SYSMAC CV-series
CV500/CV1000/CV2000
Programmable Controllers

Operation Manual: SFC
Revised May 1993

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify warnings in this manual. Always heed the
information provided with them.

Caution Indicates information that, if not heeded, could result in minor injury or damage
to the product.

DANGER! Indicates information that, if not heeded, could result in loss of life or serious
injury.

OMRON Product References

All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1,2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

© OMRON, 1992

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.

TABLE OF CONTENTS
SECTION 1

Outline and Features of SFC 1
1-1 0 OULlINE oottt e e e e e e e e 2
1-20 Features . ..ot 2
1-3 Application Example e 3

SECTION 2

SFC Basics ® & 0 0 0 0 0 0 06 0 06 0 06 0 7
2-1 SFC TerminolOgy . .. vvvu ittt e e e e e e e et e e 8
2-2 Basic SFC Operationottt et e e e et e 11
2-3 Memory Areas and Programming Devices i 17
2-4 Creating an SFC Program it 18

SECTION 3
SFC Programming Elements 19

3-1 0 OVEIVIEW ettt ittt et et e e e e e e e 20
N (=) o P 23
3-3 0 Initial StePS . .o ot e 24
3-4 TranSitionS . ..ottt e e 26
3-5 Action BIoCKS . ..o e 28
3-6 Conditional Branching and Joiningottt iinnennen... 36
3-7 Parallel Branching and JOIningottt i e 38
3-8 Subcharts e 40
3-9 SEC JUMPS . ittt et e e e e e e e e e 43
3-10 Interrupt Programsottt e 45

SECTION 4
Controlling Step Statuscovvvievineeenees. 47

4=T1 SEEP StatUS . .ottt ettt e e e e 48
4-2 SFC Control InStructionsttt et 54
4-3 Program Exampleo e 65

SECTION 5
SFC Execution Cycleand Errorsco000vuunns 67

5-1 Basic Execution CycClettt e e 68
5-2 Execution Cycle with Multiple ACtive StEPSt vvtu ittt 68
5-3 Execution Cycle with Subcharts i i 69
5-4 Power-Up and Restart EXxecution it iininnennen... 71
5-5 User Processing Timeottt e e e e et 74
5-6 SFCEIror Codes outut it e e e e e e e 76

SECTION 6
SFC Application Examplesccc00veeeeee 79

6-1 Example 1: Sequential Control 80
6-2 Example 2: Conditional Branching and Joining oL, 81
6-3 Example 3: Using AQSottt e e 84
6-4 Example 4: Parallel Branching and Joining 88
6-5 Example 5: Ladder vs SFC 91

GloSsarycciiiiiiiiiiittinnnsnttcccscnnnanss 99
Indexcoviiiiiiiiinniennreenscsnscnnseanseess 118

OMRON Sales Officescoviivvnrennnnnenees. 117
Revision Historycoviiiiniiiinnnrennnnceness 119

vii

About this Manual:

This manual describes sequential function chart (SFC) programming for the SYSMAC CV-series Pro-
grammable Controllers (PCs). Only the CV500, CV1000, and CV2000 support SFC programming. SFC
programs cannot be written to the CVM1. This manual is designed to be used together with two other
CV-series PC operation manuals and an installation guide. The entire set of CV-series PC manuals is
listed below. Only the basic portions of the catalog numbers are given; be sure you have the most recent
version for your area.

Manual Cat. No.
CV-series PC Installation Guide W195
CV-series PC Operation Manual: SFC W194
CV-series PC Operation Manual: Ladder Diagrams W202
CV-series PC Operation Manual: Host Interface W205

Actual programming for the CV-series PCs is performed with the CV Support Software (CVSS), for which
the following manuals are available. (The guidebook provides a brief introduction and training manual and
is not essential to CVSS operation.)

Manual Cat. No.
The CV Series Getting Started Guidebook W203
CV Support Software Operation Manual: Basics W196
CV Support Software Operation Manual: Offline W201
CV Support Software Operation Manual: Online W200

Please read this manual completely together with the other CV-series PC and CVSS manuals and be sure
you understand the information provide before attempting to install, program, or operate a CV-series PC.
The basic content of each section of this manual is outlined below.

Section 1 introduces the basic concept and features of SFC programming and provides a simple example
of its application.

Section 2 outlines the terminology, basic elements, and procedure used in writing an SFC program and
introduces the PC memory areas and Programming Device capabilities for SFC programs.

Section 3 gives a more in-depth look at SFC programming elements and how they go together to create
an SFC program.

Section 4 goes on to show ways to control the execution of SFC programs and describes the ladder-dia-
gram instructions that are used with SFC programs.

Section 5 demonstrates the order in which SFC programs are executed, shows how to calculate program
execution time, and provides a list of error codes that are generated for SFC programming errors.

Section 6 provides examples that demonstrate the information provided in earlier sections. The last ex-
ample shows how a ladder-diagram program can be converted to an SFC program and describes the
benefits that this provides.

ix

SECTION 1
Outline and Features of SFC

This section introduces SFC programs and provides an example that compares the differences between SFC programs and
ladder-diagram programs. Details on SFC programs are provided in later sections.

1-1 0 OULlINE oottt e e e e e 2
1-2 0 FRAUIES - o ot ittt ettt et e e e e e e 2
1-3 Application Example o e 3

Features

Section 1-2

1-1 Outline

1-2 Features

Improved Design Efficiency

Sequential Function Charts, or SFC, is a graphic-oriented programming method
developed to provide simple representation of processing sequential steps in
control applications.

SFC uses graphic symbols arranged to closely represent the actual sequence of
processing, thereby allowing you to program by simply representing the steps of
a process and the transition conditions between these steps.

The following illustration shows some of the symbols used in SFC. The boxes
represent the processing steps, the lines connecting them represent the pro-
cessing flow, and the short horizontal lines represent the transition conditions
that control processing flow. These symbols are described in more detail later in
the manual.

ST0000

TNO00O

ST0001

—— 000100 —— 000200
ST0011 ST0012
—— 000101 —— 000201

\—’ ST0000

The program is created in the same order as the sequence of processes, thus
simplifying program development and allowing greater accuracy. In addition, the
time required for programming is greatly reduced.

The entire program can be broken down into progressively more detailed steps,
making top-down programming easy and allowing the programming load to be
divided among several programmers. The hierarchical and modular structure of
the program allows it to be easily reused.

The structured programming and graphic symbols allow programming to pro-
ceed without an extensive consideration of hardware so that even beginners
can create programs.

The actual control operations within each step can be programmed with ladder
diagram instructions basically the same as those used with C-series PCs, allow-
ing partial application of C-series programs. The SFC provides a new method for
structuring traditional ladder diagram programs.

Easy Debugging/Maintenance The graphic-oriented programming method provides visually superior notation.

Reduction of Cycle Time

It makes the sequence of steps, the contents of processing, and the conditions
for movement between steps visually understandable, and it makes it easy to
monitor the movement from one step to another during operation.

Program debugging is simple, as the part of the program corresponding to the
process causing trouble can be easily located.

The program can be corrected one section at a time, with little or no influence on
other sections. This provides superior maintenance capability.

Cycle time is greatly reduced, and processing is thereby speeded up, because
only required program steps are executed each cycle.

Application Example

Section 1-3

1-3 Application Example

1,2, 3.

SFC is well suited to controlling sequential processing. In this simple application
example, an SFC program is compared to a traditional ladder diagram program.

Let’s consider an example in which a robot hand, as shown in the illustration be-
low, grasps a workpiece and transfers it from point A to point B.

«— Left rotation

) Right rotation ———
Lowering F=-

| ;

Raising

rr
A
Hand
Workpiece Robot
Point A Point

The robot arm moves as described below. The order of operations is shown on

-

-
Loy N,
4
[——

r—

N

the right.]
L . ‘ Origin check ‘
1. When the start is initiated, a check is made
(origin check) to verify that the robot arm is
at the origin point and that the hand is open. ‘ Lower ‘
2. Ifthe origin check conditions are met, the ro-
bot arm is lowered to point A.
. ‘ Grasp ‘
3. After the robot arm has been lowered into
position, the hand closes and grasps the
workpiece. ‘ Raise ‘

4. Once the workpiece is securely grasped,
the arm is raised.

‘ Right rotate ‘

5. After the arm has been raised, it rotates to
the right.

6. When the rotation is complete, the arm is | Lower |
lowered to point B.

7. After the arm has been lowered into posi- Workpiece re-
tion, the hand opens and release the work- lease
piece at point B.

8. The arm is raised again.

‘ Raise ‘

9. After the arm has been raised, it rotates to
the left and returns to the origin point.

‘ Left rotate ‘

]

Application Example

Section 1-3

SFC Program

An SFC program is written to represent the actual flow of processes. Each pro-
cess is written as a separate step. The “actions” that must be carried out for each
step are written and steps are separated by the conditions that must be met to
move from one step to another.

When an SFC program is executed, outputs in previous steps are automatically
reset as the program moves from one step to another. This makes SFC ideal for
programs that control sequentially executed processes like the one in the above
example.

Although this program example uses a separate step for each actuator, multiple
processes can be programmed within one step, depending on their complexity.

Transition 1 (origin check, start switch ON,
left limit, upper left limit, hand open)

-

— Transition 2 (lower limit)

2

— Transition 3 (hand closed)

ps | pee |

— Transition 4 (upper limit)

i

4 Turn right

— Transition 5 (right limit)

T

— Transition 6 (lower limit)

— Transition 7 (hand open)

— Transition 8 (upper limit)

z

— Transition 9 (left limit)

M

P

—

Application Example

Section 1-3

Ladder Diagram Program

In a ladder program, complex interlocks are required to control execution and
the overall flow of processing is not obvious from looking at the program. Only an
experienced ladder diagram programmer could readily understand the following
example.

Start switch Left limit ~ Upper limit Open hand Lower limit Raise
1 — — —
O O O O—T e e —ee
Right limit Upper limit Close hand
— — —
o} o}
Lower
e
Left limit Lower limit Right limit
— —
O PP Clamp
—
Clamp Lower limit
e e o
—
Left limit Lower limit Close hand Upper limit Lower
— — —
O O—T e e 9o
Right limit Lower limit Open hand
— — —
O O
Raise
e
Left limit ~ Upper limit Close hand Right limit Rotate left
— — —
O C—— e &6—0
— -
Rotate right
e
Right limit Upper limit Open hand Left limit Rotate right
— — —
O O—— e &6—0
— -
Rotate left
O O

Note: -5 o— Push-button switches
5 & ~®_ & Limitswitches

-6 o— —e e Relay contacts

SECTION 2
SFC Basics

This section defines basic terminology used to describe SFC programs and then introduces all of the basic elements used to
create SFC programs. The way SFC programs operate and the PC memory areas related to SFC programs are also introduced.
Finally, an overview of creating an SFC program is provided.

Details on elements in SFC programs are provided in Section 3 SFC Programming Elements. Details on controlling step status
using ladder-diagram instructions and on the movement of active status through the program are provided in Section 4 Con-
trolling Step Status and in Section 5 SFC Execution Cycle and Errors. Example SFC programs are provided in Section 6 SFC
Application Examples.

2-1 SFC TerminolOgy . .. e vttt et e e e e e e e e e e et 8
2-2 Basic SFC Operationttt ittt et e e e 11
2-2-1 Sequential StEPSot 12
2-2-2 Conditional Branching and Conditional Joining 12
2-2-3 Parallel Branchingt e 14
2-2-4 Parallel Joiningottt e 14
2-2-5 Status Transfer Conditions 15
2-3 Memory Areas and Programming Devices i 17
2-4 Creatingan SFC Program i e 18

SFC Terminology

Section 2-1

2-1 SFC Terminology

SFC

Sheets

Sequential Processing

Steps

Active and Inactive Status

Status Transfers

Transitions

Basic SFC terminology is explained below. These terms are explained in more
detail later in the manual.

SFC stands for sequential function chart, and is a method of programming pro-
grammable controllers. This method represents an advance over the ladder dia-
gram method, in that it shows the sequence of processes and utilizes the advan-
tages of structured programming. Itis highly visually oriented and easy to under-
stand. The method is currently being standardized through the IEC
(IEC-SC65A/WG6TF) and JIS.

SFC programs are input with the CVSS. If a program is too large, it must be di-
vided into units called sheets. Although smaller programs can be contained in a
single sheet, many programs will require multiple sheets. Refer to the CVSS op-
eration manuals for details.

All processing is divided into an ordered series of processes, and each of which
is executed in a time sequence in the program. In a ladder program, sequential
processing can be represented by step programming instructions, but SFC is
superior because steps are visually represented using easy-to-understand
symbols.

A step is a basic element in an SFC program, and each step represents one pro-
cess. Steps are represented by boxes in the chart, and each step is allocated a
step number.

Each step always has a status of either active or inactive. The active status
moves from one step to the next step when a transition condition is met. Steps
organize the overall structure of the program, and do not themselves perform
any control operations. The actual control operations are contained within a step
in action blocks, which are explained below.

You can define as “initial steps” the steps that you want to be active when pro-
gram execution begins.

Ste . iti x
P Initial step (**** represents the step number.)

A step is said to be active when the actions associated with that step are being,
or can be, executed. There are three sub-statuses of active status: execute,
pause, and halt. (For details, refer to 4-1-3 Subcharts.) Inactive steps are those
in which the actions cannot be executed.

Status transfer refers to the movement of active status between SFC steps.

Active Inactive

Transition condition met.—

Inactive Active

il
i}

A transition is a condition which controls the transfer of active status from one
step to the next. Only one transition is allowed between any pair of steps and
only one step is allowed between any pair of transitions.

The transition moves the active status to the next step when the following three
conditions are all met:

* The step above the transition is active.

SFC Terminology

Section 2-1

Actions

Step

* The step below the transition is inactive.
* The transition condition is met.
The transition thus serves to control the movement from one step to another.

Each transition is identified by a transition number only or by a transition number
and a bitaddress. When only a transition number is used, the transition condition
is programmed separately using a ladder program. (Transition programs are ex-
plained below.)

Step

Transition — 1N *=xx (*** represents the transition number.)

Step

An action is an individual operation contained within a step in an SFC program.
Actions are programmed in an action block, which is a list of actions that defines
what is to happen in the step.

Each action is identified by either an action number or a bit address. When an
action number is used, the contents are programmed separately using a ladder
program. When a step becomes active, the actions in that step are executed in
order from the top of the action block. You can set from 0 to 15 actions for any one
step.

Action Block

AQ SV Action FV
AC0000

N
ST0001 N AC0001 010000)
A maximum of 15
1 A A Y Ao ~ | actions can be set.

Number of actions

The number of actions N AC0014
set in the action block is
automatically displayed
at the CVSS.

Action qualifier (AQ)

A bit address can be speci-

; Actions are the actual processes fied as a feedback variable
Zsﬁoﬁ?siefeﬁégé wayan that are executed. They are identi- (FV). Setting a FV facilitates
i fied by action numbers or bit ad- monitoring.
The set value (SV) provides dresses. When an action is used
timing conditions for the AQ. for an action number, the contents

of the action must be programmed
separately in an action program
(e.g., a ladder program).

Conditional Branching and Joining

Conditional Branching

A step can be set up so that it branches to more than one step. With conditional
branching, each step following the branch has its own transition condition so that
program execution can move to any of these steps.

When the step before the branch is active, then the active status will be trans-
ferred to one of the steps after the branch when its transition condition is met
(assuming it is not already active), but never to more than one step. If two or
more transition conditions are met simultaneously, then the step furthest to the
left is executed.

SFC Terminology

Section 2-1

Conditional Joining

A conditional branch is represented in the chart by a single horizontal line.

—— Transition —— Transition

‘ Step ‘ ‘ Step ‘

Two or more steps can be set up so that they join to one step. With conditional
joining, each step before the join has its own transition condition so that program
execution can move from either of these steps.

When the step after the join is inactive, then the active status can be transferred
to that step if either of the steps before the join is active and its transition condi-
tion is met. Unlike parallel joining (described below), where the active status
moves simultaneously from two or more steps, here it can be passed on from a
single step.

A conditional join is represented in the chart by a single horizontal line.

‘ Step ‘ ‘ Step ‘

—— Transition —— Transition

Parallel Branching and Joining

Parallel Branching

Parallel Joining

10

A step can be set up so that it branches to more than one step. With parallel
branching, there is only one transition condition for all the steps after the branch
so that program execution moves to all of these steps simultaneously. If the step
before the transition is active and all the branch steps are inactive, then the ac-
tive status will move simultaneously to all the branch steps when the transition
condition is met.

The parallel branch is represented in the chart by two horizontal lines.

Step

—— Transition

Two or more steps can be set up so that they join to one step. With parallel join-
ing, there is only one transition condition for all the steps before the branch so
that program execution moves from all of these steps simultaneously. If the
steps before the transition are all active, the step following the transition is inac-
tive, and the transition condition is met, then the active status will move simulta-
neously from all of the steps before the transition to the step after the transition.
This means that all steps which were processed in parallel are synchronized at
the parallel join. This feature makes synchronization of processing very simple
with SFC.

Basic SFC Operation

Section 2-2

Subcharts

SFC Jumps

SFC Control Instructions

The parallel join is represented in the chart by two horizontal lines.

—— Transition

Step

Subcharts are similar to the subroutines used by computer programming lan-
guages. They function as macros to manage a series of processes as a single
stepin an SFC program. You can create an independent subchart and call it from
several places within a program.

Subchart program

Subchart entry terminal
Program K Subchart entry step

Subchart dummy H H ‘
step .

R . i:f| Subchart return step
Subchart return terminal
The SFC jumpis used to move execution of an SFC program to another step ina
different section of the program. A jump can be made only from just after a transi-

tion to just before a step. In the illustration, the program jumps to step number
ST0010. The jump destination is specified with an SFC jump entry arrow.

Jump entry

Jump L+ s70010

SFC control instructions are a group of ladder diagram instructions that can be
used in an action program to change the operating status of steps or subchartsin
the SFC program. You can use these instructions when you want a program to
be executed in a different order than usual. The six SFC control instructions are
as follows:

SA(210): ACTIVATE STEP
SPE11): PAUSE STEP
SR(212):..... RESTART STEP
SF(213): END STEP
SE(@214): DEACTIVATE STEP

SOFF(215): .. RESET STEP

2-2 Basic SFC Operation

This section will explain an SFC program using four basic SFC features: se-
quential steps, conditional branching, parallel branching, and synchronous
steps. The diagrams are only symbolic, for the purpose of explanation, and are
not identical to actual CVSS displays.

11

Basic SFC Operation

Section 2-2

2-2-1 Sequential Steps

Note

The sequential processing shown below is basic to all SFC programs.

In this example, first step 1 is executed, and then when condition A (the transi-
tion) is met, step 1 is stopped and step 2 is executed.

‘ ST0000 H ACO0001 ‘

Process 1 is programmed in AC0001.

Process 2 is programmed in AC0002.

Condition A, the condition in transferring active
T~ TNO00O status between steps, is programmed for TNO0OOO.

‘ ST0001 H AC0002 ‘

Any step is either active or inactive. Active status moves from one step to anoth-
er according to the status of the transition conditions and the status of the steps
before and after the transitions. When the active status moves, all previous pro-
cesses are reset.

In the example shown below, active status is transferred from step ST0000 to
step ST0001 at the moment that the condition is met for transition TNO00O. The
black dot indicates the active step.

‘ ST0000® H AC0001 ‘ ‘ ST0000 H ACO0001 ‘

.
—— TN0000 N —— TNO0000
The condition for

‘ ST0001 H AC0002 ‘TNOOOO is met. ‘ ST0001®@ H AC0002 ‘

When a step becomes active, it will normally remain active for at least one ex-
ecution cycle even if the transition condition is met for active status to move to
the next step. If you wish, however, you can use an action qualifier (AQ) to pre-
vent execution during the first execution cycle.

When active status is transferred from one step to another, the step that be-
comes inactiveisreset, i.e., the actions associated with that step are reset. If you
wish you can add the optional AQ symbol H (for hold) to certain AQs (N, P, L, D,
and R) to prevent outputs or timers from being reset after execution of an action
is complete. In addition, S-group AQs (S, SL, SD, and DS) set an action for con-
tinued execution even after the active status of its associated step moves to the
next step. Resetting an action means that the bit turns OFF (when the actionis a
bit address), or thatthe OUT/OUT NOT instructions are turned OFF and the TIM/
TIMH instructions are reset (when the action is an action program).

2-2-2 Conditional Branching and Conditional Joining

12

In order for subsequent steps to be selected based on independent conditions, a
single horizontal line is used to specify conditional branching as shown in the
illustration below. One transition is programmed for each branched step. These
transitions set the conditions for transferring active status to one of the branched
steps. This kind of branching is called “conditional branching.” In this example,

Basic SFC Operation Section 2-2
step O (process 1) is being executed. Step 1 (process 2) will be executed if condi-
tion A is met, and step 2 (process 3) will be executed if condition B is met.

‘ Process 1 is programmed in AC0001.
‘ ST0000 H AC0001 ‘ Process 2 is programmed in AC0002.
‘ Process 3 is programmed in AC0003.
—— TNO0000 —— TNOO0O01
‘ ST0001 H AC0002 ‘ ‘ ST0002 H AC0003 ‘ Condition A is programmed in TNO0QO.
Condition B is programmed in TNOOO1.

Conditions A and B can be programmed as mutually exclusive conditions so that
only one of them is met at any particular time. If there are three or more condi-
tions, then more branches can be programmed (to a maximum of 15).

If none of the transition conditions are met, then the active status of the steps will
not change. If two or more are met simultaneously, then the transfer condition at
the left will be given priority, and the leftmost branch step will become active.

‘ ST0000 H AC0000 ‘

—— TNO0O1

—— TNO0002 —— TNO0015

‘ ST0001 H ACO0001 ‘

‘ ST0002 H AC0002 ‘ 7777777777777777 ‘ ST0015 H AC0015 ‘

Note

A maximum of 15 branches is possible.

When multiple branched steps are joined into one, it is programmed as shown
below. This type of program is called “conditional joining.” A separate transition
is necessary, before the join, for each of the branched steps.

‘ ST0051 H AC0052 ‘ ‘ ST0052 H AC0053 ‘

—— TNO0O051 —— TNO0052

‘ ST0053 H ACO0054 ‘

If step 1 and step 2 in the following chart become active simultaneously, steps
and transitions will be processed in the following order: step 1, transition 1, step
2, transition 2, and back to step 1. When the condition is met for either transition
1 or transition 2, then active status will be transferred from the corresponding
step to step 3. If the condition is then met for the other transition, active status will
not be transferred from the corresponding step until step 3 returns to inactive
status.

‘ Step 1 ‘ ‘ Step 2 ‘

—— Transition 1 —— Transition 2

13

Basic SFC Operation

Section 2-2

2-2-3 Parallel Branching

To specify that multiple processes (steps) are to be executed in parallel, use a
double horizontal line to indicate parallel branching as shown in the illustration
below. The transition (the condition that must be met for active status to move to
the parallel steps) must be programmed above the double line. This kind of
branching is called “parallel branching.” In this example, step 1 (process 2) and
step 2 (process 3) are executed simultaneously after step 0 (process 1) is ex-
ecuted and condition A (the transition) is met.

‘ §T0000 H AC0001 ‘ Process 1 is programmed in AC0O001.
Process 2 is programmed in AC0002.
—— TN0000 Process 3 is programmed in AC0003.
‘ ST0001 H AC0002 ‘ ‘ ST0002 H AC0003 ‘ Condition A is programmed in TNO0OOO.

If there are three or more steps to be executed in parallel, then the number of
branches can be increased (to a maximum of 15).

‘ ST0000 H ACO0000 ‘

—— TNO0000

‘ ST0001

H AC0001 ‘

‘ ST0002 H AC0002 ‘ 7777777777777777 ‘ ST0015 H AC0015 ‘

A maximum of 15 branches is possible.

There are actually two ways to program parallel execution. In addition to the par-
allel branching method shown above, you can also program up to 15 actions for
one step. By using both of these methods together, you can program as many as
225 actions to be executed simultaneously.

Contents of action block

T N AC0000
AC0001 A . ‘
Numper N AC0002 maximum o 15
of actions actions can be set.
TV v v Vv
T [Acoond] |

Note Although execution for parallel branching is considered simultaneous, itis, tech-

nically speaking, cyclic. Refer to Section 5 SFC Execution Cycle and Errors.

2-2-4 Parallel Joining

14

When you want multiple steps to be executed in parallel, and the program to wait
for all of those steps to be completed before moving active status to the next
step, then use a double horizontal line to specify parallel joining as shown in the
illustration below. The transition (the condition that must be met for active status
to move from the parallel steps to the single step) must be programmed below
the double line. This kind of branching is called “parallel joining.” In this example,
steps 1 and 2 (processes 1 and 2) are executed in parallel. When execution of

Basic SFC Operation Section 2-2
both of these steps is complete and the transition condition is met, then step 3
(process 3) is executed.
| |
‘ STo001 H ACo001 ‘ ‘ ST0002 H AC0002 | Process 1 is programmed in AC0001.
| | Process 2 is programmed in AC0002.
Process 3 is programmed in AC0003.
—— TNO000
‘ ST0003 H AC0003 ‘ Condition A is programmed in TNOOOO.
Multiple steps in active status cannot be joined into one unless all of the following
three conditions are met:
1,2, 3... 1. All of the steps immediately above the transition are active.

2. The step just below the transition is inactive.
3. The transition condition is met.

In this example, that would mean that, in order for active status to move from
steps ST0001 and ST0002 to step STO003, steps STO001 and STO002 must be
active, step ST0003 must be inactive, and the condition must be met for transi-
tion TNOOOO.

If there are three or more parallel steps to be joined, then the number of parallel
steps can be increased (to a maximum of 15).

A maximum of 15 steps can be joined.

‘ ST0001 H AC0001 ‘

‘ ST0002 H AC0002 | - - - - - - - - - - - - - - - - ‘ ST0015 H AC0015

—— TNO0000

‘ ST0016 H ACO0016

2-2-5 Status Transfer Conditions

Note

In an SFC program, the condition necessary for active status to be transferred
from one step to the next step is represented by a transition. The status of the
transition alone, however, is not enough: the active or inactive status of the steps
above and below the transition must also be considered before you can deter-
mine if active status will move. As long as the combinations of steps and transi-
tions in an SFC are programmed according to the rules, the transfer of active
status will take place properly. In other words, not only must the transition condi-
tion be met, but the step(s) before the transition must be active and the step(s)
after it must be inactive.

Even ifthe step before the transition is active, it must not be paused or transfer of
active status cannot take place. (Active status includes execute, pause, and halt
status.) In addition, the transfer of status will not take place for at least one ex-
ecution cycle after the conditions described above have all been met.

In the example shown below, the transfer of status can take place only if steps
ST0001, ST0002, STO003, and ST0O004 are all active, steps ST0010, ST0O011,
and ST0012 are allinactive, and the condition is met for TNO100. Even after all of

15

Basic SFC Operation

Section 2-2

16

Note

these conditions are met, the transfer of status will not take place for one cycle.
For details, refer to 4-1 Step Status.

| |
[| [|

+ TNO100

STo010 ‘ SToo11 ‘ ‘ STo012 ‘
\ \

In the illustration below, there is no step after the transition. If STO000 is active
and the condition is met for TN00OO, then the active status will be transferred
from ST0000 and simply disappear. This is because there is no active step after
the transition. The system treats a non-existent step the same as an inactive
step. Ifthere are no other steps with active status, an SFC Stop Error will be gen-
erated and operation will be stopped.

ST0000

TNO00O

Memory Areas and Programming Devices Section 2-3

2-3 Memory Areas and Programming Devices

PC Memory Affecting SFC The following tables show the parts of and limits to PC memory that affect SFC
operation either directly or indirectly. Refer to the CV-series PC Operation Manu-
al: Ladder Diagrams for details on PC memory.

ltem Limit

Number of actions/step 15

Conditional branches from 1 step | 15

Conditional joins to 1 step 15

Parallel branches from 1 step 15

Parallel joins to 1 step 15

Name CV500 CV1000/CV2000
Qty Addresses Qty Addresses
Initial steps 31 ST0000 to STO511 31 ST0000 to ST1023
Steps 512 ST0000 to STO511 1,024 ST0000 to ST1023
Transitions 512 TNOO0OO to TNO511 1,024 TNOO0O0O to TN1023
Actions 1,024 ACO0000 to AC1023 2,048 ACO0000 to AC2047
Subcharts 255 ST0000 to STO511 511 ST0000 to ST1023
I/O interrupts 32 I/O INTOO to I/O INT31 32 I/0O INTOO to I/O INT31
Scheduled interrupts | 1 CYCLIC INTO 2 CYCLIC INTO and
CYCLIC INTH

Power off interrupt 1 PWR OFF INT 1 PWR OFF INT
Power on interrupt 1 PWR ON INT 1 PWR ON INT
I/O and work bits 40,896 000000 to 255515 40,896 000000 to 255515
CPU bus link bits 4,096 G00000 to G25515 4,096 G00000 to G25515
Auxiliary bits 8,192 A00000 to A51115 8,192 A00000 to A51115
Timers 512 TO00O0 to T0511 1,024 TO00O0 to T1023
Counters 512 C0000 to C0511 1,024 C0000 to C1023

SFC Programming Devices = SFC programming and monitoring can be done with the CVSS. The main opera-
tions available are shown in the following table.

Offline operations Online operations (one sheet or entire program)
Editing actions Displaying actions
Editing steps/transitions Transferring sheets from PC
Reading/writing sheets Changing SFC programming parameters
Saving/retrieving programs Full-screen monitoring
Setting SFC programming parameters | Part-screen monitoring
Displaying memory usage Editing SFC programs (with PC in MONITOR, PROGRAM, or DEBUG mode)
Clearing memory Reading the cycle time
Printing SFC sheets Clearing memory areas
Checking SFC programs Running action traces to store SFC execution history

Debugging by executing individual steps or specified program sections

17

Procedure for Creating an SFC

Section 2-4

2-4 Creating an SFC Program

The procedure from SFC programming to operation can be outlined as follows:

Planning the system

Allocating 1/O bits

Designing SFC structure

Designing SFC details

SFC programming
Ladder programming

Creating 1/O table

Transferring program to

Program correction

No

Trial run, debugging

18

Saving the program

Actual operation

Operation specifications, time charts,
cycle diagrams, interlock lists, etc.

Allocation of an 1/O bit for each PC
input and output.

Program structuring

Structural units
Monitoring programs
Sequential processing programs
Subchart programs

Control contents
Sequence control
Monitoring operations
Arithmetic processing
Emergency stops, etc.

Breakdown of processes into steps,
transition conditions, actions

Creation of SFC program with the
CVSS. Creation of ladder programs for
actions and transitions in the SFC pro-
gram.

Creation of |/O table with the CVSS.

Transfer of the program created with
the CVSS to the PC.

Debugging with the CVSS:
Monitoring
Online editing
Program tracing
Data tracing

Saving and printing of the program created
with the CVSS.

SECTION 3
SFC Programming Elements

This section provides more detailed explanations of the elements used to create SFC programs. These elements are introduced
in Section 2 SFC Basics.

3-1 OVEIVIEW ottt ettt et et e e e e e e e e e 20
N 1) o PP 23
3-3 0 Initial StePS . .o ot e 24
3-4 Transitions . ..ottt e 26
3-4-1 Transition Bitso e 27
3-4-2 Transition Programs 27
3-5 Action BIoCKS . ..o e 28
3-5-1 Action Qualifierso i 29
3-5-2 0 AQHOId OptON . . c vttt e 31
3-5-3 Action Execution Timingttt 33
3-5-4 Action Reset TImingottt i e 34
3-5-5 AQand the Execution Cycle i, 35
3-6 Conditional Branching and Joiningt iinnennen .. 36
3-7 Parallel Branching and Joining i e 38
3-8 Subcharts e 40
3-9 SEC JUMPS .ttt e e e e 43
3-10 Interrupt Programsttt e 45

19

Overview Section 3-1

3-1 Overview

The following table introduces the structural elements used to create SFC pro-
grams. These elements are described in more detail in the remainder of sec-

tion 3.
Name Symbol Function Operand data areas | Page
Step A step represents a process in the | Step number 23
. program. Each step is either CV500
active or inactive. ST**** ST0000 to ST 0511
represents the step number. CV1000/CV2000
ST0000 to ST1023
Initial step The initial steps are the steps that | Step number 24
are given active status at the CV500
. beginning of operation. Every ST0000 to ST0511
program must have at least one CV1000/CV2000
initial step, and can have up to 31. | ST0000 to ST1023
ST*** represents the step
number.
Transiton | . __ __ _ . A transition is a condition which Transition number 26
transfers the active status from CV500
”””” one step to the next. Only one TNOOO0O to TNO511
TN xxxx transition is allowed between any | CV1000/CV2000
pair of steps. Each transition is TNOO0O0O to TN1023
R defined as a transition number Bit addresses
only or as a transition number and | Refer to page 26.
Tt a bit address. TN*** represents
‘ the transition number.
Action Actions for a step are set up inan | SV 28
. action block. When a step 00000 to 65535

becomes active, actions are (Unit: 0.1/1.0 s)

) executed according to their AQs. | Action number
Number of actions | A maximum of 15 actions can be | CV500

Action block input for a single step. AC0000 to AC1023

AQ sv Action FV AQ: Defines the way an action is CXéggggCtV 2}282 047
executed. AQs include: N, P, L, D, . 0

R S SL SD. DS NH. PH. LH Blt.addresses (Used for
Di—|, ’and’RH.’ ’ ’ TV actions and FV.)

SV: Set values (times) for L, D, Refer to page 28.

SL, SD, DS, LH, and DH AQs.
Action: An action number
indicating an action program or a
bit address.

FV: A bit address.

Conditional ! Active status is transferred to the | --- 36
branch ‘ next step for which the transition
”””” condition is met. If two or more
e T transition conditions are met

[simultaneously, the leftmost step
is given priority. Up to 15
branches can be made from one
step.

20

Overview

Section 3-1

Name

Function

Operand data areas

Page

Conditional
join

When either of the transition
conditions is met, active status is
transferred from the step above
that transition to the step just after
the join (as long as the step above
the transition is active and the
step just after the join is inactive).
Up to 15 transitions can be
connected for joining to one step.

36

Parallel
branch

If the step above the double line is
active and the steps below the
double line are all inactive, then
the active status will move
simultaneously to the steps below
the double line when the transition
condition is met. Up to 15 steps
can be connected for branching
from one transition.

Parallel join

If the steps above the double line
are all active, the step below the
double line is inactive, and the
transition condition is met, then
the active status will move
simultaneously from all of the
steps above the double line to the
step below the double line. For
one transition, up to 15 steps can
be connected for joining.

38

Subchart
dummy
step

Subchart number

A subchart dummy step is a step
for calling a subchart. ST**
represents the dummy step
number. The subchart number is
displayed to the right of the
subchart dummy step symbol.
This is the number of the subchart
entry step of the subchart to be
called.

Step number
CV500
STO0000 to ST0511
CV1000/CV2000
STO0000 to ST1023

Subchart
entry
terminal

Subchart
entry step

. —— Subchart entry

terminal

Subchart entry step

Indicate the starting position of the
subchart. ST**** represents the
subchart entry step number. That
number becomes the number of
the subchart. Up to 255 subchart
entry terminals/steps can be used
for the CV500, and up to 511 for
the CV1000 or CV2000.

Step number
CV500
STO0000 to ST0511
CV1000/CV2000
STO0000 to ST1023

Subchart
return step

Subchart
return
terminal

Subchart return step

/.~ Subchart return

terminal

Indicate the return position of the
subchart. ST**** represents the
subchart return step number.

Step number
CV500
STO0000 to ST0511
CV1000/CV2000
STO0000 to ST1023

40

21

Overview Section 3-1
Name Symbol Function Operand data areas | Page
SFC jump Indicates the jump source in an Step number 43
SFC program. It is written aftera | CV500
transition. ST*** represents the ST0000 to ST0511
L qnees step number of the jump CV1000/CV2000
destination. ST0000 to ST1023
— ST****
SFC jump Indicates the jump destination in | ---
entry — an SFC program. It is written

before the step to which the jump
is being made.

I/O interrupt
entry
terminal

1/O INT **

ST ****

Indicates the starting position of
an I/O interrupt program. It is
connected to a step. ** represents
the 1/O interrupt number.

I/O interrupt number 45
00 to 31

I/O interrupt

Indicates the end of the 1/O

return TN *xx interrupt program. It is connected
terminal - after a transition.
1/0 RET
Scheduled - Indicates the starting position of a | Scheduled interrupt
interrupt scheduled interrupt program. Itis | number
entry o connected to a step. ** represents | CV500 0
terminal |OSTHRxx the scheduled interrupt number. CV1000/CV2000 O, 1
Scheduled Indicates the end of the scheduled | ---
interrupt interrupt program. It is connected
return after a transition.
terminal
Power-off Indicates the starting position of a | ---
interrupt power-off interrupt program. It is
entry connected to a step.
terminal
Power-off Indicates the end of the power-off | ---
interrupt interrupt program. It is connected
return after a transition.
terminal
Power-on Indicates the starting position of a | ---
interrupt power-on interrupt program. It is
entry connected to a step.
terminal
Power-on Indicates the end of the power-on | ---
interrupt interrupt program. It is connected
return after a transition.
terminal

22

Steps

Section 3-2

3-2 Steps

Astepin an SFC program represents a process in the real world. Each step con-
sists of from 0 to 15 actions. Actual control operations are programmed within
the actions.

Steps are represented in the program by boxes, as shown in the following exam-
ples.

Step without Actions

ST **x% m 00 means that there
are no actions asso-

ciated with the step.

Step with Actions

ST * 03 means that there
are three actions as-

sociated with the step.

Each step is identified by a unique step number. In the above examples, ST****
represents the step number. Each step must have a step number, and each step
number can be used only once and must be within the following ranges.

Model CV500 CV1000/CV2000
Step number ST0000 to ST0511 | STO000 to ST1023

Each step is either active or inactive. There are actually three different statuses
which are considered active status, as shown in the following table.

Status Meaning
Active Execute Executing or awaiting execution.
Pause Execution temporarily stopped.
Halt Execution completed.
Inactive Action inactive.

Actions are executed when the step has execute status. They are not executed
when the step has inactive, pause, or halt status.

Active status is transferred from one or more steps to the next step(s) when the
following three conditions are met. For additional details, refer to the relevant
explanations of branching and joining.

* The transition condition is met.
* The step(s) before the transition is active (and not paused).
* The step(s) after the transition is inactive.

It is possible to program a step with no actions. A step without any actions is
called a dummy step. A dummy step causes the program to do nothing until the
next transition condition is met.

23

Initial Steps

Section 3-3

Application Example

3-3

24

Note

Initial Steps

ST0001 02

The black dot indicates
the step that is active.
When the condition is sa-

next step.
+— TNOOO1 —— TNo0O1

—=>

tisfied for TNOOO1, active . .
ST0010@ status is transferred to the ST0010 ST0010 becomes inactive.

ST0011 STOO11 @ ST0011 becomes active.

1. Evaluation of transition conditions does not occur until after the actions as-

sociated with a step have been executed once, so the actions are executed
for at least one execution cycle.

. When multiple steps are executed in parallel, evaluation of transition condi-
tionsis performed immediately after the execution of each step. Active steps
are all executed for at least one execution cycle. Even if the transition condi-
tion is met, active status transfer takes place from the second cycle on-

wards.
ST0001
‘ ST0002 ‘ ‘ ST0003 ‘ ‘ ST0004 ‘

ST0005

In this example, ST0002, ST0003, and ST0004 are all assumed to be active.
If the transfer condition is met immediately after the execution of ST 0003,
then the active status will be transferred to ST0005 without executing
ST0004 only if STO004 has been executed at least once since it went active.

Initial steps are essentially the same as other steps except that they are auto-
matically given active status when the program starts. All steps other than the
initial steps are initially inactive. Initial steps can thus be used to program pro-
cessing that is always to be executed on system startup. Refer to the previous
section for general details on steps.

01| - - Initial step

— TNO000

:

— TNO0O0O01

ST0002

;

If there are multiple initial steps in one program, then all of them will be active
when the program is started. The order of priority for execution will be from top to
bottom and then left to right.

Initial Steps Section 3-3

If a program occupies more than one sheet, then the order of priority for execu-
tion will be from the smaller sheet numbers to the larger. (For details on sheets,
refer to the CVSS operation manuals.)

Note 1. Aninitial step cannot be placed inside of a subchart or an interrupt program.

ST0090 /O INT 01
ST0200
1/0 RET

2. You can program a loop with no initial step, but it can only be activated with a
SFC control instruction.

ST0500 <-—— Started with SFC con-
trol instruction

— TNO0500

501
— TNO501

ST0502

9‘
| = | =)

— TNO0502

— ™ ST0500

Application Examples The following examples demonstrate initial step execution.

I

ST0030 ST0040 ST0050 ST0060

—r— TNO0030 —— TNO0040 —— TNO0050 —— TNO0060

ST0041 S§T0070 ST0061

ST0031

L
!
!

—— TNO0050 —— TNO0080

ST0050 ST0080

—— TNO0O051

When the above program begins, ST0030 and When the above program begins, STO060 and

ST0040 will both be active, ST0O030 will be ex- ST0070 will both be active, ST0O060 will be ex-
ecuted before ST0040, and each will be ex- ecuted before ST0070, and each will be executed
ecuted for at least one cycle. for at least one cycle.

25

Transitions

Section 3-4

3-4 Transitions

26

Note

A transition is the condition which transfers active status from one step to the
next. Only one transition is allowed between any pair of steps.

Step

—r— TNO0000

Transitions Step
Transition

—— TNO0001 numbers

Each transition must be given a transition number, and each transition number
can be used only once.

There are two ways to define the condition for transferring active status. It can
either be defined using a bit address, or it can be defined using a transition pro-
gram. A transition program is written as a ladder program. If it is defined using a
bit address, then the condition will be ON or OFF depending on the ON/OFF sta-
tus of the bit. If it is defined using a transition program, then the condition will be
on or off depending on the logic status output from the transition program by in-
structions such as TOUT(202) and TCNT (123). Details on these methods of def-
inition are given below.

The ON/OFF status of a transition can be accessed through its Transition Flag.
Each transition has a Transition Flag that is accessed through the transition
number in programming.

1. The Transition Flag and the transition program are not reset even after ac-
tive status is transferred. The Transition Flag thus remains ON, and the out-
puts and timers in the transition program continue to operate. Be especially
careful when using the status of the Transition Flag as an input condition for
another operation, or when using a timer in the transition program. The
Transition Flag will be turned OFF only when the transition program or bit
turn it OFF.

2. Active status is not transferred merely when the transition turns ON. In addi-
tion, the step(s) before the transition must be active, and the step(s) after the
transition must be inactive.

3. The First Cycle Flag (A50015) cannot be used in a transition program.

4. We strongly recommend that you do not use transition programs to imple-
ment control operations. Transition programs should be used only to control
program progression between steps. Program design and maintenance will
become very difficult if transition programs are used for control operations,
which belong in action programs.

Transitions Section 3-4

5. Atransition must always be placed between two steps. The illustration be-
low shows examples of incorrect programs.

X ST0120 ST0130
7|
‘ ST0100

ST0101
1/
ST0132

‘ STo152 ‘ ‘ STO161 \

STO141

ST0162

3-4-1 Transition Bits

A transition can be defined using a bit so that the status of the bit controls the
transition between steps. A transition must be assigned a transition number
even when the transition is defined by a bit address.

When a bit address is set, it is displayed on the SFC as shown below (for
bit 010015).

ST0010

—— 010015

ST0011

The bit addresses that can be used to define transitions are given in the table

below.

Model CV500 CV1000/CV2000
Transition numbers | TNOOOO to TNO511 | TNOOOO to TN1023
Bit numbers 000000 to 255515 000000 to 255515

G00000 to G25515 | GO000O0 to G25515
A00000 to A51115 | AO00QO to A51115
T0000 to TO511 TO000 to T1023
C0000 to CO511 C0000 to C1023
ST0000 to STO511 ST0000 to ST1023

3-4-2 Transition Programs

When the transition condition is defined using a transition program, the program
is written as a ladder diagram. Either TOUT(202) or TCNT(123) must be in-

27

Action Blocks

Section 3-5

ST0020

—— TNO0000

ST0021

cluded in the transition program to output the transition condition. An example of
a transition program is shown below.

Transition program example
TNOOOO
(202)

HF [TOUT }—— «<—— Whether or not the
transition condition
is met depends on

the output of this
instruction.
(001)

[END J—

3-5 Action Blocks

Action Qualifiers

28

Each step in an SFC program contain a list of the operations that are to be ex-
ecuted for the step. This list is called an action block and the individual opera-
tions are called actions. The number of actions in the action block for any step
can be displayed to the right of the step number, as shown below.

f - - Number of actions

** 0to 15

The action block can contain 0 to 15 actions, each of which contains an action
qualifier, a set value, the action itself, and a feedback variable, as shown below.

AQ SV Action FV
N AC0000
N ACO0001 010010
N 000015
etc.

If there are no actions set for a step, then nothing will be executed even when
that step becomes active. A step with no actions is called a dummy step.

The values that are allowed for each field in the actions block are shown below.
These are explained individually next.

Model CV500 | CV1000/CV2000
Action qualifier N,P, L, D,R,S,SL SD, DS, NH, PH, LH, DH, RH
Set value | Constant #0000 to #9999

Word setting 0000 to 7FFD (00000 to 32765)

Action Action number | AC0000 to AC1023 | AC0000 to AC2047

Bit address 000000 to 255515

A00000 to A25515
G00800 to G25515

FV: bit address 000000 to 255515 000000 to 255515
A00000 to A51115 A00000 to A51115
G00000 to G25515 G00000 to G25515
TNOOOO to TN0511 TNOO00O to TN1023
ST0000 to STO511 ST0000 to ST1023
TO000 to T0511 TO000 to T1023
C0000 to CO511 C0000 to C1023

The timing of action execution is set with action qualifiers (AQ). You must setan
AQ for each action. When a step becomes active, each action in that step is ex-

ecuted according to its AQ setting. AQ are described in detail below.

Action Blocks

Section 3-5

Set Values

Actions

Feedback Variables

Note

Set values (SV) are related to the timing determined by the AQ, and are not re-
quired for every AQ. The following AQs require an SV: L, D, SL, SD, DS, DH, and
LH.

Set values can be input as constants (by placing # before the value input) or as a
word address (to specify the word containing the SV). When an SV isinput as a
constant (with #), the value is in BCD. When a word address is input, the con-
tents of that word will be handled in binary.

All of the set values within the same action block are timed by the step timer.
Each step has its own step timer. Step timers are incremental timers that are re-
set and begin counting when the step becomes active, and which retain the
present value when the step becomes inactive. If, however, the actions in the
step continue to be executed (e.g., for S-group AQs), the step timer continues
operating until all execution has been completed.

The PC can be set so that step timers operate in increments of either 0.1 second
or 1 second. The increment is set in the PC system settings. The default setting
is 0.1 second. (Refer to PC system setting in the CVSS manuals for details.)
Step timers can count up to 6553.5 s (when the unitis 0.1 s) or 65,535 s (when
the unit is 1 s). The step timer retains the maximum value if the present value
goes beyond the timeable range.

The action field defines the operation to be performed. If a bit address is used,
the status of the bit is controlled according to the other fields. If an action number
is used, a separate ladder diagram action program is written for the action and
the execution of the action program is controlled by the other fields.

If an attempt is made to execute the same action at the same time from more
than one step, a duplication error will be generated but the action will be ex-
ecuted. If you wish, you can change the PC system settings so that this error will
not be generated. For details, refer to the section on PC system settings in the
CV-series PC Operation Manual: Ladder Diagrams.

A bit address can be specified as a feedback variable (FV) if necessary for pro-
gram debugging. Setting an FV facilitates monitoring, but has no direct effect on
the execution of the action. There is no reason to set an FV except when it is
required.

3-5-1 Action Qualifiers

The action qualifier (AQ) defines how an action is to be executed. One AQ must
be set for each action in the action block. When a step becomes active, each
action in that step is executed according to its AQ setting.

If an action is defined using a bit address, the bit will turn ON and OFF according
to the AQ. (When actions are set using bit addresses, “execute” in the table
means that the bit turns ON.) If it is defined using an action number, the action
program will be executed or not executed according to the AQ.

The following table describes the functions of nine AQs. In addition, five of these
AQs (N, P, L, D, and R) can also take the optional AQ symbol H (for hold) to pre-
vent outputs or timers from being reset after execution of an action has been
completed. This makes atotal of 14 AQs. The five held AQs are covered in detail
later.

AQ Operation Held sv

N Executes the action while the step is active. NH
Executes the action once only when the step becomes active. PH

L After the step becomes active, L executes the action for the time set with the SV or until | LH Required
the step becomes inactive.

D After the step becomes active, D delays execution for the time set with the SV and then DH Required
begins execution of the action. If the step becomes inactive before the time set with the
SV has elapsed, the action will not be executed.

29

Action Blocks

Section 3-5

AQ

Operation

Held

SV

R

Stops and resets an action set with S, SL, SD, or DS (see below). If the action is not
being executed, then R simply resets it. (Resetting means OUT/OUT NOT are executed
with OFF execution conditions, TIM/TIMH are reset, and other timers, counters, and shift
registers are held.)

RH

Begins execution of an action when its step becomes active and continues execution of
that action even after the step becomes inactive. Execution is stopped by executing an
action for the same bit or action program with an action qualifier of R.

SL

After the step becomes active, executes the action for the time set with the SV. Unlike L,
however, the action will be executed for the specified time even if the step becomes
inactive. Execution can be stopped only by executing an action for the same bit or action
program with an action qualifier of R.

Required

SD

After the step becomes active, SD delays execution for the time set with the SV and then
begins execution of the action. Unlike D, however, SD continues execution of that action
even after the step becomes inactive. Execution can be stopped by executing an action
for the same bit or action program with an action qualifier of R.

Required

DS

The function of DS is similar to that of SD. Unlike SD, however, DS will not execute the
action if the step becomes inactive before the time set with the SV has elapsed. Once the
action is started, however, DS also continues execution of the action even after the step
becomes inactive. Execution can be stopped by executing an action for the same bit or
action program with an action qualifier of R.

Required

Application Example

ST0011

ST0013 m AQ SV
R

30

Action qualifiers S, SL, SD, and DS are known collectively as S-group AQs. No
more than 127 actions with S-group AQs can be executed simultaneously. In ad-
dition, the step timer operates during execution of an action with an S-group AQ

even after the step itself becomes inactive.

Note An action is normally reset after execution has been completed. If you want an
action to be stopped but not reset, then you must add the optional AQ symbol H
(for hold) to the AQ for that action. The AQs to which H can be added are N, P, L,

D, and R.

Action block for STO011

The following example explains processing for various AQ.

AQ B\ Action FV
s 000000 000100 I~ - - Bit 000000 will turn ON and stay ON.
TNooo1 000001 L - - - 000001 will be ON while ST0011 is active.
SL #0150 AC0001 r - - - Action program AC0001 will be executed for 15 sec-
onds.
When active status is transferred to ST0012, bit
000000 will remain ON, bit 000001 will turn OFF, and
ACO0001 will continue to be executed until 15 sec-
Action block for ST0012 onds have elapsed from the time execution started.
AQ B\ Action FV

TNO0002
N

AC0002

#0030

000002

000200

Action block for ST0013

Action

FV

000000

ACO0002 will be executed while ST0012 is active.

Bit 000002 will turn ON is ST0012 remains active for 3
seconds.

When active status is transferred to ST0013, AC0002
will be stopped and reset, and bit 000002 will turn OFF.

Bit 000000 will turn OFF when ST0013 becomes active.

Action Blocks

Section 3-5

Action Program for AC001

0001 0001 0000
10 11 10 0100
00
-y [l N
| [[N
0001
08
|
-
(001)
[END |—|

Note All action and transition program must end with the END (001) instruction.

3-5-2 AQ Hold Option

Examples

Action Programs

Non-held AQ

Held AQ

When a step becomes inactive, the actions that are stopped are normally reset.
If you wish, however, you can add the optional AQ symbol H (for hold) tothe N, P,
L, D, and R AQs to prevent outputs or timers from being reset after execution of
an action is complete.

Resetting an action means that the action bit is turned OFF (when the action is
defined as a bit address) or OUT/OUT NOT instructions are executed with OFF
execution conditions (when the action is defined as an action number) and that
TIM and TIMH instructions are reset. If the H option is used, the bits in the actions
that are normally reset will maintain their status and TIM/TIMH will continue op-
eration.

The five AQs with the optional hold added are NH, PH, LH, DM, and RH. The H
option cannot be added to any of the S-group AQs (S, SL, SD, and DS). If you
want to hold the status of an S-group action, add the optional H to the R action
qualifier that terminates the action.

If SOFF(215) is executed, it will be given priority over a held AQ and the action
with the held AQ will be reset.

The following examples demonstrate the difference between AQ with and AQ
without the hold option.

If the AQ is N, then the bits output from the action program will be turned OFF
and timers will be reset at point A. If the AQ is NH, then execution of the action
program will stop at point A but the bits output from the program will not be turned
OFF at that point, and status will be held until an operation is executed to turn
them off (e.g., using an action with an R AQ, as shown below). Timers will contin-
ue operation from point A and status will be held when time is expired unless
another operation is programmed to reset them.

Active status

Step- Inactive status

Executed

N

Not executed

Executed

Not executed

Indicates that program is not executed
but that output bits and timers are held.

31

Action Blocks

Section 3-5

Actions Defined as Bits Ifthe AQ is N, then the bit will turn OFF at point A. If the AQ is NH, then the bit will
not turn OFF at point A and status will be held until they are turned OFF else-
where in the program (e.g., using an action with an R AQ, as shown below).

Non-held AQ

Held AQ

32

A

N

: Relay
timer

NH

Active status

Inactive status

ON

OFF

ON

OFF

Action Blocks

Section 3-5

3-5-3 Action Execution Timing

Step status

The following diagram shows how the action status changes in relation to the
step status according to the various AQ. When the action is defined using a bit
address, “execute” and “not execute” in the illustration refer to the ON/OFF sta-
tus of the bit.

When His added (NH, PH, LH, DH, and RH), execution of the action is stopped
and the output bit status is held after the pointin the illustration where “executed”
turns to “not executed.”

Use RH when you need to hold the output bit status for S, SL, SD, or DS.

Active status

Inactive status

Action status by AQ

N

Executed (ON)

Not executed (OFF)
Action is executed once only. (If set with a bit ad-
dress, the bit turns ON for one cycle only.)

"""""" Execution stopped
by an “R” AQ.

SL

SD

DS

33

Action Blocks

Section 3-5

3-5-4 Action Reset Timing

Actions are reset when the step they are in becomes inactive or, for AQ with the
hold option, when reset using the R action qualifier. The timing of the reset varies
with the AQ which is set for the action. Resetting the action means turning OFF
output bits and resetting timers. Operand bits output from the KEEP instruction
and counters, however, are not reset.

The following timing charts show when actions are reset in relation to the step
status for the various AQ.

Reset Timing According to AQ (Action Defined by Program)

34

A : Timing of reset

Active status

Step sti

Action status by AQ

N

Inactive status

Executed (ON)

A Not executed (OFF)

The action is reset in the next execution cycle after it becomes active.
(In the first execution cycle it is executed, and in the second it is reset.)

SL

SD

DS

Action Blocks

Section 3-5

3-5-5 AQ and the Execution Cycle

The following SFC program will be used to illustrate the relationship between AQ
and the execution cycle.

‘ ST0001 }— N AC0050

S ACO0051

P AC0052

AC0060

ACO0061

AC0062

‘ ST0003

}—S

ACO071

D ACO0072

1,2, 3...

SV: 1234

The following table and timing chart shows the operations performed in each ex-
ecution cycle from the time that steps ST0001, ST0002, and STO003 becomes
active. This chart assumes that cyclic refreshing is used. Operations other than
those shown in the illustration have been omitted. The numbers in the table rep-
resent the order of execution within each execution cycle. The following items
affect execution order.

. Actions with S-group AQs are executed at the end of the execution cycle.
. When the AQ is P, the second execution cycle only resets the action.

. Outputs from a step are reset during the cycle after the step becomes inac-

tive provided neither S-group AQs (S, SL, SD, and DS) nor hold-option AQs
(NH, PH, DH, and LH) will be reset.

. The conditions for transfer of active status are examined upon completion of

execution of each step. When the conditions are met for active status to be
transferred, then the currently active step(s) become inactive and are reset.
In a case of parallel joining such as in this example, execution may be
stopped between simultaneous active steps depending on when the condi-
tions for transfer are met. For example, if execute status is transferred when
execution of STO001 is completed, only ST0O001 (and not ST0002 and
ST0003) will be executed in that execution cycle.

Action number | AC0050 | AC0051 | AC0052 | ACO060 | AC0061 | AC0O062 | ACO071 | ACO072 I/O
AQ N S P N N N S D refresh
(Note 1) (Note 1)
A | First cycle 1 6 2 7
B | Second cycle 1 6 2 7
(Note 2)
C | Third cycle on 1 --- 7
D | Cycle after lapse of | 1 5 8
ACO0072 delay time
E | Cycle after steps 1 6 2 3 4 7 5 8
become inactive (Note 4) | (Note 4) | (Note 4) (Note 4)
(Note 3)
F | Further cycles 1 2 3

35

Conditional Branching and Joining Section 3-6

Step

AC0050
AC0060

(A) Steps go active (E) Steps become inactive

® ©

AC0061]
AC0062

R executed

AC0051

AC0052

AC0071

AC0072

3-6 Conditional Branching and Joining

Conditional Branching

Conditional Joining

36

With conditional branching, one step is branched to two or more steps and active
status is transferred to the first step after the transition for which the condition is
met. Conditional branching is shown below. A single step can be conditionally
branched into a maximum of 15 steps.

ST0020

—— TNO00O01 —— TNO0002 —— TNO0015

ST0021 ST0022 - - ST0035

Maximum 15 steps

If the step before the transition is active and at least one step after the transition
is inactive, active status is transferred from the step before the branch to the first
inactive step after that branch whose transition condition is met. If the transition
conditions for two or more inactive steps are met simultaneously, active status
will move to the leftmost step.

Active status cannot be transferred to more than one step after the branch. Itis
conceivable, however, that two steps could be active at the same time if one of
the steps is active from a previous cycle and active status is then transferred
from the step before the branch to another step after the branch.

With conditional joining, two or more branched steps are joined into one step,
and active status is passed from a step just before the transition for which the

Conditional Branching and Joining Section 3-6

Application Example

Note

transition condition is met. Up to 15 steps can be conditionally joined to form a
single step. Conditional joining is shown in the following example.

Maximum 15 steps

ST0041 ST0042 - T - ST0055

— TNOO11 — TNO0012 — TNO0025

ST0056

Active status will move from any active step before the branch to the step after
the branch provided the transition condition is met and the step after the branch
is inactive.

The following example illustrates conditional branching and joining.

TNO00O

ST0030

—r— TNO00O01 —— TNO0002
‘ ST0031 }—‘ S ‘ 000000 ‘ ‘ ST0032 }—‘ N ‘ 000001
—— TNO0003 —— TNO0004

‘ ST0033 }—‘ R ‘ 000000 ‘

—— TNO0005

‘ ST0035 }—‘ S ‘ 000002

% TNO007

If STO030 is active, ST0031 and ST0032 are inactive, and the condition for
TNOO0O1 is met, then active status will be transferred from ST0030 to ST0031
and bit 000000 will turn ON. If the condition for TNO002 is met before the condi-
tion for TNO0O1, then active status will be transferred to ST0032 and bit 000001
will turn ON. If the conditions are met for TNO0O1 and TN0OOO2 simultaneously,
then active status will be transferred to ST0031.

If ST0031 is active, STO033 is inactive, and the condition for TNO003 is met, then
active status will be transferred from ST0031 to ST0033 and bit 000000 will be
reset.

If STO032is active, STO035 is inactive, and the condition for TN0O004 is met, then
active status will be transferred from ST0032 to ST0035. As this happens, bit
000001 will turn OFF and bit 000002 will turn ON.

If STO033 is active, STO035 is inactive, and the condition for TNO005 is met, then
active status will be transferred from ST0O033 to ST0035.

If STO030 is active, STO031 and ST0032 are inactive, and the conditions are
never met for either TNO0O1 or TN002, then ST030 will remain active indefinitely
and program execution will not advance.

37

Parallel Branching and Joining Section 3-7

Programming Errors

The most common types of conditional branching/joining programming errors
are shown below along with corrections where possible.

Incorrect program

Correct program Reason

For conditional branching, the transitions must be
placed after the branching line.

placed before the joining line.

You can only branch from one step at a time.

For conditional joining, the transitions must be

\ | | | | single step.
= t 1 I

\ \ \ The steps being joined can be joined only into a

Parallel branching and conditional joining cannot be
combined. Likewise, conditional branching and

Do not combine parallel joining cannot be combined.

‘ conditional and

_r 1
ching/joining.

parallel bran-

3-7 Parallel Branching and Joining

Parallel Branching

38

With parallel branching, one step is branched into two or more steps and active
status is transferred to all of the branched steps simultaneously when the transi-
tion condition is met. Amaximum of 15 steps can be branched from a single step.
An example of parallel branching is shown below.

ST0110

—1— TNO120

STO111 STO112 ST0125

Maximum 15 steps

Active status is transferred when the step before the double line (the parallel
branching line) is active, all of the steps after the double line are inactive, and the
transition condition is met. When the active status is transferred, all of the steps
just after the double line become active simultaneously and are executed in or-
der from left to right.

If the maximum 15 actions is programmed for each of 15 parallel steps, you can
have as many as 225 actions executed simultaneously.

Parallel Branching and Joining Section 3-7

Parallel Joining With parallel joining, two or more branched steps are joined into one step and
active status is transferred from all of the steps simultaneously when the transi-
tion condition is met. A maximum of 15 steps can be joined into a single step. An
example of parallel joining is shown below.

Maximum 15 steps

ST0131 ST0132 ST0145

TNO130

ST0146

Active status is transferred when all of the steps above the double line (the paral-
lel joining line) are active, the step below the line is inactive, and the transition
condition is met.

Application Example The following example illustrates parallel branching and joining.
If STO001 is active, ST0151 and ST0152 are inactive,
and the condition for TN0O120 is met, then ST0151 and
S§T0001 ST0152 will become active simultaneously and bits
001500 and 001501 will turn ON.
—— TNO120
‘ STo151 %‘ N ‘ 001500 ‘ ‘ ST0152 %‘ S ‘ 001501 ‘ If the condition for TNO153 is met and ST0153 is
inactive, then active status will be transferred to
—— TNO153 ST0153 and bit 001501 will be reset.
‘ ST0153 %‘ R ‘ 001501 ‘
—— TNO152 When ST0151 and ST0153 are both active, ST0154

is inactive, and the condition for TNO152 is met,

then active status will be transferred to ST0154.
STO154

Note Even if ST0O151 becomes active and TN0152 turns ON (i.e., the condition is
met), active status will not be transferred to ST0154 unless ST0153 is also active
and ST0154 is inactive.

39

Subcharts Section 3-8

Programming Errors The most common types of parallel branching/joining programming errors are
shown below along with corrections where possible.

Incorrect program Correct program Reason

For parallel branching, the transition must be placed
before the branching line.

You can only branch from one step at a time.

E For parallel joining, the transition must be placed
= after the joining line.

The steps being joined can be joined into only a
\ | | || | | | | | | single step.

Parallel branching and conditional joining cannot be
combined. Likewise, conditional branching and
. parallel joining cannot be combined.
Do not combine
N E—

‘ | | | | | conditional and
I R parallel bran-

ching/joining.

3-8 Subcharts

The main program can call a subchart by using a subchart dummy step. Sub-
charts are essentially the same as subroutines. The subchart starts with an entry
terminal and entry step and ends with a one or more return steps and return ter-
minals. Multiple return steps/terminals could be used to return from branches
within the subchart.

You can call other subcharts from within one subchart, i.e., subcharts can be
nested. There are no limits to the number of nesting levels. You can write up to
255 subcharts with the CV500 and up to 511 with the CV1000 or CV2000. An
example of a subchart program and the step calling it is shown below.

Main program Subchart program
Subchart entry terminal

ST0010 ST0130 Subchart entry step
—— TN0010 —— TNO130

Subchart STO 0130 131

dummy step
—— TNoO11 —— TNO131

STo012 Sto132 Subchart return step
Subchart return terminal

40

Subcharts

Section 3-8

Note

Note

Inthe example, ST0011 is the subchart dummy step and ST0130 is the subchart
entry step. The number written inside of the subchart dummy step is the dummy
step number, and the number written outside of that step is the number of the
subchart that is being called (i.e., the number of the subchart entry step).

The subchart dummy step cannot have any actions of its own.

The same subchart can be called from multiple places within a program. If its
execution has not been completed, however, when it is called again, the later
step will wait until the execution is complete and the call will be made when the
first step calling the subchart has finished.

The active/inactive status of steps within a subchart depends on the status of the
subchart dummy step that calls that subchart. (For details, refer to the CV-series
PC Operation Manual: Ladder Diagrams.) Furthermore, active status cannot
pass from the subchart dummy step to the next step until the return step in that
subchart becomes active or until all of the steps in that subchart become inactive
(i.e., until subchart operations are complete). In addition, the active status will
not be passed from the subchart dummy step unless the transition condition is
met and the step after the subchart dummy step is inactive.

When a subchart return step becomes active and the subchart is finished, any
active steps remaining within the subchart will also be terminated. That is to say,
a subchart can have more than one return step, and execution of the subchart
will be completed when any one of them becomes active.

In the example, status transfer will take place as shown in the table below.

Condition | ST0010 ST0011 ST0012 ST0130 | STO0131 ST0132
ACTIVE | Inactive Inactive Inactive Inactive Inactive

TNOO10 ON | Inactive ACTIVE | Inactive ACTIVE | Inactive Inactive

TNO130 ON | Inactive ACTIVE | Inactive Inactive ACTIVE | Inactive

TNO131 ON | Inactive ACTIVE | Inactive Inactive Inactive ACTIVE

TNOO11 ON | Inactive Inactive ACTIVE | Inactive Inactive Inactive

The operations shown in the table will be executed over the course of several
execution cycles.

41

Subcharts

Section 3-8

Application Example

i

ST0140

—— TNO140
ST0141 0150
ST0150
—— TNO141
—— TNO0150
ST0142
ST0151 0160
ST0160
—— TNO151
—— TNO160
ST0152
STO161
—— TNO161
‘ ST0162 ‘ ‘ ST0163 ‘

% —— TNoO162

ST0164

In this example, status transfer will take place as shown in the table below.

Condition | ST0140 | ST0141 | ST0142 | ST0150 | STO151 | ST0O152 | STO160 | STO161 | STO162 | STO163 | ST0164
ACTIVE | Inactive [Inactive [Inactive |Inactive |Inactive [Inactive |Inactive |Inactive [Inactive [Inactive
TNO140 ON [Inactive | ACTIVE |Inactive | ACTIVE | Inactive |[Inactive |Inactive [Inactive |[Inactive |[Inactive |Inactive
TNO150 ON [Inactive | ACTIVE |Inactive |Inactive [ACTIVE |Inactive | ACTIVE | Inactive |[Inactive |[Inactive |Inactive
TNO160 ON [Inactive | ACTIVE |Inactive |Inactive [ACTIVE |Inactive |Inactive |[ACTIVE | Inactive |[Inactive |Inactive
TNO161 ON [Inactive | ACTIVE |Inactive |Inactive [ACTIVE |Inactive |Inactive [Inactive [ACTIVE |ACTIVE | Inactive
TNO151 ON [Inactive | ACTIVE |lInactive |Inactive [Inactive |ACTIVE | Inactive [Inactive |[Inactive |[Inactive |Inactive
TNO141 ON ([Inactive | Inactive | ACTIVE |Inactive [Inactive |[Inactive |Inactive [Inactive |[Inactive | Inactive | Inactive

Precautions Observe the following precautions when programming subcharts.
1,2, 3. 1. The following steps cannot be used as or in place of subchart dummy steps.

42

* |nitial steps

* Subchart entry steps

* Subchart return steps

* Interrupt entry terminals
* Interrupt return terminals

2. A subchart cannot be called simultaneously from multiple subchart dummy
steps. If a subchart is called while it is already being executed, the second
call will wait until execution of the subchart has been completed.

3. If the program calls a subchart that does not exist, an fatal SFC error will be
generated and program execution will stop.

4. When a subchart is called by a dummy step within another subchart, execu-
tion of the nested subchart will stop when the dummy step that called it be-
comes inactive. Thatis to say, any active steps remaining in the nested sub-
chart will not be executed after a return step within that subchart becomes
active, and active status is returned to the dummy step.

SFC Jumps Section 3-9

5. A subchart can only be called by a dummy step. When you want to use a
SFC control instruction to activate a subchart, activate the dummy step that
calls that subchart.

6. Initial steps cannot be placed inside of a subchart.

Programming Errors The most common types of subchart programming errors are shown below

along with corrections where possible.

Incorrect program

Correct program

Reason

A subchart entry terminal and a subchart
entry step must be combined at the

-

beginning of a subchart. Likewise, a
subchart return terminal and a subchart
return step must be combined at the end of
a subchart.

Y + Subchart entry terminal
‘ ‘ ‘ Subchart entry step
Subchart return step

Subchart return terminal

Do not branch from or join
before terminals.

A transition may not be placed between a
subchart entry terminal and a subchart
entry step or between a subchart return
step and a subchart return terminal.

Branching may not be programmed
immediately after a subchart entry
terminal, and joining may not be
programmed immediately before a
subchart return terminal.

A subchart and an interrupt program
cannot be joined. In addition, two or more
subcharts cannot be connected together
and a subchart cannot be connected to the
main program.

Do not join sub-
charts and inter-
rupt programs.

3-9 SFC Jumps

The SFC jump s used to move execution of an SFC program to another step ata
different location in the program. A jump can be made only from just after a tran-
sition to justin front of a step. The jump destination is specified with an SFC jump
entry. An example of an SFC jump is shown below.

ST0100

—— TNO0000

- - - SFC jump entry

S§T0200

L—— sTo0200- - - SFC jump

In the illustration, the program jumps from step ST0100 to step ST0200. The
jump source (just after the transition on the left) and the jump destination (just
after the step on the right) are indicated by arrows.

The jump destination step becomes active when the jump is made, and then be-
comes inactive when the condition is met for transition immediately following it
and active status is passed to the next step.

A jump cannot be made off of the sheet when programming on the CVSS. For
details on SFC sheets, refer to the CVSS operation manuals.

43

SFC Jumps Section 3-9

You can create a closed loop with a jump, as in this example.

ST0000

—— TNO0000
ST0001

—— TNOO0O1
ST0015

—— TNO0O015

—— ST0000

Programming Errors The most common types of jump programming errors are shown below along
with corrections where possible.
Incorrect program Correct program Reason
The jump must be programmed immediately after a
= transition.
The jump destination must be programmed
= immediately before a step.

A jump cannot be made from or to an interrupt
program from any other program (the main program,
a subchart program, or another interrupt program).

Do not jump into Jumps can be made within a single interrupt
or out of interrupt program.
programs.

A jump cannot be made from or to a subchart
program from any other program (the main program,
another subchart program, or an interrupt program).

Do not jump Jumps can be made within a single subchart
into or out of program.
subcharts.

44

Interrupt Programs

Section 3-10

3-10 Interrupt Programs

* Power-Off Interrupt

Power-off interrupt entry
terminal

PWR OFF INT

|
i
i

Interrupt entry step

ST0020 0

A
B

— TNO0020

021 0

3
=
o

TN 0021

|
i
i

PWR OFF RET

Power-off interrupt return
terminal

Precautions

1,2, 3...

* Power-On Interrupt

Interrupt programs can be written separately from the main program to provide
processing for special purposes. The various interrupt programs, shown below,
allow special processing for power interruptions (both before and after the inter-
ruptions), for I/O interrupt signals, and for scheduled processing (processing re-
peated at a specific interval). Each interrupt program contains one entry terminal
and entry step plus one or more return terminals. Multiple return terminals may
be used if there is branching within the interrupt program.

® |/O Interrupt
1/O interrupt entry terminal

® Scheduled Interrupt

Power-on interrupt entry Scheduled interrupt entry

terminal

PWR ON INT

Interrupt entry step

ST0030 0

A
B

— TNO030

031 03

3
=
o

TNOO031

PWR ON RET

Power-on interrupt return
terminal

/O INT **

Interrupt entry step

ST0001 0

A
B

— TNO00O01

ST0002 0

A
B

— TNO0002

1/0 RET

1/O interrupt return terminal

terminal

CYCLIC INT *

Interrupt entry step

ST0010 0

s
B

— TNoo10

ST0011 0

s
B

— TNOO11

CYCLIC RET

Scheduled interrupt return
terminal

Interrupt entry terminals and return terminals are not steps and cannot contain
actions.

When an interrupt program is executed, the main program execution is discon-
tinued until the interrupt program execution is completed.

The following table shows the number of each type of interrupt program that can
be written.

Type of Interrupt Qty. Interrupt no.
I/O 32 00 to 31
Scheduled CV500 1 0
CV1000/CV2000 |2 0, 1
Power-off 1 ---
Power-on 1 ---

Interrupt masks, clearance of interrupt causes, and settings of scheduled inter-
rupt spaces are all executed with interrupt control instructions. For details on ex-
ecution and control of interrupt programs, refer to the CV-series PC Operation
Manual: Ladder Diagrams.

Observe the following precautions when programming interrupts.

1. No transition can be inserted between the entry terminal and the entry step.
2. The interrupt entry step cannot be used as a subchart dummy step.

3. If interrupt program execution time is too long, there may be a execution
cycle overrun error.

45

Interrupt Programs Section 3-10

Programming Errors The most common types of interrupt programming errors are shown below
along with corrections where possible.
Incorrect program Correct program Reason
A transition cannot be placed directly after an entry
terminal.
1 = [
[] []
A transition must be placed directly before a return
L] L] terminal.
>
Include a step You cannot write an interrupt program without any
within the inter- steps.
rupt program.
An interrupt program cannot be branched directly
Do not branch after the entry terminal.
from an entry
terminal.
You cannot join two or more interrupt programs.
Do not joint in- Furthermore, you cannot join the main program and
terrupt pro- an interrupt program, or a subchart and an interrupt
grams. program.
An interrupt entry step cannot be used as a
Do not use an subchart dummy step.
entry step to
call a subchart.
An initial step cannot be placed inside of an interrupt
program.
] Do not place an
initial step in an
interrupt pro-
[— gram.
A jump cannot be made from or to an interrupt
‘ program from another type of program. Jumps can
| | | N | | | Do not jump out be made within an interrupt program.
JF JF of an interrupt
C O program-

46

SECTION 4
Controlling Step Status

This section provides a review of step status and then explains how to use the ladder-diagram instructions called SFC control
instructions to artificially control step status and thus control the execution flow of the SFC program. This type of control can
be used in normal SFC program flow or to allow for special processing such as that for emergency situations. The other ladder
diagram instructions related to SFC programs are also described. Examples using SFC control instructions are provided in
Section 6 SFC Application Examples.

4=T1 SEEP StatUS . .ottt ettt e 48
4-1-1 Controlling StEPS .« v vt vttt et e e e 48
4-1-2 SFC Control Instructions and Status Changes 50
4-1-3 Subcharts e 51
4-1-4 SFC Control Instructions and Interrupt Programs 52
4=1-5 Precautionsttt 52

4-2 SFC Control INStructionsuuiniint ittt 54
4-2-1 IntrodUuCtiOnttt ettt e e e et e 54
4-2-2 ACTIVATE STEP - SA210)t e 55
4-2-3 PAUSE STEP - SP(211) . ..ottt i 56
4-2-4 RESTART STEP - SR(212)o e 57
4-2-5 END STEP-SF(213) e 58
4-2-6 DEACTIVATE STEP - SE(214)o 59
4-2-7 RESET STEP - SOFF(215) e 60
4-2-8 TRANSITION OUTPUT - TOUT(202) ooiiii i 61
4-2-9 TRANSITION COUNTER - TCNT(123)ttt 62
4-2-10 READ STEP TIMER -TSR(124) 63
4-2-11 WRITE STEP TIMER - TSW(125)o, 64

4-3 Program Example e 65

47

Step Status

Section 4-1

4-1 Step Status

Caution

Execute Status

Pause Status

Halt Status

Inactive Status

Step status can be broadly divided into active and inactive. Active status is fur-
ther divided into execute, pause, and halt status. Step status is controlled either
by the normal flow and conditions of the SFC program, as described in the pre-
vious section, or by using the SFC control instructions, which are explained later
in this section.

A step does not normally go to pause or halt status. In order to place a step in
pause or halt status, you must use an SFC control instruction.

SFC control instructions forcibly change the status of steps. When using these
instructions, be sure to carefully consider their effects on program execution and
on other steps in the program.

In execute status, actions are either being executed or waiting to be executed
(e.g., due to a set value for the AQ). When a step goes into active status, it nor-
mally goes into execute status first. When the status of a step changes from in-
active state to execute (active) state, the step time will be reset and started.

Actions in steps that have been paused are temporarily not executed. A step in
pause status is active, but actions are not executed and active status is not
transferred. Actions with S-group action qualifiers (S, SL, SD, and DS), however,
continue to be executed even while the step is paused.

The status of a step is held when it goes to pause status, and execution starts
from the beginning of the step when pause status is cleared. The step timer and
TIM and TIMH instructions in paused actions continue timing even while
paused.

Actions in steps that have been halted are no longer executed even though the
step is still active. Actions with S-group action qualifiers (S, SL, SD, and DS),
however, continue to be executed even while the step is halted. Active status is
transferred from a step in halt status when the transition condition is met.

The step timer and TIM and TIMH instructions in halted actions continue timing
even while halted.

When a step becomes inactive, only actions with S-group action qualifiers (S,
SL, SD, and DS) continue to be executed. While S-group actions are being ex-
ecuted, the step timer and TIM and TIMH instructions in the S-group actions con-
tinue timing.

4-1-1 Controlling Steps

48

SFC control instructions are a group of instructions that can be used in action
programs to change the step status (and thus indirectly subchart status) in an
SFC program. The SFC control instructions are outlined in the following table.
Details are provided later in section 4.

Step Status Section 4-1
Mnemonic Symbol(s) Operation Operand data areas | Page
(function code)
and name
SA(210) (210) Activates a step or subchart to | Step number: N4 55
ACTIVATE LA NN] start the execution of actions. | CV500
TEP (210) . 0000 to 0511
° —Lsemow] | T Step number CV1000/CV2000
2. Subchart number 0000 to 1023
Subchart number: N»
CV500
0000 to 0511
CV1000/CV2000
0000 to 1023
SP(211) @ N Changes the status of a step or | Step number: N 56
PAUSE STEP subchart from execute to CV500
(211) pause. 0000 to 0511
L] N: Step number CV1000/CV2000
' 0000 to 1023
SR(212) (2é§) N Changes the status of a step or
RESTART] subchart from pause to
STEP (J?ég) N execute.
N: Step number
SF(213) (213 N Changes the status of a step or 58
END STEP subchart from execute or pause
(%ﬁ) N to halt.
N: Step number
SE(214) (2;;;) N Changes a step or subchart 59
DEACTIVATE] from active (execute, pause, or
STEP (214) halt) to inactive status.
— jSE N]
N: Step number
SOFF(215) (219) Resets a step or subchart Step number: N 59
RESET STEP —L soFF N (regardless of its status) to CV500
(215) inactive status. Also resets 0000 to 0511
[ISOFF N actions with or without CV1000/CV2000
hold-option AQs. 0000 to 1023
N: Step number
TOUT(202) (202) Outputs the result of a transition | --- 61
TRANSITION L TouT] program to the Transition Flag.
OUTPUT
TCNT(123) (123) Computes the number of times | Counter number 62
TRANSITION L ToNT NS that a transition program is CV500
COUNTER executed, and turns ON the 0000 to 0511
Transition Flag when the preset | CV1000/CV2000
count is reached. 0000 to 1023
N: Counter number
S: Number of times executed
TSR(124) (124) Reads the present value of the | Step number: N 63
READ STEP L TeR N D] step timer and writes to a CV500
TIMER (129 - designated word. 0000 to 0511
4‘]
N: Step number C\éggg?/ 01\6220300
D: Destination for PV 0
TSW(125) (125) Changes the present value of 64
WRITE STEP L Tsw s N the step timer from a
TIMER (129) s N7 designated word.
4‘ Al
S: New PV
N: Step number

49

Step Status Section 4-1

4-1-2 SFC Control Instructions and Status Changes

The SFC control instructions that directly affect step status are shown in the fol-
lowing illustration. The arrows indicate the status changes that are possible us-
ing these instructions.

Actions executed

i

SR(212) SE(214)

SOFF(215) SA(210)
SP§211) SF(213)

\ SF(213)

Active status
not moved.

SE(214) SA(é10) | SE(214)
SOFF(215) SOFF(215)

Note 1. When you wantto activate a subchart with SA(210), execute SA(210) onthe
subchart dummy step that calls the subchart. If subcharts are nested,
SA(210) cannot be executed unless all of the subchart dummy steps in the
levels above the target subchart are in execute status.

2. When most SFC control instructions are executed on a subchart dummy
step, they act on all of the active stepsin the subchart. SOFF(215), however,
acts on all of the steps in the subchart, not only on those steps that are ac-
tive.

Application Example In the following example, bit 010000, which starts operation, is always checked
(AQ = S) in AC0000 of initial step ST000O. If the bit turns OFF, ST0005 is made
inactive, all of its actions are reset, and ST0003 of subchart ST0001 is changed
to execute status. (In order for STO003 to go to execute status, however, sub-
chart 0001 must already be in execute status.)

AQ SV Action FV
ST0000 s AC0000
AC0000
0100
?0 (215)
1 [SOFF 0005 }——
Start
- {210
{sA 0003 0001 |—
(001)
[END }—

50

Step Status

Section 4-1

4-1-3 Subcharts
Step Status

SFC Control Instructions

Caution

Steps within a subchart take their status from the status of the dummy step that
calls the subchart. The following table shows the status that are possible for sub-
chart steps depending on the status of the dummy step.

Dummy step Statuses possible for subchart steps

status Execute Pause Halt Inactive
Execute Yes Yes Yes Yes
Pause No Yes No Yes
Halt No No Yes Yes
Inactive No No No Yes

For example, if the subchart dummy step Ais halted, steps B4, Bo, and B3 of the
subchart called from A can be in either halt or inactive status only.

The status of steps in a subchart can be changed by executing SFC control in-
structions using the dummy step that calls the subchart as the operand. If all of
the steps in a subchart are made inactive by SE(214) or SOFF(215), then the
execution of that subchart will be completed and active status will pass from the
subchart dummy step when the transition condition is met. The following table
shows the instructions that can be executed for each possible subchart dummy
step status.

Dummy step SA SP SR SF SE SOFF
status
Execute Yes Yes Yes Yes Yes Yes
Pause No No No No Yes Yes
Halt No No No No Yes Yes
Inactive No No No No No Yes*
* Reset only

For example, if the subchart dummy step is halted, steps B4, Bs, and B3 of the
example subchart above can be in either halt or inactive status, and therefore
the only instructions that can be executed are SE(214) and SOFF(215).

Do not create programs like the ones described below, as they cannot be run.

* A program that designates a step that is not included in the subchart desig-
nated by SA(210).

* A program where a subchart designated by an instruction is undefined.
* A program where a subchart designated by SA(210) does not exist.

* A program where an instruction does not match the status of a step (e.g.,
where SP(211) is used on an inactive step).

* A program where a step designated by SA(210) is in an interrupt program.

51

Step Status

Section 4-1

4-1-4 SFC Control Instructions and Interrupt Programs

4-1-5 Precautions

Consecutive Steps

Parallel Joining: Example 1

52

The following table shows which SFC control instructions can be used from with-
in interrupt programs. No SFC control instructions can be used to control steps
within interrupt programs.

Instruction Execution from interrupt Execution toward interrupt
program program

SA Not possible. Not possible.

SP Possible.

SR

SF

SE Possible only from power-on

SOFF interrupt program.

The following examples demonstrate some problems that can occur when using
SFC control instructions to artificially alter step status.

Be cautious of making consecutive steps active simultaneously. When ST0020
in the example below is in execute status and ST0010 and ST0030 are inactive,
consider the restrictions in movement of active status if you change ST0010 and
ST0030 to execute status with SA(210).

—— TNO0010

SA(210) >~ ST0010 - - - Inactive ST0010 - - - Execute

—— TN0020- -OFF

— TNO010

— TN0020- -ON

ST0020 - - - Execute C ST0020 - - - Execute

—— TNO0030- =OFF

SA@10) —| ST0030 - - - Inactive ST0030 - - - Execute

—— TNO040- -OFF —— TNO0040- - OFF

— TNO030- -ON

Even if the condition for TN0020 is met (i.e., TN0020 turns ON), step status can-
not be transferred until ST0020 becomes inactive. Similarly, even if the condition
for TNOO30 is met, step status cannot be transferred until STO030 becomes in-
active. Active status can be moved by making ST0020 or ST0030 inactive by
means of SE(214) or SOFF(215), or by waiting for TN0040 to turn ON and for
active status to be transferred to the step after ST0030.

When the steps just before a parallel join (ST0010 and ST0020 in this example)
are in execute status, consider the restrictions in movement of active status if
you change ST0010 to either pause or inactive status with SP(211), SE(214), or
SOFF(215).

Section 4-1

TNOO10 TN0020
ST0010 - Pause: SP(211) ST0020 - Execute
Inactive
(SE(214), SOFF(; 215

Step Status

TNOO10 TN0020
ST001 0 - Execute ST0020 - Execute

SP 211
SE 214
SOFF 215
—— TN0030- - OFF —— TN0030- -ON
ST0030 - - - Jnactive ST0030 - Inactive
—— TN0040 —— TNO0040

If STO010 is paused or inactive, active status cannot be transferred to ST0030
even if TNOO30 turns ON. To enable active status to be transferred, change
ST0010 to execute status with SR(212) or SF(213) if ST0010 is paused, or with
SA(210) if ST0010 is paused or inactive.

When the steps just before a parallel join (STO110 and ST0210 in this example)
are in execute status, consider the restrictions in movement of active status if
you change ST0100 to execute status with SA(210).

Parallel Joining: Example 2

—— TNO100 —— TNO0200 —— TNO100 —— TNO0200

- Inactive Inactive

SA(210) —=| ST0100 ST0200 -

—— TNO110- -ON —— TN0210- -ON

STo110 - Execute ST0210 - - Execute

—— TNO300- - OFF

ST0300 - - - Inactive

—— TNO310

—=>

Inactive

ST0100 - -

—— TNO110- -ON

STo110 - - Execute

Inactive

S§T0200 - -

—— TN0210- -ON

ST0210 - Inactive

—— TNO300- -ON

ST0300

- - - Execute

—— TNO310

Conditional Joining

When TNO300 turns ON, active status will be passed from ST0110 and ST0210
tothe ST0300. If STO100 has been changed to execute status with SA(210), ac-
tive status will then be transferred to ST0110 when TNO110 turns ON, and
ST0110 will remain in execute status until turned off with an SFC control instruc-
tion or until the next time the parallel section of the program is entered.

When a step just before a conditional join (ST0200 in this example) is in execute
status, consider the restrictions in movement of active status if you change
ST0100 to execute status with SA(210).

TNOO10

ST0010 - - -

TNOO10

ST0010 - - -

Inactive Inactive

—r— TNO100- -OFF —t— TNO0200- =ON —— TNO100- - OFF —r— TNO0200- -ON
SA(210) §T0100 - - Inactive $T0200 - - Execute [$T0100 - - Inactive §T0200 - - Execute
—— TNO110- - OFF —— TNO0210-= = OFF —— TNO110- -ON —— TNO0210- -ON

ST0300 - - -

TNO300- - OFF

ST0300 - - -

TNO300- - OFF

Inactive Execute

If STO100 is changed to execute status with SA(210) and then the transition con-
ditions are met for ST0100 and ST0200 simultaneously (i.e., TNO110 and

53

SFC Control Instructions Section 4-2

TNO0210 turn ON simultaneously), the transition on the left will be given priority
and active status will pass from ST0100 to ST0300. ST0200 will remain in ex-
ecute status, therefore, when ST0100 becomes inactive and ST0300 goes to
execute status. In this situation, you can either have ST0200 wait for active sta-
tus to be passed from ST0300 to the next step (at which point active status would
be passed from ST0200 to ST0300), or you can change ST0200 to inactive sta-
tus with SE(214) or SOFF(215).

4-2 SFC Control Instructions

4-2-1 Introduction

The remainder of section 4 describes the ladder-diagram instructions that are
related to SFC programs including SFC control instructions, which are used to
control step status, and the instructions used to output transition conditions from
transition programs (TOUT(202) and TCNT(123)).

Refer to the CV-series PC Operation Manual: Ladder Diagrams for details on
ladder-diagram programs and data areas.

Layout Each instruction is introduced with a frame that shows the basic form of the in-
struction, the variations of the instruction, and the data areas that can be used for
each operand, as shown in the following illustration.

Basic ladder diagram symbol Data areas allowed for operands

Ladder Symbol Operand Data Areas

N1: Step number ST

N2: Subchart number ST or 9999

Variations
isA
\
Instruction variations available

Basic Ladder Symbol The ladder symbol shows how the instruction will appear in a program. The func-
tion code (210) is provided above the mnemonic (SA) and the operands are pro-
vided to the right (N1 and N). The ladder symbol is the same for any of the varia-
tions of the instruction except that the mnemonic changes.

Operand Data Areas The data areas that can be used for each instruction are listed. The actual oper-
and will be anumber, such as a word address, a bit address, an indirect address,
or a constant, depending on the requirements of the instruction and the needs of
the program. The abbreviations and addresses used for the data areas are listed
in the following table.

Abbreviation Area PC Range

Clo CIO Area (Core 1/0) CV500 | Words: CIO 0000 to CIO 2427; Bits: CIO 000000 to CIO 242715
CV1000/ | Words: CIO 0000 to CIO 2555; Bits: CIO 000000 to CIO 255515
CV2000

TR Temporary Relay Area | Both TRO to TR7 (bits only)

G CPU Bus Link Area Both Words: G000 to G255; Bits: G0O0000 to G25515

A Auxiliary Area Both Words: A000 to A511; Bits: AO000O to A51115

TN Transition Area CV500 | TNOOO0O to TNO511 (Transition Flags)
CV1000/ | TNOOOO to TN1023 (Transition Flags)
CV2000

ST Step Area CV500 | ST0000 to ST0511 (Step Flags)
CV1000/ | ST0O000 to ST1023 (Step Flags)
CV2000

54

SFC Control Instructions Section 4-2
Abbreviation Area PC Range
T Timer Area CV500 | TO0000 to TO511 (PV or Completion Flag)
CV1000/ | TO00O to T1023 (PV or Completion Flag)
CV2000
C Counter Area CV500 | C0000 to C0511 (PV or Completion Flag)
CV1000/ | C0000 to C1023 (PV or Completion Flag)
CV2000
DM DM Area CV500 | D00000 to D08191 (words only)
CV1000/ | DO0000 to D24575 (words only)
CV2000
EM Area CV1000/ | E00000 to E32765 for each bank (words only)
CV2000
IR Index registers Both IRO to IR2 (words only)
DR Data registers Both DRO to DR2 (words only)
Variations The alternate forms of the instruction are listed here.
4-2-2 ACTIVATE STEP - SA(210)
Ladder Symbol Operand Data Areas
(210) N4: Step number ST

——{sA N

Variations
j SA

No]
N,: Subchart number ST or 9999

Description

Note

Normal Steps

Execute

Pause

Halt

Inactive

SA(210) changes a designated step or subchart to execute status and starts ex-
ecution of actions. A step activated by SA(210) will be executed as the last active
step in the execution cycle for the first cycle after the step goes active.

To designate a step in a subchart, specify the step number of the dummy step
calling the subchart as the subchart number, N», and then designate the number
of the step with Nj.

To designate a subchart, designate the step number of the dummy step calling
the subchart as the step number, N1 , and designate a subchart number of 9999.

To designate a step not in a subchart, designate the step number and designate
a subchart number of 9999.

SA(210) can neither be executed from an interrupt program nor for steps in an
interrupt program.

The specific results of executing SA(210) for steps in each step status are de-
scribed below (for normal steps inside or outside of subcharts).

Status does not change, but status will not be transferred to the next step for one
execution cycle after execution of SA(210).

Changes the step status from pause to execute. The output status that was in
effect at the time the status was changed from execute to pause will be contin-
ued, and execution will begin from the top of the step.

Changes the step status from halt to execute. The output status that was in effect
at the time the status was changed from execute to pause will be continued, and
execution will begin from the top of the designated step.

Changes the step status from inactive to execute. Execution will begin from the
top action of the designated step. The step timer will be reset and started.

55

SFC Control Instructions

Section 4-2

Subchart Dummy Steps

Execute

Pause

Halt

Inactive

Flags

The specific results of executing SA(210) for steps in each step status are de-
scribed below (for dummy steps controlling subcharts).

SA(210) does not change the subchart dummy step itself. All the steps in a sub-
chart that are active when SA(210) is executed go to execute status. The output
status that was in effect at the time the status was changed from execute to
pause or halt will be continued, and execution will begin from the action at the top
of the step.

Changes the subchart dummy step and the steps in the subchart that are in
pause status to execute status. The output status that was in effect at the time
the status was changed from execute to pause will be continued, and execution
will begin from the top.

Changes the subchart dummy step, and the steps in the subchart that are
halted, to execute status. The output status that was in effect at the time the sta-
tus was changed from execute to halt will be continued, and execution will begin
from the top.

Changes the subchart dummy step, and the steps in the subchart that are inac-
tive, to execute status. SA(210) also places the designated subchart entry step
in execute status, and starts operation from the top action. The step timer will be
reset and started.

ER (A50003): Turns ON when the step designated by N4 is undefined.

Turns ON when the subchart designated by N5 is undefined.

Turns ON when the subchart designated by N is not being
executed.

Note A50003 will be ON only in the above case. When A50003 is ON, nothing will be
executed.

4-2-3 PAUSE STEP - SP(211)

Ladder Symbol Operand Data Area

(21n) N: Step number ST
{sp N] P

Variations

jSP
Description SP(211) changes the status of a step or subchart from execute to pause. To des-

Note

Normal Steps Status

Execute

56

ignate a subchart, designate the step number of the dummy step calling the sub-
chart as the step number, N.

In pause status, the execution of actions with N, P, L, and D action qualifiers is
stopped, but the present values of TIM and TIMH instructions that have been
started continue to operate. The present values of other timers and counters, as
well as other outputs, are maintained. Step timers continue to operate, so be
careful when using L and D action qualifiers.

SP(211) cannot be executed for steps in an interrupt program.

The specific results of executing SP(211) for steps in each step status are de-
scribed below (for normal steps inside or outside of subcharts).

Changes step status from execute to pause. Execution of actions will be paused,
but output status will be maintained and the step timer will continue. When

SFC Control Instructions

Section 4-2

Pause, Halt, Inactive

Subchart Dummy Steps

Execute

Pause, Halt, Inactive

SP(211) is executed on the current step, execution of the actions in that step will
be paused beginning with the next execution cycle.

Step status does not change.

The specific results of executing SP(211) for steps in each step status are de-
scribed below (for dummy steps controlling subcharts).

Changes the status of the subchart dummy step from execute to pause. All ac-
tive steps in the designated subchart (including those in halt status) will be
placed in pause status. Execution of actions will be paused, but output status will
be maintained and the step timer will continue. If SP(211) is executed for a sub-
chart from within the same subchart, the actions within the only step containing
SP(211) will be paused beginning with the next execution cycle.

Step status does not change.

4-2-4 RESTART STEP - SR(212)

Ladder Symbol Operand Data Area
(212) N: Step number ST
[SR N1 .
Variations
i SR
Description SR(212) changes the status of a step or subchart from pause to execute.

Note

Normal Steps Status

Execute

Pause

Halt, Inactive

Subchart Dummy Steps

Execute

Pause

Halt, Inactive

SR(212) cannot be executed for steps in an interrupt program.

The specific results of executing SR(212) for steps in each step status are de-
scribed below (for normal steps inside or outside of subcharts).

Step status does not change.

Changes the step status from pause to execute. Execution will be resumed from
the beginning of the step, and output status will continue with the status that ex-
isted at the time the step was changed to pause status.

Step status does not change.

The specific results of executing SR(212) for steps in each step status are de-
scribed below (for dummy steps controlling subcharts).

Step status does not change.

Changes the status of the subchart dummy step and all steps in the subchart that
are in pause status from pause to execute. Execution will be resumed from the
beginning of the subchart, and output status will continue with the status that ex-
isted at the time the dummy step was changed to pause status.

Step status does not change.

57

SFC Control Instructions

Section 4-2

4-2-5 END STEP - SF(213)

Ladder Symbol Operand Data Area
(213) N: Step number ST
[SF N1 .
Variations
j SF
Description SF(213) changes the status of a step or subchart from execute or pause to halt.

Note

Normal Steps Status

Execute

Pause

Halt, Inactive

Subchart Dummy Steps

Execute

Pause

Halt, Inactive

58

In halt status, the execution of actions with N, P, L, and D action qualifiers is
stopped, but the present values of TIM and TIMH instructions that have been
started continue to operate. The present values of other timers and counters, as
well as other outputs, are maintained. Step timers continue to operate, so be
careful when using L and D action qualifiers.

SF(213) cannot be executed for steps in an interrupt program.

The specific results of executing SF(213) for steps in each step status are de-
scribed below (for normal steps inside or outside of subcharts).

Changes the step status from execute to halt. Execution of actions will be
stopped, but output status will be maintained and the step timer will continue
counting. When SF(213) is executed on the current step, execution of the ac-
tions in that step will be stopped beginning with the next execution cycle.

Changes the step status from pause to halt.

Step status does not change.

The specific results of executing SF(213) for steps in each step status are de-
scribed below (for dummy steps controlling subcharts).

Changes the status of the subchart dummy step from execute to halt. All active
steps in the designated subchart (including those in pause status) will be
changed to halt status. Execution of actions will be stopped, but output status will
be maintained and the step timer will continue counting. If SF(213) is executed
for a subchart from within the same subchart, the actions within only the step
containing SF(213) will be stopped beginning with the next execution cycle.

Changes the status of the subchart dummy step from pause to halt. All paused
steps in the designated subchart will be changed to halt status. Execution of ac-
tions will be stopped, but output status will be maintained and step timers will
continue.

Step status does not change.

SFC Control Instructions

Section 4-2

4-2-6 DEACTIVATE STEP - SE(214)

Ladder Symbol Operand Data Area
(214) N: Step number ST
[SE NJ P
Variations
i SE
Description SE(214) changes the status of a step or subchart from active (execute, pause or

Note

Normal Steps Status

Execute

Pause

Halt

Inactive

Subchart Dummy Steps

Execute

Pause

halt) to inactive status.

SE(214) does not necessarily result in transfer of active status from one step to
another. When SE(214) is executed, it simply makes the designated step or sub-
chart inactive.

SE(214) cannot be executed from any interrupt program other than a power-on
interrupt program. In addition, SE(214) cannot be executed for steps in any in-
terrupt program (including a power-on interrupt program).

The specific results of executing SE(214) for steps in each step status are de-
scribed below (for normal steps inside or outside of subcharts).

Changes the step status from execute to inactive. Execution of actions will be
stopped and the actions will be reset. Actions with the optional hold action quali-
fier, however, will be stopped but not reset. In addition, execution will be contin-
ued for actions with S-group AQs. The step timer will continue. If SE(214) is ex-
ecuted on the current step, step execution will be stopped directly after execu-
tion of the instruction.

Changes the step status from pause to inactive. Execution of actions will be
stopped and the actions will be reset. Actions with the optional hold action quali-
fier, however, will be stopped but not reset. In addition, execution will be contin-
ued for actions with S-group AQs. The step timer will continue.

Changes the step status from halt to inactive. The step’s actions will be reset.
Actions with the optional hold action qualifier, however, will not be reset. In addi-
tion, execution will be continued for actions with S-group AQs. The step timer will
continue.

Step status does not change.

The specific results of executing SE(214) for steps in each step status are de-
scribed below (for dummy steps controlling subcharts).

Changes status of subchart dummy step from execute to inactive, and makes
inactive all of the steps in the subchart that were active at the time the instruction
was executed. Actions will be stopped and reset. Actions with the optional hold
action qualifier, however, will be stopped but not reset. In addition, execution will
be continued for actions with S-group AQs. Step timers will continue. If SE(214)
is executed for a subchart from within the same subchart, step execution will be
stopped directly after execution of the instruction.

Changes status of subchart dummy step from pause to inactive, and makes in-
active all of the steps in the subchart that were active at the time the instruction
was executed. Actions will be stopped and reset. Actions with the optional hold
action qualifier, however, will be stopped but not reset. In addition, execution will
be continued for actions with S-group AQs. Step timers will continue.

59

SFC Control Instructions

Section 4-2

Halt

Inactive

Changes status of subchart dummy step from halt to inactive, and makes inac-
tive all of the steps in the subchart that were active at the time the instruction was
executed. Actions will be reset. Actions with the optional hold action qualifier,
however, will not be reset. In addition, execution will be continued for actions
with S-group AQs. Step timers will continue.

Step status does not change.

4-2-7 RESET STEP - SOFF(215)

Ladder Symbol Operand Data Area
(215) N: Step number ST
[SOFF N] P
Variations
i SOFF
Description SOFF(215) makes a designated step or subchart inactive and resets all of the

Note

Normal Steps Status

Execute

Pause

Halt

Inactive

Subchart Dummy Steps

Execute

60

actions in the step.

SOFF(215) does not necessarily result in transfer of active status from one step
to another. When SOFF(215) is executed, it simply makes the designated step
or subchart inactive.

SOFF(215) cannot be executed from any interrupt program other than a pow-
er-on interrupt program. In addition, SE(214) cannot be executed for steps in
any interrupt program (including a power-on interrupt program).

The specific results of executing SOFF(215) for steps in each step status are
described below (for normal steps inside or outside of subcharts).

Changes the step status from execute to inactive. Execution of all actions (in-
cluding actions with the optional hold action qualifier and actions with S-group
AQs) will be stopped and the actions will be reset. The step timer will also be
stopped. If SOFF(215) is executed on the current step, step execution will be
stopped directly after execution of the instruction.

Changes the step status from pause to inactive. Execution of all actions (includ-
ing actions with the optional hold action qualifier and actions with S-group AQs)
will be stopped and the actions will be reset. The step timer will also be stopped.

Changes the step status from halt to inactive. All actions (including actions with
the optional hold action qualifier and actions with S-group AQs) will be stopped
and reset. The step timer will be stopped.

Execution of actions with S-group AQs will be stopped and the actions will be
reset. Actions with the optional hold action qualifier will be reset. The step timer
will also be stopped.

The specific results of executing SOFF(215) for steps in each step status are
described below (for dummy steps controlling subcharts).

Changes the status of the subchart dummy step from execute to inactive and
makes all of the steps in the subchart inactive. Execution of all actions (including
actions with the optional hold action qualifier and actions with S-group AQs) will
be stopped and the actions will be reset. Step timers will also be stopped. If
SOFF(215) is executed for a subchart from within the same subchart, step ex-
ecution will be stopped directly after execution of the instruction.

SFC Control Instructions

Section 4-2

Pause

Halt

Inactive

Changes the status of the subchart dummy step from pause to inactive and
makes all of the steps in the subchart inactive. Execution of all actions (including
actions with the optional hold action qualifier and actions with S-group AQs) will
be stopped and the actions will be reset. Step timers will also be stopped.

Changes the status of the subchart dummy step from halt to inactive and makes
all of the steps in the subchart inactive. Execution of all actions (including actions
with the optional hold action qualifier and actions with S-group AQs) will be
stopped and the actions will be reset. The step timer will also be stopped.

Resets all actions of steps in the subchart. Execution of Actions with the optional
hold action qualifier and actions with S-group AQs will also be stopped and the
actions will be reset. Step timers will also be stopped.

4-2-8 TRANSITION OUTPUT - TOUT(202)

Ladder Symbol

(202)

[TOUT]

Description

Example

ST0000

—— TNO0000

ST0010

Note

TOUT (202) outputs the result of a transition condition operation to the Transition
Flag to control the transition condition. If TOUT (202) is executed with an ON ex-
ecution condition, the Transition Flag will be turned ON. If TOUT(202) is ex-
ecuted with an OFF execution condition, the Transition Flag will be turned OFF.
TOUT(202) cannot be used outside of a transition program, and writing to the
Transition Flag area cannot be achieved with any instructions other than
TOUT(202) and TCNT(123) (see next section).

If TOUT(202) and/or TCNT(123) are used more than once in one transition pro-
gram, the status of the Transition Flag will be controlled by the last TOUT (202) or
TCNT(123) in the program.

The ON/OFF status of a Transition Flag determined by TOUT(202) is held until
the next execution of TOUT(202), even if the step status changes.

1. A50015 (First Cycle Flag) cannot be used within a transition program.
2. The following three conditions must be met in order for active status to be
transferred from one step to another:
1) The transition condition (i.e., the Transition Flag) must be ON.
2) The step(s) before the transition must be active (execute or halt, but not
pause).
3) The step(s) after the transition must be inactive.

In the following example, if CIO 000000 is ON and D100000 and D20000 have
the same content, the Equals Flag, A50006, will turn ON, and TOUT(202) will
turn ON the Transition Flag. If CIO 00000 is OFF or D100000 and D20000 have
different contents, TOUT(202) will turn OFF the Transition Flag.

Ifthe Transition Flag turns ON, ST0000 is active (but not paused), and ST0010 is
inactive, then all of the transition conditions are met and active status will be
transferred from ST0000 to ST0O010.

TNOO0OO
S — Transition condition —
o Gl
020 = (202)
|| [C(JMP) D10000 D20000 | L TouT]
(001)
[END]

61

SFC Control Instructions

Section 4-2

4-2-9 TRANSITION COUNTER - TCNT(123)

Ladder Symbol
(123)

— T TCNT N

Operand Data Areas

s] N: Counter number C
S: No. of executions CIO, G, A, T/C, #, DM, DR, IR

Limitations

Description

Precautions

Flags

Example

62

Note

Note

The contents of word S must be in BCD.

TCNT(123) turns a corresponding Transition Flag ON or OFF according to the
number of times the transition program is executed.
The counter is started the first time TCNT (123) is executed with an ON execution

condition after it is reset and the present value is incremented starting with the
second execution. Therefore, the actual number of execution will be S + 1.
When the present value reaches the value set for S, the Transition Flag and the
Counter Flag will turn ON.

The status of the transition counter is maintained even when step status is
changed, so the transition counter should normally be reset using CNR(236) in
the previous step.

If TOUT(202) and/or TCNT(123) are used more than once in one transition pro-
gram, the status of the Transition Flag will be controlled by the last TOUT (202) or
TCNT(123) in the transition program.

TCNT(123) cannot be used outside of a transition program and writing to the

Transition Flag area cannot be achieved with any instructions other than
TOUT(202) (see previous section) and TCNT(123).

1. A50015 (First Cycle Flag) cannot be used within a transition program.
2. The following three conditions must be met in order for active status to be
transferred from one step to another:
1) The transition condition (i.e., the Transition Flag) must be ON.
2) The step(s) before the transition must be active (execute or halt, but not
pause).
3) The step(s) after the transition must be inactive.

The same counter numbers are used by CNT, CNTR(012), and TCNT(123). Do
not use the same number to define more than one counter, regardless of the
counter instruction used.

The transition counter counts each time the transition program is executed.
When using a parallel join, be particularly careful of the number that is set, be-
cause the transition program will be executed each time the steps just above the
transition are executed.

ER (A50003): ON when the content of N is not a counter number.
ON when the content of S is not BCD data.
On when the content of *DM or *EM word is not BCD.

A50003 will be ON only in the above case. When A50003 is ON, nothing will be
executed.

When the program for TN0020 is executed for the first time, counter C0100 will
be started. After that, the transition program will be counted each time it is ex-
ecuted. As a result, the Completion Flag for C0100 will turn ON when the pro-
gram has been executed 1 + 15 times, turning ON the Transition Flag for
TNO0020. From the 17th execution onwards, C0100 and the Transition Flag will
remain ON until reset in a subsequent execution cycle.

SFC Control Instructions Section 4-2

—— TNO0010
A;sgo
ST0010 (123)

| [TCNT 0100 #0015
—~ TNO0020 Always ON (001)

[END]
§T0020

Note Here, CNR(236) would be used in the ST0010 action block to reset counter
C0100 with A50015 (First Cycle Flag).

4-2-10 READ STEP TIMER -TSR(124)

Ladder Symbol Operand Data Areas

(124) N: Step number CIO, G, A, T/C, #, DM, DR, IR
—— TSR N D J

Variations
j TSR

D: Destination CIO, G, A, T/C, DM, DR, IR

Description When executed with an ON execution condition, TSR(124) reads the present
value (PV) of the step timer for the specified step and stores it as a binary valuein
the word designated by D. When executed with an OFF execution condition,
TSR(124) does nothing.

Step Timers Step timers time SFC steps and are used for operations such as measuring AQ
timing when the AQ uses a set value to control action execution. Each step has
its own step timer. Step timers are incremental timers that are reset and begin
counting when the step becomes active, and which retain the present value
when the step becomes inactive. If, however, the actions in the step continue to
be executed (e.g., for S-group AQs), the step timer continues operating until all
execution has been completed.

The PC can be set so that step timers operate in increments of either 0.1 second
or 1 second. The increment is set in the PC system settings. The default setting
is 0.1 second. Step timers can count up to 6,553.5 s (when the unit is 0.1 s) or
65,535 s (when the unitis 1 s). The step timer retains the maximum value if the
present value goes beyond the timeable range.

Step timer values are stored and handled as binary data.
Flags ER (A50003): ON when the N is set outside of the range.
On when the content of *DM or *EM word is not BCD.

Note A50003 will be ON only in the above case. When A50003 is ON, nothing will be
executed.

Example When CIO 000000 is ON in the following example, the present value of the step
timer for step ST0100 will be output to DO0500 in binary data. This is unrelated to
the active/inactive status of the step.

0000
00 (124)
‘ | [TSR #0100 D00500

PV of step 0100 timer D00500
64A8 |:“ > 64A8 Unit Time
0.1s 2,5768s
1s 25,768 s

63

SFC Control Instructions Section 4-2
4-2-11 WRITE STEP TIMER - TSW(125)

Ladder Symbol Operand Data Areas

(125) S: Source CIO, G, A, T/C, DM, DR, IR
—{Tsw S N]
N: Step number CIO, G, A, T/C, #, DM, DR, IR

Variations

i TSW

Limitations The contents of S must be set with binary data.

Description TSW(125) is used to change the present value (PV) of the step timer. If
TSW(125) is executed with an ON execution condition, the contents of word Sis
written as the present value for the step timer for step N. When executed with an
OFF execution condition, TSW(125) does nothing.

Refer to the previous instruction for details on step timers.
Flags ER (A50003): ON when the N is set outside of the range.
ON when the content of *DM or *EM word is not BCD.
Note A50003 will be ON only in the above case. When A50003 is ON, nothing will be

Precautions

Example

64

executed.

Step timers are used to control the execution timing of actions with certain AQs.
Be careful when making changes with TSW(125).

When CIO 000000 is ON in the following example, the contents of D00500
($7E3A) will be written as the present value for the step timer of step ST0100.
This is unrelated to the active/inactive status of the step.

0000
00 (125)
‘ | [TSW D00500 #0100

D00500 PV of step ST0100 timer
Unit Time
7E3A —> 7ESA 01s 32314s
1s 32,314 s

Program Example

Section 4-3

4-3 Program Example

The operation of the SFC control instructions used in the following example is
described after the program.

Main SFC Program

ST0010

—— TNO0010

| |
‘ ST0020 ‘ ST0120

—1— TNO0020

— TNO120

‘ ST0030 H ST0130 H 0400

—— TN30

ST0040 03

Subchart Called

N from ST 0130

ST0400

—1— TNO0500

— TNO0600

‘ ST0500 ‘ ST0600

—— TNO0510

— TNO0610

‘ ST0510 ‘ ST0610

—1— TNO0520

ST0700

— TNO0620

Action Program for AC0020 (ST0020)

ST

0130 (210)

X [isA 0500 #0400 |—|
0000

?‘" (030)

| [MOV 1000 D04000 |——
0000

("1‘ @11)

X [jsP 0500 }—
ST

0500

X [v 0001 #0060 ——
T0‘0‘01 - e2)

X [jSR 0500 }—
0000

("2‘ (213)

X [jSF 0500 }—

(001)
[END }—|

Action Program for AC0500 (ST0500)

0000
o1 (040)

|| r
| | XFER #0100

D0400 D10000 |—
L [TIim 0002 #0060 |——

AN
Action Block for ST0020
AQ sv Action FV
Action Block for ST0030
AQ sV Action FV
Action Block for ST0500
AQ sv Action FV

To001 (214)
| [JSE 0500 —
L— [Tiv 0002 #0060 |—
T0002 @15)
H { jSOFF 0500 |—
(001)
[END }—

SA(210) in AC0020 When subchart ST0400
(i.e., the subchart with initial step ST0400) is active,
SA(210) changes the status of ST0500 in the subchart
to execute status. (Subchart ST0400 is executed
while ST0130 is active.)
SP(211) in AC0020

of ST0500 to pause.
SR(212) in AC0020 SR(212) changes the status
of ST0500 back from pause to execute.

SF(213) in AC0020 SF(213) changes the status
of ST0500 to halt. Execution of action AC0500 will
continue because it has an “S” AQ.

SE(214) in AC0500 SE(214) changes the status
of ST0500 to inactive. Execution of action AC0500 will
continue because it has an “S” AQ.

SOFF(215) in AC0500 SOFF(215) changes the sta-
tus of ST0500 to inactive. The action in the step is
stopped and reset even though it has an S-group AQ.

SP(211) changes the status

65

SECTION 5§
SFC Execution Cycle and Errors

This sections describes how the status of steps and the action qualifiers of actions determines the order of SFC program execu-
tion. The methods used to compute user program execution time and error codes are also provided.

5-1 Basic Execution CycClettt it e 68
5-2 Execution Cycle with Multiple Active Steps 68
5-3 Execution Cycle with Subcharts i i 69
5-4 Power-Up and Restart Execution i innenen.. 71
5-4-1 Power-Up Executionc.ioniiniininin i, 71
5-4-2 Restart Continuationottt ittt 71
5-4-3 TItems Retained and Not Retained with Restart Continuation 73
5-5 User Processing Timeottt e e e e et 74
5-6 SFCError Codesottt e e et et e e e e 76
5-6-1 Fatal SFCEITOrsottt e e e e e 76
5-6-2 Non-fatal SFCEITOrs 76
5-6-3 SFC Program Precautionsttt 77

67

Execution Cycle with Multiple A ctive Steps

Section 5-2

5-1

Step Execution Process

Basic Execution Cycle

In an SFC program, multiple steps can become active simultaneously, and multi-
ple actions can be executed simultaneously according to their action qualifiers
(AQs). Furthermore, transition programs are also executed. Actually, all of these
processes only appear to be executed simultaneously. In reality, they are ex-
ecuted in sequential order as a part of the overall execution cycle.

In an SFC execution cycle, the processes shown in the illustration below are ex-
ecuted for all active steps. Nothing is executed for inactive steps.

AQ evaluation

Execution of Step status Step status

- transfer
actions transfer

{ evaluation { |

Execution process for one active step ‘

AQ Evaluation

Execution of Actions

Note

Status Transfer Evaluation

Step Status Transfer

The action qualifiers are evaluated to determine whether or not each action is to
be executed.

All the actions whose AQ evaluation indicates execution are executed in the or-
der in which they are listed in the action block. If an action is defined using a bit
address, rather than with a program, the bit is turned ON and OFF with the timing
of action execution.

If there is a loop in an action and the action does not end, the next action will not
be executed and active status will not be transferred to the next step. If this oc-
curs, there will be a cycle time overrun and operation will be stopped.

The transfer conditions are evaluated to determine whether or not active status
is to be transferred from a given step to the next step. The transition program
following the step is executed or the status of the bit defined as the transition
condition is examined. When there are multiple steps active at the same time
(as, for example, in cases of parallel joining), the transition program after these
steps is executed once following each active step. In other words, the same tran-
sition program may be executed a number of times within the same cycle.

When it is determined that active status will be transferred to the next step, the
currently active step will be made inactive and the next step will be made active.

5-2 Execution Cycle with Multiple Active Steps

68

When there are multiple steps active at one time, the execution process de-
scribed above will be performed for each active step. The order of execution will
depend on the positions of the steps and the order of priority for initial steps. For
details on the order of priority for initial step execution, refer to page 24, Initial
Steps.

Execution Cycle with Subcharts Section 5-3

ST0000

—— TNO0000

‘ ST0001 ‘ ‘ ST0002 ‘ ST0003

—— TNO0O0O1 —— TNO0002 —— TNO0003

‘ ST0004 ‘ ‘ ST0005 ‘ ST0006
*\» TNO004

In the SFC program shown above, the following execution cycle will be repeated
if only STO000 is active. If the I/O refreshiis setto cyclic refresh, the refresh will be
executed at the end of each cycle.

’—> ST0000— 1/O refresh *‘

When the condition for TNOOOO is met, active status is transferred from ST0000
to ST0001, STO002, and ST0003 simultaneously. After the status has been
transferred, the step that has become inactive will be left out of the cycle, and the
steps that have newly become active will be executed instead. These newly ac-
tive steps will be executed in order from left to right in the SFC program. In the
example above, STO000 would be left out and ST0001, ST0002, and ST0003
would be executed. The order of execution would be as follows:

’—> ST0001— ST0002—— ST0003— /O refresh *‘

If the condition for TNOOO2 is then met, and active status is transferred from
ST0002 to STO005, the execution cycle will be as follows:

’—> ST0001— ST0005—— ST0003— /O refresh *‘

As can be seen from these examples, the execution cycle of an SFC follows a
fixed order.

5-3 Execution Cycle with Subcharts

The following example illustration shows a case where a subchartis executed as
part of the cycle. Actions have been omitted in the illustration.

ST0000 ST0010

—— TNO0000 —— TNO0010

‘ ST0001 ‘

H ST0002 H 0010 ‘ ST0003 ‘ ST0011 ST0012

‘ —— TNOO11 —— TNO0012

— TNO0O0O01
ST0013 ST0014
ST0004

69

Execution Cycle with Subcharts Section 5-3

Actions with S-group AQs

70

Processing of
active step

In this SFC program, if only ST000O is active, the execution cycle will be as
shown below. If the I/O refresh is set to cyclic refresh, the refresh will be ex-
ecuted at the end of each cycle.

’—> ST0000— 1/O refresh *‘

When the condition for TNOOOO is met and active status is transferred from
ST0000to STO001, STO002, and STO003, the execution cycle will be as follows:

’—> ST0001— ST0002—— ST0003— /O refresh *‘

In this case, ST0002 is a subchart dummy step, so subchart 0010 will be called
and step ST0010 will also go to active status. The execution order of the active
steps in the subchart will thus occupy the position of ST0O002 in the cycle.

’—> ST0001—= ST0010—= ST0003—— /O refresh *‘

The active status of the subchart dummy step will not be transferred until execu-
tion of the subchart has been completed; so, even if TNO0O1 turns ON, ST0004
will not become active until subchart 0010 has been completely executed. Eval-
uation of TN0O0O1, however, will be conducted with each cycle while the subchart
is being executed.

When TNO0010 turns ON, the active status within the subchart will be transferred
from ST0010to ST0011 and ST0012. At that time, the execution cycle will be as
follows:

’—> ST0001—= ST0011—— ST0012—— ST0003— /O refresh *‘

If TNOO11 then turns ON and the active status within the subchart is transferred
from ST0011 to ST0013, the execution cycle will be as follows:

’—> ST0001—= ST0013—= ST0012—— ST0003—— /O refresh *‘

ST0013 is the subchart return step, so TN0O0O1 (which follows the subchart
dummy step, ST0002) will now become effective. When TN0O0O1 turns ON, ac-
tive status will be transferred from ST0001, ST0002, and ST0003 to ST0004. At
this point, the execution of the subchart will be complete and ST0014 will not be
executed. When the subchart is finished, all of the actions within the subchart,
including ST0012, go to inactive status. The execution cycle will then be as fol-
lows:

’—> ST0004— 1/O refresh *‘

Actions with S-group AQs (S, SL, SD, and DS) are executed once each cycle,
after all active steps have been processed. Therefore, if a step has an action with
an S-group AQ, that action will not be executed during step processing. Rather, it
will be executed together with other S-group actions at the end of the cycle. All
actions other than those with S-group AQs are executed during step processing.

Execution of

Processing of actions with I/O refresh

active step S-group AQs

SFC execution cycle

Power-Up and Restart Continuation Section 5-4

Even when actions are defined using bit addresses, they turn ON and OFF with
the execution timing described above. Therefore, when actions with S-group
AQs are defined using bit addresses, the bits are turned ON or OFF at the end of
each cycle.

Up to 127 actions with S-group AQs can be executed within the same cycle. Any
actions exceeding 127 will not be executed, and a non-fatal SFC error will be
generated.

5-4 Power-Up and Restart Execution

5-4-1 Power-Up Execution

If a power-on interrupt program exists and the restart continuation setting is
made before the power is cut, then when the power is turned back on, execution
will commence from the power-on interrupt program.

When operation is started under normal conditions, the program will be ex-
ecuted from all of the initial steps in the program as described in 3-3 Initial Steps.
All steps other than the initial steps will start out inactive.

5-4-2 Restart Continuation

1,2, 3.

Power-On Interrupt Program

Basic Operation Example

There may be occasions when the program will be interrupted due to a power
failure or other cause, and you will want to resume operation from the point
where the program left off. At such times you can use the restart continuation
setting.

In order to execute restart continuation, you must follow the procedure outlined
below. The mode when the power is cut must be either RUN or MONITOR.

1. Turn ON the Restart Continuation Bit (A00011).

2. Turn ON the IOM Hold Bit (A00012).

3. In the PC system settings, set both of the above bits (A00011 and A00012)
to retain status at power-up.

4. In the PC system settings, set the mode at the time of power-up to either
RUN or MONITOR.

5. Create a power-off interrupt program. (For details on how to create a pow-
er-off interrupt program, refer to the CVSS operation manuals.)
6. In the PC system settings, set the power-off interrupt to “enable.”
For details on restart continuation, refer to the CV-series PC Operation Manual:
Ladder Diagrams.

A power-on interrupt program is executed at the beginning of the program only
when restart continuation is enabled. The power-on interrupt program is written
as shown in the illustration below.

PWR ON RET

When using a step control instruction to select the step that is to execute initial-
ization and resume operation, write the instruction in this power-on interrupt pro-
gram.

If the restart continuation setting is made before the power is cut, then when the
power is turned back on, execution will commence from the power-on interrupt

71

Power-Up and Restart Continuation Section 5-4

72

program. If the power-on interrupt program finishes, or if there is no power-on
interrupt program, then execution will resume with the next instruction after the
last one that was completed at the time of the power failure.

If the active status of steps has been changed by a step control instruction in the
power-on interrupt program, then execution will commence from the beginning
of the currently active steps.

The example illustration below shows status changes for restart continuation.
The black dots indicate the steps that are active.

Status Before Power Failure

PR ON T T

| | |
® i |

‘ ‘ (During execution) ‘

PWR ON RET

R

Status when Powered Up Again

PaRON T)

S0 o0 0

‘ ‘ (Not executed) ‘

PWR ON RET

The steps that were active just prior to the power failure remain active, but their
programs will not be executed. The power-on interrupt program will be executed
instead.

4

Status after Completion of Power-On Interrupt Program

PR ON T T

— 0 S0 o] e

‘ ‘ (Execution restarted) ‘

PWR ON RET

Execution will be resumed with the instruction after the last one that was ex-
ecuted at the time of the power failure. If there is a power failure during execution
of an 1/O interrupt or scheduled interrupt program, execution will be resumed
from that point in the program.

Power-Up and Restart Continuation Section 5-4

5-4-3 Items Retained and Not Retained with Restart Continuation

Items Retained

Items Not Retained

The following are retained after a power interruption if restart continuation is
designated.

* Active status of steps
» Execution status of interrupt programs

* Causes of interrupt programs accepted before power interruption (except for
power-on interrupt)

* Program execution position

* Interlock status

* /O memory status

* Forced set/reset status (along with AO0013 and PC system settings)
* PV of timer/counter

* PV of step timer

* AQ (L, D, SL, SD, DS) lapse time

* Error history information

* Trace execution status (If Trace Execution at Power-Up is set with a PC system
setting, then the PC system setting is given priority and the trace is made the
initial start.)

* Data saved by CCS(173)
* Index register contents

* The Expansion DM bank number (Even when EMBC(171) is used in a pow-
er-off interrupt program, the status just prior to execution of the power-off inter-
rupt program is restored.)

The following are not retained after a power interruption if restart continuation is
designated. The status of any of the first eight items required after a power inter-
rupt must be stored in held memory using the power-off interrupt program and
then restored using the power-on interrupt program.

* Error status (Error history information is retained.)

* /O memory access prohibit status from Peripheral Devices programmed with
IOSP(187) and I/O Control Unit, I/O Interface Unit, and Remote /O Slave Unit
display data programmed with IODP(189)

* CPU Bus Service Disable Bits (word A015)

* Peripheral Service Disable Bit, Host Link Service Disable Bit, and I/O Refresh
Disable Bit (word A017)

* Registered message data

* |/O interrupt mask status

* Scheduled interval set time

¢ Data register contents

* Execution status of differential monitor
* Execution time count status

* Execution status of pause monitor

Also, execution of the following instructions may not be properly completed de-
pending on the timing of the power failure:

SEND(192), RECV(193), CMND(194), READ(190), WRIT(191), FILR(180),
FILW(181), FILP(182), FLSP(183)

73

User Processing Time
-

Section 5-5

5-5 User Processing Time

(A) Active Steps

(B) Transition Evaluation

(C) Action Execution

74

The time required for processing of a user program will vary depending on fac-
tors such as the number of active steps, the number of transitions evaluated, and
the number of actions executed in each step. This section explains how process-
ing time for a user program is calculated.

The execution time for a user program can be found with the following formula.
User program execution time = (A) + (B) + (C), where

(A) = Processing time for active steps

(B) = Processing time for transition evaluation

(C) = Processing time for action execution
The values of (A) through (C) can be found as follows:

This is the time required in a cycle for processing steps with execute status (not
executed for steps pause or halt status even if the steps are active). It is arrived
at by means of the following equation:

(A) = Constant 25 ms + (10 ms) x number of active steps

This is the total processing time involved in evaluating transitions in a cycle. The
processing time for individual transitions will vary depending on how the transi-
tions are defined (bits or transition programs) and how many times they are eva-
luated. The processing time for one transition is as follows:

Transition bits: 8 ms
Transition programs: Constant 36 ms + instruction processing time

For details on instruction processing time, refer to the table of instruction execu-
tion times in the CV-series PC Operation Manual: Ladder Diagrams.

Be careful to take into account the fact that, when a parallel join is used, a single
transition will be evaluated several times in one cycle. In other words, transition
evaluation is performed individually for each active step after which a transition
is connected. This process is repeated for transitions connected after multiple
active steps. The transitions will be evaluated for as many times as the number
of active steps before it.

In the following example, if ST0100, ST0101, and ST0102 are all active, then
TNOO010 will be evaluated three times each cycle.

‘ ST0100 ‘ ‘ ST0101 ‘ ST0102

% TNOO10

This is the time required in a cycle to process actions. The processing time re-
quired for individual actions will vary depending on how the actions are defined
(bits or action programs). The processing time for one action is as follows:

Action bits: 6 ms
Action programs: Constant 35 ms + instruction processing time

For details on instruction processing time, refer to the table of instruction execu-
tion times in the CV-series PC Operation Manual: Ladder Diagrams.

Depending on the AQ, the numbers shown above may increase by several mi-
croseconds.

User Processing Time
-

Section 5-5

Example: Calculating User Program Execution Time
—— TNO100
ST0001

—— TNO101

‘ ST0002 ‘ ‘ ST0003 ‘ ST0004

—1— TNO0102 —1— TNO103
—— TNO104

‘ ST0005 ‘ ‘ ST0006 ‘ ST0007

—— TNO106

—— TNO105

—— TNO0107

—— TNO108

ST0009 ST0010

—1— TNO109

STO0000 Action Block

Is | [AC0000
ST0004 Action Block
N 00100
S AC1000
STO0005 Action Block
N 00200
N AC2000
ST0006 Action Block
IN | [00300 |

In this program, let us suppose that ST0004, ST0005, and ST0006 are currently
active (execute status), and that execution of ACO000 was begun earlier when
ST0000 was active. The transitions that will be evaluated in this cycle are
TNO0104, TNO105, and TNO108. TNO108 will be evaluated twice in the cycle (i.e.,

once each for ST0005 and ST0006).

The contents of TNO104, TN0105, and TNO108 are as follows:

TNO104: Bit address
TNO105: Ladder program
TNO108: Bit address

The total processing times for execution of the action and transition programs

(ladder diagrams) are assumed to be as follows:

ACO0000 .. 2,000 ms
AC1000 .. 1,500 ms
AC2000 .. 3,000 ms
TNO105 30 ms

The total time required for program execution can then be calculated as follows:

(A) Active Steps Constant 25 ms + (10 ms) x 3 = 55 ms

75

SFC Error Codes Section 5-6

(B) Transition Evaluation 8 ms for TN0104 + (constant 36 ms + 30 ms) for TNO105 + (8 ms for TNO108 x 2)
=90 ms

(C) Action Execution

35 ms (constant) + 2,000 ms = 2,035 ms ... [AC0000]
35 ms (constant) + 1,500 ms = 1,535 ms ... [AC1000]
35 ms (constant) + 3,000 ms = 3,035 ms ... [AC2000]
6msx3=18ms [bits 000100, 000200, and 000300]

Total 6,623 ms

User program processing time = (A) + (B) + (C)
=55 ms + 90 ms + 6,623 ms
= 6,768 ms
Note 1. If active status is transferred during the course of a cycle, the execution time

for that portion of the program will be lengthened. The same applies when
an interrupt program is executed.

2. If only action programs and transition programs are used, use the following
equation:

User processing time = Constant 35 ms + instruction processing time

5-6 SFC Error Codes

5-6-1 Fatal SFC Errors

If a fatal SFC error occurs, the SFC Fatal Error Flag (A40107) will turn ON and
one of the following error codes (in BCD) will be set in word A414.

Code Error Content Possible correction
0001 No active step There are no active steps. Check the program.
0002 No subchart There is no subchart entry step for the subchart | Check and then re-transfer
dummy step, or the subchart number is the program.
incorrect.
0003 No initial step There are no initial steps in the program. Create an initial step and
then re-transfer the program.
0007 No action set There is no action program set, or the bit Check and then re-transfer
address for the action is incorrect. the program.
0008 No transition set There is no transition program set, or the bit
address for the transition is incorrect.
0014 Interrupt return error | An interrupt return terminal was executed Check the program.
outside of an interrupt program.
0015 Subchart return error | A subchart return step was executed outside of
a subchart program.
0004 to 0006, | Memory error Memory contents are incorrect. Re-transfer the program.
0009 to 0013

5-6-2 Non-fatal SFC Errors

If a non-fatal SFC error occurs, the SFC Non-fatal Error Flag (A40211) will turn
ON and one of the following error codes (in BCD) will be set in word A418.

76

SFC Error Codes Section 5-6
Code Error Content Possible correction
0001 Overlapping action The program attempted to execute the Check the program. If you wish, you can

execution

same action from more than one step at
the same time.

make a PC system setting so that
overlapping action execution will not
generate an error. With the default setting,
this non-fatal SFC error is generated.

AQ execution (Note)

0002 | S-group AQ overuse | The program attempted to simultaneously | Check the program.
(Note) execute more than 127 actions with
S-group AQs. Any actions that exceed the
maximum allowable 127 will not be
executed.
0003 | Overlapping S-group | The program attempted multiple Check the program.

execution of the same action having an
S-group AQ.

Note S-group AQsinclude S, SL, SD, and DS. Up to 127 S-group AQ actions can be executed

simultaneously.

5-6-3 SFC Program Precautions

If FILP(182) is executed in the first cycle when a step becomes active, an over-
lapping action execution error will be generated.

An action program cannot be created which uses the same action number more
than once in the same step. The following action block is thus incorrect.

Incorrect
N AC0010

77

SECTION 6
SFC Application Examples

This section provides examples that illustrate some specific applications of SFC programs. The last example also describes
the differences between ladder diagrams and SFC programs and shows how one example program can be converted.

6-1 Example 1: Sequential Controlt i 80
6-2 Example 2: Conditional Branching and Joining 81
6-3 Example 3: USiNg AQS . ..ottt e e e e e 84
6-4 Example 4: Parallel Branching and Joining 88
6-5 Example 5: Ladder vs SFC e 91

79

Example 1: Sequential Control Section 6-1

6-1 Example 1: Sequential Control

This example shows how to use SFC programming for sequential processing.

Operation In this example, the industrial tool shown in the illustration is used to cut work-
pieces.

Main axle

/ Workpiece

ﬂ b Advance limit switch

] h Reverse limit switch

oSlonoy ~=—
80UBAPY —=

Bit holder

The following operation is performed:

1,2, 3... 1. When the start switch is turned ON, the program first checks to be sure that
the bit holder is in the reverse position (at the reverse limit switch). Then it
begins rotating the main axle. Two seconds later it advances the bit holder.

2. When the bit holder reaches the advance position (the advance limit switch),
it stops for one second and is then reversed.

3. When the bit holder reaches the reverse position (the reverse limit switch), it
stops. The rotation of the main axle also stops.

1/0 Devices I/O devices are allocated to /O bits as shown below. | prefixes indicate inputs; Q
prefixes, outputs. (These prefixes are used on CVSS displays.) The symbols are
used in the action blocks to indicate the bits that are controlled by each action.

Name Symbol Allocation
Start switch PBS 1000001
Advance limit switch LSF 1000002
Reverse limit switch LSR 1000003
Main axle motor SM Qo00101
Bit holder advance cylinder SVF Q000102
Bit holder reverse cylinder SVR Q000103
Timer Chart Operation timing is illustrated below.

PBS

LSF

LSR -

SM

SVF

SVR

80

Example 2: Conditional Branching and Joining Section 6-2

SFC Program The following program shows how the above operation can be programmed as
sequential steps. A transition number is required even when a transition is de-
fined as a bit. In the chart, these transitions are enclosed in parentheses. The
transition program is shown as a mnemonic list.

»
=
o Y
o
o
o

— TNO00O

Main axle ON.
ST0001
|: S SM Advance 2 s later.
I sF R SVR Note: R SVR is an interlock for SVF.
(TNO100) SD #0020 SVF
ST0002 R SVF Reverse 1 s later.
1 s SD | #0010 | SVR Note: R SVF is an interlock for SVR.
(TNO101)
ST0003 R SM Main axle OFF.
R SVR Reverse OFF.
—1 Normally ON

(TNO102)

TNOO0OO program
L—> STO000 - ------------

. TNOO0O0O :
" LD PBS
" AND LSR
| TOUT(202) ‘
. END ‘

6-2 Example 2: Conditional Branching and Joining

This example shows how to use conditional branching and joining together with
a subchart to provide for emergency processing and to switch between manual
and automatic operation.

Operation In this example the fluid in a tank rises until it reaches the upper limit, and then it
is discharged.

Inlet valve
SVI ~— Fluid

Upper-limit
switch
(LBU)

Lower-limit
switch
(LBD)

The following operation is performed:

1,2 3. 1. During automatic operation, when the fluid level falls below the lower limit,
fluid is added until it passes the upper limit.

2. During automatic operation, when the fluid level rises above the upper limit,
fluid is discharged until it passes the lower limit.

81

Example 2: Conditional Branching and Joining Section 6-2

/O Devices

Main SFC Program

82

3. During manual operation, both the inlet valve and the outlet valve will be
open while their respective push-button switches are being pushed.

4. If the emergency stop switch is pushed, both the inlet valve and the outlet
valve will be closed. Operation can be restarted with the start switch.

I/O devices are allocated to /O bits as shown below. | prefixes indicate inputs; Q
prefixes, outputs. (These prefixes are used on CVSS displays.) The symbols are
used in the program to indicate the bits that are controlled.

Name Symbol Allocation
Emergency stop switch (push-button) PBE 1001001
Automatic operation switch CSA 1001002
Manual operation switch CSM 1001003
Start switch (push-button) PBS 1001004
Manual inlet valve switch PBI 1001005
Manual outlet valve switch PBO 1001006
Upper-limit switch LBU 1001007
Lower-limit switch LBD 1001008
Inlet SvI Q002001
Outlet SVO Q002002

The following program shows how the above operation can be programmed. A
transition number is required even when a transition is defined as a bit. In the
chart, these transitions are enclosed in parentheses. The action and transition
programs are shown as mnemonic lists.

The main program is divided into two. Both parts of the program are started with
initial steps when power is turned on.

The first part of the program uses ST0001 for emergency stop processing, and
the system will be completely reset if PBE is turned ON. In the section part of the
program, ST0031 is a subchart entry step number for automatic operation, and
ST0041 is a subchart entry step number for manual operation. Both of these pro-
gram sections are shown below.

Emergency Stop AC0001 program
) ST Always ON Flag
' SOFF(215) 0003 :
' SOFF(215) 0004 ‘
ST0000 | |
[sroooo_]| ' SA(210) 0002 9999 |
- " END |
MNO100) ot
ST0001 R Svi
1 Always ON R Svo
(TNO101) N ACO0001

— ST0000

Example 2: Conditional Branching and Joining Section 6-2

— . TNOOO2 . TNO0O3
' LDNOT PBE ' LDNOT PBE |
§T0002 . AND PBS . AND CSM
.+ AND CSA ANDNOT CSA
' ANDNOT CSM ' TOUT(202) !
| e | TOUT(202) ' END(001) !
TNO002 TNO003 ! END(001) ! !
ST0003 0031 ST0004 o041 ooy
| Always ON L Aways ON
(TNO102) (TNO103)
— ST0002 — ST0002
Automatic Operation Manual Operation
SFC Subcharts Here are the subcharts called by the second part of the main program. Because

conditional branching is used, only one of these will become active at a time.

TN0031
LDNOT LBU
TOUT(202)
END(001)

Automatic Operation

ST0031

+ TN0032 |
LD CSM !
OR NOT PBS :
TOUT(202) }
ST0032 R SV1 ST0033 R SV0 END(001) |

N SVO N SV1i TNO033
LD CSM
OR NOT PBS

LBU —— TN0031
(TNO104)

TOUT(202)
END(001)

— LBD — TN0032 — TN0033 — LBU
(TNO105) (TNO106)

— ST0033 — ST0032
ST0034

Manual Operation . TNO042 |
LD NOT PBI :
TOUT(202) !

ST0041 END(001)

+ TNO043

?TBr\:o1o7) (Pﬁx?ows) LD NOT PBO
TOUT(202)

ST0042 R SVo stz |— R Svi . END(001) 1

N Sv1 N SVo

—— TNO0044

. TN0044

—— TN0042 —— TNO0043 LD NOT PBI

TOUT(202)
END(001)

ANDNOT PBO

ST0044

83

Example 3: Using AQs Section 6-3

6-3 Example 3: Using AQs
This example shows how to use various action qualifiers to control processing.

Operation In this example, the program controls the sequenced starting and stopping of
three conveyors as grain is unloaded from a ship and carried to two silos.

Bucket conveyor

c2
} Conveyer C3
-

Pneumatic unloader +SG1 +SG2
ANL
= —
LB LB
1 2

Conveyor i

C1 ‘\/ \/

Silo 1 Silo 2

Grain transport ship

The following operation is performed:

1,2, 3. 1. Grain type A is loaded into silo 1, and grain type B is loaded into silo 2.
2. When the grain level reaches the upper limit, the loading stops.

84

Example 3: Using AQs Section 6-3

1/0 Devices I/O devices are allocated to /O bits as shown below. | prefixes indicate inputs; Q
prefixes, outputs. (These prefixes are used on CVSS displays.) The symbols are
used in the program to indicate the bits that are controlled.

Name Symbol Allocation
Start switch PBS 1003001
Grain type A setting switch CSA 1003002
Grain type B setting switch CSB 1003003
Upper limit, no. 1 silo LB1 1003004
Upper limit, no. 2 silo LB2 1003005
Run confirm signal, conveyor C1 | C10N 1003006
Run confirm signal, conveyor C2 | C20N 1003007
Run confirm signal, conveyor C3 | C30ON 1003008
Slide gate SG1 open LS LS10 1003009
Slide gate SG1 closed LS LS1C 1003010
Slide gate SG2 open LS LS20 1003011
Slide gate SG2 closed LS LS2C 1003012
Pneumatic unloader operation ANL Q004001
Conveyor C1 operation C1 Q004002
Conveyor C2 operation Cc2 Q004003
Conveyor C3 operation C3 Q004004
Slide gate SG1 open SG10 Q004005
Slide gate SG1 closed SG1C Q004006
Slide gate SG2 open SG20 Q004007
Slide gate SG2 closed SG2C Q004008

85

Example 3: Using AQs Section 6-3

Time Chart Operation timing is illustrated below.

For Grain Type A

PBS

CSA
csB

LB1
LB2

C10N

C20N

C30N

LS10

LS1C
LS20

Ls2C

ANL

C1

c2

C3

SG10

SG1C
5G20
§G2C

86

Example 3: Using AQs

Section 6-3

SFC Program

The following program shows how the above operation can be programmed. A
transition number is required even when a transition is defined as a bit. In the
chart, these transitions are enclosed in parentheses. The action and transition
programs are shown as mnemonic lists.

ST0000 H P ‘ ‘ACOOOO‘ ‘ * STO000 Initial step
® STO001 Opens slide gate for grain type A: ON
® ST0002 Closes slide gate for other grain type
—— TNO0O0O1 —— TNO0002 (B) ON
® ST0003 Opens slide gate for grain type B: ON
® ST0004 Closes slide gate for other grain type
ST0001 R SG1C ST0003 R SG2C (A): ON
SG10 SG20 ® STO005 Starts conveyors C3, C2, and C1 in
that order.
—— LS10(TN0100) —— LS20(TN0102) ® STO006 Starts unloader
® STO007 Stops unloader at upper limit level.
ST0002 R $G20 STo004 % R SG10 Sets timer T0001 (5 s).
® ST0008 Stops conveyor C1 when time is up for
N SG2C N SG1C timer TO001. Sets timer TO002 (5 s).
1 L ® STO009 Stops conveyor C2 when time is up for
LS2C(TNO10T) LS1C(TNO109) timer TO002. Sets timer TO003 (5 s).
® STO010 Stops conveyor C3 when time is up for
timer TO003.
§T0005 s cs ® ST0011 Closes slide gate SG1: ON
S0 #0050| C2 ® STO012 Closes slide gate SG2: ON
S0 #0100| Ct
—— TN0003
soe [{w | Jaw ||
—— TNO0O4 T TS S S S S S S s s n TS TS S S TS ST DS o T s s s s s
+ AC0000 '+ TN0O0O1 ' TN0002 !
ST0007 ‘ ‘ ‘ ‘ : LD Always ON ' ! LD PBS LD PBS'
N AC0001 ' CNR(236) T0001 ' AND CSA | AND CSB |
‘ TO003 O AND NOT LB1 AND NOT LB2 ,
| END(001) O TOUT(202) | TOUT(202) |
—— TNO0001(TN0104) [4! END(001) ! END(001) !
+ AC0001 L L
ST0008 R ci oD Soaye ON. | TNO0O3 © TN00O4 ‘
| Y LD C30ON LD CSA
AC0002 . END(01) ' AND C20N AND LB1 |
TNOOOS ! b AND Ci1ON | LD CSB |
T Cacoo0e T TOUT(202) | AND LB2
(ACO002 wavsON || END(0O1) : OR LD :
ST0009 R c2 \ Y, . ‘ TOUT(202) ‘
TIM 0002 #0050 ' w END(001) '
AC0003 ! END(001) ! L Lo !
e * 1 TNOOO5 ' TNOO06 ‘
~| TNooos + AC0003 ‘LD T0002 ' LD T0003'
© LD AwaysON ' ANDNOT CI1ON' ANDNOT C20N’
] EWD 00$003 #0050 ' TOUT(202) ‘ TOUT(202) ‘
stor0 [{r | e |] ‘ (0o1) .+ END(001) . END(001) ‘
””””””””” - TN0O0O7 " TN0008 !
‘ LD CSA LD CSB
— TN0007 —— TN0006 ! AND NOT C30ON ! AND NOT C3ON|
‘ TOUT(202) ‘ TOUT(202) ‘
| END(001) | END(001) |
ST0011 R SG10 ST0012 | — R P
N SG1C N SG2C
—— LS1C(TNO105) —— LS2C(TNO106)

87

Example 4: Parallel Branching and Joining

Section 6-4

6-4 Example 4: Parallel Branching and Joining

This example shows how to use parallel processing.

Operation In this example a mixer is controlled.

Brick Belt drive motor

Feed belt
A B -
/
MT / O T
—VAQp qFVE {©)
Registe
<[] I:VC—: O————— Transit detector
A
{ Inclined mixer
gﬁﬁfﬁ limit Rotator motor
Bi-directional MP [Je—— Lower limit
incline motor P1 switch

The following operation is performed:

1,2, 3... 1. Register C measures fluid A to point “a” and fluid B from point “a” to point “b,”

and then the fluid is poured into mixer N.
2. Two bricks are dropped into mixer N from conveyor T.

3. Mixer N is turned for fixed time 1.

4. Mixer N is inclined and the composite material is poured out.

I/O Devices I/O devices are allocated to I/O bits as shown below. | prefixes indicate inputs; Q
prefixes, outputs. (These prefixes are used on CVSS displays.) The symbols are

used in the program to indicate the bits that are controlled.

Name Symbol Allocation

Start switch PBS 1004001
Brick detector d 1004002
Mixer upper limit switch PO 1004003
Mixer lower limit switch P1 1004004
Volume data WC 0050
Fluid A outlet valve VA Q006001
Fluid B outlet valve VB Q006002
Fluid outlet valve VC Q006003
Conveyor motor MT Q006004
Mixer rotator motor MR Q006005
Mixer incline right MP1 Q006006
Mixer incline left MPO Q006007

88

Example 4: Parallel Branching and Joining

Section 6-4

Time Chart

Operation timing is illustrated below.

PBS

PO

P1

WC

VA

VB

VvC

MT

MR

MP1

MPO

89

Example 4: Parallel Branching and Joining

Section 6-4

SFC Programming

The following program shows how the above operation can be programmed. A
transition number is required even when a transition is defined as a bit. In the
chart, these transitions are enclosed in parentheses. The action and transition

programs are shown as mnemonic lists.

—— TN0000
‘ ST0001 H N ‘ ‘ VA ‘ H ST0004 H s ‘ ‘ MT ‘ ® STO00O Initial step
® ST0001 Opens outlet valve for fluid A.
| B ¢ STO004 Turns conveyor motor ON
(TNO100) ® ST0002 Opens outlet valve for fluid B if weight
is “a.”
‘ ST0002 H N ‘ ‘ VB ‘ ‘ ‘ ST0005 ‘ ® STO005 Goes to next step upon brick detection.
® STO003 Opens outlet valve for fluid C if weight
is b’
—— TNO0002 —— TNO0005 ® ST0006 Goes to next step when brick detection
turns OFF.
‘ ST0003 ‘% N ‘ ‘ Ve ‘ ‘ ‘ ST0006 ‘ * ST0007 Tumns conveyor OFF upon second
brick detection.
® STO008 Mixes for t1 time when weight data
- d goes to 0 and brick detection turns
(TNO101) OFF.
® STO009 Inclines mixer to right when mixing
ST0007 H R ‘ ‘ MT ‘ ‘ stops.
® STO010 Returns mixer to upper limit after in-
cline reaches lower limit.
T TNooos After operation is completed for one cycle, it returns to the start and is repeated.
oo o fo Jwe [Tmeos Tmveot imweoer
‘ LD PBS' LD Always ON ' LD Always ON
! AND PO | CMP(020) WC a ! CMP(020) WC b
—— TN0009 | TOUT(202) ' AND NOT < Flag ' AND NOT < Flag
w END(001) ' TOUT(202) ' TOUT(202)
‘ ST0009 ‘# N ‘ ‘ VP ‘ ‘ : ! END(001) ! END(001)
'+ TNO0OO5 * TNOOO8 ' TNO009
— P1 ‘ LD NOT d ' LD Always ON ' LDNOT MR
(TNO102) ! TOUT(202) : CMP(020) WCO ! TOUT(202)
| END(001) : AND = Flag | END(001)
| stooot0 |y | | o | | ‘ . ANDNOT d -
! ' TOUT(202) '
! : END(001) !
e FI9N0103) ””””””””””””””””””””””””””””

— ST0000

920

Example 5: Ladder vs SFC Section 6-5

6-5 Example 5: Ladder vs SFC

This example shows how to convert a program from ladder diagram form to SFC
form. The application is described first; the programs and conversion are given
later.

System The program switches between two processes depending on the weight of the
product. After being marked at the end, the products are moved on to the next
process.

SW S1 SW C1 SW D1

Stopper S I Stopper D
! SW A1 SW A2 o Inker

7 | Guide 5 g SW ¢z 1

’ = S
Process A " A SWE
]) Conveyor A
= e Conveyor C =

A Process B/ Conveyor B Stopper D

' SW B2
e} Q _ﬁ o]
O -YSW B1 (:V)/

Scale Process (C)
Conveyor S

I/0 Devices and I/O Bits The following outlines the overall process and the allocation of 1/O bits.
The overall process is started when input bit 000000 turns ON.
Scale

Conveyor S is started, stopper Sis lowered, and the product is stopped at a
fixed position.

The product is weighed.

Conveyor S is started. (output bit 000300)

Stopper S is lowered. (output bit 000200)

Stopper S is raised. (output bit 000201)

Stopper S reaches the upper limit SW S1. (input bit 000010)

The product is weighed. (output bit 00100)

The weighing result is output in grams. (input word 0004)
Guide

The weighing result is received and the products shunted to conveyor A or
conveyor B.

Guide moved to conveyor A (output bit 000202)

or guide moved to conveyor B (output bit 000203)

Conveyor A started (output bit 000301)

or conveyor B started (output bit 000302)
SW A1

Detects when product passes. (input bit 000001)
SW B1

Detects when product passes. (input bit 000002)
SW A2

Detects when product passes. (input bit 000003)
SW B2

Detects when product passes. (input bit 000004)
Inker

Conveyor Cis started, stopper D is lowered, and the product is stopped at a
fixed position.

91

Example 5: Ladder vs SFC

Section 6-5

Operation

Program Conversion

92

1,2, 3.

The product is marked.

Conveyor C is started. (output bit 000303)

Stopper D is lowered. (output bit 000204)

Stopper D is raised. (output bit 000205)

Slide moved down (output bit 000206)

Slide moved up (output bit 000207)
SW C1

Detects upper limit of inker slide. (input bit 000005)
SW C2

Detects lower limit of inker slide. (input bit 000006)

Stopper D reaches upper limit SW D1. (input bit 000011)
SWE

Detects when product passes. (input bit 000007)

The following operation is performed:

1. When input bit 000000 turns ON, conveyor Sis started and stopper Sis low-
ered.

2. Conveyor Sis run for 5 seconds, and the product is moved to the position of
stopper S.

3. The scale is started and the product is weighed (with the results input to
word 0004), and compared to a standard of 300 g.

4. Ifthe weight is 300 g or more, the product is moved to process A. (Conveyor
Alis started.) If the weight is less than 300 g, the product is moved to process
B. (Conveyor B is started.)

5. When either SW A2 or SW B2 turns ON, conveyor C is started and stopper D
is lowered.

6. Conveyor Cis run for 5 seconds, and the product is moved to the position of
stopper D.

7. The inker is operated and the product is marked.

8. When the marking is complete, conveyor C is restarted and the product is
carried off.

This application is written in the form of a ladder diagram starting on the following
page, and in the form of an SFC program on pages after the ladder diagram. We
have written the same application both as a ladder program and as an SFC pro-
gram, and we will compare the features of each.

First of all, it is not easy to understand the sequence of processes in a program
by looking at a ladder diagram. The larger a program gets, the more mutually
exclusive conditions, such as interlocks, need to be programmed, and the more
complicated programming becomes. In addition, when it comes to monitoring
and maintenance, it is difficult to recognize the conditions for sequential pro-
cesses merely by looking at a program list.

An SFC program, on the other hand, shows the flow of processes just as they
are, making it quite simple to program sequential operations. Furthermore, each
process in an SFC program stands independently, enabling programming with-
out the need for setting complicated mutually exclusive conditions. And when it
comes to monitoring and maintenance, you can follow the flow of processes sim-
ply by monitoring the active status of the steps. Debugging is also easy, because
the program is broken down into discrete processes that have little influence on
each other. Itis thus a relatively simple matter to isolate and correct the problem
area.

SFC programs are better suited to the overall control of processes than to the
precise control of individual operations where, for example, conditions are

Example 5: Ladder vs SFC

Section 6-5

applied to each input and output. Ladder diagrams, on the other hand, are based
on relay circuits and are thus ideal for detailed control. To realize the benefits of
both methods, you can program the overall framework of processes with an SFC
program, and control the details within each process with ladder diagram pro-

grams.
Ladder Diagram Program
0000 0003 0003 0003 0003
00 00 01 02 03 ©11)
| [y | [y | r
L y4 /‘V y4 /‘V [KEEP 001000 }—
0000
01
|
I
0000
02
|
I
0010 0003
00 T0000 00
| [y O
I k4l
0000
T0001 10
0002 0002
T0000 01 00
)4 Y4 O
| pdl
[TIM 0000 #0050 |——
[TIM 0001 #0020 |——
0001
00
0000 0002 0002
10 00 01
|
H yqh O
A500(<) 0010
T0001 (9o 07 01
y |
L. cmP 0004 #0300 | 1 O—
500(<) 0010
07 02
| O
I
0010 0000 0002 0002
01 03 03 02
| | | O
I /\V /\V
0003 0003
o1 01
Process A
0010 0000 0002 0002
02 04 02 03
|| | ¥ | ¥ ()
I pdl pdl
0003 0003
02 02
Process A

\

Continued on next page.

Start

Conveyor S started.

Stopper S lowered.

Conveyor S operating time (5 s) set.

Weighing time (2 s) set.

Weighing

Stopper S raised.

Flag for process A

Flag for process B

Shift to conveyor A

Conveyor A started.

Shift to conveyor B

Conveyor B started.

93

Example 5: Ladder vs SFC

Section 6-5

9

Continued from previous page

4

0000 0010
03 T0004 03
[l) O
I A
0000
04
0010
03
0010 0003
03 T0002 03
| | | ¥ O
I A
0000 0000
TO003 05 11
0002 0002
TO002 05 04
v | O
\ /\V
[Tim 0002 #0050 |——
0002 0000 0002
T0002 07 06 06
\ | |
m rdm—dl O—
0002
06
0000 0002 0000 0002
06 TO003 04 11 05
\ [[y Ay O
\ I d Al
0010 0002 0000 0002
04 06 05 07
Ly gy O
4‘ ’* Al d
™™ 0003 #0020 }——
0010
04
0000
07
‘ [Tim 0004 #0050 |——
0010 0010
05 05
(001)
[END }—

Flag for process C

Conveyor C started.

Stopper D lowered.

Conveyor C operating time (5 s) set.

Inker lowered.

Stopper D raised.

Inker raised.

For order check (2 s)

Conveyor C operating time (5 s)
set for after product passes.

Example 5: Ladder vs SFC

Section 6-5

SFC Program

000

l |

The same application is shown here as an SFC program, following the actual
flow of processes.

—— 000000 ((Start))
(TNO100)
ST0001 N ‘ ‘ AC0001 ‘ Product conveyed.
—— T0000
(TNO101)
ST0002 N 000201 Stopper S raised.
N 000100 Weight measured.
D |#0020 | AC0002 Weight determined.
—f— 001001 (Flag for process A) — 001002 (Flag for process B)
(TNO102) (TNO103)
$T0003 N | [Acooos | ST0004 N | [Acooos] |
Process A Process B
—f— 000003 (Product passes.) — 000004 (Product passes.)
(TNO104) (TNO105)
ST0004 N ‘ ‘ AC0005 ‘ Product conveyed.
—— 70001
(TNO106)
ST0005 N AC0006 Stopper S raised.
N AC0007 Process C
—— TNo107
ST0006 N ‘ ‘ ACO0008 ‘ Product carried out.
—— 70004
(TNO108)

—— ST0000

The number in the parentheses is the transition number for each bit used to de-
fine a transition.

95

Example 5: Ladder vs SFC

Section 6-5

96

AC0001
A500 0003
13 00
Il O
I
(Aways ON) 0002 0002
01 00
|
A O—
e 1 0000 #0050 }——
(001)
[END J—
AC0002
A500 A500(<) 0010
13 (020 07 01
] | CMP 0004 #0300] y4 O—
(Always ON) A500(<) 0010
07 02
Il O
I
(001)
[END J—
AC0003
A500 0000 0002 0002
13 01 03 02
Il | | O
I /\V /\V
(Always ON) 0003
00
0003
01
Process A)—
(001)
[END J—
AC0004
A500 0000 0002 0002
13 02 02 03
Il | | O
I /\V /\V
(Always ON) 0003
00
0003
02

Process B)—

Conveyor S started.

Stopper S lowered.

5 s counted.

Flag for process A

Flag for process B

Shift to conveyor A

Conveyor S started.

Conveyor A started.

Shift to conveyor B

Conveyor S started.

Conveyor B started.

Example 5: Ladder vs SFC

Section 6-5

ACO0005
A500 0003
13 03
[l O
[
(Aways ON) 0002 0002
05 04
|
an O—
SN 0002 #0050 J—|
(001)
[END }—
ACO0006
A500 0000 0002
13 11 05
| | |)
[/\/‘/
(001)
[END }—
ACO0007
A500 0000 0002 0002
15 06 07 06
[l | | O
[A/‘/ A/‘/
0002
06
[l
[
0000 0000 0002 0002
06 05 06 07
[l | | O
[A/‘/ A/‘/
0002
07
||
(001)
[END }—
ACO0008
A500 0003
13 03
| |)
[
(Aways ON) 0000 0010
07 05
0010
05
e R 1L 0004 #0050 —|
(001)
[END }—
TNO107
0000 0000
ik " (202)
r —
|| || [TouT 7
(001)
[END]—

Conveyor C started.

Stopper D lowered.

5 s counted.

Stopper D raised.

Inker lowered.

Inker raised.

Conveyor C started.

5 s counted after product passes.

97

address

advanced instruction

AGF

allocation

analog

Analog I/O Unit

AND

APF
area

area prefix

ASCII

asynchronous execution

Auxiliary Area
auxiliary bit

Backplane

back-up

BASIC

basic instruction

Glossary

A number used to identify the location of data or programming instructions in
memory or to identify the location of a network or a unit in a network.

An instruction input with a function code that handles data processing opera-
tions within ladder diagrams, as opposed to a basic instruction, which makes up
the fundamental portion of a ladder diagram.

All-glass optical fiber cable; also known as crystal optical fiber cable.

The process by which the PC assigns certain bits or words in memory for various
functions. This includes pairing 1/O bits to I/O points on Units.

Something that represents or can process a continuous range of values as op-
posed to values that can be represented in distinct increments. Something that
represents or can process values represented in distinct increments is called
digital.

I/O Units that convert I/O between analog and digital values. An Analog Input
Input converts an analog input to a digital value for processing by the PC. An
Analog Output Unit converts a digital value to an analog output.

A logic operation whereby the result is true if and only if both premises are true.
In ladder-diagram programming the premises are usually ON/OFF states of bits
or the logical combination of such states called execution conditions.

An acronym for all-plastic optical fiber cable.

See data area and memory area.

A one or two letter prefix used to identify a memory area in the PC. All memory
areas except the ClO area require prefixes to identify addresses in them.

Short for American Standard Code for Information Interchange. ASCll is used to
code characters for output to printers and other external devices.

Execution of programs and servicing operations in which program execution
and servicing are not synchronized with each other.

A PC data area allocated to flags and control bits.

A bit in the Auxiliary Area.

A base to which Units are mounted to form a Rack. Backplanes provide a series
of connectors for these Units along with buses to connect them to the CPU and
other Units and wiring to connect them to the Power Supply Unit. Backplanes

also provide connectors used to connect them to other Backplanes.

A copy made of existing data to ensure that the data will not be lost even if the
original data is corrupted or erased.

A common programming language. BASIC Units are programmed in BASIC.

A fundamental instruction used in a ladder diagram. See advanced instruction.

99

Glossary

BASIC Unit

baud rate

BCD

binary

binary-coded decimal

bit

bit address

branch line

buffer

building-block PC

bus

bus link
byte

central processing unit

channel
character code

checksum

CIO Area

communications cable

100

A CPU Bus Unit used to run programs in BASIC.

The data transmission speed between two devices in a system measured in bits
per second.

Short for binary-coded decimal.

A number system where all numbers are expressed in base 2, i.e., numbers are
written using only O’s and 1’s. Each group of four binary bits is equivalent to one
hexadecimal digit. Binary data in memory is thus often expressed in hexadeci-
mal for convenience.

A system used to represent numbers so that every four binary bits is numerically
equivalent to one decimal digit.

The smallest piece of information that can be represented on a computer. A bit
has the value of either zero or one, corresponding to the electrical signals ON
and OFF. A bit represents one binary digit. Some bits at particular addresses are
allocated to special purposes, such as holding the status of input from external
devices, while other bits are available for general use in programming.

The location in memory where a bit of data is stored. A bit address specifies the
data area and word that is being addressed as well as the number of the bit with-
in the word.

A communications line leading from a Link Adapter to any Link Unit not desig-
nated as a terminator in a Link System. See main line.

A temporary storage space for data in a computerized device.
A PC that is constructed from individual components, or “building blocks.” With
building-block PCs, there is no one Unit that is independently identifiable as a

PC. The PC is rather a functional assembly of Units.

A communications path used to pass data between any of the Units connected
to it.

A data link that passed data between two Units across a bus.

A unit of data equivalent to 8 bits, i.e., half a word.

A device that is capable of storing programs and data, and executing the instruc-
tions contained in the programs. In a PC System, the central processing unit ex-
ecutes the program, processes |/O signals, communicates with external de-
vices, etc.

See word.

A numeric (usually binary) code used to represent an alphanumeric character.
A sum transmitted with a data pack in communications. The checksum can be
recalculated from the received data to confirm that the data in the transmission

has not been corrupted.

A memory area used to control I/O and to store and manipulate data. ClIO Area
addresses do not require prefixes.

Cable used to transfer data between components of a control system and con-
forming to the RS-232C or RS-422 standards.

Glossary

constant

control bit

control signal

Control System

controlled system

Converting Link Adapter

CPU
CPU Backplane

CPU Bus Unit

CPU Rack

crystal optical fiber cable

C-series PC

CV Support Software

CV-series PC
CVSS

cycle

cycle time
data area

data link

data register

Aninput for an operand in which the actual numeric value is specified. Constants
can be input for certain operands in place of memory area addresses. Some op-
erands must be input as constants.

A bit in a memory area that is set either through the program or via a Program-
ming Device to achieve a specific purpose, e.g., a Restart Bit is turned ON and
OFF to restart a Unit.

A signal sent from the PC to effect the operation of the controlled system.

All of the hardware and software components used to control other devices. A
Control System includes the PC System, the PC programs, and all I/O devices
that are used to control or obtain feedback from the controlled system.

The devices that are being controlled by a PC System.

A Link Adapter used to convert between different types of optical fiber cable, dif-
ferent types of wire cable, or between optical fiber cable and wire cable. Such
conversion is necessary to connect Units that use different forms of communica-
tion.

See central processing unit.

A Backplane used to create a CPU Rack.

A special Unit used with CV-series PCs that mounts to the CPU bus. This con-
nection to the CPU bus enables special data links, data transfers, and process-

ing.
The main Rack in a building-block PC, the CPU Rack contains the CPU, a Power
Supply, and other Units. The CPU Rack, along with the Expansion CPU Rack,
provides both an I/O bus and a CPU bus.

See AGF.

Any of the following PCs: C2000H, C1000H, C500, C200H, C40H, C28H, C20H,
C60K, C60P, C40K, C40P, C28K, C28P, C20K, C20P, C120, or C20.

A programming package run on an IBM PC/AT or compatible to serve as a Pro-
gramming Device for CV-series PCs.

Any of the following PCs: CV500, CV1000, CV2000, or CVM1

See CV Support Software.

One unit of processing performed by the CPU, including SFC/ladder program
execution, peripheral servicing, /O refreshing, etc. The cycle is called the scan
with C-series PCs.

The time required to complete one cycle of CPU processing.

An area in the PC’s memory that is designed to hold a specific type of data.

An automatic data transmission operation that allows PCs or Units within PC to
pass data back and forth via common data areas.

A storage location in memory used to hold data. In CV-series PCs, data registers
are used with or without index registers to hold data used in indirect addressing.

101

Glossary

data transfer

debug

decimal

decrement

default

destination

digit

DIN track

DIP switch

distributed control

DM Area

DM word

downloading

Dummy 1I/O Unit

EEPROM

electrical noise

EM Area

102

Moving data from one memory location to another, either within the same device
or between different devices connected via a communications line or network.

A process by which a draft program is corrected until it operates as intended.
Debugging includes both the removal of syntax errors, as well as the fine-tuning
of timing and coordination of control operations.

A number system where numbers are expressed to the base 10. In aPC all data
is ultimately stored in binary form, four binary bits are often used to represent
one decimal digit, via a system called binary-coded decimal.

Decreasing a numeric value, usually by 1.

A value automatically set by the PC when the user does not specifically set
another value. Many devices will assume such default conditions upon the appli-
cation of power.

The location where an instruction places the data on which it is operating, as op-
posed to the location from which data is taken for use in the instruction. The loca-
tion from which data is taken is called the source.

A unit of storage in memory that consists of four bits.

A rail designed to fit into grooves on various devices to allow the devices to be
quickly and easily mounted to it.

Dual in-line package switch, an array of pins in a signal package that is mounted
to a circuit board and is used to set operating parameters.

A automation concept in which control of each portion of an automated system s
located near the devices actually being controlled, i.e., control is decentralized
and ‘distributed’ over the system. Distributed control is a concept basic to PC
Systems.

A data area used to hold only word data. Words in the DM area cannot be ac-
cessed bit by bit.

A word in the DM Area.

The process of transferring a program or data from a higher-level or host com-
puter to a lower-level or slave computer. If a Programming Device is involved,
the Programming Device is considered the host computer.

An 1/O Unitthat has no functional capabilities but that can be mounted to a slot on
a Rack so that words can be allocated to that slot. Dummy I/O Units can be used
to avoid changing operand addresses in programs by reserving words for a slot
for future use or by filling a slot vacated by a Unit to which words have already
been allocated.

Electrically erasable programmable read-only memory; a type of ROM in which
stored data can be erased and reprogrammed. This is accomplished using a
special control lead connected to the EEPROM chip and can be done without
having to remove the EEPROM chip from the device in which it is mounted.

Random variations of one or more electrical characteristics such as voltage, cur-
rent, and data, which might interfere with the normal operation of a device.

Extended Data Memory Area; an area that can be optionally added to certain
PCs to enable greater data storage. Functionally, the EM Area operates like the

Glossary

EM card

EPROM

error code

event processing

Expansion CPU Backplane

Expansion CPU Rack

Expansion Data Memory Unit
Expansion I/O Backplane

Expansion I/O Rack

FA

factory computer

fatal error

FINS

flag

force reset

force set

frame checksum

GPC

Graphic Programming Console

DM Area. Area addresses are prefixes with E and only words can be accessed.
The EM Area is separated into multiple banks.

A card mounted inside certain PCs to added an EM Area.

Erasable programmable read-only memory; a type of ROM in which stored data
can be erased, by ultraviolet light or other means, and reprogrammed.

A numeric code generated to indicate that an error exists, and something about
the nature of the error. Some error codes are generated by the system; others
are defined in the program by the operator.

Processing that is performed in response to an event, e.g., an interrupt signal.
A Backplane used to create an Expansion CPU Rack.

A Rack connected to the CPU Rack to increase the virtual size of the CPU Rack.
Units that may be mounted to the CPU Backplane may also be mounted to the
Expansion CPU Backplane.

A card mounted inside certain PCs to added an EM Area.

A Backplane used to create an Expansion 1/0 Rack.

A Rack used to increase the I/O capacity of a PC. In CV-Series PC, either one
Expansion I/O Rack can be connected directly to the CPU or Expansion CPU
Rack or multiple Expansion 1/0 Racks can be connected by using an I/O Control
and 1/O Interface Units.

Factory automation.

A general-purpose computer, usually quite similar to a business computer, that
is used in automated factory control.

An error that stops PC operation and requires correction before operation can
continue.

See CV-mode.
A dedicated bitin memory that is set by the system to indicate some type of oper-
ating status. Some flags, such as the carry flag, can also be set by the operator

or via the program.

The process of forcibly turning OFF a bit via a programming device. Bits are usu-
ally turned OFF as a result of program execution.

The process of forcibly turning ON a bit via a programming device. Bits are usu-
ally turned ON as a result of program execution.

The results of exclusive ORing all data within a specified calculation range. The
frame checksum can be calculated on both the sending and receiving end of a
data transfer to confirm that data was transmitted correctly.

An acronym for Graphic Programming Console.

A programming device with advanced programming and debugging capabilities
to facilitate PC operation. A Graphic Programming Console is provided with a

103

Glossary

hexadecimal

host interface

Host Link System

Host Link Unit

H-PCF cable

1/0 allocation

1/0 Block

I/O Control Unit

1/0 delay

/0 device

I/0O Interface Unit

1/0 point

1/O refreshing

I/O response time

1/0 Terminal

1/0 Unit

104

large display onto which ladder-diagram programs can be written directly in lad-
der-diagram symbols for input into the PC without conversion to mnemonic
form.

A number system where all numbers are expressed to the base 16. In a PC all
data is ultimately stored in binary form, however, displays and inputs on Pro-
gramming Devices are often expressed in hexadecimal to simplify operation.
Each group of four binary bits is numerically equivalent to one hexadecimal digit.

An interface that allows communications with a host computer.

A system with one or more host computers connected to one or more PCs via
Host Link Units or host interfaces so that the host computer can be used to trans-
fer data to and from the PC(s). Host Link Systems enable centralized manage-
ment and control of PC Systems.

An interface used to connect a C-series PC to a host computer in a Host Link
System.

An acronym for hard plastic-clad optical fiber cable.

The process by which the PC assigns certain bits in memory for various func-
tions. This includes pairing 1/O bits to 1/O points on Units.

Either an Input Block or an Output Block. I/0O Blocks provide mounting positions
for replaceable relays.

A Unit mounted to the CPU Rack to monitor and control 1/O points on Expansion
CPU Racks or Expansion 1/0 Racks.

The delay in time from when a signal is sent to an output to when the status ofthe
output is actually in effect or the delay in time from when the status of an input
changes until the signal indicating the change in the status is received.

A device connected to the I/O terminals on I/O Units, Special I/O Units, etc. I/O
devices may be either part of the Control System, if they function to help control
other devices, or they may be part of the controlled system.

A Unit mounted to an Expansion CPU Rack or Expansion 1/O Rack to interface
the Rack to the CPU Rack.

The place at which an input signal enters the PC System, or at which an output
signal leaves the PC System. In physical terms, 1/O points correspond to termi-
nals or connector pins on a Unit; in terms of programming, an 1/O points corre-
spond to I/O bits in the IR area.

The process of updating output status sent to external devices so that it agrees
with the status of output bits held in memory and of updating input bits in memory
so that they agree with the status of inputs from external devices.

The time required for an output signal to be sent from the PC in response to an
input signal received from an external device.

A Remote I/O Unit connected in a Wired Remote |/O System to provide a limited
number of I/O points at one location. There are several types of I/O Terminals.

The most basic type of Unit mounted to a Backplane. I/O Units include Input
Units and Output Units, each of which is available in a range of specifications.
I/O Units do not include Special I/0 Units, Link Units, etc.

Glossary

I/O verification error

1/0 word

IBM PC/AT or compatible

initialize

input

input bit

Input Block

input device

input point

input signal

Input Terminal

instruction

interface

interrupt (signal)

Interrupt Input Unit
IOIF

IOM (Area)

JIs

jump

A error generated by a disagreement between the Units registered in the I/O
table and the Units actually mounted to the PC.

Aword in the CIO area that is allocated to a Unitin the PC System and is used to
hold 1/O status for that Unit.

A computer that has similar architecture to, that is logically compatible with, and
that can run software designed for an IBM PC/AT computer.

Part of the startup process whereby some memory areas are cleared, system
setup is checked, and default values are set.

The signal coming from an external device into the PC. The term input is often
used abstractly or collectively to refer to incoming signals.

A bit in the CIO area that is allocated to hold the status of an input.

A Unit used in combination with a Remote Interface to create an I/O Terminal. An
Input Block provides mounting positions for replaceable relays. Each relay can
be selected according to specific input requirements.

An external device that sends signals into the PC System.

The point at which an input enters the PC System. Input points correspond phys-
ically to terminals or connector pins.

A change in the status of a connection entering the PC. Generally an input signal
is said to exist when, for example, a connection point goes from low to high volt-
age or from a nonconductive to a conductive state.

An 1/O Terminal that provides input points.

A direction given in the program that tells the PC of the action to be carried out,
and the data to be used in carrying out the action. Instructions can be used to
simply turn a bit ON or OFF, or they can perform much more complex actions,
such as converting and/or transferring large blocks of data.

An interface is the conceptual boundary between systems or devices and usual-
ly involves changes in the way the communicated data is represented. Interface
devices such as NSBs perform operations like changing the coding, format, or
speed of the data.

A signal that stops normal program execution and causes a subroutine to be run
or other processing to take place.

A Rack-mounting Unit used to input external interrupts into a PC System.

An acronym for I/O Interface Unit.

A collective memory area containing all of the memory areas that can be ac-
cessed by bit, including timer and counter Completion Flags. The IOM Area in-
cludes all memory area memory addresses between 0000 and OFFF.

An acronym for Japanese Industrial Standards.

A type of programming where execution moves directly from one pointin a pro-
gram to another, without sequentially executing any instructions in between.

105

Glossary

least-significant (bit/word)
LED

leftmost (bit/word)

link

Link Adapter

Link System

Link Unit

linkable slot

load

main line

MCR Unit

megabyte

memory area
most-significant (bit/word)

nesting

Network Service Board

Network Service Unit

noise interference

106

Jumps in ladder diagrams are usually conditional on an execution condition;
jumps in SFC programs are conditional on the step status and transition condi-
tion status before the jump.

See rightmost (bit/word).
Acronym for light-emitting diode; a device used as for indicators or displays.

The highest numbered bits of a group of bits, generally of an entire word, or the
highest numbered words of a group of words. These bits/words are often called
most-significant bits/words.

A hardware or software connection formed between two Units. “Link” can refer
either to a part of the physical connection between two Units or a software con-
nection created to data existing at another location (i.e., data links).

A Unit used to connect communications lines, either to branch the lines or to con-
vert between different types of cable. There are two types of Link Adapter:
Branching Link Adapters and Converting Link Adapters.

A system used to connect remote 1/O or to connect multiple PCs in a network.
Link Systems include the following: SYSMAC BUS Remote I/O Systems, SYS-
MAC BUS/2 Remote I/O Systems, SYSMAC LINK Systems, Host Link Systems,
and SYSMAC NET Link Systems.

Any of the Units used to connect a PC to a Link System. These include Remote
I/O Units, SYSMAC LINK Units, and SYSMAC NET Link Units.

A slot on either a Backplane to which a Link Unit can be mounted. Backplanes
differ in the slots to which Link Units can be mounted.

The processes of copying data either from an external device or from a storage
area to an active portion of the system such as a display buffer. Also, an output
device connected to the PC is called a load.

In a Link System connected through Branching Link Adapters, the communica-
tions cable that runs from the Unit at each end of the System through the Link
Adapters.

Magnetic Card Reader Unit.

A unit of storage equal to one million bytes.

Any of the areas in the PC used to hold data or programs.

See leftmost (bit/word).

Programming one loop within another loop, programming a call to a subroutine
within another subroutine, or programming an IF-ELSE programming section

within another IF-ELSE section.

A device with an interface to connect devices other than PCstoa SYSMAC NET
Link System.

A Unit that provides two interfaces to connect peripheral devices to a SYSMAC
NET Link System.

Disturbances in signals caused by electrical noise.

Glossary

nonfatal error

NOT

octal

OFF

OFF delay

offset

ON

ON delay

on-line removal

operand

operating error

optical connector

optical fiber cable

OR

output

Output Block

output device

output point

A hardware or software error that produces a warning but does not stop the PC
from operating.

A logic operation which inverts the status of the operand. For example, AND
NOT indicates an AND operation with the opposite of the actual status of the op-
erand bit.

A number system where all numbers are expressed in base 8, i.e., numbers are
written using only numerals 0 through 7.

The status of an input or output when a signal is said not to be present. The OFF
state is generally represented by a low voltage or by non-conductivity, but can be
defined as the opposite of either.

The delay between the time when a signal is switched OFF (e.g., by an input
device or PC) and the time when the signal reaches a state readable as an OFF
signal (i.e., as no signal) by a receiving party (e.g., output device or PC).

A positive or negative value added to a base value such as an address to specify
a desired value.

The status of an input or output when a signal is said to be present. The ON state
is generally represented by a high voltage or by conductivity, but can be defined
as the opposite of either.

The delay between the time when an ON signal is initiated (e.g., by an input de-
vice or PC) and the time when the signal reaches a state readable as an ON sig-
nal by a receiving party (e.g., output device or PC).

Removing a Rack-mounted Unit for replacement or maintenance during PC op-
eration.

The values designated as the data to be used for an instruction. An operand can
be input as a constant expressing the actual numeric value to be used or as an
address to express the location in memory of the data to be used.

An error that occurs during actual PC operation as opposed to an initialization
error, which occurs before actual operations can begin.

A connector designed to be connected to an optical fiber cable.
Cable made from light conducting filaments used to transmit signals.

A logic operation whereby the result is true if either of two premises is true, or if
both are true. In ladder-diagram programming the premises are usually ON/OFF
states of bits or the logical combination of such states called execution condi-
tions.

The signal sent from the PC to an external device. The term output is often used
abstractly or collectively to refer to outgoing signals.

A Unit used in combination with a Remote Interface to create an I/O Terminal. An
Output Block provides mounting positions for replaceable relays. Each relay can
be selected according to specific output requirements.

An external device that receives signals from the PC System.

The point at which an output leaves the PC System. Output points correspond
physically to terminals or connector pins.

107

Glossary

output signal

Output Terminal
overflow

overwrite

parity

parity check
PC

PC configuration

PC System

PCB

PCF
PC Setup

Peripheral Device

peripheral servicing

PID Unit

port

Power Supply Unit

present value

printed circuit board

Printer Interface Unit

108

A signal being sent to an external device. Generally an output signal is said to
exist when, for example, a connection point goes from low to high voltage or from
a nonconductive to a conductive state.

An |/O Terminal that provides output points.
The state where the capacity of a data storage location has been exceeded.
Changing the content of a memory location so that the previous content is lost.

Adjustment of the number of ON bits in a word or other unit of data so that the
total is always an even number or always an odd number. Parity is generally
used to check the accuracy of data after being transmitted by confirming that the
number of ON bits is still even or still odd.

Checking parity to ensure that transmitted data has not been corrupted.
An acronym for Programmable Controller.

The arrangement and interconnections of the Units that are put together to form
a functional PC.

With building-block PCs, all of the Racks and independent Units connected di-
rectly to them up to, but not including the 1/O devices. The boundaries of a PC
System are the PC and the program in its CPU at the upper end; and the I/O
Units, Special I/0 Units, Optical I/O Units, Remote Terminals, etc., at the lower
end.

An acronym for printed circuit board.

An acronym for plastic-clad optical fiber cable.

A group of operating parameters set in the PC from a Programming Device to
control PC operation.

Devices connected to a PC System to aid in system operation. Peripheral de-
vices include printers, programming devices, external storage media, etc.
Processing signals to and from peripheral devices, including refreshing, com-
munications processing, interrupts, etc.

A Unit designed for PID control.

A connector on a PC or computer that serves as a connection to an external de-
vice.

A Unit that mounts to a Backplane in a Rack PC. It provides power at the voltage
required by the other Units on the Rack.

The current value registered in a device at any instant during its operation. Pres-
entvalue is abbreviated as PV. The use of this term is generally restricted to tim-
ers and counters.

A board onto which electrical circuits are printed for mounting into a computer or
electrical device.

A Unit used to interface a printer so that ladder diagrams and other data can be
printed out.

Glossary

Programmable Controller

Programming Console

Programming Device

PROM

PROM Writer

prompt

protocol

PV

Rack

rack number

Rack PC

RAM

RAS

refresh

A computerized device that can accept inputs from external devices and gener-
ate outputs to external devices according to a program held in memory. Pro-
grammable Controllers are used to automate control of external devices. Al-
though single-unit Programmable Controllers are available, building-block Pro-
grammable Controllers are constructed from separate components. Such Pro-
grammable Controllers are formed only when enough of these separate compo-
nents are assembled to form a functional assembily, i.e., there is no one individu-
al Unit called a PC.

The simplest form or programming device available for a PC. Programming
Consoles are available both as hand-held models and as CPU-mounting mod-
els.

A Peripheral Device used to input a program into a PC or to alter or monitor a
program already held in the PC. There are dedicated programming devices,
such as Programming Consoles, and there are non-dedicated devices, such as
a host computer.

Programmable read-only memory; a type of ROM into which the program or
data may be written after manufacture, by a customer, but which is fixed from
that time on.

A peripheral device used to write programs and other data into a ROM for per-
manent storage and application.

A message or symbol that appears on a display to request input from the opera-
tor.

The parameters and procedures that are standardized to enable two devices to
communicate or to enable a programmer or operator to communicate with a de-
vice.

See present value.

An assembly that forms a functional unit in a Rack PC System. A Rack consists
of a Backplane and the Units mounted to it. These Units include the Power Sup-
ply, CPU, and I/O Units. Racks include CPU Racks, Expansion I/O Racks, and
I/0 Racks. The CPU Rack is the Rack with the CPU mounted to it. An Expansion
I/O Rack is an additional Rack that holds extra I/O Units. An I/O Rack is used in
the C2000H Duplex System, because there is no room for any 1/O Units on the
CPU Rack in this System.

A number assigned to a Rack according to the order that it is connected to the
CPU Rack, with the CPU Rack generally being rack number 0.

A PC that is composed of Units mounted to one or more Racks. This configura-
tion is the most flexible, and most large PCs are Rack PCs. A Rack PC is the
opposite of a Package-type PC, which has all of the basic I/O, storage, and con-
trol functions built into a single package.

Random access memory; a data storage media. RAM will not retain data when
power is disconnected.

An acronym for reliability, assurance, safety.
The process of updating output status sent to external devices so that it agrees

with the status of output bits held in memory and of updating input bits in memory
so that they agree with the status of inputs from external devices.

109

Glossary

relay-based control

reserved bit

reserved word

reset

Restart Bit

restart continuation

retrieve

retry

rightmost (bit/word)

rising edge

ROM

RS-232C interface
RS-422 interface

scan

scan time

self diagnosis

series

servicing

110

The forerunner of PCs. In relay-based control, groups of relays are intercon-
nected to form control circuits. In a PC, these are replaced by programmabile cir-
cuits.

A bit that is not available for user application.

Aword in memory that is reserved for a special purpose and cannot be accessed
by the user.

The process of turning a bit or signal OFF or of changing the present value of a
timer or counter to its set value or to zero.

A bit used to restart a Unit mounted to a PC.

A process which allows memory and program execution status to be maintained
so that PC operation can be restarted from the state it was in when operation
was stopped by a power interruption.

The processes of copying data either from an external device or from a storage
area to an active portion of the system such as a display buffer. Also, an output
device connected to the PC is called a load.

The process whereby a device will re-transmit data which has resulted in an er-
ror message from the receiving device.

The lowest numbered bits of a group of bits, generally of an entire word, or the
lowest numbered words of a group of words. These bits/words are often called
least-significant bits/words.

The point where a signal actually changes from an OFF to an ON status.

Read only memory; a type of digital storage that cannot be written to. A ROM
chip is manufactured with its program or data already stored in it and can never
be changed. However, the program or data can be read as many times as de-
sired.

An industry standard for serial communications.
An industry standard for serial communications.

The process used to execute a ladder-diagram program. The program is ex-
amined sequentially from start to finish and each instruction is executed in turn
based on execution conditions. The scan also includes peripheral processing,
I/O refreshing, etc. The scan is called the cycle with CV-series PCs.

The time required for a single scan of a ladder-diagram program.

A process whereby the system checks its own operation and generates a warn-
ing or error if an abnormality is discovered.

A wiring method in which Units are wired consecutively in a string. In Link Sys-
tems wired through Link Adapters, the Units are still functionally wired in series,
even though Units are placed on branch lines.

The process whereby the PC provides data to or receives data from external de-
vices or remote I/O Units, or otherwise handles data transactions for Link Sys-
tems.

Glossary

set

set value

slot
software error

software protect

software switch

Special I/O Unit

SRAM

subroutine

SV

switching capacity

synchronous execution

syntax

syntax error

system configuration

system error

system error message

terminator

The process of turning a bit or signal ON.

The value from which a decrementing counter starts counting down or to which
an incrementing counter counts up (i.e., the maximum count), or the time from
which or for which a timer starts timing. Set value is abbreviated SV.

A position on a Rack (Backplane) to which a Unit can be mounted.
An error that originates in a software program.

A means of protecting data from being changed that uses software as opposed
to a physical switch or other hardware setting.

See memory switch.

A Unit that is designed for a specific purpose. Special I/O Units include Position
Control Units, High-speed Counter Units, Analog I/O Units, etc.

Static random access memory; a data storage media.

A group of instructions placed separate from the main program and executed
only when called from the main program or activated by an interrupt.

Abbreviation for set value.
The maximum voltage/current that a relay can safely switch on and off.

Execution of programs and servicing operations in which program execution
and servicing are synchronized so that all servicing operations are executed
each time the programs are executed.

The form of a program statement (as opposed to its meaning). For example, the
two statements, LET A=B+B and LET A=Bx*2 use different syntaxes, but have
the same meaning.

An error in the way in which a program is written. Syntax errors can include
‘spelling’ mistakes (i.e., a function code that does not exist), mistakes in specify-
ing operands within acceptable parameters (e.g., specifying read-only bits as a
destination), and mistakes in actual application of instructions (e.g., a call to a
subroutine that does not exist).

The arrangement in which Units in a System are connected. This term refers to
the conceptual arrangement and wiring together of all the devices needed to
comprise the System. In OMRON terminology, system configuration is used to
describe the arrangement and connection of the Units comprising a Control Sys-
tem that includes one or more PCs.

An error generated by the system, as opposed to one resulting from execution of
an instruction designed to generate an error.

An error message generated by the system, as opposed to one resulting from
execution of an instruction designed to generate a message.

The code comprising an asterisk and a carriage return (* CR) which indicates the
end of a block of data in communications between devices. Frames within a mul-
ti-frame block are separated by delimiters. Also a Unit in a Link System desig-
nated as the last Unit on the communications line.

111

Glossary

timer

TR Area

TR bit

transfer

transmission distance

UM area

Unit

unit address

unit number

uploading

watchdog timer

wWDT

wire communications

word

word address

word allocation

work area

112

Alocation in memory accessed through a TC bit and used to time down from the
timer’s set value. Timers are turned ON and reset according to their execution
conditions.

A data area used to store execution conditions so that they can be reloaded later
for use with other instructions.

A bit in the TR Area.

The process of moving data from one location to another within the PC, or be-
tween the PC and external devices. When data is transferred, generally a copy
of the data is sent to the destination, i.e., the content of the source of the transfer
is not changed.

The distance that a signal can be transmitted.

The memory area used to hold the active program, i.e., the program that is being
currently executed.

In OMRON PC terminology, the word Unit is capitalized to indicate any product
sold for a PC System. Though most of the names of these products end with the
word Unit, not all do, e.g., a Remote Terminal is referred to in a collective sense
as a Unit. Context generally makes any limitations of this word clear.

A number used to control network communications. Unit addresses are com-
puted for Units in various ways, e.g., 10 hex is added to the unit number to deter-
mine the unit address for a CPU Bus Unit.

A number assigned to some Link Units, Special /O Units, and CPU Bus Units to
facilitate identification when assigning words or other operating parameters.

The process of transferring a program or data from a lower-level or slave com-
puter to a higher-level or host computer. If a Programming Devices is involved,
the Programming Device is considered the host computer.

A timer within the system that ensures that the scan time stays within specified
limits. When limits are reached, either warnings are given or PC operation is
stopped depending on the particular limit that is reached.

See watchdog timer.

A communications method in which signals are sent over wire cable. Although
noise resistance and transmission distance can sometimes be a problem with
wire communications, they are still the cheapest and the most common, and per-
fectly adequate for many applications.

A unit of data storage in memory that consists of 16 bits. All data areas consists
of words. Some data areas can be accessed only by words; others, by either
words or bits.

The location in memory where a word of data is stored. A word address must
specify (sometimes by default) the data area and the number of the word that is
being addressed.

The process of assigning 1/O words and bits in memory to 1/O Units and termi-
nals in a PC System to create an /O Table.

A part of memory containing work words/bits.

Glossary

work bit

work word

write protect switch

write-protect

A bit in a work word.

A word that can be used for data calculation or other manipulation in program-
ming, i.e., a ‘work space’ in memory. A large portion of the IR area is always re-
served for work words. Parts of other areas not required for special purposes
may also be used as work words.

A switch used to write-protect the contents of a storage device, e.g., a floppy
disk. If the hole on the upper left of a floppy disk is open, the information on this
floppy disk cannot be altered.

A state in which the contents of a storage device can be read but cannot be al-
tered.

113

Index

A

action block, 9, 20, 28
action execution timing, 33
action number, 9
action qualifier. See AQ
action reset timing, 34
actions, 29
feedback variable, 29
ladder diagram program, 29
set value, 29

action qualifier. See AQ

AQ, 12,28, 29
evaluation, 68
example, 30, 84
execution cycle, 35
hold option, 31
operation (table), 29

B

bit, transition, 27
block, action. See action block

branch

conditional, 9, 11, 12, 20, 36
common errors, 38
example, 81
number of branches, 13

parallel, 10, 11, 14, 21, 38
common errors, 40
example, 88
number of branches, 14

C

concurrent execution. See execution cycle, multiple active steps
conditional execution. See branch, conditional

control instruction, 11, 54
ladder symbol, 54
operand data area, 54
table, 49

CVSS, 8
cycle time, 2, 74

D

debugging, 2, 29

dummy step, 21, 28
See also subchart dummy step

E

error codes
fatal, 76
non-fatal, 76

execution, parallel. See branch, parallel

execution cycle, 68
AQ, 35
multiple active steps, 68
power—up, 71
restart continuation, 71
subcharts, 69

F

feedback variable, 29
First Cycle flag, 26

flag
Execution Error(A40211), 76
Fatal Error(A40107), 76
First Cycle, 26
transition, 26

FV. See feedback variable

H

hold option (of AQ), 31

I

IF-THEN. See branch, conditional

interrupt

1/0, 22

power—off, 22

power—on, 22

precautions, 45

program, 45
and SFC control instructions, 52
common errors, 46

scheduled, 22

J
join

conditional, 10, 12, 21, 36
common errors, 38
example, 81
parallel, 10, 14, 21, 39
common errors, 40
example, 88
maximum number of branches, 15

115

Index

jump, 11, 22, 43
common errors, 44

jump entry, 22

L

ladder diagram
action block program, 29
compared to SFC program, 3
control instruction symbol, 54
converting to SFC, 91
transition program, 27

M

memory areas, 17

multiple active steps, 68

O

operand data area, control instruction, 54

P

parallel execution, 68
power—on execution, 71

program
action block, 29
interrupt. See interrupt program
transition, 27

programming devices, 17

Q

qualifier, action. See AQ

R

restart continuation, 71, 73

S

SA(210), 49, 55
SE(214), 49, 59

sequential control, example, 80

Sequential Function Chart. See SFC

SF(213), 49, 58
SFC, 2, 8

116

monitoring, 17
programming, 17

SFC program
compared to ladder diagram program, 3
creating, 18
method of input, 8

sheet, 8

simultaneous execution. See branch, parallel; multiple active
steps

SOFF(215), 49, 60
SP(211), 49, 56
SR(212), 49, 57

status, 8, 23
execute, 48
halt, 48
inactive, 48
pause, 48
step. See step status
transfer, 8, 15, 68

step, 2, 8, 20, 23
controlling, 48
dummy, 21, 23
initial, 8, 20, 24
non—existent, 16
number, 8
sequential, 11, 12
status, 8, 48
synchronous, 11

subchart, 11, 40, 51
common errors, 43
control instructions, 51
dummy step, 21
entry terminal, 21
nesting, 40
precautions, 42
return terminal, 21

subroutine. See subchart

T

TCNT(123), 49, 62

time
cycle. See cycle time
user processing, 74

timing, action execution, 33
TOUT(202), 49, 61

transition, 8, 20, 26
bit, 27
condition, 8
evaluation, 68
flag, 26
number, 9, 26
program, 27

TSR(124), 49, 63
TSW(125), 49, 64

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W194-E1-2

L

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code

Revision code Date Revised content
1 February 1991 Original production
2 May 1993 CV2000 added.
Page 26: Note added on using transition programs.

119

	CV500/CV1000/CV2000 SFC Operation Manual
	Notice
	TABLE OF CONTENTS
	About this Manual
	SECTION 1 Outline and Features of SFC
	1-1 Outline
	1-2 Features
	1-3 Application Example

	SECTION 2 SFC Basics
	2-1 SFC Terminology
	2-2 Basic SFC Operation
	2-2-1 Sequential Steps
	2-2-2 Conditional Branching and Conditional Joining
	2-2-3 Parallel Branching
	2-2-4 Parallel Joining
	2-2-5 Status Transfer Conditions

	2-3 Memory Areas and Programming Devices
	2-4 Creating an SFC Program

	SECTION 3 SFC Programming Elements
	3-1 Overview
	3-2 Steps
	3-3 Initial Steps
	3-4 Transitions
	3-4-1 Transition Bits
	3-4-2 Transition Programs

	3-5 Action Blocks
	3-5-1 Action Qualifiers
	3-5-2 AQ Hold Option
	3-5-3 Action Execution Timing
	3-5-4 Action Reset Timing
	3-5-5 AQ and the Execution Cycle

	3-6 Conditional Branching and Joining
	3-7 Parallel Branching and Joining
	3-8 Subcharts
	3-9 SFC Jumps
	3-10 Interrupt Programs

	SECTION 4 Controlling Step Status
	4-1 Step Status
	4-1-1 Controlling Steps
	4-1-2 SFC Control Instructions and Status Changes
	4-1-3 Subcharts
	4-1-4 SFC Control Instructions and Interrupt Programs
	4-1-5 Precautions

	4-2 SFC Control Instructions
	4-2-1 Introduction
	4-2-2 Activate Step - SA(210)
	4-2-3 Pause Step - SP(211)
	4-2-4 Restart Step - (SR(212)
	4-2-5 End Step - SF(213)
	4-2-6 Deactivate Step - SE(214)
	4-2-7 Reset Step - SOFF(215)
	4-2-8 Transition Output - TOUT(202)
	4-2-9 Transition Counter - TCNT(123)
	4-2-10 Read Step Timer - TSR(124)
	4-2-11 Write Step Timer - TSW(125)

	4-3 Program Example

	SECTION 5 SFC Execution Cycle and Errors
	5-1 Basic Execution Cycle
	5-2 Execution Cycle with Multiple Active Steps
	5-3 Execution Cycle with Subcharts
	5-4 Power-Up and Restart Execution
	5-4-1 Power-up Execution
	5-4-2 Restart Continuation
	5-4-3 Items Retained and Not Retained with Restart Continuation

	5-5 User Processing Time
	5-6 SFC Error Codes
	5-6-1 Fatal SFC Errors
	5-6-2 Non-fatal SFC Errors
	5-6-3 SFC Progam Precautions

	SECTION 6 SFC Application Examples
	6-1 Example 1: Sequential Control
	6-2 Example 2: Conditional Branching and Joining
	6-3 Example 3: Using AQs
	6-4 Example 4: Parallel Branching and Joining
	6-5 Example 5: Ladder vs SFC

	Glossary
	Index
	Revision History

