BASIC Units
CV500-BSC11/21/31/41/51/61

Reference Manual

Revised March 1993

CV500-BSC11

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify warnings in this manual. Always heed the
information provided with them.

Caution Indicates information that, if not heeded, could resultin minor injury or damage
to the product.

DANGER! Indicates information that, if not heeded, could result in loss of life or serious
injury.

OMRON Product References

All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1,2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

© OMRON, 1992

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.

TABLE OF CONTENTS

SECTION 1
BASIC Syntaxcciieiiiinerennnnrcennssannans

1-1 COnVENtioNS . ..ottt ittt et et et e e
1-2 Character Stottt et e e
1-3 KeyWOrds ..ottt e
1-4 Commandsttt e e
1-5 StaleMIENS .« . ottt e e
1-0 LINeS .ottt e e e
1-7 CONSIANES . oottt ettt et e e e e e
1-8 Variables e
1-9 Type CONVEISION . . . v ettt ettt e e e e e e e e e e e e e e e e e e e
1-10 EXPIESSIONS & .« ettt e e e e e e e e e e e e e e e e e e e

SECTION 2
BASIC InStructionsoeeeeeeeseeeseosocasens

2-1 HowtoUsethisTable i i et e e e
2-2 Command LStt e e
2-3 Statement List e
2—4 Function Listot i i e e e
2-5 GP-IB Instruction List e

SECTION 3
Instruction Referenceooeieieeeeenneeenens

3-1 Guideto REfErence it e
32 REfCIENCE ..ot
3-3 GP-IBINSIIUCHIONSottt e e e et e e e e

Appendicesttt ittt reeane

A. Memory Storage Format of Variables i
B. BASICUnit Reserved Wordsooinii i i
C. Extended ASCIL e e

Glossarycoiiiiiiiiiinniecnnnrcsnnnscnnnnns
Index ...iiiiiiiiiiiiiiiiieeneoreseensesnnssannns

Revision Historycoviiiiiiiiiinnentieennnnnnas

O W N NN NN N -

10

18
18
19
23
25

137

137
139
141

143
163
169

vii

About this Manual:

This manual describes the BASIC Unit instruction set and includes the sections described below.
Please read this manual completely and be sure you understand the information provided before attempt-
ing to operate the BASIC Unit.

Section 1 Describes the syntax and conventions used in the manual, and gives background information
on the BASIC Unit.

Section 2 Contains a table listing all of the BASIC Unit instructions, with usage and a brief description.

Section 3 Lists each instruction in alphabetical order, with in-depth descriptions, examples, and sample
programs.

ix

SECTION 1
BASIC Syntax

1-1 COnVENtIONS .. .v ettt ettt e e e e e e e e e
1-2 Character Setottt e e e e e
1-3 KeyWOrds ..ot e
1-4 Commandsttt e
1-5 0 Statementsottt
16 LMeS .ottt e
1-6-1 Line NUMDETSottt e e et e et
1-6-2 Labels . oottt e
1-7 0 COnStANS .o ettt e
1-7-1 Character Constantsttt
1-7-2 Numeric CONStantsttt ettt ettt
1-8 Variables e
1-8-1 Variable Names and Typesooitiinin it
1-8-2 Simple Variables and Array Variables
1-8-3 Character String Variables i e
1-8-4 Local and Global Variableso it
1-8-5 Non-volatile Variables i e
1-9 Type CONVETSION . .ottt et et e e e e e e e e e e e e e e e et e
1-100 EXPIESSIONS & . ¢ v vttt ettt e et e e et e e e e e e e e e e e e
1-10-1 OPEIatOrs . . .v ettt e e e e e e e e e e e e e
1-10-2 Numeric EXPressionsuuutnitt ettt
1-10-3 Character EXpressionsttt
1-10-4 Relative EXPressionsuuueuenn ettt
1-10-5 Logical EXPressionsttt it
1-10-6 Functions and System Variables
1-10-7 Operator Priorityot e

O 00 00 1 1 O\ U A W W W WNDNDNDNDNDDN

I S S S S W
AN N W W W RO

Lines Section 1-6

1-1 Conventions

In this manual, sample command lines and program code fragments will be
printed in this typewriter font.Words, numbers, and symbols in this font
should be entered exactly as they are shown. /talics are used for filenames,
variables, and placeholders (in which case, the programmer must select an
element that matches the placeholder type). The _ character indicates a
space.

1-2 Character Set

The following characters can be used with the BASIC Unit:

Classification Characters

Alphabetic A through z (upper case), a through z (lower case)

Numeric 0 through 9

Special Space (showninthetextas) ¢ 7 # $ & & * () * + -/
, ot 3 <>=2 [1\ "~@~

1-3 Keywords

A keyword is a word that has special meaning for the BASIC unit. Keywords
direct the Unit to perform some action that is useful for the programmer. Key-
words will always be shown in the typewriter font, using capital letters.
In a program, keywords can appear in upper, lower, or mixed case. Examples
of keywords are: PRINT, GOTO, and END.

Keywords are also called reserved words. The reserved words of the BASIC
Unit are listed in Appendix B Reserved Word List.

1-4 Commands

Commands and statements (below) are both instructions that the BASIC Unit
can execute. The difference is that commands are usually used in direct
mode, while statements are usually used in programs.

1-5 Statements

A statement, such as LET E=M*C"2, is a sequence of BASIC keywords,
variable names, constants, and symbols, that tells the Unit to perform a cal-
culation or other action.

1-6 Lines

A program is a collection of lines, and each line consists of a line number and
one or more statements:

10 PRINT ”BASIC UNIT” ...cecewn Executable statement
20 REM ***BASIC UNIT#***, Comment
30 ’ ***BASIC UNIT*** Comment
40 PRINT : PRINT ”END” Two executable statements
50 END tvvveereacoccanoascanaannns Executable statement
T Statement
Line number

Constants

Section 1-7

1-6-1 Line Numbers

1-6-2 Labels

1-7 Constants

Lines must not exceed 255 characters in length. Several statements can be
placed on a single line, provided that the total number of characters (includ-
ing spaces) does not exceed 255. Each statement must be separated from
the others by a colon (:).

10 INPUT AS : PRINT AS tuiviereceenncennnennns Correct

20 PRINT “BASIC UNIT” teveeeerecenecnencnnnns Correct

30 PRINT AS & veveeenennn : PRINT YS$ Correct
255 characters or less

40 PRINT AS: ceeveeenennn : PRINT Z$.c...... Incorrect

More than 255 characters

A line with no statements or labels (a line number by itself) is automatically
deleted.

Line numbers must be unique integers between 1 and 65529. The program is
normally executed in ascending order of the line numbers.

Line numbers are used in statements such as GOTO or GOSUB, which alter
the normal flow of program execution.

Labels may be used instead of line numbers in GOTO and GOSUB statements.
A label must appear as the first statement on a line, and it must start with an
asterisk (*) and an alphabetic character (2 to z). The rest of the characters in
the label can be letters, numbers, or periods. Here is an example of a label:

10 *This.is.a.label

Only the first 41 characters (including the *) of a label are significant. Char-
acters after the 415t are ignored. Uppercase and lowercase letters are not
distinguished, so the labels *ABC and *abc are considered identical.

Reserved words (keywords) may not be used as labels.

Constants are numbers or character strings which are directly coded in a pro-
gram. There are various types of constants, as shown in this chart:

Character Character
constant string

Integer

constant

constant
-
Numeric
—| Single-precision constant
Floating- gep |
point con-
stant - Double-precision constant |

1-7-1 Character Constants

A character constant (character string) consists of alphanumeric characters,
symbols, and spaces enclosed in a pair of double quotation marks (””). The

3

Constants Section 1-7

length of the constant (i.e., the number of characters) is limited to the number
of characters that can be written on one line (255).

To include a double quotation mark as a character in a character constant,
the cHRS function must be used. A character string whose length is zero is
called a null string. Here are some examples of character strings:

"FACTORY AUTOMATION” This character constant consists of 17
alphabetic characters and 1 space.

71234567890" tiviirerennoanns Arithmetic operations on character
strings of digits is not allowed.

CHRS(34) ceveveecnrenanacnanns This is a character constant consisting
of only one character, a double quota-
tion mark.

T e seeesseasesasasasnsanns This is a null string.

1-7-2 Numeric Constants

A numeric constant is a number on which arithmetic operations can be per-
formed. A plus (+) or minus (=) sign may be placed before a numeric con-
stant to indicate whether the constant is positive or negative. (If the sign is
omitted, the number is assumed to be positive.) Numeric constants can be
broadly classified into integer constants and real-number constants.

Integer Constants

The BASIC Unit can handle integer constants written in octal, decimal, or
hexadecimal notation.

Decimal A decimal integer constant is written as a plain decimal number followed by a
percent sign (%). The number must be in the range -32767 to 32767. If a per-
cent sign is appended to a number with a fractional part, the number will be
rounded to make an integer constant. Examples of decimal integer constants
are shown below.

21474%
-256%
123.456% (This will be rounded to make 123%)

Note The BASIC Units treats all numeric constants as absolute numeric values.
Therefore, although —32768 can be represented as a 16-bit value, the number
cannot be directly entered as a decimal integer constant.

Octal An octal constant starts with &0 or & and consists of octal numbers (0 to 7).
The constant must be no longer than 6 digits, excluding the &0 or &, and
must be between &00 and &0177777. Integer constants entered in the pro-
gram as octal numbers will be converted to decimal if they are output to a
display or printer. Examples of octal constants are:

&0123 ..iiiiiennnnn (decimal 83)
&01234 ..iiiieennn. (decimal 668)
&12345 ciiiiiiennnn (decimal 5349)
Hexadecimal A hexadecimal constant starts with &H, followed by one to four hexadecimal

digits (0 to 9 and A to F). It must be in the range of &HO to &HFFFF. An inte-
ger constant entered in the program as a hexadecimal number will be con-
verted into a decimal number if it is output to a display or printer. Here are
some examples of hexadecimal constants:

&H12 tivevrnnnannnns (decimal 18)
&H2E3F ..ieeveeenns (decimal 11839)

Variable

Section 1-8

Floating-point Constants

Single-precision Constants

Double-precision Constants

Caution

1-8 Variables

The real-number constants the BASIC Unit can handle are divided into two
types: single-precision and double-precision.

A single-precision constant is written as a decimal number with an optional
exponent indicated by e or E. It is stored in a form that is accurate to about
seven significant digits. When displayed, however, only six digits are output
(the seventh digit is used to round properly). The allowable range for single-
precision constants is approximately +3.4*1038 for substitution and
+3.40282+%108 as the result of each operation. In addition, single-precision
constants must satisfy one of the following conditions:

* 7 or fewer significant digits
* Exponent indicated with e or E
* Exclamation point (!) placed after constant

Examples of single-precision constants:

-32.11
6.471E~4 veveennnn. (6.471%10~4 in standard notation)
+123.456789! (more than 7 significant digits, but ! is specified)

A double-precision constant is written the same as a single-precision con-
stant, but the exponent (if any) is indicated with d or D. Double-precision con-
stants are stored in a form that is accurate to about seventeen significant dig-
its. When displayed, however, only sixteen digits are shown (the seventeenth
digit is used to round properly). The allowable range for double-precision
constants is about +1.07*107398 to +1.07*10307. Constants are made dou-
ble-precision if they satisfy one of these conditions:

* More than 7 significant digits

* Exponent indicated with d or D

* Sharp mark (#) placed after constant
Examples of double-precision constants:

0.00000045
-3.1415D+13 (-3.1415%10"3 in standard notation)
123.45#

The BASIC Unit normally treats all numeric constants that have no type specifier
(%,!, or #, or d or D exponent) as single-precision constants. This may cause
errors if the constants are outside the range for single-precision values.

A variable is a name you can use to represent a value in a BASIC program.
The value of a variable can be set or changed with the LET statement. Be-

fore a variable has been set by the program, it has a value of 0 if it is a nu-

meric variable, or a null string if it is a character variable.

Variable

Section 1-8

Variables can be classified by type, data structure, purpose, and storage area
as follows:

Type Character variable (stores | Fixed-length character string (default:
a character string) length is 18 characters)

Variable-length character string (538
characters max.)

Numeric variable (stores a | Integer variable (2 bytes)
numeric value)

Single-precision floating-point variable
(4 bytes)

Double-precision floating-point
variable (8 bytes)

Data Simple variable (variable with only one data value)
structure

Array variable (variable with several data values in contiguous
memory areas)

Purpose Local variable (variable that can be accessed in only one task)

Global variable (variable that can be accessed between tasks)

Storage area | Volatile variable (ordinary variable that loses its contents when
power is turned off)

Non-volatile variable (variable whose data is retained even after
power has been turned off and is not initialized on initialization)

For details on the structure of a variable, refer to Appendix A Memory Stor-
age Format of Variables.

1-8-1 Variable Names and Types

Type Declaration

A variable name can be up to 40 characters long. It must start with a letter (A
to z), and can be followed by letters, numbers, or periods. Uppercase and
lowercase letters are not distinguished, so a variable called VAR1 is consid-
ered to be the same as one called varl. Reserved words (keywords) cannot
be used for variable names.

An name with no type specifier normally indicates a variable that can hold a
single-precision floating-point value; if you want to store a character string,
integer, or double-precision value, you must put a type specifier after the
name. The characters $, %, and # indicate character strings, integers, and
double-precision variables, respectively. An exclamation point (!) after a vari-
able name indicates a single-precision floating-point value.

Here are some valid variable names and their types:

HEIGHT .vevvececess single-precision floating-point
WEIGHT! ..eivecennn single-precision floating-point
YOUR.NAMES character string
REJECT.PARTS% integer

TINY.NUMBER# double-precision floating-point

Two variables of different types may use the same name: ABC% is a different
variable than ABC#. However, a local variable may not use the same name
as a global variable.

A variable name starting with FN is treated as the name of a user-defined
function (refer to the description of the DEF FN statement).

A variable name with no type specifier ordinarily indicates a single-precision
floating-point value. The DEFINT, DEFSNG, DEFDBL, and DEFSTR statements
can be used to change the default type for a single variable or for sets of
variables whose names start with certain letters.

Variable

Section 1-8

1-8-2 Simple Variables and Array Variables

A variable name used by itself (with or without a type specifier character) is
called a simple variable. It is often convenient, however, to have a table of
values associated with one name. Each element of the table, or array, can be
referenced using the array name indexed with an integer or integer expres-
sion. The index is enclosed in parentheses. An array variable has as many
indices as the array has dimensions.

Before using an array variable, you must declare the number of elements it
will have with the DIM or RDIM statement.

Here are some examples of array declarations:

10 DIM DAYS.PER.MONTH%(12) An array of 12 integers

20 DIM TIC.TAC.TOE(3,3) ... An array of 9 single-precision floating-
point values, arranged in three rows of
three.

Each array index must be an integer from 0 to 32767. Normally, the first ele-
ment of an array is element 0O; this can be changed using the OPTION BASE
statement.

The size of the array is equal to the size of one element multiplied by the
number of elements. (See Appendix A: Storage Format of Variables for infor-
mation about variable sizes.) You cannot declare an array that is larger than
available memory.

If a variable is used with only a variable name specified, it serves only as a
simple variable. If an index enclosed in () is suffixed to the variable, however,
the variable serves as an array variable.

An array variable must be explicitly declared by the DIM or RDIM instructions.

DIM and RDIM can also be used to declare global and local variables, and to
set the length of a fixed-length character string variable.

1-8-3 Character String Variables

Character string variables can normally contain strings of any length from 0
to 538 characters. The DIM statement can be used to declare fixed-length
character strings. For example:

DIM BS 10 tvvvevcnnrocncannnns BS is a fixed-length character string vari-
able which can hold no more than 10
characters.

If a character variable is declared with DIM, but no length is specified, the
length is fixed at a system default value. This default value is normally 18
characters, but it can be changed with the OPTION LENGTH instruction.

Fixed-length strings may use memory less efficiently than variable-length
strings, but the system has to do less processing to maintain a fixed-length
string, so your program may run faster.

Examples using the DIM statement:

DIM A tiveverenesnnasnaasnnans Simple variable of single-precision, real-
number type

DIM BS tiveereensonasooasnnnss Fixed-length character string variable
(can hold 18 characters, or whatever de-
fault value has been set with the
OPTION LENGTH instruction).

DIM C$ 40 vivevnrnnnrnncnnnass Fixed-length character string variable
that can hold 40 characters.

Variable Section 1-8

DIM C#(100) wueeverernncnnnans Array of 100 double-precision floating-
point values
DIM D$(10) 8 .tevevernneennnns Array of 10 fixed-length character

strings, each 8 characters in length.

RDIM E$(4) Array of 4 fixed-length character strings (each can hold
18 characters, or whatever value has been set with the
OPTION LENGTH instruction).

1-8-4 Local and Global Variables

The BASIC Unit can execute multitasked programs. To enable data transfer
among tasks, the Unit is provided with local variables, which can be ac-
cessed only within a single task, and global variables, which can be ac-
cessed from any task.

Local variables are declared in each task block (between the PARACT in-
struction to the END PARACT instruction) and are handled by the task. The
same variable name can be used by different tasks; each task has its own,
independent copy of the variable.

Global variables are declared outside all task blocks (before the first PARACT
instruction) and can be used by all tasks. Note that you may not use the
same name for a global variable and a local variable.

Example:

100 DIM ABC(100) .eeveceeess Declares a global array

110 DIM D tvvvencnnnncncannnns Declares a global variable

200 PARACT 1 ieuvvenvcnnonnns Beginning of code of task 1

210 DIM PQR(10) vevrucrncnnns Declares a local array

300 X = D 4+ 3 tiviennnnnnnnns Uses global variable D. X is a local
variable.

310 DIM ABC(3) ceevrecsccnnes Error - this local variable name is the
same as the global variable declared in
line 110

400 END PARACT ..ovevveenocnns End of task 1

1-8-5 Non-volatile Variables

The BASIC Unit has battery-backed memory area which does not lose its
contents when power is turned off, and which is not initialized when power is
turned on. Variables allocated in this area will therefore retain their values
even if the BASIC Unit is turned off. These are “non-volatile” variables.

The RDIM instruction can be used to force the BASIC Unit to allocate battery-
backed memory for use by non-volatile variables. The RDIM statement must
come before all PARACT and DIM statements.

Example:
100 RDIM HOLD(12,5) vceceun.. Declares a non-volatile array variable
110 RDIM AB .uvvveernncsnnnss Declares a non-volatile variable

Type Conversion

Section 1-9

120 DIM P tvevenrnnrnnncannnns Declares a global variable

130 RDIM Q tveeennecenceacnnnas Error - this statement must come before
all DIM and PARACT statements

200 PARACT 1 ivuvvenvcnconnns Beginning of code of first task

Non-volatile memory is cleared by the OPTION BASE, RUN, and ERASE in-
structions. The contents of non-volatile variables can be saved to a file
(memory card of the PC or expansion DM) by the VSAVE instruction. The
contents can be loaded from a file with the VLOAD instruction.

When the current program area is changed with the PGEN instruction or a

new program is loaded, the non-volatile memory area is not modified. This
allows another program to share the same variables. In order to share the
variables, however, both programs must use identical RDIM statements.

1-9 Type Conversion

Assignment of Numeric
Value to Variable of
Different Type

Operations on Numeric
Values of Different
Precisions

The various numeric data types (integer, single-precision floating-point, and
double-precision floating-point) will be converted automatically from one type
to another when necessary. Character strings are not converted automatical-
ly. To use a character string containing digits as a number, use the VAL, CVI,
CVsS, or cVD functions; to store a number in a string variable, use the STRS,
MKIS, MKSS, or MKDS functions.

The following rules are used when the BASIC Unit has to convert from one
numeric type to another:

If a numeric value is assigned to a variable of different type, the numeric value is
converted into the type of the destination variable.

Example:

10 LET A% = 1.234 .iicvunnnn Assign a single-precision value to an in-
teger variable - value is rounded to 1

20 PRINT A% cveevecescononcnns Print the value of the integer variable

Execution result:
1 Variable A% contains 1
If an arithmetic operation is executed between numeric values of different preci-

sions, the precision of the result is dependent on the precisions of the operands
and on the operation being performed.

Examples:

10 PRINT 10%/3% ceeeeeeennens Both operands are converted to single-
precision floating-point; gives single-pre-
cision floating-point answer

15 PRINT 10%\3% ceceeveennnnn Integer division of two integers gives in-
teger answer

20 PRINT 10%/3! cevvunrnnnnn. Integer operand (10%) is converted to
single-precision floating-point; gives
single-precision floating-point answer

30 PRINT 10%/3# cevveeennnnn. Integer operand (10%) is converted to

double-precision floating-point; gives
double-precision floating-point answer

Expressions

Section 1-10

Logical Operations

Conversion to Integer

Conversion into
Single-precision Real
Number

1-10 Expressions

10

Execution result:

3.33333

3

3.33333
3.333333333333333

When a logical operation is executed, all the numeric operands are con-
verted into integers.

Example:

10 LET A = 1.234 ..iviennnns Single-precision value stored in A

20 LET B = NOT A .cvveveceess The value of A is converted to integer
(1); the NOT operation is performed giv-
ing an integer result; the result is con-
verted to single-precision and stored in
B

30 PRINT B, A tieieeenenennns Display the values

Execution result:

e R Note that the contents of variable A are
not affected by the conversion to integer
inline 20

When storing a floating-point value in an integer variable, the value is
rounded at the first digit below the decimal point.

Example:
10 A% = 1.45 tiuiiieennnennnnn Rounded to 1 and stored in A%
20 B = 1.65 teviieennnnennnn Rounded to 2 and stored in B%

30 PRINT A%, B$%
Execution result:
1 2

When a double-precision floating-point value is stored in a single-precision vari-
able, the value is rounded at the seventh digit. When the variable is output to the
printer or screen, however, it is rounded at the sixth digit.

Example:

10 A! = 3.14159265358 Value rounded at seventh digit;
3.141593 is stored in A!

20 PRINT A!
Execution result:

3014159 tiiiiiiiiinnrnnnennnns Single-precision values are rounded at
the sixth place for display.

An expression is a sequence of constants, variables, and operators that cal-
culate a value which is useful to the programmer. Expressions are divided

Expressions

Section 1-10

into numeric, character, relative, and logical types. Examples of each type

appear below:

Numeric Character Relative Logical
20*15/3 "BASIC” + "UNIT” A =B A AND B
P*D*(D+4) [BS + CS$ A< B A OR B
2.7145 "BASIC UNIT” A <>B |[A XOR B
A AS A < BAND A > C
SIN(X) CHRS (31) A = B AND A <>

C

1-10-1 Operators

The BASIC Unit uses three types of operators in its expressions: arithmetic,
relative, and logical.

_Addition, subtraction, multiplication, division,

— Arithmetic operators - - - -) :
exponentiation, and remainder calculation.

Operators ——— Relative operators - - - - - Compare two expressions

Compound conditions, bit manipulation,

Logical operators - - - - - and binary operations

Arithmetic Operator An operator that couples numeric constants and variables and executes
arithmetic operations such as addition, subtraction, multiplication, division,
exponentiation, and remainder calculation. The available arithmetic operators

and their operations are as follows:

Arithmetic Operation Example Mathematical
operator notation
+ Addition A+ B A+B
- Subtraction A-B A-B
* Multiplication A * B A*B
/ Floating-point division A/ B A+B
\ Integer division A\ B
“ Exponentiation A~ B AB
MOD Remainder calculation A MOD B

* When integer division is executed, the operands are first rounded to integers,
then divided; the result is truncated at the decimal point.

Example: integer division
123.4\67.89——— 123\68—> 1.808 —— 1 (resull)

Round to integer Divide Truncate

* If an attempt is made to divide by zero, an error occurs.

* If an attempt is made to obtain a negative exponent of zero, the result of the
operation is not defined, although an error does not occur and operation con-
tinues.

Caution If the result of an operation exceeds the range of the result’s type, an overflow
occurs, but no error is signalled.

Example of integer overflow:

10 LET A% = 32767 ceveeennn. No overflow
20 LET B% = A% + 1 ceeeeenn. An overflow occurs; B% contains
-32768.

11

Expressions

Section 1-10

Relative Operator

Logical Operator

The range of values for each type of numeric value is as follows:

Integervalue -32768 to +32767
Single-precision value +3%10739 10 +1.7%10%8
Double-precision value +1.07%107308 to +1.07*10307

Relative operators are used to compare two numeric expressions. They re-
turn true (-1) or false (0) depending on the outcome of the comparison. The
available relative operators and their operations are as follows:

Relative operator Operation Example

= Equal A =B

<>, >< Not equal A <> B, A ><B
< Less than A<

> Greater than A>B

<=, =< Less than or equal to A <=B, A ==, => Greater than orequalto |A >= B, A => B

Relative operators are often used in IF statements to control the flow of pro-
gram execution, as follows:

Example: Relative operator in IF statement

IF A <> B THEN 1000 If A is not equal to B, then the program
will branch to line 1000

IF A$="Y” THEN *PROCESS ... IfASisequalto“y” then the program
will branch to label *PROCESS

A logical operator performs a logical operation on a single integer value (NOT)
or between two integer values. Each of the 16 bits in the integer result is set
to 0 or 1 based on the result of the logical operation. The available logical
operator and their operations are as follows:

Logical operator Operation Example
NOT Negation NOT A
AND Logical product A AND B
OR Logical sum A OR B
XOR Logical exclusive sum A XOR B
IMP Implication A IMP B
EQV Equivalence A EQV B

* Alogical operator can be used to check the results of two or more relative ex-
pressions or to perform bit manipulation (Boolean algebraic operations) on
specified numeric values.

* Before a logical operation is executed, the operands are converted to 16-bit,
2’s complement integers.

1-10-2 Numeric Expressions

12

An expression that calculates a numeric value is called a numeric expres-
sion. A numeric expression consists of numeric constants, numeric variables,
and functions that returns a numeric value, possibly coupled by an arithmetic

Expressions

Section 1-10

or logical operator. Parentheses may be used to group parts of a numeric

expression.

Numeric constant
Numeric variable

NOT

Function returning numeric
value (numeric expression)

Arithmetic operator
Logical operator

1-10-3 Character Expressions

A character expression returns a character string. These expressions consist
of character constants, character variables, and functions that return a char-
acter string, coupled by a plus symbol (+). Parentheses may be used to
group parts of a character expression.

Character constant
Character variable

Function returning character
string (character expression)

Plus symbol (+) concate-

1-10-4 Relative Expressions
A relative expression consists of two numeric expressions coupled by a rela-

tive operator.

Numeric constant
Numeric variable

Function returning numeric
value (numeric expression)

1-10-5 Logical Expressions

A logical expression consists of two or more numeric or relative expressions
coupled by logical operators. These expressions are used to perform bit ma-
nipulation and binary operations, and to judge compound conditions. Numer-
ic operands to logical operators are always converted to integers before the

operation is performed.

NOT

Relative
operator

Numeric constant
Numeric variable

Function returning numeric
value (numeric expression)

Relative

(NOT)

nates character strings

expression

Logical operator [«

Six types of operators are available for logical expressions: NOT, OR, AND,
XOR, IMP, and EQV. The following tables show the results of each operator on
single bits A and B:

A NOT A

13

Expressions Section 1-10
AND

A | B |[AANDB

0 0 0

0 1 0

1 0 0

1 1 1
OR

A | B |[AORB

0 0 0

0o |1 1

1 0 1

1 1 1
XOR (Exclusive OR)

A | B [A XOR B

0 0 0

0o |1 1

1 0 1

1 1 0
IMP (Implication)

A | B [AIMPB

0 0 1

0o |1 1

1 0 0

1 1 1
EQV (Equivalence)

A | B |AEQVB

0 0 1

0 1 0

1 0 0

1 1 1

Here are some examples of bit manipulation using the logical operators.

Logical Expression: NOT 5 Result: -6

Logical Expression: 3 AND 5 Result: 1

Logical Expression: 3 OR 5 Result: 7

14

Expression Integer Binary
5 0000000000000101
NOT 5 -6 1111111111111010
Expression Integer Binary
0000000000000011
0000000000000101
3 AND 5 0000000000000001
Expression Integer Binary
0000000000000011
0000000000000101
30R7 00000000000001 11

Expressions

Section 1-10

Logical Expression: 3 XOR 5 Result: 6

Logical Expression: 3 IMP 5 Result: -3

Logical Expression: 3 EQV 5 Result: -7

Expression Integer Binary
0000000000000011
0000000000000101

3 XOR 5 6 0000000000000110

Expression Integer Binary
0000000000000011
0000000000000101
3 IMP 5 -3 1111111111111101

Expression Integer Binary
0000000000000011
0000000000000101

3EQV5 -7 1111111111111001

Logical expressions are often used in IF statements to control the flow of
program execution according to the result of two or more relative expres-
sions.

Example: Logical expressions in IF statements

IF A>20 AND B>20 THEN 100 . If both A and B are greater than 20, the
program will branch to line 100.

IF A>20 OR B>20 THEN 100 . Ifeither A or B are greater than 20, the
program will branch to line 100.

1-10-6 Functions and System Variables

A function calculates a new value based on an input value (called the func-
tion’s argument) and returns the new value as its result. A system variable is
a special variable whose contents are maintained by the system.

Examples: functions returning a numeric value

10 LET B = ABS(A) cevevenens Calculates the absolute value of A and
storesitin B

20 LET C% = ASC(”Hello”) .. Storesthe ASCII code for “H* in C%

30 LET X# = ATN(ANGLE#) ... Calculates the arctangent of ANGLE#
and stores it in X#

40 LET L% = LEN(MY.NAMES) . Counts the number of characters in
MY .NAMES and stores the result in L%

50 LET C# = SQR(A"~2+B~2) .. Calculates the square root of A2+B2 and

stores it in C#
Example: Functions returning a character string value

10 LET AS = CHRS$(34) Makes a string containing one double-
quote (") and stores it in AS

20 PRINT HEXS(A+B) .eveeenn. Prints the value of A+B in hexadecimal
notation

15

Expressions

Section 1-10

Note

30 PRINT ”It’s now ”;TIMES Prints the currenttime

The string returned by character functions is normally limited to 18 charactersin
length. If you want to use character functions that may return more than 18 char-
acters, use the DIM statement to declare a fixed-size character variable that can
hold as many characters as you need and assign the result of the function to that
variable. For example:

40 DIM LONG.RESULTS$ 100 ... LONG.RESULTS is a fixed-length string
that can hold up to 100 characters.

320 LET LONG.RESULT$ = LEFTS$(SOME.STRINGS, 56)

1-10-7 Operator Priority

16

If two or more operators are used in an expression, the BASIC Unit executes
the operators starting from the one having the highest priority. If the priorities
of the operators are the same, they are executed from the left toward the
right. An operator enclosed in () takes precedence over the others. The op-
erators are listed below in order of priority.

Priority Operator Operation Classification
1 () Calculates value of expression in | Expression in ()
parentheses
2 Numeric Returns numeric value Function
function
Character Returns character string
function
A Exponentiation Arithmetic operator
- Negative sign
*, / Floating-point multiplication and
division
6 \ Integer division
7 MOD Remainder calculation
8 +, - Addition and subtraction
9 = Equal to Relative operator
<>, >< Not equal to
<, > Less than, greater than
<=, =< Less than or equal to
>=, => Greater than or equal to
10 NOT Logical negation Logical operator
11 AND Logical product
12 OR Logical sum
13 XOR Exclusive logical sum
14 IMP Implication
15 EQV Equivalence

SECTION 2
BASIC Instructions

The instructions of the BASIC Unit are broadly classified into commands, statements, functions, and GP-IB instructions.

Commands can be typed in and executed directly from the console in edit or debug mode. Some commands can also be used as
statements.

Statements are used in BASIC programs to do most of the program’s work and to control the program’s execution.

Functions perform a specified calculation and return the result of the calculation to the program. Many functions require one
Or more arguments.

GP-IB instructions, which control the GP-IB interface, are sub-divided into statements and functions. Note that the GP-IB
instructions can be used with Models BSC51 and BSC61 only.

2-1 HowtoUsethisTable i e e et e 18
2-2 Command List e 18
2-3 Statement Listo e e 19
2—4 Function List e 23
2-5 GP-IB Instruction Listt it et e et e 25

17

Command List

Section 2-2

2-1

How to Use this Table

Instruction: This column lists the names of the commands, statements, and
functions in alphabetical order.

Syntax:

pears in a program, using the following notation:

This column describes the form(s) in which the instruction ap-

* Words and symbols in typewriter font should be entered exactly as

written.

* [tems in square brackets ([]) may be omitted.

* ltems in curly brackets ({}) indicate choices; alternatives are delimited
from each other with the vertical bar character (|). Select one of the alter-

natives.

* An asterisk (*) indicates that the preceding item or items may be repeated.

* _indicates a required space. (Spaces can also be used between words
and symbols to increase program readability.)

* Words in italics are English descriptions of the element that should be sub-
stituted. For example, line-no. should be replaced with an actual line num-

ber.
Purpose:
Page:

This column presents a brief description of the instruction.
For the further information on the instruction, refer to the page

shown in this column.

2-2 Command List

These instructions may be used in EDIT or DEBUG mode. Instructions marked
with a diamond (#) may also be used as statements in programs.

allocate machine language program area.

Instruction Syntax Purpose Page

@ @ [task-number] Selects a task to be debugged. 29

AUTO AUTO [start-line-no.] [, increment] Automatically generates line numbers 32
when a program is typed in.

BREAK BREAK [{DELETE {ALL | line-no. Sets, deletes, or lists breakpoints. 33

[, line-no.1*} | line-no. [, line-no.1*}]

CLS¢ CLS Clears screen. 36

CONT CONT Resumes execution of program. 37

DELETE DELETE [start-line-no.] [-[end-line-no.]] Deletes program lines. 42

EDIT EDIT [line-no.] Edits one line of program. 44

FILES / LFILES |FILES [drive-no.] Displays names and size of files in drive. 50

LFILES [drive-no.] Prints names and sizes of files in drive.

KILL¢ KILL "file-name” Deletes file. 61

LET¢ [LET] variable-name = expression Stores value of expression in variable. 62

LIST / LLIST LIST [start-line-no.] [- [end-line-no.]] Displays all or part of program. 64

LLIST [start-line-no.] [- [end-line-no.]] Prints all or part of program.

LOAD LOAD "file-name” Reads BASIC program into current 65
program area.

MERGE MERGE “file-name"” Reads BASIC program to current program |68
area. Program is merged with any existing
program.

MON MON Sets monitor mode. 71

MSET MSET [address] Sets upper limit of BASIC program area to | 71

18

Statement List Section 2-3
Instruction Syntax Purpose Page
NAME ¢ NAME "old-file-name" AS "new-file-name” | Changes file name. 71
NEW NEW Deletes program and variables. 71
PGEN PGEN [program-no.] Selects current program area. 97
PINF PINF Displays information on program area. 98
PNAME PNAME "program-name" Registers or deletes name of current 98
program area.
PRINT¢ PRINT [expression] [{,|;| } [expression]]* | Displays value of expression. 99
LPRINT¢ LPRINT [expression] Prints value of expression.
[{,]:123 [expression]]*
RENUM RENUM [new-line-no.] [, [old-line-no.] Re-numbers program lines. 105
[, increment]]
ROMLOAD ROMLOAD Reads information in EEPROM to user 108
program area.
ROMSAVE ROMSAVE Writes information in user program area to | 109
EEPROM.
ROMVERIFY ROMVERIFY Verifies between EEPROM and user 109
program area.
RUN ¢ RUN ["file-name™] [, ERASE] Starts program execution. 109
SAVE SAVE "file-name"” Saves BASIC program to file. 110
STEP STEP Executes program one step at a time. 115
TROFF ¢ TROFF [{task-no.|ALL}] Stops output of line number trace. 121
TRON ¢ TRON [{task-no.|ALL}] Starts output of line number trace. 121
VERIFY VERIFY "file-name"” Verifies program. 125
VLOAD ¢ VLOAD “file-name"” Reads contents of non-volatile variable 125
from file.
VSAVE ¢ VSAVE “file-name"” Saves contents of non-volatile variable to | 125
file.
WRITE#¢ WRITE expression [{,|; | Yexpression]* Displays value of expression. 126
4 The command can also be used as a statement in a program.
2-3 Statement List
Instruction Syntax Purpose Page
ALARM ALARM {ON | OFF | STOP} Enables, disables, or stops time interrupt. | 30
ON / OFF / STOP
BITON / BITOFF |{BITON | BITOFF} integer-variable, Turns ON (1) or OFF (0) the specified bit of | 32
bit-position an integer variable.
CALL CALL name [(argument [, argument]*)] Calls a machine language program 33
(subroutine) stored in memory.
CLOSE CLOSE [#file-no. [, #file-no.]*] Closes file. 35
CLS CLS Clears screen. 36
COM ON / STOP COM [(port-no.)] {ON | STOP} Enables or stops interrupt from 36
(OFF and STOP are communication line.
the same)
DATA DATA constant [, constant]* Stores numeric and character constants 39
for use by READ statements.
DEF FN DEF FNfunction-name Defines function. 40

[(argument [, argument]*)] =
function-definition-expression

19

Statement List Section 2-3
Instruction Syntax Purpose Page
DEG SEG DEF SEG = segment-address Declares segment address. 42
DEF USR DEF USR [no.] = start-address Defines execution start address of 42
machine language USR function.
DEFINT/DEFSNG/ |{DEFINT | DEFSNG | DEFDBL | DEFSTR} Declares variable type. 41
DEFDBL/DEFSTR {variable-name | character—character}
[, {variable-name | character—character}]*
DIM DIM variable-name Declares an array variable or fixed-length | 42
[(subscript [, subscript]*)] string.
[maximum-number-of-characters]
[, variable-name
[(subscript [, subscript]*)]
[maximum-number-of-characters]]*
END END Terminates task. 45
END PARACT END PARACT Declares the end of a task. 45
ERROR ERROR error-no. Simulates generation of error. 47
EXIT EXIT task-no. Terminates specified task. 47
FIELD FIELD #file-no., width AS Assigns field variable to random file buffer. |49
character-string-variable
[, width As character-string-variable]*
FINS ON / STOP |[FINS {ON | STOP} Enables or stops interrupts from network. |50
(OFF and STOP are
the same)
FOR... TO... FOR variable = initial-value TO final-value | Repeatedly execute group of statements 51
STEP. .. [STEP increment] enclosed by FOR and NEXT statements.
NEXT... NEXT [variable [, variable]*]
GET GET #file-no. [, record-no.] Reads data from random file. 52
GOSUB / RETURN |GOSUB {line-no. | label} Calls subroutine / returns from subroutine. |53
RETURN
GOTO GOTO {line-no. | label} Branches to specified line or label. 54
IF... THEN... IF conditional-expression Selects statement to be executed 55
ELSE... THEN {statement | line-no. | label} according to result of
IF... GOTO... [ELSE {statement | line-no. | label}] conditional-expression .
ELSE... IF conditional-expression
GOTO {line-no. | label}
[ELSE {statement | line-no. | label}]
INPUT INPUT [WAIT expression,] Inputs data to specified variable. 56
["prompt” {, | ;)] variable [, variable]*
INPUT # INPUT #file-number, variable Reads data from file into specified variable. | 58
[, variable]*
KEY KEY (key-no.) {ON | OFF | STOP} Enables, disables, or stops interrupts from |61
ON / OFF / STOP console numeric keys.
KILL KILL "file-name" Deletes file. 61
LET [LET] variable-name = expression Assigns the value of an expression to a 62
variable
LINE INPUT LINE INPUT [WAIT expression,] Inputs a whole line to a character string 63
["prompt” {, | ;}] character-variable variable.
LINE INPUT # LINE INPUT #file-no., Reads one line from a file into a character |63
character-variable string variable.
LOCATE LOCATE horizontal-position , Moves cursor on screen. 65

vertical-position

20

Statement List Section 2-3
Instruction Syntax Purpose Page
LSET/RSET LSET character-variable = Substitutes data into field variable. 67
character-expression
RSET character-variable =
character-expression
LPRINT LPRINT [expression] [{,|:]|_} Prints value of expression. 99
[expression]]*
LPRINT USING LPRINT USING format ; expression Output value of expression using specified | 101
K, | ;5 | _} [expression]]* format.
MESSAGE MESSAGE function, message-no. Allocates and releases message numbers. | 68
MIDS MIDS (character-expression, expression | Returns or replaces part of character string | 68
[, expression]) [= character-expression] | variable.
NAME NAME "old-file-name " AS "new-file-name” | Changes file name. 71
ON ALARM GOSUB [ON ALARM time GOSUB {line-no. | label} | Specifies interrupt time and defines 72
interrupt routine.
ON COM GOSUB ON COM [(port-no.)] GOSUB Defines subroutine to process interrupts 73
{line-no. | label} from communication line.
ON ERROR GOTO ON ERROR GOTO {0 | line-no. | label} Defines error processing routine and starts | 74
error trap.
ON FINS GOSUB ON FINS GOSUB {line-no. | label} Defines subroutine to process interrupts 74
from network.
ON GOSUB ON expression GOSUB {line-no. | label} Selects and calls one of several 75
[, {line-no. | label}]* subroutines based on the value of
expression.
ON GOTO ON expression GOTO {line-no. | label} Selects and branches to one of several 76
[, {line-no. | label}]* locations based on the value of
expression.
ON KEY GOSUB ON KEY (key-no.) GOSUB Defines subroutine to process numeric key | 76
{line-no. | label} interrupts.
ON PC GOSUB ON PC (interrupt-no.) GOSUB Defines subroutine to process interrupts 77
{line-no. | label} from PC.
ON SIGNAL GOSUB |ON SIGNAL (signal-no.) GOSUB Defines interrupt subroutine for 77
{line-no. | label} user-defined or system signal.
ON TIMES GOSUB |ON TIMES = "time"” GOSUB Defines subroutine to be executed at a 78
{line-no. | label} certain time.
ON TIMER GOSUB |ON TIMER = interval GOSUB Specifies subroutine to be executed after a | 79
{line-no. | label} certain interval
OPEN OPEN "file-name" Opens file. 80
[FOR {INPUT | OUTPUT | APPEND}]
AS #file-no.
OPTION BASE OPTION BASE {0 | 1} Declares subscript of first array element. 83
OPTION ERASE OPTION ERASE Declares initialization of non-volatile 83
variables.
OPTION LENGTH OPTION LENGTH no.-of-characters Declares default length for fixed character |84
strings.
PARACT PARACT task-no. [WORK no.-of-bytes] Declares beginning of task. 85
PAUSE PAUSE Stops execution of task until interrupt 85
occurs.
PC ON / STOP PC (interrupt-no.) {ON | STOP} Enables or stops interrupt from PC. 86

(OFF and STOP are
the same)

21

Statement List Section 2-3
Instruction Syntax Purpose Page
PC READ PC READ [WAIT time,] "[[#network, Reads data from PC into variable. 86
node,] source-area, start-word,
no.-of-words,]
format [, format]*"; variable [, variable]*
PC WRITE PC WRITE [WAIT time,] "[[#network, Writes value of variable to PC. 93
node,] destination-area, start-word,
no.-of-words,]
format [, format]*"; variable [, variable]*
POKE POKE address, expression Writes data to specified address of 99
memory.
PRINT PRINT [expression] Displays value of expression. 99
{, |7 |} [expression]l*
PRINT # PRINT #file-no., [expression] Outputs value of expression to a file. 99
[, ||} lexpression]l*
PRINT USING PRINT USING format ; expression Output value of expression in specified 101
K, |:|_} [expression]]* format.
PRINT # USING PRINT #file-no., USING format ; Output value of expression in specified 101
expression [{, | ; | .} [expression]]* format to a file.
PUT PUT #file-no. [, record-no.] Writes data to random file. 103
RANDOMIZE RANDOMIZE [expression] Initializes random series. 103
RDIM RDIM variable-name Declares non-volatile variables. 42
[(subscript [, subscript]*)]
[maximum-number-of-characters]
[, variable-name
[(subscript [, subscript]*)]
[maximum-number-of-characters]*
READ READ variable [, variable]* Reads data from DATA statement and 104
stores it in variable.
RECEIVE RECEIVE message-no., Receives message. 105
character-variable
REM REM [comment-text] Causes the BASIC Unit to ignore the 105
comment-text.
RESTORE RESTORE [{line-no. | label}] Specifies re-use of values in a DATA 106
statement
RESUME RESUME [{0 | line-no. | label | NEXT}] Exits from error processing routine. 106
RUN RUN ["file-name™] [, ERASE] Starts program execution. 109
SEND SEND message-no. , Sends message. 111
character-expression
SENDSIG SENDSIG signal-no., task-no. Generates signal. 111
SIGNAL SIGNAL signal-no. {ON | OFF | STOP} Enables, disables, or stops signal interrupt. | 112
ON / OFF / STOP
STOP STOP Stops program execution. 115
SWAP SWAP variable-name, variable-name Swaps values of two variables. 117
TASK TASK task-no. Starts terminated task. 119
TIMES TIMES {ON | OFF | STOP} Enables, disables, or stops time interrupt. | 120
ON / OFF / STOP
TIMER TIMER {ON | OFF | STOP} Enables, disables, or stops timer interrupt. | 121
ON / OFF / STOP
TROFF TROFF [{task-no. | ALL}] Stops output of line number trace. 121
TRON TRON [{task-no. | ALL}] Starts output of line number trace. 121
TWAIT TWAIT task-no. Waits for termination of task. 122

22

Function List Section 2-4
Instruction Syntax Purpose Page
VLOAD VLOAD "file-name” Reads contents of non-volatile variable 125
from file.
VSAVE VSAVE “file-name"” Saves contents of non-volatile variable to | 125
file.
WHILE/WEND WHILE conditional-expression Repeatedly execute series of statements 126
WEND while condition is satisfied.
WRITE WRITE expression Outputs value of expression. 126
[, ||} [expression]]*
WRITE # WRITE #file-no., expression Outputs value of expression to a file. 126
[{, | : |} lexpression]l*
2-4 Function List
Instruction Syntax Purpose Page
ABS ABS (expression) Calculates the absolute value of the expres- | 29
sion.
ACOS ACOS (expression) Calculates arc cosine of the expression. 29
ASC ASC (character-expression) Returns the ASCII code of the first 31
character of character-expression.
ASIN ASIN (expression) Calculates the arc sine of the expression. |31
ATN ATN (expression) Calculates the arc tangent of the 32
expression.
CDBL CDBL (expression) Converts expression into a 33
double-precision real number.
CHR$ CHRS (expression) Converts expression into characters. 34
CINT CINT (expression) Rounds any fractional part of expression 35
cos COS (expression) Returns cosine of expression. 37
CSNG CSNG (expression) Converts expression into single-precision | 38
real number.
CVvIl / cvs / CVI (2-character-string) Converts character string into numeric 38
CVD CVS (4-character-string) value.
CVD (8-character-string)
DATES DATES [= “year/month/day"] Returns date of internal clock, or sets date. |40
EOF EOF (file-no.) Returns true (-1) if file-no. has reached 45
end of file; false (0) otherwise.
ERL/ERR ERL Return line on which error has occurred 46
ERR (ERL) and error code (ERC).
EXP EXP (expression) Calculates exponential function of 48
expression (e®Xpression)
FIX FIX (expression) Truncates any fractional part of 50
expression.
FRE FRE (expression) Returns size of unused memory area. 52
HEX$ HEXS (expression) Returns a character string with the value of | 54
expression expressed as a hexadecimal
number.
INKEYS INKEYS Returns next character in keyboard buffer. |56
INPUTS INPUTS (expression [, #file-no.]) Reads character string of specified length |58
from specified file.
INSTR INSTR ([expression,] character-string, Searches for key-string in character-string | 59

key-string)

and returns its position.

23

Function List Section 2-4
Instruction Syntax Purpose Page
INT INT (expression) Returns the largest integer which does not |59
exceed expression.
INTRB INTRB Variables containing information on an 60
INTRL INTRL interrupt that has occurred.
INTRR INTRR
LEFTS LEFTS$ (character-expression , Returns the leftmost expression characters | 61
expression) from character-expression.
LEN LEN (character-expression) Returns length of character-expression. 62
LOC LoC (file-no.) Returns current logical position in file. 65
LOF LOF (file-no.) Returns size of file. 66
LOG LOG (expression) Calculates natural logarithm of expression | 66
MIDS MIDS$ (character-expression , Returns length characters from 68
length [, position]) character-expression starting from
position.
MKIS$ / MKS$ / MKIS$ (integer-value) Converts numeric value into character 70
MKD$ MKSS$ (single-precision-value) string.
MKDS$ (double-precision-value)
OCTS$ OCTS (expression) Returns a character string with the value of | 71
expression expressed as an octal number.
PEEK PEEK (address) Returns contents of the specified address. |97
RIGHTS RIGHTS (character-expression , Returns the rightmost expression 107
expression) characters from character-expression
RND RND (expression) Returns random number. 108
SEARCH SEARCH (integer-array [, expression] Searches for first occurrence of the integer | 110
[, start-element] [, increment]) value expression in integer-array and
returns element number.
SGN SGN (expression) Returns -1, 0, or 1 depending on whether [112
expression is negative, zero, or positive.
SIN SIN (expression) Calculates sine of expression. 113
SPACES$ SPACES (expression) Returns a character string containing 113
expression spaces.
SPC SPC (expression) Outputs expression spaces. 114
SQOR SQR (expression) Calculates the square root of expression. | 114
STRS STRS (expression) Returns a character string with the value of | 116
expression expressed as a decimal
number
STRINGS STRINGS (expression , Returns a string with expression copies of | 117
{character-string | character-code}) the first character of character-expression
or character-code.
TAB TAB (expression) Moves cursor to specified column. 118
TAN TAN (expression) Calculates tangent of expression. 119
TIMES TIMES [= "hour:minute :second”] Returns time of internal clock, or sets time. | 120
USR USR[func-no.] (argument) Calls a machine language function 122
VAL VAL (character-expression) Converts character-expression into a 123
numeric value.
VARPTR VARPTR (variable-name) [, feature) Returns memory address of variable. 123

24

GP-IB Instruction List

Section 2-5

2-5 GP-IB Instruction List

Statement
Instruction Syntax Purpose Page

CMD DELIM CMD DELIM = delimiter-code Specifies delimiter. 128

CMD PPR CMD PPR = mode Selects PPR mode. 128

CMD TIMEOUT CMD TIMEOUT = timeout-parameter Specifies limit value for timeout check. 128

INPUT @ INPUT@ [talker-address Receives data sent from specified talker 129

[, listener-address [, listener-address]*]]; |and stores it in variable.
variable [, variable]*

IRESET REN IRESET REN Makes REN (remote enable) false. 129

ISET IFC ISET IFC [, integer] Transmits IFC (interface clear). 129

ISET REN ISET REN Makes REN (remote enable) true. 130

ISET SRQ ISET SRQ [@] [N] Transmits SRQ (service request). 130

LINE INPUT @ LINE INPUT@ [talker-address Receives string data sent from specified 130

[, listener-address [, listener-address]*]]; |talker and substitutes it into character
character-string-variable string variable.

ON SRQ GOSUB ON SRQ GOSUB f{line-no. | label} Specifies first line of SRQ subroutine. 131

POLL POLL talker-address, numeric-variable Performs serial polling. 131

[; talker-address, numeric-variable]*

PPOLL PPOLL [PPU] [, listener-address, Assigns response output line for parallel 132

integer]* polling.

PRINT @ PRINTQ [listener-address Transmits data as ASCII character string. | 132

[, listener-address]*|; [data [, data]*] [@]
RBYTE RBYTE [command] [, command]*; Receives binary data after transmitting 133
[numeric-variable [, numeric-variable]* multi-line message.

SRQ SRQ {ON | OFF | sTOP} Controls reception of SRQ. 133

ON/OFF/STOP

WBYTE WBYTE [command] [, command]*]; Transmits multi-line message and binary 133

[data [, datal*] [e] data.
Function
Instruction Syntax Purpose Page

IEEE(0) IEEE(0) Checks the delimiter. 134

IEEE(1) IEEE(1) Checks the initialized status of GP-IB 134
interface.

IEEE(2) IEEE(2) Checks the talker and listener status, and | 134
received interface message.

IEEE(4) IEEE(4) Stores the device status of the device that | 134
transmits the service request during serial
polling.

IEEE(5) IEEE(5) Stores the talker address of the device that | 134
transmits the service request during serial
polling.

IEEE(6) IEEE(6) Stores the talker address of the device that | 134
does not respond to the serial polling.

IEEE(7) IEEE(7) Stores the data byte obtained as a result of | 135
parallel polling.

STATUS STATUS Stores device status. 135

25

SECTION 3
Instruction Reference

This section describes the commands, statements, and functions of the BASIC Unit. The instructions are listed in alphabetical
order. GP-IB instructions are listed separately.

3-1 Guide to REfErenceot e 28
32 REfCIENCE . .ottt 29
3-3 GP-IBINSIUCHIONSottt ittt e et e e e e e 128

27

Guide to Reference Section 3-1

3-1 Guide to Reference

Instructions are listed alphabetically. The description of each instruction is as

follows:
ABS
Purpose: Function. Calculate =~ A
Syntax: ABS(€X, B
Comments: Retunsthea . C
As the expres
sion floating-
The value re
Example: A = ABS(-7) D
Program Sample: 10 " test E
20 PARACT 0
30 A=-77
40 B=100
50 PRINT
See Also: CHRS F

1. Purpose:
Indicates whether the instruction is a command, statement, or function and describes its basic pur-
pose.

2. Syntax:

Describes the form(s) in which the instruction appears in a program, using the following notation:.
* Words and symbols in typewriter font should be entered exactly as written.
* [tems in square brackets ([]) may be omitted.

* ltems in curly brackets ({}) indicate choices; alternatives are delimited from each other with the
vertical bar character (|). Select one of the alternatives.

* An asterisk (*) indicates that the preceding item or group of items may be repeated.

* _indicates a required space. (Spaces can also be used between words and symbols to in-
crease program readability.)

* Words in italics are English descriptions of the element that should be substituted. For example,
line-no. should be replaced with an actual line number.

3. Comments:

Describes any information pertinent to the instruction, such as the range of its arguments, and any
points to be noted.

4. Example:
Describes a simple example of the instruction’s usage.

5. Program Sample:
Shows a sample program or program fragment using the instruction.

6. See Also:

Indicates other instructions with related features.

28

ACO Reference

Section 3-2

3-2 Reference

@

Purpose: Command. Selects a task to be referred to.

Syntax: @[task-no.]

Comments: Selects the task specified by the task-no. for referral when BREAK or STOP is
executed.
When this command is used during execution of a BREAK or STOP, refer-
ences will be changed to the task specified by the task-no. and the local vari-
ables in the task can be referenced by direct execution of a PRINT state-
ment. If fask-no. is omitted, the number of the task currently being referred
to is displayed. If this command is executed after the program has been ex-
ecuted, a message is output indicating the task number and the last line
number executed in the task.

Example: @3

ABS

Purpose: Function. Calculates the absolute value of the expression.

Syntax: ABS (expression)

Comments: Returns the absolute value of the specified expression.
An integer, single-precision floating-point, or double-precision floating-point
expression can be specified as the expression.
The value returned is of the same type as expression.

Example: A = ABS(-7)

Program Sample:

ACOS

10 ' test command name :ABS
20 PARACT O

30 A=-77

40 B=100

50 PRINT "ABS(”;A;")——>";ABS(A)
60 PRINT "ABS(”;B;”)—-—>";ABS(B)
70 END

80 END PARACT

ok

RUN

ABS(-77)-—> 77
ABS(100)——> 100
ok

Purpose:
Syntax:

Comments:

Example:

Function. Calculates the arc cosine of the expression.
ACOS (expression)

Returns the arc cosine of the specified expression. Specify the expression in
radians.

If the expression is of type integer or single-precision, then single-precision is
assumed and the result of the calculation is of type single-precision. If the
expression is of type double-precision, then double-precision is assumed and
the result is of type double-precision.

A = ACOS(0.4)

29

ALA Reference Section 3-2

Program Sample: 10 ‘test command name :ACOS
20 PARACT 0
30 PRINT ”Calculates the arc cosine.”
40 INPUT ”Input numeric value...”,VALUE
50 ANGLE=180/3.141592*ACOS(VALUE)
60 PRINT ”Arc cosine is”;ANGLE;”degree.”
70 END
80 END PARACT
Ok
RUN
Calculates the arc cosine.
Input numeric value... 0.5
Arc cosine is 60 degree.

See Also: ASIN, ATN

ALARM ON/OFF/STOP

Purpose: Statement. Enables, disables, or stops time interrupt.
Syntax: ALARM {ON | OFF | STOP }
Comments: ON enables the interrupt. When this statement is executed, the program ex-

ecution branches to a defined processing routine if an interrupt occurs.

OFF disables the interrupt. When this statement is executed, the program
execution does not branch to a defined processing routine even if an inter-
rupt occurs.

STOP disables the interrupt. When this statement is executed, the program
execution does not branch to a defined processing routine even if an inter-
rupt occurs. However, the occurrence of the interrupt is recorded and the
execution branches to the defined routine when the interrupt is enabled.

Note 1. Interrupts are stopped immediately after the ON ALARM GOSUB statement
is executed.

2. Only one interrupt is allowed for each ON ALARM GOSUB statement. Inter-
rupts are stopped when execution has branched to the interrupt processing

routine.
Example: ALARM ON
Program Sample: 10 ' test command name :ALARM
20 PARACT O
30 CLS
40 ON ALARM 300 GOSUB *ALON

50

60 ALARM ON

70 LOCATE 0,0:PRINRT ”Alarm timer set TIME”;TIMES$

80 PAUSE

90 END

100 *ALON

110 LOCATE 0,5:PRINT ”“Alarm signal occurs”;SPACES$(12);TIMES
120 RETURN

130 END PARACT

See Also: ON ALARM GOSUB

30

ASI Reference Section 3-2

ASC

Purpose: Function. Returns the character code of the first character in character-string.

Syntax: ASC (character-string)

Comments: Calculates the character code of the first character of character-string and
returns it as an integer.

Example: A = ASC(BS)

Program Sample:

See Also:

ASIN

10 ' test command name :ASC
20 PARACT O

30 ‘Converts ”"a” and ”"A” into their character codes
40 SMALLS="a"

50 S=ASC(SMALLS)

60 L=S-32

70 LARGE$=CHRS (L)

80 PRINT SMALLS;"———>";S

90 PRINT LARGES;"———>";L

100 END

110 END PARACT

Ok

RUN

a———> 97

A-——> 65

CHRS

Purpose:
Syntax:

Comments:

Example:

Program Sample:

See Also:

Function. Calculates the arc sine of the expression.
ASIN (expression)

Returns the arc sine of the specified expression. Specify expression in ra-
dians.

If the expression is of type integer or single-precision, then single-precision is
assumed and the result of the calculation is of type single-precision. If the
expression is of type double-precision, then double-precision is assumed and
the result is of type double-precision.

A = ASIN(O,3)

10 'test command name :ASIN

20 PARACT 0

30 PRINT “Calculates the arc sine.”

40 INPUT "Input numeric value...”,VALUE
50 ANGLE=180/3.141592*ASIN(VALUE)

60 PRINT ”Arc sine is”;ANGLE;"degree.”
70 END

80 END PARACT

Ok

RUN

Calculates the arc sine.

Input numeric value... 0.5

Arc sine is 30 degree.

ACOS, ATN

31

BIT..... Reference Section 3-2

ATN

Purpose: Function. Calculates the arc tangent of the expression.

Syntax: ATN (expression)

Comments: Returns the arc tangent of the specified expression. Specify the expression
in radians.
If the expression is of type integer or single-precision, then single-precision is
assumed and the result of the calculation is of type single-precision. If the
expression is of type double-precision, then double-precision is assumed and
the result is of type double-precision.

Example: A = ATN(1)

Program Sample:

10 "test command name :ATN ’
20 PARACT O

30 PRINT ”Calculates arc tangent.”

40 P#=3.14159265359

50 INPUT "Input numeric value...”,A
60 X=ATN(A);Y=X/P#*180
70 PRINT ”"ATN(X) =";Y;"”degree.”
80 END
90 END PARACT
ok
RUN
Calculates the arc tangent.
Input numeric value... 0.5
ATN(X) = 26.5651 degree.
See Also: ACOS, ASIN
AUTO
Purpose: Command. Automatically generates line numbers when a program is input.
Syntax: AUTO [start-line-no.] [,increment]
Comments: Automatically generates line numbers starting from start-line-no. in incre-
ments of increment.
Both start-line-no. and increment can be set in the range 1 to 65529. The
default for both is 10.
AUTO is canceled when the abort key is pressed or when a non-existent
start-line-no. is input. If a line number that exists is input, only that line is de-
leted.
If a line number that already exists is generated, that line number is displayed.
The cursor is moved to the end of statement + 1 column, allowing editing using
the EDIT command.
Example: AUTO 1000,20
See Also: EDIT
BITON/BITOFF
Purpose: Statement. Turns ON (1) or OFF (0) the specified bit of an integer variable.
Syntax: {BITON | BITOFF} integer-variable, bit-position
Comments: Specify the bit-position as an integer from 0 to 15. The least significant bit is
0.
Example: BITON N, 3

32

CDB Reference

Section 3-2

Program Sample:

10 ‘test command name :BIT ON/OFF ’
20 PARACT 0

30 A%=0
40 BITON A$%,4
50 PRINT ”"BITON : ";A%
60 BITOFF A%,4
70 PRINT ”BITOFF : ;A%
80 END
90 END PARACT
ok
RUN
BITON : 16
BITOFF : 0
BREAK
Purpose: Command. Sets, deletes, or lists breakpoints.
Syntax: BREAK [{DELETE {ALL | line-no. [, line-no.]*} | line-no. [, line-no.1*}]
Comments: Sets or deletes a breakpoint on a line specified by line-no.. Up to 10 break-
points can be set or deleted.
If BREAK is used without arguments all the breakpoints currently set are
listed.
Each breakpoint stops the program execution before the line on which the
breakpoint is set is to be executed, and displays the following message:
Break in line-no.
Example: BREAK 120
CALL
Purpose: Statement. Calls and executes a machine language program (subroutine)
stored in memory.
Syntax: CALL name [(argument [, argument]*)]
Comments: The name must be an integer variable and its value must be the offset of the
execution start address of the machine language program to be called.
The execution branches to an address indicated by the segment specified by
the DEF SEG statement executed immediately before and by the offset speci-
fied by the name.
Specify any variables to be passed to the machine language program as ar-
guments. Variables of any type can be specified as arguments but constants
and expressions cannot be used.
From the machine language program called by the CALL statement, control
can be returned to the calling program by the machine language RETF in-
struction.
Example: CALL AB%(N,AS)
See Also: DEF SEG, USR
CDBL
Purpose: Function. Converts expression into a double-precision floating-point number.
Syntax: CDBL (expression)
Comments: Converts the integer or single-precision floating-point number expression into

a double-precision floating-point number.

The expression can be double-precision floating-point type. In this case CDBL
has no effect.

33

CHR Reference Section 3-2

Example: C# = CDBL(B!/4)

Program Sample: 10 ‘test command name :CDBL ’
20 PARACT 0
30 A!=123.45678!
40 B#=CDBL(A!)
50 PRINT "A=";A!, "CDBL(A)=";B#
60 END
70 END PARACT
ok
RUN
A= 123.457 CDBL(A)= 123.4567794799805

See Also: CINT

CHRS

Purpose: Function. Converts expression into a character.

Syntax: CHRS (expression)

Comments: Returns the character whose character code is equal to expression.

Specify the expression in the range 0 to 255.
Example: AS$ = CHRS(67)

Program Sample: 10 'test command name :CHRS ’
20 PARACT O
30 ’ Outputs character codes 48 through 69"
40 FOR I= 48 TO 69

50 PRINT “[”;I;”]———>";CHRS$(I)
60 NEXT I
70 END
80 END PARACT
Ok
RUN
[48]1-——>0
[49 1-—>1
[50 1——>2
[51 1——>3
[52 1——>4
[53 1——>5
[54]-—>6
[55 1———>7
[56 1-—>8
[57 1-——>9
[58]——>:
[59 1—>;
[60]——><
[61]———>=
[62 1——>>
[63]——>?2
[64 1——>@
[65]——>A
[66]-——>B
[67 1——>C
[68 1——>D
[69]1-——>E
See Also: ASC

34

CLO Reference

Section 3-2

CINT
Purpose: Function. Converts expression into an integer.
Syntax: CINT (expression)
Comments: Converts the single-precision floating-point number or double-precision float-
ing-point number specified by expression into an integer.
The expression can be of integer type.
Specify expression in the range —-32768 to 32767. Fractions are rounded up
if positive, down if negative.
Example: A% = CINT(B#)
Program Sample: 10 ’'test command name :CINT '
20 PARACT 0
30 A=75.57
40 B=-5.51
50 C%=CINT(A)
60 D%$=CINT(B)
70 PRINT "A=";A,"CINT(A)=";C$%
80 PRINT "B=";B,”CINT(B)=";D$%
90 END
100 END PARACT
Ok
RUN
A= 75.57 CINT(A)= 76
B=-5.51 CINT(B)=-6
See Also: CDBL, CSNG, FIX, INT
CLOSE
Purpose: Statement. Closes file.
Syntax: CLOSE [#file-no. [, #file-no.]*]
Comments: Closes the file specified by file-no. The file-no. is the number assigned to the
file when the file was opened.
Once afile is closed the file number is no longer associated with it.
A file number previously assigned to a closed file can be used when opening
the same or a different file. A closed file can be opened by specifying the
same or a different file number.
If file-no. is omitted, all open files are closed.
CLOSE dumps all the data in the buffer when the file was opened for output.
To correctly terminate output processing of the file, CLOSE must be executed.
Note Files are closed automatically by END and RUN.
Example: CLOSE #1
Program Sample: 10 ’‘test command name :CLOSE
20 PARACT 0
30 OPEN "INDATA” FOR OUTPUT AS #1
40 PRINT #1 "BASIC UNIT”
50 'Closes specified file no.
60 CLOSE #1
70 OPEN "INDATA” FOR INPUT AS #1
80 LINE INPUT #1,L$

90 OPEN "OUTDATA” FOR OUTPUT AS #2
100 PRINT #2,L$

35

COM ... Reference

Section 3-2

See Also:

CLS

110 CLOSE #2

120 OPEN ”OUTDATA” FOR INPUT AS #2
130 LINE INPUT #2,K$
140

150 PRINT KS$

160 '

170 CLOSE

180 END

190 END PARACT

Ok

RUN

BASIC UNIT

END, OPEN, RUN

Purpose:
Syntax:
Comments:
Example:

Program Sample:

Command or Statement. Clears screen.

CLS
Clears the screen and returns the cursor to the home position.
CLS

10 'test command name :CLS

20 PARACT O

30 INPUT "Input X”;X

40 INPUT "Input Y”;Y

50 IF X > Y THEN PRINT ”“X is greater than Y”
60 IF Y > X THEN PRINT ”X is less than Y”
70 IF X = Y THEN PRINT "X is equal to Y”
80 FOR I=0 TO 1000 :NEXT I

90 CLS

100 END

110 END PARACT

ok

RUN

Input X? 12

Input Y2 13

X is less than Y

COM ON/OFF/STOP

Purpose:
Syntax:

Comments:

36

Note

Statement. Enables, disables, or stops interrupt from communication line.
COM [(port-no.)] {ON | OFF | sTOP}

Specify port 1 to 3 as the port-no. (Port 1 is the default)

ON enables the interrupt so that program execution branches to a defined
processing routine if an interrupt occurs.

OFF operates the same as STOP.

STOP stops the interrupt. When this statement is executed, the program ex-
ecution does not branch to the processing routine even if an interrupt occurs.
However, the occurrence of the interrupt is recorded and execution branches
to the processing routine after the interrupt is enabled.

1. The interrupt is stopped immediately after the ON CcOM GOSUB statement
has been executed.

2. The interrupt is stopped when control has been passed to the interrupt pro-
cessing routine.

COS Reference

Section 3-2

Example: COM (1) ON

See Also: ON COM GOSUB

CONT

Purpose: Command. Resumes execution of the program.

Syntax: CONT

Comments: Resumes execution of a program halted by the STOP statement, BREAK com-
mand, or abort key.
Quit in line-no will be displayed when the program is stopped with CTRL
+ X, in which case STEP or CONT cannot be used. If BREAK in line-no is
displayed when the program is stopped with CTRL + C, it is possible to use
STEP Or CONT.

Note When the program is halted and modified, it cannot be resumed by CONT. In ad-
dition, the program may not be able to be resumed depending on the timing at
which its execution has been halted.

Example: CONT

See Also: STOP, BREAK

COS

Purpose: Function. Returns the cosine of expression.

Syntax: COS (expression)

Comments: Returns the cosine of the specified expression. Specify the expression in ra-
dians.
If the expression is of type integer or single-precision, then single-precision is
assumed and the result of the calculation is of type single-precision. If the
expression is of type double-precision, then double-precision is assumed and
the result is of type double-precision.

Example: A = COS(ANGLE)

Program Sample:

10 'test command name :COS !
20 PARACT O
30 FOR X=0 TO 180 STEP 10

40 C=COS(X/180*3.1415927#)
50 PRINT ”Angle:”;X, "Cosine:"”;C
60 NEXT X

70 END

80 END PARACT

Ok

RUN

Angle: 0 Cosine: 1

Angle: 10 Cosine: .984808

Angle: 20 Cosine: .939693

Angle: 30 Cosine: .866025

Angle: 40 Cosine: .766044

Angle: 50 Cosine: .642788

Angle: 60 Cosine: .5

Angle: 70 Cosine: .34202

Angle: 80 Cosine: .173648

Angle: 90 Cosine:-2.32051E-08

Angle: 100 Cosine:—.173648
Angle: 110 Cosine:—.34202

37

CVl..... Reference Section 3-2

Angle: 120 Cosine:-.5

Angle: 130 Cosine:—.672788
Angle: 140 Cosine:—.766044
Angle: 150 Cosine:—-.866025
Angle: 160 Cosine:—-.939693
Angle: 170 Cosine:—.984808
Angle: 180 Cosine:-1

See Also: SIN, TAN

CSNG

Purpose: Function. Converts expression into a single-precision floating-point number.
Syntax: CSNG (expression)

Comments: Converts an integer or double-precision floating-point number expression into

a single-precision floating-point number. The expression can be single-preci-
sion floating-point type.

Specify expression in the range +3.4%10738,
Example: Al = CSNG(B#/2)

Program Sample: 10 ‘test command name :CSNG ’
20 PARACT O
30 D#=9876.5432#
40 S=CSNG (D#)
50 PRINT ”Double-precision floating-point number”;TAB(28);
55 PRINT ”Single-precision floating-point number”
60 PRINT D#;TAB(28);S
70 END
80 END PARACT
Ok
RUN
Double-precision floating-point number Single-precision
floating-point number

9876.5432 9876.54
See Also: CINT
CVI/CVS/CVD
Purpose: Function. Converts character string into numeric value.
Syntax: CVI (2-character-string)
CVS (4-character-string)
CVD (8-character-string)
Comments: Restores the numeric value converted by MKI$/MKSS$/MKDS.
CVI converts the 2-character string converted by MKI$ into an integer.
Cvs converts the 4-character string converted by MKS$ into a single-precision
floating-point number.
CVvD converts the 8-character string converted by MKDS$ into a double-preci-
sion floating-point number.
Example: A = CVI(BS)
Program Sample: 10 ‘test command name :CVI/CVS/CVD '

20 PARACT 0

30 OPEN ”“DATAl” AS #1

40 FIELD #1,4 AS TESTIS$,4 AS TESTS$,8 AS TESTDS
50 LSET TESTI$=MKIS$(100%)

38

DATa ... Reference

Section 3-2

60 LSET TESTS$=MKS$(1.23456)
70 LSET TESTD$=MKDS$(12345.123456789#)
80 PUT #1,1

90

100

110 GET #1,1

120 I%=CVI(TESTI$)

130 S!=CVS(TESTS$)

140 D#=CVD(TESTD$)

150 PRINT “CVI-—>";I%

160 PRINT “CVS——>";S!

170 PRINT “CVD-—>";D#

180 CLOSE

190 END

200 END PARACT

ok

RUN

CVI-—> 100

CVS——> 1.23456

CVD——> 12345.123456789

See Also: MKI$/MKS$/MKD$

DATA

Purpose: Statement. Stores numeric constants and character constants to be read by
READ statements.

Syntax: DATA constant [, constant]*

Comments: The DATA statement is a non-executable statement and can be placed any-
where in the task block of the program. As many DATA statements as re-
quired can be placed in one program.

The constant can be a character constant, integer constant, single-precision
floating point constant, or double-precision floating point constant.

If the data of the DATA statement is a character constant and is regarded as
a numeric value, the character constant must be enclosed with a pair of
double quotation marks (”).

Example: DATA 3,AB,CDE,7,1357

Program Sample:

See Also:

10
20
30
40
50
60
70
80
90
100
Ok
RUN
BAS
3.1

'test command name :DATA
PARACT 0
READ NAME1S,NAME2S
READ NUMB1,NUMB2,NUMB3
PRINT NAME1S$,NAME2S
PRINT NUMB1,NUMB2,NUMB3
END

DATA BASIC,UNIT

DATA 3.14,1.41,1991

END PARACT

IC UNIT
4 1.41 1991

READ, RESTORE

39

DEFf ... Reference

Section 3-2

DATES
Purpose: Function. Returns date of internal clock, or sets date.
Syntax: DATES$ [= ”year/month/day"]
Comments: Returns the current date if =”year/month/day” is omitted. The value returned
is of character type. If =”year/month/day” is specified, the date is set.
The format of the date is as follows:
"YY/MM/DD” YY: year (lower 2 digits)
MM: month (01 to 12)
DD: day (01 to 31)
Example: A $ = DATES$

Program Sample:

10 'test command name :DATES ’
20 PARACT O

30 YY$=LEFTS$ (DATES,2)

40 MM$=MIDS$ (DATES,4,2)

50 DD$=RIGHTS (DATES, 2)

60 PRINT ”TODAY IS ";YYS$;”."”;MMS;”.”;DDS$;"”."
70 END

80 END PARACT

Ok

RUN

TODAY IS 92.06.04.

See Also: TIMES

DEF FN

Purpose: Statement. Defines a function.

Syntax: DEF function-name [(argument [, argument]*)] = function-definition-ex-
pression

Comments: The function-name must start with FN followed by, as the third character, a
letter of the alphabet.
The type of result returned by the third character of the function’s name. For
example, a function called FNX would return an integer if the DEFINT X
statement had been executed, or a double-precision value if DEFDBL X had
been executed.
The arguments correspond to variables having the same names in function-
definition-expression. These variables are valid only when the function-defini-
tion-expression is evaluated.
A variable having the same name as that of an argument can be used in the
program.
The DEF FN statement must be used before using the function in a task.
The function-name must be unique in any one task.

Note The function-name defined by the DEF FN statement is valid only in the same

task.

Example: DEF FNS(A,B) = A*16+B

Program Sample: 10 ‘test command name :DEF FN
20 PARACT 0
30 DEF FNS(A,H)=A*H/2
40 PRINT ”Calculates the area of triangle.”
50 INPUT ”"Base = ";A

40

DEFi ... Reference

Section 3-2

60 INPUT "Height = ";H

70 PRINT "Area = ";FNS(A,H)

80 END

90 END PARACT

Ok

RUN

Calculates the area of triangle.
Base = ? 10

Height = 2 20

Area = 100

DEFINT/DEFSNG/DEFDBL/DEFSTR

Purpose:

Syntax:

Comments:

Example:

Program Sample:

Note

Statement. Declares variable type.

{DEFINT | DEFSNG | DEFDBL | DEFSTR} {character | character—character}
[, {character | character—character}]*

The DEF statement declares the type of a single variable or a set of vari-
ables beginning with character.

The type declared by a type declarator (%, !, #, or $) takes precedence over
the type declared by the DEF statement.

A range of variables can be specified by linking characters with a hyphen.

DEFINT declares integer type, DEFSNG declares single-precision floating
point type, DEFDBL declares double-precision floating point type, and
DEFSTR declares character type.

This declaration must be made before declaring or using all variables, and there-
fore, is valid in all tasks.

DEFINT I-N

10 "test command name :DEFINT
20 DEFINT I - N

30 DEFSNG S

40 DEFDBL D

50 DEFSTR A

60 PARACT O

70 I=3.14159265358979#

80 S=3.14159265358979#

90 D=3.14159265358979#

100 A="Ratio of the circumference”
110 PRINT SPC(8);A

120 PRINT "Integer ”;I

130 PRINT ”Single-precision ”;S
140 PRINT ”Double-precision ”;D

150 END

160 END PARACT

Ok

RUN

Ratio of the circumference
Integer 3

Single-precision 3.14159
Double-precision 3.14159265358979

41

DIM Reference

Section 3-2

DEF SEG

Purpose: Statement. Declares segment address.

Syntax: DEF SEG = segment-address

Comments: Defines a segment address for use when a memory address is specified by
the CALL, DEF USR, or POKE statement, or by PEEK or USR function.
Unless this declaration is made, the segment address is 0.

Example: DEF SEG = &H0100

See Also: CALL, DEF USR, POKE, PEEK, USR, VARPTR

DEF USR

Purpose: Statement. Defines the execution start address of the machine language pro-
gram for a USR function.

Syntax: DEF USR[no.] = start-address

Comments: The no. is 0 to 9. This number is used to identify a USR function when two or
more USR functions are used.

0 is the default if no. is omitted.

As the start-address, specify the offset of the execution start address of the
machine language program to be called.

As the segment value, the value of the DEF SEG statement executed imme-
diately before is used.

Example: DEF USR3 = &H0800.

See Also: DEF SEG, USR

DELETE

Purpose: Command. Deletes program lines.

Syntax: DELETE {start-line-no. [-1 | — end-line-no.}

Comments: Either a start-line-no. or an end-line-no. must be specified.

If start-line-no. only is specified, then only that line is deleted.

If start-line-no. is specified followed by a hyphen (-), all the lines following
and including the start line number are deleted.

If the end-line-no. is specified preceded by a hyphen, all the lines starting
from the first line to (and including) the specified end line are deleted.

Example: DELETE 500-999

DIM/RDIM

Purpose: Statement. Declares a variable. If an array variable, declares the number of
dimensions and the maximum value of the subscript of each dimension. If the
variable is a character string, the maximum number of characters can be de-
clared.

The DIM statement declares ordinary global and local variables.
The RDIM statement declares non-volatile variables.

Syntax: RDIM variable-name [(subscript [, subscript]*)] [maximum-number-of-
characters] [, variable-name [(subscript [, subscript]*)] [maximum-num-
ber-of-characters]]*

Comments: The number of dimensions and the maximum number of subscripts of all the

42

array variables must be declared before the variables are referenced. When
the DIM statement is used to declare a local variable, make the declaration
immediately after the PARACT statement.

The RDIM statement can make a declaration only before a task. When using
the DIM statement at the same time, the RDIM statement must come before

DIM Reference

Section 3-2

Example:

Program Sample:

Note

the DIM statement. The RDIM and DIM statements cannot be used to make a
multi-statement in a single line.

The subscript must be a constant.

The lower-limit value of the subscript can be set to be 0 or 1 by the OPTION
BASE statement.

The maximum-number-of-characters can be specified for a character string
variable.

The maximum value of maximum-number-of-characters is 538. Specify a
numeric constant.

If maximum-number-of-characters is omitted, the character length specified
by the OPTION LENGTH statement is assumed.

If neither maximum-number-of-characters nor the OPTION LENGTH state-
ment is specified, the maximum number of characters of the character string
variable is 18.

A simple, local variable can be used without being declared by the DIM state-
ment.

A local variable must not have the same name and type as a global variable.

An array is like a table of values. Each element in the table is accessed by giving
the table’s name and the element number in parentheses. In the examples be-
low, itis assumed that the lower limit on array subscripts is set to its default value,
0. Thus, an array declared as DIM X(2) would have 3 elements: X(0), X(1),
and X(2).

DIM A(2): 1-dimensional array, 3 elements

| 200 [a)y [a2 |

DIM A(2,3): 2-dimensional array, 12 elements

A(0,0) | a(o,1) | A(0,2) | A(0,3)
A(1,0) | a(1,1) | Aa(1,2) | A(1,3)
A(2,0) | Aa(2,1) | Aa(2,2) | A(2,3)

DIM A(2,3,4): 3-dimensional array, 60 elements

[I | I 3/4)
I | 3r3)
| | r | 3,2 3,4)
3,1 3,3)
A(0,0,0)|A(0,1,0)|A(0,2,0)|A(0,3,0 3,2 3,4)
3,1 3,3)
A(1,0,0)|A(1,1,0)|A(1,2,0)|A(1,3,0 3,2
3,1
A(2,0,0)|A(2,1,0)|A(2,2,0)|A(2,3,0

DIM AZ(100)

10 'test command name :DIM

20 PARACT

0

30 DIM A(3,5)

40 FOR I=1 TO 3

50 FOR J=1 TO 5
A(I,J)=I*J

60

70 NEXT J

80 NEXT I
90 FOR I=

1 TO 3

43

EDI Reference

Section 3-2

See Also:

EDIT

100 FOR
110

J=1 TO 5
PRINT "A(";I;",";J;") =";A(I,J)

120 NEXT J

130 NEXT I
140 END

150 END PARACT

ok

RUN

A(l,1) =
A(1,2) =
A(1,3) =
A(l,4) =
A(1,5) =
A(2,1) =
A(2,2) =
A(2,3) =
A(2,4) =
A(2,5) =
A(3,1) =
A(3,2) =
A(3,3) =
A(3,4) =
A(3,5) =

H P OO0 WKL 0O N UL WN

2
5

OPTION BASE, OPTION ERASE, OPTION LENGTH

Purpose:

Syntax:

Comments:

44

Command. Edits one line of the program.

EDIT [line-no.]

Displays the specified program line and allows editing by inserting or deleting
characters and moving the cursor.

If line-no. is omitted, the line executed last is selected.
If the line specified by line-no. does not exist, an error occurs.
The following edit keys can be used:

Right key | Moves the cursor to the right. This key has no effect when the cursor
is at the last column of the last line.

Left key | Moves the cursor to the left. This key has not effect when the cursor is
at the beginning of the first line.

Up key | Moves the cursor up one line. When this key is pressed with the
cursor on the top line, the cursor moves to the beginning of the line.
With the cursor at this position, this key has no effect.

Down key | Moves the cursor down one line. If this key is pressed with the cursor
at the bottom line, the cursor moves to the last column of the line. With
the cursor at this position, this key has no effect.

HOME Moves the cursor to the beginning of the first line.

BS or DEL | Deletes the character to the left of the cursor. This key has no effect
when the cursor is at the beginning of a line.

RETURN | Carriage return.

CTRL + E | Deletes the characters to the left of the cursor.

CTRL + L | Clears the entire screen. The cursor moves to the home position.

or CLR

CTRL + R | Switches between typeover and insert modes. The default mode is

or INS typeover.

EOF Reference

Section 3-2

Note Some keys do not operate depending on the console used.

The BS and DEL keys have the same effect on the FIT Terminal
Pack, but for consoles, whether the character at the cursor posi-
tion is deleted by the DEL key or not depends on the console.

Example: EDIT 120

END

Purpose: Statement. Terminates task.

Syntax: END

Comments: Terminates the execution of a task. All the files currently open are closed.
Even if the END statement is missing, the task is terminated when the END
PARACT statement is executed.

Example: END

Program Sample:

See Also:

END PARACT

10 'test command name :END

20 PARACT 0

30 X=3 :Y=5

40 PRINT "3 * 5 =";X*Y

50 END

60 PRINT ”"No execution after END”
70 END PARACT

ok

RUN 3 * 5 = 15

ok

END PARACT

Purpose:

Statement. Declares the end of a task.

Syntax: END PARACT

Comments: When this statement is executed, the task is terminated. All the files currently
opened are closed.
All tasks must end with this statement (and must begin with a corresponding
PARACT statement).
This statement cannot be part of a multi-statement.

Example: END PARACT

See Also: END, PARACT

EOF

Purpose: Function. Returns true at the end of a sequential file.

Syntax: EOF (file-no.)

Comments: The file-no. must be that of a file opened in input mode. When the file ends,
-1 (true) is returned; otherwise, 0 (false) is returned.
If the specified file is a communication port, and if the input buffer is empty,
-1 (true) is returned.

Example: EOF (3)

Program Sample:

10 ’'test command name :EOF !
20 PARACT 0
30 OPEN ”DATA” FOR OUTPUT AS #1

45

ERL Reference Section 3-2

40 FOR I=1 TO 10
50 PRINT #1,I*I
60 NEXT I

70 CLOSE

80 OPEN ”DATA” FOR INPUT AS #1
90 IF EOF (1) THEN 130
100 INPUT #1,A$
110 PRINT AS

120 GOTO 90

130 CLOSE

140 END

150 END PARACT

Ok

RUN

1

4

9

16

25

36

49

64

81

100

See Also: END, PARACT

ERL/ERR

Purpose: Function. Returns line on which error has occurred and also error code.

Syntax: ERL
ERR

Example: A = ERL

Comments: The ERL function returns the number of the line on which an error has oc-
curred. The ERR function returns the error code of the error.

These functions retain the error number until the next error occurs.

Program Sample: 10 ’'test command name :ERL/ERR '
20 PARACT 0
30 ON ERROR GOTO *ERRPRO
40 FOR I=1 TO 5
50 READ A
60 NEXT I
70 DATA 1,2,3,4
80 END
90
100 *ERRPRO
110 PRINT "ERROR NO. IS”;ERR;”.”
120 PRINT "ERROR LINE IS”;ERL;”."”
130 RESUME 80
140 END PARACT
ok
RUN
ERROR NO. IS 4
ERROR LINE IS 50

46

EXI..... Reference Section 3-2

Purpose: Statement. Simulates the generation of an error.
Syntax: ERROR error-no.
Comments: Generates an error specified by error-no.
Specify error-no. in the range 0 to 255.
When ERROR is executed, the values which will be returned by ERR and ERL
are updated. l.e., the ERR function will return the error number and the ERL
function will return the error line.
When the ON ERROR GOTO statement exists, program execution branches to
the specified line number or label.
Example: ERROR 128
Program Sample: 10 ‘test command name :ERROR
20 PARACT 0
30 ON ERROR GOTO *ERRPRO
40 INPUT ”1l: Error generation test 9: Execution ends”;ER
50 IF ER=1 THEN ERROR 255
60 IF ER=9 THEN END ELSE GOTO 40
70 ¢
80 *ERRPRO
90 IF ERR=255 THEN PRINT ”Error has occurred.”
100 RESUME NEXT
110 END PARACT
ok
RUN
1l: Error generation test 9: Execution ends? 1
Error has occurred.
1l: Error generation test 9: Execution ends? 1
Error has occurred.
1l: Error generation test 9: Execution ends? 9
Ok
See Also: ERR/ERL, ON ERROR GOTO, RESUME
Purpose: Statement. Terminates specified task.
Syntax: EXIT task-no.
Comments: Terminates execution of the task specified by task-no.
Use the number specified by the PARACT statement as the task-no.
A task from which execution has EXITed can be resumed by the TASK state-
ment.
An error occurs if a task-no. that does not exist in the program is specified.
Example: EXIT 5
Program Sample: 10 ‘test command name :EXIT

20 PARACT 0

30 PRINT "TASKO START”
40 PRINT

50 TASK 1

55 GOTO 60 "WAIT

60 EXIT 1

70 PRINT:PRINT

47

EXP Reference

Section 3-2

See Also:

EXP

80 PRINT
90 PRINT

100
105
110
120
125
130
140
150
160
170
180
190
200
Ok

RUN

TASKO START

TASK
GOTO
EXIT
TASK
GOTO
EXIT
END

"TASK1 STOP”
:PRINT

"WAIT

"WAIT

END PARACT

PARACT 1
PRINT
GOTO 170

END

"TASK1”

END PARACT

TASK1

TASK1 STOP

TASK1
TASK1

Ok

PARACT, TASK

Purpose:
Syntax:

Comments:

Example:

Program Sample:

48

Function. Calculates the exponential function of expression with base e.

EXP (expression)

If the expression is of type integer or single-precision, then single-precision is
assumed and the result of the calculation is of type single-precision. If the
expression is of type double-precision, then double-precision is assumed and

the result is of type double-precision.

EXP(1)

10
20
30
40
50
60
70
80
90

NEXT X
END

'test command name :EXP
PARACT 0

CLS
FOR X=0 TO 4 STEP 0.2

E=EXP(X)
F=FIX(E)
PRINT SPC(F);"*"

100 END PARACT

Ok
RUN

* ok * %

FIE..... Reference

Section 3-2

FIELD

Purpose:

Syntax:

Comments:

Example:

Program Sample:

Note

Statement. Assigns a character string variable to a random file buffer.

FIELD #file-no., width AS character-string-variable
[, width AS character-string-variablel*

Assigns the character-string-variable, of width width, to the random file speci-
fied by file-no.

It is possible to specify two or more FIELD statements in different formats to

one file-no., but only the FIELD statement immediately preceding is valid for

the PUT and GET statements.

Specify width in the range 1 to 256.

If two or more widths are specified, ensure that the total number of charac-
ters are 256 or less.

If the character length of the character-string-variable, (i.e., width) is specified
as more than the character length specified by the OPTION LENGTH state-
ment, RDIM statement, or DIM statement, an error occurs. If the OPTION
LENGTH, RDIM, or DIM statement is not used and if the width is specified to
be longer than 18 characters, an error also occurs.

Substitute a value for the character-string-variable using LSET or RSET. If the
number of characters to be substituted is less than the width, the character
string is left-justified when the LSET statement is used, or right-justified when
the RSET statement is used, and the remaining space is filled with blanks. If
the substitution is made without using the LSET or RSET statement, the posi-
tions of the characters exceeding the width are filled with undefined values.

An error occurs if FIELD is executed on a file which has not been opened in
random mode.

FIELD # 1,128 AS BS$

10 'test command name :FIELD

20 PARACT O

30 OPEN "INVENTORY” AS #1

40 FIELD #1,18 AS PNAMES, 2 AS NINVNTS
50 INPUT ”PRODUCT NAME: ”;PN$

60 INPUT ”INVENTORY: ";NI%

70 LSET PNAMES$=PNS$

80 LSET NINVENTS$=MKIS (IN%)

90 PUT #1, 1

100 GET #1, 1

110 PRINT ”PRODUCT NAME: ”;PNAMES$,”INVENTORY: ”;CVI(NINVNTS)
120 CLOSE

49

FIX..... Reference

Section 3-2

See Also:

130 END

140 END PARACT

Ok

RUN

PRODUCT NAME :? BASIC

INVENT :2? 100

PRODUCT NAME: BASIC INVENTORY: 100

GET, RSET, LSET, PUT

FINS ON/OFF/STOP

Purpose: Statement. Enables, disables, or stops interrupt from network.

Syntax: FINS {ON | OFF | STOP}

Comments: ON enables the interrupt. When this statement is executed and if an interrupt
occurs, the program execution branches to a defined processing routine.
STOP stops the interrupt. When this statement is executed, the program ex-
ecution does not branch to the defined routine when an interrupt occurs.
However, the occurrence of the interrupt is recorded, and the program execu-
tion branches to the defined processing routine when the interrupt is later
enabled.
OFF operates the same as STOP.

1. The interrupt is stopped immediately after ON FINS GOSUB has been ex-
ecuted.
2. The interrupt is stopped when the control is passed to an interrupt process-
ing routine.

Example: FINS ON

See Also: ON FINS GOSUB

FILES/LFILES

Purpose: Command. Displays file names and sizes on a specified drive.

Syntax: FILES [drive-no.]
LFILES [drive-no.]

Comments: Specify 0 or 1 as the drive-no. If drive-no. is omitted, defaults to 0.
The LFILES command prints the file names and sizes instead of displaying
them on the screen.

Example: FILES

FIX

Purpose: Function. Returns the truncated whole-number portion of expression.

Syntax: FIX (expression)

Comments: Returns the value of the expression truncated at the decimal point.
An integer, single-precision floating point, or double-precision floating point
expression can be specified.
If expression is of integer or single-precision floating point type, the result is
of single-precision floating point type. If it is of double-precision floating point
type, the result is also of double-precision floating point type.

Example: A = FIX(B/3)

Program Sample:

50

10 ’'test command name :FIX !
20 PARACT 0

FOR Reference

Section 3-2

See Also:

30 INPUT ”INPUT Floating point number.”
40 INPUT X
50 Y=FIX(X)
60 Z=INT(X)

70 PRINT “FIX(";X;"”)=";¥

80 PRINT “INT(”;X;"”)=";Z

90 END

100 END PARACT

ok

RUN

INPUT Floating point number.
? -1.3

FIX(-1.3)=-1
INT(-1.3)=-2

INT

FOR TO STEP/NEXT

Purpose:

Syntax:

Comments:

Example:

Program Sample:

Statement. Allows repeat execution of a group of statements enclosed within
FOR and NEXT statements a specified number of times.

FOR variable = initial-value TO final-value [STEP increment]
NEXT |[variable [, variable]*]

The FOR statement specifies the beginning of a loop and the NEXT statement
specifies the end of the loop. The statements in the loop are repeatedly ex-
ecuted a specified number of times.

Only a simple numeric variable can be used for variable.

The variable is used as a counter and is incremented by the increment each
time the loop is executed.

If the increment is 0, the loop is executed forever.

If the STEP statement is omitted, the increment is assumed to be 1.

If final-value is greater than initial-value, then variable is initialized to ini-
tial-value and the statements in the loop are repeatedly executed while the
value of variable does not exceed final-value.

If the final-value is less than initial-value, the variable is initialized to ini-
tial-value and the statements in the loop are repeatedly executed until the
value of variable falls below the final-value. (In this case, increment must be
a negative number. If increment is greater than 0, the loop is not executed at
all.)

The program execution can jump into or out of a FOR loop using the GOTO
statement.

The variable of the FOR statement must be the same as the variable of the
NEXT statement. The variable of the NEXT statement need not be specified.
The NEXT statement can correspond to more than one FOR statement when
more than one variable is listed.

An error results when the number of nestings exceeds 100.

FOR N =1 TO 100
NEXT N

10 ’'test command name :FOR NEXT
20 PARACT 0

30 CLS

40 FOR I=10 TO 69 STEP 2

50 FOR J=20 TO 0 STEP -2

60 LOCATE I,J:PRINT "*";

51

GET Reference

Section 3-2

70 NEXT J
80 NEXT I

90 END

100 END PARACT

See Also: WHILE/WEND
FRE
Purpose: Function. Returns the size of unused memory in the specified area.
Syntax: FRE (expression)
Comments: Returns the size of the unused memory area specified by the value of ex-
pression.
Valid expression values are:
0: S code area (stores user BASIC program and machine language
program)
1. RDIM area (stores non-volatile variables)
2: Memory area (variable storage area + E code (execution code) stor-
age area)
The value returned is double-precision floating point type.
Example: PRINT FRE(O0)

Program Sample:

10 "test command name :FRE

20 PARACT O

30 PRINT ”Unused memory area is as follows:”
40 PRINT ”S code area ";FRE(0);"bytes free”

50 PRINT ”RDIM area ";FRE(1l);"bytes free”
60 PRINT ”"Memory area ";FRE(2);"bytes free”
70 END

100 END PARACT

Ok

RUN

Unused memory area is as follows:
S code area 65343 bytes free
RDIM area 32512 bytes free
Memory area 151427 bytes free

GET

Purpose: Statement. Reads data from the random file specified.

Syntax: GET #file-no. [, record-no.]

Comments: If record-no. is omitted, the record number of the immediately preceding PUT
or GET statement is used. If neither the PUT nor the GET statement has been
executed, 0 is used.

The minimum value of record-no. is 1, and the maximum value is 32767.
Note 1. This statement causes an error if executed to a file which has not been
opened in random mode.
2. Record length of records specified by record-no. is 256 bytes.
Example: GET #3

Program Sample:

52

10 'test command name :GET#

20 PARACT 0

30 OPEN "INVENTORY” AS #1

40 FIELD #1,18 AS PNAMES,2 AS NINVNTS

GOS Reference Section 3-2

50 ‘CREATES THE INVENTORY FILE.
60 LSET PNAME$="BASIC”

70 RSET NINVNT$=MKI$(100)

80 PUT #1,1

90

100 'READS THE INVENTORY FILE
110 FOR I=1 TO LOF(1)

120 GET #1,1
130 PRINT ”PRODUCT NAME: ”;SNAMES$,”INVENTORY: ”;
135 PRINT CVI(NINVNTS)
140 NEXT I
150 CLOSE
160 END
170 END PARACT
Ok
RUN
PRODUCT NAME: BASIC INVENTORY: 100
See Also: FIELD, OPEN, PUT
Purpose: Statement. Calls a subroutine and returns from it.
Syntax: GOSUB {line-no. | label}
[RETURN]
Comments: The GOSUB statement calls the subroutine specified by the line-no. or *label.

When the RETURN statement in the subroutine is executed, the execution
returns to the statement immediately after the GOSUB.

The RETURN statement can be used more than once in a subroutine.
The execution does not exit from a subroutine unless the subroutine has a
RETURN statement.

Note A subroutine of a different task cannot be called.

Example: GOSUB *LABEL4
RETURN
Program Sample: 10 ‘test command name :GOSUB

20 PARACT 0

30 'SELECT PROCESS, SET EACH SUBROUTINE

40 CLS

50 *MAINROUTINE

60 LOCATE 10,10 :INPUT ”1:INPUT 2:CALCULATION 3:END :”;AS$
70 IF A$="1" THEN GOSUB *SUBI

80 IF A$="2" THEN GOSUB *SUB2

90 IF A$="9” THEN END

100 GOTO *MAINROUTINE

110

120 *SUBI

130 LOCATE 10,12 :PRINT SPACES$(25)

140 LOCATE 10,13 :PRINT SPACES$(25)

150 LOCATE 10,12 :INPUT ” UNIT PRICE OF PARTS :”;UNIT
160 LOCATE 10,13 :INPUT ” DELIVERED QUANTITY :”;QNTTY
170 RETURN

180

190 *SUB2

200 LOCATE 10,15 :PRINT SPACES$(25)

210 LOCATE 10,15 :PRINT ” PRICE :”;UNIT*QNTTY

53

HEX Reference Section 3-2

220 RETURN

230 END PARACT

Ok

RUN

1:INPUT 2:CALCULATION 3:END :? 1

UNIT PRICE OF PARTS :? 20
DELIVERED QUANTITY :? 20
1:INPUT 2:CALCULATION 3:END :? 2

PRICE : 400
1:INPUT 2:CALCULATION 3:END :? 9

ok
See Also: GOTO, ON GOSUB
Purpose: Statement. Unconditionally branches to the specified line.
Syntax: GOTO {line-no. | *label}
Comments: Branches the program execution to the line specified by line-no. or *label.
Note Execution cannot be branched to other task blocks.
Example: GOTO 2000
Program Sample: 10 ‘test command name :GOTO
20 PARACT 0
30 CLS
40 START
50 PRINT "WELCOME TO BASIC, HIT ANY KEY.”
60 AS=INKEY$:IF A$="" THEN GOTO *START
70 INPUT "EXECUTE AGAIN (Y/N)”;ANSS$
80 IF AN$="Y” OR ANS$="y” THEN GOTO 30
90 END
100 END PARACT
See Also: GOSUB, ON GOTO
Purpose: Function. Converts expression into a hexadecimal character string.
Syntax: HEXS (expression)
Comments: Converts the expression into a character string representation of the hexade-
cimal value.
Fractional expressions are rounded before the conversion.
The expression must be in the range —-32768 to 65535. The value returned
ranges from 0 to FFFF.
Example: AS$ = HEXS$(49)
Program Sample: 10 'test command name :HEX$

20 PARACT 0

30 PRINT ”“DECIMAL”,”HEXADECIMAL"”
40 FOR X=1 TO 16

50 PRINT X,”&H”;HEXS$ (X)

60 NEXT X

70 END

54

IFT..... Reference

Section 3-2

IF THEN ELSE

80 END PARACT

Ok

RUN

DECIMAL HEXADECIMAL
1 &H1
2 &H2
3 &H3
4 &H4
5 &H5
6 &H6
7 &H7
8 &H8
9 &HO
10 &HA
11 &HB
12 &HC
13 &HD
14 &HE
15 &HF
16 &H10

Purpose:

Syntax:

Comments:

Example:

Program Sample:

Note

Statement. Selects statement to be executed according to result of condition-
al-expression.

IF conditional-expression THEN {statement | line-no. | label}
[ELSE {statement | line-no. | label}]

IF conditional-expression GOTO {line-no. | label}

[ELSE {statement | line-no. | label}]

Evaluates conditional-expression and executes the statement following THEN
if the value of the conditional-expression is true (non-zero). If conditional-ex-
pression evaluates to false (zero), the statement following ELSE is executed.

If a line-no. or label is given instead of a statement, the program will branch
to that line or label.

Any input expression used in conditional-expression must be assigned in ad-
vance. For example, the first line below must be rewriten to the second line.

Wrong: TIMER ON : IF A$=INPUTS$(1) THEN...
Correct: TIMER ON : B$=INPUT$(1) : IF A$=B$ THEN...

IF A = 6 THEN PRINT ABC ELSE 3000

10 "test command name :IF THEN

20 PARACT 0

30 CLS

40 INPUT ”Input X”;X

50 INPUT "Input Y”;Y

60 IF X > Y THEN PRINT ”“X is greater than Y”
70 IF Y > X THEN PRINT ”X is less than Y”
80 IF X = Y THEN PRINT ”X is equal to Y”
90 END

100 END PARACT

Ok

RUN

Input X? 13

Input Y2 14

X is less than Y

55

INP..... Reference Section 3-2

INKEY $

Purpose: Function. Returns the next character in the keyboard buffer.

Syntax: INKEYS

Comments: If there are any characters in the keyboard buffer, the first one is returned. If
there are no characters in the buffer, a null string is returned. (The program
will not wait until a key is pressed.)

Example: IF INKEYS$ = ”” GOTO 1000

Program Sample:

10 'test command name :INKEYS '
20 PARACT O

30 PRINT "Input key. (end: space)”

40 *KEYIN

50 K$ = INKEYS$: IF K$ = "” GOTO 50

60 PRINT ”"You pressed ” ; K$

70 IF K$ = CHR$(32) THEN END ELSE *KEYIN

80 END PARACT

INPUT

Purpose: Statement. Inputs data to specified variable.

Syntax: INPUT [WAIT specified time,] ["prompt” {, | ;}] variable [, variable]*
INPUT #file-no., variable [, variable]*

Comments: When the first form is executed, the prompt (if any) is displayed and the sys-

56

tem waits for input from the terminal. If a semicolon (;) is specified after the
prompt, a question mark and a space are displayed after the prompt. If a
comma (,) is specified, the question mark is not displayed.

The value entered from the terminal is stored in the variable when the return
key is pressed.

If more than one variable is specified, the user must respond with the same
number of values. Each value must be separated from the others with a com-
ma (,).

When reading a character string from the terminal, leading and trailing
spaces are normally removed from the answer before the string is stored. In
order to input a string with leading or trailing spaces, or a string containing a
comma, the user must type the string between a pair of double quotes (”). In
this case, no quotation marks can be included in the character string.

If the type of the variable does not match the type of the input value, or if the
number of variables does not match the number of values, the message
“?Redo from start”is displayed, and the system waits for the input.

If WAIT is specified, and the input of data is not completed within the speci-
fied time, the INPUT statement causes an error. Time is specified in units of
0.1 second; the value of the time expression must be between 1 and 32767.
To wait until the input is completed, either specify a time of 0, or do not use
WAIT at all.

The INPUT# statement reads data from the file opened as file-no. The data
in the file must match the type necessary for the INPUT statement. In addi-
tion, the number of values necessary for the INPUT statement must exist in
the file.

If the file specified by file-no. is a terminal, the effect is the same as the
INPUT statement.

Note 1. To use the INPUT# statement, the file must have been opened in INPUT

mode.
2. Interruption is possible while an input instruction is being executed. When
input is interrupted with a definition such as ON..., the program jumps to

INP..... Reference

Section 3-2

Example:

Program Sample:

See Also:

the defined destination for execution. Refer to Section 6 Advanced Pro-
gramming of the BASIC Unit Operation Manual for details. When an inter-
ruption is being executed the source of the interruption is the STOP sta-
tus.

INPUT WAIT 100, "KEY” ; AS

10 'test command name :INPUT

20 PARACT 0

30 ’'Converts year of Showa into A.C.

40 INPUT ”"Year of Showa [1-64] : ";¥YS

50 IF YS<1l OR YS>64 THEN PRINT ”INPUT ERROR” : GOTO 40
60 AC=YS+1925

70 PRINT "A.C."”;AC

80 END

90 END PARACT

Ok

RUN

Year of Showa [1-64] : 2 16
A.C. 1941

10 'test command name :INPUT#
20 PARACT 0

30 OPEN "DATAl” DOR OUTPUT AS #1
40 PRINT #1, "DATA 1”

50 PRINT #1, "DATA 2"

60 PRINT #1, "DATA END”

70 CLOSE

80

90 OPEN "DATALl” FOR INPUT AS #1
100 *SINPUT

110 IF EOF(1) GOTO 150

120 INPUT #1,AS

130 PRINT AS

140 GOTO *SINPUT

150 CLOSE

160 END

170 END PARACT
Ok

RUN

DATA 1

DATA 2

DATA END

10 "test command name :INPUT WAIT

20 OPTION LENGTH 26

30 PARACT O

40 ALP1$="ABCDEFGHIJKLMNOPQRSTUVWXYZ"

50 ALP2$="abcdefghijklmnopqrstuvwxyz”

60 PRINT ”“Input alphabet (A-Z) in 10 seconds”
70 INPUT WAIT 100, INPS

80

90 IF INPS$=ALP1l$ OR INP$=ALP2$ THEN PRINT ”PASSED!” :GOTO 110
100 PRINT ”“Typing error”

110 END

120 END PARACT

LINE INPUT, OPEN

57

INP..... Reference Section 3-2
INPUT $
Purpose: Function. Reads a character string of the specified length from a file.
Syntax: INPUTS (expression [, #file-no.])
Comments: Reads expression characters the file specified by file-no. (The file must have
been opened in INPUT mode.)
If file-no. is omitted, INPUTS reads from the terminal. In this case, characters
typed are not shown on the screen
The system waits until the number of characters specified by the expression
have been input.
Example: AS$ = INPUTS(10,#3)

Program Sample:

58

Note

10 'test command name :INPUTS

20 PARACT 0

30 OPEN ”DATA” FOR OUTPUT AS #1

40 FOR I=1 TO 10

50 PRINT #1,”ABCDEF”;

60 NEXT I

70 CLOSE

80 PRINT ”"OUTPUTS 10 CHARACTERS AT A TIME”
90 PRINT ”HIT ANY KEY”:AS$S=INPUTS(1)
100 OPEN ”DATA” FOR INPUT AS #1

110 IF EOF(1l) GOTO 160

120 DAS$ = INPUTS(10,#1)

130 PRINT DAS

140 PRINT ”“HIT ANY KEY”:A$ =INPUTS$(1)
150 GOTO 110

160 CLOSE

170 END

180 END PARACT

Ok

RUN

OUTPUTS 10 CHARACTERS AT A TIME
HIT ANY KEY

ABCDEFABCD
HIT ANY KEY

EFABCDEFAB
HIT ANY KEY

CDEFABCDEF
HIT ANY KEY

ABCDEFABCD
HIT ANY KEY

EFABCDEFAB
HIT ANY KEY

CDEFABCDEF
HIT ANY KEY

Ok

Interruption is possible while an input instruction is being executed. When
input is interrupted with a definition such as ON..., the program jumps to the

INT..... Reference

Section 3-2

INSTR

defined destination for execution. After the execution, the next line will be
executed. When an interruption is being executed, the same interruption is in
the STOP status until RETURN, so the program will not jump again to the top
of what will be executed. Other interruption causes must be stopped using
STOP (TIMER STOP) before using INPUTS. Refer to Section 6 Advanced
Programming of the BASIC Unit Operation Manual for details.

Purpose:

Syntax:

Comments:

Example:

Program Sample:

Function. Searches character-expression for key-string and returns its posi-
tion.

INSTR([expression,] character-expression, key-string)

Searches the character string which is the value of character-expression to
find the key-string. If key-string is found, INSTR returns the position of the
first character of the key-string; otherwise, it returns 0.

If expression is specified, the search starts from expression characters past
the start of the character-expression. If expression is omitted, 1 is assumed,
and the search starts from the beginning of the character-expression.

If the character-expression is a null string (7), 0 is returned.

If the key-string is a null string (") the value of expression is returned (or 1,
if expression is omitted).

If the expression is greater than the length of the character-expression, 0 is
returned.

A = INSTR(2,BS$,"KEY”)

10 'test command name :INSTR !
20 PARACT O

30 DIM AS$25

40 AS$S="OMRON, OA, CAD/CAM, FA, NC”

50 PRINT "CHARACTER STRING=";AS$

60 NTH=INSTR(1l,AS$,”FA")

70 PRINT "FA starts at the”;NTH;“th character of the string.”
80 END

90 END PARACT

ok

RUN

CHARACTER STRING=OMRON, OA, CAD/CAM, FA, NC

FA starts at the 18th character of the string.

INT

Purpose: Function. Returns the largest integer which does not exceed expression.

Syntax: INT (expression)

Comments: Expression can be an integer or single- or double-precision floating point val-
ue. If the expression is of integer or single-precision type, the result is a sing-
le-precision floating point value. If the expression is of double-precision type,
the result is also a double-precision floating point value.
INT and FIX return the same value for positive arguments, but the value re-
turned by INT for negative arguments is one less than the value returned by
FIX.

Example: A = INT(B)

Program Sample:

10 ’'test command name :INT !
20 PARACT 0

59

INTr Reference

Section 3-2

30 X=-1.41

40 Y=3.14

50 PRINT ”"When X = ";X;”and Y = ";Y;","”
60 Z=X+Y

70 I=INT(X)+INT(Y)

80 PRINT "X + Y =";7Z

90 PRINT ”INT(X)+INT(Y)=";I
100 END

110 END PARACT

ok

RUN

When X = -1.41 and Y = 3.14,

X +Y=1.73
INT (X)+INT(Y)= 1

See Also: CINT, FIX

INTRB/INTRL/INTRR

Purpose: Function. System variables containing information on an interrupt that has
occurred.

Syntax: INTRB
INTRL
INTRR

Comments: The values of INTRB and INTRR are set only in an interrupt routine. Outside

60

of interrupt routines, their values are 0. Therefore, substitute the values in an
interrupt routine and refer to the values in the main routine.

INTRB contains the number of the line that set up the interrupt processing
routine.

INTRL contains the number of the line that was executing when the interrupt
occurred, or 0 if no line was executing.

INTRR contains a number indicating the interrupt source.

When an interrupt occurs, the current values of INTRB and INTRR are saved
and the new values are stored; when an interrupt routine returns, the pre-
vious values of INTRB and INTRR are restored. These variables, therefore,
contain the correct values throughout the execution of the interrupt routine,
even if nested interrupts occur.

Interrupt source INTRR value
User-defined signal (1 to 5) 1 through 5
COM (1 to 3) 6 through 8
Signal (STOP) 10
Signal (PC watchdog timer error) | 11
Signal (cyclic error) 12
Signal (battery error) 13
Alarm 14
Timer 15
Time 16
SRQ 17
FINS 18
KEY (0 through 9) 20 through 29
PC (1 through 15) 31 through 45

LEF Reference Section 3-2

Note The program cannot change the values of INTRB, INTRL, or INTRR.

Example: A = INTRB

See Also: ERR/ERL, ON {ALARM | FINS | KEY | SIGNAL | TIMES | TIMER} GOSUB
KEY ON/OFF/STOP

Purpose: Statement. Enables, disables, or stops interrupts from numeric keypad.
Syntax: KEY (key-no.) {ON | OFF | sTOP}

Comments: Key-no. is the number of a numeric key (from 0 to 9).

ON enables the interrupt. After this statement is executed, program execution
will branch to the interrupt routine when the key is pressed.

OFF disables the interrupt. After this statement is executed, program execu-
tion will not branch to the interrupt routine even if the key is pressed.

STOP stops the interrupt. After this statement is executed, the program ex-
ecution does not branch to the interrupt routine when an interrupt occurs, but
the occurrence of the interrupt is recorded, and the interrupt routine will be
called when the interrupt is re-enabled.

Note The interrupt is turned OFF immediately after the execution of an ON KEY
GOSUB statement.

Key interrupts are stopped during the execution of the key interrupt routine.

Example: KEY(7) ON

See Also: ON KEY GOSUB

KILL

Purpose: Command or Statement. Deletes file.

Syntax: KILL "file-name”

Comments: Deletes the file specified by the file-name. If the file name has an extension,

the extension must be included in file-name.
For details on the file-name, refer to the description of the OPEN statement.

Note An error occurs if the specified file is open.

Example: KILL ”0:TEST1.BAS"

Program Sample: 10 'test command name :KILL
20 PARACT O
30 OPEN "TEMP1l” FOR OUTPUT AS #1
40 CLOSE #1
50 NAME "TEMPl” AS "TEMP2”
60 KILL "TEMP2”
70 END
80 END PARACT
ok
RUN
ok

LEFT $

Purpose: Function. Returns the leftmost expression characters from character-expres-
sion.

Syntax: LEFTS (character-expression, expression)

Comments: Returns a character string of the length specified by expression from the left
of character-expression.

If the expression is 0, a null string is returned.

61

LET Reference

Section 3-2

Example:

Program Sample:

If the value of expression exceeds the length of the character-expression, the
entire character-expression is returned.

A$ = LEFTS(BS,4)

10 'test command name :LEFTS '
20 PARACT O

30 YY$=LEFTS (DATES,2)

40 MM$=MIDS (DATES,4,2)

50 DD$=MID$(DATES,7,2)

60 PRINT ”"Today is '";YYS$”.”;MMS$;"”.”;DDS$;"."
70 END

80 END PARACT

Ok

RUN

Today is ’92.07.04.

See Also: MIDS$, RIGHTS

LEN

Purpose: Function. Returns length of character-expression.

Syntax: LEN (character-expression)

Comments: Counts the characters in character-expression and returns the number
counted.
Non-printing characters and blanks are included in the count.

Example: A = LEN(BS)

Program Sample:

10 'test command name :LEN !
20 PARACT 0

30 INPUT ”Input character string”;A$

40 L=LEN(AS)

50 PRINT:PRINT “Input number of character is ";L;“.”
60 END

70 END PARACT

ok

RUN

Input character string? BASIC Unit

Input number of character is 10.

LET
Purpose: Command or Statement. Assigns the value of an expression to a variable.
Syntax: [LET] variable-name = expression
Comments: Evaluates expression and stores the result in variable-name.
If the types of the variable and expression cannot be converted, an error oc-
curs.
The value can be stored in a variable that has not been declared or used be-
fore in the program, but the number of such variables is limited.
Note The LET keyword can be omitted completely from an assignment statement.
Example: A =B+C

Program Sample:

62

10 ’'test command name :LET
20 PARACT 0

LIN..... Reference Section 3-2
30 LET A=5 : LET B=6 : LET C=7
40 ANS=A*B*C
50 PRINT A;”*";B;"*";C;"=";ANS
60 END
70 END PARACT
ok
RUN
5% 6 * 7 = 210

LINE INPUT

Purpose: Statement. Reads an entire line into a character variable.

Syntax: LINE INPUT [WAIT specifiedtime,] ["prompt” {, | ;Y character-variable
LINE INPUT #file-no., character-variable

Comments: When the first form is executed, the prompt (if any) is displayed and the sys-
tem waits for input from the terminal. If a semicolon (;) is specified after the
prompt, a question mark and a space are displayed after the prompt. If a
comma (,) is specified, the question mark is not displayed.
All the characters typed before the return key is pressed are stored in char-
acter-variable.
If WAIT is specified, and the input of data is not completed within the speci-
fied time, the LINE INPUT statement causes an error. Time is specified in
units of 0.1 second; the value of the time expression must be between 1 and
32767. To wait until the input is completed, either specify a time of 0, or do
not use WAIT at all.
The second form reads a line (up to a return code — CHRS (13)) from the file
opened as file-no.
If the file specified by file-no. is a terminal, the effect is the same as the LINE
INPUT statement.

Note Tousethe LINE INPUT# statement, the file must have been opened in INPUT

mode.

Example: LINE INPUT AS

Program Sample:

10 "test command name :LINE INPUT

20 PARACT O

30 LINE INPUT ”Input character string”;CS$
40 IF CSs$="" GOTO 30

50 PRINT ”Character string is ”;CS$;”.”
60 END

70 END PARACT

Ok

RUN

Input character string? BASIC
Character string is BASIC.

10 'test command name :LINE INPUT#
20 PARACT 0

30 OPEN “DATAl” FOR OUTPUT AS #1
40 FOR I=1 TO 10

50 PRINT #1, “LINE "+STRS$(I)

60 NEXT I

70 CLOSE

80 OPEN “DATALl” FOR INPUT AS #1

90 FOR I=1 TO 10

100 LINE INPUT #1,KS$

63

LIS Reference Section 3-2
110 PRINT K$
120 NEXT I
130 CLOSE
140 END
150 END PARACT
ok
RUN
LINE 1
LINE 2
LINE 3
LINE 4
LINE 5
LINE 6
LINE 7
LINE 8
LINE 9
LINE 10
10 'test command name :LINE INPUT WAIT
20 PARACT 0
30 LINE INPUT WAIT 100, "Wait for input for 10 seconds”;INS$S
40 PRINT "Input character is ”;INS$;”.”
50 END
60 END PARACT
ok
RUN
Wait for input for 10 seconds? I/O Timeout in 30
See Also: INPUT
LIST/LLIST
Purpose: Command. Displays or prints part or all of program.
Syntax: LIST [start-line-no.] [- [end-line-no.]]
LLIST [start-line-no.] [- [end-line-no.]]
Comments: Displays the program lines from start-line-no. to end-line-no. The
start-line-no. and end line no. can be line numbers that do not exist.
If only start-line-no. is specified, only that line is displayed.
If the start-line-no. is specified followed by a hyphen (-), the program lines
are displayed starting from the specified line.
If end-line-no. is specified preceded by a hyphen (-), the program lines are
displayed starting from the first line to the specified line.
If both the start-line-no. and end line no. are omitted, all the program lines
are displayed.
The LLIST command outputs the program line(s) to the printer instead of the
display. CR + LF is the carriage return code.
To stop the display or print, press ABORT.
Example: LIST -999

64

LOCa ... Reference

Section 3-2

LOAD

Purpose:
Syntax:
Comments:

Example:
See Also:

LOC

Command. Loads BASIC program into current program area.

LOAD "file-name"

Reads the BASIC program specified by file-name to the program area cur-
rently in use. The program to be read is in text format with a . BAS extension.
0: can be omitted.

If file-name does not exist is specified, an error message is displayed.
For details on the file-name, refer to the description of OPEN.

LOAD ”0:DEMOL1”
OPEN, PGEN, SAVE

Purpose:
Syntax:
Comments:

Example:
Program Sample:

LOCATE

Note

Function. Gives current logical position in file.
LOC (file-no.)

If the file specified by file-no. is a sequential file, LoC returns the number of
bytes read or written since the file was opened.

If the specified file is a random file, LOC returns the number of the last record
read or written.

If the file is a communication port, LOC returns the number of characters in
the port’s input buffer.

The value returned is of double-precision floating point type.

If the characters in a communication port buffer are not read quickly with
INPUT# or INPUTS, the buffer will fill up rapidly and an error will occur.

A = LOC(3)

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

'’ test command name :LOC
PARACT 0
OPEN ”DATA” AS #1
FIELD #1,10 AS BUFS
FOR I=1 TO 10
LSET BUF$=MKIS$(I)
PUT #1,1
NEXT I
INPUT "Input record number.”;A
IF A>10 GOTO 90
IF A<=0 GOTO 90
GET #1,A
PRINT “Input record number:
PRINT ”Read data:
PRINT "LOC (1):
CLOSE
END
END PARACT

II;A
”;CVI (BUSS)
"LOC(1)

Purpose:
Syntax:
Comments:

Statement. Moves cursor on screen.
LOCATE horizontal-position, vertical-position

Moves the cursor on the screen to the specified horizontal-position and verti-
cal-position.

Horizontal-position must be between 0 and 79; 0 indicates the leftmost col-
umn on the screen. Vertical-position must be between 0 and the number of
lines per screen set with the memory switch (maximum 39).

65

LOG Reference

Section 3-2

Example:

Program Sample:

LOF

LOCATE 10, 20

10
20
30
40
50
60
70
80
90

'’ test command name :LOCATE
PARACT 0
CLS
FOR Y=1 TO 5
X=Y"2
LOCATE X,Y
PRINT "OMRON”
NEXT Y
END

100 END PARACT

Ok

RUN
OMRON

OMRON
OMRON
OMRON
OMRON

Purpose:
Syntax:

Comments:

Example:
Program Sample:

LOG

Function. Returns size of file.

LOF (file-no.)

If the file specified by file-no. is a sequential file, LOF returns the total size of
the file.

If the specified file is a random file, LOF returns the number of records in the

file.

If the file is a communication port, LOF returns the remaining number of bytes
in the input buffer.

The value returned is of double-precision floating point type.

A

10
20
25
30
40
50
60
70
80
90

= LOF(2)

'’ test command name :LOF '
PARACT 0
DIM AS$50
OPEN ”DATA” AS #1
FIELD #1,50 AS AS
FOR I=1 TO 15
LSET A$=STRINGS(50,”A")
PUT #1,1
NEXT I
PRINT “LOF(1)=";LOF (1)

100 END
110 END PARACT

Ok

RUN
LOF(1)=15

Purpose:
Syntax:

Comments:

66

Function. Calculates the natural logarithm of expression.

LOG (expression)

The value of the expression must be greater than 0.

If the expression is of integer or single-precision floating point type, the loga-
rithm is calculated and returned as a single-precision value. If expression is

LSE Reference

Section 3-2

Example:

Program Sample:

of double-precision floating point type, the logarithm is calculated and re-
turned as a double-precision floating point number.

A = LOG(3)

10 ' test command name :LOG !
20 PARACT 0
30 FOR I=1 TO 9

40 PRINT "LOG(”;I;”) = ";LOG(I)
50 NEXT I
60 END
70 END PARACT
ok
RUN
LOG(1) = 0
LOG(2) = .693147
LOG(3) 1.09861
LOG(4) = 1.38629
LOG(5) 1.60944
LOG(6) 1.79176
LOG(7) 1.94591
LOG(8) 2.07944
LOG(9) = 2.19722

LSET/RSET

Purpose: Statement. To move data from memory to a random-file buffer and left- or
right-justify it in preparation for a PUT statement.

Syntax: LSET character-variable = character-expression
RSET character-variable = character-expression

Comments: Places the character-expression into character-variable, which may be a field
variable.
If the number of characters in character-expression is less than the field
width, LSET will left-justify the characters, and RSET will right-justify them.
Any remaining space in the field will be filled with spaces.
If the number of characters in character-expression is greater than the field
width, the right portion of the expression is lost, regardless of which state-
ment is used.
Numeric expressions can be placed into field variables by first converting
them to character strings with MKI$, MKS$, or MKDS.

Note Character-variable may be a normal character variable (i.e. not one declared
with the FIELD statement). In this case, the “field length” is simply the length of
the variable’s contents.

Example: LSET A$ = "ABCDEF”

Program Sample:

See Also:

10 A$S = SPACES$(20)

20 RSET AS$ = "HELLO”
30 PRINT AS
Ok
RUN
HELLO

FIELD, MKIS$, MKS$, MKDS, PUT

67

MID Reference Section 3-2

MERGE

Purpose: Command. To merge lines from a BASIC program into the program already
in memory.

Syntax: MERGE "file-name"”

Comments: Reads and merges the BASIC program specified by file-name with the pro-
gram in the current program area.
The program to be read is in text format with extension .BAS. The extension
is not included in file-name.
If the program in the current program area and the specified BASIC program
have any line numbers in common, lines from the merged BASIC program
take precedence.
If file-name does not exist, an error message is displayed.
For details on the file-name, refer to the description of OPEN.

Example: MERGE ”0:PART2”

See Also: LOAD, OPEN, PGEN, SAVE

MESSAGE

Purpose: Statement. To allocate and release message numbers.

Syntax: MESSAGE function, message-no.

Comments: Function 0 allocates the message-no.; function 1 releases the message-no.
Message no. must be between 1 and 32767.
Up to four messages in a task or eight messages in a program can be used.
If an unallocated message-no. is released, an error occurs.

Example: MESSAGE 0,35

Program Sample:

10 ' test command name :MESSAGE
20 PARACT 0

30 MESSAGE 0,1

40 SEND 1,”THIS IS THE MESSAGE.”
50 PRINT ”"TASK 0: MESSAGE SENT.”:TASK 1
60 END

70 END PARACT

80

90 PARACT 1

100 MESSAGE 0,1

110 RECEIVE 1,AS$

120 PRINT ”“TASK 1 GOT MESSAGE: ”; AS
130 END PARACT

Ok

RUN

TASK 0: MESSAGE SENT.
TASK 1 GOT MESSAGE: THIS IS THE MESSAGE.

See Also: RECEIVE, SEND

MID $

Purpose: Statement. To replaces part of character string variable.

Syntax: MIDS (character-expression-1, expression-1 [, expression-2]) =
character-expression-2

Comments: Replaces characters of the character-expression-1 after character number

68

expression-1 with expression-2 characters from character-expression-2.
Character-expression-1 must not be a null string.

MID Reference

Section 3-2

Example:

Program Sample:

See Also:

MID $

If the value of the expression-2 is greater than the length of character-ex-
pression-2, only as many characters as are in character-expression-2 are
replaced.

If the expression-2 is omitted, all the characters from the character-expres-
sion-2 are placed in character-expression-1 after character number expres-
sion-1.

The value of expression-1 must be greater than 0 and less than the length of
character-expression-1.

MIDS$ (AS$,3,7) = B$S

10 ' test command name :MIDS
20 PARACT 0

30 AS = "NUMARICAL” : PRINT AS
40 MIDS (AS$,4,1) = "E”

50 PRINT AS

60 END

70 END PARACT

Ok

RUN

NUMARICAL

NUMERICAL

MIDS$ (Function)

Purpose:

Syntax:

Comments:

Example:

Program Sample:

See Also:

Function. To returns character string of specified length from specified posi-
tion in character string.

MIDS (character-expression, expression-1 [, expression-2])

Returns expression-2 characters after character number expression-1 from
the character-expression.

Expression-1 must be between 1 and 538; expression-2 must be between 0
and 538.

If the expression-2 is omitted, or if the number of characters to the right of the
character specified by expression-1 is less than expression-2, all the charac-
ters to the right of expression-1 are returned.

If expression-1 is greater than the length of character-expression, a null
string is returned.

AS = MID$(B$I3I5)

10 ' test command name :MIDS
20 PARACT 0

30 A$ = "BASIC OMRON ASCII”
40 B$ = MIDS$(AS$,10,7)

50 PRINT BS

60 END

70 END PARACT

Ok

RUN

ON_ASCI

LEFTS, RIGHTS

69

MKI Reference Section 3-2

MKIS$/MKSS/MKDS
Purpose: Function. To convert numeric value into character string.
Syntax: MKIS (integeri-value)

MKSS$ (single-precision-value)
MKDS$ (double-precision-value)

Comments: MKI$ converts an integer value into a 2-character string.
MKS$ converts a single-precision value into a 4-character string.
MKDS$ converts a double-precision value into an 8-character string.

Note The resulting string may contain unprintable (control) characters. These func-
tions are generally used to store numeric data in random file fields.

Example: AS = MKIS$(1234%)

ProgranISanuﬂe: 10 ’ test command name :MKIS$/MKSS$S/MKDS$
20 PARACT 0
30 DIM BUFS$128
40 IA%=100%:SB=12345.6:DC#=12345.123456789#
50 OPEN "DATA” AS #1
60 FIELD #1,128 AS BUFS
70 A$=MKIS(IAS%)
80 PRINT ”MKI$(”;IA%;”) ——> ";A$
90 B$=MKSS$(SB)
100 PRINT "MKSS$(”;SB#;") ——> ";BS$
110 C$=MKDS$ (DC#)
120 PRINT ”MKD$(”;DC#;") ——> ";C$
130 LSET BUF$=AS$+BS$=CS$
140 PUT #1,1
150 PRINT
160 GET #1,1
170 I%=CVI(LEFTS$ (BUFS$,2))

180 PRINT ”CVI(";A$;") ——> ";I%
190 S=CVS(MIDS$ (BUFS$,3,4))
200 PRINT "CVS(”;B$;”) ——> ";S

210 D#=CVD(MID$(BUFS$,7,8))

220 PRINT ”CVD(";C$;") ——> ";D#
230 CLOSE

240 END

250 END PARACT

ok

RUN

MKIS$(100) ——> d

MKSS$(12345.6) ——> ff@F

MKD$ (12345.123456789) ——> M H@
cvI(d) ——> 100
CVS(ff@F) ——> 12345.6

CVD(M H@) ——> 12345.123456789

Note The display example shown above is when the terminal is the FIT. The displayed
characters differ depending on the terminal to be used.

See Also: CVI, CVS, CVD

70

OCT Reference Section 3-2

MON

Purpose: Command. Sets monitor mode.

Syntax: MON

Comments: Switches from BASIC mode to monitor mode.

To return to BASIC mode, press Q followed by return.

Example: MON

MSET

Purpose: Command. To set upper limit of BASIC program area (to allocate space for
machine language program area).

Syntax: MSET [address]

Comments: The machine language program area is located before the BASIC program
area. It is therefore necessary to set the upper limit of the BASIC program
area to protect the machine language program area. The BASIC limit can be
set between &H500 and &HFFF3.

Specify the address as a segment base address.
If address is omitted, the current upper limit is displayed.

Example: MSET &H2000

NAME

Purpose: Command or Statement. Changes file name.

Syntax: NAME "old-file-name” AS "new-file-name"

Comments: Renames old-file-name to new-file-name. Specify the complete file name,
including the extension.

For details on the file-name, refer to the description of OPEN.
Note If an old-file-name does not exist, or if an existing file is named new-file-name, an
error occurs. In addition, the name of an open file cannot be changed.

Example: NAME ”0:OLDNAME.BAS” AS ”O:NEWNAME.BAS”

NEW

Purpose: Command. Deletes program and variables.

Syntax: NEW

Comments: Deletes the program and variables in the current program area.

If a program name has been registered with the PNAME command, the pro-
gram cannot be deleted, and a message to that effect is displayed. Delete
the program name with PNAME " before executing NEW.

Example: NEW

See Also: PINF, PNAME

OCT §$

Purpose: Function. Returns a character string expressing the value of expression in
octal notation.

Syntax: OCTS (expression)

Comments: Any fractional part of expression is truncated at the decimal point.

The range of the expression is from -32768 to 65535, and the value to re-
turned is "0” to "177777".

71

ONA Reference

Section 3-2

Example:

Program Sample:

PRINT OCT$(321)

10 ’ test command name :0CTS$ '
20 PARACT 0

30 PRINT ”DECIMAL”, "OCTAL”

40 FOR I=6 TO 16

50 PRINT I,OCT$(I)
60 NEXT I

70 END

80 END PARACT

ok

RUN

DECIMAL OCTAL
6 6

7 7

8 10

9 11

10 12

11 13

12 14

13 15

14 16

15 17

16 20

ON ALARM GOSUB

Purpose:
Syntax:

Comments:

Example:

Program Sample:

72

Note

Statement. Specifies interrupt time and defines interrupt routine.
ON ALARM fime GOSUB {line-no. | label}

Defines a processing routine to be executed when the time specified has
elapsed.

Time is specified in units of 0.1 second in the range of 1 to 864000 (0.1 sec-
onds to 24 hours).

The alarm interrupt is stopped immediately after the ON ALARM GOSUB
statement has been executed.

The interrupt is enabled once for each ON ALARM GOSUB statement and the
interrupt is stopped while the interrupt routine is being executed.

To exit from the interrupt routine, use the RETURN statement.

This statement can be used to define a separate alarm interrupt routine for
each task.

1. If more than one timer alarm is set in a task, only the last alarm set is valid.

2. The alarm interrupt will be recognized only if the ALARM ON statement has
been executed.

3. The ALARM OFF state caused by the ON ALARM GOSUB statement contin-
ues until an ALARM ON statement is executed.

ON ALARM 1000 GOSUB *LABEL3

10 ' test command name :ALARM

20 PARACT 0

30 CLS

40 ON ALARM 300 GOSUB *WAKE.UP

60 ALARM ON

70 LOCATE 0,0:PRINT ”Set alarm timer at”;TIMES
80 PAUSE

90 END

ONC Reference

Section 3-2

See Also:

ON COM GOSUB

100 *WAKE.UP

110 LOCATE 0,5 : PRINT ”Alarm at”; SPACES$(10);TIMES
120 RETURN

130 END PARACT

ALARM {ON | OFF | STOP}

Purpose:
Syntax:

Comments:

Note

Example:

Program Sample:

See Also:

Statement. Defines routine to process communication line interrupts.
ON COM [(port-no.)] GOSUB {line-no. | label}

Defines a processing routine to be executed when an interrupt occurs from a
communication line specified by port-no.

Port-no. must be in the range of 1 to 3. If port-no. is omitted, 1 is assumed.
Only one interrupt routine can be defined for each port-no. for all tasks.

The communications interrupt is stopped immediately after the ON coM
GOSUB statement is executed.

The interrupt is stopped while the interrupt routine is executed.
To exit from the interrupt routine, use the RETURN statement.

1. Ifthe ON CcOM GOSUB statement is executed more than once for the same
port-no., only the last processing routine defined is valid.

2. Communications interrupts will be recognized only if the COM ON statement
has been executed.

3. The coM OFF state caused by the ON COM GOSUB statement continues
until a COM ON statement is executed.

ON COM(1) GOSUB 2000

10 ' test command name :COM ON/OFF/STOP '
20 ' (TASK1) '
30 PARACT O

40 PRINT "RECEIVE PROGRAM STARTS”

50 OPEN ”“COM1:N,8,2,XN” AS #1

60 ON COM (1) GOSUB *COMPRO

70 COM (1) ON

80 PRINT ”"WAITS FOR RECEPTION”

90 INPUT ”“RETURN: END”, INS

100 IF INS="" THEN GOTO 110 ELSE 90

110 END

120 '

130 *COMPRO

140 PRINT "RECEIVED”

150 PRINT INPUTS(LOC(1),#1);

160 RETURN

170 END PARACT

180 ' test command name :COM ON/OFF/STOP '
190 (TASK2) '
200 PARACT 1

210 PRINT ”"TRANSFER PROGRAM STARTS”

220 OPEN ”COM1:N,8,2,XN” AS #1

230 PRINT #1, "”NO ABNORMALITY UP TO NOW”
240 CLOSE :END

250 END PARACT

COM {ON | OFF | STOP}

73

ONF Reference Section 3-2

ON ERROR GOTO

Purpose: Statement. Defines error processing routine and starts error trapping.
Syntax: ON ERROR GOTO {0 | line-no. | *label}
Comments: Defines an error processing routine to be executed when an error occurs.

If an error occurs, the ERR system variable contains the error number, and
the ERL variable contains the number of the line on which the error occurred.

To exit from the error processing routine, use the RESUME statement.

Errors that occur while executing the error processing routine are not
trapped.

To turn off the error trap, execute the ON ERROR GOTO 0 statement.
A separate error processing routine can be defined for each task.

Example: ON ERROR GOTO 2000

Program Sample: 10 ' test command name :ON ERROR GOTO ¢
20 PARACT 0
30 DIM A(10)
40 ON ERROR GOTO 90
50 FOR I=1 TO 11
60 A(I) = I
70 NEXT I
80 END
90 *SUB
100 PRINT "ERROR OCCURS."
110 RESUME NEXT
120 END PARACT

ok
RUN
ERROR OCCURS.
See Also: ERR, ERL, ERROR, RESUME
ON FINS GOSUB
Purpose: Statement. Defines routine to process network interrupts.
Syntax: ON FINS GOSUB {line-no. | *label}
Comments: Defines a processing routine to be executed when an network input interrupt
occurs.

The network interrupt is stopped immediately after the ON FINS GOSUB
statement is executed.

The interrupt is stopped while the processing routine is being executed.

To exit from the interrupt routine and go to the previous state, use the
RETURN statement.

Only one interrupt routine can be defined for all tasks.
Note 1.IfON FINS GOSUB is executed more than once, only the last processing
routine defined is valid.

2. Network input interrupts will be recognized only if the FINS ON statement
has been executed.

3. The FINS STOP state caused by the ON FINS GOSUB statement contin-
ues until a FINS ON statement is executed.

Example: ON FINS GOSUB 2000

Program Sample: 10 'EXECUTE THIS PROGRAM BY MACHINE NO. 2
20 PARACT 0

74

ONGs ... Reference

Section 3-2

30 '

40 OPEN "FINS:00.00.26" AS #1

50 PRINT #1,”PLEASE RETURN THIS DATA”

60 INPUT #1,REVERSES

70 PRINT ”“RETURNED DATA IS ”;REVERSES$;”.”
80 CLOSE #1

90 END PARACT

10 "EXECUTE THIS PROGRAM BY MACHINE NO. 10
20 PARACT 0

30 '

40 OPEN ”"FINS:00.00.18"” AS #1

50 ON FINS GOSUB *RCV

60 FINS ON

70 PAUSE

80 CLOSE #1

90 END

100

110 *RCV

120 INPUT #1,RCVDS

130 PRINT ”“WHAT IS RECEIVED IS ”;RCVDS$;”.”
140 PRINT #1,RCVD$

150 RETURN

160 '

170 END PARACT

See Also: FINS {ON | OFF | STOP}

ON GOSUB

Purpose: Statement. Calls one of several subroutines.

Syntax: ON expression GOSUB {line-no. | *label} [, {line-no. | *label}]*

Comments: Branches to a subroutine having the line-no. or label corresponding to the
value of the expression. That is, if the value of the expression is 1, the sub-
routine at the first line-no. or label is called; if the value is 2, the subroutine at
the second line-no. or label is called, and so on.
If the value of the expression is 0 or if it is greater than the number of line-
nos. or labels, no subroutine is called and execution continues with the next
line.
If the value of the expression is negative, an error occurs.
To exit from a subroutine, execute the RETURN statement.

Example: ON A GOSUB 200,300,400

Program Sample:

10 ’'test command name :0ON GOSUB
20 PARACT 0
30 FOR I=1 TO 3

40 PRINT "ON”;I;”GOSUB”
50 ON I *PRO1,*PRO2,*PRO3
60 PRINT

70 NEXT I

80 END

90 *PRO1 :PRINT "PROGRAM1” :RETURN
100 *PRO2 :PRINT ”"PROGRAMZ2” :RETURN
110 *PRO3 :PRINT ”PROGRAM3”:RETURN
120 END PARACT

Ok

75

ONK Reference

Section 3-2

RUN
ON 1 GOSUB

PROGRAM1

ON 2 GOSUB

PROGRAM?2

ON 3 GOSUB

PROGRAM3

See Also: GOSUB, RETURN, ON GOTO

ON GOTO

Purpose: Statement. Branches to one of several specified lines.

Syntax: ON expression GOTO {line-no. | *label} [, {line-no. | *label}]*

Comments: Branches to a line specified by the line-no. or label corresponding to the val-
ue of expression. That is, if the value of the expression is 1, the program
branches to the first line-no. or label; if the value is 2, the program branches
to the second line-no. or label, and so on.
If the value of the expression is 0 or if it is greater than the number of line-
nos. or labels, execution continues with the next line.
If the value of the expression is negative, an error occurs.

Example: ON A GOTO 200,300,400

See Also: GOTO, ON GOSUB

ON KEY GOSUB

Purpose:

Syntax:

Comments:

Example:

Program Sample:

76

Note

Statement. Defines interrupt routine to be called when a specified numeric
key is pressed.

ON KEY (key-no.) GOSUB {line-no. | label}

Defines a routine to be executed when the numeric key specified by key-no.
is pressed.

Key no. must be a number from 0 to 9.

The key interrupt is stopped immediately after the ON KEY GOSUB statement
is executed.

The interrupt of the same key number is stopped while the interrupt routine is
being executed.

To exit from the interrupt routine and return to the previous state, use the RE-
TURN statement.

Only one interrupt routine can be defined for each key-no.

1. If ON KEY GOSUB is executed more than once, only the last processing
routine defined is valid.

2. Key interrupts will be recognized only if the KEY ON statement has been
executed.

3. The KEY OFF state caused by the ON KEY GOSUB statement continues
until a KEY ON statement is executed.

ON KEY (3) GOSUB 2000

10 'test command name :ON KEY GOSUB !
20 PARACT 0

30 CLS

40 ON KEY (1) GOSUB *F1

ONS Reference

Section 3-2

See Also:

ON PC GOSUB

50 KEY (1) ON

60 PRINT ”PRESS KEY 1. (END: E)”

70 PAUSE

80 END

90 *F1 : PRINT "KEY 1 PRESSED.” : RETURN
100 END PARACT

KEY {ON | OFF | STOP}

Purpose:
Syntax:

Comments:

Note

Example:

See Also:

Statement. Defines routine to process PC interrupts.
ON PC (interrupt-no.) GOSUB {line-no. | *label}

This statement is used to accept an interrupt request for the data sent by the
SEND instruction or received by the RECV instruction of the PC. Set the data
that generates the interrupt to the bits 8 through 11 of the address indicated
by the lower CH no. of control data of the operand of the SEND/RECV in-
struction plus 1 channel in hexadecimal number (1 to F).

This statement defines a processing routine to be executed when the PC in-
terrupt specified by interrupt-no. is generated. Specify a value from 1 to 15 as
the interrupt-no.

Only one interrupt routine can be specified for each interrupt-no.

The PC interrupt is stopped immediately after the ON PC GOSUB statement
has been executed.

The interrupt is stopped while the interrupt routine is being executed.
To exit from the interrupt routine, execute the RETURN statement.
1. If ON PC GOSUB is executed more than once for the same interrupt-no.,
only the last processing routine defined is valid.

2. PC interrupts will be recognized only if the PC ON statement has been ex-
ecuted.

3. The PC STOP state caused by the ON PC GOSUB statement continues until
a PC ON statement is executed.

ON PC (2) GOSUB 2000
PC {ON | OFF | STOP}

ON SIGNAL GOSUB

Purpose:
Syntax:

Comments:

Statement. Defines interrupt routine for user-defined signal or system signal.
ON SIGNAL (signal-no.) GOSUB {line-no. | label}

Defines a processing routine to be executed when an interrupt is generated
by the signal signal-no.

Signal-no. must be an integer between 1 and 5 or 10 and 13. The STOP sig-
nal is 10, the PC watchdog timer error signal is 11, the cyclic error signal is
12. and the battery error signal is 13.

Signal numbers 1 through 5 are available for user definition.

The signal interrupt is stopped immediately after the ON SIGNAL GOSUB
statement has been executed.

The interrupt is stopped while the interrupt routine is being executed.

To exit from the interrupt routine and return to the previous state, execute the
RETURN statement.

A separate interrupt routine for user-defined signals 1 to 5 can be defined for
each task. However, only one interrupt routine for each signal from 10 to 13
can be defined in all tasks.

77

ONT Reference

Section 3-2

Example:

Program Sample:

See Also:

Note

1. If ON SIGNAL GOSUB is executed more than once for the same interrupt-
no., only the last processing routine defined is valid.

2. Signal interrupts will be recognized only if the SIGNAL ON statement has
been executed.

3. The SIGNAL OFF state caused by the ON SIGNAL GOSUB statement con-
tinues until a SIGNAL ON statement is executed.

ON SIGNAL 4 GOSUB 2000

10 "test command name :ON SIGNAL GOSUB
20 PARACT O

30 ON SIGNAL 1 GOSUB *RCV
40 SIGNAL 1 ON

50 TASK 1

60 PAUSE

70 END

80 *RCV

90 PRINT ”SIGNAL IS RECEIVED.”
110 RETURN

120 END PARACT

130

140 PARACT 1

150 PRINT ”SIGNAL IS SENT.”
160 SENDSIG 1,0

170 END

180 END PARACT

ok

RUN

SIGNAL IS SENT.

SIGNAL IS RECEIVED.

ok

SIGNAL {ON | OFF | STOP}

ON TIMES GOSUB

Purpose:
Syntax:

Comments:

78

Note

Statement. Defines time interrupt and interrupt routine.
ON TIMES = "time” GOSUB {line-no. | label}

Defines a processing routine to be executed when the specified time comes.
Specify the time as follows:
"HH:MM:SS" HH : hour (00 to 23)
MM : minute (00 to 59)
Ss :second (00 to 59)
The interrupt is stopped immediately after the ON TIMES$ GOSUB statement
has been executed.
The interrupt is stopped while the interrupt routine is being executed.
To exit from the interrupt routine and return to the previous state, execute the
RETURN statement.
A separate interrupt routine can be defined for each task.
1. IfON TIMES GOSUB is executed more than once in one task, only the last
processing routine defined is valid.
2. The TIMES interrupt will be recognized only if the TIMES$ ON statement has
been executed.

3. The TIMES OFF state caused by the ON TIMES GOSUB statement contin-
ues until a TIMES ON statement is executed.

ONT Reference Section 3-2

Example: ON TIMES$ = ”13:00:00” GOSUB 2000

Program Sample: 10 ‘test command name :ON TIMES GOSUB ’
20 PARACT 0
30 PRINT TIMES$
40 INPUT ”INPUT TIME. HH:MM:SS :”;T$
50 ON TIME$ = T$ GOSUB *BEL
60 PRINT "WAKE UP AT ";T$;”.”
70 TIMES ON
80
90 *SLEEPY
100 PRINT ”I'M SLEEPING.”
110 PAUSE
120
130 *BEL
140 PRINT
150 PRINT "WAKE UP NOW!!”
160 TIME$ OFF
170 END
180 END PARACT
ok
RUN
08:05:43
INPUT TIME. HH:MM:SS :? 08:10:00
WAKE UP AT 08:10:00
I'M SLEEPING.

WAKE UP NOW!!

ok

See Also: TIMES {ON | OFF | STOP}, TIMES

ON TIMER GOSUB

Purpose: Statement. Specifies time interval for recurring timer interrupt and defines
interrupt routine.

Syntax: ON TIMER = interval GOSUB f{line-no. | *label}

Comments: Defines a processing routine will be executed each time the time interval

specified by interval elapses.

Specify interval in units of 0.1 seconds in the range of 1 to 864000 (0.1 sec-
onds to 24 hours).

The timer interrupt is stopped immediately after the ON TIMER GOSUB state-
ment has been executed.

The interrupt is stopped while the interrupt routine is being executed. Timer
processing will, however, continue.

To exit from the interrupt routine and return to the previous state, execute the
RETURN statement.

A separate timer interrupt routine can be defined for each task.
Note 1.IfON TIMER GOSUB is executed more than once in any one task, only the
last processing routine defined is valid.

2. Timer interrupts will be recognized only if the TIMER ON statement has
been executed.

3. The TIMER OFF state caused by the ON TIMER GOSUB statement con-
tinues until a TIMER ON statement is executed.

Example: ON TIMER = 3600 GOSUB 2000

79

OPE Reference

Section 3-2

Program Sample:

10 'test command name :ON TIMER
20 PARACT 0

30 ON TIMER 50 GOSUB *DSPLY
40 TIMER ON

50 PAUSE

60 GOTO 50

70 END

80 *DSPLY

90 TIMER OFF

100 PRINT "WELCOME”

110 TIMER ON

120 RETURN

130 END PARACT

See Also: TIMER {ON | OFF | STOP}

OPEN

Purpose: Statement. Opens file.

Syntax: OPEN “file-name” [FOR {INPUT | OUTPUT | APPEND}] AS #file-no.
Comments: Opens the file specified by file-name as the file-no.

80

File-no. must be an integer between 1 and 15. Two files cannot be opened
simultaneously using the same file number.

The following modes can be specified by FOR:
None: Random access file
INPUT: read from an existing file
OUTPUT: Create and output to a new file
APPEND: Append to the end of an existing file

In the OUTPUT mode, a new file is created with the specified file name. If a
file with that name already exists, it is deleted.

In the INPUT and APPEND modes, an error occurs if the file specified by file-
name does not exist.

File-name is a character string which consists of the following parts:
device name : [base-name][. extension]

The base name is an 8-character alphanumeric character string starting with

an alphabetic character. The extension consists of three alphanumeric char-

acters starting with an alphabetic character. If more than three characters are
specified, an error will result.

The device names are as follows:

Name Device

0 Memory card

coM1l Communication line port 1 (RS-232, top)

COM2 Communication line port 2 (RS-232, bottom)

CcoM3 Communication line port 3 (RS-422)

KYBD Console keyboard

SCRN Console screen
LPRT Printer (PRT)
FINS Network

The communication line ports are opened in the following format. Each item
must be delimited from the others by a comma (,). (If the items are omitted,
the comma is not necessary.)

OPE Reference

Section 3-2

OPEN “COMn

:[speed] [,parity] [,data] [,stop] [XON/XOFF] [,RS] [,CSm1]
[,DSO] LLF]” as # file-no.

Port no. Specify 1 to 3.

Speed

Integer constant indicating bit transfer rate in bit/second (bps).
Specify 300, 600, 1200, 2400, 4800, 9600, or 19200. If
omitted, the value defined by the memory switch (ESW4) is
assumed. If the memory switch is not set, 9600 is the default
value.

Parity

Transmission/reception is done with odd parity when 0 is
specified. For even parity, specify E. N is for no parity. The default
is N.

Data

Indicates bit length of a character. Specify 7 or 8. The default
value is 8.

Stop

Indicates stop bit length. Specify 1 or 2. The default value is 1.

XON/XOFF
(see note)

Specifies whether XON/XOFF flow control should be used. When
X is specified, XON/XOFF flow control is used. When XN is
specified, XON/XOFF flow control is not used. The default is to
use XON/XOFF flow control.

Port 3 is compatible with n:n connections. XON/XOFF flow control
will thus not be used for receptions even if designated.

RS

When RS is specified, the RTS (request to send) signal is turned
ON when /O instructions are executed; otherwise, the RTS signal
is turned OFF. If RS is not specified, the RTS signal is always ON.
This specification is invalid when the terminal port or printer port
is specified by the memory switch.

CSs

Designate to monitor the time of transmission completion. The
default value is CSO (indefinite wait).

Indicates permissible wait time until the completion of
transmission after CTS is ON. Specify this in units of 100
milliseconds from 0 to 30000. If transmission has not been
completed before the wait time has elapsed, an error occurs. If
the time is set to 0, the wait time is indefinite. The default value is
0.

DSO

Controls checking of DSR (data set ready) signal. If DSO0 is
omitted, checking is performed; otherwise, checking is not
performed.

LF

Used to transfer communication file directly to printer. A LF
(line-feed) character is automatically sent following every CR
(carriage-return) character.

Note Port 3 corresponds to the n:n connection, so XON/XOFF flow control is not

available at the time of reception.

Open the network in the following format:

OPEN "FINS: [network-address]node-address.unit-address” As #file-no.

By OPENing the FINS device, data may be exchanged with other BASIC

Units.

The network address, node address, and unit address are values specifying
the address of the BASIC Unit defined for communication. Each address is
specified as an absolute decimal value. Be sure to input the values correctly
because the value range will not be checked thoroughly.

81

OPE Reference

Section 3-2

Example:

Program Sample:

82

Network Distinguishes network. A routing table must be set in PC. If only

address one network exists, the routing table is not necessary, in which
case either the network address is set to 0 or omitted.

Node address | Address of PC when network is configured using Communication

Unit. If no network is used and data exchange is performed with
the BASIC Unit on PC (or Expansion Base), this address must be
either set to 0 or omitted.

Un

it address Address of the other BASIC Unit to/from which data is
transmitted/received. The value of this address is the unit number
defined by the switch on the front panel plus 16. Therefore, if the
unit number is 0, the address is 16. This address is omitted if only
reception is executed without the other BASIC Unit specified.

Example:
OPEN "FINS:1.5.20" AS #1

Indicates that communication is established with the BASIC Unit
of machine no. 4 of network 1 and node 5.

OPEN "FINS:21” AS #1

Indicates that communication is established with BASIC Unit of
machine no. 5 on the same PC.

OPEN "FINS:” AS #1

Indicates that data is received from any other BASIC Units. In
this case, only input instructions such as INPUT #1 can be used.

OPEN ”"COM1:9600,E,8,1,XN” AS #1
OPEN ”"FINS:1.5.20" AS #1

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
ok
RUN
1:C
INP
PRO
PRI
INP

'test command name :ON OPEN

PARACT 0

PRINT ”1:CREATE 2:MODIFY 3:LIST 9:END”

INPUT ”INPUT NUMBER? ”;INS$

IF INS$="9” THEN END

IF INS$=”1" THEN OPEN ”“DATA” FOR OUTPUT AS #1:GOSUB *KEYIN
IF INS$=”2" THEN OPEN ”"DATA” FOR APPEND AS #1:GOSUB *KEYIN
IF INS$=”3" THEN OPEN "DATA” FOR INPUT AS #1:GOSUB *DSPLY

GOTO 30
*KEYIN
INPUT ”“PRODUCT NAME: ”,NM$
INPUT "PRICE: "”,PRC

PRINT #1,NMS$;"”,";PRC
INPUT ”INPUT END? (Y/N) ”;IN1S$
IF IN1$="Y” OR IN1$="y” THEN CLOSE:RETURN

IF IN1$="N” OR IN1$="n” THEN GOTO *KEYIN
GOTO 140
*DSPLY

PRINT ”PRODUCT ANME PRICE”

IF EOF(1l) THEN CLOSE:RETURN

INPUT #1,NM$,PRCS

PRINT USING " $ $ #HHH#H#Y ; NMS , VAL (PRCS)
GOTO 200
END PARACT

REATE 2:MODIFY 3:LIST 9:END
UT NUMBER? 1

DUCT NAME: BASIC

CE: 100

UT END? (Y/N) Y

OPT Reference Section 3-2

1:CREATE 2:MODIFY 3:LIST 9:END
INPUT NUMBER? 3

PRODUCT NAME: PRICE:
BASIC 100
1:CREATE 2:MODIFY 3:LIST 9:END
INPUT NUMBER? 9

See Also: CLOSE, GET, INPUT#, PRINT#, PUT, WRITE#

OPTION BASE

Purpose: Statement. Declares subscript of first array element.

Syntax: OPTION BASE {0 | 1}

Comments: Declares the subscript of the first element of an array to be 0 or 1.
This declaration can be made only once, before the declaration of all vari-
ables.

If this declaration is not made, element 0 is the first element of all arrays.

Note Execute the OPTION BASE statement before the declaration or use of all vari-
ables. This makes the declaration of OPTION BASE valid in all tasks.

Example: OPTION BASE 1

Program Sample: 10 ’'test command name :OPTION BASE
20 OPTION BASE 0
30 PARACT 0
40 DIM X(10)
50 FOR I=0 TO 10

60 X(I)=I*I+1
70 NEXT I
80 FOR I=0 TO 10
90 PRINT "X (";I;")=";X(I)
100 NEXT I
110 END
120 ENDPARACT
ok
RUN
X(0)=1
X(1)=2
X(2)=5
X(3)= 10
X(4)= 17
X(5)= 26
X(6)= 37
X(7)= 50
X(8)= 65
X(9)= 82
X(10)= 101
See Also: DIM, RDIM
OPTION ERASE
Purpose: Statement. Declares initialization of all non-volatile variables.
Syntax: OPTION ERASE
Comments: Declares that all non-volatile variables are initialized before execution.
This declaration can be made only once, before the declaration of all vari-
ables.

83

OPT Reference Section 3-2

Note The OPTION ERASE statement must be executed before the declaration or use
of all variables.

Example: OPTION ERASE

Program Sample: 10 ‘test command name :OPTION ERASE
20 OPTION ERASE ‘Operation differs depending on whether this
line is described
30 RDIM HOLD(10),HOLD2(10)
40 PARACT O
50 HOLD(0)=HOLD(0)+1
60 HOLD2(0)=HOLD2(0)+2
70 PRINT HOLD(0)*HOLD2(0)
80 ENDPARACT

Ok
RUN
2
ok
See Also: RDIM
OPTION LENGTH
Purpose: Statement. Declares default length for fixed-length character string variables.
Syntax: OPTION LENGTH no.-of-characters
Comments: The number of characters that can be stored in a character string variable is

limited and this is called the maximum number of characters.

The maximum number of characters can be declared when a character string
variable is declared. If the variable is declared or used without the maximum
number of characters specified, the variable is assumed to have the maxi-
mum number of characters specified by the no.-of-characters.

The maximum number of characters of a character string variable is 538.
Specify the no.-of-characters as a numeric constant in the range of 0 to 538.

This declaration can be made only once before the declaration of all vari-
ables.

If neither the declaration by the DIM or RDIM statement nor this declaration is
made, the maximum number of characters is 18.

Note Execute the OPTION LENGTH statement before the declaration or use of all
variables. This makes the declaration of OPTION LENGTH valid in all tasks.

Example: OPTION LENGTH 32

Program Sample: 10 ‘test command name :OPTION LENGTH
20 OPTION LENGTH 50
30 PARACT O
40 AS$S="123456789012345678 More than 18 characteres can be
displayed.”
50 PRINT AS
60 END
70 END PARACT
Ok
RUN
123456789012345678 More than 18 characteres can be displayed.

See Also: DIM, RDIM

84

PAR Reference

Section 3-2

PARACT

Purpose:
Syntax:

Comments:

Example:

Program Sample:

See Also:

PAUSE

Statement. Declares the beginning of a task.
PARACT task-no. [WORK no.-of-bytes]

This statement must be used as the first statement of a task to declare the
task-no. and the size of the task’s work area.

A task is delimited by this statement and a corresponding END PARACT
statement.

Task-no. must be a unique integer between 0 and 15.

Task-no. 0 is the start task and is always executed first. Without this task, the
program is not executed.

The no.-of-bytes parameter specifies the maximum amount of work memory
to be used by this task. Program statements require varying amounts of
memory. For example, the 4 bytes of work memory is necessary for one
GOSUB, several bytes for one nesting of () in an expression, and, in the case
of a character string expression, the sum of the lengths of all the strings in
the expression. If the error message Out of memory space is displayed,
either increase no.-of-bytes or simplify the character string expression. If the
task calls deeply nested subroutines, increase no.-of-bytes.

The default value for no.-of-bytes is 1024.
This statement cannot be included in a multi-statement.

PARACT 0

10 'test command name :PARACT !
20 PARACT O

30 AS="ABC”

40 B$="123"

50 PRINT AS+B$S

60 END

70 END PARACT

RUN

ABC123

ok

END, END PARACT

Purpose:
Syntax:

Comments:

Example:

Program Sample:

Statement. Stops execution of a task until an interrupt occurs.
PAUSE

Stops the execution of a task until an interrupt to the task occurs.

When an interrupt occurs, program execution branches to the interrupt pro-
cessing routine; when interrupt processing is completed, the task resumes
execution with the statement following the PAUSE.

If an interrupt occurs for which no interrupt processing routine has been de-
fined, the program remains stopped.

PAUSE

10 'test command name :PAUSE !
20 PARACT O

30 ON ALARM 50 GOSUB *APRO

40 ALARM ON

50 PRINT ”STARTS 5 SECONDS LATER.” :PAUSE

60 INPUT "REDO? (Y OR N) ”; INS

85

PCR Reference

Section 3-2

See Also:

70 IF IN$ + ”Y” OR IN$ + "y” THEN 30
80 END

90 *APRO

100 PRINT ”"ALARM SIGNAL IS GENERATED.”
110 RETURN

120 END APRACT

ok

RUN

STARTS 5 SECONDS LATER.

ALARM SIGNAL IS GENERATED.

REDO? (Y OR N)? N

ok

ON {ALARM | COM | FINS | KEY | PC | SIGNAL | TIME$ | TIMER} GOSUB

PC ON/OFF/STOP

Purpose: Statement. Enables, disables, or stops interrupt from PC.
Syntax: PC (interrupt-no.) {ON | OFF | STOP}
Comments: ON enables the interrupt. When this statement is executed, the program ex-
ecution branches to a defined routine if an interrupt occurs.
STOP stops the interrupt. When this statement is executed, the program ex-
ecution does not branch to a defined routine even if an interrupt occurs. How-
ever, the occurrence of the interrupt is recorded, and execution branches to
the defined routine when the interrupt is enabled.
OFF operates the same as STOP.
Interrupt-no. must be an integer between 1 and 15.
Note 1. The PC interrupt is stopped immediately after the execution of the oON PC
GOSUB statement.
2. The interrupt is stopped while the interrupt routine is being executed.
Example: PC (1) ON
See Also: ON PC GOSUB
PC READ
Purpose: Statement. Reads data from PC into variable.
Syntax: PC READ [WAIT time,] character-expression; variable [, variable]*
Comments: Reads data from a PC into variable according to the specifications encoded

86

in the character-expression string.

If WAIT is specified, and if reading data is not completed before time has
elapsed, an error occurs. Specify the time in units of 0.1 seconds in the
range of 1 to 32767. To wait until the completion of read, either specify the
time to be 0, or do not specify WAIT.

Here is the structure of the character-expression string:

[[#network, node,] source-area, start-word, no.-of-words] format [, for-
mat]*

Network and node specify the address of the PC. For a PC on the same net-
work, use network 0.

No network node or network address is required by a PC mounted with a
BASIC Unit. If a PC address is specified, the data of the specified PC will be
read.

The source-area parameter specifies a variable area of the PC from which
datais read. If a PC address is specified with network-address and node-ad-
dress, source-area must also be specified.

PCR Reference

Section 3-2

Source Area List

The PC address and source-area may be omitted to read data sent by a PC
with the SEND(192) instruction. This is often used in the PC interrupt-invoked
subroutine defined with ON PC GOSUB.

Start-word specifies the address of the desired word(s) in the PC memory;
no.-of-words specifies the number of words to transfer. The range of no.-of-
words is 1 to 256. If the words are consecutive, efficient operation should be
expected by making a single PC READ statement rather than making more
than one PC READ statement.

If the data sent from the PC is greater than the capacity of a variable, the
data overflows and is ignored.

If the data sent from the PC is less than the capacity of a variable, the re-
maining area of the variable is unaffected.

WAIT designation with no PC address is not available.
The format parameter specifies how the data is to be read into the variable:

Source Area Area Wd/bit no. Unit
@R I/O relay, internal auxiliary relay 0 to 2555 word
ea Special auxiliary relay (A) (A256 through 511 are read-only (PC 0to 511 word

READ) relays.)
@TN Transition flag (read-only (PC READ)) 0 to 1023 bit
@sT Step flag (read-only (PC READ)) 0 to 1023 bit
@TF Timer flag (read-only (PC READ)) 0 to 1023 bit
eT Timer present value 0 to 1023 word
@CF Counter flag (read-only (PC READ)) 0 to 1023 bit
ec Counter present value 0 to 1023 word
@D Data memory (DM) 0 to 24575 word
@EO Expansion DM (EM) bank 0 0 to 32765 word
@E7 Expansion DM (EM) bank 7 0 to 32765 word
@sG CPU bus link (G) 0 to 255 word
8 words from 128 + (unit No.) x 8 channels as area for PC WRITE
@so Cyclic output (PC A BASIC Unit PC READ) Oton word
@s1 Cyclic input 3tom (0to2are word
used by system.)
The word/bit ranges above are for the CV1000. For other PCs, designate
according to the permissible ranges. Refer to the CV-series PC Operation
Manual: Ladder Diagrams.
Formats

For reading into simple variables:

Name Syntax Meaning
I min n-digit decimal data (n: 1 to 4) of m words
H mHn n-digit hexadecimal data (n: 1 to 4) of m words
0] mon n-digit octal data (n: 1 to 4) of m words
B mBn Data of nt" bit of m words (n: 0 to 15)
A mAan ASCII data specified by n of m words (n: 1 to 3)

87

PCR Reference Section 3-2

For reading into arrays:

Name Syntax Meaning
S smin Array data of m words of each type in the array type of
SmHnN I,H,0,0rB
smon
SmBn

If m is omitted, 1 is assumed.
One variable must be supplied for each I, H, 0, or B-format word.
One (string) variable must be supplied for each A in format.

One array variable must be supplied for each s in format. The array must be
large enough to hold the data returned. Use a one-dimensional array.

Details of format

| format (m1In) Each digit is treated as a decimal number (0 to 9).
Digit Bit
n 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
1 x 100
2 -- -- x 10’ x 109
3 - x 102 x 101 x 100
4 x 108 x 102 x 101 x 100

Example: 213 indicates 3-digit decimal data of two words.

H format (mHn) Each digit is treated as a hexadecimal number (&HO00 to &HOF).
Digit Bit
n 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
1 x 160
2 -- -- x 161 x 160
3 - x 162 x 161 x 160
4 x 168 x 162 x 161 x 160

Example: 3H4 indicates 4-digit hexadecimal number of three words.

O format (mon) Each digit is treated as an octal number (&0 to &7)
Digit Bit
n 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
1 - - - x 80
2 x 81 x 80
3 x 82 x 8! x 89
4 x 8% x 82 x 8' x 89

Example: 402... indicates 2-digit octal data of four channels.

88

PCR Reference

Section 3-2

B format (mBn)

Each bit is treated as a binary number (0 or 1).

Digit Bit
n 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
0 - - - - - - - - - - - - - - - | x20
1 - - - - - - - - - - - - - - | x2! -
2 - - - - - - - - - - - - - | x22 | - -
3 - - - - - - - - - - - - | x28 | - - -
4 - - - - - - - - - - - | x24| - - - -
5 - - - - - - - - - - | x25| - - - - -
6 - - - - - - - - - | x28 | - - - - - -
7 - - - - - - - - | x27 | - - - - - - -
8 - - - - - - - | x28 | - - - - - - - -
9 - - - - - - | x22| - - - - - - - - -
10 - - - - - |x210| - - - - - - - - - -
11 - - - - |xom| - - - - - - - - - - -
12 - - - |x212| - - - - - - - - - - - -
13 - - |x213| - - - - - - - - - - - - -
14 - [x21| - - - - - - - - - - - - - -
15 [x215| - - - - - - - - - - - - - - -
Example: 5B14... indicates binary data at 14th bit position of 5 words.
A format (man) Each digit is treated as an ASCII code.
Digit Bit
n 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
1 - ASCII code
ASCII code -
3 ASCII code ASCII code
Example: 6A2... indicates ASCII code data of higher digit of 6 channels.
In format A, up to 256 words can be transferred at a time because one vari-
able of the BASIC Unit correspond to more than one word of the PC.
Example: PC READ ”@D,0,255,50A3,100A2,30A1,75A3"”; AS$, BS, CS$, DS
AS receives the data specified by the 50A3 portion of format.
50 words * 2 characters = 100 characters are read.
BS receives the data specified by the 100A2 portion of format.
100 words * 1 character = 100 characters are read.
C$ receives the data specified by the 30A1 portion of format.
30 words * 1 character = 30 characters are read.
DS receives the data specified by the 75A3 portion of format.
75 words * 2 characters = 150 characters are read.
S formats Each digit (bit) is treated in accordance with its specified type.

(sm1in, SmHn, Smon, SmBn)

Format A must not be specified.

Format Meanings
smin Indicates n-digit decimal array variable data of m words
SmHN Indicates n-digit hexadecimal array variable data of m words
smon Indicates n-digit octal array variable data of m words
SmBn Indicates data of nth bit position of array variable data of m words

89

PCR Reference

Section 3-2

Example:

Examples of PC READ
Format Conversion

| format

H format

920

The variable corresponding to the S format must be declared as a one-di-
mensional array with the DIM statement. If the variable corresponding to an S

format is not an array variable, an error occurs.

Data are stored sequentially in the specified array variable in accordance

with the format.

In format S, one array element of the BASIC Unit must correspond to one
word of the PC. Only the beginning of the array variable must be described
for one format, so that up to 256 words of data can be transferred at a time.

PC READ ”@D,0,255,S100I4,S75H2,58003"”;A(1),B(11),C(51)
A(1l)toA(100): 4-digit decimal number of 100 words indicated by

S100I4 are read.

B(ll) toB(85): 2-digit hexadecimal number of 75 words indicated by

S75H2 are read.

C(51) toc(130): 3-digit octal number of 80 words indicated by s8003 are

read.

Source-area, start-word, and no.-of-words are omitted.

PC word data
12|34

Integer type variable

PC READ "T1”;J% ceeeeeenennns J% =4
PC READ "TI2”;J% ceeeeeecncens J% =34
PC READ "I3";J% ceeeereecnnns J% =234
PC READ "T4";J% ceeeeeecnnnns J% =1234

Character string variable

PC READ "I1”;AS tieeereennnn. AS =74

PC READ "I2";AS$ civeeeernnens AS$ =734
PC READ "I3";AS ceceeeecannns AS ="234"
PC READ "I4";AS$ civveeernnnns AS$ ="1234"
PC word data

8/9|A|B

Integer type variable

PC READ "H1”;J% ceveerennnnns J% = &HB
PC READ "H2”;J% eeveeeeennnns J% = &HAB
PC READ "H3";J% ceveeennnnnns J% = &H9AB
PC READ "H4";J% eevueeernnnnn J% = &H89AB

Character string variable

PC READ "H1”;AS veveerenennnn AS ="B”

PC READ "H2";AS tieeereeennn. AS ="AB”

= 11

=171

= 2475

= -30293

PCR Reference

Section 3-2

O format

B format

A format

PC READ "H3";AS$

PC READ "H4";AS

PC word data

1

2

3

4

Integer type variable

PC READ

PC READ

PC READ

PC READ

TOL";T% cennennn
TO27;T% cenennnn
O3 ;T% cenennnn

"O04" ;0% ceeennnn

Character string variable

PC READ

PC READ

PC READ

PC READ

"OLl";AS coiven.n
"O2";AS c.eiiennn
"O3";AS ceieenn

"O4";AS ceeiennn

PC word data

C

1

2

2

Integer type variable

PC READ

PC READ

PC READ

PC READ

PC READ

"Bl”;T% ceeeennn
"B2";J% ceeennnn
"B57;J% ceiennnn
"Bl4";JT% .cee...

"B157;3% ...c...

Character string variable

PC READ

PC READ

PC READ

PC READ

PC READ

"BLl";AS c.i.....
"B2";AS ceieenn.
"B5";AS$ ceeiinnn
"Bl4" ;A$..e...

"B15”;AS

PC word data

5

1

5

2

5

3

5

4

A$ — ugABu
A$ ="89AB”

J% = &234

J% = &1234

A$ = ”4”
A$ = ”34”
AS$ = "2347

AS$ = "1234°

A$ =2’

A$ =70’

A$ =732’

A$ = 716384

A$ =7-32768”

=28

= 156
= 668

Error occurs if an attempt is made to read A format data into an integer vari-

able.

Character string variable

PC READ ”2Al”;A$

A$ ="RT"

91

PCR Reference Section 3-2

PC READ "2A2";ASAS="Q8
PC READ "2A3";AS tvevevenen. AS ="QRST”
Note Asciicodefor: Q............ &H51
R............ &H52
S &H53
T . &H54
S format PC word data
0|1(2]3
41516 |7
89|01
21314 |5
Integer type variable (I format)
PC READ “S4I4";A(l)A(1l) =123
A(2) = 4567
A(3) =8901
A(4) =2345
Examples: PC READ "#1.5,@D,100,10,S5H4,5A3"”; A%(0), BS

PC READ "#0.3,@R,20,5,3I4,H4,A3”; A, B, C, D, E$
PC READ "@D,3,12,10A3,S2H4”; AS$, B(0)
PC READ "2H4,S5H4”; B, C, D(0)

Program Sample: 10
20 ' WRITES DATA MEMORY OF PC, TRANSFERS DATA FROM PC, AND
COMPARES DATA READ FROM BASIC
30 ¢
40 PARACT 0
50 DIM DM(3),R(3)
60 ’
70 PC WRITE ”#1.1,@D,0,3,3H4”;D1,D2,D3 'WRITES TO DATA MEMORY
OF NETWORK 1, NODE 1
80 ON PC (1) GOSUB *RCV
90 PC (1) ON
100 PAUSE
110 PC READ "#1.1,@D,0,3,S3H4”;DM(0) ’'READS DATA MEMORY OF
NETWORK 1 WITH SPECIFIED NODE
120 FOR I= 0 TO 3
130 IF DM(I) <> R(I) THEN PRINT ”COMPARER”;I 'RECEIVE DATA
COMPARISON
140 NEXT I
150 END
160
170 *RCV
180 PC READ ”S3H4”;R(0) 'READS TRANSFER DATA FROM PC
190 RETURN
200
210 END PARACT

See Also: PC WRITE

92

PCW Reference

Section 3-2

PC WRITE

Purpose:
Syntax:

Comments:

Formats

Statement. Transfers value of variable to PC.

PC WRITE [WAIT time,] character-expression; variable [, variable]*
Writes data to a PC from variable according to the specifications encoded in
the character-expression string.

If WAIT is specified, and if writing data is not completed before time has
elapsed, an error occurs. Time is specified in units of 0.1 seconds, in the
range of 1 to 32767. To wait until the write is complete, either specify the time
to be 0, or do not specify WAIT.

Here is the structure of the character-expression string:

[[#network, node,] destination-area, start-word, no.-of-words,]

format [, format]*

Network and node specify the address of the PC. For a PC on the same net-
work, use network 0.

The destination-area parameter specifies a variable area of the PC to which
data is written. If a PC address is specified with network-address and node-
address, destination-area must also be specified.

The PC address and destination-area may be omitted to write data to a PC
which has executed the RECV(193) instruction. This is often used in the PC
interrupt-invoked subroutine defined with ON PC GOSUB.

Start-word specifies the address of the desired word(s) in the PC memory;
no.-of-words specifies the number of words to transfer. The range of no.-of-
words is 1 to 256.

If the number of input data of the PC is greater than the variable, no data are
stored in the remaining area.

If the number of input data of the PC is less than the variable, the excess
variable is ignored.

If variable has a fractional part, it is truncated to an integer that does not ex-
ceeds the value of the variable.

If variable is single- or double-precision, it is converted into an integer.
If the value of variable exceeds &HFFFF, an error occurs.

The format parameter specifies how the data is to be read into the variable:
For writing from simple variables:

Name Syntax Meaning
I min n-digit decimal data (n: 1 to 4) of m words
H mHn n-digit hexadecimal data (n: 1 to 4) of m words
0] mon n-digit octal data (n: 1 to 4) of m words
B mBn Data of nt" bit of m words (n: 0 to 15)
A mAan ASCII data specified by n of m words (n: 1 to 3)

For writing from arrays:

Name Syntax Meaning
S smin Array data of m words of each type in the array type of
SmHnN I,H,0,0rB
smon
SmBn

If m is omitted, 1 is assumed.
One variable must be supplied for each I, H, 0, or B-format word.
One (string) variable must be supplied for each A in format.

93

PCW Reference

Section 3-2

Note

Example of PC WRITE
Format Conversion

| format

H format

9

One array variable must be supplied for each s in format. The array must be
large enough to provide the data to send. Use a one-dimensional array.

1. For details on destination-area and format, refer to the description of the
PC READ statement.

2. During the PC’s CPU Bus Unit service, PC WRITE may write to the PC
the data sent from only one Unit out of all CPU Bus Units and Commu-
nications Units. The remaining data may be written to the PC during the
next and succeeding services.

Destination-area, start-word, and no.-of-words are omitted.

PC word data Integer type variable: 7% = 1234
0(0|(0|4

PC WRITE "Il1”;J%

0/0(3|4

PC WRITE "I2";J%

0[2]|3|4

PC WRITE "I3”;J%

1/2]|3 |4

PC WRITE "I4";J%
PC word data Character string variable: A$ ="1234”
0/|0(0]|1

PC WRITE "Il1”;AS$

0|0(1]|2
PC WRITE "I2";A$
0(1(2]|3

PC WRITE "I3";AS$

1/2]|3 |4

PC WRITE "I4”;AS$
PC word data Integer type variable: 7% = -30293 = &H89AB
0[{0|0|B

PC WRITE "H1"”;J%

0|0 (A|B

PC WRITE "H2";J%

0|9|A|B

PC WRITE "H3";J%

PCW Reference

Section 3-2

O format

8

9

A

B

PC WRITE "H4";J%

PC word data

0

0

0

8

PC

WRI

TE

"Hl

0

8

PC

WRI

TE

"H2

0

9

PC

WRI

TE

"H3

8

9

A

B

PC WRITE

"H4

PC word data

0

0

0

4

PC

WRI

TE

01

0

3

PC

WRI

TE

"02

0

3

PC

WRI

TE

"03

1

2

3

4

PC WRITE

"04

PC word data

0(0(0]1
PC WRITE "0l
0(0(1|2
PC WRITE ”02
0(1|2|3
PC WRITE ”03
1(2(3]|4
PC WRITE "04

"iAS

"iAS

"iAS

";AS

"; 3%

"; 3%

"; 3%

"; 3%

";AS

"iAS

"iAS

"iAS

Character string variable: A$ = "89AB”

Integer type variable: J% = 668 = &1234

Character string variable: A$ =71234"

95

PCW Reference Section 3-2

B format PC word data Integer type variable: 7% = -32749 = &H8013
0]/0]0]1

PC WRITE ”"B0”;J%

0(0(0]2

PC WRITE ”Bl1”;J%

0(0(1]o0

PC WRITE ”"B4";J%

8(0(0]0

PC WRITE ”B15”;J%

An error occurs if a character string variable is supplied for a B format specifi-
cation.

* Relations between B format and variable

When Bn is used in format, bit n of the PC is turned ON and the other bits are
turned OFF if bit n of the variable (expressed in binary) is ON. If bit n of the
variable is OFF, all the bits of the PC are turned OFF. In this format, only 1 bit

is handled.
Example: 1 = &H0001 = 0000 0000 0000 0001
BO ON
B2toB15 OFF
A format An error occurs if an integer variable is supplied for an A format specification.
PC word data Character string variable: As = "QRST”
0|05
0]/0|5(2

PC WRITE "2Al”;AS

511100
512100

PC WRITE "2A2";AS

5/1|5|2
5|3|5|4

PC WRITE "2A3";AS

Note Asciicodefor: Q............ &H51
R............ &H52
S .. &H53
P &H54

96

PGE Reference Section 3-2
S format PC word data Integer type variable (I format): A(1) =9876
A(2) = 5432
A(3) =1098
A(3) = 7654
918|716
5(4|13]|2
1/0(9|8
716|514
PC WRITE ”S4I4"; A(1l)
Example: PC WRITE "#1.5,@D,100,10,S5H4,5A3"; A%(0), BS

Program Sample:

PC WRITE ”#0.3,@R,20,5,3I4,H4,A3"; A, B, C, D, E$

PC WRITE WAIT 50,”@D,3,12,10A3,S2H4"”; AS,
PC WRITE ”2H4,S5H4”; B, C, D(0)

Refer to the description of the PC READ statement.

B(0)

See Also: PC READ
PEEK
Purpose: Function. Returns contents of specified memory address.
Syntax: PEEK (address)
Comments: Reads and returns the contents of 1 byte at address.
Address must be a value between &H0 and &HFFFF.
If address has a fractional part, it is truncated.
Address is an offset into the segment specified by the DEF SEG statement
executed previously.
The type of the value to be returned is of integer.
Example: PEEK (&H5000)

Program Sample:

10 'test command name :PEEK
20 PARACT 0

30 DEF SEG=&H50

40 POKE &H10, &HFF

50 PRINT PEEK(&H10)

60 END
70 END APRACT
ok
RUN
255
ok
Note Before executing this function, execute MSET &H1000.
See Also: DEF SEG, POKE
Purpose: Command. Selects current program area.
Syntax: PGEN [program-no.]
Comments: Specify an integer from 1 to 3 as program-no.

The program area specified by the memory switch is assumed on start.

97

PNA Reference

Section 3-2

If program-no. is omitted, information on the current program area is dis-
played in the format of the PINF command.

The information on the program area can also be checked by the PINF com-
mand.

Note 1. The program area is divided into three portions.
2. If the memory is protected, the PGEN command is not effective.
Example: PGEN 2
See Also: PINF
PINF
Purpose: Command. Displays information on program area.
Syntax: PINF
Example: PINF
Comments: Displays the size of a program name and S-CODE area. An asterisk (*) is
displayed to the left of the current program area, with the size of the E-CODE
area and variable area. Finally, the size of S-CODE area and that of unused
memory area are displayed.
The display format is as follows:
NO. PNAME S-CODE E-CODE GLOBAL LOCAL
——te [S R B —te————
* 1 TEST 41 20 4 4
2 4
3 4
FREE 64207 110935
S-CODE Area storing user BASIC program and machine language
program
E-CODE Area storing execution code of user program
Variable area | Area storing global variable and local variable
Memory area | E-CODE area + variable area
Note 1. * indicates the current program area. The size of “E-CODE”, “GLOBAL”,
and “LOCAL” of the area are displayed.
2. The name shown in the “PNAME” column is the name given by the PNAME
command.
3. The “S-CODE” is 4 if the program does not exist.
See Also: NEW, PGEN, PNAME
PNAME
Purpose: Command. Registers or deletes name of program area currently used.
Syntax: PNAME "program-name"”
Comments: The program-name is an alphanumeric character string of 8 characters long.

98

Note

The uppercase characters and lowercase characters are distinguished.

If a null string (") is specified as the program-name, the program name is
deleted.

Named program areas are protected against the NEW instruction.

1. ltis not possible to register the same name for two program areas.

2. If an attempt is made to set already existing program-name, a message is
output.

Reference

Section 3-2

Example:

See Also:

POKE

PNAME "TEST37"

PGEN, PINF, NEW

Purpose:
Syntax:

Comments:

Caution

Example:

Program Sample:

Statement. Writes data to specified address of memory.
POKE address, expression

Writes the value of expression to the byte at offset address in the segment
set by a previous DEF SEG statement.

Address is a 2-byte integer in the range of &HO to &HFFFF.
Expression is a 1-byte integer in the range of &HO to &HFF.

Address should be within memory allocated by the MSET instruction. Poking val-
ues into other memory areas can cause erratic operation.

POKE &H4500, &H29

10 'test command name :POKE

20 ' MSET &H1000 HAS TO BE EXECUTED.
30 PARACT O

40

50 DEF SEG=&H500

60 FOR ADR=0 TO 40

70 READ MAC:POKE ADR,MAC

80 NEXT ADR

90
100
150
160

FIRST%=12

DEF SEG=&H500
CULUCU%=&HO

170 CALL CULUCU%(FIRSTS%,
180 PRINT SECOND%

190 -

200 END

210 'machine language routine
220 DATA XX, XX, XX, XX,

230 DATA XX, XX, XX,

SECOND%)

240 DATA XX, XX,
250 END PARACT
See Also: DEF SEG, MSET, PEEK
PRINT/LPRINT
Purpose: Command or Statement. Displays/prints value of an expression. CR+LF is the
carriage return code.
Syntax: {PRINT | ?} [expression] [{, | ; | _} [expression]]*
PRINT #file-no., [expression][{, | ; | _} [expression]]*
LPRINT [expression] [{,|;| } [expression]]*
Comments: The PRINT statement displays the value of the expression. If more than one

expression is given, each must be separated from the others by a comma
(,), semicolon (;), or blank ().

If the expression is delimited by a comma and is of 12 characters or less, the
value of the expression is output starting from the beginning of the next field
(each field is 14 characters wide). If the expression is of more than 12 char-
acters, the value is output starting from the next field (in this case, each field

99

PRI..... Reference

Section 3-2

Example:

Program Sample:

See Also:

100

Note

is 28 characters wide). If the expression is delimited by a semicolon or blank,
the value of the expression is output following the output result immediately
before.

If there is no semicolon or comma at the end of the list of expressions, a car-
riage return is performed after all the expressions have been output.

If a numeric expression is used, one blank is necessary before and after the
expression, and the blank before the expression is treated as a negative
sign.

The 2 statement is the same as the PRINT statement.
The PRINT # statement is output to a file specified by the file-no.

The LPRINT statement prints the value of a specified expression. CR+LF is
the carriage return code.

To use the PRINT # statement, open the file in the OUTPUT mode or APPEND
mode.

PRINT ”DATA ="; A, C3

10 'test command name :PRINT
20 PARACT 0

30 X=70:Y=90

40 PRINT "X = ";X,"B = ";Y
50 PRINT

60 PRINT "X + Y =";X+Y

70 END

80 END PARACT
Ok

RUN

X =170 B
X + Y = 160

90

10 'test command name :PRINT#

20 PARACT O

30 OPEN "DATAl” FOR OUTPUT AS #1
40 PRINT #1,”BASIC UNIT”

50 PRINT #1,”CV500”

60 CLOSE

70 '

80 'Reads data from sequential file and outputs it.”
90 OPEN "DATALl” FOR INPUT AS #1
100 IF EOF(1l) GOTO 140

110 INPUT #1,AS

120 PRINT AS

130 GOTO 100

140 CLOSE

150 END

160 END PARACT

Ok

RUN

BASIC UNIT

Cv500

WRITE

Reference Section 3-2

PRINT

USING/LPRINT USING

Purpose:
Syntax:

Comments:

Command or Statement. Output value of expression in specified format.

PRINT USING format ; expression [{, | ; | _} [expression]]*
PRINT #file-no., USING format ; expression[{, | ; | } [expression]]*
LPRINT USING format ; expression [{, | ; | _} [expression]]*

The PRINT USING statement edits the value of the expression in accor-
dance with the format and displays the value.

Characters other than format control characters (described below) in the for-
mat are output as-is.

If the number of digits of the format of the specified numeric value is less
than the number of digits of the expression, a percent mark is (%) is prefixed
to the output numeric value. If the number of digits of the output numeric val-
ue is greater than the number of digits of the format, a percent mark is also
prefixed.

The PRINT # statement outputs the value to a file specified by file-no.

The LPRINT USING statement outputs the value to the printer.

The following format control characters may be used in the format string:

Symbol

Meanings

Displays only the first one character (1 byte) of a given character string.

&&

Encloses n blanks between the ampersands: "&___&". Displays (n+2) bytes from the beginning of a given
character string. If the character string is shorter than (n+2), it is left-justified with the rest of the character
positions filled with blank.

Displays a given character string as-is.

Constitutes a numeric area with several “#”. The total number of digits (including sign) is specified by the
number of “#”. If the data to be output falls short of the specified number of digits, the value is right-justified
with the rest of the character positions filled with blank. If the value exceeds the number of digits, “%” is
prefixed to the numeric value. See Note 1.

Specifies the position of the decimal point in the numeric value area. The numeric value below the decimal
point is truncated according to the number of # specified on the right for display. If the value is a fraction
and falls short of the number of digits, 0 is filled.

Specifies the position of the sign of the numeric value when specified at the beginning or end of the
numeric area.

If suffixed to the numeric area, — is output after the numeric value if the numeric value is negative.

If this character is prefixed or two of it are specified in a row, they are treated in the same manner as
non-control characters.

Fills the left of the numeric area with asterisks (*) when specified at the beginning of a numeric field. The
“*” allocates room for one digit.

AN

Prefixes “\” to the numeric value when specified at the beginning of a numeric field. The “\” allocates room
for one digit. See Note 2.

**\

Combines the effects the two previous control characters when specified at the beginning of a numeric
field. See Note 2.

Separates each three digits of the integer portion of a number with “,” when specified at any position of

the numeric field. The “,” allocates room for one digit.

AAAA

When specified at the end of a numeric field, causes the value to be output in exponential format.

Outputs 1 character in the following format character string as is.

Example:

Note When using the PRINT # USING statement, open the file in the OUTPUT
mode or APPEND mode.

PRINT USING "#### . .###"; A

Program Sample: 10 ’'test command name :PRINT USING

20 PARACT 0

101

PRI..... Reference Section 3-2
30 A$="BASIC”:B=1234.56:C=—123
40 PRINT USING "& &";AS$
50 PRINT USING ”"CHARACTER STRING @ ”;AS$
60 PRINT USING "#####.###" ;B
70 PRINT USING "+#### . .###" ;B
80 PRINT USING "+#### . ###" ;C
90 PRINT USING "**#####. . ##" ;B
100 PRINT USING " \\######.##" ;B
110 PRINT USING "**\##### . ##" ;B
120 PRINT USING "##,###.###" ;B
130 PRINT USING "#.###~"~"";B
140 PRINT USING "B=###.##";B
150 END
160 END PARACT
ok
RUN
BASIC
CHARACTER STRING BASIC
1234.560
+1234.560
-123.000
*%%1234.56
¥1234.56
*%%¥1234.56
1,234.560
1.235E+03
B=%1234.56
10 'test command name :PRINT# USING
20 PARACT 0
30 DIM A$50
40 OPEN "DATAl” FOR OUTPUT AS #1
50 A$="OMRON BASIC”
60 PRINT #1, USING "& &";A$
70 PRINT #1, USING "& &";A$
80 CLOSE
90
100 OPEN "DATAl” FOR INPUT AS #1
110 IF EOF(1) GOTO 150
120 LINE INPUT #1,A$
130 PRINT A$
140 GOTO 110
150 CLOSE
160 END
170 END PARACT
ok
RUN
OMRON BASIC
OMRON
See Also: PRINT

102

RAN Reference

Section 3-2

PUT
Purpose: Statement. Writes data to random file.
Syntax: PUT #file-no. [, record-no.]
Comments: Writes data to the random file specified by file-no.
If the record-no. is omitted, the record following that specified by the last PUT
or GET statement is assumed. If neither statement has been executed, 0 is
assumed.
The minimum value of the record-no. is 1; the maximum value is 32767.
Note 1. An error occurs if this statement is executed on a file opened in the sequen-
tial mode.
2. Each record is 256 bytes long.
Example: PUT #1,17
Program Sample: 10 ‘test command name :PUT#
20 PARACT 0
30 DIM BUF$20
40 OPEN "DATA” AS #1
50 FIELD #1,20 AS BUF$
60 FOR I=1 TO 5
70 READ RE$
80 LSET BUFS$=RES$
90 PUT #1,I
100 NEXT I
110 -
120 INPUT ”INPUT RECORD NO. (1 TO 5): ”,A
130 IF A>5 GOTO 120
140 IF A<l GOTO 120
150 GET #1, A
160 PRINT "RECORD NO.: ";A, BUF$
170 CLOSE
180 END
190 -’
200 DATA ”omron”,”OMRON”,”CV500”,”BASIC”,"”ABCD"
210 END PARACT
ok
RUN
INPUT RECORD NO. (1 TO 5): 2
RECORD NO.: 2 OMRON

See Also: GET, FIELD, OPEN

RANDOMIZE

Purpose: Statement. Sets the seed for the random series.

Syntax: RANDOMIZE [expression]

Comments: Changes the random series obtained by the RND function by giving a new
seed value for the random number generator.
If the expression is omitted, a message prompting for input is displayed.
If the input is requested, specify a seed for the random number in the range
of -32768 to 32767.
The initial value of the random number seed is 0.

Example: RANDOMIZE I

103

REA Reference Section 3-2

Program Sample: 10 ‘test command name :RANDOM
20 PARACT 0
30 GOSUB *RNDSUB
40 RANDOMIZE INT(RND(1)*10 + 1)
50 PRINT: PRINT "CHANGES TO NEW RANDOM SERIES.”
60 GOSUB *RNDSUB
70 END
80
90 *RNDSUB
100 FOR I=1 TO 10
110 PRINT INT (RND(1)*10) + 1;
120 NEXT I
130 PRINT
140 RETURN
150 END PARACT
ok
RUN
3 1 4 10 10 9 1 5 9 5

CHANGES TO NEW RANDOM SERIES.
6 5 6 1 1 9 1 8 5 7

See Also: RND

READ

Purpose: Statement. Reads data from DATA statement and stores it in variable.
Syntax: READ variable [, variable]*

Comments: Reads data sequentially from the DATA statement(s) in the task and stores

them in variable.

The first READ statement in a task takes data from the DATA statement with
the lowest line number in the task; subsequent READs take data from
subsequent DATA statements. One READ can take data from more than one
DATA statement, and one DATA statement can supply data for more than one
READ.

The RESTORE statement can be used to set the DATA position from which
the next READ statement will obtain its data.

Numeric constants in DATA statements will be read as character strings if
variable is a character string variable.

Character constants in DATA statements can also be read as a numeric val-
ues if variable is a numeric type. However, if the character constant cannot
be converted into a numeric variable, an error occurs.

If the data defined by the task’s DATA statements has run out when a READ
statement is executed, an error occurs. In addition, executing READ in a task
that has no DATA statements causes an error.

Note Other task’s DATA statements cannot be read.

Example: READ A,C,E

Program Sample: 10 ‘test command name :READ
20 PARACT 0
30 CLS

40 FOR I=1 TO 12

50 READ AS$

60 IF A$="" THEN PRINT
70 PRINT AS;

104

REN Reference

Section 3-2

80 NEXT I

90 END

100 DATA ”0"”,”M”,"”R",”O", "N", "" "B" "A", 6 "S", "I", "C", ""
110 END PARACT

ok
RUN
OMRON
BASIC

See Also: DATA, RESTORE

RECEIVE

Purpose: Statement. Receives message.

Syntax: RECEIVE message-no., character-variable

Comments: Receives a message specified by message-no. and stores it in character-va-
riable.
If the specified message-no. doesn'’t exist, the system waits until a message
with that number is sent from another task with the SEND statement.
Message-no. must have been allocated by the MESSAGE statement. If an un-
allocated message-no. is specified, an error occurs.

Example: RECEIVE 3,AS

See Also: MESSAGE, SEND

REM

Purpose: Statement. Allows comments to be included in program.

Syntax: REM [comment-text]

Example: REM **** SAMPLE PROGRAM ****

Comments: Any text between REM and the end of the line is treated as a comment that

Program Sample:

Note

has no influence on the program execution.
A single quotation mark (’) can be used instead of REM.

The comment continues until the end of the line; colons (:) appearing in com-
ment-text are ignored.

10 "test command name :REM

20 PARACT 0

30 REM COMMENT

40 'COMMENT

50 PRINT ”Statement following REM is a comment.”
60 REM PRINT ”“This statement will not be executed.”
70 END

80 END PARACT

Ok

RUN

Statement following REM is a comment.

RENUM

Purpose: Command. Re-numbers program lines.

Syntax: RENUM [new-line-no.] [, [old-line-no.] [, increment]]

Example: RENUM 1000,10

Comments: Changes the program line numbers starting from the line specified by old-/i-

ne-no. into those starting from new-line-no. Subsequent line numbers in-
crease by increment.

If old-line-no. is omitted, re-numbering starts from the first line.

105

RESu ... Reference Section 3-2

If both new-line-no. and increment are omitted, both are assumed to be 10.

If the specification is made in a manner such that the line numbers would no
longer be in ascending order as a result of re-numbering, an error occurs.

Line numbers referenced by GOTO and GOSUB instructions are also changed.

RESTORE

Purpose: Statement. Specifies the DATA statement to be read by subsequent READ
statements.

Syntax: RESTORE [{line-no. | *label}]

Comments: Subsequent READ statements will read data from the DATA statement at the
specified line-no. or *label.

If line-no. or label is omitted, the first DATA statement in the task is selected.

Note Other task’s DATA statements cannot be specified for reading.

Example: RESTORE 700

Program Sample: 10 'test command name :RESTORE
20 PARACT 0
30 DIM AS$(10),B(10)
40 FLG=0
50 FOR I=1 TO 3
60 READ AS$(I),B(I)
70 NEXT I
80 FOR I=1 TO 3
90 PRINT AS(I),B(I)
100 NEXT I
110 PRINT
120 IF FLG=0 THEN RESTORE *STARTDATA :FLG=1:GOTO 50
130 END
140
150 DATA ASCII,1
160 DATA UNIT,2
170 *STARTDATA
180 DATA OMRON, 3
190 DATA BASIC,4
200 DATA UNIT,5
210 END PARACT
Ok
RUN
ASCII
UNIT
OMRON 3

OMRON 3
BASIC 4
UNIT 5

See Also: READ, DATA

RESUME

Purpose: Statement. Exits from error processing routine.

Syntax: RESUME [{0 | line-no. | *label | NEXT}]

Comments: Exits from the error processing routine defined by the ON ERROR GOTO
statement.

The RESUME statement is executed in the error processing routine.

106

RIG Reference

Section 3-2

Example:

Program Sample:

If line-no. or *label is omitted, or if 0 is specified, re-executes the statement in
which the error occurred.

If NEXT is specified, resumes execution at the statement following the one
where the error occurred.

If line-no. or label is specified, execution resumes at the specified line.
RESUME NEXT

10 'test command name :RESUME '
20 PARACT 0

30 DIM BOX$(3)

40 BOX$(1)="CODEl1”

50 BOX$(2)="CODE2"

60 BOX$(3)="CODE3"

70 ON ERROR GOTO *ERRTRN

80 *KEYIN

90 INPUT “INPUT NUMERAL. (END:999)”; N

100 IF N=999 GOTO 130

110 PRINT “THE CODE OF PRODUCT NO. ”;N;” IS ";BOX$(N);”.”
120 GOTO *KEYIN

130 END

140 *ERRTRN

150 IF ERR=9 THEN PRINT ”PRODUCT NO. "”;N;” DOES NOT EXIST.”
160 PRINT

170 RESUME *KEYIN

180 END PARACT

Ok

RUN

INPUT NUMERAL. (END:999)2 1

THE CODE OF PRODUCT NO. 1 IS CODE 1.

INPUT NUMERAL. (END:999)2 4

PRODUCT NO. 4 DOES NOT EXIST.

INPUT NUMERAL. (END:999)? 999

See Also: ERR/ERL, ERROR, ON ERROR GOTO

RIGHTS

Purpose: Function. Returns character string of the specified length from right of char-
acter-expression.

Syntax: RIGHTS (character-expression, expression)

Comments: Returns a character string of length specified by expression from the right of
character-expression.
If expression is 0, returns a null string.
If the value of expression exceeds the number of characters in character-ex-
pression, returns the entire character-expression.

Example: B$S = RIGHTS (AS,3)

Program Sample:

10 'test command name :RIGHTS
20 PARACT 0

30 ALLS$="BASIC UNIT”

40 PARTS$S=RIGHTS (ALLS,4)

50 PRINT PARTS

60 END

70 END PARACT

Ok

107

ROMI ... Reference

Section 3-2

See Also:

RND

RUN
UNIT

LEFTS, MIDS

Purpose:
Syntax:

Comments:

Example:

Program Sample:

See Also:

ROMLOAD

Note

Function. Returns a random number.
RND (expression)

Returns a random number between 0 and 1.

The random number that is generated depends on the value of expression as
follows:

If expression is negative, the random series is initialized.

If expression is 0, the previously generated random number is returned.

If expression is positive, the next random number in the series is returned.
The random series can be changed by the RANDOMI ZE statement.

Expression must be a numeric value between -32768 and 32767.

RD = RND(1)

10 "test command name :RND ’
20 PARACT O
30 RANDOMIZE
40 PRINT ”GENERATES RANDOM NUMBER IN THE RANGE OF 1 TO 100.”
50 FOR I=1 TO 10
60 N=INT(RND(1)*100+1)
70 PRINT N
80 NEXT I
90 END
100 END PARACT
ok
RUN
Random number seed (-32768 to 32767)2? 3
GENERATES RANDOM NUMBER IN THE RANGE OF 1 TO 100.
22
28
72
72
38
87
53
8
49
61

RANDOMIZE

Purpose:
Syntax:

Comments:

108

Note

Command. Reads information from EEPROM to user program area.
ROMLOAD
Reads all the information existing in the EEPROM to the user program area.

1. The user program area consists of three areas defined by the PGEN com-
mand and a machine language program area.

RUN Reference

Section 3-2

2. The EEPROM is a ROM area for storing the user program. Ifthe EEPROM is
not installed, this command causes an error.

Example: ROMLOAD
See Also: PGEN, ROMSAVE, ROMVERIFY
ROMSAVE
Purpose: Command. Writes information from user program area to EEPROM.
Syntax: ROMSAVE
Comments: Writes all the information in the BASIC program, machine language program,
and user program source code areas to the EEPROM.
Note 1. The user program area consists of three areas defined by the PGEN com-
mand and a machine language program area.
2. The EEPROM is a ROM area for storing the user program. Ifthe EEPROM is
not installed, this command causes an error.
Example: ROMSAVE
See Also: PGEN, ROMLOAD, ROMVERIFY
ROMVERIFY
Purpose: Command. Verifies between EEPROM and user program area.
Syntax: ROMVERIFY
Comments: Verifies the contents of the current user program area with the contents of
the EEPROM.
If the contents of the current user program area do not match the contents of
the EEPROM, the message “Verify Error” is displayed.
Note 1. The user program area consists of three areas defined by the PGEN com-
mand and a machine language program area.
2. The EEPROM is a ROM area for storing the user program. Ifthe EEPROM is
not installed, this command causes an error.
Example: ROMVERIFY
See Also: PGEN, ROMLOAD, ROMSAVE
RUN
Purpose: Command or Statement. Starts program execution.
Syntax: RUN [”file-name”] [, ERASE]
Comments: If file-name is not specified, and if the program area and contents of the pro-

gram previously executed have not been changed, the current execution
code is executed immediately. In this case, the execution code and changes
in the program are backed up by a battery even if the power is turned off in
the middle of the execution.

The program is automatically re-compiled on the following occasions:
When a new program is created
When the program is executed for the first time after it has been loaded
When the program area or contents have been changed
If a file name is specified
It takes about 18 seconds to compile 100 lines of BASIC code.

Before the execution of the program, all the variables except the non-volatile
variables are initialized and any open files are closed.

109

SEA Reference

Section 3-2

If ERASE is specified, the contents of the non-volatile variables are initialized.

If file-name is specified, the LOAD instruction is executed before the RUN
command. The file named file-name should be in text format, and the should
have the extension .BAS. The extension should not be included in file-
name.

The execution of the program is terminated when all the tasks have been
stopped by END, STOP, or EXIT statements, or if the abort key is pressed.

A name currently registered with the PNAME instruction cannot be specified
as the file-name.

For details on file-name, refer to the description of OPEN.

Example: RUN
RUN "0:TEST2”

See Also: OPEN, PINF

SAVE

Purpose: Command. Saves BASIC program to a file.

Syntax: SAVE "file-name"”

Comments: Saves the BASIC program in the current program area in a specified file.
The program is saved as a text-format file with extension . BAS. The exten-
sion should not specified in file-name.

If a file with the same name already exists, the old file overwritten by the new
one.

For details on file-name, refer to the description of OPEN.

0: can be omitted.

Note 1. 0: at the beginning of a file name means the memory card of the PC. To
use a memory card as a file device, format it with a tool (such as a FIT10)
connected to the PC.

2. When attempting to save a file in a memory card that has no available
bytes, only the filename will be saved.

Example: SAVE ”"0:FILE8”

See Also: LOAD, PGEN, OPEN

SEARCH

Purpose: Function. Searches for a specified integer value from elements of array vari-
able and returns the element number.

Syntax: SEARCH (integer-array [, expression] [, start-element] [, increment])

Comments: Searches for the value specified by expression in the elements of the array
specified by integer-array and returns the element number found first.

If expression has a fractional part, it is truncated.

If the specified value is not found in integer-array, -1 is returned.
Integer-array must be a one-dimensional array.

Start-element specifies the position of the array from which the search is to
be started. The minimum allowable value for this parameter depends on the
subscript for the first element set with the OPTION BASE statement. If start-
element is omitted, the search is started from the beginning of the array.
Increment specifies units in which the element number to be searched is in-
cremented. If the increment is omitted, 1 is assumed.

Example: NUMB = SEARCH(IND%,100,0,5)

110

SEN Reference Section 3-2

Program Sample: 10 ‘test command name :SEARCH
20 PARACT 0
30 DIM IND%(500)
40 FOR I= 1 TO 500 'Fill an array with random numbers

50 IND% (I)=INT(RND(1)*100)+1

60 NEXT I

70 *KEYIN

80 SUCC=0:COUNT=0

90 PRINT ”"SEARCHES RATE OF OCCURRENCE OF RANDOM NUMBER.”
100 INPUT ”INPUT NUMERALS 1 TO 100 (END:0)”;EN
110 IF EN=0 THEN END

120 IF EN<0 OR EN>100 THEN GOTO *KEYIN

130 SUCC=SEARCH (IND%, EN, SUCC+1)

140 IF SUCC<>-1 THEN COUNT=COUNT+1:GOTO 130

150 RES=COUNT/5: PRINT

160 PRINT USING "THE RATE OF OCCURENCE OF #### IS
H##S " ;EN; RES

170 PRINT

180 GOTO *KEYIN

190 END PARACT

Ok

RUN

SEARCHES RATE OF OCCURRENCE OF RANDOM NUMBER.
INPUT NUMERALS 1 TO 100 (END:0)? 37

THE RATE OF OCCURENCE OF 37 Is 1.20%.

SEARCHES RATE OF OCCURRENCE OF RANDOM NUMBER.
INPUT NUMERALS 1 TO 100 (END:0)? 98

THE RATE OF OCCURENCE OF 98 IS 1.80%.

SEARCHES RATE OF OCCURRENCE OF RANDOM NUMBER.
INPUT NUMERALS 1 TO 100 (END:0)? 0

ok

SEND

Purpose: Statement. Sends a message.

Syntax: SEND message-no., character-expression

Comments: Sends character-expression as message number message-no.
A character string expression of up to 538 bytes can be sent.
Message-no. must have been allocated with the MESSAGE statement. If mes-
sage-no. has not been allocated, an error occurs.

Example: SEND 4,BS

See Also: MESSAGE, RECEIVE

SENDSIG

Purpose: Statement. Generates a signal.

Syntax: SENDSIG signal-no., task-no.

Comments: Sends signal signal-no. to the task specified by task-no.

Signal-no. must be an integer from 1to 5 or 10 to 13. Signals 1 to 5 are
available for user definition; signals 10 to 13 have pre-defined meanings.

111

SIG Reference Section 3-2
(Signal 10 is STOP, 11 is PC watchdog timer error, 12 is cyclic error, and 13
is battery error.)

If a task-number that does not exist in the program is specified, an error oc-
curs.

Example: SENDSIG 5,1

See Also: ON SIGNAL GOSUB, SIGNAL ON/OFF/STOP

SGN

Purpose: Function. Returns the sign of expression.

Syntax: SGN (expression)

Comments: If the value of expression is positive, SGN returns 1. If the value is 0, SGN
returns 0. If the value is negative, SGN returns -1.

Expression may be an integer, single-precision, or double-precision expres-
sion.

Example: PRINT SGN(A)

Program Sample:

10 "test command name :SGN !
20 PARACT 0

30 PRINT ”INPUT INTEGER”;

40 INPUT X

50 SIGN = SGN(X)

60 PRINT ”SGN(”;X;"”) = ";SIGN
70 END

80 END PARACT

Ok

RUN

INPUT INTEGER? 15

SGN(15) =1

SIGNAL ON/OFF/STOP

Purpose:
Syntax:

Comments:

Example:

112

Note

Statement. Enables, disables, or stops signal interrupt.
SIGNAL signal-no. {ON | OFF | STOP}

The signal-no. is an integer from 1 to 5 or 10 to 13. Signals 1 to 5 are avail-
able for user definition; signals 10 to 13 have pre-defined meanings. (Signal
10 is STOP, 11 is PC watchdog timer error, 12 is cyclic error, and 13 is bat-
tery error.)

ON enables the interrupt. When this statement is executed, the program ex-
ecution will branch to a defined processing routine if an interrupt occurs.

OFF disables the interrupt. When this statement is executed, the program
execution will not branch to a defined processing routine even if an interrupt
occurs.

STOP stops the interrupt. When this statement is executed, the program ex-
ecution does not branch to a defined processing routine. However, the occur-
rence of the interrupt is recorded, and the execution will branch to the de-
fined routine when the interrupt is later enabled.

1. The interrupt is stopped immediately after the ON SIGNAL GOSUB state-
ment is executed.

2. The interrupt is stopped while the interrupt processing routine is being ex-
ecuted.

SIGNAL 5 ON

SPA Reference

Section 3-2

See Also: ON SIGNAL GOSUB

SIN

Purpose: Function. Calculates the sine of expression.

Syntax: SIN (expression)

Comments: Returns the sine of the specified expression.
Specify the expression in radians.
If expression is of integer or single-precision type, the result is a single-preci-
sion value. If it is of double-precision floating-point type, the result is a dou-
ble-precision value.

Example: PRINT SIN(1)

Program Sample:

10 'test command name :SIN !
20 PARACT 0
30 PRINT "INPUT ANGLE.”

40 INPUT X
50 S=SIN(3.14159/180%*X)
60 PRINT ”SIN(3.14159/180*";X:") = ";S
70 END
80 END PARACT
ok
RUN
INPUT ANGLE.
? 30
SIN(3.14159/180*30) = .5
See Also: COS, TAN
Purpose: Function. Returns a character string containing a specified number of spaces
0.
Syntax: SPACES (expression)
Comments: The range of expression is from 0 to 538.
If the expression is 0, a null string is returned.
Note The spc function is used with the PRINT or LPRINT statement to output blanks,
while the SPACES function returns a character string containing spaces ().
Example: AS = SPACES(N) + "x**v

Program Sample:

10 'test command name :SPACES
20 PARACT 0

30 DIM WRTS20

40 'RIGHT-JUSTIFIED OUTPUT

50 FOR X%=0% TO 9%

60 VALUE=INT (5%"X%)

70 STRG$=STRS$ (VALUE)

80 COLUMN=LEN (STRGS)

90 WRTS$="5 TO THE "+STRS$(X%)+"” POWER”+SPACES (12—-COLUMN)
+STRGS

100 PRINT WRTS
110 NEXT X%

120 END

130 END PARACT
Ok

113

SOR Reference

Section 3-2

RUN
5 TO THE 0 POWER 1
5 TO THE 1 POWER
5 TO THE 2 POWER 25
5 TO THE 3 POWER 125
5 TO THE 4 POWER 625
5 TO THE 5 POWER 3125
5 TO THE 6 POWER 15625
5 TO THE 7 POWER 78125
5 TO THE 8 POWER 390625
5 TO THE 9 POWER 1.95313E+06
See Also: SPC, STRING
Purpose: Function. Outputs blanks.
Syntax: SPC (expression)
Comments: SPCis used in PRINT or LPRINT statements to output a specified number of
blanks.
Expression must be in the range of —-32768 to 32767.
If expression is negative, 0 is assumed.
If expression is larger than the width of the screen (80), it is divided by the
screen width and the remainder is used as the number of blanks to output.
If expression has a fractional part, it is truncated.
Note 1. The sPc function cannot be used alone. It must be used in a PRINT or
LPRINT statement.
2. The spc function is used with a PRINT or LPRINT statement to output
blanks, while the SPACES function returns blank as a character string.
Example: PRINT SPC(8); AS

Program Sample:

10 'test command name :SPC
20 PARACT 0

30 FOR I=1 TO 4

40 PRINT ”"OMRON”;SPC(I);"”BASIC”
50 NEXT I

60 END

70 END PARACT

ok

RUN

OMRON_BASIC

OMRON__ BASIC

OMRON___ BASIC

OMRON____ BASIC

See Also: SPACES, TAB

SOR

Purpose: Function. Calculates the square root of expression.
Syntax: SQR (expression)

Comments: The value of expression must be greater than or equal to 0.

114

If the value of expression is of integer or single-precision type, the result is a
single-precision value. If it is of double-precision type, then the result is a
double-precision value.

STO Reference Section 3-2

Example: C = SQR(3)
Program Sample: 10 ’‘test command name :SQR
20 PARACT 0
30 PRINT " N SQR(N) SQR(N)~2” : PRINT
40 FOR I=1 TO 10
50 PRINT USING "### ##.##### ### . #####" ;1;SQR(I),SQR(I)"2
60 NEXT I
70 END
80 END PARACT
ok
RUN
N SQR(N) SQR(N) "2
1 1.00000 1.00000
2 1.41421 2.00000
3 1.73205 3.00000
4 2.00000 4.00000
5 2.23607 5.00000
6 2.44949 6.00000
7 2.64575 7.00000
8 2.82843 8.00000
9 3.00000 9.00000
10 3.16228 10.00000
STEP
Purpose: Command. Executes program one step at a time.
Syntax: STEP
Comments: Executes one statement of the task after being interrupted by BREAK or
STOP.

Quit in line-no will be displayed when the program is stopped with CTRL
+ X, in which case STEP or CONT cannot be used. If BREAK in line-no is
displayed when the program is stopped with CTRL + C, it is possible to use
STEP or CONT.

Example: STEP
STOP
Purpose: Statement. Stops program execution.
Syntax: STOP
Comments: Stops the execution of all the program’s tasks.
When this statement has been executed, the following message is displayed:
Stop in nnn (nnn is a line number)

To resume the program execution, execute the CONT instruction.
Example: STOP

Program Sample: 10 ‘test command name :STOP
20 PARACT 0
30 FOR I=1 TO 100
40 IF 10-I=0 THEN STOP
50 PRINT I
60 NEXT I
70 END
80 END PARACT
ok

115

STR Reference Section 3-2

RUN
1
2
3
4
5
6
7
8
9
STOP IN 40
See Also: CONT
STRS
Purpose: Function. Converts expression into character string.
Syntax: STRS (expression)
Example: AS$ = STRS$(135)
Comments: Returns a character string expressing the value of expression.
Expression may be integer, single-precision, or double-precision.
If the value of expression is positive, a blank is prefixed to the character
string returned. If it is negative, a negative sign (-) is prefixed.
See Also: VAL
Program Sample: 10 ’'test command name :STRS ¢

20 PARACT O
30 'NUMERAL VALUE AND CHARACTER COMPARISON
40 FOR N=1 TO 5

50 ADD = 1+N

60 N$=MIDS$ (STRS (N),2,1)
70 ADDS="1"+N$

80 PRINT ”1 + ";N;” = ";ADD
90 PRINT "1 + ";N$;” = ";ADD$
100 PRINT

110 NEXT N

120 END

130 END PARACT

ok

RUN

1+1= 2

1+ 1 =11

1+2= 3

1+ 2 =12

1+3= 4

1+ 3 =13

1+4= 5

1+ 4 =14

1+5= 6

1+5 =15

116

SWA Reference

Section 3-2

STRINGS

Purpose: Function. Returns a character string containing a specified number of copies
of a character.

Syntax: STRINGS (expression, {character-string | character-code})

Comments: Returns a character string containing expression copies of the first character
of character-expression or character-code.
Character-code, if specified, must be from 0 to 538. The value of expression
must be from 0 to 538.
If expression is 0, a null string is returned.

See Also: SPACES

Example: AS$ = STRINGS$(12,”$")

Program Sample:

10 'test command name :STRINGS 4
20 PARACT 0

25 DIM MARKS$256

30 CLsS

40 FOR I=1 TO 8

50 J=1"2

60 MARKS$=STRINGS (J,"”0")

70 PRINT MARKS

80 NEXT I

90 FOR K=8 TO 1 STEP -1

100 L=K"2

110 MARK$=STRINGS (L,"”0")

120 PRINT MARKS

130 NEXT K

140 END

150 END PARACT

ok

RUN

0

0000

000000000

0000000000000000

0000000000000000000000000
000000000000000000000000000000000000
000
00
00
000
000000000000000000000000000000000000
0000000000000000000000000

0000000000000000

000000000

0000

0

SWAP

Purpose: Statement. Swaps the values of two variables.

Syntax: SWAP variable-name, variable-name

Comments: The variables to be swapped must be of the same type.
Example: SWAP XY,PQ

117

TAB Reference

Section 3-2

Program Sample:

TAB

10 ’'test command name :SWAP
20 PARACT 0
30 PRINT ”"EXECUTES SWAP (X,Y) STATEMENT.”

40 INPUT "X =";X
50 INPUT "Y =";Y
60 PRINT "X =";X, "Y =";Y :PRINT

70 SWAP X,Y
80 PRINT "SWAP(X,Y)”:PRINT

90 PRINT "X =";X "Y =";Y

100 END

110 END PARACT

ok

RUN

EXECUTES SWAP (X,Y) STATEMENT.
X =2 13

Y =2 16

X = 13 Y

16

SWAP(X,Y)

X =16 Y 13

Purpose:
Syntax:

Comments:

Example:

Program Sample:

118

Note

Function. Moves cursor to specified position.
TAB (expression)

Moves the cursor to the column specified by expression.

If the specified number of columns is less than the displayed data, a carriage
return will be executed.

The value of expression must be in the range of —-32768 to 32767.
If expression is negative, 0 is assumed.

If expression is larger than the width of the screen (80), it is divided by 80
and the remainder is used as the column to move to.

If the expression has a fractional part, it is truncated.

The TAB function cannot be used alone; it must be used with a PRINT or LPRINT
statement.

PRINT TAB(12);A$

10 ’'test command name :TAB
20 PARACT O
30 FOR I=15 TO 25

40 PRINT "”OMRON"
50 PRINT TAB(I);”Corporation”
60 NEXT I

70 END

80 END PARACT

ok

RUN

OMRON Corporation
OMRON Corporation
OMRON Corporation
OMRON Corporation
OMRON Corporation
OMRON Corporation
OMRON Corporation

TAS Reference Section 3-2
OMRON Corporation
OMRON Corporation
OMRON Corporation
OMRON Corporation
See Also: SPC
Purpose: Function. Calculates tangent of expression.
Syntax: TAN (expression)
Comments: Returns the tangent of the specified expression.
Specify the expression in radians.
If the expression is of integer or single-precision type, the result is a single-
precision value. If it is of double-precision type, the result is a double-preci-
sion value.
Example: A = TAN(123)
Program Sample: 10 ‘test command name :TAN ’
20 PARACT 0
30 INPUT ”INPUT ANGLE”;B
40 PI=3.14159
50 C=COS(PI/180%*B)
60 T=TAN(PI/180*B)
70 S=C*T
80 PRINT “TAN(PI/180%”;B;”) = ";T
90 PRINT “COS(PI/180%”;B;”) = ";C
100 PRINT ”SIN(PI/180%";B;"”) = ";S
110 END
120 END PARACT
ok
RUN
INPUT ANGLE? 45
TAN(PI/180%45) = 0.999999
COS(PI/180%45) = 0.707107
SIN(PI/180%45) = 0.707106
See Also: COS, SIN
Purpose: Statement. Starts a task.
Syntax: TASK task-no.
Comments: Starts a task specified by task-no.
Task-no. can be an expression.
The execution of the task is started from the PARACT statement.
If the specified task is executing (or paused, waiting for an interrupt), an error
occurs.
If task-no. does not exist in the program, an error occurs.
Example: TASK 7
See Also: EXIT, END PARACT, PARACT, STOP

119

TIM Reference

Section 3-2

TIME $
Purpose: Function. Returns time of internal clock, or sets time.
Syntax: TIMES [="hour:minute:second”]
Comments: If “= »hour:minute : second”” is omitted, TIMES returns the current time as
a character string.
If “= »hour:minute : second”” is specified, sets the specified time.
The format of the time is as follows:
"HH:MM:SS"” HH: hour (00 to 23)
MM: minute (00 to 59)
ss: second (00 to 59)
Note If the date (DATES) is abnormal, TIMES cannot be set correctly. When using the
PC for the first time, or if the date is abnormal, set the correct date (using DATES)
before setting the time.
Example: PRINT TIMES

Program Sample:

See Also:

10 'test command name :TIMES '
20 PARACT 0

30 TS=TIMES

40 HH$=LEFTS(TS,2)

50 MMS$=MIDS(TS$,4,2)

60 SS$=RIGHTS(TS,2)

70 PRINT ”“PRESENT TIME IS ”:HHS$;”:"”;MMS;”:";SSS$;"."
80 END

90 END PARACT

Ok

RUN

PRESENT TIME IS 11:41:14.

DATES

TIMES ON/OFF/STOP

Purpose:
Syntax:

Comments:

Example:

See Also:

120

Note

Statement. Enables, disables, or stops time interrupt.
TIMES {ON | OFF | STOP}
ON enables the interrupt. When this statement is executed, the program ex-

ecution will branch to a defined processing routine if an interrupt occurs.

OFF disables the interrupt. When this statement is executed, the program
execution will not branch to a defined processing routine even if an interrupt
occurs.

STOP stops the interrupt. When this statement is executed, the program ex-
ecution will not branch to a defined processing routine if an interrupt occurs.
However, the occurrence of the interrupt is recorded, and the execution will
branch to the defined routine when the interrupt is later enabled.

1. The interrupt is stopped immediately after the ON TIMES GOSUB state-
ment has been executed.

2. The interrupt is stopped while the interrupt processing routine is being ex-
ecuted.

TIMES ON

ON TIMES$ GOSUB

TROn ... Reference

Section 3-2

TIMER ON/OFF/STOP

Purpose: Statement. Enables, disables, or stops timer interrupt.
Syntax: TIMER {ON | OFF | STOP}
Comments: ON enables the interrupt. When this statement is executed, the program ex-
ecution will branch to a defined processing routine if an interrupt occurs.
OFF disables the interrupt. When this statement is executed, the program
execution will not branch to a defined processing routine even if an interrupt
occurs.
STOP stops the interrupt. When this statement is executed, the program ex-
ecution will not branch to a defined processing routine if an interrupt occurs.
However, the occurrence of the interrupt is recorded, and the execution
branches to the defined routine when the interrupt is later enabled.
Note 1. The interrupt is stopped immediately after the ON TIMER GOSUB state-
ment has been executed.
2. The interrupt is stopped while the interrupt processing routine is being ex-
ecuted.
Example: TIMER ON
See Also: ON TIMER GOSUB
TROFF
Purpose: Command or Statement. Stops output of line number trace.
Syntax: TROFF [{task-no. | ALL}]
Comments: If the task-no. is specified, line number tracing of the specified task is
stopped.
Task-no. can be an expression.
If ALL is specified, line number tracing of all tasks is stopped.
If task-no. and ALL are omitted, the current task is assumed.
This statement can be used in a program as a BASIC statement.
Example: TROFF
See Also: TRON
TRON
Purpose: Command or Statement. Starts output of line number trace.
Syntax: TRON [{task-no. | ALL}|
Comments: If the task-no. is specified, line number tracing of the specified task is started.
If TRON is input by changing the line number, the line number will be added.
In order not to trace the previous trace talk, use TROFF.
Task-no. can be an expression.
If ALL is specified, line number tracing of all the tasks is started.
If task-no. and ALL are omitted, the current task is assumed.
If a task-no. that does not exist in the program is specified, a message to that
effect is output.
This statement can be used in a program as a BASIC statement.
Example: TRON
See Also: TROFF

121

USR Reference

Section 3-2

TWAIT
Purpose: Statement. Waits for termination of task.
Syntax: TWAIT task-no.
Comments: Waits until the task specified by the task-no. terminates.
If an interrupt for which a processing routine is defined occurs, the waiting
task execution branches to the processing routine and terminates the TWAIT
statement.
If a task-no. that does not exist in the program is specified, an error occurs.
Example: TWAIT 3

Program Sample:

10 'test command name :TWAIT

20 PARACT O

30 PRINT ”"WAITS UNTIL TASK 1 TERMINATES.”
40 TASK 1

50 TWAIT 1

60 PRINT ”"TASK 1 TERMINATED."”

70 END

80 END PARACT

90

100 PARACT 1

110 FOR I=0 TO 10

120 PRINT ”"TASK 1 PROCESSING...”

130 NEXT I

140 END

150 END PARACT

ok

RUN

WAITS UNTIL TASK 1 TEMINATES.

TASK 1 PROCESSING...

TASK 1 PROCESSING...

TASK 1 PROCESSING...

TASK 1 PROCESSING...

TASK 1 PROCESSING...

TASK 1 PROCESSING...

TASK 1 PROCESSING...

TASK 1 PROCESSING...

TASK 1 PROCESSING...

TASK 1 PROCESSING...

TASK 1 PROCESSING...

TASK 1 TERMINATED.
See Also: TASK, EXIT
USR
Purpose: Function. Calls machine language function in memory.
Syntax: USR[func-no.] (argument)
Comments: Calls a machine language function defined by the DEF USR statement.

122

Note

Func-no. is a number between 0 and 9. Func-no. must correspond to the
number defined by the DEF USR statement. If func-no. is omitted, 0 is as-
sumed.

The argument passes a value to the machine language function.
The type of the value returned is the same as the type of the argument.

Before executing the USR function, the segment address must be made the
same as that defined by the USR function by using the DEF SEG statement.

VAR Reference

Section 3-2

Example:

See Also:

VAL

N = USR2(A)

CALL, DEF USR

Purpose:
Syntax:

Comments:

Example:

Program Sample:

Function. Converts digits in character-expression into a numeric value.
VAL (character-expression)

Returns the numeric value expressed by character-expression. Three sym-
bols, plus (+), minus (-), and ampersand (&) can appear at the front of the
character-expression to indicate positive, negative, or octal values. The octal
and hexadecimal indicators, &0 and &H, can also appear at the beginning of
the character-expression. (If & or &0 appears at the beginning of character-
expression, the digits 8 and 9 cannot be included in the number. If &H ap-
pears at the beginning of character-expression, the letters A to F can be in-
cluded as digits in the number.)

An exponent can be specified at the end of a decimal number, using E or D.
Type declarators %, !, and # are also valid.

If a character that cannot be converted to a numeric value is included in the
character-expression, only the characters preceding that character are con-
verted into a numeric value; the subsequent characters are ignored.

If character-expression cannot be converted to a numeric value at all, 0 is
returned.

Any spaces in character-expression are ignored.
A = VAL("7")

10 ’'test command name :VAL ’
20 PARACT 0

30 A$="1000"

40 PRINT ”STRING”,bAS

50 PRINT "VALUE”,VAL(AS)

60 PRINT ”OCTAL”,VAL("”&0”+A$)

70 END
80 END PARACT
ok
RUN
STRING 1000
VALUE 1000
OCTAL 512
See Also: STRS
Purpose: Function. Returns variable-name’s address in memory.
Syntax: VARPTR (variable-name) [, feature]
Comments: Gives the memory address in the variable area where the data of the variable

named variable-name is stored.

Feature, if specified, must be 0 or 1. When 0 is specified, the offset address
is returned. If it is 1, the segment address is returned. If feature is omitted, 0
is assumed.

The type of the value returned is integer.

123

VAR Reference

Section 3-2

Example:

Program Sample:

124

The location indicated by the value returned by VARPTR is as follows:

Type

Meaning

Integer

Integer type consists of 2 bytes: bytes 0 and 1. Byte 0 has the
lower byte of data, while byte 1 has the higher byte of the data.
The value returned by VARPTR indicates byte 0.

Single-precision

Single-precision numbers consist of 4 bytes: bytes 0 through 3.
Data is expressed in the IEEE 32-bit single-precision
floating-point number format. The value returned by VARPTR
indicates byte 0.

Double-precision

Double-precision floating-point number type consists of 8 bytes:
bytes 0 through 7. Data is expressed in the IEEE 64-bit
double-precision floating-point number format. The value
returned by VARPTR indicates byte 0.

Character

Character variables have the maximum length of the character
string in the first 2 bytes (bytes 0 and 1) and the actual length of
the string in the second 2 bytes (bytes 2 and 3). The character
string data is stored starting at the 4" byte. The memory
required to store a character string is the maximum length of
the string + two bytes to store the maximum length + two bytes
to store the actual length. If the number of bytes required to
store the string is odd, an extra pad byte is added at the end of
the string storage area. The content of the pad byte is
undefined. The value returned VARPRT indicates byte 0.

Array

The configuration of an array variable is dependent on the type
of each element and the number of dimensions in the array.
The value returned by VARPTR is address of the first element of
the array.

For the storage format of each type, refer to Appendix A: Memory Storage
Formats of Variables.

PRINT HEXS$ (VARPTR(A,0))

10 ’'test command name :VARPTR '

20 PARACT 0
30 A%=0
40 B=0
50 C#=0
60 D$S="DUMY”

70 VARA$=HEXS$ (VARPTR(A%))

80 VARB$=HEXS$ (VARPTR(B))

90 VARCS$=HEXS$ (VARPTR(C#),1)

100 VARD$=HEXS$ (VARPTR(DS),1)

110 PRINT "OFFSET ADDRESS OF VARIABLE A% IS ”;VARAS$;”.”
120 PRINT "OFFSET ADDRESS OF VARIABLE B IS ” ;VARBS$;”.”
130 PRINT "SEGMENT ADDRESS OF VARIABLE C# IS ";VARCS;".”
140 PRINT "SEGMENT ADDRESS OF VARIABLE D$ IS ":VARDS;"”.”

150 END

160 END PARACT

Ok
RUN

OFFSET ADDRESS OF VARIABLE A% IS &H4.
OFFSET ADDRESS OF VARIABLE B IS &H6.
SEGMENT ADDRESS OF VARIABLE C# IS &H1810.
SEGMENT ADDRESS OF VARIABLE D$ IS &H1811.

VSA Reference

Section 3-2

VERIFY

Purpose: Command. Verifies program.

Syntax: VERIFY "file-name”

Comments: Verifies the contents of the current program area with the contents of the
specified file.
The file must be in text format, and the name must have the extension .BAS.
The extension is not included in file-name.
If the contents of the current program area do not coincide with those of the
specified file, the message “Verify Error” is displayed.
If file-name does not exist is specified, a message to that effect is output.
For the details on the file-name, refer to the description of OPEN.
0: can be omitted.

Example: VERIFY ”“0:FILEA3”

See Also: OPEN

VLOAD

Purpose: Command or Statement. Reads contents of non-volatile variable area from a
file.

Syntax: VLOAD "file-name”

Comments: Reads the contents of specified file into the non-volatile variable area.
When the memory card is used, a binary file with the extension . BRD is read.
The extension is not included in file-name.
If file-name does not exist, a message to that effect is output.
This command can also be used in a program as a BASIC statement.

Note If the layout of the non-volatile variable area has been changed since the binary
file was saved with VSAVE, the non-volatile variables may not have the expected
values.

Example: VLOAD ”0:FILEB2”

See Also: VSAVE, OPEN

VSAVE

Purpose: Command or Statement. Saves contents of the non-volatile variable area to a
file.

Syntax: VSAVE "file-name”

Comments: Saves the contents of the non-volatile variable area to the file specified by
file-name.
The file is saved in binary format with the extension .BRD. The extension is
not included in file-name.
For the details on file-name, refer to the description of OPEN.
This command can also be used in a program as a BASIC statement.

Note 0: atthe beginning of the file name indicates the memory card of the PC. To use
the memory card as a file device, format it in advance with a tool (such as the
FIT10) connected to the PC.

Example: VSAVE "”0:ABCl”

125

WRI Reference Section 3-2

See Also: VLOAD, OPEN

WHILE/WEND

Purpose: Statement. Repeatedly execute a series of statements while conditional-ex-
pression is true.

Syntax: WHILE conditional-expression
WEND

Comments: Repeatedly executes the statements between WHILE and WEND while the
value of the conditional-expression is true (not equal to zero).
If conditional-expression becomes false (zero), the repetition ends, and the
statements following WEND are executed.
If conditional-expression is false (0) from the start, the statements between
WHILE and WEND are never executed, and the execution goes on to the
statements following WEND.
The WHILE and WEND statements must be used in pairs.
WHILE/WEND statements may be nested. An error will result if the number of
nestings exceeds 100.

Example: WHILE A = 0

Program Sample:

WEND

10 'test command name :WHILE WEND
20 PARACT O

30 1=1

40 WHILE I<10

50 PRINT I;"-";

60 J=1

70 WHILE J<I

80 PRINT J; :J=J+1

90 WEND

100 PRINT :I=I+1

110 WEND

120 END

130 END PARACT

ok

RUN

1 _

2 -1

3 -1 2

4 -1 2 3

5-1 2 3 4

6 -1 2 3 4 5

7-1 2 3 4 5 6

8 -1 2 3 4 5 6 7

9-1 2 3 4 5 6 7 8
See Also: FOR TO STEP/NEXT
WRITE
Purpose: Command or Statement. Outputs the value of expression.
Syntax: WRITE expression[{, | ; | _} [expression]]*

WRITE #file-no., expression [{, | ; | } [expression]]*
Comments: The WRITE statement displays the result of calculation of the expression like

126

the PRINT statement.

If more than one expression is specified, each must be delimited from the
others by a comma (,), semicolon (;), or blank (). (The delimiter can be any

WRI Reference

Section 3-2

Example:

Program Sample:

Note

of these characters, and the expressions are output in the same manner re-
gardless of which delimiter is used.)

The differences between this statement and PRINT statement are that, with
WRITE, the unnecessary blanks are deleted, each output expression is de-
limited from the others by a comma (,), and character strings are enclosed in
a pair of double quotation marks ().

If there is no semicolon or comma after the last expression, all the expres-
sions are output and then a carriage return is performed.

If the last expression ends with a semicolon or comma, an error occurs.
The WRITE # statement outputs the value to the file specified by file-no.

To use the WRITE # statement, the file must be opened in the OUTPUT or AP-
PEND mode.

WRITE A

10 'test command name :WRITE

20 PARACT 0

30 D1=123:D2=456:D3$="789"” :D4$="OMRON"
40 WRITE "WRITE”,D1,D2,D3$,D4$
50 PRINT

60 PRINT ”PRINT ”,D1,D2,D3$,D4$
70 END

80 END PARACT

ok

RUN
“WRITE”,123,456,“789",“OMRON"

PRINT 123 456 789 OMRON

10 'test command name :WRITE#
20 PARACT 0

30 OPEN "DATAl” FOR OUTPUT AS #1
40 FOR I=1 TO 10

50 WRITE #1,I*I

60 NEXT I

70 CLOSE

80 OPEN ”DATAl” FOR INPUT AS #1
90 IF EOF(l) GOTO 130

100 INPUT #1,I$

110 PRINT IS

120 GOTO 90

130 CLOSE

140 END

150 END PARACT

ok

RUN

1

4

9

16

25

36

49

64

81

100

127

GP-IB Instructions

Section 3-3

See Also:

PRINT

3-3 GP-IB Instructions

CMD DELIM
Purpose: Statement. Specifies the delimiter to use for PRINT@, INPUT@, and LINE
INPUT@.
Syntax: CMD DELIM = delimiter-code
Comments: Here are the delimiter codes and the corresponding delimiters:
Delimiter code Delimiter
0 CR + LF
1 CR
2 LF
3 EOI
EOIl is always taken as a delimiter, regardless of the current delimiter setting.
CR+LF is the default setting of the delimiter.
Example: CMD DELIM = 1
CMD PPR
Purpose: Statement. Selects PPR (Parallel Poll Response) mode.
Syntax: CMD PPR = mode
Comments: Specifies a response (PPR) mode for the parallel poll of the GP-IB controller.
Mode PPR mode
0 Do not respond to parallel poll (Returns inverted data for the
Master’s response request)
1 Respond to parallel poll (Returns data for the Master’s
response request)
2 Respond to parallel poll when SRQ is transferred (Returns
data for the Master’s response request)
Refer to the PPOLL for the pattern of data.
This statement is used in slave mode.
The default value of this mode is 0.
Example: CMD PPR = 2

CMD TIMEOUT

Purpose:
Syntax:

Comments:

Example:

128

Statement. Specifies limit value for timeout check.
CMD TIMEOUT = timeout-parameter

Specifies a time limit in the range of 0 to 255 when the statement of the GP-
IB is executed. An illegal function call error will result if a value outside the
range is designated, in which case the limit value previously set will not be
changed.

Timeout-parameter specifies the time in seconds. When 0 is specified, the
timeout check is not performed.

The default value is 0.

CMD TIMEOUT = 10

GP-IB Instructions

Section 3-3

INPUT @

Purpose:

Syntax:

Comments:

Example:

IRESET REN

Statement. Receives data sent from specified talker and stores it in variable.

INPUTR [talker-address [, listener-address [, listener-address]*|; vari-
able [, variable]*

In the master mode, ATN is made true and the UNL command, talker ad-
dress, listener address, and MLA (my listen address) are sequentially trans-
mitted. After that, ATN is made false and data transmitted from a specified
talker is received and stored in the specified variable.

In the slave mode, the talker address and listener address are not specified.
The system waits until the listener is addressed by the controller. When ATN
is made false and data is transmitted from the talker after MLA has been re-
ceived, the data is received and stored in the specified variable.

To more than one variable, each data is substituted each time “,” is received.

The type of the transmitter side and that of the receiver side must be
matched.

If a character variable is specified, any spaces before and after the received
value are ignored. If the data exceeds the size of a character variable, it is
substituted to the next character variable.

An IEEE Timeout error will result if data reception does not complete in time
when CMD TIMEOUT is designated. The time value range is 0 to 255 s with
1-second increments. Specify zeroes to wait until the completion of data
reception.

INPUT@1,2;AS,BS

Purpose:

Statement. Makes REN (remote enable) false.

Syntax: IRESET REN

Comments: Transmits a “false” REN message (makes the REN line “H”). This statement
is used in the master mode.

Example: IRESET REN

ISET IFC

Purpose: Statement. Transmits IFC (interface clear).

Syntax: ISET IFC [, integer]

Example: ISET IFC,5

Comments: After transmitting a “true” IFC message, makes the message false again.

The range of the integer is from 1 to 255. An illegal function call error will
result if a value outside the range is designated, in which case the limit value
previously set will not be changed.

The IFC message transmission time is dependent on integer as follows:

integer Transmission Time
1to5 integer * 100ms
6 to 100 10 ms
101 to 200 20 ms
201 to 255 30 ms

If integer is omitted, 1 is assumed.

129

GP-IB Instructions

Section 3-3

ISET REN

This statement is used in the master mode.

Purpose:
Syntax:
Comments:

Example:

ISET SRO

Statement. Makes REN (remote enable) true.
ISET REN

Transmits a “true” REN message (makes the REN line “L”).
This statement is used in the master mode.
When this statement is executed, the devices in the system can be remote-
controlled. The devices in the system are set in the remote state when later
addressed as listeners.
Almost all the GP-IB devices can be controlled from the front panel or
through the GP-IB bus. The status in which the devices can be controlled
from the front panel is the local status, and the status in which they can be
controlled through the GP-IB bus (i.e., the status in which the devices cannot
be controlled from the front panel) is the remote status.
Even in the remote status, the devices are set in the local status provided
they are not locally locked out when the LOCAL key on the front panel is
pressed.
By locally locking out the devices, the LOCAL switch on the front panel of a
GP-IB device is locked, so as to prevent the operator of the device from
pressing the switch by mistake and the system from malfunctioning.
To locally lock out the device, the LLO (local lock out) command must be
transmitted.

Example: WBYTE &H11;
When the device is locally locked out, execute the IRESET REN statement to
restore the device to the local status.

ISET REN

Purpose:
Syntax:
Comments:

Example:

LINE INPUT@

Statement. Transmits SRQ (service request).
ISET SRQ [@] [N]

Transmits a “true” SRQ (service request) (makes the SRQ line “L”).

If N is omitted, waits until serially polled by the controller. When MTA (my talk
address) is sent from the controller as a result of the serial polling, and when
ATN becomes false, makes SRQ false, and then transmits the device status
stored in variable STATUS to the controller.

When @ is specified, EOl becomes true as soon as the device status has
been transmitted.

This statement is used in the slave mode.
ISET SRQ@

Purpose:
Syntax:

Comments:

130

Statement. Receives string data sent from specified talker and stores it in a
character string variable.

LINE INPUT@ [talker-address [, listener-address [, listener-address]*]];
character-string-variable

In the master mode, ATN is made true, and the UNL command, talker ad-
dress, listener address, and MLA (my listen address) are sequentially trans-
mitted. After that, ATN is made false, and data transmitted from a specified
talker is received and stored in character-string-variable, until a delimiter is
received.

In the slave mode, the talker address and listener address are not specified.
The system waits until the listener is addressed by the controller. When ATN

GP-IB Instructions

Section 3-3

Example:
See Also:

ON SRQ GOSUB

is made false and data is transmitted from the talker after MLA has been re-
ceived, the data is received and stored in character-string-variable until a de-
limiter is received.

An IEEE Timeout error will result if data reception does not complete in time
when CMD TIMEOUT is designated. The time value range is 0 to 255 s with
1-second increments. Specify zeroes to wait until the completion of data
reception.

LINE INPUT@1,3;AS$
CMD DELIM

Purpose:
Syntax:

Comments:

Note

Example:

POLL

Statement. Specifies first line of SRQ subroutine.

ON SRQ GOSUB {line-no. | *label}

Branches to line-no. or *label when SRQ (service request) has been received
in master mode. This statement cannot be used in slave mode.

The POLL statement must be used in the subroutine.

This statement can be used only once in all tasks.

Interruption will be stopped right after an ON SRQ GOSUB statement is
executed. Interruption will stopped in the interruption processing routine.
RETURN is used to return to the main routine from the processing routine.
Only a single interruption processing routine can be defined in the tasks. If

more than one interruption processing routine is defined, the routine defined
last will be effective.

1. If more than one ON SRQ GOSUB statement exists in a task, only the last
one will be effective.

2. To go to the interruption processing routine, SRQ must be ON.

3. SRQis OFF unless an SRQ ON statement is executed.

ON SRQ GOSUB *LABEL

Purpose:
Syntax:

Comments:

Statement. Performs serial polling.
POLL talker-address, numeric-variable [; talker-address, numeric-variable]*

When this statement is executed, UNL (unlisten) command is transmitted
followed by SPE (serial poll enable) command.

After that, the talker address in the statement is output, ATN is made false,
and the device status transmitted from that talker is received and stored in a
numeric-variable.

At this time, if the RQS bit (bit 6) of the received device status is ON, it is
judged that the device has transmitted the service request. When the device
has transmitted the service request, the serial polling ends, and 0 is stored in
all the subsequent numeric-variables.

The above information is also stored in the IEEE status.

IEEE (4) Device status of the device that has transmitted the service request.

IEEE (5) Talker address of the device that has transmitted the service re-
quest.

IEEE (6) Talker address of the device that does not respond to the service
request.

Since IEEE (6) will have the Talker address when a IEEE timeout occurs,
define a long-enough period by using the CMD TIMEOUT statement. For
example, CMD TIMEOUT = 5.

131

GP-IB Instructions Section 3-3
A GPIB BIOS error will result if POLL is executed when the RQS bits (6 bits)
of all the devices designated by Talker address are OFF (no SRQ has been
issued).

Example: POLL 3, A; 4, B; 5, C

PPOLL

Purpose: Statement. Assigns response output line for parallel polling.

Syntax: PPOLL [PPU] [, listener-address, integer]*

Comments: This statement is used in the master mode.

PPU: After PPU (Parallel Poll Unconfigure message) has been trans-
mitted, assigns a response output line to the listener. If PPU is
omitted, PPU is not transmitted.

Describe the following parameters in hexadecimal number as the integer:

Bit 7 6 5 4 3 2 A1 0
parallel poll enable (affirmative response) 0o 1 1 0 S P3 P2 Pt
parallel poll disable (response stopped) 0o 1 1 1 0 0O 0 O

S specifies whether a response of 0 or 1 is made to parallel polling.

S Meanings
0 Responds parallel polling by 0
Responds parallel polling by 1
P3, P2, and P1 specify which of DIO1 through DIO8 is used to respond paral-
lel polling.
P3 P2 P1 Meanings
0 0 0 Responds by DIO1
0 0 1 Responds by DIO2
0 1 0 Responds by DIO3
0 1 1 Responds by DIO4
1 0 0 Responds by DIO5
1 0 1 Responds by DIO6
1 1 0 Responds by DIO7
1 1 1 Responds by DIO8

The following table shows the relationship between the set values of the S bit

of PPOLL, PPR mode (the set value of CMD PPR), and SRQ and the

response (DIO1 to DIO8) of the PPOLL.
SRQ OFF ON
S bit 0 1 0 1
PPR O 1 0 1 0

Example: PPOLL PPU, 3, &H6A

PRINT @

Purpose: Statement. Transmits data as an ASCII character string.

Syntax: PRINT@ [listener-address [, listener-address]*]; [data [, data]*] [€]

Comments: In the master mode, ATN is made true, and the UNL command, MLA (my

132

listen address, and listener address are sequentially transmitted. After that,
ATN is made false, and data is transmitted as an ASCII character string.

In the slave mode, the listener address is not specified. The system waits
until the talker is addressed by the controller. After MTA (my talk address)

GP-IB Instructions

Section 3-3

Example:

RBYTE

has been received, the data is transmitted as an ASCII character string when
ATN is made false.

If there is more than one data item, each item is delimited from the others by
a comma (,), and the delimiter is transmitted last. If @ is placed at the end of
the statement, EOI is made true when the last data byte is output.

PRINT@5,6; "ABC”, "DEF” @

Purpose:
Syntax:

Comments:

Example:

Statement. Receives binary data after transmitting multiline message.
RBYTE [command] [, command]*; [numeric-variable [,numeric-variable]*

In the master mode, the command is described as binary data ranging from
&HO00 to &HFF in hexadecimal notation. After the command has been trans-
mitted with ATN made true, ATN is made false, and the binary data is re-
ceived and stored in the specified numeric-variables.

In the slave mode, the command is not used, and the system waits until ad-
dressed as a listener by the controller. When MLA (my listen address) has
been received and ATN has been made false, the binary data is received and
stored in the numeric-variables.

RBYTE &H3F, &H21; ABC%

SRQ ON/OFF/STOP

Purpose:
Syntax:

Comments:

Example:

WBYTE

Note

Statement. Controls reception of SRQ.
SRQ {ON | OFF | sTOP}

This statement is used in the master mode.

SRQ OFF disables interruption of SRQ. When this statement is executed, the

execution will not branch to the processing routine defined when SRQ is

received.

SRQ ON enables interruption of SRQ. When this statement is executed, the

execution will branch to the processing routine when SRQ is received.

SRQ STOP stops interruption of SRQ. When this statement is executed, the

execution will not branch to the processing routine when SRQ is received.

The reception of SRQ is, however, recorded and the execution will branch to

the processing routine when interruption is permitted by SRQ ON.

1. Interruption is stopped right after an ON SRQ GOSUB statement is
executed.

2. Interruption will be stopped in the interruption processing routine.

SRQ ON

Purpose:
Syntax:

Comments:

Statement. Transmits multiline message and binary data.

WBYTE [command] [, command]*]; [data [, data]*] [e]

The command and data are numbers ranging from &H00 to &HFF in hexade-
cimal notation.

In the master mode, ATN is made false and the binary data is transmitted
after ATN has been made true and the command has been transmitted.

In the slave mode, the command is not used, and the system waits until ad-
dressed as a talker by the controller. After MTA (my talk address) has been
received, data is transmitted when ATN has been made false.

If @ is placed at the end of the statement, EOI is made true when the last
data byte is transmitted.

133

GP-IB Instructions Section 3-3
Example: WBYTE &H3F, &H55; &H31, &H21

IEEE

Purpose: Function. Gets status of GP-IB.

Syntax: IEEE (code)

Comments: Specify the code as a numeric value of 0 to 7 except 3.

134

IEEE(0) veveeecceccasoanaannns Stores the delimiter specified by cMD
DELIM as a code number.
Delimiter code Delimiter
0 CR + LF
1 CR
2 LF
3 EOI

IEEE(Ll) viveeecceccnscanaannns Stores the initial status as the following

8-bit data:
Bit 7 6 5 4 3 2 1 0
data Mode Own address
0: Master
1: Slave

IEEE(2) ceeececceccascasaannns Stores the listener of this Unit, the status
of the talker, and the received multiline
message as the following bit data:

Bit Setting and Meaning

8 1: SRQ signal is ON. If this bit is still 1 after the
POLL instruction is executed, the next SRQ exists,
so POLL must be executed again.

7 1: LLO message is received

6 1: GTL message is received

5 1: DCL or SDC message is received

4 1: GET message is received

3 1: END message (EOI as delimiter) is received

2 1: SPE message is received

1 1: Listener is addressed

0 1: Talker is addressed

TEEE(4) tevereeeencnoanancnnas Stores the device status of the device
that transmits the service request during
serial polling.

TEEE(5) eceverecccscssanancnnas Stores the talker address of the device
that transmits the service request during
serial polling.

IEEE(6) covececccacccanacaanns Stores the talker address of the device

that does not respond to the serial poll-
ing. 255 will be stored if the device
responds. Check this bit when an IEEE
Timeout error results in the serial port.

GP-IB Instructions Section 3-3
IEEE(7) ceeeececencacnasananns Stores the data byte obtained as a result
of parallel polling.
Example: PRINT IEEE(O)
STATUS
Purpose: Function. Stores device status.
Syntax: STATUS
Comments: Stores the device status automatically transmitted in response to serial poll-
ing by the controller in the slave mode.
Bit Meaning
7 General-purpose bit
6 Indicates that SRQ is being transmitted when 1
3to 0 | General-purpose bit
Bit 6 is set by ISET SRQ and is reset when serial poll has been received
from the controller. The general purpose bit is used to inform the Master of
the conditions of the Slaves. Set the data before issuing SRQ.
Example: STATUS = 2

135

Appendix A
Memory Storage Format of Variables

Variables are stored in the memory as follows depending on their types:

Integer Variable
Integers are stored in 2’'s-complement format in two consecutive bytes. The low-order byte is at addr, and the high-
order byte is at addr+1.
7 0 S: sign bit (0: positive, 1: negative)
D: value
15 0

addr + 0 Low-order byte

addr+1| S High-order byte

S| o |

1 bit 15 bits

Single-precision Floating-point Variable
Single-precision floating-point values are stored in IEEE 32-bit format:

7 0 S: sign bit (0: positive, 1: negative)
E: exponent (with 127 offsets)

+0 M Low-order byte .)
g " M: mantissa (with MSB always 1)
. 31 0
+2 | E M High-order byte o
+3 |S E | S| E | M -
LI_II I S |
| |
1 bit 8 bits 23 bits

Double-precision Floating-point Variable
Double-precision floating-point values are stored in IEEE 64-bit format:

7 0 S: sign bit (0: positive, 1: negative)
+0 M Low-order byte E: exponent (with 1023 offsets)
+1 M

M: mantissa (with MSB always 1)

+2 M
+3 M
+4 M 63 0
+5 M | S| E M o
+6 E M High-order byte |—|—“ T I T - - !
+7 s E 1 bit 11 bits 52 bits

137

Memory Storage Format of Variables Appendix A

Character Variable

7 0 A pad byte may appended if necessary to make the
total number of bytes used even.

+0 Max. length, lower byte

: The value in the pad byte is undefined.
+1 Max. length, higher byte
+2 Current length, lower byte

+3 Current length, higher byte

+4 First character
+n Last character
(pad byte)

Array Variable

One-dimensional array variable Each element is stored sequentially in memory. The
size of each element is the same as the size of a
+0 A(0) simple (non-array) variable.
A(1)
A(2)
+n A(X)

Multi-dimensional Array Variable

Multi-dimensional array variable The elements of a multi-dimensional array are
stored in row-major format; that is, all the elements
+0 B(0,0) of one row are stored before the first element of the
second row is stored.
B(0,1)
B(0,2)
B(0,y)
B(1,0)
B(1,1)
+Nn B(XIY)

138

Appendix B

BASIC Unit Reserved Words

ABS

ACOS

ALARM ON / OFF / STOP
ASC

ASIN

ATN

AUTO

BITON / BITOFF
BREAK

CALL

CDBL

CHRS

CINT

CLOSE

CLS

CMD DELIM

CMD PPR

CMD TIMEOUT

COM ON / OFF / STOP
CONT

cos

CSNG

CVI / CVs / CVD
DATA

DATES

DEF FN

DEF USR

DEFINT / DEFSNG/ DEFDBL /
DEFSTR

DEG SEG
DELETE

DIM

EDIT

END

END PARACT
EOF
ERL/ERR
ERROR

EXIT

EXP

FIELD

FILES / LFILES

FINS ON / OFF / STOP
FIX

FOR... TO... STEP...
FRE

GET

GOSUB / RETURN

GOTO

HEXS

IEEE(0)

IEEE(1)

IEEE(2)

IEEE(4)

IEEE(5)

IEEE(6)

IEEE(7)

IF... GOTO... ELSE...

INKEYS
INPUT
INPUT #
INPUT @
INPUTS
INSTR

INT

INTRB
INTRL
INTRR
IRESET REN
ISET IFC
ISET REN
ISET SRQ
KEY ON / OFF / STOP
KILL

LEFTS

LEN

LET
LINE INPUT
LINE INPUT #
LINE INPUT @
LIST / LLIST
LOAD

LOC

LOCATE

LOF

LOG

LPRINT

LPRINT USING
LSET/RSET
MERGE

MESSAGE

MID$

MKI$ / MKS$ / MKD$
MON

MSET

NAME

NEW

NEXT

OCT$

ON ALARM GOSUB
ON COM GOSUB
ON ERROR GOTO
ON FINS GOSUB
ON GOSUB

ON GOTO

ON KEY GOSUB
ON PC GOSUB

ON SIGNAL GOSUB
ON SRQ GOSUB
ON TIMES GOSUB
ON TIMER GOSUB
OPEN

OPTION BASE
OPTION ERASE
OPTION LENGTH

139

BASIC Unit Reserved Words

Appendix B

PARACT
PAUSE

PC ON / OFF / STOP
PC READ

PC WRITE

PEEK

PGEN

PINF

PNAME

POKE

POLL

PPOLL

PRINT #

PRINT # USING
PRINT / 2
PRINT @

PRINT USING
PUT

RANDOMIZE
RBYTE

RDIM

READ

RECEIVE

REM

140

RENUM
RESTORE
RESUME
RIGHTS
RND
ROMLOAD
ROMSAVE
ROMVERIFY
RUN

RUNr

SAVE
SEARCH
SEND
SENDSIG
SGN
SIGNAL ON / OFF / STOP
SIN
SPACES
SPC

SQOR

SRQ ON/OFF/STOP
STATUS
STEP

STOP
STRS

STRINGS

SWAP

TAB

TAN

TASK

TIMES

TIMES ON / OFF / STOP
TIMER ON / OFF / STOP
TROFF

TRON

TWAIT

USR

VAL

VARPTR

VERIFY

VLOAD

VSAVE

WBYTE

WHILE/WEND

WRITE

WRITE #

Appendix C

Extended ASCII

Programming Console and Data Access Console

The first two columns (HEX 0 and 1) are displayed when in the control code display mode.

Bits 0 to 3 Bits4to 7

(lower bits) (upper bits)
BIN 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 (1010 | 1011 | 1100 | 1101 | 1110 | 1111

HEX 0 1 2 3 4 5 6 7 A B Cc D E F

0000 (O NUL |DLE |space |0 @ P ¢ 0 @ P ‘ p
0001 |1 SOH [DC; |! 1 A Q a q ! 1 A 0 a
0010 (2 STX |DC, |” 2 B R b r ” 2 B R b r
0011 |3 ETX |DCz; [# 3 C S c S # 3 C S c s
0100 |4 EOT [DCy4 4 D T d t 4 D T d t
0101 (5 ENQ [NAK | % 5 E U e u % 5 E U e u
0110 |6 ACK [SYN |& 6 F \'% f \ & 6 F |4 f %
o111 |7 BEL (ETB | 7 G W g w ’ 7 G w g w
1000 |8 BS |CAN |(8 H X h X (8 H X h x
1001 (9 HT EM) 9 I Y i y) 9 1 Y i y
1010 |A LF SUB | * J Z] z * J VA j z
1011 |B VT |ESC |+ ; K [k { + ; K [k !
1100 |C FF FS , < L \ 1 | , < L | l |
1101 |D CR |GS |- = M] m } - = M |] m }
1110 |E SO RS > N n n « > N n n
111 |F St |Us |/ ? o) _ 0 ~ / ? 0 _ 0 ~

141

active controller

address

address command

advanced instruction

allocation

alphanumeric character

analog

Analog I/O Unit

AND

area

area prefix

argument

arithmetic operator

array element

array subscript

array variable

ASCII

Glossary

The device on a general-purpose interface bus that is currently controlling com-
munications on the bus.

A number used to identify the location of data or programming instructions in
memory or to identify the location of a network or a unit in a network.

A command sent to a specific address on a general-purpose interface bus.

An instruction input with a function code that handles data processing opera-
tions within ladder diagrams, as opposed to a basic instruction, which makes up
the fundamental portion of a ladder diagram.

The process by which the PC assigns certain bits or words in memory for various
functions. This includes pairing 1/O bits to I/O points on Units.

An upper- or lower-case letter, digit, or underscore (_). The underscore is con-
sidered to be a letter.

Something that represents or can process a continuous range of values as op-
posed to values that can be represented in distinct increments. Something that
represents or can process values represented in distinct increments is called
digital.

I/O Units that convert /O between analog and digital values. An Analog Input
Input converts an analog input to a digital value for processing by the PC. An
Analog Output Unit converts a digital value to an analog output.

A logic operation whereby the result is true if and only if both premises are true.
In ladder-diagram programming the premises are usually ON/OFF states of bits
or the logical combination of such states called execution conditions.

See data area and memory area.

A one or two letter prefix used to identify a memory area in the PC. All memory
areas except the ClO area require prefixes to identify addresses in them.

A value passed to a function when the function is called.

A character indicating to the BASIC Unit that it should perform some sort of cal-
culation; for instance, “+” indicates addition, and “*” indicates multiplication.

One part of an array variable. An array element can be another array (for mul-
ti-dimensional arrays) or a simple variable (an integer, floating-point, string, etc.)

An integer expression used to designate an array element for some operation.
Avariable which consists of a collection of parts called array elements. Each ele-
ment can be another array (for multi-dimensional arrays) or a simple variable (an

integer, floating-point, string, etc.)

Short for American Standard Code for Information Interchange. ASCll is used to
code characters for output to printers and other external devices.

143

Glossary

assembler

asynchronous execution

Auxiliary Area
auxiliary bit

back-up

BASIC
basic instruction
BASIC Unit

baud rate

BCD

binary

binary-coded decimal

bit

bit address

breakpoint

buffer

building-block PC

bus

bus link

byte

144

A program which converts machine-language mnemonics to machine instruc-
tions.

Execution of programs and servicing operations in which program execution
and servicing are not synchronized with each other.

A PC data area allocated to flags and control bits.
A bit in the Auxiliary Area.

A copy made of existing data to ensure that the data will not be lost even if the
original data is corrupted or erased.

A common programming language. BASIC Units are programmed in BASIC.
A fundamental instruction used in a ladder diagram. See advanced instruction.
A CPU Bus Unit used to run programs in BASIC.

The data transmission speed between two devices in a system measured in bits
per second.

Short for binary-coded decimal.

A number system where all numbers are expressed in base 2, i.e., numbers are
written using only O’s and 1’s. Each group of four binary bits is equivalent to one
hexadecimal digit. Binary data in memory is thus often expressed in hexadeci-
mal for convenience.

A system used to represent numbers so that every four binary bits is numerically
equivalent to one decimal digit.

The smallest piece of information that can be represented on a computer. A bit
has the value of either zero or one, corresponding to the electrical signals ON
and OFF. A bit represents one binary digit. Some bits at particular addresses are
allocated to special purposes, such as holding the status of input from external
devices, while other bits are available for general use in programming.

The location in memory where a bit of data is stored. A bit address specifies the
data area and word that is being addressed as well as the number of the bit with-
in the word.

Used during program debugging to mark places where the BASIC Unit should
stop executing the program and allow the programmer to check the state of the
program’s variables.

A temporary storage space for data in a computerized device.

A PC that is constructed from individual components, or “building blocks.” With
building-block PCs, there is no one Unit that is independently identifiable as a

PC. The PC is rather a functional assembly of Units.

A communications path used to pass data between any of the Units connected
toit.

A data link that passed data between two Units across a bus.

A unit of data equivalent to 8 bits, i.e., half a word.

Glossary

central processing unit

channel
character code
character constant

character expression

character string

checksum

CIO Area

command

command format

comment statement

communications port interrupt

constant

control bit

control signal

Control System

controlled system

controller

CPU

A device that is capable of storing programs and data, and executing the instruc-
tions contained in the programs. In a PC System, the central processing unit ex-
ecutes the program, processes |I/O signals, communicates with external de-
vices, etc.

See word.
A numeric (usually binary) code used to represent an alphanumeric character.
A character expression which contains no string variables.

An expression involving only character strings, string variables, functions re-
turning character strings, and the “+” operator.

A sequence of characters delimited by double quotes (”).

A sum transmitted with a data pack in communications. The checksum can be
recalculated from the received data to confirm that the data in the transmission
has not been corrupted.

A memory area used to control I/O and to store and manipulate data. CIO Area
addresses do not require prefixes.

A BASIC Unit instruction which is usually used in immediate mode (e.g. LIST,
RUN, or NEW).

The syntax required for use in a command and specifying what data is required
in what order.

A statement which is ignored by the BASIC Unit. They may be included in a pro-
gram to describe the program or to explain how it is supposed to work. Lines be-
ginning with the REM instruction are comments, and the single quote character
(") begins a comment which extends to the end of the current line.

An interrupt that occurs when a character is received by one of the communica-
tions ports.

Aninput for an operand in which the actual numeric value is specified. Constants
can be input for certain operands in place of memory area addresses. Some op-
erands must be input as constants.

A bit in a memory area that is set either through the program or via a Program-
ming Device to achieve a specific purpose, e.g., a Restart Bit is turned ON and
OFF to restart a Unit.

A signal sent from the PC to effect the operation of the controlled system.

All of the hardware and software components used to control other devices. A
Control System includes the PC System, the PC programs, and all I/O devices
that are used to control or obtain feedback from the controlled system.

The devices that are being controlled by a PC System.

A device on a general-purpose interface bus that is capable of controlling com-
munications.

See central processing unit.

145

Glossary

CPU Bus Unit

CPU Rack

C-series PC

CTS signal

CV Support Software

CV-series PC
CVSS

cycle

cycle time
cyclic (data) transfer
DAC

Data Access Console

data area

data link

data register

data transfer

debug

decimal

decimal integer constant

146

A special Unit used with CV-series PCs that mounts to the CPU bus. This con-
nection to the CPU bus enables special data links, data transfers, and process-

ing.
The main Rack in a building-block PC, the CPU Rack contains the CPU, a Power

Supply, and other Units. The CPU Rack, along with the Expansion CPU Rack,
provides both an I/O bus and a CPU bus.

Any of the following PCs: C2000H, C1000H, C500, C200H, C40H, C28H, C20H,
C60K, C60P, C40K, C40P, C28K, C28P, C20K, C20P, C120, or C20.

A signal used in communications between electronic devices to indicate that the
receiver is ready to accept incoming data.

A programming package run on an IBM PC/AT or compatible to serve as a Pro-
gramming Device for CV-series PCs.

Any of the following PCs: CV500, CV1000, CV2000, or CVM1.

See CV Support Software.

One unit of processing performed by the CPU, including SFC/ladder program
execution, peripheral servicing, /O refreshing, etc. The cycle is called the scan
with C-series PCs.

The time required to complete one cycle of CPU processing.

A transfer of data that occurs at a specific interval.

See Data Access Console.

A Programming Device used to monitor and control memory area contents. The
Data Access Console does not afford the wide range of programming capabili-
ties as the GPC or CVSS and is designed for system monitoring and mainte-
nance.

An area in the PC’s memory that is designed to hold a specific type of data.

An automatic data transmission operation that allows PCs or Units within PC to
pass data back and forth via common data areas.

A storage location in memory used to hold data. In CV-series PCs, data registers
are used with or without index registers to hold data used in indirect addressing.

Moving data from one memory location to another, either within the same device
or between different devices connected via a communications line or network.

A process by which a draft program is corrected until it operates as intended.
Debugging includes both the removal of syntax errors, as well as the fine-tuning
of timing and coordination of control operations.

A number system where numbers are expressed to the base 10. In aPC all data
is ultimately stored in binary form, four binary bits are often used to represent
one decimal digit, via a system called binary-coded decimal.

An integer constant expressed in decimal notation. Such a constant uses only
the numerals 0 through 9.

Glossary

declarator

decrement

default

destination

destination line

destination variable

digit

DIP switch

distributed control

DM Area

DM word

double-precision constant

double-precision variable

downloading

DSR signal

EEPROM

elapsed-time interrupt

electrical noise

EM Area

A special character added to a variable to specify the type of variable, e.g., a
character, a single-precision real number, etc.

Decreasing a numeric value, usually by 1.

A value automatically set by the PC when the user does not specifically set
another value. Many devices will assume such default conditions upon the appli-
cation of power.

The location where an instruction places the data on which it is operating, as op-
posed to the location from which data is taken for use in the instruction. The loca-
tion from which data is taken is called the source.

The target of a GOTO or GOSUB statement.

The variable which is to receive the results of a calculation or operation (the vari-
able in which the results are to be stored).

A unit of storage in memory that consists of four bits.

Dual in-line package switch, an array of pins in a signal package that is mounted
to a circuit board and is used to set operating parameters.

A automation concept in which control of each portion of an automated systemis
located near the devices actually being controlled, i.e., control is decentralized
and ‘distributed’ over the system. Distributed control is a concept basic to PC
Systems.

A data area used to hold only word data. Words in the DM area cannot be ac-
cessed bit by bit.

A word in the DM Area.

A floating-point constant which has at least one of these properties: a trailing
hash mark (e.g. 123. 45#); an exponent declared with D or d instead of E or e
(e.9- 1.2345D2); or more than 15 digits in the mantissa (e.g.
123.450000000000).

A variable which can hold a double-precision value.

The process of transferring a program or data from a higher-level or host com-
puter to a lower-level or slave computer. If a Programming Device is involved,
the Programming Device is considered the host computer.

Data Set Ready signal; sent by a modem to indicate that it is functional.
Electrically erasable programmable read-only memory; a type of ROM in which
stored data can be erased and reprogrammed. This is accomplished using a
special control lead connected to the EEPROM chip and can be done without
having to remove the EEPROM chip from the device in which it is mounted.

An interrupt which occurs after a specified period of time.

Random variations of one or more electrical characteristics such as voltage, cur-
rent, and data, which might interfere with the normal operation of a device.

Extended Data Memory Area; an area that can be optionally added to certain
PCs to enable greater data storage. Functionally, the EM Area operates like the

147

Glossary

EPROM

error code

error generation number

event (data) transfer

event processing

executable statement

Expansion CPU Rack

Expansion I/O Rack

expression

FA

factory computer

fatal error

FINS

flag

floating-point decimal

floating-point format
floating-point constant

force reset

148

DM Area. Area addresses are prefixes with E and only words can be accessed.
The EM Area is separated into multiple banks.

Erasable programmable read-only memory; a type of ROM in which stored data
can be erased, by ultraviolet light or other means, and reprogrammed.

A numeric code generated to indicate that an error exists, and something about
the nature of the error. Some error codes are generated by the system; others
are defined in the program by the operator.

A number used to identify an error generated by a program.

A data transfer that is performed in response to an event, e.g., an interrupt sig-
nal.

Processing that is performed in response to an event, e.g., an interrupt signal.

A statement which causes the BASIC Unit to perform some operation, rather
than one which changes the way the BASIC Unit interprets the program. (For
example, PRINT is an executable statement, but REM is not.)

A Rack connected to the CPU Rack to increase the virtual size of the CPU Rack.
Units that may be mounted to the CPU Backplane may also be mounted to the
Expansion CPU Backplane.

A Rack used to increase the I/O capacity of a PC. In CV-Series PC, either one
Expansion I/O Rack can be connected directly to the CPU or Expansion CPU
Rack or multiple Expansion I/O Racks can be connected by using an 1/0 Control
and 1/O Interface Units.

The translation of a mathematical formula into BASIC notation. For example, the
formula for the area of a circle is: A=nr?; the BASIC expression to calculate the
area of a circle is: AREA=3.1415*RADIUS"2.

Factory automation.

A general-purpose computer, usually quite similar to a business computer, that
is used in automated factory control.

An error that stops PC operation and requires correction before operation can
continue.

See CV-mode.
A dedicated bitin memory that is set by the system to indicate some type of oper-
ating status. Some flags, such as the carry flag, can also be set by the operator

or via the program.

A decimal number expressed as a number (the mantissa) multiplied by a power
of 10, e.g., 0.538 x 1075.

The layout of a single- or double-precision value in memory.
A numeric constant which has a fractional or exponential part.

The process of forcibly turning OFF a bit via a programming device. Bits are usu-
ally turned OFF as a result of program execution.

Glossary

force set

frame checksum

function

The process of forcibly turning ON a bit via a programming device. Bits are usu-
ally turned ON as a result of program execution.

The results of exclusive ORing all data within a specified calculation range. The
frame checksum can be calculated on both the sending and receiving end of a
data transfer to confirm that data was transmitted correctly.

A BASIC Unit instruction which calculates a value based on its arguments and
returns the value to the program. The programmer can define new functions with
the DEF FN statement.

general-purpose interface bus A bus used to connect various devices to a computer.

generation line
global variable
GPC

GP-IB

Graphic Programming Console

handshake line

handshaking

hexadecimal

hexadecimal constant

host interface

Host Link System

Host Link Unit

I/0 allocation

1/0 Block

The line in a program that generates an event, e.g., an interrupt.

A variable which can be accessed from any of the tasks in a program.
An acronym for Graphic Programming Console.

An acronym for general-purpose interface bus.

A programming device with advanced programming and debugging capabilities
to facilitate PC operation. A Graphic Programming Console is provided with a
large display onto which ladder-diagram programs can be written directly in lad-
der-diagram symbols for input into the PC without conversion to mnemonic
form.

A line in a program or a physical connection between devices used for hand-
shaking.

The process whereby two devices exchange basic signals to coordinate com-
munications between them.

A number system where all numbers are expressed to the base 16. In a PC all
data is ultimately stored in binary form, however, displays and inputs on Pro-
gramming Devices are often expressed in hexadecimal to simplify operation.
Each group of four binary bits is numerically equivalent to one hexadecimal digit.

An integer constant expressed in hexadecimal notation. Hexadecimal constants
must begin with the characters &H or &h and contain only hexadecimal digits (nu-
merals 0 through 9 and letters a through £ or A through F).

An interface that allows communications with a host computer.

A system with one or more host computers connected to one or more PCs via
Host Link Units or host interfaces so that the host computer can be used to trans-
fer data to and from the PC(s). Host Link Systems enable centralized manage-

ment and control of PC Systems.

An interface used to connect a C-series PC to a host computer in a Host Link
System.

The process by which the PC assigns certain bits in memory for various func-
tions. This includes pairing 1/O bits to I/O points on Units.

Either an Input Block or an Output Block. I/0 Blocks provide mounting positions
for replaceable relays.

149

Glossary

1/O Control Unit

1/O delay

/0 device

I/O Interface Unit

1/0 point

1/O refreshing

I/O response time

I/0O Terminal

1/0 Unit

I/O verification error

1/0 word

IBM PC/AT or compatible

initialize

input

input bit

Input Block

input device

input point

150

A Unit mounted to the CPU Rack to monitor and control I/O points on Expansion
CPU Racks or Expansion 1/0 Racks.

The delay in time from when a signal is sent to an output to when the status of the
output is actually in effect or the delay in time from when the status of an input
changes until the signal indicating the change in the status is received.

A device connected to the I/O terminals on I/O Units, Special I/O Units, etc. I/O
devices may be either part of the Control System, if they function to help control
other devices, or they may be part of the controlled system.

A Unit mounted to an Expansion CPU Rack or Expansion I/O Rack to interface
the Rack to the CPU Rack.

The place at which an input signal enters the PC System, or at which an output
signal leaves the PC System. In physical terms, 1/O points correspond to termi-
nals or connector pins on a Unit; in terms of programming, an 1/O points corre-
spond to I/O bits in the IR area.

The process of updating output status sent to external devices so that it agrees
with the status of output bits held in memory and of updating input bits in memory
so that they agree with the status of inputs from external devices.

The time required for an output signal to be sent from the PC in response to an
input signal received from an external device.

A Remote /O Unit connected in a Wired Remote I/O System to provide a limited
number of I/O points at one location. There are several types of I/O Terminals.

The most basic type of Unit mounted to a Backplane. I/O Units include Input
Units and Output Units, each of which is available in a range of specifications.
I/O Units do not include Special I/0 Units, Link Units, etc.

A error generated by a disagreement between the Units registered in the 1/0
table and the Units actually mounted to the PC.

Aword in the CIO area that is allocated to a Unit in the PC System and is used to
hold 1/O status for that Unit.

A computer that has similar architecture to, that is logically compatible with, and
that can run software designed for an IBM PC/AT computer.

Part of the startup process whereby some memory areas are cleared, system
setup is checked, and default values are set.

The signal coming from an external device into the PC. The term input is often
used abstractly or collectively to refer to incoming signals.

A bit in the CIO area that is allocated to hold the status of an input.

A Unit used in combination with a Remote Interface to create an I/O Terminal. An
Input Block provides mounting positions for replaceable relays. Each relay can
be selected according to specific input requirements.

An external device that sends signals into the PC System.

The point at which an input enters the PC System. Input points correspond phys-
ically to terminals or connector pins.

Glossary

input signal

Input Terminal

instruction

integer constant

integer variable

Intel HEX record

Intelligent Signal Processor

interface

interrupt (signal)

Interrupt Input Unit
interrupt service routine

inter-task communication

interval interrupt
IOIF

IOM (Area)

JIS

jump

keyword

label

A change in the status of a connection entering the PC. Generally an input signal
is said to exist when, for example, a connection point goes from low to high volt-
age or from a nonconductive to a conductive state.

An I/O Terminal that provides input points.

A direction given in the program that tells the PC of the action to be carried out,
and the data to be used in carrying out the action. Instructions can be used to
simply turn a bit ON or OFF, or they can perform much more complex actions,

such as converting and/or transferring large blocks of data.

A numeric value which has a percent sign (%) appended, or an expression con-
taining only integer constants.

A variable that can hold an integer value.

Hexadecimal data recorded according to the Intel standard.

A control-panel interface used to access and control signals. The Processor is
capable of processing the signals according to specifications, and thus the
name.

An interface is the conceptual boundary between systems or devices and usual-
ly involves changes in the way the communicated data is represented. Interface
devices such as NSBs perform operations like changing the coding, format, or

speed of the data.

A signal that stops normal program execution and causes a subroutine to be run
or other processing to take place.

A Rack-mounting Unit used to input external interrupts into a PC System.
A BASIC subroutine which is called in response to an interrupt.

Communication (transfer of data or status information) between two tasks in a
BASIC Unit program.

An interrupt which occurs each time a certain amount of time has elapsed.

An acronym for I/O Interface Unit.

A collective memory area containing all of the memory areas that can be ac-
cessed by bit, including timer and counter Completion Flags. The IOM Area in-
cludes all memory area memory addresses between 0000 and OFFF.

An acronym for Japanese Industrial Standards.

A type of programming where execution moves directly from one pointin a pro-
gram to another, without sequentially executing any instructions in between.
Jumps in ladder diagrams are usually conditional on an execution condition;
jumps in SFC programs are conditional on the step status and transition condi-

tion status before the jump.

A word that has special meaning to the BASIC Unit. Programs cannot use key-
words for variable or label names.

A name attached to a program line for use in GOTO and GOSUB statements.

151

Glossary

least-significant (bit/word)

LED

leftmost (bit/word)

line number

line

link

Link System

Link Unit

listener

listener address

load

local variable

logical expression

logical operation

logical operator

loop

LSl
machine code

machine language

MCR Unit

152

See rightmost (bit/word).

Acronym for light-emitting diode; a device used as for indicators or displays.
The highest numbered bits of a group of bits, generally of an entire word, or the
highest numbered words of a group of words. These bits/words are often called

most-significant bits/words.

An integer which uniquely identifies a line within a program. Line numbers may
be used in GOTO and GOSUB statements.

One portion of a BASIC program. A line consists of a line number and one or
more statements.

A hardware or software connection formed between two Units. “Link” can refer
either to a part of the physical connection between two Units or a software con-
nection created to data existing at another location (i.e., data links).

A system used to connect remote 1/O or to connect multiple PCs in a network.
Link Systems include the following: SYSMAC BUS Remote I/O Systems, SYS-
MAC BUS/2 Remote I/O Systems, SYSMAC LINK Systems, Host Link Systems,
and SYSMAC NET Link Systems.

Any of the Units used to connect a PC to a Link System. These include Remote
I/O Units, SYSMAC LINK Units, and SYSMAC NET Link Units.

A device on a general-purpose interface bus that is receiving data from another
device on the bus.

The addresses on a general-purpose interface bus of a device that is receiving
data from another device on the bus.

The processes of copying data either from an external device or from a storage
area to an active portion of the system such as a display buffer. Also, an output
device connected to the PC is called a load.

A variable which can only be accessed by the task in which it is declared.

An expression made up of one or more logical operations, which has “TRUE” or
“FALSE” as its value.

An operation on one or more “TRUE” or “FALSE” values (a Boolean operation),
or an operation which returns a “TRUE” or “FALSE” indication.

Akeyword or symbol which instructs the BASIC Unit to perform some calculation
that returns a “TRUE” or “FALSE” value.

A group of instructions that can be executed more than once in succession (i.e.,
repeated) depending on an execution condition or bit status.

An acronym for large scale integration.
The binary program code that is actual executed by a CPU.

A programming language in which the program is written directly into machine
code.

Magnetic Card Reader Unit.

Glossary

megabyte
memory area

memory switch

most-significant (bit/word)
Motorola S-record
MS-DOS
multi-dimensional array

multidrop configuration

multitasked program

multitasking

my-address

nesting

network interrupt

Network Service Board

Network Service Unit

noise interference

non-executable statement

nonfatal error

non-volatile variable

NOT

null string

numeric constant

A unit of storage equal to one million bytes.
Any of the areas in the PC used to hold data or programs.

A bit or bits in memory that are used to set operating parameters similar to the
way a hardware switch would be.

See leftmost (bit/word).

A format standardized by the Motorola company to store programs.

An operating system in common use on smaller computers.

An array in which more than one subscript is required to access an element.

A bus configuration in which all devices are connected in series, but across, not
through, each device.

A program which consists of two or more sub-programs or “tasks” executing
concurrently.

Describes a computer which can run more than one program at a time, or which
can give the illusion that several programs are running simultaneously.

The address of a device on a general-purpose interface bus.

Programming one loop within another loop, programming a call to a subroutine
within another subroutine, or programming an IF-ELSE programming section
within another IF-ELSE section.

An interrupt that occurs when data is received on the network interface.

A device with an interface to connect devices other than PCs to a SYSMAC NET
Link System.

A Unit that provides two interfaces to connect peripheral devices to a SYSMAC
NET Link System.

Disturbances in signals caused by electrical noise.
A statement that changes the way the BASIC Unit processes the program, but
does not cause the Unit to perform any particular operation. For example, the

REM statement causes the Unit to ignore the rest of the line.

A hardware or software error that produces a warning but does not stop the PC
from operating.

A variable that is stored in battery-backed memory. Non-volatile variables retain
their values even if power to the Unit is turned off.

A logic operation which inverts the status of the operand. For example, AND
NOT indicates an AND operation with the opposite of the actual status of the op-
erand bit.

A string containing no characters (“").

A number (integer or floating-point) or a numeric expression containing no vari-
ables or function calls.

153

Glossary

numeric expression

numeric key interrupt

numeric variable

object code

octal

octal constant

OFF

OFF delay

offset

ON

ON delay

operand

operating error

operator

operator priority

OR

0os

154

A sequence of numbers, variables, and arithmetic operators that instructs the
BASIC Unit to calculate a numeric value.

An interrupt that occurs when the user presses one of the numeric keypad keys.
A variable that can hold a numeric value.

The code that a program is converted to before actual execution. See source
code.

A number system where all numbers are expressed in base 8, i.e., numbers are
written using only numerals 0 through 7.

An integer constant expressed in octal notation. Octal constants must begin with
&, &0, or &o and contain only octal digits (numerals 0 through 7).

The status of an input or output when a signal is said not to be present. The OFF
state is generally represented by a low voltage or by non-conductivity, but can be
defined as the opposite of either.

The delay between the time when a signal is switched OFF (e.g., by an input
device or PC) and the time when the signal reaches a state readable as an OFF
signal (i.e., as no signal) by a receiving party (e.g., output device or PC).

A positive or negative value added to a base value such as an address to specify
a desired value.

The status of an input or output when a signal is said to be present. The ON state
is generally represented by a high voltage or by conductivity, but can be defined
as the opposite of either.

The delay between the time when an ON signal is initiated (e.g., by an input de-
vice or PC) and the time when the signal reaches a state readable as an ON sig-
nal by a receiving party (e.g., output device or PC).

The values designated as the data to be used for an instruction. An operand can
be input as a constant expressing the actual numeric value to be used or as an
address to express the location in memory of the data to be used.

An error that occurs during actual PC operation as opposed to an initialization
error, which occurs before actual operations can begin.

A character that instructs the BASIC Unit to perform some calculation. For ex-
ample, the “+” character indicates that the BASIC Unit should add two numeric
values (or concatenate two strings).

Controls the order of evaluation for sub-expressions in a numeric expression.
For example, 2+3*4 isinterpreted as 2+ (3*4) or 14 (and not (2+3) *4 or 20),
because the operator priority for * is higher than that for +. Parentheses may be
used to change the order in which sub-expressions are evaluated.

A logic operation whereby the result is true if either of two premises is true, or if
both are true. In ladder-diagram programming the premises are usually ON/OFF
states of bits or the logical combination of such states called execution condi-
tions.

Operating system; the basic software the drives a computer and on which all oth-
er software is executed.

Glossary

output

Output Block

output device

output point

output signal

Output Terminal
overflow
overwrite

pad byte

parallel polling

parity

parity check
PC

PC configuration

PC System

PCB
PC Setup

Peripheral Device

peripheral servicing

PID Unit

placeholder

The signal sent from the PC to an external device. The term output is often used
abstractly or collectively to refer to outgoing signals.

A Unit used in combination with a Remote Interface to create an I/O Terminal. An
Output Block provides mounting positions for replaceable relays. Each relay can
be selected according to specific output requirements.

An external device that receives signals from the PC System.

The point at which an output leaves the PC System. Output points correspond
physically to terminals or connector pins.

A signal being sent to an external device. Generally an output signal is said to
exist when, for example, a connection point goes from low to high voltage or from
a nonconductive to a conductive state.

An |/O Terminal that provides output points.
The state where the capacity of a data storage location has been exceeded.
Changing the content of a memory location so that the previous content is lost.

An extra byte added at the end of a string to make the total number of characters
in the string even.

A polling method in which all devices in a system are polled at the same time.

Adjustment of the number of ON bits in a word or other unit of data so that the
total is always an even number or always an odd number. Parity is generally
used to check the accuracy of data after being transmitted by confirming that the
number of ON bits is still even or still odd.

Checking parity to ensure that transmitted data has not been corrupted.
An acronym for Programmable Controller.

The arrangement and interconnections of the Units that are put together to form
a functional PC.

With building-block PCs, all of the Racks and independent Units connected di-
rectly to them up to, but not including the 1/O devices. The boundaries of a PC
System are the PC and the program in its CPU at the upper end; and the I/O
Units, Special I/0 Units, Optical I/O Units, Remote Terminals, etc., at the lower
end.

An acronym for printed circuit board.

A group of operating parameters set in the PC from a Programming Device to
control PC operation.

Devices connected to a PC System to aid in system operation. Peripheral de-
vices include printers, programming devices, external storage media, etc.
Processing signals to and from peripheral devices, including refreshing, com-
munications processing, interrupts, etc.

A Unit designed for PID control.

A zero that is required to indicate the place value of other digits in a numeral,
e.g., the zeros to the right of the decimal point in the following number: 0.0045.

155

Glossary

pointer

present value

printed circuit board

program code

Programmable Controller

Programming Console

Programming Device

PROM

PROM Writer

prompt

protocol

PV

Rack

rack number

Rack PC

156

A variable or register which contains the address of some object in memory.

The current value registered in a device at any instant during its operation. Pres-
entvalue is abbreviated as PV. The use of this term is generally restricted to tim-
ers and counters.

A board onto which electrical circuits are printed for mounting into a computer or
electrical device.

The representation of a program used internally by the BASIC Unit.

A computerized device that can accept inputs from external devices and gener-
ate outputs to external devices according to a program held in memory. Pro-
grammable Controllers are used to automate control of external devices. Al-
though single-unit Programmable Controllers are available, building-block Pro-
grammable Controllers are constructed from separate components. Such Pro-
grammable Controllers are formed only when enough of these separate compo-
nents are assembled to form a functional assembly, i.e., there is no one individu-
al Unit called a PC.

The simplest form or programming device available for a PC. Programming
Consoles are available both as hand-held models and as CPU-mounting mod-
els.

A Peripheral Device used to input a program into a PC or to alter or monitor a
program already held in the PC. There are dedicated programming devices,
such as Programming Consoles, and there are non-dedicated devices, such as
a host computer.

Programmable read-only memory; a type of ROM into which the program or
data may be written after manufacture, by a customer, but which is fixed from
that time on.

A peripheral device used to write programs and other data into a ROM for per-
manent storage and application.

A message or symbol that appears on a display to request input from the opera-
tor.

The parameters and procedures that are standardized to enable two devices to
communicate or to enable a programmer or operator to communicate with a de-
vice.

See present value.

An assembly that forms a functional unit in a Rack PC System. A Rack consists
of a Backplane and the Units mounted to it. These Units include the Power Sup-
ply, CPU, and I/O Units. Racks include CPU Racks, Expansion I/O Racks, and
I/0 Racks. The CPU Rack is the Rack with the CPU mounted to it. An Expansion
I/O Rack is an additional Rack that holds extra I/O Units. An I/O Rack is used in
the C2000H Duplex System, because there is no room for any 1/O Units on the
CPU Rack in this System.

A number assigned to a Rack according to the order that it is connected to the
CPU Rack, with the CPU Rack generally being rack number 0.

A PC that is composed of Units mounted to one or more Racks. This configura-
tion is the most flexible, and most large PCs are Rack PCs. A Rack PC is the

Glossary

RAM

random access file
RAS
record

refresh

register

relative expression

relative operator

relay-based control

reserved bit

reserved word

reset

Restart Bit

restart continuation

retrieve

retry

rightmost (bit/word)

rising edge

ROM

opposite of a Package-type PC, which has all of the basic I/O, storage, and con-
trol functions built into a single package.

Random access memory; a data storage media. RAM will not retain data when
power is disconnected.

A file that can be accessed at any desired point, and not only sequentially.

An acronym for reliability, assurance, safety.

One block or unit of data in a sequential access file.

The process of updating output status sent to external devices so that it agrees
with the status of output bits held in memory and of updating input bits in memory
so that they agree with the status of inputs from external devices.

A special memory location inside the BASIC Unit's CPU.

Alogical expression concerning the magnitudes of two numeric or string expres-
sions (for example, A>B is a relative expression which is TRUE if the value of A is

greater than the value of B, and FALSE otherwise).

A character (e.g. >, <, =) or pair of characters (e.g. >=, <=) used in a relative
expression.

The forerunner of PCs. In relay-based control, groups of relays are intercon-
nected to form control circuits. In a PC, these are replaced by programmable cir-
cuits.

A bit that is not available for user application.

Aword in memory that is reserved for a special purpose and cannot be accessed
by the user.

The process of turning a bit or signal OFF or of changing the present value of a
timer or counter to its set value or to zero.

A bit used to restart a Unit mounted to a PC.

A process which allows memory and program execution status to be maintained
so that PC operation can be restarted from the state it was in when operation
was stopped by a power interruption.

The processes of copying data either from an external device or from a storage
area to an active portion of the system such as a display buffer. Also, an output
device connected to the PC is called a load.

The process whereby a device will re-transmit data which has resulted in an er-
ror message from the receiving device.

The lowest numbered bits of a group of bits, generally of an entire word, or the
lowest numbered words of a group of words. These bits/words are often called
least-significant bits/words.

The point where a signal actually changes from an OFF to an ON status.

Read only memory; a type of digital storage that cannot be written to. A ROM
chip is manufactured with its program or data already stored in it and can never

157

Glossary

round-robin

routine

row-major form
RS-232C interface
RS-422 interface

RTS signal

scan

scan time

secondary command

segment

self diagnosis

sequential access file

serial polling

series

service request

servicing

set

set value

signal interrupt

simple variable

158

be changed. However, the program or data can be read as many times as de-
sired.

In order, completing one item before moving on to the next.

A section of a program; often one which may be called by other parts of the pro-
gram as a subroutine.

Describes the layout of the elements of an array variable in memory.
An industry standard for serial communications.
An industry standard for serial communications.

Request To Send: the BASIC Unit can be programmed to assert this signal when
it wishes to send data through a communications port.

The process used to execute a ladder-diagram program. The program is ex-
amined sequentially from start to finish and each instruction is executed in turn
based on execution conditions. The scan also includes peripheral processing,
I/O refreshing, etc. The scan is called the cycle with CV-series PCs.

The time required for a single scan of a ladder-diagram program.

A command sent with a listener address to specify the address of another listen-
er or talker.

A 64K-byte block of memory beginning on a 16-byte boundary. The BASIC
Unit's CPU has several registers that can hold the address of the beginning of a
segment.

A process whereby the system checks its own operation and generates a warn-
ing or error if an abnormality is discovered.

A file that can be read or written only sequential from the beginning to the end.

A polling method in which each device being polled is polled one at a time in se-
guence.

A wiring method in which Units are wired consecutively in a string. In Link Sys-
tems wired through Link Adapters, the Units are still functionally wired in series,
even though Units are placed on branch lines.

A signal from a device requesting that some sort of processing occur.

The process whereby the PC provides data to or receives data from external de-
vices or remote I/O Units, or otherwise handles data transactions for Link Sys-
tems.

The process of turning a bit or signal ON.

The value from which a decrementing counter starts counting down or to which
an incrementing counter counts up (i.e., the maximum count), or the time from
which or for which a timer starts timing. Set value is abbreviated SV.

An interrupt caused by another task activating a SIGNAL instruction.

A non-array variable. Simple variables have only one value and cannot be sub-
scripted.

Glossary

single-precision constant

single-precision variable
software error

software protect

software switch

source code

Special I/O Unit

SRAM
SRQ

stack

statement
suboperand

subroutine

subscript

substitution statement

SV

synchronous execution

syntax

syntax error

system configuration

Any number which is not specifically designated as an integer or double-preci-
sion floating point value, or which is designated as a single-precision value by a
trailing exclamation point (!), or a numeric expression containing only integer
and single-precision constants.

A variable that can hold a single-precision floating point value.
An error that originates in a software program.

A means of protecting data from being changed that uses software as opposed
to a physical switch or other hardware setting.

See memory switch.

The code in which a program is written, e.g., ASCII. Source code must be con-
verted to object code before execution.

A Unit that is designed for a specific purpose. Special I/O Units include Position
Control Units, High-speed Counter Units, Analog I/O Units, etc.

Static random access memory; a data storage media.
See service request.

A data structure in memory which is maintained automatically by the BASIC
Unit's CPU. The stack is used in GOSUB and RETURN instructions, as well as dur-
ing interrupts.

The smallest complete unit of a BASIC program.
See operand.

A group of instructions placed separate from the main program and executed
only when called from the main program or activated by an interrupt.

An integer expression that designates an element of an array variable.
A statement that uses the “=" operator to substitute the value of a second vari-
able for that of the first variable.

Abbreviation for set value.

Execution of programs and servicing operations in which program execution
and servicing are synchronized so that all servicing operations are executed
each time the programs are executed.

The form of a program statement (as opposed to its meaning). For example, the
two statements, LET A=B+B and LET A=B+*2 use different syntaxes, but have
the same meaning.

An error in the way in which a program is written. Syntax errors can include
‘spelling’ mistakes (i.e., a function code that does not exist), mistakes in specify-
ing operands within acceptable parameters (e.g., specifying read-only bits as a
destination), and mistakes in actual application of instructions (e.g., a call to a
subroutine that does not exist).

The arrangement in which Units in a System are connected. This term refers to
the conceptual arrangement and wiring together of all the devices needed to

159

Glossary

system error

system error message

system variable

talker

talker address

task

task block

task program

terminator

three-line handshaking

timer

timer interrupt

TR Area

TR bit

transfer

transmission distance

UM area

160

comprise the System. In OMRON terminology, system configuration is used to
describe the arrangement and connection of the Units comprising a Control Sys-
tem that includes one or more PCs.

An error generated by the system, as opposed to one resulting from execution of
an instruction designed to generate an error.

An error message generated by the system, as opposed to one resulting from
execution of an instruction designed to generate a message.

A variable that contains information about the system (e.g. the current date and
time, or the line number on which the last error occurred).

A device on a general-purpose interface bus that is sending data to other de-
vices on the bus.

The addresses on a general-purpose interface bus of a device that is sending
data to other devices on the bus.

A complete sub-unit within a BASIC program. Each task has its own variables,
stack, and so on, and is completely independent of any other tasks in the pro-
gram, although it may use inter-task communication to exchange data with
these other tasks. The BASIC Unit can execute several tasks simultaneously.

Each task is delimited the TASK and END TASK statements; all statements be-
tween these statements are part of the task block.

A program written to perform a task.

The code comprising an asterisk and a carriage return (* CR) which indicates the
end of a block of data in communications between devices. Frames within a mul-
ti-frame block are separated by delimiters. Also a Unit in a Link System desig-
nated as the last Unit on the communications line.

A handshaking method that uses three communications lines to perform hand-
shaking.

Alocation in memory accessed through a TC bit and used to time down from the
timer’s set value. Timers are turned ON and reset according to their execution
conditions.

An interrupt caused by the BASIC Unit’s timer.

A data area used to store execution conditions so that they can be reloaded later
for use with other instructions.

A bitin the TR Area.

The process of moving data from one location to another within the PC, or be-
tween the PC and external devices. When data is transferred, generally a copy
of the data is sent to the destination, i.e., the content of the source of the transfer
is not changed.

The distance that a signal can be transmitted.

The memory area used to hold the active program, i.e., the program that is being
currently executed.

Glossary

uni-line message

Unit

unit address

unit number

universal command

uploading

user indicator

user program

variable

variable-length character string

volatile variable

watchdog timer

WDT

wildcard

wire communications

word

word address

word allocation

A message transferred on the control bus using only one signal line.

In OMRON PC terminology, the word Unit is capitalized to indicate any product
sold for a PC System. Though most of the names of these products end with the
word Unit, not all do, e.g., a Remote Terminal is referred to in a collective sense
as a Unit. Context generally makes any limitations of this word clear.

A number used to control network communications. Unit addresses are com-
puted for Units in various ways, e.g., 10 hex is added to the unit number to deter-
mine the unit address for a CPU Bus Unit.

A number assigned to some Link Units, Special I/O Units, and CPU Bus Units to
facilitate identification when assigning words or other operating parameters.

A command sent to all devices on a general-purpose interface bus.

The process of transferring a program or data from a lower-level or slave com-
puter to a higher-level or host computer. If a Programming Devices is involved,
the Programming Device is considered the host computer.

Indicators on a device that can be controlled by a user, e.g., from a user program
being run on the device.

A program written by the user as opposed to programs provided with a product.

An area of memory in which a value can be stored; also refers to the name used
in the program to designate that memory area.

A character string variable which can hold a string of any length (up to a sys-
tem-defined maximum length).

A variable which is not stored in battery-backed memory. Volatile variables lose
their contents whenever power to the Unit is turned off.

A timer within the system that ensures that the scan time stays within specified
limits. When limits are reached, either warnings are given or PC operation is
stopped depending on the particular limit that is reached.

See watchdog timer.

A special character used in a filename or extension to indicate zero or more pos-
sible characters.

A communications method in which signals are sent over wire cable. Although
noise resistance and transmission distance can sometimes be a problem with
wire communications, they are still the cheapest and the most common, and per-
fectly adequate for many applications.

A unit of data storage in memory that consists of 16 bits. All data areas consists
of words. Some data areas can be accessed only by words; others, by either
words or bits.

The location in memory where a word of data is stored. A word address must
specify (sometimes by default) the data area and the number of the word that is
being addressed.

The process of assigning 1/O words and bits in memory to 1/O Units and termi-
nals in a PC System to create an /O Table.

161

Glossary

work area
work bit

work word

write protect switch

write-protect

162

A part of memory containing work words/bits.
A bit in a work word.

A word that can be used for data calculation or other manipulation in program-
ming, i.e., a ‘work space’ in memory. A large portion of the IR area is always re-
served for work words. Parts of other areas not required for special purposes
may also be used as work words.

A switch used to write-protect the contents of a storage device, e.g., a floppy
disk. If the hole on the upper left of a floppy disk is open, the information on this
floppy disk cannot be altered.

A state in which the contents of a storage device can be read but cannot be al-
tered.

A format, 89

ABS, 29

ACOS, 29

ALARM ON/OFF/STOP, 30
AND, 14

arithmetric operator, 11
array variable, 7

ASC, 31

ASIN, 31

ATN, 32

AUTO, 32

B

B format, 89
BITON/BITOFF, 32
BREAK, 33

C

CALL, 33

CDBL, 33

character constants, 3
character expression, 13
character set, 2
character string variable, 7
CHRS, 34

CINT, 35

CLOSE, 35

CLS, 36

CMD DELIM, 128
CMD PPR, 128

CMD TIMEOUT, 128
code, delimiter, 128

COM ON/OFF/STOP, 36

Index

command
@, 29
AUTO, 32
BREAK, 33
CLS, 36
CONT, 37
DELETE, 42
EDIT, 44
FILES/LFILES, 50
KILL, 61
LET, 62
LIST/LLIST, 64
LOAD, 65
MERGE, 68
MON, 71
MSET, 71
NAME, 71
NEW, 71
PGEN, 97
PINF, 98
PNAME, 98

PRINT USING/LPRINT USING, 101

PRINT/LPRINT, 99
RENUM, 105
ROMLOAD, 108
ROMSAVE, 109
ROMVERIFY, 109
RUN, 109

SAVE, 110

STEP, 115
TROFF, 121
TRON, 121
VERIFY, 125
VLOAD, 125
VSAVE, 125
WRITE, 126

constant
character, 3
double-precision, 5
integer, 4
numeric, 4
real-number, 5
single-precision, 5

constants, 3
CONT, 37
conversion, type, 9
COs, 37

CSNG, 38
CVI/CVS/CVD, 38

D

DATA, 39
DATES, 40
decimal, 4

declaration, 6

163

Index

DEF FN, 40 CSNG, 38
CVI/CVS/CVD, 38
DEF SEG, 42 DATES, 40
DEF USR, 42 EOF, 45
DEFINT/DEFSNG/DEFDBL/DEFSTR, 41 ggjﬁgl" 46
DELETE, 42 FIX, 50
delimiter code, 128 FRE, 52
HEX $, 54
DIM/RDIM, 42 IEEE, 134
double precision constants, 5 INKEY $, 56
INSTR, 59
INT, 59
INTRB/INTRL/INTRR, 60
E LEFT$, 61
LEN, 62
EDIT, 44 LOC, 65
END, 45 LOF, 66
LOG, 66
END PARACT, 45 MID $, 69
EOF, 45 MKI$/MKS$/MKDS$, 70
OCT $, 71
EQV, 14 PEEK, 97
ERL/ERR, 46 RIGHTS, 107
RND, 108
ERROR, 47 SEARCH, 110
EXIT, 47 SIN, 113
SNG, 112
EXF, 48 SPACE §, 113
expression, 10 SPC, 114
character, 13 SQR, 114
logical, 13 STATUS, 135
numeric, 12 STR §, 116
relative, 13 STRING §, 117
TAB, 118
TAN, 119
F TIME §, 120
USR, 122
VAL, 123
FIELD, 49 VARPTR, 123
FILES/LFILES, 50
FINS ON/OFF/STOP, 50 G
FIX, 50
FOR TO STEP/NEXT, 51 GET, 52
format global variable, 8
‘]’;’ Sg GOSUB/RETURN, 53
H, 88 GOTO, 54
I, 88
0, 88
S, 89 H
FRE, 52
H format, 88
function, 15
ABS, 29 HEX $, 54
ACOS, 29 hexadecimal, 4
ASC, 31
ASIN, 31
ATN, 32 I
CDBL, 33
CHRS$, 34
CINT, 35 I format, 88
COS, 37 IEEE, 134

164

Index

IF THEN ELSE, 55
IMP, 14

INKEY $, 56
INPUT, 56

INPUT $, 58
INPUT @, 129
INSTR, 59

INT, 59

integer constants, 4
INTRB/INTRL/INTRR, 60
IRESET REN, 129
ISET IFC, 129
ISET REN, 130
ISET SRQ, 130

K

KEY ON/OFF/STOP, 61
keyword, 2
KILL, 61

L

label, 3

LEFT §$, 61

LEN, 62

LET, 62

line, 2

LINE INPUT, 63
LINE INPUT@, 130
line number, 3
LIST/LLIST, 64
LOAD, 65

LOC, 65

local variable, 8
LOCATE, 65

LOF, 66

LOG, 66

logical expression, 13
logical operation, 10
logical operator, 12

LSET/RSET, 67

M

MERGE, 68
MESSAGE, 68

MID §, 68, 69
MKI$/MKS$/MKDS$, 70
MON, 71

MSET, 71

N

NAME, 71

name, variable, 6
NEW, 71

non-volatile variable, 8
NOT, 13

number, line, 3
numeric constant, 4

numeric expression, 12

O

O format, 88

OCT $, 71

octal, 4

ON ALARM GOSUB, 72
ON COM GOSUB, 73
ON ERROR GOTO, 74
ON FINS GOSUB, 74
ON GOSUB, 75

ON GOTO, 76

ON KEY GOSUB, 76
ON PC GOSUB, 77

ON SIGNAL GOSUB, 77
ON SRQ GOSUB, 131
ON TIME$ GOSUB, 78
ON TIMER GOSUB, 79
OPEN, 80

operation, logical, 10

operator, 11
arithmetric, 11
logical, 12
relative, 12

OPTION BASE, 83
OPTION ERASE, 83
OPTION LENGTH, 84
OR, 14

165

Index

P

PARACT, 85

PAUSE, 85

PC ON/OFF/STOP, 86
PC READ, 86

PC WRITE, 93

PEEK, 97

PGEN, 97

PINF, 98

PNAME, 98

POKE, 99

POLL, 131

PPOLL, 132

PRINT @, 132
PRINT USING/LPRINT USING, 101
PRINT/LPRINT, 99
PUT, 103

R

RANDOMIZE, 103
RBYTE, 133

READ, 104
real-number constants, 5
RECEIVE, 105
relative expression, 13
relative operator, 12
REM, 105

RENUM, 105
reserved word, 2
RESTORE, 106
RESUME, 106
RIGHTS, 107

RND, 108
ROMLOAD, 108
ROMSAVE, 109
ROMVERIFY, 109
RUN, 109

S

S format, 89
SAVE, 110
SEARCH, 110

166

SEND, 111

SENDSIG, 111

SIGNAL ON/OFF/STOP, 112
simple variable, 7

SIN, 113

single-precision constants, 5
SNG, 112

source area list, 87

SPACE §, 113

SPC, 114

SQR, 114

SRQ ON/OFF/STOP, 133

statement, 2
ALARM ON/OFF/STOP, 30
BITON/BITOFF, 32
CALL, 33
CLOSE, 35
CLS, 36
CMD DELIM, 128
CMD PPR, 128
CMD TIMEOUT, 128
COM ON/OFF/STOP, 36
DATA, 39
DEF FN, 40
DEF SEG, 42
DEF USR, 42
DEFINT/DEFSNG/DEFDBL/DEFSTR, 41
DIM/RDIM, 42
END, 45
END PARACT, 45
ERROR, 47
EXIT, 47
FIELD, 49
FINS ON/OFF/STOP, 50
FOR TO STEP/NEXT, 51
GET, 52
GOSUB/RETURN, 53
GOTO, 54
IF THEN ELSE, 55
INPUT, 56
INPUT §, 58
INPUT @, 129
IRESET REN, 129
ISET IFC, 129
ISET REN, 130
ISET SRQ, 130
KEY ON/OFF/STOP, 61
KILL, 61
LET, 62
LINE INPUT, 63
LINE INPUT@, 130
LOACATE, 65
LSET/RSET, 67
MESSAGE, 68
MID $, 68
NAME, 71
ON ALARM GOSUB, 72
ON COM GOSUB, 73
ON ERROR GOTO, 74
ON FINS GOSUB, 74

Index

ON GOSUB, 75

ON GOTO, 76

ON KEY GOSUB, 76
ON PC GOSUB, 77

ON SIGNAL GOSUB, 77
ON SRQ GOSUB, 131
ON TIME$ GOSUB, 78
ON TIMER GOSUB, 79
OPEN, 80

OPTION BASE, 83
OPTION ERASE, 83
OPTION LENGTH, 84
PARACT, 85

PAUSE, 85

PC ON/OFF/STOP, 86
PC READ, 86

PC WRITE, 93

POKE, 99

POLL, 131

PPOLL, 132

PRINT @, 132

PRINT USING/LPRINT USING, 101
PRINT/LPRINT, 99

PUT, 103

RANDOMIZE, 103
RBYTE, 133

READ, 104

RECEIVE, 105

REM, 105

RESTORE, 106
RESUME, 106

RUN, 109

SEND, 111

SENDSIG, 111

SIGNAL ON/OFF/STOP, 112
SRQ ON/OFF/STOP, 133
STOP, 115

SWAP, 117

TASK, 119

TIMES$ ON/OFF/STOP, 120
TIMER ON/OFF/STOP, 121
TROFF, 121

TRON, 121

TWAIT, 122

VLOAD, 125

VSAVE, 125

WBYTE, 133
WHILE/WEND, 126
WRITE, 126

STATUS, 135
STEP, 115
STOP, 115
STR $, 116
STRING §, 117
SWAP, 117
symbol, 101

system variable, 15

T

TAB, 118

TAN, 119

TASK, 119

TIME §, 120

TIME$ ON/OFF/STOP, 120
TIMER ON/OFF/STOP, 121
TROFF, 121

TRON, 121

TWAIT, 122

type, declaration, 6

type conversion, 9

U

USR, 122

\Y%

VAL, 123

variable, 5
array, 7
character string, 7
global, 8
local, 8
non-volatile, 8
simple, 7
system, 15

variable name, 6
VARPTR, 123
VERIFY, 125
VLOAD, 125
VSAVE, 125

W

WBYTE, 133
WHILE/WEND, 126
word, reserved, 2

WRITE, 126

X

XOR, 14

167

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W207-E1-2A

|

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code

Revision code Date Revised content
1 June 1992 Original production
1A November 1992 Page 29: Added paragraph to Comments of @ command.

Page 30: Corrected notes under Comments for ALARM ON/OFF /STOP.

Page 36: Corrected last 2 paragraphs of Comments for COM ON/OFF/STOP.
Page 50: Corrected last 2 paragraphs of Comments for FINS ON/OFF/STOP.
Page 55: Added note to Comments of IF THEN ELSE.

Page 81: Added information to description of XON/XOFF and corrected first sentence of
description of CS in table describing OPEN port specifications.

Page 86: Corrected last 2 paragraphs of Comments for PC ON/OFF /STOP.
Page 91: Removed “WAIT 10,” from the fourth example.
Page 130: Corrected last 2 paragraphs of Comments for ON SRQ GOSUB.

Pages 132 and 133: Changed first paragraph in Comments and removed description of
IEEE(8).

2 January 1993 Appendix C Extended ASCII has been added to the manual.

Page 7: Allowable range for single-precision constants has been changed. The accuracy
figures for double-precision constants has been changed.

“disabled” changed to “stopped” throughout Section 3.
Pages 29, 99: Changed Purpose and Comments for @ and PRINT/LPRINT.

Pages 35, 36, 67, 75, 118, 133: Altered the program sample for CLOSE, LOG, ON FINS
GOSUB, TAB, and STATUS.

Pages 36 to 38, 50, 61, 65, 68, 72, 74, 76 to 79, 85, 86, 116, 128, 129, 130, 133:
Changed Comments for COM ON/OFF/STOP, CONT, CSNG, FINS ON/OFF/STOP, KEY
ON/OFF/STOP, LOF, MESSAGE, ON ALARM GOSUB, ON FINS GOSUB, ON KEY GOSUB,
ON SIGNAL GOSUB, ON TIMES$ GOSUB, ON TIMER GOSUB, PARACT, PC ON/OFF/
STOP, POLL, STRINGS, IRESET REN, ISET SRQ, and IEEE.

Pages 42, 45, 51, 60, 64, 86, 87, 117, 120, 124, 125, 127 to 131: Added to Comments
for DIM/RDIM, END PARACT, FOR TO STEP/NEXT, INTRB/INTRL/INTRR, LIST/
LLIST, LOAD, PC READ, TAB, TRON, VERIFY, WHILE/WEND, CMD DELIM, CMD TIME-
OUT, INPUT @, ISET IFC,LINE INPUTE, and PPOLL.

Pages 58, 93: Added note to the end of INPUT $, and PC WRITE,
Page 77: Note 3 changed for ON PC GOSUB.

Pages 80, 81, 114, 127, 130, 132, 133: Comments for OPEN, STEP, CMD PPR, ON SRQ
GOSUB, SRQ ON/OFF/STOP, and STATUS have been rewritten.

Page 110: Added note and added information to the end of Comments for SAVE.

Page 135: Diagram altered in Integer Variable of Appendix A Memory Storage Format of
Variables.

2A March 1993 Minor changes to add CV2000 and CVM1.

169

	CV500-BSC11/21/31/41/51/61 Reference Manual
	Notice
	TABLE OF CONTENTS
	About this Manual
	SECTION 1 BASIC Syntax
	1-1 Conventions
	1-2 Character Set
	1-3 Keywords
	1-4 Commands
	1-5 Statements
	1-6 Lines
	1-6-1 Line Numbers
	1-6-2 Labels

	1-7 Constants
	1-7-1 Character Constants
	1-7-2 Numeric Constants

	1-8 Variables
	1-8-1 Variable Names and Types
	1-8-2 Simple Variables and Array Variables
	1-8-3 Character String Variables
	1-8-4 Local and Global Variables
	1-8-5 Non-volatile Variables

	1-9 Type Conversion
	1-10 Expressions
	1-10-1 Operators
	1-10-2 Numeric Expressions
	1-10-3 Character Expressions
	1-10-4 Relative Expressions
	1-10-5 Logical Expressions
	1-10-6 Functions and System Variables
	1-10-7 Operator Priority

	SECTION 2 BASIC Instructions
	2-1 How to Use this Table
	2-2 Command List
	2-3 Statement List
	2-4 Function List
	2-5 GP-IB Instruction List

	SECTION 3 Instruction Reference
	3-1 Guide to Reference
	3-2 Reference
	3-3 GP-IB Instructions

	Appendix A - Memory Storage Format of Variables
	Appendix B - BASIC Unit Reserved Words
	Appendix C - Extended ASCII
	Glossary
	Index
	Revision History

