s_cmd = 0x02; /*Transmits command (3)*/
91 snd.bp = (farptr)sdt;

92 snd.req byte = 14; /*Number of digits requested for transmission* /
93 snd.wrtype = CMD; / *Type of data transmitted* /
94 snd.sid = 0; / *Service ID*/

95 snd.net add = 0x01; /*Network numberx* /

96 snd.nod_add = 0x02; /*Node number*/

97 snd.port_add = 0x15; /*Unit number* /

98 length = sizeof(struct cmd02); / *Structure size* /

99 buf = (unit*)&snd;

100 if(ioctl()) / *Requests command reception* /
101 errclose();

102

103 /*

104 ** Response data reception

105 =*/

106 rcv.s_cmd = 0x03; / *Receives response (4)*/
107 rcv.timflg = 0; / *Timer monitor flag* /

108 rcv.bp = (farptr)rdt; / *Storage buffer address* /
109 rcv.req byte = MAX; /*Maximum number of digits for reception* /
110 rcv.u timer = 100; /*Timer value*/

111

112 length = sizeof(struct cmd03); / *Structure size*/

113 buf = (unit*)&rcv;

114 if(ioctl()) / *Reception request* /

115 errclose();

116

117 /*

118 =*=* Display of received data (5)

119 =*/

120 printf(*The response data received is as follows:*/n”);
121 printf(*Transmission source is*/n");

122 printf(*/tNetwork address:0x%x/n”,rcv.net_add);

123 printf(*/tNode address:0x%x/n”,rcv.nod add);

149

Sample Programs Section 6-5

124 printf(*/tUnit address:0x%x/n”,rcv.port add);

125 printf(*/tType of data received:0x%x/n”,rcv.rd byte);

126 printf(*/tService ID:0x%x/n”,rcv.sid);

127 printf(*/tNumber of bytes for reception:%d/n”,rcv.rd byte);
128 printf(”"Reception data is/n/t");

129 for(i=0;i<rcv.rd byte;i++)

130 printf (”0x%02x"”,rdt[i]);

131 printf(”/n");

132

133 /*

134 **End processing

135 */

136 inregs.h.ah = 0x3e; / *Closes driver (6)*/
137 inregs.x.bx = £fd; / *File handle* /

138 intdos(&inregs, &outregs); /*INT 21H*/

139

140 printf(”Normal termination/n");

141 3

142

143 int

144 ioctl()

145

146 inregs.x.ax = 0x4403; /*1/O request* /

147 inregs.x.bx = fd; / *File handle* /

148 inregs.x.cx = length; / *Sets number of bytes for transmission.* /
149 inregs.x.dx = (short)buf; / *Sets parameter buffer address.* /
150 intdos(&inregs, &outregs); /*INT 21H*/

151 if (outregs.x.cflag| |outregs.x.ax)

152 return(l);

153 return(0);

154 3

155

156 void

157 errclose()

158 {

159 printf(”IOCTL error/n");
160 printf(”/tcmd=0x%x carry=0x%x AX=0x%x/n");

161 buf[0],outregs.x.cflag,outregs.x.ax);
162 inregs.h.ah = 0x3e; / *Closes driver.* /

163 inregs.x.bx = fd; / *File handle* /

164 intdos(&inregs, &outregs); /*INT 21H*/

165 exit(2);

166 }

6-5-2 Receiving

Sample Program Name net recv.c

Compiling Command CL/Zp net_recv.c

Program Outline The program has the following parts:

1,2, 3... 1. Opening the FINS Driver
2. Initializing the reception buffer
3. Receiving a command
4. Displaying the command data received
5. Creating response data (MRES, SRES)
6. Transmitting the response

150

Sample Programs

Section 6-5

0 o WN P

U OO DR BB R B PRWWWWWWWWWWNDNNOMNMNMNNNMNMNMNNMOMNMNNONRERRPRRRRRERRERO
U WNEFEFOWVWOUONOUE WNREFEFOWVWOLONOUE P WNREFOWVWOLONOUE e WNEOWVWOONOWLU & WNEFE O

7. Closing the FINS Driver

/**/

/* */
/* FINS Driver Sample Program (Receiving) */
/* */
/* */
/* */

/*********-k********************************/

#include <dos.h>
#include <stdio.h>
#define MAX
#define CMD
#define RSP
typedef void far
typedef unsigned char
typedef unsigned int
typedef

struct cmd02{

uchar s_cmd;

uchar far *bp;
ushort req byte;
uchar wrtype;
uchar sid;

uchar net add;
uchar nod_add;
uchar port add;

}i

struct cmd03{

uchar s_cmd;

uchar timflg;
uchar far *bp;
ushort req byte;
uchar u_timer;
uchar rdtype;
uchar sid;

uchar net_add;
uchar nod_add;
uchar port_add;
uchar rd_byte;

}i

union

unit fd;

unit length;

unit *buf;

static

static

unsigned short ushort;

REGS inregs,outregs;

unsigned char rdt[MAX];
unsigned char sdt[MAX]=
/*MRC SRC=*/
0x00,0x00,0

/*Transmission* /
/*Command 02* /
/*Transmission buffer address* /
/ *Transmission buffer size* /
/ *Type of data transmitted (0: Command/1: Response)* /
/*SID*/
/*network add* /
/*node add*/
/*port add* /

/ *Reception* /
/*Command 03* /
/ *Timer monitor flag (Monitoring: 0: Yes/1: No)*/
/ *Reception buffer address* /
/ *Reception buffer size* /
/*Timer value* /
/ *Type of data received (0: Command/1: Response)* /
/*SID*/
/*network add* /
/*node add*/
/*port add* /
/*Number of bytes actually received* /

/ *l/O register structure*/
/ *File handle* /
/*Number of bytes to be transmitted* /

/ *Reception data buffer* /
/ *Transmission data buffer* /

151

Sample Programs Section 6-5

56 void errclose();

57

58 void

59 main()

60 {

61 uchar init; / *Initialization packet* /

62 struct cmd02 snd; /*Transmission request packet* /
63 struct cmd03 rcv; / *Reception request packet* /
64 int i;

65

66 /*

67 **|nitialization

68 */

69 inregs.h.ah = 0x3d; /*Opens driver (1)*/
70 inregs.h.al = 0x02;

71 inregs.x.dx =(uint)”FINS”;

72 intdos(&inregs, &outregs);

73 if (outregs.x.cflag!=0)

74 printf (”"Driver not loaded./n”);

75 printf(”/tError code = 0x%x/n”outregs.x.ax);
76 exit(1);

77}

78 fd = outregs.x.ax; /*Saves file handle* /
79

80 init = 0x01; / *Initializes (2)* /

81 length = 1;
82 buf = (unit*)&init;
83 if (ioctl())

84 errclose();

85

86 /*

87 **Command data transmission

88 */

89 rcv.s _cmd = 0x03; / *Reception (3)*/

90 rcv.timflg = 0; / *Timer monitor flag* /
91 rcv.bp = (farptr)rdt;

92 rcv.req byte = MAX; /*Maximum number of digits for reception* /
93 rcv.u _timer = 100; /*Timer value*/

94

95 length = sizeof(struct cmd03); / *Structure size*/

96 buf = (uint*)&rcv;

97 if(ioctl())

98 errclose();

99

100 printf(*Command data received*/n”); /*(4)*/

101 printf(*Transmission source*/n”);

102 printf(*/tNetwork address:0x%x/n”,rcv.net add);

103 printf(*/tNode address:0x%x/n”,rcv.nod _add);

104 printf(*/tType of data received:0x%x/n”,rcv.rdtype);
105 printf(*/tService ID:0x%x/n”,rcv.sid);

106 printf(*/tUnit address:0x%x/n”,rcv.port add);

107 printf(*/tNumber of bytes for reception:%d/n”,rcv.rd byte);
108 printf(”Reception data is/n/t");

109 for(i=0;i<rcv.rd byte;i++)

110 printf (”0x%02x"”,rdt[i]);

111 printf(”/n");

152

Sample Programs Section 6-5

112

113 sdt[0] = rdt[0]; /*Main request (5)* /
114 sdt[l] = rdt[1l]; / *Sub-request* /

115 sdt[2] = 0; /*Main response* /
116 sdt[3] = 0; / *Sub-response* /

117

118 /*

119 **Response data transmission

120 =*/

121 snd.s_cmd = 0x02; /*Transmission (6)* /
122 snd.net_add = rcv.net_ add; / *Network number* /
123 snd.nod _add = rcv.nod add; /*Node number=* /
124 snd.port _add = rcv.port add; /*Unit number* /
125 snd.sid = rcv.sid; / *Service ID*/

126 snd.wrtype = RSP; / *Response* /

127 snd.bp = (farptr)sdt;

128 snd.req byte = 4; /*Number of digits requested for transmission* /
129

130 length = sizeof(struct cmd02); / *Structure size*/

131 buf = (uint*)&snd;
132 if(ioctl())

133 errclose();

134

135 /*

136 **End processing

137 */

138 inregs.h.ah = 0x3e; / *Closed driver. (7)*/
139 inregs.x.bx = fd; / *File handle* /

140 intdos(&inregs, &outregs); /*INT 21H*/

141 printf(”"Normal termination/n");

142 3

143

144 int

145 ioctl()

146 {

147 inregs.x.ax = 0x4403; /*1/O request*/

148 inregs.x.bx = £fd; / *File handle* /

149 inregs.x.cx = length; / *Sets number of bytes for transmission* /
150 inregs.x.dx = (uint)buf; / *Sets parameter buffer address* /
151 intdos(&inregs, &outregs); /*INT 21H*/

152 if(outregs.x.cflag||outregs.x.ax)

153 return(l);

154 return(0);

155 }

156

157 wvoid

158 errcloes()

159 ¢

160 printf(”IOCTL Error/n”);
161 printf(”/tcmd=0x%x carry=0x%x AX=0x%x/n");

162 buf[0],outregs.x.cflag,outregs.x.ax);
163 inregs.h.ah = 0x3e; /*Closes driver.* /

164 inregs.x.bx = £fd; / *File handle*/

165 intdos(&inregs, &outregs); /*INT 21H*/

166 exit(2);

167 }

153

SECTION 7
RS-232C Communications

This section describes the RS-232C communications functions and how to use them.

7-1 RS-232C Port Specificationsttt 156
7-1-1 Communications Specificationsot enan.. 156
7-1-2 Interface Specificationsc.iiniunin i 156
7-2 Serial Communications Library 156
7-3 Communications Control Functions i i .. 157
7-3-1 LOPEN() (Open RS-232C Communications Port)........................ 157
7-3-2 LCLOSE() (Close RS-232C Communications Port) 158
7-3-3 LREAD() (Store Data) 158
7-3-4 LWRITE() (Transmit Data) i 159
7-3-5 LNCTL() (Control Signals) oo 160
7-3-6 LNSTS() (Check Signal Status)oooiiii .. 161
7-3-7 LDCCTL() (Set XON/XOFF) i 161
7-3-8 LDCRST() (Stop XON/XOFF)o 162
7-3-9 LRXCNT() (Check Reception Buffer) oot 162
7-3-10 LTXCNT() (Check Amount of Data Transmitted) 163
7-4 RS-232C Baud Rate Limitations, 163
7-4-1 Baud Rates for C (Microsoft C)ttt 163
7-4-2 Baud Rates for Quick BASIC 163
7-5 RS-232C Response EIrorsttt e e e 164
7-5-1 Programmable Terminals ittt 164
7-5-2 Bar Code Reader, OCR,orCard Reader, 164
7-5-3 Workstation or Personal Computero, 165
7-5-4 Sample Program e 165

155

Serial Communications Library Section 7-2

7-1 RS-232C Port Specifications

7-1-1 Communications Specifications

The following table shows the Personal Computer Unit's RS-232C communica-
tions specifications.

ltem Specification
Number of ports 2 max.
Synchronization Start /Stop

Wiring method
Baud rate (See note.)

Dedicated line, full duplex
75, 150, 300, 600, 1200, 2400, 4800, 9600, or 19200 bps

Connection method RS-232C

Data length 7 or 8 bits

Stop bits 1 or 2 bits

Parity None, even, odd
Reception buffer ca- 512 bytes/port
pacity

Note The communications baud rate is limited when the program that performs
RS-232C communications also reads or writes data through the CPU Bus Driver
or on the RAM disk. Refer to 7-4 RS-232C Baud Rate Limitations for details.

7-1-2 Interface Specifications

RS-232C ports 1 and 2 both conform to IBM PC/AT serial interface standards.
The model numbers of the compatible OMRON connector socket and hood are
XM2D-0901 and XM2S-0913. The maximum cable length is 15 m.

Pin Allocation

Pin no. | Signal symbol Signal name Signal direction
1 CD Carrier Detect Input
2 RD (RXD) Receive Data Input
3 SD (TXD) Send Data Output
4 ER (DTR) Data Terminal Ready Output
5 SG (GND) Signal Ground
6 DR (DSR) Data Set Ready Input
7 RS (RTS) Request to Send Output
8 CS (CTS) Clear to Send Input
9 Cl (RI) Call Incoming Input
Base FG Protective ground

7-2 Serial Communications Library

A serial communications library with a Microsoft C compiler interface is provided
on the Personal Computer Unit’s program disk in directory \CSIO. The following
table shows the files provided for each program memory model. Use the file ap-
propriate for the program being used.

Memory model File name
Small model CSlos.LIB
Medium model CSIOM.LIB
Compact model CSIOC.LIB
Large model CSIOL.LIB
Huge model

156

Communications Control Functions Section 7-3

The following table lists the C functions provided in the RS-232C communica-
tions package. These functions are described in detail in 7-3 Communications
Control Functions.

Function Description Page
LOPEN() Opens an RS-232C port. 157
LCLOSE() | Closes an RS-232C port. 158
LREAD() Stores reception data. 158
LWRITE() Transmits data. 159
LNCTL() Controls the communications control signals. 160
LNSTS() Checks the status of communications control signals. 161
LDCCTLY() Sets XON/XOFF control. 161
LDCRST() | Stops XON/XOFF control. 162
LRXCNT() | Checks the amount of data in the reception buffer. 163
LTXCNT() Checks the amount of transmission data. 163

Note The function names are written in upper-case letters. If the functions are written

in the program in lower-case, don’t specify the /NOI option when linking the pro-
gram.

7-3 Communications Control Functions

This section describes the operation of the communications control functions.

7-3-1 LOPEN() (Open RS-232C Communications Port)

Operation

Format

Parameters

The LOPEN function initializes the communications port that is to be used and
starts RS-232C communications.

unsigned int LOPEN (ipno, ibps, istp, ipari, ilng, iflg)
int ipno;

unsigned int ibps;

int istp;

int ipari;

int ilng;

unsigned int *iflg;

ipno: port number
Select either “1” or “2.”
ibps: baud rate
Select the baud rate: 75, 150, 300, 600, 1200, 2400, 4800, 9600, or 19200 bps.
The communications baud rate is limited when the same program also reads or
writes data through the CPU Bus Driver or on the RAM disk. Refer to 7-4
RS-232C Baud Rate Limitations for details.
istp: stop bits
Select the number of stop bits: 1 = 1 stop bit, 2 = 2 stop bits.
ipari: parity
Specify the parity: 1 = None, 2 = Even, 3 = Odd.
iing: data length
Specify the data length: 7 = 7 bits, 8 = 8 bits.
iflg: termination status
This pointer indicates where the termination status of the function is to be stored.
The meanings of the termination codes are shown below:
0: Normal termination
1: Parameter error
2: Open
16: Hardware error

157

Communications Control Functions Section 7-3

Related Functions

LCLOSE

7-3-2 LCLOSE() (Close RS-232C Communications Port)

Operation

Format

Parameters

Explanation

Related Functions

The LCLOSE function stops RS-232C communications at the specified com-
munications port.

unsigned int LCLOSE (ipno, iflg)
int ipno;
unsigned int *iflg;

ipno: port number
Select the port that is to be closed, either “1” or “2.”

iflg: termination status
This pointer indicates where the termination status of the function is to be stored.
The meanings of the termination codes are shown below:

0: Normal termination

1: Incorrect port number specification

2: The specified port isn’t open.

16: Hardware error

At the end of the program, be sure to close any ports that were opened by
the LOPEN function. Failing to do so may result in faulty operation.

LOPEN

7-3-3 LREAD() (Store Data)

Operation

Format

Parameters

158

This function reads data from the RS-233C reception buffer and stores it in
the specified area.

unsigned int LREAD (ipno, n, iary, iflg)
int ipno;

unsigned int n;

char *iary;

unsigned int *iflg;

ipno: port number
Select the port number, either “1” or “2.”

n: number of bytes to read
Specify the number of bytes (number of characters requested for reception) to
store in the specified area from the reception buffer.

If the reception buffer doesn’t contain the specified number of bytes of data, the
Personal Computer Unit will wait for 30 seconds. A timeout will occur if the speci-
fied amount of data isn’t received within 30 seconds.

The LRXCNT() function can be used to determine the amount of data in the re-
ception buffer before executing LREAD).

iary: storage area
This pointer indicates where the received data is to be stored.

iflg: termination status
This pointer indicates where the termination status of the function is to be stored.
The meanings of the termination codes are shown below:

0: Normal termination

1. Parameter error

2: Specified port not open
3: Reception timeout (30 s)

Communications Control Functions Section 7-3

4: Buffer full

5: Buffer empty

6. Buffer overflow
16: Hardware error

Explanation The amount of free space in the reception buffer is increased by the amount
of data read from the buffer with the LREAD() function. If XON/XOFF control
is specified by executing the LDCCTL() function before the LREAD() function,
XON and XOFF codes will be transmitted automatically in accordance with
the amount of free space in the buffer.

There is sufficient space allocated to each port’s reception buffer in the library,
but the reception buffer might fill up if too much time passes before the LREAD()
function is executed. The XON/XOFF control command or the following kind of
processing must be used to prevent the buffer from filling up.

(Reception processes)

Issue LREAD command.

Is the buffer full?
iflg=4?

YES

To iflg analysis process.

Transmission stopped at the host Turn OFF the ER
by LNCTL command. and RS signals.
|
i

Processing of received data.

v

Issue LREAD command.

Is the buffer full?
(iflg=47?)

NO

Is the buffer empty?
iflg=5?
YES

Transmission restarted at the host
by LNCTL command.

To iflg analysis process.

Related Functions LDCCTL, LRXCNT

7-3-4 LWRITE() (Transmit Data)

Operation The LWRITE function transmits data to the specified port.
Format unsigned int LWRITE (ipno, n, iary, iflqg)

int ipno;

unsigned int n;
char *iary;
unsigned int *iflg;

Parameters
ipno: port number
Select the port number, either “1” or “2.”

159

Communications Control Functions Section 7-3

Related Functions

n: number of bytes to write
Specify the number of bytes (number of characters requested for transmission)
of data that will be transmitted.

The LWRITE function won’t end until the specified number of bytes has been
transmitted unless XON/XOFF control is being used and an XON reception
timeout occurs. (The LTXCNT () function can be used to determine the amount of
data that was transmitted before the XON reception timeout occurred.)

iary: storage area
This pointer indicates where the transmission data is stored.

If XON/XOFF control is specified by executing the LDCCTL() function before the
LWRITE() function, data transmission will be controlled automatically based on
the XON and XOFF codes from the destination device.

iflg: termination status
This pointer indicates where the termination status of the function is to be stored.
The meanings of the termination codes are shown below:

0: Normal termination

1: Parameter error

2: Specified port not open

3: XON reception timeout occurred

16: Hardware error

LDCCTL, LRXCNT

7-3-5 LNCTL() (Control Signals)

Operation

Format

Parameters

Related Functions

160

The LNCTL function controls communications signals for the specified port.

unsigned int LNCTL (ipno, ictl, iflgqg)
int ipno;

int ictl;

unsigned int *iflg;

ipno: port number
Select the number of the port, either “1” or “2,” where the communications sig-
nals are to be controlled.

ictl: signal control
Select the control code to be used. The control codes and their functions are
shown below:

0: Turns ER signal OFF, and checks that DR signal is OFF.
1: Turns ER signal ON, and checks that DR signal is ON.
2: Turns RS signal OFF, and checks that CS signal is OFF.
3: Turns RS signal ON, and checks that CS signal is ON.
4: Turns BREAK signal OFF.

5: Turns BREAK signal ON.

iflg: termination status
This pointer indicates where the termination status of the function is to be stored.
The meanings of the termination codes are shown below:

Normal termination

Parameter error

Specified port not open

After ER signal has been turned OFF, DR signal does not turn OFF.
9: After ER signal has been turned ON, DR signal does not turn ON.
10: After RS signal has been turned OFF, CS signal does not turn OFF.
11: After RS signal has been turned ON, CS signal does not turn ON.
16: Hardware error

oM =+o

LNSTS

Communications Control Functions Section 7-3

7-3-6 LNSTS() (Check Signal Status)

Operation

Format

Parameters

Related Functions

This function reads the status of specified port’s signals.

unsigned int LNSTS (ipno, ists, iflg)
int ipno;

unsigned int *ists;

unsigned int *iflg;

ipno: port number
Select the number of the port, either “1” or “2,” where the communications signal
status is to be checked.

ists: signal status flags
This pointer indicates where the signal status flags of the port are to be stored.
The status of each signal is indicated in this word as shown below:

Signal Status

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bi

HEEEEEEEENENEEEE;
‘ ‘ L ER signal status

Not used (always “0”)

DR signal status

RS signal status

CS signal status

CD signal status
BREAK signal status
Reception buffer status

A bit that is ON indicates that the signal is ON.

When the reception buffer status flag is ON, the buffer is empty; when it is
OFF, there is data in the buffer.

Note The BREAK signal will remain ON until the Personal Computer Unit
receives valid data.

iflg: termination status
This pointer indicates where the termination status of the function is to be stored.
The meanings of the termination codes are shown below:

0: Normal termination

1: Parameter error

2. Specified port not open
16: Hardware error

LNCTL

7-3-7 LDCCTL() (Set XON/XOFF)

Operation

Format

Parameters

The LDCCTL function sets XON/XOFF control.

unsigned int LDCCTL (ipno, imode, itout)
int ipno;

int imode;

unsigned int itout;

ipno: port number
Select the number of the port, either “1” or “2,” where the XON/XOFF control will
take place.

161

Communications Control Functions Section 7-3

Explanation

Related Functions

imode: XON/XOFF control mode
This value indicates the control mode that will be used. The three modes are:

1: XON/XOFF control only during transmission.
2: XON/XOFF control only during reception.
3: XON/XOFF control during both transmission and reception.

itout: timeout value

Specify the set value of the timeout (0 to 65535), when transmitting data, from
the time the XOFF code is received to the time the next XON code is received.
Avalue can be specified within arange of 0.1 s t0 6553.5 s (in units of 0.1 s). If “0”
is specified, it will be considered 0.1 s.

This function will remain in effect for the relevant port until either the LCLOSE
function or the LDCRST function is executed. Be sure to execute LDCCTL() be-
fore the communications port is opened with LOPEN(().

If a parameter error is made or XON/XOFF control isn’t set correctly, XON/XOFF
control won't take place and the XON code (DC1:11H) and XOFF code
(DC3:13H) will be handled as ordinary data if they are received.

LREAD, LWRITE, LDCRST, LTXCNT

7-3-8 LDCRST() (Stop XON/XOFF)

Operation

Format

Parameters

Related Functions

The LDCRST () function stops XON/XOFF control.

unsigned int LDCRST (ipno)

int ipno;

ipno: port number

Select the number of the port, either “1” or “2,” where XON/XOFF control will be
stopped.

When this function is executed, XON/XOFF control is stopped and XON/XOFF
codes (DC1:11H and DC3:13H) can’t be transmitted. If these codes are trans-

mitted after LDCRST() has been executed, they will be handled as ordinary
data.

LDCCTL

7-3-9 LRXCNT() (Check Reception Buffer)

Operation

Format

Parameters

162

The LRXCNT function checks the reception buffer for the amount of data that
has been received.

unsigned int LRXCNT (ipno, n)
int ipno;
unsigned int *n;

ipno: port number
Select the number of the port, either “1” or “2,” where the amount of data in the
reception buffer is to be checked.

n: number of bytes in buffer
This variable contains the number of bytes in the buffer.

Note The value returned here will be the number of data elements received
by the Personal Computer Unit and stored in the reception buffer but
not yet read from the buffer with the LREAD function. The value re-
turned by the LRXCNT function will thus decrease as data is read out
by the LREAD function.

RS-232C Baud Rate Limitations Section 7-4

Related Functions LREAD

7-3-10 LTXCNT() (Check Amount of Data Transmitted)

Operation The LTXCNT function checks the amount of data successfully transmitted by
the last LWRITE function.

Format unsigned int LTXCNT (ipno, n)
int ipno;
unsigned int *n;

Parameters
ipno: port number
Select the number of the port, either “1” or “2,” where the amount of transmitted
data is to be checked.

n: number of bytes transmitted

This variable contains the number of bytes transmitted by the last LWRITE func-
tion.

When XON/XOFF control is being used, LTXCNT() can be used to find out how
much data was transmitted when transmission has been stopped by an XON
reception timeout.

Related Functions LWRITE

7-4 RS-232C Baud Rate Limitations

The rate of communications through the RS-232C ports is limited when the pro-
gram receiving data also reads or writes data with the CPU Bus Driver or on the
RAM Disk. If the baud rates listed in the following tables are exceeded, data
might not be received correctly.

7-4-1 Baud Rates for C (Microsoft C)

With C, the maximum baud rate is lower if two ports are being used than it is
when one port is being used. Also, the maximum baud rate is lower for port #2
than port #1 if data is being transferred through the CPU bus.

CPU bus/RAM Disk Usage Number of ports | Maximum baud rate
being used Port #1 Port #2
When reading/writing through the 1 9600 bps | 9600 bps
CPU bus 2 4800 bps | 2400 bps
When reading/writing on the RAM 1 9600 bps | 9600 bps
Disk 2 4800 bps | 4800 bps
When reading/writing through the 1 4800 bps | 4800 bps
CPU bus and on the RAM Disk 2 4800 bps | 2400 bps
7-4-2 Baud Rates for Quick BASIC
CPU bus/RAM Disk Usage Number of ports | Maximum baud rate
being used Ports #1 and #2
When reading/writing through the for2 2400 bps
CPU bus
When reading/writing on the RAM for2 9600 bps
Disk
When reading/writing through the for2 2400 bps
CPU bus and on the RAM Disk

163

RS-232C Response Errors

Section 7-5

7-5 RS-232C Response Errors

7-5-1 Programmable Terminals

Data can be transmitted to the Personal Computer Unit by using either function
keys or the touch panel. If a resend message is displayed, then input the data
again.

At the Personal Computer Unit, the following decisions will be made when the
data is received.

Is there a hardware error?
A hardware error is a parity error or an overrun error.

Was data used by the program received?
This refers to input mistakes or missing data.

If those two questions check out okay, the received data will be used. If there is
an error, a message will be displayed at the PT requesting that the data be input
again. The Personal Computer Unit will wait for the data to be input.

Flowchart (at Personal Computer Unit)
In this example, PCWRITE will be executed if a “W” is received, and PCREAD
will be executed if an “R” is received.

RS-232C port opened.

RS-232C
reception
OK?

Yes

Received “W"?

Yes

No RS-232C port closed.

RS-232C port opened.

|
RS-232C transmission
(Resend message
displayed.)

RS-232C transmission
(Resend message
displayed.)

Received “R"?

Yes

PCWRITE

PCREAD

RS-232C transmission
(Ready-to-receive

RS-232C transmission
(Ready-to-receive

message)
|

message)
:

7-5-2 Bar Code Reader, OCR, or Card Reader

164

These devices themselves do not have the capability to resend or display.
Therefore it is necessary for reception errors and data to be displayed at the
Personal Computer Unit. In addition, checksums and other data checks mustbe
conducted for data received.

RS-232C Response Errors Section 7-5

Flowchart Example (at Personal Computer Unit)

In this example, data will be read, including the checksum. A buzzer will sound if
there is a reception error.

RS-232C opened.

N
Reception OK? 0 Buzzer
Yes
Checksum OK? No Buzzer

Yes
Data processing

7-5-3 Workstation or Personal Computer

Depending on the program, there may or may not be a reciprocal error resend
protocol. Suppose that the Personal Computer Unit is receiving and a
workstation is sending. In the situations described below, the Personal
Computer Unit will transmit NACK to the workstation and wait for a resend.

When there is a hardware error. A hardware error is an overrun error or a parity
error.

When there is a checksum error for the data received.

If the transmission is normal, the Personal Computer Unit will send ACK to the
workstation.

Flowchart Example: Personal Computer Unit and Workstation

Personal Computer Unit Workstation

RS232 opened. RS232 opened.

RS-232C reception

RS-232C No
reception
OK?

RS-232C reception
RS-232C No

NACK
reception
ACK
Yes Data flow
RS-232C reception ACK

7-5-4 Sample Program

A sample program, using the protocol described above with a BASIC Unit and a
Personal Computer Unit, is provided below. The Personal Computer Unit is
programmed with Quick BASIC.

165

RS-232C Response Errors

Section 7-5

Explanation of Program

Personal Computer Unit

At the Personal Computer Unit, data sent from the BASIC Unit will be transmitted
to the Programmable Controller at an RS-232C baud rate of 19.2 kbps. When
the RS-232C data is received, a hardware error check and data checksum will
be executed. If no errors are found, then ACK will be transmitted to the BASIC
Unit. If an error is found, then NACK will be sent.

In the main routine, data will be written to the DM area of the Programmable Con-
troller using the PCWRITE function. When the RS-232C data is received, a data
checksum will be executed. If no errors are found, then ACK will be transmitted
and reflected in the PCWRITE transmission buffer. If there is a checksum error,
then NACK will be sent.

If there is a reception error, the RS-232C port will close once and then reopen. In
addition, by modifying the received data a checksum error will result and NACK
will be transmitted.

Thkkkkkkkkkkhkhkhkhkhkhkhkhkkhkkkhkhkhhhhhhhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkk*x*%

"k RS-232C Sample Program *
r* QUICK BASIC *

Thkkkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhhhhhhhhhhhhhhdhdhkhkhkhkhkhkhkhkhhhhddxxx

DIM BUF%(100)

DECLARE SUB pcwrite CDECL ALIAS ”_b pcwrite”
DECLARE SUB pcopen CDECL ALIAS ”_b_ pcopen”
DECLARE SUB pcmsrd CDECL ALIAS ”_ b pcmsrd”
DECLARE SUB pcclose CDECL ALIAS ”_b pcclose”

ON ERROR GOTO errproc
ON KEY(10) GOSUB eproc
KEY(10) ON

OPEN ”COM1:19200,N,8,1,ASC,RB32767” FOR RANDOM AS #4 LEN = 256

ON COM(1) GOSUB rsin

COM(1) ON

sub$ = "@D,0,100,%100H” ‘DM word 100

CALLS pcopen(rtn?)

IF rtn%<> 0 THEN PRINT ”"pcopen error rtn= ”; rtn%: GOTO eproc

CALLS pcwrite(neg,

IF rtnb% = 3 GOTO

IF rtnb%<> 0 THEN
GOTO flg

rsin:
COM(1) OFF

’232 reception
INPUT #4,reccv$

no%, sub$, BUF$(0), rtnb%)
f1g’Programmable Controller busy
PRINT "pcwrite error rtn= ”; rtnb%: GOTO eproc

reclen% = LEN(reccvs$)

’SUM calculation

sum¥ = 0
FOR i = 1 TO LEN(reccv$) — 3
sum®% = sum%® + ASC(MIDS$(reccv$,i,l))
NEXT i
‘Checksum

166

RS-232C Response Errors Section 7-5
IF RIGHTS(reccv$,3) = RIGHTS(STRS$(sum%),3) THEN
PRINT #4, "ACK”: eee% = 0'Datanormal
ELSE
PRINT #4, "NACK”: eee% = eee% + 1 ’'Checksum error
END IF
"Transmission data creation
IF eee%=0 THEN
FOR I=1 TO LEN(reccv$)-3
IF I=100 GOTO LBl
BUF$% (I—1)=ASC(MIDS (reccv$,I, 1))
NEXT I
END IF
LBl:
COM(1) ON
RETURN
‘Error processing
errproc:
count = count + 1
reccv$ = "ERROR JUMP! ! !!”Checksum processing resulting in NACK
CLOSE #4
OPEN "COM1:19200,N,8,1,ASC,RB32767” FOR RANDOM AS #4 LEN = 256
RESUME NEXT
eproc:
pcclose (rtn%)
END
BASIC Unit With the present time as the data to be transmitted, a 3-character checksum will

be performed. After transmission, data will be received from the other Unit. If the
data is ACK, then the next data will be transmitted. If it is NACK, then the same
data will be sent again.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190

REM TEST

OPTION LENGTH 538

PARACT 0 WORK 1000

OPEN ""COM2:19200,8,N,1,CS50000,X,DS0"” AS #2
DS=TIMES

SUM%=0

'SUM calculation

FOR I=1 TO LEN(DS$)
SUM%=SUM%+ASC (MID$(DS,I, 1))
NEXTI
D$=DS$+RIGHTS (STRS (SUM%), 3)
PRINT #2,D$

INPUT #2,ANSS

IF ANSS$= ”"ACK” THEN *LB
FOR I=0 TO 100 : NEXT I
GOTO 120

*LB

GOTO 50

END PARACT

167

SECTION 8
Controlling User Indicators

The user can control the status of some of the Personal Computer Unit’s LED indicators. This section describes how to use
these indicators.

8-1 The User INdicators oottt ettt e e e e e e e e 170
8-1-1 User Indicator Locationiuiuiininin it ininnenen.. 170
8-1-2 Controlling User Indicatorst 170
8-1-3 Checking the Indicatorsttt 171
8-2 Sample Program e 171

169

The User Indicators

Section 8-1

8-1

The User Indicators

8-1-1 User Indicator Location

Note

There are two types of indicators in the Personal Computer Unit’s display area:
system indicators and user indicators. The indicators numbered from Oto 7 are
the user indicators.

7 UNIT RUN =0

7 1
1 SYSERR 2 o o —
1 BUSERR = 4 — = =
[BAT LOW 15 C B
— KYBD 6

Elie

] DISK =7

The user indicators can be turned on and off from the program. These indicators
can be used to check the operating status when the Personal Computer Unit is
being operated without a monitor or other display device.

The user indicators will light to indicate CPU bus errors that occur when the
Personal Computer Unit boots up. The indicators can be turned off by the user in
this case, too.

8-1-2 Controlling User Indicators

170

User indicator lights are turned on and off by controlling an 1/O port at the
Personal Computer Unit. The eight bits of I/O Port 390H correspond to indicators
Oto7.

MSB LSB

Indicator 7 Indicator 0

An indicator will be OFF when its corresponding bit is ON (1), and ON when its
corresponding bitis OFF (0). The initial value of this byte is FF (all indicators off).

The indicators can be turned on and off by outputting the values shown here to
the 1/O port. To output to the I/O port, use the OUT instruction.

Sample Program

Section 8-2

8-1-3 Checking the Indicators

1,2, 3.

You can use the DEBUG command, which is included in system debugging, to
actually turn indicators on. The operation is as follows:
1. Display the MS-DOS prompt.

2. Input DEBUG and then press the Enter Key. The prompt (-) for the DEBUG
command will be displayed.

3. Input 0 390 FE and then press the Enter Key. User indicator 0 will light.
4. Input @ and then press the Enter Key to quit the DEBUG command.

8-2 Sample Program

1,2, 3.

A program example using Quick BASIC is given below. In this example, the cor-
responding indicators will light when the numbers 0 to 7 are input from the key-
board. If all seven of the numbers are input, then all of the indicators will light.
LED:

INPUT ”InputanumberfromOto7”, IN%

IF IN%>7 OR IN%<0 THEN PRINT ~Outofrange”:GOTO LED (1)

SUMS = SUM% OR (2 ® INZ) eeeeeevenenenencesancasencasancnnnn 2
OUT &H390, (SUMZ XOR &HFF) eueeeveneeeeneeneneesanennannn (3)
IF SUM% <> &HFF GOTO LED .eueenveeensenensenensencnsencnnns (4)
OUT &H390, SHEF euueneenennenensenenesencasencasensasencnnnns (5)

END

1. Checks the range of the number that was input.

2. Turns ON the bit corresponding to the number.

3. Inverts the bit and outputs it.

4. Repeats the operation as long as all of the indicators are not lit.
5. Turns off all of the indicators and quits.

171

SECTION 9
Using Error Logs

This section describes how to use the error log, which records errors that occur during operation of the Unit.

O-1 Brror Logs . .« oot e 174
9-1-1 Recording Error Records i 174
9-1-2 Error Log Recording Ar€aouuiiniuninnin i 174
9-1-3 Record Format i e 174
9-1-4 Reading Error Recordst 174
9-2 Writing Error Records e 174
9-2-1 Procedureo. i 174
9-2-2 Function Calls.o e 175
9-2-3 Writing Error Log Contentsc.uiniuinntnt i 175
9-3 Reading Error Records e 176
9-3-1 Reading Procedure i 176
9-3-2 Function Calls.o 176
9-3-3 Writing Error Record Information i, 177
9-4 Errors at BIOS Startup it 177

173

Writing Error Records Section 9-2

9-1 Error Logs

The error log is the part of the Built-in RAM Disk (drive F) used to record any
errors that occur when the Unit is started or during execution of the program.

9-1-1 Recording Error Records
Error records will be recorded in the following two cases.

BIOS Startup The results of the self-diagnosis when BIOS is started will be automatically
recorded as an error record. The following errors will be recorded.

* Battery errors

* Checksum errors of the built-in ROM disk (drive E), BIOS-ROM, and the
built-in RAM disk (only the error log area of drive F)

* System configuration
* Other hardware errors
Application Execution From an application program, function calls can be used to record an error re-
cord. Consider recording the following kinds of errors.
* |/O errors
* CPU errors at the PC
* Other program execution errors

9-1-2 Error Log Recording Area

The error log is recorded in a 512-byte memory area beginning from the top of
the memory (64-K RAM) used as built-in RAM (drive F). Each error record takes
up 8 bytes and 63 records can be logged. The remaining 8 bytes are used for the
checksum.

9-1-3 Record Format

Error records are recorded in FIFO (First In, First Out) format in a memory area
of the built-in RAM disk. If the memory area becomes full, the data that was
recorded earliest is deleted as new data is added.

When more than 63 errors are logged in the Personal Computer Unit, the oldest
records are deleted as new errors are logged.

9-1-4 Reading Error Records
You can display the error log by inputting the ERRLOG command at the MS-
DOS prompt. The ERRLOG command is stored in the ROM disk. While the MS-
DOS prompt is being displayed, enter errlog and then hit the Enter Key. The
following display will then appear on the screen.

DATE TIME TYPE CODE
No.00 11-04-94 14:20:56 02 03
No.01 11-04-94 15:10:58 02 06

! ! ! !

Date of occurrence Time of occurrence Type of error Error code

9-2 Writing Error Records

This section will explain how to write error records from an application program.

9-2-1 Procedure
The procedure for writing an error record is as follows:

1,2 3. 1. Create in the memory a buffer for writing.
2. Store in the buffer the error record data that is to be written.

3. Execute a function call by means of a software interrupt, and write the error
record.

174

Writing Error Records Section 9-2

9-2-2 Function Calls

Error codes can be written by using software interrupt INT15H to execute a
function call.

 Software Interrupt Number: INT15H

* Input Parameters
AH = 21H: Function number
AL = 01H: Write designation
CX = Number of error records written
DS:SI = Error record buffer address

* Output Parameters
CF = Error flag

When a function call is executed with the above settings, the error record data
stored in the designated error record buffer will be written, with date and time
information added, in the specified number of error records.

9-2-3 Writing Error Log Contents

Error log contents can be written as shown below to the area designated as the
error log buffer.

DS:SI | Error type
First error record
+1 | Error code

+2 | Error type
Second error record
+3 | Error code
+4

* Type of Error
The code that distinguishes error types is recorded by turning ON and OFF the
bits in one byte of data.

L Error at BIOS startup
Error at CPU bus interface

Not used.

* Error Code
The error code is recorded with one byte of data. It will differ according to the
error type code. For details on the error code for error type O1H (when BIOS is
started up), refer to 9-4 Errors at BIOS Startup.

175

Reading Error Records Section 9-3

9-3 Reading Error Records

This section will explain how to read error records from an application program.

9-3-1 Reading Procedure
The procedure for reading an error record is as follows:

1,2, 3... 1. Create in memory the buffer for reading.

2. Execute a function call by means of a software interrupt, and store the error
record data in the buffer.

3. Read the error record data stored in the buffer.

9-3-2 Function Calls

Error codes can be read by using software interrupt INT15H to execute a
function call. The reading will be executed in order, beginning with the oldest
error record. There are two methods for reading error records. One is to read
new error records one by one, and the other is to repeatedly read the same error
record.

Reading New Error Records When this method is used, the error record pointer is refreshed moves from the
newly read data to the next data written. Therefore, data read by this method is
not read when the next function call is executed.

» Software Interrupt Number: INT15H

* Input Parameters
AH = 21H: Function number
AL = 00H: Read designation
CX = Number of error records read
ES : DI = Error record buffer address
When this operation is used, a buffer of CX x 8 bytes must be protected.
* Output Parameters
[When input parameter CX = Q]
CX = Present number of error records
[When input parameter CX = 0]
CX = Number of error records read
CF = Error flag
When a function call is executed with the above settings, the error record
information, with date and time information added, will be read for the
designated number of error records and stored in the buffer.

Reading the Same Record When this method is used, the error record pointer does not move. Therefore,
data read by this method can also be read when the next read operation is
executed.

* Software Interrupt Number: INT15H

¢ Input Parameters
AH = 21H: Function number
AL = 02H: Read designation
CX = Number of error records read
ES : DI = Error record buffer address
When this operation is used, a buffer of CX x 8 bytes must be protected.
* Output Parameters
[When input parameter CX = Q]
CX = Present number of error records
[When input parameter CX = 0]
CX = Number of error records read
CF = Error flag
When a function call is executed with the above settings, the error record
information, with date and time information added, will be read for the
designated number of error records and stored in the buffer.

176

Errors at BIOS Startup Section 9-4

9-3-3 Writing Error Record Information

The format of error record information stored in the area designated as the error
record reading buffer is as shown below.

DS:SI | Year (last 2 digits)

+1 | Month

+2 | Day

+3 | Time One error record
+4 | Minute

+5 | Second

+6 | Error type

+7 | Error code

Year

* Type of Error

The code that distinguishes error types is recorded by turning ON and OFF the
bits in one byte of data.

7 6 5 4 3 2 1 0 Bit

L Error at BIOS startup
Error at CPU bus interface

Not used.

* Error Code
The error code is recorded by one byte of data. It will differ according to the
error type code. For details on the error code for error type O1H (when BIOS is
started up), refer to 9-4 Errors at BIOS Startup.

9-4 Errors at BIOS Startup

If an error should occur when the Personal Computer Unit's BIOS is started, it
will be recorded in an error record as an error code for error 01H. The meanings
for error codes at that time are as follows:

Error code Meaning
01h CPU register test in progress
02h CMOS write/read error
03h ROM BIOS checksum error
04h Programmable interval timer error
05h DMA initialization error
06h DMA page register write/read error
08h RAM refresh verification error
09h First 64K RAM test in progress
0Ah First 64K RAM chip or data line error, multi-bit
0Bh First 64K RAM odd/even logic error
0Ch Address line error first 64K RAM
0Dh Parity error first 64K RAM

177

Errors at BIOS Startup

Section 9-4

178

Error code Meaning
10h Bit O first 64K RAM error
11h Bit 1 first 64K RAM error
12h Bit 2 first 64K RAM error
13h Bit 3 first 64K RAM error
14h Bit 4 first 64K RAM error
15h Bit 5 first 64K RAM error
16h Bit 6 first 64K RAM error
17h Bit 7 first 64K RAM error
18h Bit 8 first 64K RAM error
19h Bit 9 first 64K RAM error
1Ah Bit 10 first 64K RAM error
1Bh Bit 11 first 64K RAM error
1Ch Bit 12 first 64K RAM error
1Dh Bit 13 first 64K RAM error
1Eh Bit 14 first 64K RAM error
1Fh Bit 15 first 64K RAM error
20h Slave DMA register error
21h Master DMA register error
22h Master interrupt mask register error
23h Slave interrupt mask register error
25h Interrupt vector loading in progress
27h Keyboard controller test error
28h CMOS power error and checksum calculation in progress
29h CMOS configuration validation in progress
2Bh Screen initialization error
2Ch Screen retrace test error
2Dh Search for video ROM in progress
2Eh Screen running with video ROM
30h Screen operable
31h Monochrome monitor operable
32h Color monitor (40 column) operable
33h Color monitor (80 column) operable
34h Timer tick interrupt test in progress or error
35h Shutdown test in progress or error
36h Gate A20 error
37h Unexpected interrupt in protected
38h RAM test in progress or address error > FFFFh
3Ah Interval timer channel 2 test or error
3Bh Time-of-Day clock test or error
3Ch Serial port test or error
3Dh Parallel port test or error
3Eh Math coprocessor test or error
41h System board select error
42h Extend CMOS RAM error
80h 0S-ROM checksum error
82h RAM DISK #1 power error
83h RAM DISK #2 power error
84h 0S-RAM DISK checksum error
85h Error log area checksum error

SECTION 10
Precautions

This section describes some important differences between the CV500-VP1[]1-E and CV500-VP2][J-E versions of Per-
sonal Computer Unit and general precautions when setting up and using the Units.

10-1 Operating Environmentttt ittt et et et et 180
10-2 Differences from the CV500-VP111/121-E Unitsc.coieniiiinnnann.. 180
10-3 Other Precautionso.iu it e e e e e 181
10-3-1 Installingthe CPUBus Driver it 181
10-3-2 Resetting the Personal Computer Unit i, 181
10-3-3 Installing CVSS/SSS ... 182

179

Differences from the CV500-VP111/121-E Units Section 10-2

10-1 Operating Environment

Observe the following precautions when using a Hard Disk Unit or Personal

Computer Unit.

When using a Personal Computer Unit, the ambient operating temperature must
be between 0°C and 50°C for the Backplane and all CV-series Units.

When using a Hard Disk Unit, the ambient conditions must be within the specifi-
cations for the Personal Computer Unit, Backplane, and all CV-series Units, as
shown in the following table.

Item Specification
Temperature |5°C to 45°C (maximum temperature change: 15°C/h)
Maximum When operating: 0.3G (10 to 150 Hz)
Vibration When not operating: 1.0G (150 to 300 Hz)
Maximum When operating: 5G 3 times each in X, Y, and Z directions
Shock When not operating: 30G 3 times each in X, Y, and Z directions

10-2 Differences from the CV500-VP111/121-E Units

180

The following table shows the differences between the CV500-VP1[J1-E and
CV500-VP2[]-E versions of Personal Computer Unit.

Item

Difference (CV500-VP2[][] specification)

oS

The operating system was changed from AX-DOS to MS-DOS
and the DOS version was changed from DOS 3.21 to DOS 5.0.

Program

MS-DOS function calls are upward compatible.

BIOS calls are compatible except for the Japanese portion of the
video BIOS.

Hardware is upward compatible except for the video portion.

CPU bus

The calling interface is unchanged.

Application programs can be used with recompiling, but an ICF
setting is required in the CPU Bus Driver. Currently, a 0 setting
doesn’t need to be changed.

CV500-MR261

Can’t be used unless the device driver is installed.

3-mode FDD

The Japanese 1.2MB floppy format can’t be used unless the driv-
er (BMODEFDD.SYS) is installed.

CV500-MR262
CV500-MP601

Can’t be used.

Startup errors

The DIP switch can be set so that system startup will continue
even if an error occurs during startup. Refer to the Operation
Manual for details on “battery-less” systems.

CPU Bus Driver

The options have been increased.

Previously, the number of reception buffers was fixed at 14, but
can now be set from 1 to 14. This reduces the amount of memory
occupied by SBUS.SYS.

The ICF can be specified now. Commands that don’t require re-
sponses can be created.

Hard disk The hard disk type must be set with the hardware setup utility.
Refer to the Operation Manual for details on System Parameters.

CPU Bus The quick library for QuickBASIC corresponds to Version 4.5.

Library When using Version 4.2, refer to 2-4 Changing the Quick Library

Version.

Other Precautions

Section 10-3

10-3 Other Precautions

10-3-1 Installing the CPU Bus Driver

Escape Key Inputs

Saving Memory

The keyboard driver must be installed before the CPU Bus Driver (SBUS.SYS)
in order for the Escape Key to be used to interrupt the Unit when it is waiting to
receive data.

The MS-DOS keyboard driver (KEYB.COM) is a .COMfile, so it can’t be installed
in the CONFIG.SYS file. In this case, the ADDDRV.EXE command can be used,
allowing the CPU Bus Driver (SBUS.SYS) to be installed after the keyboard driv-
er.

Example: AUTOEXEC.BAT

PATH E:\
KEYB.COM JP, 932, E:\KEYBOARD.SYS
ADDDRV F:\SBUS.ADD

Example: SBUS.ADD
DEVICE=E:\SBUS.ADD

When the CPU Bus Driver is loaded without any options, it takes up 50K-bytes of
resident memory. This occurs because memory is allocated to reception buffers
in the driver, and these can be reduced with the /b option.

When it isn’t necessary to collect reception responses or commands, save
memory by reducing the number of reception buffers.

With MS-DOS/V, the user memory can be increased up to 640K-bytes by plac-
ing device drivers in UMB.

Example: CONFIG.SYS

DOS=HIGH,UMB

DEVICE=E:\HIMEM.SYS

DEVICE=E:\EMM386.EXE RAM I=EQ00-EFFF FRAME=E000
DEVICEHIGH=E:\SBUS.SYS /V65 /Bl
DEVICEHIGH=DGIOX.COM

10-3-2 Resetting the Personal Computer Unit

1,2, 3..

The Personal Computer Unit can be reset by the following four methods:

1. Resetting with RESET.EXE
When the CPU Bus Driver is installed, the Personal Computer Unit can be
reset by itself with RESET.EXE. The CPU bus will be initialized.

2. Power Supply Reset
Reset the power supply. The PC and I/O Units will also be reset.

3. Reset from the PC
The Personal Computer Unit can be reset by turning ON the corresponding
Reset Bit in the Auxiliary Area.

4. Keyboard Reset, Reset from the program
There are other forms of resets, such as pressing the Control+Alt+Delete
Keys, or executing HWSET, FDISK, or SWITCH commands. These resets
will reset the Personal Computer Unit but won’t reset the CPU bus, so the
CPU bus will become unusable afterwards. In this event, restart the Unit
with a Power Supply Reset or Reset from the PC.

Note Initialization of the CPU bus refers to initialization with respect to the Personal

Computer Unit. To completely initialize the CPU bus, perform a Power Supply
Reset.

181

Other Precautions

Section 10-3

10-3-3 Installing CVSS/SSS

182

Specify install on a hard disk when installing the CV Support Software or SYS-
MAC Support Software.

If use of a RAM disk is specified, the CVSS/SSS uses the VDISK.SYS for the
RAM disk driver. The Personal Computer Unit normally supports RAM-
DRIVE.SYS rather than VDISK.SYS, so be sure to change the CONFIG.SYSfile
to specify the correct RAM disk driver.

Appendix A

Memory Configuration
The memory configuration for the CV500-VP2[[]-E Personal Computer Units is as follows:
oooco0 [""" °
100000 \
Extended Memory (3MB) |
400000 '

Extended Memory (4MB)

Main memory (640KB)

800000 \
RAM Disk 1 (2MB) |
A00000) A0000
RAM Disk 2 (2MB)) Video RAM (128KB)
C00000 CPU Bus RAM (32KB)) Video BIOS ROM (32KB) C0000
‘\ CV500-MP602 (20KB, Note 1) | ©8000
. CD000
E00000)
OS-ROM Disk (1.5MB) . |Hard Disk Interface (16KB, Note 2)] D000
) E0000
FA0000 0S-SRAM Disk (64KB)

FO000
System BIOS-ROM (64KB)

Note 1. Can be changed with software settings. Refer the Personal Computer Unit's Operation Manual for de-
tails.
details.

2. Can be changed with jumper pin settings. Refer the Personal Computer Unit's Operation Manual for

183

ANSI escape sequence

backup

BIOS

BIOS call

buffer

command interpreter

COMMAND.COM

compiler

CPU bus

CPU bus link

CPU Bus Unit

current directory

current drive

directory

Glossary

A screen control method standardized by the ANSI (American National
Standard Institute). This method allows sophisticated screen control with the
Esc key and a character code.

A copy of data or a program made to protect against loss of the original data or
program.

An acronym for basic input/output system. The BIOS is a part of the control
program constructing the operating system of CV500-VP111/121-E Personal
Computer Units. This part of the control program relies on the hardware and its
main role is to control input and output data exchanged between a Personal
Computer Unit and peripheral devices.

One method for using the subroutine functions included in BIOS. A number can
be setin the CPU register so that a subroutine will be executed when a software
interrupt occurs.

A portion of the memory of a personal computer used to store data temporarily,
e.g., often during communications.

The program that interfaces user commands with the operating system. (COM-
MAND.COM)

A program that executes an MS-DOS command that is input to a Personal
Computer Unit. The COMMAND.COM program usually located in the main
memory is active when an MS-DOS prompt appears on screen.

Software for translating programs from programming language to machine lan-
guage. Execution is faster with a compiler than with an interpreter.

A transmission path used between CPU Bus Units on a Programmable Control-
ler.

One method for communicating between CPU Bus Units using the CPU bus. A
portion of the memory for each Unit is maintained for communications, and com-
munications are conducted by refreshing all the Units so that the contents will
always be the same. Although it enables communications without complex
procedures, it has the disadvantage of placing a load on the Programmable
Controller.

A Unit that connects to the CPU bus of a Programmable Controller. A Personal
Computer Unit, SYSMAC NET Link Unit, and BASIC Unit are CPU Bus Units.

The directory which is the subject of data input and output. If an I/O instruction is
given without designating a directory, the input or output will be executed with
respect to the current directory.

The location in a computer from which data is input or output. If a data input
command or data output command is executed without designating the drive,
the data will be input to or output from the current drive. The drive may be a
physical device or a part of memory defined as a drive.

A ‘container’ within memory used to store files. It is possible to make another
directory in a directory.

185

Glossary

EMS

environmental parameter

event

FAT

hard disk

I/0 table

LED

memory card

MONITOR Mode

network address

node address

PROGRAM mode

Programmable Terminal

RAM

RAM disk

resident program

186

An acronym for expanded memory specification. The EMS eliminates the
limitation of 640K-byte memory controlled by the MS-DOS so that the MS-DOS
can use more memory.

Character string data with a name stored on the memory of a personal computer
that includes conditions required to execute the program. An environmental
parameter can be set using the SET command.

A function of the BASIC language. When an event occurs such as a special key
being pressed or a timer setting elapsing, the operation currently in progress can
be interrupted and a special operation executed.

An acronym for file allocation table. The FAT indicates the locations of files in the
disk. Whenever a file is written to the disk, the contents of the FAT is refreshed. If
the FAT is damaged, there is no way to find the locations of data in the disk.

A high-capacity disk drive which data can be read from or written to at high
speed. A hard disk is vulnerable to shock, vibration, and dust.

A table created within the memory of the Programmable Controller that lists the
IR area words allocated to each Unit in the Programmable Controller System.
The 1/O table can be created by, or modified from, a Programming Device.

An acronym for light emitting diode. An LED is lit with a low current at a low
voltage and mainly used for an indicator.

A card that incorporates ROM and RAM.

The mode in which memory contents can be changed while the Programmable
Controller is operating.

A number assigned to a network in order to distinguish it from other networks to
which it is connected. When designating a node within the same network, “0” is
specified as the network address.

A number assigned to a node to distinguish it from other nodes connected within
the same network.

The mode in which the Programmable Controller can be programmed. While the
Programmable Controller is in this mode, operation is stopped and instructions
can be input.

A display device sometimes used with a Programmable Controller. When a Pro-
grammable Controller, Personal Computer Unit, and so on, are connected, it
can be used as a simple display and |/O device.

An acronym for random access memory. Data can be read from and written to
the designated location of the RAM of a personal computer according to the
command input. All data will be lost if the computer is turned power off. Most
memory of the computer consists of RAM.

RAM in a personal computer used as a disk. Data can be read from and written to
a RAM disk at high speed compared with a hard disk. All data in the RAM disk of
a personal computer will be lost if the personal computer is turned off. The RAM
disk of a Personal Computer Unitis backed up by a battery so that data will not be
lost if the Personal Computer Unit is turned off.

A program that stays in the memory of the personal computer. The available
space of the memory for other programs is reduced according to the size of the
resident programs.

Glossary

ROM

ROM disk

RS-232C

RUN mode

ScCsi

unit address

unit number

word

An acronym for read-only memory. Data can be read from a ROM but usually no
data can be written to it. Data in the ROM disk of a personal computer is not lost if
the personal computer is turned off. A ROM is used to store programs and data
that are frequently used.

ROM used as a disk. Data can be read from a ROM disk at high speed and no
data will be lost by mistake. To write datato a ROM disk, a special device such as
a PROM writer is required.

A standard interface established by the Electronic Industries Association (EIA)
for connecting and exchanging data among computers or between computers
and peripheral devices.

The mode in which the Programmable Controller normally operates. Programs
stored in the Programmable Controller are executed in this mode.

An acronym for small computer systems interface. The SCSI specifications are
standardized specifications used to connect a personal computer and a disk
drive or printer.

A number assigned to a Unit connected to the Programmable Controller in order
to distinguish it from other Units in network communications. For CPU Bus Units,
$10 (hexadecimal 10) is added to the Unit number.

An identification number for each Unit connected to a CPU bus.

A unit of data. There are two bytes of datain one word, eight bits in each byte, for
a total of 16 bits per word.

187

Appendix B
I/0 Configuration

1/0 Configuration

The 1/O configuration for the CV500-VP2[][]-E Personal Computer Units is shown in the following table.

1/0 addresses Function
000 to O1F DMA controller, channels 0 to 3
020 to 021 Interrupt controller #1 (Master)
040 to 043 System timer
060 to 06F Keyboard
070 to 071 RT/CMOS NMI controller
081 to 09F DMA page register
0AO to OA1 Interrupt controller #1 (Slave)
0CO0 to ODF DMA controller, channels 4 to 7
OFO0 to OFF Math coprocessor
2F8 to 2FF Serial port #2
300 to 30F Hard Disk Interface Board (Can be changed to 340 to 34F.)
378 to 37A Parallel port #1
390 to 394 CPU bus, LEDs, DIP switch
3C0 to 3DF Video subsystem
3EO0 to 3EF CV500-MP602 (PC Card Interface Board)
3F0 to 3F8 Disk controller
3F8 to 3FF Serial port #1

Port 390 (Read/Write)

These bits turn the user indicators on and off. Turn a bit off (0) to turn on the corresponding LED indicator. Turn a bit
on (1) to turn off the corresponding LED indicator.

I— LED Indicator #0
LED Indicator #1

LED Indicator #2
LED Indicator #3
LED Indicator #4
LED Indicator #5
LED Indicator #6
LED Indicator #7

189

1/0 Configuration Appendix B

Port 391 (Read)

These flags reflect the status of the pins on the DIP switch. A flag is off (0) when its corresponding pin is ON, and on
(1) when its corresponding pin is OFF.

Port 392 (Read/Write)

Usually these bits aren’t changed by the user.

I— BUS ERR (Controls the CPU Bus Error indicator.)

0: LED on

1: LED off
This bit controls the LED that indicates whether an
SBUS error has occurred.

INIT ERR (Controls the INIT Error indicator.)

0: LED on

1: LED off
This bit controls the LED that indicates whether a RAM/
ROM checksum error has occurred.

TC2 (Controls the CPU Bus Link Area.)

0: Normal status

1: Read/Write status
Data can be written to the CPU Bus Link Area (C00000
to C021F) when this bit is ON (1).

SYS ERR (Controls the System error indicator.)

0: LED on

1: LED off
This bit controls the LED that indicates when a shut-
down interrupt has occurred.

Not used.

190

1/0 Configuration Appendix B

Port 394 (Read)

I— INT CPU Bus interrupt status
0: Interrupt occurred
1: Normal status
This flag indicates whether an interrupt has been gener-
ated from the CPU bus.

PF Power failure interrupt status

0: Power failure interrupt occurred

1: Normal status
This flag indicates whether a power failure interrupt has
occurred. (Write to port 394 to clear this flag to 1.)

SHTDWN Shutdown interrupt status

0: Shutdown occurred

1: Normal status
This flag indicates whether a shutdown interrupt has
occurred. (Write to port 394 to clear this flag.)

WDTU CPU WDT error status

0: Watchdog timer error occurred

1: Normal status
This flag indicates whether a WDT error has occurred in
the CPU.

BL1 Battery low 1 (Lower)

0: Battery error occurred

1: Normal status
This flag indicates that the voltage has dropped in the
battery used for the clock/System RAM.

BL2 Battery low 2 (Middle)

0: Battery error occurred

1: Normal status
This flag indicates that the voltage has dropped in the
battery used for the RAM Disk.

BL3 Battery low 3 (Upper)

0: Battery error occurred

1: Normal status
This flag indicates that the voltage has dropped in the
battery used for the RAM Disk.

PFS Power failure status

0: Power failure occurred

1. Normal status
This flag indicates the line status of the power failure
signal.

Port 394 (Write)

Write data to this register to clear the shutdown interrupt status flag (port 394, flag D2) and power failure interrupt
status flag (port 394, flag D1). The data is dummy data.

Any data can be written.

191

Appendix C

Interrupts
Master
Interrupt header | IRQ Function

08H 0 Timer interrupt

09H 1 Keyboard hardware interrupt

0AH 2 Slave controller’s connection

0BH 3 Serial port #2 interrupt

OCH 4 Serial port #1 interrupt

ODH 5 Open

OEH 6 Disk controller interrupt

OFH 7 Parallel port interrupt
Slave

Interrupt header | IRQ Function

70H 8 Real time clock interrupt

71H 9 VGA interrupt

72H 10 PC’s power interruption interrupt

73H 11 CPU bus interrupt

74H 12 (PS2 mouse interrupt)

75H 13 Math coprocessor interrupt

76H 14 IDE hard disk interrupt

77H 15 Open (Used by CV500-MP602.)

193

Appendix D
Error Codes

The table below lists the error codes that might be read from the Personal Computer Unit’s error log when event
servicing is used and “Error Log Read” is performed.

Error type Error code Contents

$0302 $0001 Posted unit address does not match recognized unit address.
$0002 Not used.
$0003 Unit addresses duplicated.
$0004 Improper unit address recognized.
$0005 Hardware test unit recognized.
$0006 Unit address could not be found in registered 1/O table.
$0007 Routing table error
$0008 Routing table reading error
$0009 Parity error: Cyclic service
$000A Parity error: Event service
$000B Parity error: CPU bus link service
$000C Access rights return error: Cyclic service
$000D Access rights return error: Event service
$000E Access rights return error: CPU bus link service
$000F CPU bus area memory access error
$0010 Communications command discarded due to buffer overflow.
$0011 Communications response discarded due to buffer overflow.
$0012 Reception packet unit address error
$0013 Programmable Controller routing process error (command)
$0014 Programmable Controller routing process error (response)
$0015 Reception packet size error
$0016 Relay center routing process error
$0017 Error in CPU bus of transmission destination unit.
$0018 Transmission destination unit error
$0019 Transmission destination unit could not be found.
$001A Voltage drop: Battery no. 1 (clock/system RAM backup battery)
$001B Voltage drop: Battery no. 2 (RAM Disk backup battery)
$001C Voltage drop: Battery no. 3 (RAM Disk backup battery)
$001D Improper interrupt occurred.
$001E Buffer full: Could not transmit response.
$00FF POWER FAIL signal was received.

195

Appendix E
FINS Commands to the CV500-VP2[][]-E

The following table shows the commands to which responses are returned by the CPU Bus Driver with event serv-
icing. The Personal Computer Unit will return a response automatically when it receives one of these FINS com-
mands. Refer to 4-6 FINS Commands Serviced by Drivers for more details on these commands.

Commands for which Response Processing is Executed by the Driver

MRC SRC Command contents
$05 $01 Read Controller Information
$07 $01 Read Time Information
$07 $02 Write Time Information
$08 $01 Loopback Test
$21 $02 Read Error Log
$21 $03 Clear Error Log

197

Appendix F
FINS Commands to CV-series PCs

The following table shows the FINS commands addressable to CV-series PCs. Refer to the FINS Command Ref-
erence Manual for more details.

Command PC mode Name
code RUN MONITOR | DEBUG | PROGRAM
01 01 OK OK OK OK MEMORY AREA READ
02 |OK OK OK OK MEMORY AREA WRITE
03 |OK OK OK OK MEMORY AREA FILL
04 |OK OK OK OK MULTIPLE MEMORY AREA READ
05 |OK OK OK OK MEMORY AREA TRANSFER
02 01 OK OK OK OK PARAMETER AREA READ
02 |OK OK OK OK PARAMETER AREA WRITE
03 |OK OK OK OK PARAMETER AREA CLEAR
03 04 |OK OK OK OK PROGRAM AREA PROTECT
05 |OK OK OK OK PROGRAM AREA PROTECT CLEAR
06 | Notusable | OK OK OK PROGRAM AREA READ
07 Not usable | Not usable | Not usable | OK PROGRAM AREA WRITE
08 |OK OK OK OK PROGRAM AREA CLEAR
04 |01 OK OK OK OK RUN
02 |OK OK OK OK STOP
05 01 OK OK OK OK CONTROLLER DATA READ
02 |OK OK OK OK CONNECTION DATA READ
06 |01 OK OK OK OK CONTROLLER STATUS READ
02 OK OK Not usable | Not usable | CYCLE TIME READ
07 |01 OK OK OK OK CLOCK READ
02 |OK OK OK OK CLOCK WRITE
09 |20 |OK OK OK OK MESSAGE READ
MESSAGE CLEAR
FAL/FALS MESSAGE READ
oC |o1 OK OK OK OK ACCESS RIGHT ACQUIRE
02 |OK OK OK OK ACCESS RIGHT FORCED ACQUIRE
03 |OK OK OK OK ACCESS RIGHT RELEASE
21 01 OK OK OK OK ERROR CLEAR
02 |OK OK OK OK ERROR LOG READ
03 |OK OK OK OK ERROR LOG CLEAR

199

FINS Commands to CV-series PCs Appendix F
Command PC mode Name
code RUN MONITOR | DEBUG | PROGRAM
22 |01 |OK OK OK OK FILE NAME READ
02 |OK OK OK OK SINGLE FILE READ
03 |OK OK OK OK SINGLE FILE WRITE
04 |OK OK OK OK MEMORY CARD FORMAT
05 |OK OK OK OK FILE DELETE
06 OK OK OK OK VOLUME LABEL CREATE/DELETE
07 |OK OK OK OK FILE COPY
08 |OK OK OK OK FILE NAME CHANGE
09 |OK OK OK OK FILE DATA CHECK
0A |OK OK OK OK MEMORY AREA FILE TRANSFER
0B |OK OK OK OK PARAMETER AREA FILE TRANSFER
0C | (Seenote.) | OK OK OK PROGRAM AREA FILE TRANSFER
23 01 Not usable | OK OK OK FORCED SET/RESET
02 Not usable | OK OK OK FORCED SET/RESET CANCEL

Note When the PC is in RUN mode, data transfers from files to the program area aren’t possible.

200

Appendix G

Troubleshooting with FINS Response Codes

The following table lists the response codes (main and sub-codes) returned after execution of FINS commands,
the probable cause of the errors, and recommended remedies.

Main code Sub- Probable cause Remedy
code
00: Normal completion 00

01 Service was interrupted Check the contents of the destination

transmission area of third node.
01: Local node error 01 Local node not part of Network Add to Network.

02 Token time-out, node address too high | Set the local node’s node address below
the maximum node address

03 Number of transmit retries exceeded | Check communications with internode
echo test. If the test fails, check network.

04 Maximum number of frames exceeded | Either check the execution of events in the
network and reduce the number of events
occurring in one cycle, or increase the
maximum number of frames.

05 Node address setting error (range) Make sure the node address is within
specified range and that there are no
duplicate node addresses.

06 Node address duplication error Make sure that there are no duplicate node
addresses.

02: Destination node 01 Destination node not part of Network | Add to Network.
error 02 No node with the specified node Check the destination node’s node
address address.

03 Third node not part of Network Check the third node’s node address.

04 Busy error, destination node busy Increase the number of transmit retry
attempts or re-evaluate the system so that
the destination node is not so busy
receiving data.

05 Response time-out, message packet | Increase the number of transmit retry at-

was corrupted by noise tempts. Perform an internode echo test to
check noise level.
Response time-out, response watch- | Increase the value for the response watch-
dog timer interval too short dog timer interval.
03: Communications 01 Error occurred in the communications | Take corrective action, referring to
controller error controller, ERC indicator is lit communications controller errors and
remedies table at end of this section

02 CPU error occurred in the PC at the Clear the error in the CPU (refer to the
destination node PC’s operation manuals)

03 Controller error: A response was not | Check the communications status on the
received because an error occurred network and restart the board. If the error
on the controller board. Confirm the repeats, replace the board.
error on the indicators on the board.

04 Node address setting error Make sure the node address is within
specified range and that there are no
duplicate node addresses.

04: Not executable 01 An undefined command has been Check the command code.
used.
02 Cannot process command because Check the unit model and version.

the specified unit model or version is
wrong.

201

Troubleshooting with FINS Response Codes

Appendix G

Main code Sub- Probable cause Remedy
code

05: Routing error 01 Destination node address is not set in | Set the destination node address in the

the routing table. routing table.
02 Routing table isn’t registered. Set the source nodes, destination nodes,
and relay nodes in the routing table.
03 Routing table error Set the routing table correctly.
04 The maximum number of relay nodes | Redesign the network or reconsider the
(2) was exceeded in the command. routing table to reduce the number of relay
nodes in the command.

10: Command format 01 The command is longer than the max. | Check the command format of the

error permissible length. command and set it correctly.

02 The command is shorter than min. Check the command format of the
permissible length. command and set it correctly.

03 The designated number of data items | Check the number of items and the data,
differs from the actual number. and make sure that they agree.

04 An incorrect command format has Check the command format of the
been used. command and set it correctly.

05 An incorrect header has been used. Set the routing table correctly.
(The local node’s relay table or relay
node’s local network table is wrong.)

11: Parameter error 01 A correct memory area code has not | Check the command’s memory area code

been used or Expansion Data Memory | and set the appropriate code.
is not available.

02 The access size specified in the Set the correct access size for the
command is wrong, or the first command.
address is an odd number.

03 The first address is in an inaccessible | Set a first address that is in an accessible
area. area.

04 The end of specified word range Check the acceptable limits of the data
exceeds the acceptable range. area and set the word range within the

limits.

06 A non-existent program no. has been | Check the program number and be sure
specified. that it is set correctly.

09 The sizes of data items in the Check the command data and be sure that
command block are wrong. the sixes of the data items are correct.

0A The IOM break function cannot be Either abort the current IOM break function
executed because it is already being | processing, or wait until it is completed and
executed. execute the command.

0B The response block is longer than the | Check the command format and set the
max. permissible length. number of items correctly.

0C An incorrect parameter code has been | Check the command data and reenter it
specified. correctly.

20: Read not possible 02 The program area is protected. Execute the instruction again after issuing
the PROGRAM AREA PROTECT CLEAR
command.

03 The registered table does not exist or | Set or reset the registered table.
is incorrect.

04 The corresponding data does not
exist.

05 A non-existing program no. has been | Check the program number and be sure
specified. that it is set correctly.

06 A non-existing file has been specified. | Check whether the correct file name was

used.
07 A verification error has occurred. Check whether the memory contents are

correct and replace if incorrect.

202

Troubleshooting with FINS Response Codes

Appendix G

possible

created or is incorrect.

Main code Sub- Probable cause Remedy
code
21: Write not possible 01 The specified area is read-only or is If the specified area is read-only, the write
write-protected. cannot be performed. If it is
write-protected, turn off the write-protect
switch and execute the instruction again.
02 The program area is protected. Execute the instruction again after issuing
the PROGRAM AREA PROTECT CLEAR
command.
03 The number of files exceeds the Write the file(s) again after erasing
maximum permissible. unneeded files, or use different disk or
Memory Card that has free space.
05 A non-existing program no. has been | Check the program number and be sure
specified. that it is set correctly.
06 A non-existent file has been specified. | ---
07 The specified file already exists. Change the name of the file and execute
the instruction again.
08 Changing the memory contents is not | Check the memory content that you are
possible because doing so would attempting to change.
result in an inconsistency.
22: Not executable in 01 The mode is wrong (executing). Check the operating mode.
current mode 02 The mode is wrong (stopped). Check the operating mode.
03 The PC is in the PROGRAM mode. Check the PC’s mode.
04 The PC is in the DEBUG mode. Check the PC’s mode.
05 The PC is in the MONITOR mode. Check the PC’s mode.
06 The PC is in the RUN mode. Check the PC’s mode.
07 The specified node is not the control | Check which node is the control node.
node.
08 The mode is wrong and the step Check whether the step has active status
cannot be executed. or not.
23: No Unit 01 A file device does not exist where The Memory Card or disk is not installed.
specified.
02 The specified memory does not exist. | Check the specifications of the installed file
memory.
03 No clock exists. Check the model number.
24: Start/stop not 01 The data link table either hasn’t been | Set the data link table correctly.

203

Troubleshooting with FINS Response Codes

Appendix G

BUS System.

Main code Sub- Probable cause Remedy
code
25: Unit error 02 Parity/checksum error occurred Transfer correct data into memory.
because of incorrect data.

03 I/O setting error (The registered 1/0 Either change the actual configuration to

configuration differs from the actual.) | match the registered one, or generate the
I/O table again.

04 Too many 1/O points Redesign the system to remain within

permissible limits.

05 CPU bus error (An error occurred Check the unit and cable connections and
during data transfer between the CPU | issue the ERROR CLEAR command.
and a CPU Bus Unit.)

06 I/O duplication error (A rack number, | Check the system’s settings and eliminate
unit number, or 1/O word allocation any duplication.
has been duplicated.)

07 I/O bus error (An error occurred during | Check the unit and cable connections and
data transfer between the CPU and an | issue the ERROR CLEAR command.

I/O Unit.)

09 SYSMAC BUS/2 error (An error Check the unit and cable connections and
occurred during SYSMAC BUS/2 data | issue the ERROR CLEAR command.
transfer.)

0A Special 1/0 Unit error (An error Check the unit and cable connections and
occurred during CPU Bus Unit data issue the ERROR CLEAR command.
transfer.)

oD Duplication in SYSMAC BUS word Check and regenerate the I/O table.
allocation.

OF A memory error has occurred in If the error occurred in internal memory or
internal memory, in the Memory Card, |the EM Unit, correct the data in the
or in Expansion DM during the error command an execute it again.
check. If the error occurred in a Memory Card or

EM used for file memory, the file data has
been corrupted. Execute the MEMORY
CARD FORMAT command.

If the above remedies do not eliminate the
error, replace the faulty memory.

10 Terminator not connected in SYSMAC | Connect the terminator correctly.

204

Troubleshooting with FINS Response Codes Appendix G

Main code Sub- Probable cause Remedy
code
26: Command error 01 The specified area is not protected. The program area is not protected, so it

This response code will be returned if | isn’t necessary to clear protection.
an attempt is made to clear protection
on an area that is not protected.

02 An incorrect password has been Specify a password that is registered.

specified.

04 The specified area is protected. Execute the command again after the
PROGRAM AREA PROTECT CLEAR
command.

05 The service is being executed. Execute the command again after the
service has been completed or aborted.

06 The service is not being executed. Execute the service if necessary.

07 Service cannot be executed from local | Execute the service from a node that is

node because the local node is not part of the data link.
part of the data link.

08 Service cannot be executed because | Make the necessary settings.

necessary settings haven’t been
made.
09 Service cannot be executed because | Check the command format of and make

necessary settings haven’t been made | the necessary settings.
in the command data.

0A The specified action or transition Execute the command again using an
number has already been registered. | action or transition number that hasn’t
been registered.

0B Cannot clear error because the cause | Eliminate the cause of the error and
of the error still exists. execute the ERROR CLEAR command.
30: Access right error 01 The access right is held by another Execute the command again after the
device. access right has been released.

(The command can be executed after the
ACCESS RIGHT FORCED ACQUIRE or
ACCESS RIGHT RELEASE command is
completed. Releasing the access right
might affect processes in progress at the
node that held the access right.)

40: Aborted 01 The ABORT command was executed. | ---

205

Appendix H
PC Memory Configuration

The PC memory addresses which the user can specify with cyclic service are those in the IOM, DM, and EM Areas.
These Areas are specified with the absolute PC memory addresses. (The UM Area cannot be specified.)

The following diagram shows the addresses that can be specified.

B$400000
IOM, DM
EM bank #0
B$420000
IOM, DM
'tl)'hese a_tfi_d:jefsse‘ts car; < EM bank #1
e specified for transfer. B$440000 ’
1
B$4E0000 I
IOM, DM
EM bank #7
B$4FFFFF

The PC’s memory configuration is shown on the following page. This memory configuration is the same as the one
listed in the CV-series PC Operation Manual: Ladder Diagrams, but the memory addresses are listed in word units.
Memory addresses 0000 through FFFF on the next page correspond to addresses B$400000 through B$41FFFF
in the diagram above.

207

Note The CIO acronym isincluded for clarity; just input the address (0000 to 2555) when specifying words in the
CIO Area.

208

PC Memory Configuration

Appendix H
PC Memory Configuration
Memory Data area Memory Data area
addresses PC Memory addresses addresses PC Memory addresses
O(t)go IOM (1/O Memory) exéiﬁge J O(t)go 1/O Area Clotgooo
OFFF A4K-words view.) 00C7 200 words CIO 0199
1000 Timer PVs Too0o | 00C8 | sYSMAC BUS/2 Area | ©10,0200
13FF 1K-word T1023 | 03E7 800 words CIO 0999
1?20 Counter PVs COt(0)00 ' 0?58 Link Area CIOt(13000
1BFF 1Keword c1023 | 04AF 200 words CIO 1199
2?30 Data link area DOSOOOO ' 0‘;’(‘)30 Holding Area CIOt(13200 clO
27CF 2K-words D01999 05DB 300 words CIO 1499 Area
2150 CPU Bus Unit area DOtZCE)OO OStEC CPU Bus Unit Area C'Ot;5°°
2EOF 1600 words D03599 076B 400 words CIO 1899
2%; 0 24K-words of DM DO:tB(SSOO . OZSC Work Area CIOt(13900
7rrF | (CVB00UptoDOBISN) | iz . 08FB 400 words CIO 2299
. 08FC CIO 2300
8000 EM banks 0 to 7 DO03600 . to SYS'\Q"&E: El‘:(i Area to
to 32K-words each to ! 09FB w CIlO 2555
FFFD (CV1000 only) D24575 , 09FC
) to Used by the system.
FFFE . 09FE
to Used by the system. \
FFFF ' 09FF Temporary Relay Area | TRO to TR7
' 0’{,\30 CPU Bus Link Area G%’O
' OAFF 256 words G255
' O?C?o Auxiliary Area A?c?o
.| ocFF 512 words A511
'. 0?000 Transition Area TNSOOOO
. 0D3F 64 words TN1023
'I OItEC())O Step Area ST?;)OO
+| oesF 64 words ST1023
'. O't:go Timer Area TOt%OO
| OF3F 64 words T1023
'. O't:go Counter Area COt(c))OO
| OFBF 64 words C1023

Appendix |
Hard Disk Interface Board Settings

W2 Jumper Pin Settings

1 3 5
BSEL15
IOSEL6
BIOS ENA
BIOS ENA
Shorted ROM valid
Open ROM invalid

The following table shows the possible I/O address and BIOS address settings. (The addresses are all hexadeci-
mal.)

Pin Settings 1/0 Address BIOS Address
IOSEL6 BSEL15
Open Open 340 D0000
Open Shorted 340 D8000
Shorted Open 300 D4000
Shorted Shorted 300 DCo000

209

bar code reader, RS-232C response errors, 164

BASIC, 24
compiler, 25
interpreter, 25
library functions, 24

BASIC functions
PCCLOSE, 44
PCMODE, 43
PCMSRD, 26
PCMSWR, 29
PCOPEN, 26
PCREAD, 31
PCSTAT, 40
PCWRITE, 35

BIOS, error codes, 177

Branching
after FINS command reception, 93
after FINS command response reception, 93
after FINS command transmission, 92
after FINS response transmission, 92

C

C, 45
library functions, 45

C functions
peclose(), 75
pcmode(), 73
pemsrd(), 46
pemswr(), 49
pcopen(), 46
peread(), 51
pestat(), 65
pewrite(), 58

card reader, RS-232C response errors, 164
clear error log, 103
close, 126

commands, communications control, 157
LCLOSEY), 158
LDCCTLY), 161
LDCRST(), 162
LNCTLY), 160
LNSTS(), 161
LOPEN(), 157
LREAD(), 158
LRXCNTY(), 162
LTXCNT(), 163
LWRITE(), 159

Index

communications processing
other devices, 8

network address, 9
node address, 9
unit address, 9

Personal Computer Unit, 8
reception, 9

buffers, 9

compiler, 25
control signals, LNCTLY(), 160
copying, files, 16

CPU bus, measuring performance, 117

CPU Bus Driver, 78, 82
access, 82
closing, 83
opening, 83
operations, 85

branching after FINS command reception, 93

branching after FINS command response reception, 93

branching after FINS command transmission, 92
branching after FINS response transmission, 92

cyclic area read, 86

cyclic area write, 87

cyclic service transmission address, 85
cyclic service transmission direction, 85
cyclic service transmission length, 85
FINS command reception, 90

FINS command transmission, 88

FINS response reception, 91

FINS response transmission, 89

link area read, 95

link area write, 96

Personal Computer Unit resetting, 97
reading information reserved for system, 94
reception buffer flushing, 94

reception status inquiry, 98

timeout value settings, 94

unit address inquiry, 97

user timer service processing, 97

operations list, 85
requesting directly, 84
requesting /0, 83
sample programs, 104
CPU bus driver, installation, 122
CPU Bus Interface, services, 2

CPU bus library
BASIC, 24

compiler, 25
functions, 24
interpreter, 25

C, 45

functions, 45

disk configuration, 23
programming procedure, 23

CPU Bus Link
area, 3
area contents, 11
service, 2, 11, 78

211

Index

CPU Bus Link service, processing time, 119 error records

reading, 176
function calls, 176
procedure, 176
writing information, 177

CPU Bus Unit, library, 20
contents, 23
functions, 23

PCCLOSE, 22 writing, 174
PCOPEN, 20 error log contents, 175
PCREAD, 22 function calls, 175
PCWRITE, 21 procedure, 174

CVSS, 182 event area, 3

cyclic area, 3 event service, 2, 7, 78

processing time, 118
service request command, 7
cyclic area write, 87 service request response, 7

cyclic area read, 86

cyclic service, 2, 6, 78
cyclic area, 6
PC area, 6 F
processing time, 118

cyclic service transmission address, 85 files

. . - S copy, 16

cyclic service transmission direction, 85 by, . .
copying required files, 16

cyclic service transmission length, 85 FINS, installing driver, 17

FINS command reception, 90

D FINS command transmission, 88
FINS commands
DAL, 79 DA1,79
DA2, 79
DA2, 79 DATA, 80
data format, 79
DATA, 80, 81 DNA, 79
data GCNT, 79
LREAD(), 158 ICF, 79
LWRITE(), 159 MRC, 80
Personal Computer Unit processing, 193
device drivers. See drivers responses, 80
. . . . DATA, 81
disks, configuration, System Disk 1, 15 DNA to SA2, 80
DNA, 79 GCNT, 80
ICF, 80
DNA to SA2, 80 MRC, 81
drivers, 5 MRES, 81
installation, CPU bus driver, 78 RSV, 80
installing, 16 SID, 81
SRC, 81
SRES, 81
RSV, 79
E SAL1, 79
SA2, 80
sample programs, 132
environment, precautions, 180 serviced by drivers, 98
error codes, 191 clear error log, 103
BIOS, 177 loopback test, 101
read controller information, 99
error logs, 174 read error log, 102
reading, error records, 174 read time information, 100
recording write time information, 100
area, 174 SID, 80
error records, 174 SNA, 79
record format, 174 SRC, 80

212

Index

FINS Driver, 138 LDCRST(), 162
access, through MS-DOS, 141

operations, 142
initialize, 142 library, serial communications, 156

receive, 145

transmit, 143
processing flow, 138
sample programs, 147 LNCTL(), 160

141
Hse LNSTS(), 161

FINS format, 78 loopback test, 101
FINS Library, 122 LOPEN(), 157

libraries, 5

link area read, 95

link area write, 96

design
other than Quick BASIC, 125 LREAD(), 158
Quick BASIC, 124 LRXCNT(), 162
operations, 126
close, 126 LTXCNT(), 163
initialize, 126 LWRITE(), 159

receive with timer monitoring, 130

receive without timer monitoring, 128

transmit, 126 M
processing flow, 123
structure, 122

use, 124 memory, configuration, 183, 203
FINS response codes, 197 MRC, 80, 81
FINS response reception, 91 MRES, 81
FINS response transmission, 89
functions, CPU bus library, 23 o

OCR, RS-232C response errors, 164

G

GCNT, 79, 80 P

PCCLOSE, 22, 44

H peclose(), 75

PCMODE, 43

Hard Disk Interface Board, settings, 205 pemode(), 73
PCMSRD, 26

I pcmsrd(), 46
PCMSWR, 29
I/O configuration, 185 pemswr(), 49

ICF, 79, 80 PCOPEN, 20, 26

initialize, 126, 142 pcopen(), 46

installation PCREAD, 22, 31
CPU bus driver, 78, 122, 138, 181
peread(), 51

device drivers, 16

options, 17 PCSTAT, 40
interpreter, 25 pestat(), 65
interrupts, 189 PCWRITE, 21, 35
pewrite(), 58
L performance, CPU bus, 117
Personal Computer Unit, RS-232C response errors, 165
LCLOSE(), 158 Precautions, 181
LDCCTLY), 161 precautions, operating environment, 180

213

Index

processing time, measuring, 118 S
program, design

Assembler, 16 SA1, 79

G 16 SA2, 80

Quick BASIC, 16
service request

Programmable Terminals, RS-232C response errors, 164
command, 7

programming languages, 5 response, 7
programs, samples services
CPU Bus Driver, 104 CPU Bus Link, 2, 78
FINS commands, 132 cyclic, 2, 78
FINS Driver, 147 event, 2, 78
ranges, 3

selecting, 4

Q SID, 80, 81

SNA, 79

Quick Library, changing version, 16 SRC. 80. 81
SRES, 81
R SSS, 182

status, LNSTS(), 161
read controller information, 99

read error log, 102 T

read time information, 100

reading information reserved for system, 94 timeout value setting, 94

receive, 145 transmission, LTXCNT(), 163
with timer monitoring, 130 transmit, 126, 143

without timer monitoring, 128

reception, LRXCNT(), 162

reception buffer flushing, 94 U
reception status inquiry, 98 unit address inquiry, 97
resetting, Personal Computer Unit, 181 user indicators, 170

checking, 171

resetting the Personal Computer Unit, 97 :
controlling, 170

response errors, RS-232C

bar code reader. 164 user timer service processing, 97

card reader, 164

OCR, 164

Personal Computer Unit, 165 W

Programmable Terminals, 164

sample program, 165, 167 workstation, RS-232C response errors, 165

orkstation, 165 e .
W ’ write time information, 100

response time, CPU bus service, 117

RS-232C communications
LCLOSE(), 158 X
LOPEN(), 157

XON/XOFF
RS-232C response errors, sample program, 165, 167 LDCCTL(), 161
RSV, 79, 80 LDCRST(), 162

214

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

previous version.

Cat. No. W252-E1-1A

|— Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the

Revision code

Date

Revised content

1

February 1995

Original production

2

October 1995

Page 85: Parameter format corrected.
Pages 104 to 106: Sample program replaced.
Page 205: Appendix A Hard Disk Interface Board Settings added.

215

	CV500-VP213/217/223/227-E Personal Computer Unit Technical Manual
	Notice
	TABLE OF CONTENTS
	About this Manual
	SECTION 1 Communications and Control Functions
	1-1 Features
	1-2 Communications/Control Services
	1-3 Selecting a Service
	1-3-1 Required Functions
	1-3-2 Libraries, Drivers, and Programming Languages

	1-4 Communications/Control Service Details
	1-4-1 Cyclic Service
	1-4-2 Event Service
	1-4-3 CPU Bus Link Service

	SECTION 2 Software Configuration and Driver Installation
	2-1 Outline
	2-2 General Procedures
	2-3 Program Disk Configuration
	2-4 Changing the Quick Library Version
	2-5 Copying Files
	2-6 Installing Device Drivers

	SECTION 3 CPU Bus Library
	3-1 Communication with the PC
	3-1-1 CPU Bus Library
	3-1-2 CPU Bus Library Contents
	3-1-3 Disk Configuration
	3-1-4 General Development Procedure

	3-2 Before Using BASIC
	3-2-1 Functions
	3-2-2 Using Library Functions
	3-2-3 Executing in Interpreter Format
	3-2-4 Executing in Compiler Format

	3-3 BASIC Functions
	3-4 Before Using C
	3-4-1 Functioons
	3-4-2 Using Library Functions

	3-5 C Functions

	SECTION 4 CPU Bus Driver
	4-1 Introduction
	4-2 The FINS Format
	4-2-1 FINS Commands
	4-2-2 FINS Response
	4-2-3 FINS Command/Response Example

	4-3 Using the CPU Bus Driver
	4-3-1 Access by Opening a Driver
	4-3-2 Direct Request
	4-3-3 Limitations

	4-4 CPU Bus Driver Operations List
	4-5 CPU Bus Driver Operations
	4-5-1 Cyclic Service Transmission Address, Length, and Direction
	4-5-2 Reading the Cyclic Area
	4-5-3 Writing to the Cyclic Area
	4-5-4 Transmitting FINS Commands
	4-5-5 Transmitting FINS Responses
	4-5-6 Receiving FINS Commands
	4-5-7 Receiving FINS Responses
	4-5-8 Branching Upon Completion of FINS Command Transmission
	4-5-9 Branching Upon Completion of FINS Response Transmission
	4-5-10 Branching Upon Completion of FINS Command Reception
	4-5-11 Branching Upon Completion of FINS Response Reception
	4-5-12 Setting Timeout Values
	4-5-13 Flushing Reception Buffers
	4-5-14 Reading Information Reserved for System
	4-5-15 Reading the Link Area
	4-5-16 Writing to the Link Area
	4-5-17 User Timer Service Processing
	4-5-18 Resetting the Personal Computer Unit
	4-5-19 Unit Address Inquiry
	4-5-20 Reception Status Inquiry

	4-6 FINS Commands Serviced by Drivers
	4-6-1 Read Controller Information (0501)
	4-6-2 Read Time Information (0701)
	4-6-3 Write Time Information (0702)
	4-6-4 Loopback Test (0801)
	4-6-5 Read Error Log (2102)
	4-6-6 Clear Error Log (2103)

	4-7 Sample Programs
	4-8 Measuring CPU Bus Access Performance
	4-8-1 Cyclic Service
	4-8-2 Event Service
	4-8-3 CPU Bus Link Service

	SECTION 5 FINS Library
	5-1 Introduction
	5-2 BASIC Program and FINS Library Structure
	5-3 Processing Flow
	5-3-1 Processing Procedure 1
	5-3-2 Processing Procedure 2

	5-4 Using the FINS Library
	5-4-1 Designing with Quick BASIC
	5-4-2 Designing with BASIC Other than Quick BASIC

	5-5 FINS Library Operations
	5-5-1 SOPEN: Initialize
	5-5-2 SCLOSE: Close
	5-5-3 SSEND: Transmit
	5-5-4 SRECV: Recieve (Without Timer Monitoring)
	5-5-5 SRCVT: Recieve (With Timer Monitoring)

	5-6 Sample Programs

	SECTION 6 FINS Driver
	6-1 Introduction
	6-2 Processing Flow
	6-2-1 Processing Procedure 1
	6-2-2 Processing Procedure 2

	6-3 Using the FINS Driver
	6-3-1 Opening and Accessing the Driver Through MS-DOS

	6-4 FINS Driver Operations
	6-4-1 Initialize (01)
	6-4-2 Transmit (02)
	6-4-3 Receive (03)

	6-5 Sample Programs
	6-5-1 Transmitting
	6-5-2 Receiving

	SECTION 7 RS-232C Communications
	7-1 RS-232C Port Specifications
	7-1-1 Communications Specifications
	7-1-2 Interface Specifications

	7-2 Serial Communications Library
	7-3 Communications Control Functions
	7-3-1 LOPEN() (Open RS-232C Communications Port)
	7-3-2 LCLOSE() (Close RS-232C Communications Port)
	7-3-3 LREAD() (Store Data)
	7-3-4 LWRITE() (Transmit Data)
	7-3-5 LNCTL() (Control Signals)
	7-3-6 LNSTS() (Check Signal Status)
	7-3-7 LDCCTL() (Set XON/SOFF)
	7-3-8 LDCRST() (Stop XON/XOFF)
	7-3-9 LRXNCT() (Check Reception Buffer)
	7-3-10 LTXCNT() (Check Amount of Data Transmitted)

	7-4 RS-232C Baud Rate Limitations
	7-4-1 Baud Rates for C (Microsoft C)
	7-4-2 Baud Rates for Quick BASIC

	7-5 RS-232C Response Errors
	7-5-1 Programmable Terminals
	7-5-2 Bar Code Reader, OCR, or Card Reader
	7-5-3 Workstation or Personal Computer
	7-5-4 Sample Program

	SECTION 8 Controlling User Indicators
	8-1 The User Indicators
	8-1-1 User Indicator Location
	8-1-2 Controlling User Indicators
	8-1-3 Checking the Indicators

	8-2 Sample Program

	SECTION 9 Using Error Logs
	9-1 Error Logs
	9-1-1 Recording Error Records
	9-1-2 Error Log Recording Area
	9-1-3 Record Format
	9-1-4 Reading Error Records

	9-2 Writing Error Records
	9-2-1 Procedure
	9-2-2 Function Calls
	9-2-3 Writing Error Log Contents

	9-3 Reading Error Records
	9-3-1 Reading Procedure
	9-3-2 Functions Calls
	9-3-3 Writing Error Record Information

	9-4 Errors at BIOS Startup

	SECTION 10 Precautions
	10-1 Operating Environment
	10-2 Differences from the CV500-VP111/121-E Units
	10-3 Other Precaustions
	10-3-1 Installing the CPU Bus Driver
	10-3-2 Resetting the Personal Computer Unit
	10-3-3 Installing CVSS/SSS

	Appendix A - Memory Configuration
	Glossary
	Appendix B - I/O Configuration
	Appendix C - Interrupts
	Appendix D - Error Codes
	Appendix E - FINS Commands to the CV500-VP2**-E
	Appendix F - FINS Commands to CV-series PCs
	Appendix G - Troubleshooting with FINS Response Codes
	Appendix H - PC Memory Configuration
	Appendix I - Hard Disk Interface Board Settings
	Index
	Revision History

