
SYSMAC C1000HF
Programmable Controller

Operation Manual

Revised May 2003

!

!

!

v

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury.

WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury.

Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

 OMRON, 1989
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.

TABLE OF CONTENTS

vii

PRECAUTIONS xv.
1 Intended Audience xvi.
2 General Precautions xvi.
3 Safety Precautions xvi.
4 Operating Environment Precautions xvi.
5 Application Precautions xvii.

SECTION 1
Introduction 1.

1-1 Flowchart Programming 1.
1-1-1 Sequential Control 1.
1-1-2 Branched Control 2.
1-1-3 Parallel Group Control 3.

1-2 Elementary Programming Steps 5.
1-2-1 Assessing the Control Task 5.
1-2-2 Drawing the Flowchart 6.
1-2-3 Converting into Mnemonic Code 7.

1-3 Elementary Instructions 7.
1-4 Programming Examples 8.

1-4-1 Example 1: WAIT vs CJP/JMP Instructions 9.
1-4-2 Example 2: WAIT vs Group Instructions 13.
1-4-3 Example 3: Timing with Group Instructions 18.
1-4-4 Example 4: Time-Specific Execution 20.
1-4-5 Example 5: Timers and Execution Timing 22.

SECTION 2
Using the Programming Console 24.

2-1 The Programming Console 24.
2-1-1 The Keyboard 24.
2-1-2 The Mode Switch 26.
2-1-3 The Display Message Switch 27.

2-2 Preparation for Programming 28.
2-2-1 Entering the Password 28.
2-2-2 Clearing Memory 29.
2-2-3 Setting and Canceling Expanded DM Area 30.
2-2-4 Registering the I/O Table 31.
2-2-5 Reading Error Messages 33.
2-2-6 Verifying the I/O Table 34.
2-2-7 Reading the I/O Table 35.
2-2-8 Changing the I/O Table 38.
2-2-9 Transferring the I/O Table 40.

2-3 Programming Operations 41.
2-3-1 Setting a Program Address 41.
2-3-2 Program Write 41.
2-3-3 Program Read 46.
2-3-4 Instruction Search 48.
2-3-5 Instruction Insert 50.
2-3-6 Instruction Delete 51.
2-3-7 Program Check 52.
2-3-8 Program Size Read 54.

TABLE OF CONTENTS

viii

2-4 Monitor and Data Change Operations 55.
2-4-1 Force Set/Reset 59.
2-4-2 Channel Data Changes 59.
2-4-3 Single Channel Operations in Binary 60.
2-4-4 Three-Channel Operations 62.
2-4-5 Group Monitor 64.

2-5 Debugging 66.
2-5-1 Step Execution 67.
2-5-2 Section Execution 69.
2-5-3 Step Trace 71.

2-6 File Memory Operations 73.
2-6-1 File Memory Clear 73.
2-6-2 File Memory Write 74.
2-6-3 File Memory Verify 76.
2-6-4 File Memory Read 78.
2-6-5 File Memory Read/Write 80.
2-6-6 File Memory Index Read 82.

2-7 Cassette Tape Operations 83.
2-7-1 Saving a Program to Tape 84.
2-7-2 Restoring Program Data 85.
2-7-3 Verifying Program Data 86.
2-7-4 DM<–> Cassette Tape: Save, Restore, and Verify 88.

SECTION 3
Data and Memory Areas 90.

3-1 Overview 90.
3-2 I/O and Internal Relay Area - IR 91.
3-3 Special Relay Area SR 95.

3-3-1 Group Continue Control Bit 96.
3-3-2 Data Retention Control Bit 97.
3-3-3 Output OFF Bit 97.
3-3-4 FAL Error Code Output Area 97.
3-3-5 Battery Alarm Flag 97.
3-3-6 Indirect Jump Error Flag 97.
3-3-7 I/O Verification Error Flag 97.
3-3-8 DM Address Error Flag 97.
3-3-9 Instruction Execution Error Flag, ER 98.
3-3-10 Arithmetic Operation Flags 98.
3-3-11 Clock Bits 98.
3-3-12 Special I/O Flags and Control Bits 99.

3-4 Holding Relay Area - HR 102.
3-5 Auxiliary Relay Area - AR 102.
3-6 Link Relay Area - LR 106.
3-7 Timer/Counter Area - TC 107.
3-8 Data Memory Area - DM 107.
3-9 Program Memory 108.
3-10 File Memory Area - FM 108.

SECTION 4
Programming Instructions 110.

4-1 Introduction 110.
4-1-1 Inputting Instructions 110.
4-1-2 Instruction Operand Data Areas and Flags 111.

TABLE OF CONTENTS

ix

4-2 Basic Instructions 113.
4-2-1 LD, AND, OR, OUT, and NOT 113.
4-2-2 Conditional Output - OUTC(00) and OUTC(00) NOT 115.
4-2-3 Interlock - IL(38)<02> and ILC(39)<03> 116.
4-2-4 Differentiation - DIFU(40)<13> and DIFD(41)<14> 116.
4-2-5 No Operation - NOP 118.

4-3 Flow Control 119.
4-3-1 WAIT and WAIT NOT 119.
4-3-2 Label - LBL 120.
4-3-3 Jump - JMP 120.
4-3-4 Conditional Jump - CJP and CJP NOT 121.
4-3-5 Repeat - RPT(37) 122.
4-3-6 Conditional Skip - SKIP(46) and SKIP(46) NOT 124.
4-3-7 Branch for Zero - BRZ(59) and BRZ(59) NOT 124.

4-4 Timers and Counters 125.
4-4-1 Timer - TIM 126.
4-4-2 Timer Start - TMS(30) 128.
4-4-3 Counter - CNT 129.
4-4-4 Reversible Counter - CNTR <12> 131.
4-4-5 Programming Extended Timers and Counters 132.
4-4-6 Timer/Counter Reset - CNR 134.
4-4-7 Multi-output Timer MTIM(80) 134.

4-5 Data Shifting 135.
4-5-1 Shift Register - SFT 135.
4-5-2 Reversible Shift Register - SFTR<84> 138.
4-5-3 Arithmetic Shift Left - ASL(63)<25> 139.
4-5-4 Arithmetic Shift Right - ASR(62)<26> 139.
4-5-5 Rotate Left - ROL(70)<27> 140.
4-5-6 Rotate Right - ROR(69)<28> 140.
4-5-7 One Digit Shift Left - SLD(75)<74> 141.
4-5-8 One Digit Shift Right - SRD(76)<75> 142.
4-5-9 Word Shift - WSFT(94)<16> 142.

4-6 Data Movement 143.
4-6-1 Move - MOV(50)<21> and Move Not - MVN(51)<22> 143.
4-6-2 Block Set - BSET(73)<71> 144.
4-6-3 Block Transfer - XFER(72)<70> 145.
4-6-4 Move Bit - MOVB<82> 146.
4-6-5 Move Digit - MOVD<83> 147.
4-6-6 Data Exchange - XCHG(74)<73> 149.
4-6-7 Single Channel Distribution - DIST<80> 150.
4-6-8 Data Collection - COLL<81> 151.

4-7 Data Comparison 152.
4-7-1 Compare - CMP(52)<20> 152.
4-7-2 Compare Long- CMPL<60> 154.
4-7-3 Block Compare - BCMP<68> 154.
4-7-4 Table Compare - TCMP<85> 155.

4-8 Data Conversion 156.
4-8-1 BCD to Binary - BIN(57)<23> 156.
4-8-2 BCD to Double Binary - BINL<58> 157.
4-8-3 Binary to BCD - BCD(58)<24> 157.
4-8-4 Double Binary to Double BCD - BCDL<59> 158.
4-8-5 4 to 16 Decoder - MLPX(77)<76> 158.
4-8-6 Encoder - DMPX(78)<77> 160.
4-8-7 Seven-Segment Decoder - SDEC(79)<78> 162.
4-8-8 ASCII Code Conversion - ASC<86> 164.
4-8-9 Bit Counter - BCNT<67> 166.

TABLE OF CONTENTS

x

4-9 BCD Calculations 168.
4-9-1 Increment - INC(60)<38> 168.
4-9-2 Decrement - DEC(61)<39> 170.
4-9-3 Set Carry - STC(95)<40> and Clear Carry - CLC(96)<41> 170.
4-9-4 BCD Add - ADD(53)<30> 171.
4-9-5 Double BCD Add - ADDL<54> 172.
4-9-6 BCD Subtract - SUB(54)<31> 173.
4-9-7 Double BCD Subtract - SUBL<55> 175.
4-9-8 BCD Multiply - MUL(55)<32> 176.
4-9-9 Double BCD Multiply - MULL<56> 177.
4-9-10 BCD Divide - DIV(56)<33> 177.
4-9-11 Double BCD Divide - DIVL<57> 178.
4-9-12 Floating Point Divide - FDIV<79> 179.
4-9-13 Square Root - ROOT(64)<72> 182.

4-10 Binary Calculations 182.
4-10-1 Binary Increment - INCB<61> 183.
4-10-2 Binary Decrement - DECB<62> 183.
4-10-3 Binary Addition - ADB<50> 184.
4-10-4 Binary Subtraction - SBB<51> 184.
4-10-5 Binary Multiplication - MLB<52> 185.
4-10-6 Binary Division - DVB<53> 185.
4-10-7 Numeric Conversions -FUN<69> 186.

4-11 Logic Instructions 188.
4-11-1 Complement - COM(71)<29> 188.
4-11-2 Logical AND - ANDW(65)<34> 189.
4-11-3 Logical OR - ORW(66)<35> 189.
4-11-4 Exclusive OR - XORW(67)<36> 190.
4-11-5 Exclusive NOR - XNRW(68)<37> 190.

4-12 Group Programs 191.
4-12-1 Basic Instructions - GN(10), GS(11), GE(12), GOFF(15), and GJ(17) 191.
4-12-2 Group Pause - GP(13) and Group Restart - GR(14) 197.
4-12-3 Group Continue - GC(16) 197.
4-12-4 AND Group - ANDG(01) and OR Group - ORG(02) 199.

4-13 Subroutines and Interrupt Control 199.
4-13-1 Overview 199.
4-13-2 Subroutine Definition - SBN(31)<92> and RET(33)<93> 200.
4-13-3 Subroutine Entry - SBS(32)<91> 200.
4-13-4 Subroutine Test - SBT(34) 201.
4-13-5 Interrupt Routines 202.
4-13-6 Interrupt Control - MSKS(42) and CLI(43) 204.
4-13-7 Mask Read - MSKR(45) 206.

4-14 Special Instructions 207.
4-14-1 Process Display - S(47) 208.
4-14-2 Failure Alarm - FAL(35)<06> and Severe Failure Alarm - FALS(36)<07> 208. . .
4-14-3 System Definition - FUN<49> 210.

4-15 Trace Operations 213.
4-16 File Memory Instructions 214.

4-16-1 File Memory Read - FILR<42> 215.
4-16-2 File Memory Write - FILW<43> 216.
4-16-3 External Program Read - FILP<44> 217.

4-17 Intelligent I/O Instructions 218.
4-17-1 Intelligent I/O Write - WRIT(87)<87> 218.
4-17-2 Intelligent I/O Read - READ(88)<88> 221.

TABLE OF CONTENTS

xi

4-18 Network Instructions 222.
4-18-1 Send - SEND(90)<90> 222.
4-18-2 Network Receive - RECV(98)<98> 224.
4-18-3 About Network Send and Receive Operations 225.

SECTION 5
Execution Time and I/O Response Time 228.

5-1 Overall PC Operation 228.
5-2 Changing Time Allocations 230.
5-3 Instruction Execution Times 232.
5-4 I/O Response Time 240.

5-4-1 CPU Rack Response Times 240.
5-4-2 Remote I/O Systems 242.
5-4-3 PC Link Systems 243.
5-4-4 Host Link Systems 245.

SECTION 6
Error Messages and Troubleshooting 247.

6-1 Programmed Alarms and Error Messages 247.
6-2 Reading and Clearing Errors and Messages 248.
6-3 System Errors 249.
6-4 Program Input Errors 253.
6-5 Program Errors 254.
6-6 File Memory and Cassette Tape Errors 255.

Appendices
A Standard Models 256.
B Programming Console Operations 265.
C Programming Instructions 275.
D Error and Arithmetic Flag Operation 300.
E ASCII Codes 304.
F System Data Sheets 305.

Index 309.
Revision History 319.

xiii

About this Manual:

This manual describes the operation of the C1000HF Programmable Controller (PC)and includes the
sections described below.

Please read this manual carefully and be sure you understand the information provided before attempting
to operate the C1000HF.

The OMRON C1000HF PC offers an effective way to automate processing. Manufacturing, assembly,
packaging, and many other processes can be automated to save time and money. The C1000HF PC is
equipped with programming instructions, data areas, and other features to control these processes direc-
tly or remotely. Distributed control systems can also be designed to allow centralized monitoring and su-
pervision of several separate controlled systems. Monitoring and supervising can also be done through a
host computer, connecting the controlled system to a data bank. It is thus possible to have adjustments in
system operation made automatically to compensate for requirement changes.

Section 1 introduces flowchart programming.

Section 2 focuses on how to use the Programming Console to prepare the system for programming, to
enter program data, and to monitor system operations and program execution. If you are not using a Pro-
gramming Console, you can skip this section.

Section 3 explains how I/O bits are used to identify individual I/O points and discusses the functions of the
various types of data and memory areas in the PC.

Section 4 describes the instructions in the C1000HF’s instruction set individually.

Section 5 defines the execution time and I/O response time and shows how to calculate these quantities.
Execution times for individual instructions are listed.

Section 6 lists the error messages displayed on the LCD of the Programming Console and describes
software troubleshooting processes.

WARNING Failure to read and understand the information provided in this manual may result in
personal injury or death, damage to the product, or product failure. Please read each
section in its entirety and be sure you understand the information provided in the section
and related sections before attempting any of the procedures or operations given.

!

xv

PRECAUTIONS

This section provides general precautions for using the C1000HF Programmable Controller (PC) and related devices.

The information contained in this section is important for the safe and reliable application of the Programmable Con-
troller. You must read this section and understand the information contained before attempting to set up or operate a
PC system.

!

!

!

!

!

4Operating Environment Precautions

xvi

1 Intended Audience
This manual is intended for the following personnel, who must also have knowl-
edge of electrical systems (an electrical engineer or the equivalent).

• Personnel in charge of installing FA systems.

• Personnel in charge of designing FA systems.

• Personnel in charge of managing FA systems and facilities.

2 General Precautions
The user must operate the product according to the performance specifications
described in the operation manuals.

Before using the product under conditions which are not described in the manual
or applying the product to nuclear control systems, railroad systems, aviation
systems, vehicles, combustion systems, medical equipment, amusement ma-
chines, safety equipment, and other systems, machines, and equipment that
may have a serious influence on lives and property if used improperly, consult
your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide the
systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the Unit. Be
sure to read this manual before attempting to use the Unit and keep this manual
close at hand for reference during operation.

WARNING It is extremely important that a PC and all PC Units be used for the specified
purpose and under the specified conditions, especially in applications that can
directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PC System to the above-mentioned
applications.

3 Safety Precautions

WARNING Do not attempt to take any Unit apart while the power is being supplied. Doing so
may result in electric shock.

WARNING Do not touch any of the terminals or terminal blocks while the power is being
supplied. Doing so may result in electric shock.

WARNING Do not attempt to disassemble, repair, or modify any Units. Any attempt to do so
may result in malfunction, fire, or electric shock.

4 Operating Environment Precautions

Caution Do not operate the control system in the following locations:

• Locations subject to direct sunlight.

• Locations subject to temperatures or humidity outside the range specified in
the specifications.

• Locations subject to condensation as the result of severe changes in tempera-
ture.

!

!

!

!

5Application Precautions

xvii

• Locations subject to corrosive or flammable gases.

• Locations subject to dust (especially iron dust) or salts.

• Locations subject to exposure to water, oil, or chemicals.

• Locations subject to shock or vibration.

Caution Take appropriate and sufficient countermeasures when installing systems in the
following locations:

• Locations subject to static electricity or other forms of noise.

• Locations subject to strong electromagnetic fields.

• Locations subject to possible exposure to radioactivity.

• Locations close to power supplies.

Caution The operating environment of the PC System can have a large effect on the lon-
gevity and reliability of the system. Improper operating environments can lead to
malfunction, failure, and other unforeseeable problems with the PC System. Be
sure that the operating environment is within the specified conditions at installa-
tion and remains within the specified conditions during the life of the system.

5 Application Precautions

WARNING Always heed these precautions. Failure to abide by the following precautions
could lead to serious or possibly fatal injury.

• Always ground the system to 100 Ω or less when installing the Units. Not con-
necting to a ground of 100 Ω or less may result in electric shock.

• Always turn OFF the power supply to the PC before attempting any of the fol-
lowing. Not turning OFF the power supply may result in malfunction or electric
shock.

• Mounting or dismounting I/O Units, CPU Units, Memory Cassettes, or any
other Units.

• Assembling the Units.

• Setting DIP switches or rotary switches.

• Connecting cables or wiring the system.

• Connecting or disconnecting the connectors.

Caution Failure to abide by the following precautions could lead to faulty operation of the
PC or the system, or could damage the PC or PC Units. Always heed these pre-
cautions.

• Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal lines,
momentary power interruptions, or other causes.

• Interlock circuits, limit circuits, and similar safety measures in external circuits
(i.e., not in the Programmable Controller) must be provided by the customer.

• Always use the power supply voltages specified in the operation manuals. An
incorrect voltage may result in malfunction or burning.

• Take appropriate measures to ensure that the specified power with the rated
voltage and frequency is supplied. Be particularly careful in places where the
power supply is unstable. An incorrect power supply may result in malfunction.

• Install external breakers and take other safety measures against short-circuit-
ing in external wiring. Insufficient safety measures against short-circuiting may
result in burning.

5Application Precautions

xviii

• Do not apply voltages to the Input Units in excess of the rated input voltage.
Excess voltages may result in burning.

• Do not apply voltages or connect loads to the Output Units in excess of the
maximum switching capacity. Excess voltage or loads may result in burning.

• Disconnect the functional ground terminal when performing withstand voltage
tests. Not disconnecting the functional ground terminal may result in burning.

• Install the Units properly as specified in the operation manuals. Improper
installation of the Units may result in malfunction.

• Be sure that all the mounting screws, terminal screws, and cable connector
screws are tightened to the torque specified in the relevant manuals. Incorrect
tightening torque may result in malfunction.

• Use crimp terminals for wiring. Do not connect bare stranded wires directly to
terminals. Connection of bare stranded wires may result in burning.

• Wire all connections correctly.

• Double-check all wiring and switch settings before turning ON the power sup-
ply. Incorrect wiring may result in burning.

• Mount Units only after checking terminal blocks and connectors completely.

• Be sure that the terminal blocks, Memory Units, expansion cables, and other
items with locking devices are properly locked into place. Improper locking
may result in malfunction.

• Check switch settings, the contents of the DM Area, and other preparations
before starting operation. Starting operation without the proper settings or data
may result in an unexpected operation.

• Check the user program for proper execution before actually running it on the
Unit. Not checking the program may result in an unexpected operation.

• Confirm that no adverse effect will occur in the system before attempting any of
the following. Not doing so may result in an unexpected operation.

• Changing the operating mode of the PC.

• Force-setting/force-resetting any bit in memory.

• Changing the present value of any word or any set value in memory.

• Resume operation only after transferring to the new CPU Unit the contents of
the DM Area, HR Area, and other data required for resuming operation. Not
doing so may result in an unexpected operation.

• Do not pull on the cables or bend the cables beyond their natural limit. Doing
either of these may break the cables.

• Do not place objects on top of the cables or other wiring lines. Doing so may
break the cables.

• When replacing parts, be sure to confirm that the rating of a new part is correct.
Not doing so may result in malfunction or burning.

• Before touching a Unit, be sure to first touch a grounded metallic object in order
to discharge any static built-up. Not doing so may result in malfunction or dam-
age.

1

SECTION 1
Introduction

This section introduces flowchart programming.

Terminology
Programming instructions, Programming Console keys, and Programming
Console operations are generally referred to by name without saying “instruc-
tion,” “key,” or “operation.” The context should make it clear whether a refer-
ence is to a key or an instruction, the names of most of which are set in all
capitals. Programming Console operations are not in all capitals, but are capi-
talized normally, as are flag and control bit names. Many of these names are
in abbreviated form, e.g., CJP (for the Conditional Jump instruction) and
MONTR (for the “monitor” key).

If you are uncertain as to the meaning or use of a particular term, refer to the
following sections:

Programming Console keys and operations

Flags and control bits

Programming instructions

Section 2 Using the Programming Console or
Appendix B Programming Console Operations

Section 3 I/O Assignments and Data Areas

Section 4 or Appendix C Programming Instructions

1-1
Flowchart Programming

Flowchart programming can be used to achieve any of the following three
types of control. Each of these is described in more detail below.

1. Sequential Control

2. Branched Control

3. Parallel Group Control

1-1-1
Sequential Control

Flowchart programming provides four basic programming instructions - AND,
OR, WAIT, and OUT - that can be used to represent the conditions and oper-
ations of processing equipment. The process identifier instruction, S(47), can
be combined with these four basic instructions to automatically display the
current process number on the Programming Console. The following pro-
gramming section shows two processes for which ‘S’ numbers have been
assigned. These S numbers can be linked to display messages explaining
the program section currently being executed.

Introduction Section 1

2

Current ‘S’ number

S 0000

#0000

AND 00002

WAIT

OUT 00501

S 0001

#0000

AND 00004

AND 00005

WAIT

OUT 00503

Process 0

Process 1

Indicates start of process 0.

Indicates that input 00002 is the input condition.

Indicates a wait until the input condition is met, i.e., until input
00002 comes ON.

Indicates that output 00501 is to go ON when input 00002 com-
es ON.

Indicates the start of process 1. Automatically displayed on Pro-
gramming Console as shown below.

1-1-2
Branched Control

With flowchart programming, conditional jump (CJP) and label instructions
(LBL) can be used to achieve branched control. This type of control closely
follows the operation of processing equipment in terms of condition-response
requirements, as shown by the following example. The conditions and opera-
tions shown at the left for a processing device can be programmed as shown
at the right.

Section 1Introduction

3

Rotate arm
counterclockwise.

Operations

Device

Conditions Operations

Grasp workpiece.

Rotate arm clockwise.

Release workpiece.

 Start button
 pressed?

 Workpiece
in position?

 Workpiece
 grasped?

 Workpiece
 positioned?

Program

Conditions

CJP

CJP

CJP

CJP

LBL 0

AND PB1

AND LS3

JMP LBL0

AND LS2

OUT NOT SOL2

OUT NOT SOL3

JMP LBL0

AND LS1

YES

NO

YES

NO

YES

NO

YES

NO

LBL 1

OUT SOL1

JMP LBL2

OUT NOT SOL1

OUT SOL3

JMP LBL4

OUT SOL2

JMP LBL6

LBL 3

LBL 5

LBL 7

YES

NO

YES

NO

YES

NO

YES

NO

1-1-3
Parallel Group Control

The C1000HF is equipped with seven group instructions (GN, GS, GE,
GOFF, GP, GR, and GJ) that allow multiple processes to be controlled simul-
taneously. These group instructions, in combination with the above-men-
tioned S instruction, provide many advantages both in programming and in
actual control.

Programming
Advantages

The programming task can be divided into process groups to enable indepen-
dent programming of small portions of the program. This not only simplifies
the programming task, but also simplifies the structure of the program and
reduces the possibility of programming errors. It also enables more than one
programmer to divide the programming task to reduce programming time re-

Introduction Section 1

4

quirements. Programs can also be checked and debugged by group, i.e., by
process, to more quickly perfect the operating system.

Control Advantages
Current process (‘S’) numbers can be monitored on automatic Programming
Console displays. The Programming Console displays can also be used
when system errors occur to access the process number where operations
have stopped, as well as the ON/OFF status of the input causing the trouble.

Application
Group instructions can be used to program operations such as the one
shown below.

Awaiting startup conditions.

Start groups 1 and 2.

Awaiting stop conditions.

Stop groups 1, 2, and 3.

Group 3

Group Processes

Group
 0

Group 1 Conveyor
program

Group 2

Process 1

Start group 3.

Process 2

Assembly

Shown in
detail below.

Process 3

Process 1 in group 2 of the example can be programmed as shown below.
The indicated programming display will automatically appear on the Program-
ming Console if SHIFT, MONTR, and ENT have been pressed in advance.

Programming

Process
 1

Indicates the beginning
of group 2.

Programming Console
display shown appears
while waiting for these in-
put conditions to be met.

Programming Console Display

Indicates ‘S’ number 1.

Indicates the input that is be-
ing waited for and its status.

GN 002

S 0001

#0000

AND 00002

AND 00003

WAIT

OUT 00501

Section 1Introduction

5

1-2
Elementary
Programming Steps

To create a PC control program, follow these basic steps:

1. Determine what the controlled system must do and in what order, and
draw a general flowchart.

2. Assign input and output devices to PC I/O bits. That is, designate the
external devices that will send signals to and receive signals from the
PC.

3. Using flowchart programming symbols, draw a flowchart to represent the
sequence of required operations and their inter-relationships.

4. If the Programming Console is to be used, code the flowchart into mne-
monic code so that the program can be input to the CPU. (The PC can
also be programmed through a FIT or from a host computer through a
Host Link Unit using FSS. See the end of Appendix A Standard Products
regarding these products.)

5. Transfer the program to the CPU via the Programming Console.

6. Check for program errors.

7. Correct the errors by changing the program.

8. Execute the program and test it for execution errors.

9. Correct the execution errors by changing the program.

The remainder of Section 1 will focus on Steps 1 through 4.

1-2-1
Assessing the Control
Task

Assessing the control task is, of course, a highly important part of setting up a
PC-controlled system. The PC’s flexibility allows a wide latitude in what oper-
ations can be controlled, and in how they can be controlled.

To apply the PC to a control task, first determine the system requirements.

Input/Output
Requirements

The first thing that must be assessed is the number of input and output points
that your system will require. This is done by identifying each device that is to
send an input signal to the PC or which is to receive an output signal from the
PC. Each input or output point must then be assigned an I/O bit.

Keep in mind that the number of I/O bits available depends on the PC system
configuration. (See 3-2 I/O and Internal Relay Area for more details.)

Sequence, Timing,
and Relationship
Assessment

Next, determine the sequence in which control operations are to occur and
the relative timing of the operations. Identify the physical relationships be-
tween the controlled devices as well as the kinds of responses that should
occur between them.

For instance, a photoelectric switch might be functionally tied to a motor by
way of a counter within the PC. When the PC receives an input from a switch,

Introduction Section 1

6

it starts the motor. The PC stops the motor when the counter has received
five input signals from the photoelectric switch.

Each of the related tasks must be similarly determined, from the beginning of
the controlled operation to the end.

Having made this assessment, you will be ready to go to step 2 of program-
ming-assigning the input/output devices to I/O bits.

Input/Output
Assignments

The PC uses the concept of I/O channels. An I/O channel consists of 16 bits.

The five-digit number used to identify an I/O bit, also known as the address of
the bit, can be broken down into two parts. The leftmost three digits identify
the channel, and the rightmost two digits identify the bit within the channel.
See the discussion on addressing conventions in 3-1 I/O Assignments and
Data Areas.

Assigning Non-I/O IR
Bits

Bits that are not used to directly send or receive signals to or from external
devices act as internal storage bits and are used to control other bits, timers,
and counters. Assign these ‘work bits’ when you assign I/O bits during Step
2.

Assigning Numbers to
Timers and Counters

Identify timers and counters with a number that ranges from 000 to 511.

When assigning timer and counter numbers, be careful not to use the same
timer/counter number for another timer/counter. For example, there cannot be
a Timer 001 and a Counter 001.

When you’re finished assigning the I/O bits, work bits, and timer/counter num-
bers, proceed to the next step, drawing the Flowchart.

1-2-2
Drawing the Flowchart

Once you have determined which devices are to be controlled, how they re-
late to each other, and the sequence (or timing) at which the controlled tasks
must take place, draw a flowchart. Some examples of flowcharts are provided
in 1-4 Programming Examples.

In the flowchart, use the five-digit addresses that you assigned to the I/O bits
and work bits, as well as the three-digit numbers you gave to the timers and
counters. You’ll also use flowchart symbols such as those shown for instruc-
tions in Section 4 Programming Instructions. These consist basically of dia-
mond-shaped boxes that represent conditional branches and rectangular
boxes that designate inputs, outputs, and other control actions, as well as
timers, counters, waits, and other program control steps.

conditional branches are used when the next step or steps to be taken in a
process depend on certain conditions. There are other means of moving to
different steps in a program, such as unconditional jumps and group pro-
grams. All such jumps, and returns from them, require labels at the destina-
tion of the jump or return.

Individual parts of the program consist of one line, or more than one line
joined directly. More than one instruction line joined directly, such as a series
of AND or OR instructions establishing conditions for a WAIT or other opera-

Section 1Introduction

7

tion, is called a block. If these lines or blocks establish conditions determining
the outcome of an instruction following them in the program, they are called
condition lines or condition blocks. The lines or blocks that make up the pro-
gram are joined with lines and arrows that indicate the flow of the program.
Solid lines indicate direct moves through the program; dotted lines indicate
moves made through a program jump to a label.

When writing a complex flowchart, it is often convenient to make a general
flowchart first showing only the overall processes and their relationships to
each other. Here it is not even necessary to specify all of the instructions that
will be used. Once a firm grasp of a general flowchart has been made, it can
be turned into a detailed flowchart showing the specific instructions that will
be used and including all labels that will be necessary to move around in the
program.

When you have finished drawing your detailed flowchart, the next step is to
encode the flowchart into a language that the PC can understand. This step
is necessary only if you are using a Programming Console to input the pro-
gram.

1-2-3
Converting into
Mnemonic Code

When programming through the Programming Console, you must convert the
flowchart into mnemonic code. If you are using FSS or a FIT (see Appendix
A) for programming, you can directly program the PC in flowchart logic. Mne-
monic code consists of addresses, instructions, and data.

“Addresses” in this context refers to program addresses-locations in the PC’s
Program Memory where instructions and data are stored. Instructions tell the
PC what to do using the operand data that follows each instruction. Each in-
struction is a step in the program, and address numbers provide a way to ref-
erence steps. When programming, the addresses will automatically be dis-
played and do not have to be set unless for some reason a different location
is desired.

Many of the programming examples offered later in this manual show conver-
sions of instructions to mnemonic code. The individual codes are given for
each instruction in Section 4 and in Appendix C Programming Instructions.

To keep a program organized and enable it to execute properly, it is important
to input the mnemonic code in the correct order. First, input the main program
line of the main program from start to finish. Then go back to the beginning of
the program and input each branch leaving the main program line, beginning
with the label for it and ending with a return to the proper destination. Once all
main program branches have been input, input the first group program in or-
der using the same procedure as for the main program, i.e., input the main
program line first, and then any branches starting back at the beginning of the
main program line for that group program. Continue on in this fashion until all
group programs have been input. You’re now ready to start testing the pro-
gram.

1-3
Elementary Instructions

Each of the indispensable elementary instructions has a corresponding key
on the Programming Console. These include AND, OR, NOT, WAIT, OUT,
JMP, CJP, LBL, TIM, CNT, and CNR, any one of which can be entered simply

Introduction Section 1

8

by pressing the appropriate key. The other elementary instruction, LD, is input
by holding down the SFT key and pressing the AND key. See Section 4 Pro-
gramming Instructions for details on these instructions.

LD and LD NOT
LD or LD NOT starts a line or block of inputs. The first input can also be
started with AND or OR. LD NOT indicates the opposite of the actual status
of the input.

AND and AND NOT
AND or AND NOT is used to serially connect two or more inputs. AND NOT
connects the opposite of the actual status of the second input.

OR and OR NOT
OR or OR NOT is used to connect two or more inputs in parallel. OR NOT
connects the opposite of the actual status of the second input.

AND LD
AND LD connects two blocks in series. In other words, AND LD logically
ANDs the logical results of two blocks.

OR LD
OR LD connects two blocks in parallel. In other words, OR LD logically ORs
the logical results of two blocks.

WAIT and WAIT NOT
WAIT is used to pause operation flow until an input goes ON; WAIT NOT, until
an input goes OFF.

OUT and OUT NOT
OUT is used to turn outputs ON; OUT NOT, to turn outputs OFF.

JMP, CJP, and LBL
JMP is used to jump to other program locations; CJP, to branch programming
according to specific conditions; and LBL, to indicate branch and jump desti-
nations.

TIM, CNT, and CNR
TIM, CNT, and CNR are instructions for timers, counters, and reversible
counters.

1-4
Programming Examples

The following programming examples are designed to introduce basic pro-
gramming techniques and instruction applications. All of these examples
should be studied in detail to gain a thorough understanding of basic flow-
chart programming.

Refer to Section 4 Programming Instructions for details on any instructions
used in following examples.

Section 1Introduction

9

1-4-1
Example 1: WAIT vs
CJP/JMP Instructions

An example control system will be programmed using first WAIT instructions
and then CJP and JMP instructions. In this example system, a bidirectional
cylinder is moved forward by electromagnetic valve 1 (MV1) when a pushbut-
ton switch (PB) is pressed. Electromagnetic valve 2 (MV2) then moves the
cylinder back to the back limit switch (LS1) 1.5 seconds after the front limit
switch (LS2) is activated. The setup and timing chart for this operation are as
shown below.

PB

LS1

LS2

MV1

MV2
1.5 s

Setup

Back Forward

MV1 MV2

LS1 LS2

Timing Chart

WAIT Instructions
First the above operation is prepared in a general flowchart giving the overall
operation.

Conditions to turn MV2 OFF.

START

AND

ON

AND(OR)

OFF

TIM

ON

AND(OR)

OFF

END

LS1 ON
PB ON

MV1 ON

LS2

MV1 OFF

1.5 s

MV2 ON

LS1 ON

MV2 OFF

Conditions to turn MV1 ON.

Conditions to turn MV2 ON.

Conditions to turn MV1 OFF.

Introduction Section 1

10

Then I/O points and timers/counters are assigned.

SymbolBit type

Input

Output

PB 00002

LS1 00003

LS2 00004

MV1 00500

MV2 00501

TIM 000 (1.5 s)

Bit #

Timer

Finally a detailed flowchart is prepared to be input via the Programming Con-
sole.

Input from LS1

AND 00002

AND 00003

WAIT

OUT 00500

AND 00004

WAIT

OUT NOT 00500

TIM 000

#0015

WAIT

OUT 00501

AND 00003

WAIT

OUT NOT 00501

JMP LBL1

START

An AND between inputs from LS1 and PB

Input from LS2

The final JMP instruction and corresponding label (LBL1) are used to repeat
the operation from the beginning. Label LBL2 is input to allow for debugging
from the “OUT 00501” step of the program, and is not associated with a JMP
instruction.

Section 1Introduction

11

CJP and JMP
Instructions

Although here only the general flowchart is presented, two important aspects
of branched programming using the CJP instruction are illustrated: program-
ming timers and program input sequence. When writing the detailed flow-
chart, labels must be added to designate all jump destinations.

OUT MV1

JMP

AND LS1

AND PB

CJP

AND LS2

CJP

OUT NOT MV1

AND MV2

CJP

TIM 0

15

CJP

JMP

OUT NOT MV2

JMP

AND LS1

CJP

OUT MV2

JMP

JMP

Yes

No

Yes

Yes

Yes

No

No

No

No

Yes

MV1 turned ON.

MV2 turned ON.

MV2 turned OFF.

Introduction Section 1

12

• Programming Timers
Care must be taken in programming timers when using branching programs.
Here the timer must be programmed so that is it on a branch line where it will
be activated only when MV2 is not already operating. If the “AND MV2” and
following “CJP” portions of the flowchart were to be eliminated from the pro-
gram, the timer would be restarted before LS2 had time to turn OFF.

• Input Sequence
Program steps along the base line of the flowchart must always be input first,
followed by program steps on branches flowing off of the base line in order as
they move down the base line. In the example sequence, the CJP instruc-
tions (A, B, and C) indicated “1” would be input first, followed by the branch-
ing program steps “2,” “3,” and then “4.”

Branch steps
Yes

No

Yes

No

Yes

No

JMP

Branch steps JMP

Branch steps JMP

A

B

C

1
2

3

4

Section 1Introduction

13

1-4-2
Example 2: WAIT vs
Group Instructions

An example control system will be programmed using first WAIT instructions
and then group instructions. In this example system, a bin moves forward
when a pushbutton (PB) is pressed. When limit switch 2 (LS2) is activated,
the bin stops and a hopper opens for eight seconds. After eight seconds, the
hopper closes, the bin returns to its original position, and the bottom of the
bin opens for five seconds when limit switch 1 (LS1) is activated. This pro-
cess is then repeated once before the program ends.

Back Forward

Hopper

LS1 LS2

The I/O point and timer/counter assignment for this system are as follows:

PB 00002

LS1 00003

LS2 00004

Hopper 00500

Forward 00501

Back 00502

Bin 00503

TIM (5 s and 8 s)

SymbolBit type

Input

Output

Bit #

Timer

AR bit 10000 will be used as a work bit to record completion of the first ex-
ecution of the operation.

WAIT Instructions
The flowchart for the above operation written using WAIT instructions would
be as shown on the following page.

Introduction Section 1

14

Flowchart

Bin moved forward.

Bin stopped.

Hopper opened.

Hopper closed.

Bin moved back.

Bin stopped.

Bin bottom opened.

Bin bottom closed.

YES (completion at 2nd execution)

START

Waiting for PB to come ON.

JMP LBL2

AND 00002

WAIT

OUT NOT 1000

OUT OO5O1

AND 00004

WAIT

OUT NOT 00501

OUT 00500

TIM 000

#0080

WAIT

OUT NOT 00500

OUT 00502

AND 00003

WAIT

OUT NOT 00502

OUT 00503

TIM 000

#0050

WAIT

OUT NOT 00503

AND 10000

CJP LBL1

OUT 10000

Waiting for LS2 to come ON.

8-second wait

Waiting for LS1 to come ON.

5-second wait.

Section 1Introduction

15

Group Instructions
Here a group is created so that an emergency stop input can be processed in
the main program, allowing normal operations, performed in the group pro-
gram, to be stopped as soon as the emergency stop input is received. The
detailed main program and the flow of the group program have been pro-
vided. The following inputs are used in addition to those mentioned above.
The start pushbutton is PB1.

Emergency stop pushbutton (PB2): 00005

Manual bin-return pushbutton (PB3): 00006

Manual/automatic selector for bin return (CS): 00007

The GJ instruction is used to jump to the group program. This is necessary
here because the main program uses only branching instructions, creating a
closed loop.

The GOFF instruction serves to stop execution of the group. All timers and all
outputs from OUT and OUTC instructions in the group are reset when GOFF
is executed. Values held in the DM area for counters, shift registers, and oth-
er calculated values are not reset. (The CNR instruction can be used when it
is necessary to reset a counter in a group.)

The GE instruction inserted at the end of group execution serves to reset the
group so that the next execution of a GS instruction for it will begin the group
from its first step.

Group ProgramMain Program

START

Emergency
stop (PB2) Group execution

stopped; group
outputs OFF.

Manual/automatic selector (CS)

Yes

No

Manual

Automatic

Bin return when
PB3 is pressed.

GE 0

JMP LBL10

LBL10

LBL12

LBL13

LBL11

AND 00005

CJP LBL11

AND 00007

AND 00006

CJP LBL13

GS 0

GJ

JMP LBL10

G OFF 0

JMP LBL12

AND NOT 00003

OUTC 502

Yes

No

GN 0

AND 10000

CJP LBL1

JMP LBL2
LBL1

LBL2

Instructions of
group program

Group Programming
Considerations

1. Any operation, such as an emergency stop, that must take precedent
over general operations must be placed in the main program.

Introduction Section 1

16

2. Group programs are stopped from the main program by inserting the
GOFF into the main program. Executing this instruction turns OFF all
outputs made from the group program and stops timers and counters
(timers are reset).

3. Groups must be started from the main program using the GS instruction.

4. The GN instruction is required at the beginning of all groups; the GE in-
struction, at the end.

5. Although manual operations can be programmed within the main pro-
gram as shown for returning the bin in the above example, these are
generally programmed separately as illustrated below. Because manual
operations must respond to arbitrary control inputs, branched program-
ming is usually most appropriate. It is generally best to insert instructions
to stop all group programs before entering manual operations and to turn
all outputs OFF when switching between manual and automatic opera-
tions.

The main program can be interlocked to groups and
all groups interlocked to each other by using AR bits.

Yes

No

GN 7GN 0

GE 7GE 0

Manual?

Main program Group #0 Group #7

Manual
operations
(branched
program-
ming)

Simultaneous
Operations

To initiate simultaneous execution of different operations part way through a
process, a second group can be activated part way through execution of a
first group. An AR bit can then be used to interlock the two groups so that
execution of a later portion of the first group can be coordinated with comple-
tion of execution of the second group. The timing for operations performed in
these groups and a general flowchart that can be used to achieve proper con-
trol are provided below.

Section 1Introduction

17

Group B ended.

Start

1
2

3

4
5

Operation Timing

Yes

No

Main Program

START

Groups A and
B stopped.

Loads A
and B OFF.

Group A

Operation 1

Operation 2

Operation 3

Operation 4

Operation 5

Group B started.

AR bit ON

Waiting for AR bit. Waiting for comple-
tion of operation 4.

AR bit OFF.

Group A ended.

GS A

GN A

AND

GJ

JMP

GS B

GN B

GE B

GE A

Group B

Introduction Section 1

18

1-4-3
Example 3: Timing with
Group Instructions

This example, which programs a water fountain, shows how a main program
controlling overall operation is executed simultaneously with a group program
that controls specific operations. The group program utilizes a timer and se-
quential programming to achieve programming simplicity. Because sequential
(WAIT) programming is used, the same timer (000) is used for all timed inter-
vals. Overall operations are as follows:

1. When pushbutton PB1 is activated, jets C are turned on.

2. After five seconds, jets C are turned off and jets A and B are turned on.

3. After another five seconds, jets A are turned off.

4. After a further five seconds, jets B are turned off, and jets A and C are
turned on.

5. After two seconds, jets B are turned back on.

6. After five seconds, all jets are turned off.

7. After two seconds, jets C are turned ON and step 2, above, is returned
to.

8. If pushbutton PB2 is activated, all jets are stopped and program execu-
tion is halted.

Outputs 00500, 00501, and 00502 turn the jets on and off; inputs 00002 and
00004 are from the pushbutton switches.

The timing chart, fountain setup, principle portions of the flowchart, and the
coding used to input this portion via the Programming Console are provided
below.

Section 1Introduction

19

2s
5s

5s

5s 5s

One scan
2s

C

A

BB

A A

BB

B AA

Fountain Setup Timing Chart

Flowchart

START

Waiting for
input of PB2.

Jets A
turned off.

Jets B
turned off.

Jets C
turned off.

Waiting for
input of PB1.

Jets C
turned on.

Jets C
turned off.

GS 0

AND 00004

WAIT

OUT NOT 00500

OUT NOT 00501

OUT NOT 00502

GN 0

CNR TIM 000

GE 0

JMP LBL1

AND 002

WAIT

OUT 00500

TIM 000

#00500

WAIT

OUT NOT 00500

TIM 000

#0020

WAIT

JMP LBL2

Introduction Section 1

20

Mnemonic Code

0000 LBL 0001

0001 GS 000

0002 AND 00004 PB2

0003 WAIT –––

0004 OUT NOT 00500

0005 OUT NOT 00501

0006 OUT NOT 00502

0007 CNR TIM 000

0008 GE 000

0009 JMP LBL 0001

0010 GN 000

0011 AND 00002 PB1

0012 WAIT –––

0013 LBL 0002

0014 OUT 00500

0015 TIM 000

0050 5 S

0016 WAIT –––

0017 OUT NOT 00500

0041 TIM 000

0020 2 S

0042 WAIT –––

0043 JMP LBL 0002

Address Instruction Data Comments

1-4-4
Example 4: Time-Specific
Execution

The SR area clock bits (see 3-3 Special Relay Area - SR) can be used in
DIFU or DIFD and combined with SKIP or SKIP NOT to control the timing of
program step execution.

In this example DIFU is combined with a 0.1-second clock pulse (SR bit
22500) and SKIP NOT so that an input channel (010) is transferred to the
specified area of the DM area only when a ‘transfer’ pushbutton (PB, input
00000) is ON.

The WSFT instruction is used to transfer the contents of channel 010 to DM
1000, the contents of DM 1000 to DM 1001, the contents of DM 1001 to DM

Section 1Introduction

21

1002, etc. Because DM 2000 is the designated end channel, its contents are
lost.

The contents of channel 010 are input via an Input Unit from a detector that
transfers four digits of BCD. The setup and program section for this operation
are shown below. Note that the program is also set up to clear channels DM
1000 through DM 2000 each time the transfer pushbutton is turned ON.

Setup

DM1000

DM2000

Detector

BCD
(4 digits)

Input Unit

Ch 010

Program Section

One channel of
data (4-digit
BCD) shifted to
DM 1000 every
0.1 s.

Yes

No

Yes

No

Yes

No

DM 1000 through
DM 2000 cleared
once each time
PB (00000) is
turned ON.

Data transferred
only while PB
(00000) is ON.

(0.1-s
clock)

DIFU(40) 00

00000

WSFT(94)

010

DM1000

DM2000

SKIP NOT 1

CNR

DM1000

DM2000

AND 00000

SKIP NOT 3

DIFU(40) 01

25500

SKIP NOT 1

Introduction Section 1

22

Precautions for DIFU/
DIFD Instructions

DIFU/DIFD must always be used with certain instructions, such as WSFT in
the above example, to ensure that the instruction is executed only at the de-
sired time and only the desired number of times. If DIFU/DIFD is not used, a
programming step activated by an SR area clock bit may be executed many
times during the half of the pulse interval during which the clock bit is ON, i.e.,
if the CPU processing time is shorter than the clock pulse.

If the CPU processing time is longer than the clock pulse, the reverse prob-
lem can also occur, i.e., a programming step activated by DIFU/DIFD using a
clock pulse may not be executed during a particular pulse. This can occur
when a branch from a loop containing the DIFU/DIFD instruction jumps to a
group program. In such cases, scheduled interrupts must be used.

1-4-5
Example 5: Timers and
Execution Timing

Although little trouble is encountered in combining timers with WAIT in se-
quential programming to allow time between programmed operations, at-
tempting to achieve the same in branched or group programming can be diffi-
cult (see Section 5 Execution Time and I/O Response Time for details on tim-
ing).

Sequential Programming
The following program section allows 1.00 second to elapse between opera-
tions A and B.

Operation A

Hundredth of seconds

Operation B

TIM 400

#0100

WAIT

Group Programming
Because group programs are jumped to for WAIT, the desired 1.00 second
between operations A and B will be exceeded in the following example if op-
eration C requires longer than one second to process.

Section 1Introduction

23

TIM 400

#0100

WAIT

Operation A

Operation B

Operation C

GN

GE

Branched Programming
Proper timing is also difficult to achieve if a CJP instruction is combined with a
timer and the branch taken from the timer before time has expired is used for
other operations. In the following example, operation B will not be started until
the TIM instruction is executed after the timer has reached a present value of
zero, i.e., it will be delayed by the time required to finish processing operation
C. The longer the processing time for operation C, the longer the possible
delay.

Operation B

TIM 400

#0100

Operation A

Operation C

Yes

No

CJP

TIM instructions are executed again after completing simultaneous program-
ming steps in group programs entered through WAIT or GJ instructions. Tim-
er accuracy can thus be affected by group execution conditions.

24

SECTION 2
Using the Programming Console

This section focuses on how to use the Programming Console to prepare the
system for programming, to enter program data, and to monitor system oper-
ations and program execution. If you are not using a Programming Console,
you can skip this section.

Note: It is assumed, unless otherwise indicated, that all operations in
this section begin with the display cleared to 00000 by pressing
CLR. Any of the Programming Console operations described in
this section can be cancelled at any time by pressing CLR. In
some cases, CLR may need to be pressed 2 or 3 times.

2-1
The Programming
Console

The Programming Console is the most commonly used programming device
for the C1000HF PC. It is a compact device that is available either as a hand-
held model or for direct mounting to the PC and in vertical or horizontal for-
mats (see Appendix A Standard Models). Some Programming Consoles re-
quire adapters and/or cables for mounting to the PC. Consult your Program-
ming Console manual.

SYSFLOW program instructions cannot be directly input through the Pro-
gramming Console. There are, however, other programming means as listed
at the end of Appendix A Standard Models. Refer to each programming de-
vice’s Operation Manual for details about its operations.

2-1-1
The Keyboard

The keyboard of the Programming Console is functionally divided into the
following three areas:

Numeric Keys
These ten keys are used to input numeric program data such as program ad-
dresses, input/output bit numbers and values, and timer/counter numbers and
values.

The numeric keys are also used in combination with the function key (FUN) to
enter instructions with function codes.

Operation Keys
The top two rows of keys and the keys below the numeric keys are used for
writing and correcting programs. Detailed explanations of their functions are
given later in this section.

SHIFT is similar to the shift key of a typewriter, and is used to obtain the sec-
ond function of those keys that have two functions, generally the function indi-
cated on the top or in the upper left corner. Two keys do not have their sec-
ond function indicated on them: AND becomes LD and CNR becomes AR
when pressed after SHIFT. Do not confuse SHIFT with SFT, which is used for
shift register instructions.

ENT is used to enable further key inputs. It should be pressed to continue
Programming Console operations either after completing steps in operations,
or after changing the PC mode.

Section 2Using the Programming Console

25

The +/– key is pressed to change the direction addresses or bit numbers will
change when ENT is pressed. This direction is indicated by a “+” or “–” dis-
played in the upper right corner of the display. “+” indicates that the address
or bit number will be incremented; “–” indicates that it will be decremented.

CLR is used either to cancel operations or to clear the display. CLR may have
to be pressed more than once to return the display to “00000.”

The arrow key is used to move the cursor to indicate the portion of the display
that is to be used in the next operation.

Instruction Keys
The keys at the bottom left are used to insert instructions into your program.
These instruction keys have mnemonic names and function as described be-
low.

SFT Enters a shift register instruction.

LBL Enters a label to designate a destination for program jumps.

FUN Used to select and enter instructions with function codes. To enter an instruction
with function code, press the FUN key and then the appropriate numerical value.
Instructions and their function codes are listed in Appendix C.

TIM Enters timer instructions. After TIM enter the timer data.

CNT Enters counter instructions. After CNT, enter the counter and data.

CNR Enters reversible counter instructions.

AND Enters a logical AND instruction.

OR Enters a logical OR instruction.

HR/NOT Inverts the instruction before it. Often used to form a normally closed input or out-
put. Also used to change instructions from differentiated to non-differentiated and
vice versa. With SHIFT, used to specify the HR area.

LR/DM Used to specify the DM area. With SHIFT, used to specify the LR area.

*/CH Used to specify a channel. With SHIFT, used to designate an indirect addresses
for the DM area.

SFT

LBL

FUN

TIM

CNT

CNR

AND

OR

HR

NOT

LR

DM

*
CH

!

Using the Programming Console Section 2

26

Instruction Keys (Continued)

#/OUT Enters output instructions. With SHIFT, used to specify a constant.

JMP Enters a jump instruction.

CJP Enters a conditional branch instruction.

WAIT Enters a wait instruction.

SHIFT CNR Used to specify the AR area.

SHIFT AND Enters a load instruction.

JMP

CJP

WAIT

SHIFT CNR

ANDSHIFT

#

OUT

2-1-2
The Mode Switch

To select one of three operating modes—RUN, MONITOR, or PROGRAM—
use the mode switch. This switch will be either a slide switch or a key switch,
depending on the Programming Console you are using.

In RUN mode, programs are executed. When the PC is switched into this
mode, it begins controlling equipment according to the program instructions
written in its Program Memory.

 DANGER Do not leave the Programming Console connected to the PC by an extension
cable when in RUN mode. Noise entering via the extension cable can enter the
PC, affecting the program and thus the controlled system.

MONITOR mode allows you to visually monitor in-progress program execu-
tion while controlling I/O status, changing present values, etc. You can also
check that a particular input bit is in the correct state at the right time, by mov-
ing to the program address (or step) that references that input bit. In MONI-
TOR mode, I/O processing is handled in the same way as in RUN mode.
MONITOR mode is generally used for trial system operation and final pro-
gram adjustments.

In PROGRAM mode, the PC does not execute programs. PROGRAM mode
is for creating and changing programs, clearing Program Memory, and regis-
tering and changing the I/O table. A special Debug operation is also available
within PROGRAM mode that enables checking a program for correct execu-
tion before trial operation of the system.

!

Section 2Using the Programming Console

27

Mode Changes
The PC mode will be set as follows when PC power is tuned on:

1. Peripherals Not Connected

When power is applied to the PC without a peripheral device connected,
the PC is automatically set to RUN mode. Program execution is then
controlled through the CPU Power Supply’s START terminal.

2. Programming Console Connected

If the Programming Console is connected to the PC when PC power is
applied, the PC is set to the mode indicated by the Programming Con-
sole’s mode switch.

3. Other Peripheral Connected

If a Peripheral Interface Unit, P-ROM Writer, or a Floppy Disk Interface
Unit is attached to the PC when PC power is turned on, the PC is auto-
matically set to PROGRAM mode.

If the PC power supply is already turned on when any peripheral device is
attached to the PC, the PC stays in the same mode it was in before the pe-
ripheral device was attached. The mode can be changed, though, if the Pro-
gramming Console is attached, with the MODE switch on the Programming
Console. If it is necessary to have the PC in PROGRAM mode, (for the
PROM Writer, Floppy Disk Interface Unit, etc.), be sure to select this mode
before connecting the peripheral device, or alternatively, apply power to the
PC after the peripheral device is connected.

The mode will also not change when a peripheral device is removed from the
PC after PC power is turned on.

WARNING Always confirm that the Programming Console is in PROGRAM mode when
turning on the PC with a Programming Console connected. If the Programming
Console is in RUN mode when PC power is turned on, any program in Program
Memory will be executed, possibly causing any PC-controlled system to begin
operation.

2-1-3
The Display Message
Switch

Next to the external connector for peripheral tools on the PC there is a small
switch for selecting either Japanese or English language messages for dis-
play on the Programming Console. It is factory set to OFF, which causes En-
glish language messages to be displayed.

Using the Programming Console Section 2

28

2-2
Preparation for
Programming

The following sequence of operations will be performed before beginning ini-
tial program input and execution.

1. Connect the Programming Console to the PC (referring to the Program-
ming Console manual).

2. Set mode switch to PROGRAM mode.

3. Turn on PC power.

4. Enter the password.

5. Clear memory.

6. Set or cancel expanded DM area if necessary.

7. Register the I/O table.

8. Check the I/O table until the I/O table and system configuration are cor-
rect and in agreement.

Each of these operations from entering the password on is described in detail
in the following subsections. Except for password entry, all of the other opera-
tions are regularly used Programming Console operations. All operations
should be done in PROGRAM mode unless otherwise noted.

2-2-1
Entering the Password

To gain access to the PC’s programming functions, you must first enter the
password. The password prevents unauthorized access to the program.

The PC prompts you for a password when PC power is turned on or, if PC
power is already on, after the Programming Console has been connected to
the PC. To gain access to the system when the “Password!” message ap-
pears on the console, press CLR and then MONTR. Then press ENT to clear
the display. If an error display appears when ENT is pressed (indicating no
program in RAM, a battery error, etc.), press CLR to clear the display.

If the Programming Console is connected to the PC when PC power is al-
ready on, the first display below will indicate the mode the PC was in before
the Programming Console was connected. Be sure that the PC is in PRO-
GRAM mode before you enter the password. Then, after you enter the
password, you can change the mode to RUN or MONITOR with the mode
switch.

CLR

MONTR

ENT

Beeper
Immediately after the password is input and before ENT is pressed or any-
time immediately after the mode has been changed, SHIFT and then the 1

Section 2Using the Programming Console

29

key can be pressed to turn on and off the beeper that sounds when Program-
ming Console keys are input. If BZ is displayed in the upper right corner, the
beeper is operative. If BZ is not displayed, the beeper is not operative.

2-2-2
Clearing Memory

Using the Memory Clear operation it is possible to clear all or part of the Pro-
gram Memory, IR, HR, AR, DM and TC areas. Unless otherwise specified,
the clear operation will clear all memory areas above provided that the
Memory Unit attached to the PC is a RAM Unit or an EEP-ROM Unit and the
write-enable switch is ON. If the write-enable switch is OFF, or the Memory
Unit is an EP-ROM Unit, Program Memory cannot be cleared. An expanded
DM area is either cleared or not cleared in the same fashion as DM area ex-
cept that the extended portion cannot be cleared if it is contained in EP-ROM.

Before beginning to program for the first time or when installing a new pro-
gram, clear all areas.

Key Sequence

CLRSHIFT CLR 9 7
B

1
D

3 ENT

ENT

HR

NOT

[Address]

SHIFT

LR

DM

All memory cleared.

Cleared from input address.

Retained if pressed.

All Clear
When programming for the first time or to input a totally new program, erase
all memory areas using the following procedure.

SHIFT CLR

CLR

9 7
B

1
D

3

ENT

ENT

Using the Programming Console Section 2

30

Partial Clear
It is possible to retain the data in specified areas when clearing memory. To
retain the data in the HR/AR or DM area, press the appropriate key after en-
tering REC/RESET. For the purposes of this clear operation, the HR and AR
areas are considered as a single unit. In other words, specifying that HR is to
be retained will ensure that AR is retained also. Likewise if not specified for
retention, both areas will be cleared.

It is also possible to retain a portion of the Program Memory from the begin-
ning to a specified address. After pressing ENT for the first time, specify the
last address to be retained.

For example, to leave the program data from 00000 to 00122 untouched, but
to clear addresses from 00123 to the end of Program Memory, key in address
00123 after pressing ENT.

For example, to leave the HR and AR areas uncleared and retaining memory
up to address 00123, input as follows:

SHIFT CLR

CLR

9 7
B

1
D

3

ENT

ENT

HR

NOT
SHIFT

B C D
1 2 3

2-2-3
Setting and Canceling
Expanded DM Area

The DM area can be expanded from 4,096 channels to 10,000 channels by
designating 6K words of the Program Memory for use as DM area, creating
an expanded DM area. This operation is only possible in PROGRAM mode
and only when a RAM Unit is used for Program Memory, although it can be
performed through the first ENT input in any mode to display the current size
of the DM area. Remember, if you designate expanded DM area, the capacity
of your Program Memory will be reduced by 6K words.

Once an expanded DM area has been created in RAM, it can be converted to
ROM along with the user program, and the following operation can be used to
display the highest channel in the DM area (i.e., one less than the number of
channels) and the size of Program Memory. The displays below are for a 24K
RAM Unit.

Section 2Using the Programming Console

31

Key Sequence

CHK
B

1SFT ENT

A

0

B
1

Set.

Cancelled.

ENT

Program Memory
size and highest
DM channel read.

Expanded DM
area set.

Expanded DM
area canceled.

2-2-4
Registering the I/O Table

The I/O Table Registration operation writes the types of I/O Units controlled
by the PC and the Rack locations of the I/O Units into the I/O table memory
area of the CPU (see Section 3-2 I/O and Internal Relay Area - IR). It also
clears all I/O bits. The I/O table must be registered before programming oper-
ations are begun. A new I/O table must also be registered whenever I/O Units
are changed to affect these changes in the I/O table in memory.

When Remote I/O Master Units connected to I/O Link Units, Optical Transmit-
ting I/O Units, or Remote Terminals are included in the system, channel multi-
pliers (see below) must be registered for the Masters to facilitate channel allo-
cation.

If expanded DM area is to be used, it must be designated before the I/O
Table is registered (see 2-2-3 Setting and Canceling Expanded DM Area).

I/O Table Registration can be performed only in PROGRAM mode.

The I/O verification error message, “I/O VER ERR,” may appear when start-
ing programming operations or after I/O Units have been changed. This error
is cleared by registering a new I/O table.

Using the Programming Console Section 2

32

Key Sequence

SFT CHK ENT ENT

9 7
B

1
D

3 ENT
Channel multipliers registered
next, if necessary.

Basic Registration

SHIFT

CHK

ENT

B D
79 1 3

ENT

ENT

Registering Channel Mul-
tipliers for Masters

When Remote I/O Master Units in the system are connected to I/O Link Units,
Optical Transmitting I/O Units, or Remote Terminals, a channel multiplier be-
tween 0 and 3 must be assigned to each of the Masters after registering the
I/O table. The same channel multiplier can be assigned to more than one
Master in the same system as long as the same channel is not allocated to
more than one Unit. Channel allocations to I/O Link Units, Optical Transmit-
ting I/O Units, and Remote Terminals are computed from the channels set on
the Units and the channel number assigned to the Master controlling the Unit
as follows:

(32 x channel multiplier) + (channel setting on the Unit)

Make sure that the lowest channels allocated to I/O Link Units, Optical Trans-
mitting I/O Units, or Remote Terminals connected to the Master with the low-
est channel multiplier do not overlap with the highest I/O channels on the last
Expansion I/O Rack.

Section 2Using the Programming Console

33

A

0

ENT

ENT

For Remote I/O Units

Automatic I/O channel
confirmation

Appears in
about 2 s.

Input channel multiplier and
ENT. Display for next Mas-
ter appears automatically.

Continue inputting channel multipliers
pressing ENT after each.

If asterisk is not displayed, press
ENT to leave previously entered
channel multiplier unchanged, or
enter new channel multiplier and
then press ENT.

Appears when all channel mul-
tipliers are input/confirmed.

Meaning of Displays

Prompt for channel multiplier

Indicates no channel multiplier has yet been set.

Remote I/O Master No.

Indicates Remote I/O Master.

I/O slot no.

Rack no.

2-2-5
Reading Error Messages

After the I/O table has been registered, a check should be made for errors in
the system. Error messages can be displayed by pressing MON, FUN, and
then ENT. This operation can be performed in any mode. If an error message
is displayed, press ENT to clear the error.

Sometimes a beeper will sound and the error cannot be cleared. If this hap-
pens, take the appropriate corrective action (see Section 6 Error Messages
and Troubleshooting) to eliminate the error.

When several errors occur, further error messages can be displayed by
pressing ENT. The sequence in which error messages are displayed depends
on the priority levels of the errors. Some errors are fatal and will cause the
CPU to halt; others are non-fatal.

If no errors exist or when all existing errors have been cleared, SYS FAIL OK
will be displayed. Refer to 6-2 Reading Error Messages for actual displays.

Using the Programming Console Section 2

34

Key Sequence

MONTR FUN ENT ENT

2-2-6
Verifying the I/O Table

The I/O Table Verification operation is used to check the I/O table registered
in memory to see if it matches the actual sequence of I/O Units mounted on
the Racks. It can be performed in any mode. The first inconsistency discov-
ered will be displayed as shown below. Every subsequent pressing of ENT
displays the next inconsistency.

Key Sequence

SFT

CHK

ENT

C
2 ENT

ENT

No
discrepancies

Discrepancies

I/O slot no.
Rack no.

Actual mount-
ing condition

Meaning of Displays

Optical Transmitting I/O Unit No. Error

Remote I/O Error

Same unit no. used twice

This is a Remote I/O Unit that
has not been registered

Indicates too many Slaves in system.

Section 2Using the Programming Console

35

2-2-7
Reading the I/O Table

The I/O Table Read operation is used to access the I/O table that is currently
registered in the CPU memory. It can be performed in any mode.

Example of I/O Unit
Mounting

Expansion I/O Racks

Rack 0

0 1 2 3 4 5 6 7

Slot no.

CPU Rack

Rack 1

Rack 2

Rack 3

Using the Programming Console Section 2

36

Key Sequence

SFT CHK ENT
B

1 ENT

[0—7] [0—7] ENT

SFT ENT

Rack
no.

Slot
no.

SHIFT

CHK

ENT

B
1

ENT

C

D

2

3

ENT

ENT

+ / –

ENT

SHIFT ENT

SHIFT ENT

+ / –

Section 2Using the Programming Console

37

Meaning of Displays

I/O Unit Designations for Displays

No. of Points Input Unit Output Unit

16

32

64

• I/O Units, Special I/O Units, I/O Link Units

I/O channel no.

I/O Unit type: I (input), O (out-
put), or N (reserved)

Slot no.

Rack No.

• Remote I/O Master Units

Channel Multiplier (0 to 3)

Master no. (0 to 7)

Note: The channel multiplier is displayed only when Optical Transmitting
I/O Units, I/O Link Units, or Remote Terminals are connected to
the Remote I/O Master Unit.

Using the Programming Console Section 2

38

• Remote I/O Slave Units

I/O channel no.

I/O Unit type: I (input), O
(output), or N (reserved)

Slot no.

Remote I/O Slave Unit no.
(0 to 7)

Remote I/O Master Unit no.
(0 to 7)

Indicates a Remote I/O Unit.

• Interrupt Units

Interrupt Unit no.

• Optical Transmitting I/O Units, I/O Link
Units, and Remote Terminals

I/O Unit type: I (input), O (out-
put), or N (reserved)

Remote I/O Master no.
(0 to 7)

Channel (H,L)

I/O Channel no. (0 to 127)

2-2-8
Changing the I/O Table

The I/O Table Change operation allows you to register non-existent I/O Units
in the I/O table. By reserving an entry in the I/O table with this operation, you
can prevent channel number discrepancies when an I/O Unit is to be added
to the system in the future. A non-existent I/O Unit can also be registered to
prevent discrepancies after an I/O Unit is removed.

When this operation is performed for the first time, the I/O verification error
message is displayed because the registered I/O table does not agree with
the actually mounted Units. Disregard this error message. This message will
not be displayed for channel reservations (3, see below).

Register the I/O table (I/O TBL WRIT) before performing the I/O Table
Change operation. If you register the I/O table after the I/O Table Change op-
eration, the non-existent I/O Unit registrations will be cleared.

Section 2Using the Programming Console

39

Non-existent I/O table entries can be made for Input Units (use the 1 key),
Output Units (use the 0 key), and for channels (use the 3 key). Press the key
once for each Unit or channel, e.g., pressing the 3 key twice before pressing
WRITE will reserve two channels.

Note: An Input Unit reservation cannot be used for an Output Unit and vice
versa. Also, non-existent I/O Units cannot be registered for Remote I/O Units,
Optical Transmitting I/O Units, or Interrupt Units.

Key Sequence

I/O Table Read
in progress.

CHG
A

0 ENT

D
3

B
1

O: Output Unit

1: Input Unit

3: Channel

Example

CHG

A

0
A

0

ENT

ENT

ENTSHIFT

CHG

B
1

ENT

ENTSHIFT

CHG

D
3

D
3

ENT

Reserving slot for a
32-point Output Unit

When I/O Table Is First Changed

When I/O Table Has Been Changed Before

Reading slot with
no I/O Unit

Reserving slot for a
16-point Input Unit

Reserving 2 channels

Using the Programming Console Section 2

40

2-2-9
Transferring the I/O
Table

The I/O Table Transfer operation transfers a copy of the I/O table to RAM
Program Memory to allow the user program and I/O table to be written to-
gether into EP-ROM.

When power is applied to a PC which has a copy of an I/O table stored in its
Program Memory, the I/O table of the CPU will be overwritten. Changes
made in the I/O table do not affect the copy of the I/O table in Program
Memory I/O Table Transfer must be repeated to change the copy in Program
Memory.

The I/O Table Transfer operation will not work in the following cases:

1. When the memory unit is not RAM or when the RAM Unit’s write-protect
switch is ON.

2. When there are less than 238 words left in Program Memory (less than
374 words if a Network Link has been established.)

This operation can only be used in PROGRAM mode. When the I/O table is
transferred, the Group Continue Control bit will be reset (see 3-3-1 Group
Continue Control bit).

Key Sequence

SFT CHK ENT
D

3 ENT 9

9

7

7

B
1

B
1

C
2

D
3

ENT

Example

CHK

SHIFT

ENT

ENT

ENT

ENT

B D
79 1 3

D
3

Section 2Using the Programming Console

41

2-3
Programming
Operations

The Programming Console operations described in this section can generally
be cancelled by pressing CLR.

2-3-1
Setting a Program
Address

To write, insert, read, or delete program instructions, you must first specify the
address at which to read or make changes.

Leading 0’s of the address expression need not be keyed in. That is, when
specifying an address such as 00053 you need to enter 53 only.

After specifying the address, press READ and ENT to display the contents of
the address.

Key Sequence

CLR [Address]

Example

CLR

EB C D
41 2 3

2-3-2
Program Write

Programs are written into Program Memory using mnemonic code. The main
line of the program is written in first, followed by any branches and then group
programs. The main line of a group program is also written in first, follow by
any branches in the group program. The operation shown below is also used
in changing or inserting new instructions into programs that already exist.

Programs can be written after the required address has been set. Be sure to
clear all data areas and Program Memory if you are writing in a new program,
even if the Memory Unit is new. Then press CLR to go to address 00000.

To begin writing, press WRITE, input the instruction along with any data or set
values required by it, and then press ENT. Continue on by inputting instruc-
tions, any data or set values required by them, and then ENT after completing
each instruction.

Most instructions can be input by function number. To do so, press FUN, the
two-digit function number, and then ENT followed by any data or set values
required by the instruction and then ENT again. See Section 4 Programming
Instructions or Appendix C Programming Instructions for specific function
numbers.

Error Displays
If any of the following appear in the upper right corner of the display, an error
has been made in writing the program. Respond as indicated.

Using the Programming Console Section 2

42

The capacity of Program Memory has been exceeded. Use a larger
Memory Unit or reduce the size of the program.

The Memory Unit is ROM and cannot be written into. Use a RAM
Unit.

Either the format of an instruction is incorrect or data required for
the instruction was missing when ENT was pressed. Check the for-
mat and data requirements in Section 4 Programming Instructions.

The last address in Program Memory has been exceeded. Use a
larger Memory Unit or reduce the size of the program.

Display Error and correction

Key Sequence

Address currently
displayed.

[Instruction] ENTWRITE

Example
The following operation is programmed and converted to mnemonic code,
and the operations and displays for writing it into memory are provided.

1. The ON time of a photoelectric switch (input 00002) is measured to de-
termine the length of products passing by on a conveyor belt.

2. A solenoid (output 00500) is activated to push all products with an ON
time of less then 2 seconds down chute 1 and a sensor (input 00003) at
the bottom of the chute confirms that the product has passed.

3. Another solenoid (output 00501) is activated to push all products with an
ON time of 2 seconds or greater down chute 2 and a sensor (input
00004) at the bottom of the chute confirms that the product has passed.

Section 2Using the Programming Console

43

Program Mnemonic Code

Yes

No

Yes

No

LBL 0000

LD 00002

WAIT

TIM 000

#0100

CJP LBL 0001

LBL 0001

AND NOT 00002

WAIT

CMP(52)

TIM000

#0080

AND 25507

CJP LBL 0002

OUT 00500

LBL 0003

OR 00003

OR 00004

WAIT

OUT NOT 00500

OUT NOT 00501

CNR TIM000

JMP LBL0000

LBL 0002

OUT 00501

JMP LBL0003

(SW 1 ON)

(SW 1 OFF)

(10-s timer)

Timer’s current value
compared to 8 “seconds.”

Less Than flag (ON if timer
runs longer than 2 seconds.)

Outputs

Product
confirmed.

Outputs and
timer reset.

Address Instruction Data

00000 LBL 0000

00001 LD 00002

00002 WAIT ---

00003 TIM 000

0100

00004 CJP LBL 0001

00005 LBL 0001

00006 AND NOT 00002

00007 WAIT ---

00008 CMP(52) ---

TIM 000

0080

00009 AND 25507

00010 CJP LBL 0002

00011 OUT 00500

00012 LBL 0003

00013 OR 00003

00014 OR 00004

00015 WAIT ---

00016 OUT NOT 00500

00017 OUT NOT 00501

00018 CNR TIM 000

00019 JMP LBL 0000

00020 LBL 0002

00021 OUT 00501

00022 JMP LBL 0003

Using the Programming Console Section 2

44

Inputs and Displays

WRITE
pressed
to begin.

ENT
pressed
to move
to next
instruc-
tion.

Set value
for timer

CLR

WRITE

LBL

ENT

SHIFT AND
C

2

WAIT

ENT

ENT

TIM

ENT

B A
1 0

A

0

CJP
B

1

ENT

ENT

#

OUT
SHIFT 8

A

0

LBL
B

1

ENT

ENT

HR

NOT

HR

NOT

C
2

FUN
F

5
C

2

ENT

WRITE

ENT

ENT

TIM

ENT

ENT

7

F
5AND

C
2

A

0
F

5

C
2CJP

Function
number
used.

ENT
pressed
to input
parts of
an
instruc-
tion.

Inputting
constant

Section 2Using the Programming Console

45

#

OUT

F A
5 0

A

0

LBL

ENT

D
3

ENT

ENT

ENT

D
3

OR
E

4

OR

WAIT

ENT

#

OUT

HR

NOT

F
5

A

0
A

0

ENT

CNR TIM

ENT

#

OUT

HR

NOT

F
5

A

0

ENT

B
1

LBL
C

2

ENT

D
3JMP

#

OUT

F
5

A

0
B

1

JMP

ENT

ENT

ENT

Programming YES
branch from CJP.

Using the Programming Console Section 2

46

2-3-3
Program Read

To read out program data from the Program Memory, specify the address
from which to read, then press READ and ENT.

After a display has appeared for the specified address, ENT is then pressed
to display either the next display for the same address (if more than one dis-
play is required to show all input data) or a display for the next address.

The “+” in the upper right corner of the display indicates that addresses will
be incremented as ENT is pressed. If the +/– key is pressed, the “+” will
change to “–” and addresses will be decremented as ENT is pressed. The +/–
key can be pressed whenever desired during readout to change the direction
addresses will change.

If ENT is held down, addresses will change at high speed.

This operation can be performed in any mode, and address can be monitored
if it is used in RUN or MONITOR mode. It can also be used to change set
values for timers and counters during program execution (see below).

Error Displays
If an O is displayed in the upper right corner, the address range has been ex-
ceeded; press CLR and repeat the Program Read operation from the desired
address.

Key Sequence

Address currently
displayed.

READ ENT

+ / –

Section 2Using the Programming Console

47

Example
Reading part of the program example used in 2-3-2 Program Write would re-
sult in the following displays.

CLR

8

READ

ENT

ENT

ENT

ENT

ENT

ENT

+ / –

+ / –

ENT

Change to address
decrementing

Change to address
incrementing

Timer/Counter SV
Changes

When a timer or counter is displayed during Program Read, CHG can be
pressed to change the set value of the timer or counter. This is possible only
while the program is being executed in MONITOR or in the Debug operation
under PROGRAM mode. If the program is not being executed, change set
values in PROGRAM mode (but not in the Debug operation) using the Pro-
gram Write operation.

To change the set value, read the desired timer or counter, press CHG, input
the new set value, and press ENT. Once a set value has been changed, Pro-
gram Read can be continued as normal.

Using the Programming Console Section 2

48

2-3-4
Instruction Search

To search for specific instructions in Program Memory, first either set the ad-
dress (see 2-3-1 Setting a Program Address) or read through the program
(see 2-3-3 Program Read) to the address from which the instruction is to be
searched for. Then, specify the instruction you wish to search for and press
SRCH. To continue searching for the same instruction in the remainder of the
program, press ENT. Any further occurrences of the instruction will be dis-
played until the last Program Memory address is encountered.

To access operands for any instructions requiring more than one display,
press READ and then ENT.

This operation can be performed in any mode.

Error Displays
If a O is displayed in the upper right corner during a search operation, the last
address has been exceeded. If an N is displayed, the instruction that was
searched for does not exist from the starting point to the end of Program
Memory.

Key Sequence

Address currently
displayed.

[Instruction] ENTSRCH

Section 2Using the Programming Console

49

Example
Searching the program example used in 2-3-2 Program Write would result in
the following displays.

Last address reached.

CLR

SRCH

WAIT

ENT

ENT

ENT

ENT

CLR

SRCH

FUN
F

5
C

2

ENT

READ

ENT

ENT

ENT

Using the Programming Console Section 2

50

2-3-5
Instruction Insert

This operation is used to change a program by inserting an instruction. Insert-
ing an instruction will increase the address for all following instructions by
one.

To insert, read the address before which the instruction is to be inserted,
press INS, and then write in the instruction in the same manner as when writ-
ing a program (see 2-3-2 Program Write). More than one instruction can be
inserted at once.

Instructions cannot be inserted into a program during RUN or MONITOR
mode or during the Debug operation. They cannot be inserted if there is not
enough space remaining in Program Memory to hold them.

After inserting one or more instructions, it is best to check the inserted in-
structions and then perform a Program Check.

Error Displays
If a P is displayed in the upper right corner during a insert operation, there is
not enough room left in Program Memory for the instruction to be inserted. If
an O is displayed, the last address has been exceeded. If an R is displayed,
the program is in ROM and cannot be changed.

Key Sequence

Address
read

[Program Write
operation]

ENTINS

Example

Address Instruction Data

00000 LBL 0000

00001 LD 00002

00002 AND 00005

00003 WAIT --

00004 TIM 000

0100

Address Instruction Data

00000 LBL 0000

00001 LD 00002

00003 WAIT --

00004 TIM 000

0100

Inserted.

Before Insertion After Insertion

LBL 0000

LD 00002

WAIT

TIM 000

#0100

AND 00005

Inserted here.

Section 2Using the Programming Console

51

Example Continued

CLR

C
2

READ

ENT

INS

AND
F

5

ENT

Reading the address before which
instruction is to be inserted

INS followed by Program
Write operation

2-3-6
Instruction Delete

This operation is used to change a program by deleting an instruction. In-
structions can be deleted only in PROGRAM mode.

When you delete an instruction, you must first read it. The actual deletion is
accomplished by pressing DEL and then ENT. Further instructions can be
deleted as they appear by again pressing ENT. If DEL is pressed at any but
the first address of an instruction that requires more than one address, the
display with return to the first address for that instruction and await input of
ENT.

The program addresses following the deleted instruction are automatically
decremented according to the number of instructions deleted.

Be careful not to inadvertently delete instructions.

Error Displays
If an R is displayed, the program is in ROM and cannot be changed. If an O is
displayed, the last address has been exceeded.

Key Sequence

Address currently
read. DEL ENT

Using the Programming Console Section 2

52

Example
The operation and displays for deleting the indicated instruction in the exam-
ple flowchart are provided along with the mnemonic code for the flowchart.

Before Deletion

Address Instruction Data

00000 LBL 0000

00001 LD 00002

00003 WAIT --

00004 TIM 000

0100

Address Instruction Data

00000 LBL 0000

00001 LD 00002

00002 AND 00005

00003 WAIT --

00004 TIM 000

0100

LBL 0000

LD 00002

AND 00005

WAIT

TIM 000

#0100
Before Deletion After Deletion

CLR

ENT

C
2

READ

DEL

ENT

2-3-7
Program Check

This operation does a syntax check on a program. When a program has been
changed in any way, it should first be checked for programming errors before
execution. A program can be checked only in PROGRAM mode.

If there are no errors in the program, “OK” will be displayed. If an error is dis-
covered, the display will stop at the address that generates the error and indi-
cate the nature of the error (see table below). The entire program can then be
checked by pressing ENT for every error display until the end of the program
is reached, at which time “END” will be displayed. The display will indicate the

Section 2Using the Programming Console

53

address and the contents that are being check as Program Check is being
executed.

CLR can be pressed at any point in the Program Check to cancel the remain-
der of the check.

Key Sequence

CHK ENT ENT

CLR

To continue

To cancel check

Example

CLR

Check completed without
error being discovered.

Error discovered.

Check canceled.

CHK

ENT

ENT

ENT

ENT

CLR

Using the Programming Console Section 2

54

Program Check Displays

Display Meaning

Program Memory damaged.

Illegal instruction found or data for instruction not within spe-
cified range.

One of the following instructions used incorrectly: LD, AND, OR ANDG, ORG, AND-LD,
OR-LD, TIM, CNT, CNTR, DIFU, DIFD, SBT, WAIT, CJP, SKIP, or OUTC.

Same label number assigned to two different locations.

Label number referenced by JMP, CJP, RPT, or BRZ not
assigned in program.

Same group program number assigned to two different group
programs.

Group program number referenced by GS, GP, GC, GR, GE,
or GOFF not assigned to a group program.

Same subroutine number assigned to two different subrou-
tines.

Subroutine number referenced by SBT or SBS not assigned
to a subroutine.

SBN and RET not used in pairs.

IL and ILC not used in pairs.

Same TC area bit assigned more than once in the following
instructions: TIM, CNT, TMS, and CNTR.

Refer to Section 6 Error Messages and Troubleshooting for more details.

2-3-8
Program Size Read

The Program Size Read operation is used to display the number of words
used and the number of words remaining unused in Program Memory from
address 00000 through a designated final address. This operation will not be
possible if the designated address exceeds the capacity of Program Memory.
The following display shows reading through address 09999, with 11,628
words having been already used.

This operation can be performed in any mode.

Section 2Using the Programming Console

55

Key Sequence

Final address
designated.

SHIFT READ ENT

CLR

9 9 9 9

SHIFT READ

ENT

No. of words
remaining unused

2-4
Monitor and Data
Change Operations

The Monitor and Data Change operations allow you to monitor the status of
bits, channels, or timers/counters during program execution while also moni-
toring the status of program execution itself. While monitoring channels/bits,
present values for timers/counters and other channels can be modified and
output status can be controlled.

Address Monitoring
The simplest form of monitoring is to perform the Program Read operation
(see 2-3-3 Program Read) while running the PC program. The status of each
address will be displayed along with the contents of the address. To monitor
addresses, set the Programming Console to either RUN or MONITOR mode,
press ENT, and preform the Program Read operation while executing the PC
program. The key sequence and status displays are as follows:

Key Sequence

Address currently
displayed.

READ ENT

+ / –

Using the Programming Console Section 2

56

I/O Displays ON or OFF status of I/O point

Timers and Counters
Time or count expired
Present value

Channel Data

Data in channel

Group Instructions
Group program status
ACT: on standby
EXE: being executed

Execution Address
Monitor

Addresses can also be monitored with the Execution Address Monitor opera-
tion, which not only allows addresses and associated status to be monitored,
but also enables automatic monitoring of the address that is being executed
so that you can follow program execution as it occurs. This operation is possi-
ble only in RUN and PROGRAM modes, and only while the program is being
executed.

After pressing SHIFT and then MONITOR, ENT can be pressed to control the
address being displayed or SHIFT and then ENT can be pressed to automati-
cally follow the address that is being executed. If ENT is pressed without
shift, HR/NOT can be pressed to switch back and forth between normal dis-
plays and displays of the contents of any “S” messages inserted into the pro-
gram using S (see 4-14-1 Process Display - S(47)). Any S numbers inserted
into the program will be displayed and will not change until another S number
occurs in the program.

Any time after the Execution Address Monitor operation has been entered,
ENT can be pressed to gain control of the address being displayed, or SHIFT
and then ENT can be pressed to activate automatic display of the address
being executed.

Section 2Using the Programming Console

57

• Key Sequence

SHIFT MONTR

SHIFT ENT

ENT
Designated address
displayed.

Currently executed
address displayed.

HR

NOT

CLR

SHIFT

MONTR

ENT

ENT

HR

NOT

HR

NOT

ENTSHIFT

ENT

S message

Displays automatically
change according to
execution status.

• Meaning of Displays
Normal displays show the address, any S number that has been defined, and
the status of the operand of the instruction. If the operand is a bit, the status
shows whether the bit is ON or OFF; if it is a timer/counter or channel, the
present value of the timer/counter or channel; and if it is a group program, the
current execution status of the group program. S message displays show the
address, S number and contents of the “S” message.

Address S no. Status Address S no.

Normal Displays S Messages

Data Area Monitor
This operation is used as the starting point for all operations described in fol-
lowing subsections. It is used to monitor the status of any point or channel in
the IR, AR, HR, SR, LR, TC, or DM area. This operation can be used in any
mode (although some operations entered though it cannot).

Using the Programming Console Section 2

58

To monitor a bit in the IR or AR area, designate the instruction used with the
point (e.g., AND, OR, OUT), input the bit number, and press ENT. To monitor
a timer or counter, input either TIM or CNT, the timer/counter number, and
ENT. To monitor any other channel, input */CH, the data area designation key
for any other than an IR or AR channel, the channel number, and ENT.

Up to three channels/bits can be monitored simultaneously. To monitor anoth-
er channel/bit, move the cursor to the left with the arrow key and repeat the
above operation for the desired channel/bit. The arrow key can then be used
again to designate a third channel/bit, or to return to a previously designated
channel/bit to designate a new channel/bit or to designated a displayed chan-
nel/bit for use in one of the functions described in following subsections.

Once a channel or bit has been displayed ENT and the +/– key can be
pressed to display the channel/bit one higher or lower than the one currently
indicated by the cursor just as in Program Read (see 2-3-3 Program Read).

• Key Sequence

MONTR [Bit no.]

[Bit in-
struction]

[*/CH and data area
key if required.]

TIM
or
CNT

[Channel
no.]

[Timer/counter
no.]

ENT

+ / –

ENT

MONTR

AND

ENT

BD A
13 0

B
1

SHIFT
HR

NOT
*

CH

B
1

A

0

ENT

Monitors
input
03101

Cursor
return

Monitors
channel
HR 10

Section 2Using the Programming Console

59

• Meaning of Displays
Data areas are indicated in the displays with the following letters.

No letter

c

H

cH

A

cA

L

cL

T

C

D

IR or SR area bit

IR or SR area channel

HR area bit

HR area channel

AR area bit

AR area channel

LR area bit

LR area channel

Timer number (small box in lower left corner: time expired)

Counter number

DM area channel

• HEX-ASCII Displays
Channel displays of hexadecimal data can be changed to ASCII-code dis-
plays by pressing HR/NOT. The data for all channels displayed will be
changed. NR/NOT can then be pressed again to return the display to hexade-
cimal data.

When using this function with Channel Value Changes (see 2-4-2 Channel
Data Changes), data can be changed while displayed in ASCII, but all data
inputs must be in hexadecimal.

2-4-1
Force Set/Reset

Whenever the cursor is positioned at an IR, HR, AR, or LR bit under the Data
Area Monitor operation, SET or RESET can be pressed to force-set or force-
reset the bit. It can also be used to force set/reset timers and counters.
Force-setting and force-resetting is not possible in RUN mode.

When timers or counters are set, the present value goes to zero and the TC
bit assigned for it goes ON. When timers or counters are reset, the present
value goes to the set value (counters to zero) and the assigned bit goes OFF.

Key Sequence

[Data Area Monitor] SET

RESET

ENT

2-4-2
Channel Data Changes

Any decimal or hexadecimal value of a channel in the IR, LR, HR, AR, TC, or
DM area can be changed when displayed under Data Area Monitor. This is
possible only in MONITOR mode or in the Debug operation under PRO-
GRAM mode. The present value of timers and counters may be changed
while the timer/counter is operating.

Using the Programming Console Section 2

60

To change channel data, position the cursor at the desired channel or timer/
counter, press CHG, enter the new value, and press ENT. Normal Data Area
Monitor operations are then returned to.

This operation cannot be used to change the set value of a timer or counter.
Set values are changed either using Program Read when the program is be-
ing executed or using Program Write when the program is not being executed
(see 2-3-3 Program Read for details).

Key Sequence

[Data Area Monitor] CHK [New value] ENT

Example

[Data Area Monitor]

CHG

ENT

C A
2 0

A

0

2-4-3
Single Channel
Operations in Binary

A channel being displayed under Data Area Monitor can be displayed and
changed in binary, i.e., each bit of a channel can be displayed/controlled indi-
vidually.

Binary Monitor
To display a channel in binary, position the cursor under the desired channel
and press SHIFT and then ENT. The channels before and after the displayed
channel can be moved to by using ENT and the +/– key to increment and
decrement the display channel number, just as in Program Read (see 2-3-3
Program Read).

At any point in a binary display, SHIFT and then ENT can be pressed to re-
turn to a normal channel display.

Binary displays are possible in any mode.

Key Sequence

SHIFT ENT[Data Area Monitor] EXT

+ / –

Section 2Using the Programming Console

61

Example

[Data Area Monitor]

SHIFT ENT

+ / –

SHIFT ENT

ENT

ENT

Binary Change
Channels, except for those in the SR area, displayed in binary can be
changed bit by bit in any but RUN mode.

To change a bit value, position the cursor under the desired bit and press ei-
ther the 1 or 0 key. To move the cursor to the left, press the arrow key. The
cursor will automatically move to the right when the 1 or 0 key is input. After
completing all changes to the channel, press ENT to return to the binary mon-
itor display.

Key Sequence

[Binary Monitor CHG
A

0

B
1

ENT

Using the Programming Console Section 2

62

Example

[Binary Monitor]

CHG

ENT

B

A

1

0

2-4-4
Three-Channel
Operations

Any three consecutive channels or group programs can be monitored or
changed together by entering the Data Area Monitor operation and using the
following procedures.

Three-Channel Monitor
To monitor three consecutive channels/group programs together, position the
cursor under the lowest numbered channel/group program, press EXT, and
then press ENT to display the status of the specified channel/group programs
and the two channels/group programs that follow it.

If group program status is displayed, SHIFT and then ENT may be pressed to
display the S numbers for the three groups. These key inputs are then re-
peated to return to status displays.

To return to the original display using the leftmost channel/group program cur-
rently displayed, press CLR.

Once three channels/group programs have been displayed, ENT and the +/–
key can be pressed to shift the displayed channels/group program one higher
or lower than the ones currently displayed, similar to the use of these keys in
Program Read (see 2-3-3 Program Read). Whenever a channel/group pro-
gram is thus shifted onto the display, the channel/group program at the oppo-
site end of the display will be shifted off the display.

This operation is possible in any mode.

Section 2Using the Programming Console

63

Key Sequence

[Data Area Monitor] EXT + / – ENT

SFT ENT
(Group program
monitoring)

Example

[Data Area Monitor]

EXT

CLR

ENT

+ / –

ENT

ENT

Three-Channel Change
Any of the three channels displayed for Three-Channel Monitor can be
changed by pressing CHG, positioning the cursor under the desired channel
data using the arrow key, inputting the new value, and pressing ENT. More
than one channel can be changed before pressing ENT.

This operation cannot be used to change data if an SR channel is displayed.
Change operations are not possible for group programs, nor are they possi-
ble in RUN mode.

If CLR is pressed before WRITE, the change operation will be cancelled and
the Three-Channel Monitor operation will resume.

Key Sequence

[Three-Channel Monitor] CHG New value ENT

Using the Programming Console Section 2

64

Example

[Three-Channel Monitor]

CHG

CLR

ENT

E F

B

C D
4 5

1

2 3

2-4-5
Group Monitor

With the Group Monitor operations, the status of up to three group programs,
or the main program and up to two group programs, can be monitored at the
same time. Interrupt or scheduled interrupt programs may also be displayed.
Group number 128 is used to designate the main program; 129, to designate
interrupt programs; and 130, to designate scheduled interrupt programs.
Group Monitor can be entered either from the Data Area Monitor operation or
directly from a cleared display (“00000”).

To enter Group Monitor from a cleared display, press MONTR, FUN, the 1
key, and then ENT. The display will show the status of a currently activated
group.

To enter Group Monitor from Data Area Monitor, press FUN, input the number
of the desired group, and then press ENT.

The operation after displaying the first group program status is the same re-
gardless of how Group Monitor is entered. Another group program can be
designated by moving the cursor to the left with the arrow key and inputting
FUN, the group number, and ENT. This process can then be repeated for a
third group.

Once three group programs have been displayed, ENT and the +/– key can
be pressed to shift the displayed group programs one higher or lower than
the ones currently displayed, similar to the use of these keys in Program
Read (see 2-3-3 Program Read). Whenever a group program is thus shifted
onto the display, the group program at the opposite end of the display will be
shifted off the display.

Group Monitor is not possible in PROGRAM mode.

Section 2Using the Programming Console

65

Meaning of Displays
The status, group number, and address currently being executed in the group
program are displayed as shown below. Symbols (other than actual group
numbers) used in the display are as follows:

Status Group Numbers

e Being executed M Main program

a Awaiting execution Ixx Interrupt programs (xx is interrupt no.)

= Pause IT Scheduled interrupt program

– Ended

If an interrupt program is being executed, its number will be displayed.

Status

Currently executed
address

Group no.

S Number and Message
Displays

If SHIFT and then ENT are pressed from a Group Monitor display, and S
numbers designated with the S instruction will be displayed when the S in-
struction is executed. Once an S number has been displayed, it will remain
until another S instruction is executed. “S––––” will be displayed if no S in-
struction has yet been executed. SHIFT and then ENT can be pressed again
to return to the normal Group Monitor display. (See 4-14-1 Process Display
for details on S numbers and S messages.)

If HR/NOT is pressed during an S number display, the S message for that
number will be displayed. If no S instruction has been executed in the group,
“S––––” will be displayed. HR/NOT can be pressed again to return to the nor-
mal S number display.

Key Sequence

Address currently read. ENTDEL

Using the Programming Console Section 2

66

Example

DEL

READ

CLR

ENT

C
2

ENT

2-5
Debugging

Debugging is the program development step during which a programmer
finds and fixes errors in the program. Debugging can require extensive time,
especially if the program being debugged is complex. The debugging opera-
tions presented in following subsections help to make debugging less time-
consuming.

The Debug operation is entered from PROGRAM mode to access special
debugging operations. There are basically three different operations avail-
able. The first operation, Step Execution, enables step-by-step program ex-
ecution. It also provides control of branching, skipping, and waiting in the pro-
gram to enable execution of desired program sections regardless of input sta-
tus. The second operation, Section Execution, allows for a program section
between designated starting and ending addresses to be executed. This op-
eration is usually applied to a program only after it has been subjected to
Step Execution. The third operation, Program Tracing, allows 250 steps of a
program to be executed and the results stored in Trace Memory.

Except for the third operation, Program Trace, these debugging operations
are available only after the Debug operation has been entered from PRO-
GRAM mode.

Entering the Debug
Operation

The PC must be in PROGRAM mode to enter the Debug operation. Although
the Clear Memory, Program Write, Instruction Insert, and Instruction Delete
operations are not possible under the Debug operation, all other PROGRAM
mode operations are available.

To enter the Debug operation, press SHIFT, the 0 or the 1 key (0 is the de-
fault), CHG, and ENT. If the 0 key is pressed, program jumps to group pro-
grams, between group programs, or from group programs to the main pro-
gram will not be made during execution regardless of program status. If the 1
key is pressed, the program will jump as written.

To leave the debug operation, press SHIFT and then CHG.

When Debug mode is entered or left, data in the IR, AR, and LR areas is
cleared unless the Data Retention control bit is ON (see 3-3-2 Data Retention
Control Bit).

Section 2Using the Programming Console

67

Key Sequence

Entering Debug Operation

SHIFT CHK
A

0 ENT

B
1

No group jumps

Jumps as written

Leaving Debug Operation

SHIFT CHK ENT

CHGSHIFT

CLR

ENT
A

0

ENT

CHGSHIFT

2-5-1
Step Execution

Step Execution is used to execute a program step by step. After pressing
SHIFT, SET, the starting address, and ENT, one step of the program will be
executed each time ENT is pressed thereafter. If the desired starting address
is already displayed, only ENT is necessary.

All I/O points will be active during Step Execution. Outputs can be prevented
by turning ON the Output OFF bit (25215). Execution may be held up at
WAIT, CJP, or SKIP if required conditions are not present to continue execu-
tion. Conditions for these can be controlled(see Forced Condition Execution,
below).

Execution of FALS will cancel Step Execution.

Program Read, Instruction Search, and monitor operations are possible dur-
ing Step Execution. After any of these operations have been performed, Step
Execution can be resumed by pressing CLR.

Using the Programming Console Section 2

68

Key Sequence

SHIFT SET [Start address] ENT ENT ENT

Step execution

SHIFT SET

ENT

B C D
1 2 3

ENT

ENT

ENT

Forced Condition
Execution

Conditions determining execution routes from WAIT, CJP, and SKIP (or any of
these with NOT) can be controlled during Step Execution. To designate the
next step after any of these instructions, input SET or RESET instead of ENT
when the instruction is displayed.

SET (YES) for WAIT will move execution to the step following WAIT; for CJP,
to the jump destination label designated by CJP; and for SKIP, to the instruc-
tion designated to be skipped to.

RESET (NO) for WAIT will move execution to the beginning of the condition
line or block for WAIT; for CJP or SKIP, to the next instruction following CJP
or SKIP.

Key Sequence

[Step Execution]

SET

RESET

ENT

Section 2Using the Programming Console

69

2-5-2
Section Execution

Once a program has been checked for proper execution with Step Execution,
I/O points should actually be wired and the program should be executed to
test-operate the controlled system using Section Execution.

Section Execution lets you run a program between a designated starting ad-
dress and a designated stopping address. Press SHIFT and the SET under
the Debug operation, designate the starting and stopping addresses if differ-
ent from the displayed address pressing ENT after each, and then press
SHIFT and ENT to activate program execution. The address being executed
will be automatically displayed.

ENT can be pressed during program execution to cancel Section Execution.
The address displayed after ENT is pressed is not executed. ENT can then
be pressed to continue program execution using Step Execution.

After execution has completed, press CLR. Step Execution will be switched
to.

Program execution can get caught in loops if required inputs are not present
for WAIT or CJP. Either wire the system to ensure all required inputs are
present or use forced condition operation under Step Execution (see 2-5-1
Step Execution).

Using the Programming Console Section 2

70

Key Sequence

SHIFT SET [Starting
address]

ENT
Stopping
address]

ENT SHIFT ENT
[

When execution completed to stopping address

Return to Step Execution at completion

Return to Step Execution midway

SHIFT SET

ENT

E F

B C D

4 5 6

1 2 3

ENT

ENTSHIFT

Other Operations during
Section Execution

Data Area Monitor, Group Monitor, Execution Address Monitor, Step Trace,
Channel Data Change, Program Read, and Instruction Search operations can
be entered from Section Execution by pressing MONTR, READ, or SRCH
during Section Execution and then proceeding as normal for these opera-
tions. If Program Read is entered, set values for timers and counters can also
be changed (see 2-3-3 Program Read).

To designate the address from which to start a search, move the cursor to the
address part of the display after pressing SRCH, designate the starting ad-
dress, and press ENT to begin the search.

To return to Section Execution after any of the above operations has been
performed, press CLR. The address currently being executed will be dis-

Section 2Using the Programming Console

71

played, or if Section Execution has been completed, Step Execution for the
stopping address will be displayed.

2-5-3
Step Trace

The Step Trace operation is used to execute a section of 250 instruction
steps and store the results in Trace Memory (see 4-15 Trace Operations).
Step Trace will not be executed if 250 steps are not available for execution,
as can happen if the stopping address is reached when Step Trace is ex-
ecuted during Section Execution.

To run a Step Trace operation, press MONTR and LBL, input CHG and a trig-
ger address or input a label number, and input a delay value and ENT. The
delay value, which can be any integer from –249 to +250, indicates where
tracing is to begin relative to the trigger address or label. Use the +/– key to
change between positive and negative delays. If the trigger address is 01000
and the delay value is –211, the trace area will range from 00789 (01000 –
211) to 01038 (00789 + 250).

Step Trace can be canceled during execution by pressing CLR and then ENT.
Other operations can also be performed during Step Trace by pressing CLR
twice, which will clear the display, but not cancel Step Trace execution.

Using the Programming Console Section 2

72

Key Sequence

MONTR LBL CHG
[Trigger address
or label]

ENT + / – [Delay] ENT

[Label no.]

Reading
Trace
Memory
(see below)

MONTR

CHG

CLR

ENT

LBL

BC

A

12

0

B
1

C
2

B
1

A

0

ENT

ENT

ENT

ENT

Reading Trace Memory
The contents of Trace Memory can be read immediately upon execution of
Step Trace by pressing ENT and/or the +/– key, just as in Program Read (see
2-3-3 Program Read). It can also be read by clearing the display to 00000,
then pressing MONTR, FUN, the 2 key, and ENT, and then pressing ENT
and/or the +/– key to control the display.

Reading Trace Memory is not possible until “TRIG OK” is displayed, indicat-
ing that the trace has been completed.

Section 2Using the Programming Console

73

Key Sequence

MONTR FUN
C

2 ENT

+ / –[Step Trace]

Meaning of Display
Address

Number of addresses from trigger

2-6
File Memory Operations

When a File Memory Unit is connected to the PC, contents of the Program
Memory and data areas can be transferred to and from the File Memory
(FM).

The FM area can thus be used for auxiliary Program Memory (UM) and Data
Memory (IOM) storage, as well as for Comment Memory storage (CM) for
flowchart program comments.

Except where specifically noted, these operations are available only in MONI-
TOR and PROGRAM modes.

The Programming Console operations described in this subsection can be
cancelled by pressing CLR during or after the normal key sequence.

2-6-1
File Memory Clear

This operation clears the FM. Clearing the entire FM initializes it and pre-
pares it for future data storage. This must be done when using a FM Unit for
the first time or when an FM error occurs because of memory damage.

To clear a portion of the FM, you must specify a starting block number and an
ending block number.

Using the Programming Console Section 2

74

Key Sequence

CLR SHIFT EXT ENT

B
1 ENT 9 7

B
1

D
3

ENT
[Starting
block]

ENT
[Ending
block]

ENT Total clear

Partial clear

SHIFT

EXT

ENT

B A
1 0

ENT

ENT

ENT

ENT

A
9 0

A

0

B
1

B D
79 1 3

ENT

CLR

Partial clear

Total clear

Canceled with CLR

2-6-2
File Memory Write

The File Memory Write operation writes data to the FM area. Data either from
Program Memory or a data area can be transferred to the FM area with this
operation. Data is written in blocks of 128 words or channels.

When transferring from Program Memory, data between the specified starting
address and the ending address is moved into the FM area starting at the FM

Section 2Using the Programming Console

75

starting block. If the size of the program data exceeds the space between the
FM start block and the end of the FM area, only that part of the program data
which will fit into the FM area will be transferred and a display will indicate
that transfer was disabled. The block containing the last address transferred
will be registered as the end block for use in reading and verifying FM (see
next two subsections).

When transferring from a data area, data between the specified starting chan-
nel and the last channel in the data area designated for transfer will be trans-
ferred. For data transfer from the DM area, you must also specify the number
of blocks to be transferred.

Key Sequence

CLR SHIFT EXT
B

1 ENT
B

1 ENT

SHIFT

SHIFT

SHIFT

TIM

CNT

CNR

HR

NOT

LR

DM

LR

DM

[Starting DM
channel]

ENT
[No. of
blocks]

ENT [Starting
block]

ENT

[Starting
channel]

ENT*
CH

ENT ENT [Starting
address]

ENT [Ending
address]

ENT [Starting
block]

ENT

Using the Programming Console Section 2

76

Example

Transferring
to FM

End
block

Program Memory

Data Area

EXT

SHIFT

LR

DM

ENT

E

B

C D

A

4

1

2 3

0

B
1

ENT

ENT

B
1

ENT

C
2

B
1

ENT

B
1

A

0
A

0

ENT

D
3

A

0
A

0

ENT

ENT

ENT

8
A

0
A

0

ENT

FC
52

ENT

2-6-3
File Memory Verify

The File Memory Verify operation compares data either in Program Memory
or a data area with data stored in the FM area. If the two sets of data differ, a
“VER ERR” message will be displayed on the Programming Console.

When data in Program Memory is being verified, this operation compares
Program Memory data starting at the specified address with FM data be-
tween the specified starting block and the ending block registered when data
was transferred to FM (see 2-6-2 File Memory Write).

When data in a data area is being verified, this operation compares data be-
tween the specified starting channel and the last channel in the designated
data area to FM data beginning at the designated starting block. For DM area
verification, you must specify the number of blocks to be verified (one block
consists of 128 channels).

Section 2Using the Programming Console

77

Key Sequence

CLR SHIFT EXT
B

1 ENT
B

1 ENT

SHIFT

SHIFT

SHIFT

TIM

CNT

CNR

HR

NOT

LR

DM

LR

DM
ENT ENT ENT

ENT*
CH

ENT ENT ENT ENT

[Starting DM
channel]

[No. of
blocks]

[Starting
block]

[Starting
channel]

[Starting
address]

[Starting
block]

ENT
C

2

C
2

Using the Programming Console Section 2

78

Example

EXT

SHIFT

LR

DM

ENT

E

B

C

D

A

4

1

2

3

0

B
1

ENT

ENT

C
2

B
1

ENT

C
2

B
1

ENT

B
1

A

0
A

0

ENT

ENT

C
2

ENT

A

0
D

3
B

1

ENT

A

0
B

1

ENT

Discrepancy
discovered

Non-agreeing
block

Program Memory

Data Area

2-6-4
File Memory Read

The File Memory Read operation is used to read program data (UM) stored in
the FM area and transfer it to a specified area in RAM Program Memory, or to
read user data (IOM) in the FM area and transfer it to one of the PC data
areas. The data is read and transferred in blocks of 128 words or channels.
FM data cannot be read in any mode other than PROGRAM mode and can-
not be read under the Debug operation in PROGRAM mode.

When reading data for Program Memory, reading begins at the specified FM
start block. Reading and block transfer ends when either the first end block

Section 2Using the Programming Console

79

(registered when data is transferred to FM) or non-UM (i.e., CM or IOM) FM
block is encountered, or when the RAM Program Memory area to which the
data is being transferred overflows.

When reading data for a data area, reading begins at the specified FM start-
ing block and continues to the end. If a non-IOM block is encountered, an
error message will be displayed and transfer will not be possible. When tran-
sferring data to the DM area, you must specify the number of blocks to be
read and transferred.

Key Sequence

[Starting DM
channel]

[Starting
block]

[No. of
blocks]

ENT

CLR SHIFT EXT
B

1 ENT
B

1 ENT

SHIFT

SHIFT

SHIFT

TIM

CNT

CNR

HR

NOT

LR

DM

LR

DM
ENT ENT

ENT*
CH

ENT ENT ENT ENT

ENT

[Starting
channel]

[Starting
address]

[Starting
block]

B
1

B
1

Using the Programming Console Section 2

80

Example

EXT

SHIFT

E
4

B
1

D
3

LR

DM

A

0

ENT

B
1

ENT

ENT

C
2

B
1

ENT

C
2

B
1

ENT

B
1

A

0
A

0

ENT

B
1

ENT

C
2

ENT

A

0
D

3
B

1

ENT

A

0
B

1

ENT

Program Memory

Data Area

2-6-5
File Memory Read/Write

The File Memory Read/Write operation allows you to read and modify non-
program data stored in the FM area (IOM). Data can be read in RUN mode
with this function, but it can be modified only when in MONITOR or PRO-
GRAM mode.

If you do not specify a start block, the reading will begin at the first block of
the FM area. To access channels within the current block, move the cursor to
the channel number position on the display, input the channel number, then
press ENT. To specify a new block, move the cursor to the block number po-
sition, enter the new block number, and press ENT

Section 2Using the Programming Console

81

To change the contents of an FM area channel being displayed, enter the
new data for the current channel, followed by WRITE. This will write the data
into the FM area channel. Program and comment data stored in the FM area
cannot be rewritten with this operation.

Key Sequence

CLR SHIFT EXT
[Starting
block]

C
2 ENT ENT [Channel]

+ / –

WRITE [New data] ENT

Example

Starting
block

Desired
channel

New block
number

Data
change

Displayed for Program
or Comment Data

CLR

SHIFT EXT

ENT
C

2

F
5

B
1

ENT

A
9 0

ENT

B
1

A

0
A

0 ENT

WRITE

B
1

C
2

ED
43

ENT

User Program

Comment

Using the Programming Console Section 2

82

Meaning of Displays
Block number

Channel contents

Channel number in block

Block Index
IOM: Data area data
UM: Program data
CM: Comment data
***: Empty block
4: User designation #4
5: User designation #5
6: User designation #6
7: User designation #7

User designations are not possible from Programming Console.

2-6-6
File Memory Index Read

This operation can be used in any mode to determine if the contents of a FM
block is data area data, program data, or comment data. The block index will
be displayed for the designated block and the nine blocks that follow it. The
number of blocks free in FM area will also be displayed.

Once an index display has appeared, ENT and the +/– key can be used to
shift the displayed blocks forward or backward ten blocks at a time, similar to
the use of these keys in 2-3-3 Program Read.

Indexes are as follows:

I Data area data

U Program data

u End block in program data

C Comment data

* Empty block

4 User designation #4

5 User designation #5

6 User designation #6

7 User designation #7

User designations are not possible from
Programming Console.

Key Sequence

CLR SHIFT EXT
C

2 ENT
Block
number]

SHIFT READ ENT

+ / –

[Block
number]

[

Section 2Using the Programming Console

83

Example

EXT

SHIFT

READ

ENT

+ / –

FB

C

51

2

SHIFT

ENT

ENT

ENT

Meaning of Displays
Designated block
(block ‘n’)

Index of ‘n’

Index of ‘n+1’
Index of ‘n+2’

Index of ‘n+9’

No. of free blocks

2-7
Cassette Tape
Operations

PC programs (from user Program Memory-UM) or DM data may be backed-
up on a standard commercially available cassette tape recorder. Any high-
quality magnetic tape of adequate length will suffice. (To save a 16K-word
program, the tape must be 30 minutes long.) Always allow about 5 seconds
of blank tape leader before the taped data begins. Store only one program on
a single side of a tape; there is no way to identify separate programs stored
on the same side of the tape.

Use patch cords to connect the cassette recorder earphone (or LINE-OUT)
jack to the Programming Console EAR jack and the cassette recorder micro-
phone (or LINE-IN) jack to the Programming Console MIC jack. Set the cas-
sette recorder volume and tone controls to maximum levels.

For all operations, saving, loading, and verifying:

Using the Programming Console Section 2

84

• The PC must be in the PROGRAM mode.

• While the operation is in progress, the cursor will blink and the block
count will increment on the display.

• Operation may be halted at any time by pressing CLR.

2-7-1
Saving a Program to
Tape

This operation copies program data from Program Memory onto the cassette
tape. If the tape length is not adequate, a program may be split in half and
stored on both sides of the cassette.

The procedure is as follows:

1. Press CLEAR, EXT, ENT, and ENT again to specify recording UM data.

2. Select a file number for the data that is to be saved.

3. Specify the starting and stopping addresses of the data that is to be re-
corded.

4. Start cassette tape recording.

5. Within 5 seconds, press ENT.

The stopping address will be displayed when the operation is complete.

Key Sequence

[Starting
address]

CLR EXT ENT ENT
[File
number]

ENT

ENT
[Stopping
address]

[Start recorder] ENT

Within 5 s

Section 2Using the Programming Console

85

Example

Start recorder.
Within 5 s

Flashing during
recording

EXT

ENT

EB C D

A

41 2 3

0

ENT

ENT

ENT

E
4

A

0
A

0

ENT

2-7-2
Restoring Program Data

This operation restores program data from a cassette tape and writes it to
Program Memory (UM).

The procedure is as follows:

1. Press CLEAR, EXT, and ENT to specify UM data.

2. Press the 1 key and ENT to specify restoring.

3. Enter the file number of the data that is to be restored and press ENT.

4. Specify the Program Memory starting address where the data is to be
restored.

5. Start cassette tape playback.

6. Within 5 seconds, press ENT.

Data will be restored through the last address recorded on the tape, and the
stopping address will be displayed.

Using the Programming Console Section 2

86

Key Sequence

CLR EXT ENT
B

1 ENT
[File
number]

ENT

[Starting
address] [Start recorder] ENT

Within 5 s

Example

Start recorder.
Within 5 s

Flashing during
restoring

EXT

E
4

C
2

D
3

B
1

B
1 ENT

ENT

ENT

ENT

2-7-3
Verifying Program Data

This operation verifies that the contents of user Program Memory (UM) and
the cassette tape program data match.

The procedure is as follows:

1. Press CLEAR, EXT, and ENT to specify UM data.

2. Press the 2 key and ENT to specify verification.

3. Enter the file number of the data that is to be verified and press ENT.

4. Specify the Program Memory starting address of the data that is to be
verified.

5. Start cassette tape playback.

6. Within 5 seconds, press ENT.

Data will be compared through the last address recorded on the tape, and
either OK or VER ERR will be displayed.

Section 2Using the Programming Console

87

Key Sequence

CLR EXT ENT ENT ENT

ENT

[File
number]

[Starting
address] [Start recorder]

Within 5 s

C
2

Example

Start recorder.
Within 5 s

Flashing during
recording

EXT

E
4

C
2

D
3

B
1

B
1 ENT

ENT

ENT

ENT

Using the Programming Console Section 2

88

2-7-4
DM<–> Cassette Tape:
Save, Restore, and Verify

Procedures for Save/Restore/Verify operations for the DM area are identical
to those for the UM (Program Memory) except that the DM area is specified
rather than Program Memory by inputting the 1 key before the first ENT input.
It is also not necessary to input starting and stopping addresses when saving
the DM area; the entire area will be saved. Refer to the relevant operation in
the preceding sections 2-7-1 through 2-7-3. An example sequence for each
operation is given below.

Key Sequence

CLR
B

1

C
2

[Saving]

[Restor-
ing]

[Verify-
ing]

ENT [File number]

[Start recorder] ENT

Within 5 s

EXT

Section 2Using the Programming Console

89

Example

EXT

ENT

E

B

C D
4

1

2 3

ENT

B
1

ENT

Saving

Start recorder.
Within 5 s

Flashes
during
save

Restor-
ing

Flashes
during
restore

ENT

E
4

C
2

D
3

B
1

ENT

Verifying

Start recorder.
Within 5 s

Flashes
during
verify

C
2

ENT

E
4

C
2

D
3

B
1

ENT

Start recorder.
Within 5 s

B
1

90

SECTION 3
Data and Memory Areas

3-1
Overview

This section explains how I/O bits are used to identify individual I/O points
and discusses the functions of the various types of data and memory areas in
the PC.

I/O Channels
The PC operates by monitoring input signals from such sources as pushbut-
tons, sensors, and limit switches. Then, according to the program in its mem-
ory, the PC reacts to the inputs by outputting signals to external loads such
as relays, motor controls, indicator lights, and alarms.

I/O channels are used to identify the bits that correspond to the external I/O
points through which the PC interacts with physical devices.

Each channel consists of 16 I/O bits. The I/O bits are assigned addresses as
described below.

Addressing Conventions
I/O channel numbers are three-digit expressions and bit numbers are two-dig-
it. Altogether, five digits are used to address a particular I/O bit. Examples of
I/O bit addresses are given below.

I/O Channel # + Bit # (0 - 15) ==> I/O address

Channel 63, bit 3 : 063 03 ==> 06303

Channel 3, bit 15 : 003 15 ==> 00315

Like I/O bit addresses, data and memory area locations are also referenced
by specifying a channel number and a bit number.

When the data is read as a four-digit decimal or hexadecimal number, each
digit represents a set of four bits in the channel (16 bits in all). The rightmost
digit of the decimal or hexadecimal number therefore represents the right-
most four bits (3 to 0) of the channel.

One channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 2 1 0

If, for example, the ON/OFF status of the rightmost four bits is 0101 in binary,
the corresponding digit would be 5 in decimal or hexadecimal. If the ON/OFF
status is 1111 in binary, the hexadecimal number would be F (decimal 15).

Types of Data and
Memory Areas

I/O bits are part of the I/O and Internal Relay (IR) Area. Bits that are not used
for actual input or output operations constitute the remaining part of the IR

Section 3Data and Memory Areas

91

area and are referred to as “work” bits. These work bits do not control exter-
nal devices directly; rather they are used as data processing areas to control
other bits, timers, and counters.

Timers and counters are found in the Timer/Counter (TC) area. The Auxil-
iary Relay (AR) and Special Relay (SR) areas are used for system clocks,
flags, control bits, and status information. The data values stored in the AR
area are retained when the PC’s power is off. There is also a Link Relay
(LR) area for inter-PC communication in systems that employ PC Link Units.

The function of the Holding Relay (HR) area is to store data and to retain the
data values when the power to the PC is turned off. The Data Memory (DM)
area is a data area used for internal data storage and manipulation and its
values are also retained when power is off, but, unlike the HR area, it is only
accessible in channel units.

There are three memory areas used with the C1000HF. The programs that
control the PC and all of its input and output operations are stored in the Pro-
gram Memory (UM). The capacity of the Program Memory depends on the
type of RAM or ROM mounted to the CPU. File Memory, contained in the
File Memory Unit and only available with a File Memory Unit is mounted, is
used to store Program Memory and DM area data to transfer to and from
these areas. Trace Memory is a special area used to store results from
traces of program execution (see 2-5-3 Step Trace).

The following table shows the channels and bits in data areas allocated within
the PC. The I/O and work bit channels listed below combine to form the IR
area.

Area Channels

I/O 000 to 063

Work bits 064 to 236

SR 237 to 255

HR HR 00 to HR 99

AR AR 00 to AR 27

LR LR 00 to LR 63

TC 000 to 511 (Set times vary with channel for timers).

DM Normal: DM 0000 to DM 4095

Expanded: DM 0000 to DM 9999
(expanded DM area uses part of the UM area).

Note: IR bits not used for I/O and also bits which are not used in other areas can be
used as work bits.

3-2
I/O and Internal Relay
Area - IR

The I/O and Internal Relay (IR) Area is used for both I/O and internal data
storage and manipulation. The bits available for I/O are 00000 though 06315.
The actual number of IR channels that can be used as I/O channels is deter-
mined by the model of the CPU and the hardware configuration of the PC
system.

Data and Memory Areas Section 3

92

I/O Channels
The channels shaded may not be used for I/O with the C1000HF. These
channels are used in Remote I/O Systems when the PC controls Remote I/O
Units.

Ch 066

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 000

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 001

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 061

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 062

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 063

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 064

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 065

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 125

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 126

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 127

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 002

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Channel Number

Work Channels

Ch 130

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 064

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 065

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 125

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 126

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 127

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 128

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 129

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 234

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 235

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 236

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Ch 066

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Channel Number

Section 3Data and Memory Areas

93

Input Bit Usage
Input bits can directly input external signals to the PC and can be used in any
order in programming. They cannot be used for output instructions. As many
NO or NC inputs can be used as required as long as the I/O capacity of the
PC is not exceeded. Any unused input bits can be used as work bits in pro-
gramming. Input bits are used with LD, AND, OR, DIFU, DIFD, and other in-
structions.

Output Bit Usage
Output bits are used to output program execution results and can be used in
any order in programming. As many NO or NC outputs as required can be
used as long as the I/O capacity of the PC is not exceeded. Any unused out-
put bits can be used as work bits in programming. Output bits are used with
OUT and OUT NOT.

I/O Unit Mounting
Location

When mounting I/O Units to the PC Racks, any type of I/O Unit can be
mounted in any order. I/O channel numbers will be assigned serially accord-
ing to the mounting order of the I/O Units. The mounting order of the I/O Units
must then be registered using the I/O Table Register operation (see 2-2-4
Registering the I/O Table). The registered I/O table can then be checked with
the I/O Table Read or I/O Table Verify operations. Note that vacant slots are
not registered. Space may be reserved using a Dummy I/O Unit. The I/O ta-
ble can also be changed to allow for vacant slots or for other reasons (see
Slot Reservation, below).

The I/O channel numbers are automatically assigned in sequence to the I/O
Units mounted to the Racks. The top leftmost position is the starting point (i.e.
00000; channel 000, bit 00) and bit numbers are assigned top to bottom, left
to right.

Starting position for I/O bit assignments CPU Rack

Expansion I/O Rack

Vacant slot to which no I/O Unit is mounted and which is
not reserved by either a Dummy I/O or the I/O Table
Change operation.

Data and Memory Areas Section 3

94

Slot Reservation
If an I/O Unit is later mounted to an unreserved vacant slot, the I/O Unit loca-
tions will disagree with the registered table and will cause an I/O verification
error to occur. If an unplanned I/O Unit is required, change the programmed
channel numbers for the I/O Units to the right of the added I/O Unit and regis-
ter the table again.

Likewise, if a mounted I/O Unit is replaced with an I/O Unit with a different
number of points, the channel numbers assigned to the I/O Units already
mounted to the right of the new I/O Unit will need to be reassigned. The same
is also true when a mounted I/O Unit is removed from the Rack, resulting in a
vacancy.

The channel numbers will not be changed, however, if an I/O Unit is replaced
with another Unit having the same number of points.

Space can be reserved for future addition of an I/O Unit(s) with a Dummy I/O
Unit or by changing the I/O table after it has been registered (see 2-2-6
Changing the I/O Table).

Section 3Data and Memory Areas

95

3-3
Special Relay Area SR

The SR area is used for monitoring system operation, generating clock
pulses, and signalling errors. The SR area addresses range from 23700 to
25515.

The following table lists the functions of SR area flags and control bits. Un-
less otherwise stated, flags are OFF until the specified condition arises, then
they are turned ON by the system. Restart bits are usually OFF, but when the
user turns one ON then OFF again, it will restart the specified link. Other con-
trol bits are usually OFF until set by the user.

SR bits 25209 through 25215 can be turned ON and OFF from the program,
i.e., they can be manipulated with output instructions. Other SR bits cannot
be changed from the program.

Ch Bit Function

237 00
:
07

Output area for end codes after execution of
SEND/RECV instructions when using
SYSMAC LINK

238
:
241

--- Output area for level 0 data link status when
using SYSMAC LINK or SYSMAC NET

242
:
245

--- Output area for level 1 data link status when
using SYSMAC LINK or SYSMAC NET

247 00
:
07

PC Link level 1, Units 24 to 31 Run flags
(see Note)

08
:
15

PC Link level 1, Units 24 to 31 Error flags
(see Note)

248 00
:
07

PC Link level 1, Units 16 to 23 Run flags
(see Note)

08
:
15

PC Link level 1, Units 16 to 23 Error flags
(see Note)

249 00
:
07

PC Link level 0, Units 8 to 15 Run flags
(see Note)

08
:
15

PC Link level 0, Units 8 to 15 Error flags
(see Note)

250 00
:
07

PC Link level 0, Units 0 to 7 Run flags
(see Note)

08
:
15

PC Link level 0, Units 0 to 7 Error flags
(see Note)

251 00
:
15

Remote I/O Error flags

Data and Memory Areas Section 3

96

(continued)

Ch Bit Function

252 02 Level 0 Network Data Link Operating flag

03 Network Error flag

04 Network Run flag

05 Level 1 Network Data Link Operating flag

06 Rack-mounting Host Link Unit #1 Error flag

10 Keep OFF.

11 Group Continue Control bit (following power
interruptions)

12 Data Retention Control bit

14 Keep OFF.

15 Output OFF bit (Shuts off output loads when
ON). Automatically turned ON following
power interruptions if 25211 and 25212 are
ON.

253 00
:

FAL No. output area: an 8-bit FAL code is
output here by FAL, FALS, or the system
when a failure occurs.

07 FAL00 resets this area.

08 Battery Alarm flag

09 Indirect Jump Error flag

10 I/O Verification Error flag

11 Rack-mounting Host Link Unit #0 Error flag

12 Remote I/O Error flag

13 Normally ON flag

14 Normally OFF flag

15 DM Address Error flag

254 01 0.02-second clock bit

255 00 0.1-second clock bit

01 0.2-second clock bit

02 1.0-second clock bit

03 Error (ER) flag

04 Carry (CY) flag

05 Greater Than (GR) flag

06 Equals (EQ) flag

07 Less Than (LE) flag

Note: If a PC Link is not used and SYSMAC NET is used with SW3 and
SW4 set to OFF, channels SR 247 to SR 250 will have the functions
of channels SR 238 to SR 245.

3-3-1
Group Continue Control
Bit

When the Group Continue Control bit, bit 25211, has been turned ON with
OUT, the execution status and step of all groups are maintained during power
interruptions and execution continues from its previous status when operation
is continued. For continuation of execution to be effective, both the Group
Continue Control bit and the Data Retention Control bit must be turned ON
using OUT in the main program and GC (group continue) must be used. Be-
cause the Output OFF bit will be turned ON when program execution is re-
started, it must be turned OFF just before GC by inserting OUT NOT. The bit
status is maintained during power interruptions.

Section 3Data and Memory Areas

97

When the Group Continue Controlbit is OFF, all execution status for all
groups will be initialized when operation starts.

3-3-2
Data Retention Control
Bit

If the Data Retention Control bit, bit 25212, is ON, the current status of I/O
bits, work bits, and LR bits are retained when changing from PROGRAM
mode to MONITOR or RUN mode or vice versa. However, when power is
turned on and off again, the status of all these data is cleared.

Turning OFF the Data Retention Control bit clears this data when PC opera-
tion starts or stops. This bit is normally OFF. Bit status is maintained for
power failures.

3-3-3
Output OFF Bit

When the Output OFF bit, bit 25215, is ON, all outputs to the Output Units are
inhibited and the OUT INHB. indicator on the front panel of the CPU is lit.

When the Output OFF bit is OFF, Output Units are refreshed normally. The
Output OFF bit is normally OFF, and bit status is maintained for power fail-
ures.

3-3-4
FAL Error Code Output
Area

The FAL error code is output to bits 25300 to 25307.

FAL(35) or FALS(36) execution outputs a 2-digit BCD FAL code (for error di-
agnosis) to these 8 bits. The system also outputs a FAL code here when an
alarm output occurs, such as one caused by battery failure.

This area can be reset by executing FAL(35) 00 or through a Failure Read
Programming Console operation. (See 4-14-2)

3-3-5
Battery Alarm Flag

When the Battery Alarm flag, bit 25308, is ON, it indicates that the supply
voltage of the CPU or File Memory Unit backup battery has dropped. The
warning indicator lamp on the front panel of the CPU will also be lit.

3-3-6
Indirect Jump Error Flag

The Indirect Jump Error flag, bit 25309, turns ON when an undefined label for
a jump destination is used for an indirect jump or when a label number is not
BCD. If the label number is not BCD, the Instruction Execution Error flag, ER,
will also be ON.

3-3-7
I/O Verification Error Flag

The I/O Verification Error flag, bit 25310, turns ON when the number of I/O
Units mounted on the CPU Rack and Expansion I/O Racks disagrees with the
I/O table registered.

3-3-8
DM Address Error Flag

The DM Address Error flag, bit 25315, turns ON if an expanded DM area is
designated when an expanded DM area is not being used or if the contents of

Data and Memory Areas Section 3

98

an indirectly addressed DM area are not BCD. The Instruction Execution Er-
ror flag, ER, will also be ON in either case.

3-3-9
Instruction Execution
Error Flag, ER

Attempting to execute an instruction with incorrect data turns the ER flag, bit
25503, ON. Common causes of an instruction error are non-BCD operand
data when BCD data is required, or an indirectly addressed DM channel that
is non-existent. When the ER flag is ON, the current instruction will not be
executed.

3-3-10
Arithmetic Operation
Flags
Carry Flag, CY

The CY flag, bit 25504, turns ON when there is a carry in the result of an
arithmetic operation, or when a rotate or shift instruction moves a “1” into CY.
This flag is set and cleared by STC and CLC, respectively. Be sure to use
CLC before any instruction using CY. (See 4-9-3)

Greater Than Flag, GR
The GR flag, bit 25505, turns ON when the result of CMP (compare) shows
the second of two operands to be greater than the first.

Equal Flag, EQ
The EQ flag, bit 25506, turns ON when the result of CMP (compare) shows
two operands to be equal, or when the result of an arithmetic operation is
zero.

Less Than Flag, LE
The LE flag, bit 25507, turns ON when the result of CMP (compare) shows
the second of two operands to be less than the first.

3-3-11
Clock Bits

Four clock bits are available to control program timing. Each clock bit is ON
for the first half of the rated pulse time, then OFF for the second half. In other
words, each clock pulse has a duty factor of 1 to 1.

!

Section 3Data and Memory Areas

99

0.5s0.5s

0.05 s

 Pulse width 1 min 0.02 s 0.1 s 1.0 s

 Bit 25400 25401 25500 25502

Generates 1-min clock pulse

30s 30s

 1 min
Bit 25400

Generates 0.1-s clock pulse

 0.1 s
Bit 25500

Generates 0.2-s clock pulse

0.1s 0.1s

 0.2 s
Bit 25501

Generates 0.02-s clock pulse

0.01s 0.01s
 0.02 s
Bit 25401

Generates 1-s clock pulse

 1 s
Bit 25502

0.05 s

Caution Because the 0.1-second and 0.02-second clock pulses have ON times of 50 and
10 ms, respectively, the CPU may not be able to accurately read the pulse if pro-
gram execution time is too long.

3-3-12
Special I/O Flags and
Control Bits

Use of the following SR flags and control bits depends on the particular con-
figuration of your PC system. These flags and control bits are used when
components such as PC Link Units, Remote I/O Units, Network Link Units, or
Host Link Units are contained within the PC system. For additional informa-
tion, consult the System Manual for the particular Units involved.

The following bits can be employed as work bits when the special type of Unit
associated with them is not connected to the system.

• PC Link Error and RUN Flags
When PC Link Units are used in the system, channels 247 to 250 are used to
monitor the operating status of up to 32 PC Link Units.

Data and Memory Areas Section 3

100

Channel PC Link Units

 247 Nos 24 to 31

 248 Nos 16 to 23

 249 Nos 8 to 15

 250 Nos 0 to 7

For each channel, bits 00 to 07 are ON when the Unit is in RUN mode and
bits 08 to 15 are ON when an error occurs in the corresponding PC Link Unit.

Bit no.

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Ch 247

24(#1-8)

25(#1-9)

26(#1-10)

27(#1-11)

28(#1-12)

29(#1-13)

30(#1-14)

31(#1-15)

24(#1-8)

25(#1-9)

26(#1-10)

27(#1-11)

28(#1-12)

29(#1-13)

30(#1-14)

31(#1-15)

Ch 248

16(#1-0)

17(#1-1)

18(#1-2)

19(#1-3)

20(#1-4)

21(#1-5)

22(#1-6)

23(#1-7)

16(#1-0)

17(#1-1)

18(#1-2)

19(#1-3)

20(#1-4)

21(#1-5)

22(#1-6)

23(#1-7)

Ch 249

8(#0-8)

9(#0-9)

10(#0-10)

11(#0-11)

12(#0-12)

13(#0-13)

14(#0-14)

15(#0-15)

8(#0-8)

9(#0-9)

10(#0-10)

11(#0-11)

12(#0-12)

13(#0-13)

14(#0-14)

15(#0-15)

Ch 250

0(#0-0)

1(#0-1)

2(#0-2)

3(#0-3)

4(#0-4)

5(#0-5)

6(#0-6)

7(#0-7)

0(#0-0)

1(#0-1)

2(#0-2)

3(#0-3)

4(#0-4)

5(#0-5)

6(#0-6)

7(#0-7)

The numbers in parentheses indicate the Unit number and the link level. For
example, if, as shown below, the contents of channel 248 are 02FF, then it
means that Units 0 to 7 of link level 1 are in RUN mode, and Unit 1 of link
level 1 has an error.

0000 0010 1111 1111

 0 2 F F

Section 3Data and Memory Areas

101

• PC Link Restart Bit
The PC Link Restart bits are turned ON then OFF to restart the PC Link Sys-
tem.

Link level

 # 0

 # 1

 Bit

25214

25210

• Remote I/O Error Flags
Channel 251 is used for Remote I/O Unit Error flags. The functions of each bit
are described below. Refer to the appropriate Remote I/O System Manual for
further details.

Bit 00

If there are errors in more than one Remote I/O Unit, they can be read by
turning this bit ON and OFF.

Bits 01 and 02

Not used (not accessible).

Bit 03

Indicates that an error has occurred in a Remote I/O Unit or an Optical Trans-
mitting I/O Unit.

Bit 04

Indicates which Optical Transmitting I/O Unit has failed. This bit is ON if the
Unit assigned to the “H” (high) channel bits fails and OFF if the “L” channel-
bits Unit fails.

Bits 05 and 06

Indicate the number of the rack (0 to 3) to which the error-generating Optical
Transmitting I/O Unit is mounted.

Bit 07

Indicates an error in a Remote I/O Master Unit.

Bits 08 to 15

Depending on which kind of Unit is in error, bits 08 to 15 will indicate one of
the following:

•The Remote I/O Master Unit number (B0 to B7) in which the error occurred.

•The Optical Transmitting I/O Unit channel number (00 to 31) in which the I/O
error occurred.

•The I/O Link Unit channel number (00 to 31) in which the I/O error occurred.

• I/O Bus Error and Run Flags
These flags indicate the state of the I/O Bus system.

Flag Bit

Error Flag 25203

Run Flag 25204

Link Operating flag 25205

Data and Memory Areas Section 3

102

• Host Link Error Flags
A Host Link Error flag turns ON if an error occurs in a Host Link Unit on the
PC. The PC has two Host Link Error flags, one to indicate an error in Host
Link Unit #0 (bit 25311), and the other to indicate an error in Host Link Unit #1
(bit 25206).

3-4
Holding Relay Area - HR

The HR area is used to store and manipulate various kinds of data. Its ad-
dresses range from HR 0000 through HR 9915.

HR bits retain status when the system operating mode changes and also dur-
ing power failure. HR bits used between IL and ILC also retain status during
interlocks (see 4-2-3) and HR bits in group programs retain status when GE
and GOFF are executed.

To access HR bits, prefix the address number with “HR” (e.g., HR 0101 for bit
01 in HR channel 01) by pressing SHIFT and then HR/NOT on the Program-
ming Console. HR bits can be used in any order and as often as required in a
program.

 HR97

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 HR02

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 HR06

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 HR05

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 HR03

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 HR00

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 HR01

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 HR04

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 HR07

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 HR98

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 HR99

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Channel No./ Bit No.

3-5
Auxiliary Relay Area - AR

Part of the AR area is available for internal data storage and manipulation,
i.e., AR 0800 through AR 1715, AR 2200 through AR 2215, and AR 2500
through AR 2715, and may be accessed by the user and used in the same
way as HR bits. The rest of the AR area is reserved for various system func-
tions, as described in the tables on the following pages. These bits are only
operative in MONITOR or RUN mode. Except where otherwise indicated, the
AR bits dedicated for system use are updated periodically by the system.

The AR area also retains data status during a power failure except for AR
2400 through AR 2405, which are reset to 0 whenever PC power is turned

Section 3Data and Memory Areas

103

on, or when switching from MONITOR or RUN mode to PROGRAM mode or
from PROGRAM mode to MONITOR or RUN mode.

To access bits in this area from the Programming Console, prefix the address
number with “AR” (e.g., AR 0700) by pressing SHIFT and then CNR.

AR Channels

 AR16

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 AR15

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 AR00

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 AR25

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 AR01

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 AR17

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 AR14

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 AR18

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 AR26

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 AR27

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Channel No./ Bit No.

Data and Memory Areas Section 3

104

AR Area Flags and
Control Bits

Ch Bit Function

00 00
:
15

Group Execution flags for group programs 0 through 15. If the flag is ON, a specific group
program is awaiting execution, is actually being executed, or is being temporarily held.
The flag turns ON for a specific group program when GS is executed for it and turns OFF
when GOFF or GEND is executed for it.

01 00
:
15

Group Execution flags for group programs 16 through 31 (0100: 16, 0101: 17, etc.)

02 00
:
15

Group Execution flags for group programs 32 through 47 (0200: 32, 0201: 33, etc.)

03 00
:
15

Group Execution flags for group programs 48 through 63 (0300: 48, 0301: 49, etc.)

04 00
:
15

Group Execution flags for group programs 64 through 79 (0400: 64, 0401: 65, etc.)

05 00
:
15

Group Execution flags for group programs 80 through 95 (0500: 80, 0501: 81, etc.)

06 00
:
15

Group Execution flags for group programs 96 through 111 (0600: 96, 0601: 97, etc.)

07 00
:
15

Group Execution flags for group programs 112 through 127 (0700: 112, 0701: 113, etc.)

08 00
:
15

SYSMAC LINK Network Status flags for level 0 nodes 1 through 16 (0800: node 1, 0801:
node 2, etc.) Turn ON if the corresponding node is part of a SYSMAC LINK Network.
Refreshed at each cycle when operating in SYSMAC LINK.

09 00
:
15

SYSMAC LINK Network Status flags for level 0 nodes 17 through 32 (0900: node 17,
0901: node 18, etc.)

10 00
:
15

SYSMAC LINK Network Status flags for level 0 nodes 33 through 48 (1000: node 33,
1001: node 34, etc.)

11 00
:
13

SYSMAC LINK Network Status flags for level 0 nodes 49 through 62 (1100: node 49,
1101: node 50, etc.)

14 Communications Controller Error flag

15 EEPROM Error flag

12 00
:
15

SYSMAC LINK Network Status flags for level 1 nodes 1 through 16 (1200: node 1, 1201:
node 2, etc.) Turn ON if the corresponding node is part of a SYSMAC LINK Network.
Refreshed at each cycle when operating in SYSMAC LINK.

13 00
:
15

SYSMAC LINK Network Status flags for level 1 nodes 17 through 32 (1300: node 17,
1301: node 18, etc.)

14 00
:
15

SYSMAC LINK Network Status flags for level 1 nodes 33 through 48 (1400: node 33,
1401: node 34, etc.)

15 00
:
13

SYSMAC LINK Network Status flags for level 1 nodes 49 through 62 (1500: node 49,
1501: node 50, etc.)

14 Communications Controller Error flag

15 EEPROM Error flag

16 00
:
15

Level 0 network link servicing time. Calculates the servicing time for each CPU Unit cycle
in the network and outputs it in BCD (000.0 ms to 999.9 ms).

Section 3Data and Memory Areas

105

Ch FunctionBit

17 00
:
15

Level 1 network link servicing time.

18 12 Trace Complete flag

13 Tracing flag

14 Trace Start bit (Written to by the user program)

15 Sampling Start bit

19 00 File Memory Unit Error Reset bit. At the leading edge of the ON pulse, bits AR 1903
through AR 1906 are reset.

01 FM Data Transfer flag (For program-initiated transfer)

02 Transfer Direction flag (ON for user program write to FM; OFF for read from FM)

03 Attempt made to write different type of FM block to the CPU memory

04 FM write to a write-protected FM block was attempted

05 Unsuccessful FM write attempt to EEP-ROM FM

06 Checksum error during FM read

07 File Memory Unit Battery Alarm flag

08 Blocks 0 to 249 FM Write-Protect bit (see Note)

09 Blocks 250 to 499 FM Write-Protect bit (see Note)

10 Blocks 500 to 749 FM Write-Protect bit (see Note)

11 Blocks 750 to 999 FM Write-Protect bit (see Note)

12 Blocks 1,000 to 1,249 FM Write-Protect bit (see Note)

13 Blocks 1,250 to 1,499 FM Write-Protect bit (see Note)

14 Blocks 1,500 to 1,749 FM Write-Protect bit (see Note)

15 Blocks 1,750 to 1,999 FM Write-Protect bit (see Note)

20 00 A 4-digit BCD number that indicates the number of the FM block currently being
transferred by the program. Updated every time a block is transferred.

21 00 A 4-digit BCD number that indicates the remaining number of blocks to be transferred
to/from FM. This number is decremented every time a block is transferred.

22 00
:
07

SYSMAC LINK Data Link Setting bits (See the tables on the following page.)

23 00 Power-on counter: a 4-digit BCD number showing how many times the power has been
turned on. Be sure to reset this bit as necessary.

24 00 ON when servicing of PC Link Subsystem assigned level 1 is stopped.

01 ON when servicing of PC Link Subsystem assigned level 0 or a single-level PC Link
System is stopped.

02 ON when servicing of Network Link or Host Link Unit #1 is stopped.

03 ON when servicing of Network Link or Host Link Unit #0 is stopped.

04 ON when servicing of peripheral tools is stopped.

05 ON when servicing of periodic I/O updating or a Remote I/O System is stopped.

06 ON when the actual value for the network parameter (greatest node address) of level 1
SYSMAC LINK differs from the value set with FIT.

07 ON when the actual value for the network parameter (greatest node address) of level 0
SYSMAC LINK differs from the value set with FIT.

10 Used in combination with FUN(49). When this bit is turned ON by the user, servicing
system Units will take priority over executing instructions. Reset to 0 when PC power is
turned on.

11 PC Link Level 1 Connected flag

12 PC Link Level 0 (or single-level system) Connected flag

13 Network Link or Host Link Unit #1 Connected flag

14 Host Link Unit #0 Connected flag

15 CPU-mounted device Connected flag

Data and Memory Areas Section 3

106

Note: To write-protect an FM area, either use these flags or turn on the
write-protect DIP switch on the FM Unit. Turning any one of these
flags ON write-protects the corresponding 250-block area of FM.

Note: When power is turned ON, or when the mode is switched from
PROGRAM mode to MONITOR mode or RUN mode, or vice versa,
channels AR 2400 to AR 2405 are cleared. The functions allocated
to each bit are only valid in RUN mode or MONITOR mode.

Make the following data link settings in channel AR 22 when using a SYS-
MAC LINK Unit.

Level # 0 Level # 1 Data link setting

AR 2201 AR 2200 AR 2205 AR 2204

g

0 0 0 0 External (e.g., FIT)
settings

0 1 0 1 Automatic
setting

LR area
only

1 0 1 0

se g

DM area
only

1 1 1 1 LR area
and DM
area

Make the following settings when the data link setting is set to “automatic set-
ting” in the above table.

Level # 0 Level # 1 No. of channels
allocated per node

Max. No.
of nodes

AR 2203 AR 2202 AR 2207 AR 2206 LR DM
o odes

0 0 0 0 4 8 16

0 1 0 1 8 16 8

1 0 1 0 16 32 4

1 1 1 1 32 64 2

3-6
Link Relay Area - LR

The LR area ranges from 0000 to 6315. In a system employing PC Link
Units, part of the LR area is devoted to system data communications. (Refer
to the PC Link Systems manual for details.) The part of the LR area that is
not required by the PC Link Units can be used for internal data storage and
manipulation, in the same manner as the IR area.

LR area data is NOT retained when the power fails, when the program mode
changes, or when it is reset by an IL-ILC bypass (see Interlock under 4-2-2).

To access bits in this area, prefix the address number with “LR” (i.e., LR 0101
for bit 01 of LR channel 01) by pressing SHIFT and then LR/DM on the Pro-
gramming Console.

Section 3Data and Memory Areas

107

 LR05

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 LR04

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 LR00

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 LR61

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 LR01

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 LR06

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 LR03

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 LR07

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 LR62

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

 LR63

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

Channel No./ Bit No.

 LR02

 00

 01

 02

 03

 04

 05

 06

 07

 08

 09

 10

 11

 12

 13

 14

 15

3-7
Timer/Counter Area - TC

The TC area, addresses for which range from 000 to 511, is a single data
area in which timer and counter data is stored for use by TIM, TIMS, CNT,
and CNTR. This area is accessible in channel units only, which serve as the
storage area for the set value (SV) and the present value (PV) of the timer/
counter. Timer/counter numbers are three digits. To specify a timer or a
counter, prefix the three-digit TC number with “TIM” or CNT” (e.g., TIM 001 or
CNT 126) or, for TIMS and CNTR, prefix the number with the appropriate
FUN code (see Section 4 Programming Instructions).

Once a given TC address has been specified as the number for TIM, TIMS,
CNT, or CNTR, that same address cannot be specified again for any other
timer or counter. For example, if TIM 010 has been specified in a program, a
subsequent attempt to specify CNT 010 will generate an error.

Specifying the SV for TIM and TIMS varies with the timer number used (see
4-4-1 and 4-4-2 for details).

The TC area retains the SV of both timers and counters during power failure.
The PV of timers is reset when operations are initialized, when CNR is exe-
cuted, when the IL condition is OFF (i.e., during interlocks), and when GOFF
is executed. The PV of counters is reset when operations are initialized and
when CNR is executed, but not during interlocks nor when GOFF is exe-
cuted.

3-8
Data Memory Area - DM

The DM area is used for internal data storage and manipulation and is acces-
sible only in 16-bit channel units. The DM area retains data during power fail-
ure. If a RAM Unit is used in the CPU, 5,964 words of the Program Memory

Data and Memory Areas Section 3

108

area can be converted for usage as Expanded DM area (see 2-2-3 Setting
and Cancelling Expanded DM Area).

Converting Program Memory for use as expanded DM area naturally reduces
the amount of Program Memory available for user programs. Also, if the user
program is converted to ROM, the expanded DM area will also be converted
to ROM. DM area ranges are as follows:

Normal DM 0000 to DM 4095

Expanded DM 0000 to DM 9999

DM or expanded DM area cannot be used by instructions with bit-size oper-
ands, such as LD, OUT, AND, and OR.

Indirect Addressing
Normally, when data is specified for an instruction, the instruction operation is
performed directly on that data. For example, suppose CMP (compare) with
IR 005 as the first operand and DM 0010 as the second operand is used in
the program. When this instruction is executed, the data in IR 005 is com-
pared with that in DM 0010.

It is possible, however to use indirect DM addresses as operands for instruc-
tions. If *DM 0100 is specified as the data for a programming instruction, the
content of DM 0100 specifies another DM channel at which the actual oper-
and data is to be found. If, in this case, the content of DM 0100 is 0324, then
*DM 0100 is the same as DM 0324 and the data that the program instruction
actually uses is the content of DM 0324.

To access bits in the DM area, prefix the address number with “DM” (i.e., DM
01 for DM channel 01) by pressing LR/DM on the Programming Console. To
indirectly address a DM channel, prefix the channel that contains the address
of the channel whose contents is to be used, with “*DM” by by pressing
SHIFT and then */CH on the Programming Console.

3-9
Program Memory

Program Memory is where the user program is stored. The amount of Pro-
gram Memory available depends on the type of Memory Unit attached to the
PC. Memory Units come in different types, such as RAM and ROM Units, and
for each type there are different sizes. (Refer to the Installation Guide for de-
tails.)

To store instructions in Program Memory, input the instructions through the
Programming Console, or download programming data from an FIT, floppy
disk, cassette tape, or host computer, or from a File Memory Unit if one is
mounted to the CPU Rack (see end of Appendix A Standard Products for in-
formation on FIT and other special products).

3-10
File Memory Area - FM

The File Memory area is available only when a File Memory Unit is mounted
to the PC. This area can be used for internal data storage and manipulation,
and for storing additional PC programs for system flexibility. The area is ac-
cessible in block units only. The block numbers are four digits, and each
block consists of 128 channels.

Section 3Data and Memory Areas

109

File Memory addresses range from 0000 through 999 or from 0000 through
1999, depending on the model of File Memory Unit that is used (see Appen-
dix A Standard Models and 4-16 File Memory instructions).

The FM area retains data during power failure.

110

Section 4
Programming Instructions

4-1
Introduction

The C1000HF PC has a large programming instruction set that allows for
easy programming of complicated control processes. Each instruction’s ex-
planation includes the flowchart symbol, data areas, and flags used with the
instruction. Examples of how to use some of the more complicated instruc-
tions are also provided.

The many instructions provided by the C1000HF are described in following
subsections by instruction group. These groups include Basic, Flow Control,
Timer and Counter, Group Program, Subroutine and Interrupt Control, Data
Shift, Data Movement, Data Comparison, Data Conversion, Binary Calcula-
tion, BCD Calculation, Logic, Special, Intelligent I/O Unit, and Network In-
structions.

4-1-1
Inputting Instructions

Basic instructions are input using the Programming Console keys provided
for them (see Section 2 Using the Programming Console). All other instruc-
tions are input using function codes, of which there are two types: flowchart
function codes and ladder diagram function codes.

To input a flowchart function code, which will be indicated after the instruction
acronym between normal parentheses, press FUN, the function code, and
ENT on the Programming Console. Ladder diagram function codes are used
for some instructions. To input a ladder diagram function code, which will be
indicated after the instruction acronym between pointed parentheses (like this
<00>), press SHIFT first, and then press FUN, the function code, and ENT.

If both a ladder and a flowchart function code are provided for an instruction,
either may be used to input the instruction. In explanations, only one function
code will be provided for each instruction, the flowchart function code, if there
is one, and if not, the ladder diagram function code. If no function code is giv-
en, then there should be a Programming Console key for that instruction.

After inputting the instruction itself, each operand required for the instruction
must be input. After inputting each operand, you must press ENT before en-
tering the next operand or the next instruction. In the flowchart symbols given
in following subsections for any instructions, operands are listed on lines un-
der the instruction line; ENT must be pressed at the end of each of these
lines, i.e., once for the instruction (unless a Programming Console key is
available) and once after each operand line.

Note: Input function codes with care and be sure to press SHIFT when
required. If the wrong number is input or if SHIFT is not input when
required, an incorrect instruction will result.

Section 4Programming Instructions

111

Example
The BCD Add instruction, ADD(53), may be input using either of the following
key sequences:

Using Flowchart Function code

Using Ladder Diagram Function code

FUN
F

5
D

3 ENT

SHIFT FUN
D

3
A

0 ENT

After completing either of the above key sequences, the augend, the addend,
and the channel where the result is to be placed would need to be desig-
nated, pressing ENT after each of these three operands (see 4-8-4 BCD Add
- ADD(53)<30>).

Some instructions require numbers that are integral parts of the instruction.
These numbers are not considered as operands because they serve more to
identify the instruction. For example, SBN(31), which defines the beginning of
a subroutine, requires a number that identifies the subroutine so that it can be
accessed by other instructions. This number, identified as N, is input as part
of the instruction line, i.e. it is input between the function code and ENT. For
SBN(31) 006 (i.e., the first instruction in subroutine 6), either of the following
key sequences may be used.

FUN

Using Flowchart Function code

Using Ladder Diagram Function code

D
3

B
1

A

0
A

0 6 ENT

SHIFT FUN 9
C

2
A

0
A

0 6 ENT

Refer to 4-12-2 Subroutine Definition - SBN(31)<92> and RET(33)<93> for
details on subroutines.

4-1-2
Instruction Operand Data
Areas and Flags

For each instruction, the Data Areas and Flags subsections list the data
areas that can be specified for each operand required for the instruction and
the flags that are applicable to it.

All consecutive channels required for any single operand must be in the same
data area. When only the first of these channels is input, be careful not to ex-
ceed the last channel in the area you have selected. For example, if two
channels are required, you may not input SR channel 255 or AR 27. If both
the IR and SR areas are available for an operand, however, channels desig-

Programming Instructions Section 4

112

nated for operands may cross over from channel 246 to channel 247. Basi-
cally, all the channel numbers for a single operand must have the same prefix
(or, as in the case of IR and SR, no prefix).

Unless a limit is specified, any bit/channel in the area can be used. Refer to
Section 2 I/O Assignments and Data Areas for the address of each flag and
control bit. The following abbreviations are used.

Data Areas
IR: I/O and Internal Relay Area (bits 00000 through 24615, channels 000

through 246)

SR: Special Relay Area (bits 24700 through 25515, channels 247 through
255; see note below)

HR: Holding Relay Area (bits HR 0000 through HR 9915, channels HR 00
through HR 99)

AR: Auxiliary Relay Area (bits AR 0000 through AR 2715, channels AR 00
through AR 27)

LR: Link Relay Area (bits LR 0000 through LR 6315, channels LR 00 through
LR 63)

TC: Timer/Counter Area (numbers TC 000 through TC 511)

DM: Data Memory Area (see note below)

#: Constants (see note below)

Note: In the SR area, only bits 25209 through 25215 can be manipulated
by the program.

When the DM area is specified for an operand, an indirect address
can be used unless otherwise specified (*DM indicates an indirect
Data Memory address). If expanded DM area has been specified,
DM 0000 through DM 9999 can be addressed; if expanded DM
area has not been specified, the normal upper limit of the area (DM
4095) must not be exceeded.

The range in which a number can be specified for a given constant
depends on the particular instruction that uses it. If the constant is
to specify a data area channel, it must correspond to an allowable
channel address within the data area. If the constant is a value to
be contained within a channel, it may be hexadecimal or decimal,
as required by the instruction.

Flags
ER: Error flag
CY: Carry flag
EQ: Equals flag
GR: Greater Than flag
LE: Less Than flag
ER is the flag most often used for monitoring an instruction’s execution.
When ER goes ON, it indicates that an error has occurred in attempting to
execute the current instruction. The Flags subsection of each instruction lists
possible reasons for ER being ON. ER will turn ON for any instruction if oper-
ands are not input within established parameters.

TIM, TMS, CNT, and CNTR<12> (timer and counter instructions) are ex-
ecuted when ER is ON. All other instructions, unless specifically specified,
are not executed when ER is ON.

Section 4Programming Instructions

113

4-2
Basic Instructions

Basic instructions are used to handle inputs and outputs and establish condi-
tions that will determine how following instructions will be executed.

4-2-1
LD, AND, OR, OUT, and
NOT

These five basic instructions are indispensable in almost any program. All
have a corresponding key on the Programming Console, which you press to
enter the instruction (press SHIFT and AND for LD). Any bit in the IR, SR,
HR, AR, LR, or TC area can be designated for LD, AND, and OR (or any of
these followed by NOT) to establish conditions for execution of the instruc-
tion. Input bits, TC bits, and some bits in the SR area cannot be used for OUT
(or OUT NOT) (see 4-1-2 Instruction Operand Data Areas and Flags). The
bits being used with any of these instructions are input as part of the instruc-
tion line, i.e., between the instruction and ENT. The basic instructions operate
as follows:

Instruction Operation

LD Starts a logic line or block and indicates the first execution condition
(input bit or other memory area bit).

OUT Turns ON an output bit, flag, control bit or other memory area bit.

AND Performs a logical AND operation between the bit designated for the
instruction and the execution condition (ON or OFF) existing up to
that point. May be used to start a logic line or block.

OR Performs a logical OR operation between the bit designated for the
instruction and the execution condition (ON or OFF) existing up to
that point. May be used to start a logic line or block.

NOT Inverts whatever is before it; often used to form an NC (normally
closed) input. NOT can be used with LD, OUT, AND, or OR to indi-
cate the opposite of the actual condition of the input or output, e.g.,
OUT NOT is used to turn a bit OFF; AND NOT, to perform an AND
with the opposite of the status of the bit designated for the instruc-
tion. To designate NOT with another instruction, input the other in-
struction, press HR/NOT, and then input the bit for the instruction.
NOT cannot be used by itself.

Instruction Blocks
When more than one of the above instructions are combined into an instruc-
tion block containing more than one line, each line is considered in order and
the instruction on each line is executed according to the condition resulting

Programming Instructions Section 4

114

from all lines up to that point. Consider the following flowchart block.

LD 00000

AND 00001

OR 00002

OR NOT 00003

AND NOT TIM 000

OR HR 0000

AND NOT 0004

Here, the result of ANDing 00001 with 00000 (indicated with LD) is ORed with
00002 and then the result is OR NOTed with 00003, i.e., the result up to OR
NOT 00003 in this block will be ON if 00002 is ON, if 00003 is OFF, or if both
00000 and 00001 are ON. The result up to this point will be OFF if none of
these conditions are met. For convenience we’ll call the status at this point
Condition 1.

An AND NOT is then executed between Condition 1 and TIM 000, the result
is ORed with HR 0000, and the result of this is AND NOTed with 00004, i.e.,
the final condition of this block is ON only if 00004 is OFF and either HR 0000
is ON, or Condition 1 is ON and TIM 000 is OFF.

As described above, an “execution condition” is created for the next instruc-
tion according to the result of executing one of the basic instructions. The ex-
ecution condition is accumulative (i.e., each condition is determined accord-
ing to the accumulative result up to that point) until a conditional instruction is
executed that uses this condition to change program flow or output condi-
tions. Conditional instructions include WAIT, CJP, SKIP(46), and OUTC(00)).
Execution conditions can also be established by combining instruction blocks,
as described next.

Combining Blocks:
AND LD and OR LD

Instruction blocks can be logically ANDed and ORed by combining LD with
AND or OR. To indicate the beginning line in a new block, simply use LD or
LD NOT as the first instruction in the new block.

OR 00000

OR 00001

AND NOT 00002

LD 00003

OR 00004

OR NOT 00005

AND LD

Block 1

Block 2

Section 4Programming Instructions

115

In the above example, the result of block 1 would be ON if 00002 was OFF,
and either 00000 or 00001 was ON, and the result of block 2 would be ON if
00003 or 00004 was ON or if 00005 was OFF. The result of AND LD would
thus be ON if the results of block 1 and 2 were both ON. If, in this example,
AND LD was replaced with OR LD, the final result would be ON if the result of
either block 1 or block 2 was ON.

Blocks can be input consecutively, interconnecting them with AND LD and/or
OR LD (with the result of each operation forming one of the conditions for the
next instruction just as explained above for individual instructions). Here, the
first two blocks naturally do not require an AND LD or OR LD between them.

Up to eight blocks can also be input consecutively without AND LD or OR LD
separating any of them, and then either AND LD or OR LD can be repeated
one time fewer than the total number of blocks (i.e., a maximum of seven) to
obtain the logical AND or OR of all the blocks. The instructions must be either
all AND LD or all OR LD.

4-2-2
Conditional Output -
OUTC(00) and OUTC(00)
NOT

OUTC(00) is used to turn ON and OFF IR, SR, HR, AR or LR bits according
to the execution condition for the instruction. If the execution condition is ON,
the bit is turned ON; if the execution condition is OFF, the bit is turned OFF. If
OUTC(00) NOT is used the bit if turned OFF if the execution condition if ON;
ON, if the execution condition is OFF.

OUTC(00) and OUTC(00) NOT may be used after any of the following in-
structions: LD, LD NOT, AND, AND NOT, OR, OR NOT, AND LD, OR LD,
DIFU(40), DIFD(41), SBT(34), TIM, CNT, ANDG(01), or ORG(02).

Using OUTC(00) or OUTC(00) NOT, clears any prior execution condition, and
conditions for any further instructions must be established again. More than
one OUTC(00) and/or OUTC(00) NOT can, however, be used consecutively
to manipulate multiple bits based on the same execution condition.

Either OUTC(00) or OUTC(00) NOT require input only of the bit (B) to be ma-
nipulated. B is input on the instruction line before pressing ENT.

Flags are not affected by OUTC(00) or OUTC(00) NOT, although some flags
can be turned ON and OFF with these instructions.

Flowchart Symbols

[Instruction(s) setting execution condition]

OUTC(00) B OUTC(00) NOT B

Data Areas
R, SR (25209 through 25215 only), HR, AR, LR

Programming Instructions Section 4

116

4-2-3
Interlock - IL(38)<02> and
ILC(39)<03>

IL(38) (interlock) and ILC(39) (interlock clear) are always used in pairs and
cannot be nested (i.e., an the ILC(39) paired with an IL(38) must be pro-
grammed before another IL(38)). A bit, called the IL bit, is designated to con-
trol the interlock state. If the IL bit is OFF, instructions between IL(38) and
ILC(39) will not be executed and the status of bits used between the IL(38)
and ILC(39) be set as follows:

IR and LR bits used in OUT, OUT NOT, OUTC(00), or OUTC(00) NOT: OFF

HR and AR bits used in OUT, OUT NOT, OUTC(00), or OUTC(00) NOT: Unchanged

Timers (TIM and TMS): Reset

RPT: Repeat count reset to 0

Counters, shift registers (CNT and SFT): Unchanged (PV maintained)

DM bits: Unchanged

If the IL bit is ON, the program between IL(38) and ILC(39) will be executed
normally.

Only one operand, the IL bit (B) is required for IL(38). No operand is required
for ILC(39).

Flags are not affected by IL(38) or ILC(39).

Flowchart Symbols

IL(38)

B

ILC(39)

Data Areas
IR, SR, HR, AR, LR

4-2-4
Differentiation -
DIFU(40)<13> and
DIFD(41)<14>

DIFU(40) and DIFD(41) are used to establish conditions for a WAIT, CJP,
SKIP(46), OUTC(00) based on changes in a designated bit.

DIFU(40) establishes an ON condition for one execution after it detects an
OFF to ON transition in the designated bit. Otherwise an OFF condition is
maintained.

!

Section 4Programming Instructions

117

DIFD(41) establishes an ON condition for one execution after it detects an
ON to OFF transition in the designated bit. Otherwise an OFF condition is
maintained.

Each DIFU(40) and DIFD(41) must be assigned a number (N) from 000
through 511. This number is input as part of the instruction line, i.e., after the
function code and before pressing ENT. The same number can be used only
once, regardless of whether it is used with DIFU(40) or DIFD(41).

Both DIFU(40) and DIFD(41) require only one operand, the bit (B) that is
monitored to determine the ON/OFF condition established by the instruction.

Caution A change in the bit designated for DIFU(40) or DIFD(41) may not be detected if
more time is required before the next execution of DIFU(40) or DIFD(41) than the
length of time for which the designated bit is in a changed status. (The status of
the designated bit is monitored when the DIFU(40) or DIFD(41) is executed and
compared to the status of this bit the last time the same instruction was executed;
any changes in the bit in between are ignored if the status at the time of execution
remains the same.)

Flowchart Symbol

DIFU(40) N

B

DIFD(41) N

B

Data Areas
IR, SR HR, AR, LR

Application Examples
• With WAIT

When DIFU(40) is used as the condition for a WAIT, as shown below, execu-
tion will stop at the WAIT each time the DIFU(40) is executed until the bit des-
ignated for the DIFU(40) (00000 in this example) goes from OFF to ON.

DIFU(40) 000

00000

WAIT

OUT 00500

Programming Instructions Section 4

118

• With CJP
In the following example program section, the NO branch will be taken from
CJP LBL 100 as long as HR 1000 remains in the same status or changes
from ON to OFF. The first time DIFU(40) 010 is executed after HR 1000 goes
from OFF to ON, the YES branch will be taken from CJP LBL 100, turning ON
output 00501.

DIFU(40) 010

HR 1000

CJP LBL 100
Yes

No OUT NOT 00501

LBL 0100OUT 00501

• With SKIP(46)
Here with a DIFD(41), the NO branch will be taken (skipping two instructions)
only the first time after input 00200 goes from ON to OFF, and outputs 00502
and 00503 will be turned ON. At all other times, the NO branch will be taken,
and these two outputs will be turned ON.

DIFD(41) 100

00200

SKIP NOT

OUT 00502

OUT 00503

OUT 00504

Yes

No

4-2-5
No Operation - NOP

When NOP is found in a program, nothing is executed and the next instruc-
tion is moved to. When memory is cleared prior to programming, NOP is writ-
ten at all addresses. NOP is not normally required in programming, although
it can be input by pressing DISP CLR and ENT if desired. NOP naturally does
not require operands and does not affect flags.

!

Section 4Programming Instructions

119

Flowchart Symbol

NOP

4-3
Flow Control

The following instructions are used to control basic flow of the program. More
sophisticated flow control can be achieved with Group, Subroutine, and Inter-
rupt Control instructions (see 4-12 Group Programs and 4-13 Subroutine and
Interrupt Control).

4-3-1
WAIT and WAIT NOT

WAIT pauses program execution until the execution condition for it goes ON.
WAIT NOT pauses execution until the execution condition for it goes OFF.

WAIT and WAIT NOT are used following LD, AND, OR, AND LD, OR LD,
DIFU(40), DIFD(41), TIM, CNT, CNTR<12>, ANDG(01), ORG(02), and
SBT(34), or any allowable combination of these in an instruction block(s). All
of the instructions logically relevant to the WAIT or WAIT NOT are repeated in
a ‘loop’ until the WAIT or WAIT NOT condition is met.

No operands are required for WAIT, and flags are not affected.

To input WAIT NOT, press WAIT, HR/NOT, and ENT.

Caution If WAIT is used with TIM, CNT, or CNTR<12> and the SV for such produces a
BCD or indirect addressing error, the WAIT will not be executed, and program
execution will continue without pausing.

Flowchart Symbol

[Instruction(s) setting condition]

WAIT WAIT NOT

Application Example
In the following example, output 00500 is not output until input 00000 is ON
and input 00001 is OFF, or until HR 0100 is ON.

AND 00000

AND NOT 00001

OR HR 0100

WAIT

OUT 00500

!

Programming Instructions Section 4

120

4-3-2
Label - LBL

LBL is used to designated the destination for jumps indicated by JMP, CJP,
RPT(37), or BRZ(59).

Each LBL must be assigned a number, N, between 0000 and 9999 and each
label number must be used only once. The following label numbers are used
for special purposes, although they may be used like any other label number
when not used for the purpose designated below.

LBL 0000 through LBL 0031: Used for interrupt routines with I/O Interrupt
Units.

LBL 9998: Used for power-off interrupt routines.

LBL 9999: Used for scheduled interrupts.

The label number is input as part of the instruction line, i.e., press LBL, the
label number, and then ENT. No operand is required.

Refer to the next four subsections for application of and errors for label num-
bers. Refer to 4-12-5 Interrupt Routines for details on using LBL 0000 through
LBL 0031, LBL 9998, and LBL 9999.

Flowchart Symbol

LBL N

4-3-3
Jump - JMP

JMP is used to unconditionally move program execution to the designated
label. The label number may be designated either directly (0000 through
9999) or it may be designated indirectly by designating a channel that con-
tains the label number. The content of this channel must be in BCD.

The label number or channel (L) is input as part of the instruction line, i.e.,
press JMP, input the label number (without pressing LBL) or channel number,
and then press ENT. No other operand is required.

Caution If a directly designated label number is not found in the program, program execu-
tion will be stopped. If the channel designated as containing the label number
does not contain BCD or if such an indirectly addressed label number is not
found in the program, the JMP will be treated as a NOP and execution will contin-
ue.

Flowchart Symbol

JMP L

Data Areas
IR, SR, HR, AR, LR, TC, DM

Flags
Indirect

!

Section 4Programming Instructions

121

Jump Error
(25309) Channel containing label number is not in BCD.

Label designated by indirect addressing channel is not in program.

ER Channel containing label number is not in BCD.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD or the DM area has been exceeded.)

Application Example
The following example shows the use of an indirect DM address to access
the DM channel that contains the label number. Here the content of DM 0002
would designate a channel that contains 0020, returning the program as indi-
cated so that instructions following LBL 0020 would be executed next.

LBL 0020

JMP *DM 0002

4-3-4
Conditional Jump -
CJP and CJP NOT

CJP and CJP NOT are used to change the flow of a program according to the
execution condition.

CJP moves program execution to the designated label number if the preced-
ing condition is ON, and to the instruction immediately following CJP if the
preceding condition is OFF.

CJP NOT moves program execution to the designated label number if the
preceding condition is OFF, and to the instruction immediately following CJP
if the preceding condition is ON.

“YES” and “NO” in the flowchart always indicate that the CJP or CJP NOT
condition is met, i.e., YES is ON for CJP; OFF for CJP NOT.

CJP and CJP NOT are always used after one or more of the following instruc-
tions: LD, AND, OR, AND LD, OR LD, DIFU(40), DIFD(41), TIM , CNT,
CNTR<12>, ANDG(01), ORG(02), and SBT(34).

The label number may be designated either directly (0000 through 9999) or it
may be designated indirectly by designating a channel that contains the label
number. The content of this channel must be in BCD.

The label number or channel (L) is input as part of the instruction line, i.e.,
press CJP (and NOT, if required), input the label number (without pressing
LBL) or channel number, and then press ENT.

Caution If a directly designated label number is not found in the program, program execu-
tion will be stopped. If channel designated as containing the label number does
not contain BCD or if such an indirectly addressed label number is not found in
the program, the CJP will be treated as a NOP and execution will continue.
If CJP is used with TIM, CNT, or CNTR<12> and the SV for such produces a BCD
or indirect addressing error, the CJP will be treated as a NOP and execution will
continue.

Programming Instructions Section 4

122

Flowchart Symbol

CJP NOT L
Yes

No

Yes

No

[Preceding ON/OFF condition] [Preceding ON/OFF condition]

To designated LBL To designated LBL

CJP L

Data Areas
IR, SR, HR, AR, LR, TC, DM

Flags
Indirect
Jump Error
(25309) Channel containing label number is not in BCD.

Label designated by indirect addressing channel is not in program.
ER Channel containing label number is not in BCD.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD or the DM area has been exceeded.)

Application Example
In the following example, LBL 0100 will be jumped to and output 00500 will
be turned ON when input 00000 is ON and input 00001 is OFF; otherwise
output 00500 will be turned OFF.

After LBL 0100 is jumped to and output 00500 is turned ON, LBL 0000 (not
shown) will be jumped to if input 00002 is OFF or the step following CJP NOT
LBL 0 (not shown) will be executed if input 00002 is ON.

OUT NOT 00500

CJP NOT LBL 0

LBL 0100

OUT 00500

AND 00000

AND NOT 00001

CJP LBL 100
Yes

No

AND 00002

Yes

No

4-3-5
Repeat - RPT(37)

RPT(37) is used to return to a LBL and repeat the instructions between the
LBL and RPT(37) a specified number of times before proceeding to the in-
struction following RPT.

!

Section 4Programming Instructions

123

The label number may be designated either directly (0000 through 9999) or it
may be designated indirectly by designating a channel that contains the label
number. The content of this channel must be BCD.

The label number or channel (L) is input as part of the instruction line, i.e.,
press FUN, 3, 7 , input the label number (without pressing LBL) or channel
number, and then press ENT.

Nesting RPT(37) is not allowed, i.e., there must not be any other RPT(37) or
a LBL used for another RPT(37) between the RPT(37) and the LBL being
returned to.

The number of repetitions (R) must be 99 or fewer and is input either directly
as a constant or indirectly as the content of a designated channel. Including
the first execution, the designated program section will be repeated one more
time than R, or R + 1 repetitions. R must be designated in BCD.

Caution If a directly designated label number is not found in the program, program execu-
tion will be stopped. If channel designated as containing the label number does
not contain BCD or if such an indirectly addressed label number is not found in
the program, the RPT(37) will be treated as a NOP and execution will continue.

Flowchart Symbol

RPT(37) L

R

Data Areas
IR, SR, HR, AR, LR, TC, DM

Flags
Indirect
Jump Error
(25309) Channel containing label number is not in BCD.

Label designated by indirect addressing channel is not in program.
Number of repetitions exceeds 99.

ER Channel containing label number or number of repetitions is not in
BCD.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD or the DM area has been exceeded.)

Interlock Handling
If RPT(37) is found between and IL(38)-ILC(39) pair and the interlock condi-
tion is met, the number of repetitions will automatically be set to zero and the
instruction following RPT(37) will be executed without repeating.

Power Interruptions
The number of repetitions for any RPT(37) used in the main program will be
reset when program execution is restarted after a power interruption, and ex-
ecution of the main program will be restarted from address 00000.

If the RPT(37) is found in a group program and GC(16) is used (see 4-11-3
Group Continue - GC(16)), execution following a power interruption will con-
tinue from the instruction being executed when power was interrupted and, it

!

Programming Instructions Section 4

124

a RPT(37) was being executed, the designated number of repetitions will be
completed properly. The designated number of repetitions will also be com-
pleted when pauses, jumps to other group programs, or interrupt processing
occurs during RPT(37) execution.

If GC(16) is not used, the number of repetitions for any RPT(37) in a group
program will be cleared.

4-3-6
Conditional Skip -
SKIP(46) and SKIP(46)
NOT

SKIP(46) and SKIP(46) NOT are used to change the flow of a program ac-
cording to the execution condition.

SKIP(46) moves program execution to the instruction immediately after the
designated number of instructions (i.e., skips these instructions) if the preced-
ing condition is ON, and to the instruction immediately following SKIP(46) if
the preceding condition is OFF.

SKIP(46) NOT moves program execution to the instruction immediately after
the designated number of instructions if the preceding condition is OFF, and
to the instruction immediately following SKIP(46) if the preceding condition is
ON.

“YES” and “NO” in the flowchart always indicate that the SKIP(46) or
SKIP(46) NOT condition is met, i.e., YES is ON for SKIP(46); OFF for
SKIP(46) NOT.

The number of instructions to be skipped, N, must be between 1 and 9, inclu-
sive, and it must be input directly as a constant and as part of the instruction
line, i.e., press FUN, 4, 6 (and then NOT if required), input the number of
steps, and then press ENT. No other operand is required and flags are not
affected.

SKIP(46) and SKIP(46) NOT are always used after one or more of the follow-
ing instructions: LD, AND, OR, AND LD, OR LD, DIFU(40), DIFD(41), TIM ,
CNT, CNTR<12>, ANDG(01), ORG(02), and SBT(34).

Caution If SKIP(46) is used with TIM, CNT, or CNTR<12> and the SV for such produces a
BCD or indirect addressing error, the SKIP(46) will be treated as a NOP and ex-
ecution will continue to the instruction just after SKIP(46).

Flowchart Symbol

SKIP(46) NOT N
Yes

No

Yes

No

[Instruction(s) establishing condition] [Instruction(s) establishing condition]

To instruction “N”
instructions down
the program

To instruction “N”
instructions down
the program

 SKIP(46) N

4-3-7
Branch for Zero -
BRZ(59) and BRZ(59)
NOT

BRZ(59) and BRZ(59) NOT are used to change the flow of a program accord-
ing whether the content of an operand channel (C) is all zeros or not.

!

Section 4Programming Instructions

125

BRZ(59) moves program execution to the designated label (L) if the operand
channel is all zeros, and to the instruction immediately following BRZ(59) if
the channel contains anything else.

BRZ(59) NOT moves program execution to the instruction immediately follow-
ing BRZ(59) if the operand channel is all zeros, and to the designated label if
the channel contains anything else.

“YES” and “NO” in the flowchart always indicate that the BRZ(59) or BRZ(59)
NOT condition is met, i.e., YES is all zeros for BRZ(59); anything other than
all zeros for BRZ(59) NOT.

The label number may be designated either directly (0000 through 9999) or it
may be designated indirectly by designating a channel that contains the label
number. The content of this channel must be BCD.

The label number or channel (L) is input as part of the instruction line, i.e.,
press FUN, 5, 9 (and NOT if required) , input the label number (without press-
ing LBL) or channel number, and then press ENT.

Caution If a directly designated label number is not found in the program, program execu-
tion will be stopped. If the channel designated as containing the label number
does not contain BCD or if such an indirectly addressed label number is not
found in the program, the BRZ(59) will be treated as a NOP and execution will
continue.

Flowchart Symbol

BRZ(59) NOT L

C

BRZ(59) L

L

Yes

No

Yes

No

Data Areas
IR, SR, HR, AR, LR, TC, DM

Flags
Indirect
Jump Error
(25309) Channel containing label number is not in BCD.

Label designated by indirect addressing channel is not in program.
ER Channel containing label number is not in BCD.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD or the DM area has been exceeded.)

EQ Operand channel (C) is all zeros.

4-4
Timers and Counters

TIM and TMS are decrementing timer instructions which require a timer num-
ber and a set value (SV) as the operand. When the specified SV has elapsed,
the timer number in the TC area turns ON. TIM is used in combination with
conditional instructions, such as WAIT or CJP; TMS is used independently.
The SV for either can be designated directly or as the content of a specified
channel.

CNT is a decrementing counter instruction and CNTR<12> is a reversible
counter instruction. CNT requires a counter number, SV, and a count bit;
CNTR<12> requires a counter number, SV, and a control channel containing
increment and decrement bits.

!

Programming Instructions Section 4

126

CNR is used to stop timers and counters and reset them to their SV.

The timer/counter number refers to the actual address in the TC area where a
bit is turned ON at the end of the timer or counter operation. Each number
must not be used more than once, regardless of whether it is assigned to a
timer or counter. TC addresses (i.e., timer/counter numbers) range from TC
000 to TC 511.

4-4-1
Timer - TIM

TIM 000 through TIM 383 measure in increments of 0.1 second from a set
value (SV) between 0 and 999.9 seconds with an accuracy of +0/–0.1 sec-
ond. TIM 384 through TIM 511 measure in increments of 0.01 second from a
set value (SV) between 0 and 99.99 seconds with an accuracy of +0/–0.01
second.

TIM must be used just before WAIT, CJP, SKIP(46), or OUTC(00). A TC area
bit assigned to TIM can be used as the operand for another instruction. It can
be designated either as a bit, indicating the ON/OFF status of the timer, or as
a channel, indicating the PV (present value) of the timer.

A TIM timer is started from its SV when executed, and the TC area bit is
turned ON when the timer’s present value reaches zero. In other words, the
conditional instruction used in combination with TIM is executed for an OFF
condition until time expires, when it is executed for an ON condition.

The SV for a TIM must be in BCD and can be input directly as a constant be-
tween 0000 and 9999, or it can be designated as the content of a specified
channel. To specify a channel, input */CH before inputting the channel num-
ber. The specified channel can be used to input the SV through an Input Unit
to produce an externally set, variable timer. #/OUT need not be pressed be-
fore an SV input as a constant.

When a TIM is first executed, it produces an OFF condition for the following
instruction. This condition is maintained each time the TIM is executed while
the timer is operating. When time has expired, an ON condition is created for
the following instruction. If the TIM is again executed, it will be reset to its SV
and start operating again.

The timer number refers to an actual address in the TC area. Since this area
is also shared by counters, the same number must not be used twice, regard-
less of whether it is used for a timer or for a counter. Timer/counter numbers
extend from 000 through 511. The timer number is input as part of the instruc-
tion line, i.e. press TIM, input the timer number, and then press ENT. The only
required operand is the SV.

Caution If ER goes ON while a timer is operating, the next WAIT, CJP or SKIP(46) will be
executed as a NOP.

Section 4Programming Instructions

127

Flowchart Symbol

TIM N

SV

Reset Conditions
Timers between an IL(38)-ILC(39) pair are reset to their SV when the IL(38)
condition goes OFF. Timers are also reset if a CNR or GOFF(15) is executed
for them, when power is interrupted, or when the PC mode is changed.

Data Areas
IR, HR, AR, LR, DM, #

Flags
ER SV is not in BCD.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

Application Examples
The operation of timers with WAIT and OUTC(00) is reasonable straight for-
ward. The following examples show TIM with CJP and SKIP(46). In the first
example, output 00501 is turned ON for 10 seconds and then turned OFF
when the SV (10 seconds) for TIM 400 expires. The flowchart section would
look as follows. Note that if program flow following OUT 00501 returned to
restart the timer immediately, output 00501 would be turned OFF only instan-
taneously, being turned ON as soon as the timer was restarted at the next
execution.

TIM 400

#1000

 CJP LBL 100

10 s

OUT NOT 00501

LBL 0100

OUT 00501

Yes

No

Programming Instructions Section 4

128

When combined with SKIP(46) NOT, a program section using TIM would look
like the following.

OUT HR 1000

SVTIM 100

DM 0100

SKIP NOT 2

OUT 00502

OUT 00503

Yes

No

DM 0100

0 1 5 5 15.5 s

Here, outputs 00502 and 00503 would be turned ON only after the timer’s SV
(15.5 seconds) had expired. Up until that point, only HR 1000 would be
turned ON.

4-4-2
Timer Start - TMS(30)

TMS is used to define and start a timer in the TC area by designating a timer
number (TIM 000 through TIM 511) and set value.

TMS 000 through TMS 383 measure in increments of 0.1 second for a set
value (SV) between 0 and 999.9 seconds with an accuracy of +0/–0.1 sec-
ond. TMS 384 through TMS 511 measure in increments of 0.01 second for a
set value (SV) between 0 and 99.99 seconds with an accuracy of +0/–0.01
second.

TMS differs from TIM in that TMS is used independently and can be followed
by any instruction. The next instruction is executed immediately after the tim-
er set by TMS is started. A timer number used for TMS can be programmed
as the operand for another instruction. It can be designated either as a bit,
indicating the ON/OFF status of the timer, or as a channel, indicating the PV
(present value) of the timer.

A TMS timer is started from its SV when executed, and the TC area bit is
turned ON when the timer’s present value reaches zero. If a TMS is executed
during the countdown operation, it will be reset to its SV and started again.

The SV for a TMS must be in BCD and can be input directly as a constant
between 0000 and 9999, or it can be designated as the content of a specified
channel. To specify a channel, input */CH before inputting the channel num-
ber. The specified channel can be used to input the SV through an Input Unit
to produce an externally set, variable timer. #/OUT need not be pressed be-
fore an SV input as a constant.

The timer number is input as part of the instruction line, i.e., press FUN, 3,
and 0, input the timer number, and then press ENT. The only required oper-
and is the SV.

Section 4Programming Instructions

129

Flowchart Symbol

TMS(30) N

 SV

Reset Conditions
Timers between an IL(38)-ILC(39) pair are reset to their SV when the IL(38)
condition goes OFF. Timers are also reset if a CNR or GOFF(15) is executed
for them, when power is interrupted, or when the PC mode is changed.

Data Areas
IR, HR, AR, LR, DM, #

Flags
ER SV is not in BCD.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been
exceeded.)

Application Example
TMS can be used with CMP(52) to control program flow as shown below. The
CMP(52) compares the present value of the timer (TMS 100, which is ad-
dressed as TIM 100) with 50 seconds (#0500), and the EQ flag is tested with
CJP following the CMP(52) to see if 50 seconds has expired. When the 50
seconds has expired, EQ (25506) will be activated and 00500 will be turned
ON. GR and LE can be used in similar programming.

EQ flag

LBL 0100

OUT 00500
No

Yes

TMS(30) 100

#9999

CMP(52)

TIM100

#0500

AND 25506

CJP LBL 100

4-4-3
Counter - CNT

CNT is a preset decrementing counter. That is, it decrements its present
count value (PV) when the count input pulse goes from OFF to ON. Strictly
speaking, the count input pulse (CP) is counted only when the signal is ON
for any one execution after being OFF for the execution immediately prior.
The greater length of the count input pulse cycle in comparison to the instruc-

!

Programming Instructions Section 4

130

tion execution time, however, means that count input pulses are normally
counted without error unless execution is greatly delayed.

CNT must be used in combination with and immediately before WAIT, CJP,
SKIP(46), or OUTC(00). A counter number can be used as the operand for
another instruction. It can be designated either as a bit, indicating the ON/
OFF status of the counter, or as a channel, indicating the PV (present value)
of the timer.

You must provide a counter number, SV, and a count input to use CNT. The
counter number refers to an actual address in the TC area. Since this area is
also shared by timers, the same number must not be used twice, regardless
of whether it is used for a timer or counter. Timer/counter numbers extend
from 000 through 511.

The SV for a CNT must be in BCD and can be input directly as a constant
between 0000 and 9999, or it can be designated as the content of a specified
channel. To specify a channel, input */CH before inputting the channel num-
ber. The specified channel can then be used to input the SV through an Input
Unit to produce an externally set, variable counter. #/OUT need not be
pressed before an SV input as a constant.

When a CNT is first executed, it produces an OFF condition for the following
instruction. This condition is maintained each time the CNT is executed while
the counter is operating. When the count has reached zero, an ON condition
is created for the following instruction. If the CNT is again executed, it will be
reset to its SV and start counting down again.

The counter number, N, is input as part of the instruction line, i.e. press CNT,
input the counter number, and then press ENT. The only required operands
are the SV and the count input (CP).

Caution If the ER flag is ON when CNT is executed, the following WAIT, CJP or SKIP(46)
will be executed as a NOP.

Flowchart Symbol

CNT N

SV

CP

Reset Conditions
CNT counters between an IL(38)-ILC(39) pair are reset to their SV when the
IL(38) condition goes OFF.

Data Areas
IR, HR, AR, LR, DM, #

Flags
ER SV is not in BCD.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

Application Example
Application of CNT resembles that of TIM, except that a time is replaced with
a count.

!

Section 4Programming Instructions

131

4-4-4
Reversible Counter -
CNTR <12>

The CNTR<12> is a reversible, up-down circular counter. It increases or de-
creases the present value (PV) by one whenever the increment or decrement
input signal goes from OFF to ON. If both the increment and decrement input
signals are ON at the same time, the PV will not change. The increment sig-
nal is bit 15 of a control channel (C) input as the second operand. The decre-
ment signal is bit 14. All other control channel bits are ignored.

CNT must be used in combination with and immediately before WAIT, CJP,
SKIP(46), or OUTC(00). A counter number can be used as the operand for
another instruction. It can be designated either as a bit, indicating the ON/
OFF status of the counter, or as a channel, indicating the PV (present value)
of the timer.

Besides the increment and decrement input signals, you must also provide
the set value (SV) and a counter number. The set value can be designated as
a constant or as the content of a specified channel. The counter number re-
fers to an actual address in the TC area. Since this area is also shared by
timers, the same number must not be used twice, regardless of whether the
number is used for a timer or for a counter. Timer/counter numbers extend
from 000 through 511.

When decremented from 0000, the present value (PV) is set to SV. When
incremented past the SV, the PV is set to 0000.

The SV for a CNTR<12> must be in BCD and can be input directly as a con-
stant between 0000 and 9999, or it can be designated as the content of a
specified channel. To specify a channel, input */CH before inputting the chan-
nel number. The specified channel can then be used to input the SV through
an Input Unit to produce an externally set, variable counter. #/OUT need not
be pressed before an SV input as a constant.

CNTR<12> retains its PV within an IL(38)/ILC(39) loop when the IL(38) condi-
tion is OFF.

CNTR<12> counters are reset using CNR.

The counter number, N, is input as part of the instruction line, i.e., press
SHIFT, FUN, 1, and 2, input the counter number, and then press ENT. The
only required operands are the SV and the control channel (C).

Caution If the ER flag is ON when CNTR<12> is executed, the following WAIT, CJP or
SKIP(46) will be executed as a NOP. If a SV designated as the content of a data
area channel is not in BCD, the counter will operate, but accuracy cannot be
guaranteed.

Flowchart Symbol

CNTR(12) N

SV

C

Reset Conditions
CNTR<12> counters between an IL(38)-ILC(39) pair retain their PV while the
IL(38) condition is OFF.

Programming Instructions Section 4

132

Data Areas
IR, HR, AR, LR, DM, #

Flags
ER SV is not in BCD.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

4-4-5
Programming Extended
Timers and Counters

TIM timers can be combined with other TIM timers or RPT(37), or clock
pulses can be counted with CNT to produce extended timers capable of tim-
ing longer periods of time than is possible with only one TIM timer. In the first
two of the following examples, TIM can be replaced with CNT to produce ex-
tended counters, producing a wait of 18,000 counts for the first example and
a wait of 60,000 counts for the second one.

Multiple TIM Timers
The following program section produces a 30-minute wait (900 seconds plus
900 seconds) when input 00000 is ON.

00200 AND 00000

00201 SKIP NOT 4

00202 TIM 001

00202 # 9000

00203 WAIT -----

00204 TIM 002
9000

00205 WAIT -----

Yes

No

AND 00000

SKIP NOT 4

TIM 001

#9000

WAIT

TIM 002

#9000

WAIT

Address Instruction Data

Flowchart Mnemonic Code

Section 4Programming Instructions

133

TIM with RPT
In the following program section, output 00501 will go ON 100 minutes (60
seconds times 100) after input 00000 goes ON.

00200 AND 00000

00201 WAIT

00202 LBL 0100

00203 TIM 001

0600

00204 WAIT -----

00205 RPT LBL 0100

0099

00206 OUT 00501

RPT LBL 0100

 #0099

AND 00000

WAIT

LBL 0100

TIM 001

#0600

WAIT

OUT 00501

Address Instruction Data

Flowchart Mnemonic Code

Timing with Clock Pulses
The clock pulses provided in the SR area (see 3-3 Special Relay Area - SR)
can be counted to produce extended timers as shown below. This program
section will loop for 700 seconds, and then jump to label 200 to turn ON out-
put 00503.

00200 AND 00000

00201 WAIT -----

02002 LBL 0100

00203 CNT 002

0700

25502

00204 CJP LBL 0200

00205 JMP LBL 0100

 :

00250 LBL 0200

00251 OUT 00503

AND 00000

WAIT

LBL 0100

CNT 002

#0700

25501

Yes

No

CJP LBL 200

JMP LBL 100

LBL 0200

OUT 00503

1.0 s clock pulse

Address Instruction Data

Flowchart Mnemonic Code

Programming Instructions Section 4

134

4-4-6
Timer/Counter Reset -
CNR

CNR is used to reset timer and counters to their SV or to reset other channels
to zero. Timers and counters will not begin operation when reset with CNR.

To reset just one timer or counter, input the timer/counter number (N) as part
of the instruction line, i.e., press CNR, TIM or CNT, the timer/counter number,
and then ENT.

To reset multiple timers/counters or to reset other channels, input the starting
(St) and ending (E) channels as the first and second operands after pressing
CNR and ENT. Both the starting and ending channels must be in the same
data area and the starting channel must be less than the end channel.

If the TC data area is designated, all timers/counters between the starting
channel and the end channel will be reset to their SV. Channels designated in
any other data area will be reset to zero.

Flowchart Symbol

CNR

St

E

Data Areas
TC, IR, HR, AR, LR, DM, *DM

Flags
ER The B and E channels are in different areas, or B is greater than E.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

4-4-7
Multi-output Timer
MTIM(80)

MTIM(80) is an incrementing timer instruction for which up to eight set values
can be established to turn ON eight corresponding output bits in a result
channel (R). Channel R is input as the first operand. Bits 00 through 07 of the
result channel are turned ON when the corresponding SV is reached. Bit 08
of the result channel serves as the reset input; bit 09, as the timer pause in-
put (see below). The remainder of the result channel is not used.

The channel containing the first SV (FSV), which corresponds to bit 00, is
designated as the third operand. The rest of the SV are contained in the
seven channels consecutively following the FSV, with the SV in the last chan-
nel (FSV + 7) corresponding to bit 07 in the output channel. If any of the
seven channels following FSV contains all zeros, all channels past it will be
ignored.

SV must be in BCD and are input in increments of 0.1 second, e.g., inputting
0155 indicates 15.5 seconds.

The second operand indicates the channel (PVC) to which the PV of the timer
will be output.

When the timer reaches 9999, it will return to 0000 and continue timing, and
all outputs in the result channel will turn OFF.

!

Section 4Programming Instructions

135

Caution If a SV is not in BCD, the timer will operate, but accuracy of the outputs corre-
sponding to the SV cannot be guaranteed. If MTIM(80) is not executed at least
every 1.6 seconds, error will result in the PV. SV are compared to the PV and
result channel bits are turned ON only when MTIM(80) is executed. If high preci-
sion is required, MTIM(80) must be executed frequently enough so that program
execution time does not affect timing.

Flowchart Symbol

MTIM(80)

R

PVC

FSV

Data Areas
IR, HR, AR, LR, DM, *DM

Flags
ER R or PVC is not in BCD.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

Resetting and Pausing
The MTIM(80) timer can be reset by turning ON bit 08 of the result channel
and stopped by turning ON bit 09 of the result channel. These bits can be
manipulated by using OUT or OUT NOT unless the result channel is desig-
nated in the DM area. DM area bits can be turned ON by using ORW(66)
(with constant 0200 for pausing and 0100 for resetting) and turned OFF by
using ANDW(65) (with constant FDFF for pausing and FEFF for resetting) for
the result channel. See 4-11-3 ORW(66) and 4-11-2 ANDW(65).

If MTIM(80) is executed when bit 09 is ON and bit 08 is OFF, the MTIM(80)
will be processed as a NOP. If MTIM(80) is executed when bit 09 is ON, the
PV will be reset to 0000, bits 00 through 07 of the result channel will be
turned OFF, and the timer will be stopped.

4-5
Data Shifting

The instructions described in this section all shift data, but in differing
amounts and directions. Each of the shift instructions except for SFT is pro-
grammed with a function code.

To input these instructions through the Programming Console, you must
press FUN followed by the appropriate function code. Data for the operands
also has to be entered where required.

4-5-1
Shift Register - SFT

SFT shifts the status of a designated bit into a shift register defined between
a starting and end channel, and shifts all bits in the shift register by 1 bit, as
shown below.

Status of specified bit
Lost data

End channel Intermediate channels Starting channel

Programming Instructions Section 4

136

Three operands are required: a starting channel (St), an end channel (E), the
bit (B) whose status is to be input into the bit 00 of the beginning channel. St
must be less than or equal to St, and St and E must be in the same data
area.

Before using using a shift register with SFT, CNR can be used to clear the
channels to zero.

Flowchart Symbol

SFT

B

St

E

Data Areas
IR, HR, AR, LR

Section 4Programming Instructions

137

Application Example
The following program controls the conveyor line shown below so that faulty
products detected at the sensor are pushed down a shoot. To do this, inputs
from the sensor (input 00001) are stored in a shift register: ON for good prod-
ucts; OFF for faulty ones. Bit 3 of the shift register is timed to activate the
pusher (output 00500) when a faulty product reaches it.

The program is set up to that a rotary encoder (input 00000) controls execu-
tion of SFT. Another sensor (input 00002) is used to detect faulty products in
the shoot so that the pusher output and bit 3 of the shift register can be reset
as required.

Shoot

0 1 2 3

Sensor

(00001)

Pusher

(00500)

Rotary encoder
(00000)

Sensor

(00002)

OUT NOT 00500

OUT NOT HR 0003

Yes

No

Yes

No

LBL 0100

DIFU(40) 000

00000

SKIP NOT 3

SFT

00001

HR 00

HR 00

AND HR 0003

OUTC(00) 00500

LD 00002

SKIP NOT 2

JMP LBL 100

Programming Instructions Section 4

138

4-5-2
Reversible Shift Register
- SFTR<84>

SFTR<84> shifts data in a specified channel or series of channels to either
the left or right. A beginning (B) and end channel (E) must be specified. B
must be less than or equal to E, and B and E must be in the same data area.
Also, a control channel (C) containing the shift direction, reset input, and data
input must be provided.

Flowchart Symbol

C

B

E

SFTR(84)

Control Channel Data

15 14 13 12 0

Direction control
1(ON): Shift to the left
0(OFF): Shift to the right

Data input (IN)

Set to 0

Reset input (Rt)

Control Channel
Operation

When the reset input is ON, all the bits of the shift register and the carry flag
are cleared to 0, and no inputs are accepted.

When the data is being shifted to the left (from bit 00 toward bit 15), the con-
tent of bit 13 of the control channel (data input) is transferred to bit 00 of
channel B when SFTR<84> is executed, and all the data in channel B is
shifted toward bit 15. At the same time, bit 15 of channel E is transferred to
the carry flag.

When the data is being shifted to the right (from bit 15 toward bit 00), the data
input is transferred to bit 15 of channel E, and all the data is shifted 1 bit to-
ward bit 00. At the same time, the content of bit 00 of channel B is shifted to
the carry flag.

Data Areas
IR, HR, AR, LR, DM, *DM

Flags
ER The B and E channels are in different areas, or B is greater than E.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

CY Receives the status of bit 00 or bit 15, depending on the direction of
the shift.

Section 4Programming Instructions

139

4-5-3
Arithmetic Shift Left -
ASL(63)<25>

ASL(63) shifts each bit in a single channel of data one bit to the left, shifting a
0 into bit 00 and shifting bit 15 to carry (CY), as follows:

0

CY MSB LSB

The only operand required is the channel (Ch) whose bits are to be shifted.

Flowchart Symbol

ASL(63)

 Ch

Data Areas
IR, HR, AR, LR, DM, *DM

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)
CY Receives the data of bit 15.
EQ ON when the content of the data channel is 0000; otherwise OFF.

4-5-4
Arithmetic Shift Right -
ASR(62)<26>

ASR(62) shifts each bit in a single channel of data one bit to the right, shifting
a 0 into bit 15 and shifting bit 00 to carry (CY), as follows:

0

CYMSB LSB

The only operand required is the channel (Ch) whose bits are to be shifted.

Flowchart Symbol

ASR(62)

 Ch

Data Areas
IR, HR, AR, LR, DM, *DM

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)
CY Receives the data of bit 00.
EQ ON when the content of the data channel is 0000; otherwise OFF.

Programming Instructions Section 4

140

4-5-5
Rotate Left -
ROL(70)<27>

ROL(70) rotates the bits in a single channel of data one bit to the left, with
carry (CY). ROL(70) moves CY into bit 00 of the specified channel, and bit 15
into CY as follows:

CY
MSB LSB

Use STC(95) or CLC(96) to force-set or force-reset the content of CY as de-
sired before doing a rotate operation.

The only operand required is the channel (Ch) whose bits are to be rotated.

Flowchart Symbol

ROL(70)

Ch

Data Areas
IR, HR, AR, LR, DM, *DM

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)
CY Receives the data of bit 00.
EQ ON when the content of the data channel is 0000; otherwise OFF.

4-5-6
Rotate Right -
ROR(69)<28>

ROR(69) rotates the bits in a single channel of data one bit to the right, with
carry (CY). ROR(69) moves CY into bit 15 of the specified channel, and bit 00
into CY.

CY MSB LSB

Use STC(95) or CLC(96) to force-set or force-reset the content of CY as de-
sired before doing a rotate operation.

The only operand required is the channel (Ch) whose bits are to be rotated.

Section 4Programming Instructions

141

Flowchart Symbol

ROR(69)

Ch

Data Areas
IR, HR, AR, LR, DM, *DM

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)
CY Receives the data of bit 00.
EQ ON when the content of the data channel is 0000; otherwise OFF.

4-5-7
One Digit Shift Left -
SLD(75)<74>

SLD(75) left shifts data between the starting (St) and end (E) channels by
one digit (four bits). SLD writes 0 into the first digit of the beginning channel.
The content of the last digit of the end channel is lost.

0

E channel St+1 St channel

E channel St+1 St channel

Lost data

8 F C 5 0 7 82 D 7 9 1

F C 5 0 7 82 D 7 9 1 0

St and E must be in the same data area, and E must be greater than or equal
to B.

The only required operands are the starting channel (St) and the end channel
(E)

Flowchart Symbol

SLD(75)

St

E

Data Areas
IR, HR, AR, LR, DM, *DM

Flags
ER The St and E channels are in different areas, or St is greater than

E.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

Programming Instructions Section 4

142

4-5-8
One Digit Shift Right -
SRD(76)<75>

SRD(76) right shifts data between the starting (St) and end (E) channels by
one digit (four bits). SRD(76) writes 0 into the left digit of the end channel.
The content of the first digit of the beginning channel is lost.

0

E channel St+1 St channel

E channel St+1 St channel

Lost data

3 4 5 2 A 6 21 F 8 C 1

0 3 4 5 2 6A 1 2 F 8 C

St and E must be in the same data area, and E must be greater than or equal
to B.

The only required operands are the starting channel (St) and the end channel
(E)

Flowchart Symbol

SRD(76)

St

E

Data Areas
IR, HR, AR, LR, DM, *DM

Flags
ER The St and E channels are in different areas, or St is greater than

E.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

4-5-9
Word Shift -
WSFT(94)<16>

WSFT(94) left shifts data between the starting (St) and end (E) channels in
channel units. The content of a specified channel (Ch) is written into the be-
ginning channel and the content of the end channel is lost.

Three operands are required, St, E and Ch.

Section 4Programming Instructions

143

Flowchart Symbol

WSFT(94)

Ch

St

E

Data Areas
St and E

IR, HR, AR, LR, DM, *DM

Ch

IR, SR, HR, AR, LR, TC, DM, *DM

Flags
ER The B and E channels are in different areas, or B is greater than E.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

4-6
Data Movement

This section describes the instructions used for moving data between data
areas. Data movement is essential for utilizing all of the internal data areas of
the PC. Communication in linked systems also requires data movement.

Each instruction is programmed with a function code. To input these instruc-
tions through the Programming Console, press FUN followed by the appropri-
ate function code. Data for the operands also has to be entered where re-
quired.

4-6-1
Move - MOV(50)<21> and
Move Not - MVN(51)<22>

MOV(50) transfers source data (S) (either the data in a specified channel or a
four-digit hexadecimal constant) to a destination channel (D) (some specified
channel). The source channel is not changed.

MVN(51) inverts the source data and then transfers it to the destination chan-
nel. The source channel is not changed.

Timers and counters cannot be designated as destinations of MOV(50) or
MVN(51). You can, however, easily change a timer’s PV or a counter’s PV by
using BSET(73).

Programming Instructions Section 4

144

Flowchart Symbols

MOV(50)

S

D

MOV(51)

S

D

Data Areas
S

IR, SR, HR, AR, LR, TC, DM, *DM, #

D

IR, HR, AR, LR, DM, *DM

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)
EQ ON when source and destination channel content is 0000; other-

wise OFF.

4-6-2
Block Set -
BSET(73)<71>

BSET(73) copies the content of one channel or a constant to several consec-
utive channels.

Three operands are required: a starting channel (St), an end channel (E), and
the channel or constant (Ch) to be copied. St must be less than or equal to E,
and St and E must be in the same data area.

BSET(73) can be used to change timer/counter data. (This cannot be done
with MOV(50) or MVN(51).)

Although BSET(73) can be used to clear consecutive channels to zero, fewer
words will be required to clear channels if CNR is used.

Flowchart Symbols

BSET(73)

Ch

St

E

Data Areas
St and E

IR, SR, HR, AR, LR, TC, DM, *DM, #

Ch

IR, HR, AR, LR, TC, DM, *DM

Flags
ER The St and E channels are in different areas, or St is greater than

E.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

Section 4Programming Instructions

145

Application Example
The following program uses BSET(73) to change the PV of a timer. The pro-
gram is designed to change the timer to a different PV depending on execu-
tion conditions. More specifically, if input 00001 is ON, the timer’s PV will be
set to 8 seconds and output 0050 will be made in 8 seconds. If input 00002 is
ON, the timer’s PV will be set to 5 seconds and output 0050 will be made in 5
seconds.

Yes

No

Yes

No

OUT 00500

SKIP NOT 1

SKIP NOT 1

LD 00000

WAIT

TMS(30) 000

#0100

LD 00001

AND NOT 00002

BSET(73)

#0080

TIM 000

TIM 000

LD 00002

AND NOT 00001

BSET(73)

#0050

TIM 000

TIM 000

AND TIM 000

WAIT

4-6-3
Block Transfer -
XFER(72)<70>

XFER(72) moves the content of several consecutive source channels (S: be-
ginning source channel) to consecutive destination channels (D: beginning
destination channel).

Programming Instructions Section 4

146

N, the number of channels to be transferred, must be a four-digit BCD num-
ber. Both the source and destination channels must be in the same data area,
and their respective blocks must not overlap.

Flowchart Symbol

XFER(72)

N

S

D

Data Areas
N

IR, HR, AR, LR, TC, DM, *DM, #

S

IR, HR, AR, LR, TC, DM, *DM

D

IR, SR, HR, AR, LR, TC, DM, *DM, #

Flags
ER N is not in BCD, or when added to the source channel, the end ad-

dress lies outside of the data area of the source channel.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

4-6-4
Move Bit - MOVB<82>

MOVB<82> transfers the designated bit of a designated source channel or
constant (S) to the designated bit of a designated destination channel (D).

The source (S) and destination (D) channels (or source constant) are input as
operands. The specifications for the source and destination bits are both ma
de in the third operand, control data (C). The control data must be in BCD.

Section 4Programming Instructions

147

Flowchart Symbol

MOVB(82)

S

C

D

Control Data

Bit 15 Bit 00

Source bit specification (BCD - 0 to 15)

Destination bit specification (BCD - 0 to 15)

Data Areas
S

IR, SR, HR, AR, LR, DM, *DM, #

C

IR, HR, AR, LR, TC, DM, *DM, #

D

IR, HR, AR, LR, DM, *DM

Note: Bits of the source data are handled as individual binary units, re-
gardless of whether the channels contain binary or BCD data.

Flags
ER Control data is not in BCD, or it is specifying a non-existent bit (i.e.,

bit specification must be between 00 and 15).
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

4-6-5
Move Digit - MOVD<83>

MOVD<83> moves the hexadecimal digit content of the specified four-bit
source digit to the specified destination digit(s). Up to four digits can be trans-
ferred at one time.

The source channel or constant (S) and destination channel (D) are input as
operands. The third operand, control data (C), provides the starting source
digit, the number of digits to be transferred, and the starting destination digit.

Programming Instructions Section 4

148

Flowchart Symbol

MOVD(83)

S

C

D

Control Data
Bit 15 Bit 00

Specifies which source digit (0 to 3) to be moved first

Specifies the first destination digit (0 to 3)

Number of digits to be moved (0 to 3)
0:1 digit (4 bits)
1:2 digits (8 bits)
2:3 digits (12 bits)
3:4 digits (16 bits)

Not used (Set to 0)

Note: The source and destination may involve two channels if the first
digit is designated high enough and enough digits are designated.

Data Area
S

IR, SR, HR, AR, LR, TC, DM, *DM, #

C

IR, HR, AR, LR, TC, DM, *DM, #

D

IR, HR, AR, LR, TC, DM, *DM

Flags
ER Control data is specifying a digit that is not 0, 1, 2, or 3.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

Application Example
The following example performs floating point division, dividing the four-digit
content of IR channel 10 by the content of DM 0000 and DM 0001. The result
is placed in HR 20 and HR 21. Here the leftmost digit of the highest channel
is used to hold the exponent indicating the decimal place.

1. First, the constant 4000 is transferred to DM 0101 to write the exponent
into the leftmost digit.

2. The leftmost three digits of IR channel 10 are transferred to the right-
most three digits of DM 0101.

3. The constant 0000 is transferred to DM 0100 to write zeros into the right-
most three digits.

4. The rightmost digit of IR channel 10 is transferred to the leftmost digit of
DM 0100.

5. FDIV<79> is then used to divide the content of DM 0100 and DM 1010
by that of DM 0000 and DM 0001, placing the result in HR 20 and HR
21.

Section 4Programming Instructions

149

The flowchart and data movements for this operation are as follows (3025 is
used as the content of IR channel 10:

MOVD(83)

010

#0021

DM 0101

LD 00000

WAIT

MOV(50)

#4000

DM 0101

MOV(50)

#0000

DM 0100

MOVD(83)

010

#0300

DM 0100

FDIV(79)

DM 0100

DM 0000

HR 20

3 0 2

3 0 2 5

4 0 0 0 0 0 0 0

#0000#4000

DM 0101 DM 0100

Ch 010

5

4 3 0 2 5 0 0 0

DM 0101 DM 0100

4 3 0 2 5 0 0 0

DM 0001 DM 0000
=

4 3 0 2 5 0 0 0

HR 21 HR 20

104 × 0.3025

4-6-6
Data Exchange -
XCHG(74)<73>

XCHG(74) exchanges the contents of two different channels (E1 and E2).

If you want to exchange contents between 2 blocks whose size is greater
than 1 channel, use another data area as an intermediate buffer and transfer
data to that area with the block transfer XFER(72) instruction.

Programming Instructions Section 4

150

Flowchart Symbol

XCHG(74)

D1

D2

Data Areas
IR, HR, AR, LR, TC, DM, *DM

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)

4-6-7
Single Channel
Distribution - DIST<80>

DIST<80> moves one channel of source data (S) to a destination channel
whose address is given by a destination base channel (DBs) plus an offset
(Of). That is, the offset is added to the destination base channel to determine
the actual destination channel.

The offset data must be a four-digit BCD value. Also, the final destination ad-
dress must be in the same data area as the destination base channel.

Flowchart Symbol

DIST(80)

S

Bs

Of

Data Areas
S

IR, SR, HR, AR, LR, TC, DM, *DM, #

DBs

IR, HR, AR, LR, TC, DM, *DM

Of

IR, HR, AR, LR, TC, DM, *DM, #

Flags
ER The specified offset data is not in BCD, or final destination channel

lies outside the data area of the destination base channel.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

EQ ON when source channel content is 0000; otherwise OFF.

Application Example
In the following example, INC(60) is used to increment HR 10, the offset for
DIST(80). DIST(80) places lengths (input to IR channel 10) measured on a
conveyor belt, with the objects being detected by a photocell (input 00000).

Section 4Programming Instructions

151

Each time input 00000 comes ON, a length from IR channel 10 is placed in
the next DM channel, which starts at DM 0100, the destination base for
DIST(80). This is repeated until 100 lengths have been stored. The flowchart
and basic setup for this process are as follows:

RPT LBL 100

 #0099

MOV(50)

#0000

HR 10

LBL 0100

DIFU(40) 200

00000

WAIT

DIST(80)

010

DM 0100

HR 10

INC(60)

HR 10

DM0198

DM0104

DM0103

DM0102

DM0101

DM0199

DM0100

0098

0004

0003

0002

0001

0099

0000

Ch 010

HR 10

VDM Ch 010

Ph 00000

4-6-8
Data Collection -
COLL<81>

COLL<81> extracts data from the source channel and writes it to a destina-
tion channel (D). The address of the source channel is determined by adding
an offset (Of) to the source base channel (SBs).

The offset data must be a four-digit BCD value. Also, the source channel
must be in the same data area as the source base channel.

Flowchart Symbol

COLL(81)

Bs

Of

D

Data Areas
SBs

Programming Instructions Section 4

152

IR, SR, HR, AR, LR, TC, DM, *DM, #

Of

IR, HR, AR, LR, TC, DM, *DM, #

D

IR, HR, AR, LR, TC, DM, *DM

Flags
ER The specified offset data is not in BCD, or the source base channel

lies outside of the data area of the source channel.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

EQ ON when source channel content is 0000.

4-7
Data Comparison

This section describes the instructions used for comparing data. Direct com-
parisons for equality are possible as well as range checks.

Each data comparison instruction is programmed with a function code. To
input these instructions through the Programming Console, press FUN fol-
lowed by the appropriate function code.

4-7-1
Compare - CMP(52)<20>

CMP(52) compares two sets of four-digit hexadecimal data (C1 and C2) and
outputs the result to the GR, EQ, and LE flags in the SR area. (Refer to
3-3-10 Arithmetic Operation Flags.)

When comparing a constant to the PV of a timer or counter, the constant
must be a four-digit BCD value.

Flowchart Symbol

CMP(52)

C1

C2

Data Areas
IR, SR, HR, AR, LR, TC, DM, *DM, #

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)
EQ ON only if C1 equals C2.
LE ON only if C2 is less than C1.
GR ON only if C2 is greater than C1.
Note: Placing other instructions between CMP(52) and accessing the EQ,

LE, and GR flags may change the status of these flags. Be sure to
access them before the desired status is changed.

Section 4Programming Instructions

153

Application Example
The following example uses a timer, CMP(52), and the LE flag to produce
outputs at particular points in the countdown. Output 00200 is output after
100 seconds; output 00201, after 200 seconds; output 00202, after 300 sec-
onds; and output 00204, after 500 seconds.

Output at 300 s.

Yes

No

Output at 500 s.

Output at 100 s.

Output at 200 s.

AND 00000

WAIT

LBL 0100

TIM 010

#5000

CJP LBL 700

CMP(52)

TIM 010

#4000

AND 25506

OUTC 00200

CMP(52)

TIM 010

#3000

AND 25506

OUTC 00201

CMP(52)

TIM 010

#2000

AND 25506

OUTC 00202

JMP LBL 0100

LBL 0700

OUT 00204

Programming Instructions Section 4

154

4-7-2
Compare Long-
CMPL<60>

CMPL<60> compares two sets of eight-digit hexadecimal data (C1 and C2)
and outputs the result to the GR, EQ, and LE flags in the SR area. (Refer to
3-3-10 Arithmetic Operation Flags.)

Two operands are required: the first channel of each of the two sets of chan-
nels that are to be compared (C1 and C2). The first channel holds the right-
most bits of the eight-digit value.

Flowchart Symbol

CMPL(60)

C1

C2

Data Areas
IR, SR, HR, AR, LR, TC, DM, *DM, #

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)
EQ ON only if the two hexadecimal values are equal.
LE ON only if the second hexadecimal value (C2) is less than the first

(C1).
GR ON only if the second hexadecimal value (C2) is greater than the

first (C1).
Note: Placing other instructions between CMP(52) and accessing the EQ,

LE, and GR flags may change the status of these flags. Be sure to
access them before the desired status is changed.

4-7-3
Block Compare -
BCMP<68>

BCMP<68> takes a 1-channel binary value (CD) and compares it with 16
ranges in a comparison table (CB: First channel of the comparison table). If
the value falls within any of the ranges, BCMP<68> sets corresponding bits of
the specified result channel (R).

The comparison table consists of 32 channels, with every two consecutive
channels indicating a range. Beginning with channel CB, for each of the 16
ranges in the comparison table, the first of the two channels contains the low-
er limit value and the second channel, the upper limit value. The BCMP<68>
operation thus involves the comparison of a 16-bit value with the lower limit
16-bit value and the higher limit 16-bit value of each range in the comparison
table. If, for example, CB ≤ CD ≤ CB+1, bit 0 of the result channel to indicate
that the comparison data lies within the first range.

The first channel of the comparison table must be set so that the entire table
is contained in one data area.

Section 4Programming Instructions

155

Flowchart Symbol

BCMP(68)

CD

CB

R

Result Bits and Ranges
The following table shows the bits that are turned ON then the comparison
value lies with a range defined in the comparison table.

Upper limit valueLower limit value

CB

CB+2

CB+30

CB+3

CB+31

CB+1 BIT 00

BIT01

BIT 15

R

Data Areas
CD

IR, SR, HR, AR, LR, TC, DM, *DM, #

CB

IR, SR, HR, LR, TC, DM, *DM,

R

IR, HR, AR, LR, TC, DM, *DM

Flags
ER The comparison table (i.e., CB through CB + 31) exceeds the data

area.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

4-7-4
Table Compare -
TCMP<85>

TCMP<68> compares a four-digit hexadecimal value (CD) with values in a
table consisting of 16 channels (TB: First channel of the comparison table). If
the value equals any value in the table, TCMP<68> sets corresponding bits of
the specified result channel (R).

Flowchart Symbol

TCMP(85)

CD

TB

R

Programming Instructions Section 4

156

Result Bits and Ranges
The following table shows the bits that are turned ON then the comparison
value equals a value in channels TB through TB plus 15.

BIT 1

BIT 2

BIT 15

TB
BIT 00TB + 1

TB + 2

TB + 15

Channel R

Data Areas
CD

IR, SR, HR, AR, LR, TC, DM, *DM, #

TB

IR, SR, HR, AR, LR, TC, DM, *DM

R

IR, HR, AR, LR, TC, DM, *DM

Flags
ER The comparison table (i.e., TB through TB + 15) exceeds the data

area.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

4-8
Data Conversion

The conversion instructions convert channel data that is in one format into
another format and output the converted data to specified output channel(s).

Each data conversion instruction is programmed with a function code. To in-
put these instructions through the Programming Console, press FUN followed
by the appropriate function code.

4-8-1
BCD to Binary -
BIN(57)<23>

BIN converts four-digit, BCD data in a source channel (S) into 16-bit binary
data, and outputs the converted data to a result channel (R).

Flowchart Symbol

BIN(57)

S

R

Data Areas
S

IR, SR, HR, AR, LR, TC, DM, *DM

R

IR, HR, AR, LR, DM, *DM

Section 4Programming Instructions

157

Flags
ER The content of the source channel is not in BCD.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

EQ ON when the content of the result channel is 0000.

4-8-2
BCD to Double Binary -
BINL<58>

BINL<58> (double-length BIN) converts an eight-digit BCD value in two
source channels into 32-bit binary data and outputs the converted data to two
result channels.

Two operands are required: the lower (rightmost) of the two source channels
(S) and that of the two result channels (R).

Flowchart Symbol

BINL(58)

S

R

Data Areas
S

IR, SR, HR, AR, LR, TC, DM, *DM

R

IR, HR, AR, LR, DM, *DM

Flags
ER Content of the S and/or S+1 channel is not in BCD.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

EQ ON when content of the result channels is 0000 0000.

4-8-3
Binary to BCD -
BCD(58)<24>

The BCD(58) (binary-to-BCD conversion) instruction converts 16-bit binary
data in a source channel (S) into four-digit, BCD data, and outputs the con-
verted data to a result channel (R).

If the content of the source channel exceeds “270F,” the converted result
would exceed “9999” and the instruction will not be executed. When the in-
struction is not executed, R remains unchanged.

Flowchart Symbol

BCD(58)

S

R

Programming Instructions Section 4

158

Data Areas
S

IR, SR, HR, AR, LR, DM, *DM

R

IR, HR, AR, LR, DM, *DM

Flags
ER Result channel overflow (i.e, content of R is greater than 9999).

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

EQ ON when the content of the result channel is 0000.

4-8-4
Double Binary to Double
BCD - BCDL<59>

BCDL<59> (double-length BCD) converts 32-bit binary data in two source
channels into eight digits of BCD data, and outputs the converted data to two
result channels.

Two operands are required: the lower (rightmost) of the two source channels
(S) and that of the two result channels (R).

If the content of the source channels exceeds “05F5 E0FF,” the converted
result will exceed “9999 9999” and the instruction will not be executed. When
the instruction is not executed, R and R+1 remain unchanged.

Flowchart Symbol

BCDL(59)

S

R

Data Areas
S

IR, SR, HR, AR, LR, TC, DM, *DM

R

IR, HR, AR, LR, DM, *DM

Flags
ER Result channels, R and R+1, overflow (i.e, content of R and R+1

exceeds 99999 99999).
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

EQ ON when the content of the result channels is 0000 0000.

4-8-5
4 to 16 Decoder -
MLPX(77)<76>

MLPX(77) converts up to four, four-bit hexadecimal digits in the source chan-
nel (S) into decimal values from 0 to 15 and then turns ON in the result chan-
nel(s) the bit(s) whose bit number(s) corresponds to the converted value. If
more than one source digit is specified, then one bit will be turned ON for
each in consecutive channels following the designated beginning result chan-
nel (RB).

Section 4Programming Instructions

159

The first digit and the number of digits to be converted are designated in the
second operand (Di). If more digits are designated than remain in the channel
(counting from the designated first digit), the remaining digits will be taken
starting back at the beginning of the source channel.

The final channel required to store the converted result (RB plus the number
of digits to be converted) must be in the same data area as the designated
first result channel.

Flowchart Symbol

MLPX(77)

S

Di

RB

Digit Designator
Bit 15 Bit 00

Specifies the first digit to be converted (0 to 3)

Number of digits to be converted (0 to 3)
0:1 digit (4 bits)
1:2 digits (8 bits)
2:3 digits (12 bits)
3:4 digits (16 bits)

Not used (Set to 00)

Data Areas
S

IR, SR, HR, AR, LR, TC, DM, *DM

Di

IR, HR, AR, LR, TC, DM, *DM, #

RB

IR, HR, AR, LR, DM, *DM

Flags
ER Incorrect digit designator, or RB plus number of digits exceeds the

data area.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

Programming Instructions Section 4

160

Application Example
The following program converts three digits of data to bit positions and turns
ON the corresponding bit in three consecutive channels starting with HR 10.

MLPX(77)

LR 20

#0021

HR 10

LD 00000

WAIT

HR 1200 1

HR 1201 0

HR 1202 0

HR 1203 0

HR 1204 0

HR 1205 0

HR 1206 0

HR 1207 0

HR 1208 0

HR 1209 0

HR 1210 0

HR 1211 0

HR 1212 0

HR 1213 0

HR 1214 0

HR 1215 0

LR 2000

LR 2001

LR 2002

LR 2003

LR 2004 1

LR 2005 1

LR 2006 1

LR 2007 1

LR 2008 0

LR 2009 1

LR 2010 1

LR 2011 0

LR 2012 0

LR 2013 0

LR 2014 0

LR 2015 0

HR 1000 0

HR 1001 0

HR 1002 0

HR 1003 0

HR 1004 0

HR 1005 0

HR 1006 0

HR 1007 0

HR 1008 0

HR 1009 0

HR 1010 0

HR 1011 0

HR 1012 0

HR 1013 0

HR 1014 0

HR 1015 1

HR 1100 0

HR 1101 0

HR 1102 0

HR 1103 0

HR 1104 0

HR 1105 0

HR 1106 1

HR 1107 0

HR 1108 0

HR 1109 0

HR 1110 0

HR 1111 0

HR 1112 0

HR 1113 0

HR 1114 0

HR 1115 0

20

21

22

23

20

21

22

23

20

21

22

23

20

21

22

23

0

1

2

3

Not
converted.

15

6

0

S : LR Ch 20 RB : HR 10 RB+1 : HR 11 RB+2 : HR 12

4-8-6
Encoder - DMPX(78)<77>

DMPX(78) determines the position of the highest ON bit in the specified be-
ginning source channel (SB), encodes it into single-digit hexadecimal data
according to the bit number, then transfers the result to the specified digit in
the result channel (R). Up to four digits from four consecutive source chan-
nels starting with SB may be encoded and the digits written to the result
channel in order from the designated first digit.

The first channel and the number of channels to be converted are designated
in the third operand (Di). If more digits are designated that remain in R
(counting from the designated first digit), the results for the remaining chan-
nels will be placed starting back at the beginning of the result channel.

The final channel to be converted (SB plus the number of channels to be con-
verted) must be in the same data area as the designated beginning source
channel.

Section 4Programming Instructions

161

Flowchart Symbol

DMPX(78)

S

R

Di

Data Areas

SB

IR, SR, HR, AR, LR, TC, DM, *DM,

R

IR, HR, AR, LR, DM, *DM,

Di

IR, HR, AR, LR, TC, DM, *DM, #

Flags
ER Incorrect digit designator data, or SB plus the number of channels

exceeds a data area.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)
Content of an source input channel (SB, SB+1, SB+2, or SB+3) is
0000.

Programming Instructions Section 4

162

Application Example
The following program encodes IR channels 10 and 11 to the first two digits
of HR 20 and then encodes LR 10 and 11 to the last two digits of HR 20.

LR 1000

LR 1001 1

LR 1002 0

LR 1015 0

DMPX(78)

010

HR 20

#0010

DMPX(78)

LR 10

HR 20

#0012

DIFU(40) 20

00000

WAIT

LR 1100

LR 1108 1

LR 1109 0

LR 1115 0

01000

01011 1

01012 0

01015 0

01100

01109 1

01110 0

01115 0

LR 20
B

9

1

8

0 digit

1 digit

2 digit

3 digit

Ch 010 Ch 011

LR 11LR 10

4-8-7
Seven-Segment Decoder
- SDEC(79)<78>

SDEC(79) converts up to four digits of hexadecimal values from a source
channel (S) to eight-bit data for seven-segment display output. The result is
output to consecutive half channels starting at the leftmost or rightmost half of
the beginning destination channel (DB).

Section 4Programming Instructions

163

The first digit to be converted, the number of digits to be converted, and the
half of the beginning destination channel to receive the first result are desig-
nated in the second operand, the digit designator (Di)

The specified destination channel plus the number of channels required to
store the result must be in the same data area as the beginning destination
channel.

Flowchart Symbol

SDEC(79)

S

Di

DB

Digit Designator
Bit 15 Bit 00

Specifies the first digit to be converted (0 to 3)

Destination designation
“0”: Right most 8 bits
“1”: Left most 8 bits

Number of digits to be converted (0 to 3)
0:1 digit (4 bits)
1:2 digits (8 bits)
2:3 digits (12 bits)
3:4 digits (16 bits)

Not used (Set to 0)

Data Areas
S

IR, SR, HR, AR, LR, TC, DM, *DM,

Di

IR, HR, AR, LR, TC, DM, *DM, #

DB

IR, HR, AR, LR, DM, *DM

Flags
ER Incorrect digit designator, or DB plus the required number of chan-

nels exceeds the data area.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

!

Programming Instructions Section 4

164

Application Example
The following Di and S data would produce the data required to display an 8
as shown.

1: Begin decoding
with the second
digit of the source
channel.

0: Decode one
digit.

0: Transfer the
decoded value
to the right most
8 bits of the
destination
channel.

This area is
not used.

a

b

c

d

e

f

g

Bit 00Bit 00
1

1

1

1

1

1

1

0

0

0

0

0

0

1

0

1

0

1

1

1

1

0

1

1

20

21

22

23

20

21

22

23

20

21

22

23

20

21

22

23

0

1

2

3

Bit 15Bit 15

×100

0

0

0

0

0

0

0

0

0

0

0

1

×101

×102

×103

Di S DB

Externally wired display

Caution FAL(35) and FALS(36) output error codes to the rightmost eight bits of SR chan-
nel 253.

4-8-8
ASCII Code Conversion -
ASC<86>

ASC<86> converts up to four digits of hexadecimal values from a source
channel (S) to eight-bit ASCII code. The result is output to consecutive half
channels starting at the leftmost or rightmost half of the beginning destination
channel (DB).

The first digit to be converted, the number of digits to be converted, the half of
the beginning destination channel to receive the first result, and the parity to
be set are designated in the second operand, the digit designator (Di)

The specified destination channel plus the number of channels required to
store the result must be in the same data area as the beginning destination
channel.

Section 4Programming Instructions

165

Flowchart Symbol

ASC(86)

S

Di

DB

Digit Designator

Bit 15 Bit 00

Specifies the first digit to be converted (0 to 3)

Destination designation
0: Right most 8 bits
1: Left most 8 bits

Number of digits to be converted (0 to 3)
0:1 digit (4 bits)
1:2 digits (8 bits)
2:3 digits (12 bits)
3:4 digits (16 bits)

Parity designation
0: No parity (always 0)
1: Even parity
2: Odd parity

Data Areas
S

IR, SR, HR, AR, LR, TC, DM, *DM,

Di

IR, HR, AR, LR, TC, DM, *DM, #

DB

IR, HR, AR, LR, DM, *DM

Flags
ER Incorrect digit designator data, or DB plus the required number of

channels exceed a data area.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

Programming Instructions Section 4

166

Application Example
The following block of instructions converts the first digit of DM 0010 to the
ASCII code $38, and outputs the code to the rightmost eight bits of IR chan-
nel 001. Since no parity is designated, a 0 is output to bit 7 of 001.

0

0

0

0

0

0

1

1

1

1

0

20

21

22

23

20

21

22

23

20

21

22

23

20

21

22

23

0

1

2

3

S : DM0010

1

0

0

0

0

8

$ 38

0

0

0

0

0

1

1

00100

8

3

DB : 001 N

1

Right-
most bits

Leftmost
bits

00101

00102

00103

00104

00105

00106

00107

00108

00109

00110

00111

00112

00113

00114

00115

ASC(86)

DM 0010

#0000

001

4-8-9
Bit Counter - BCNT<67>

BCNT<67> counts the number of ON bits in one or more channels and out-
puts the result to specified channel.

Three operands are required: the number of channels to be counted (N), the
beginning channel to be counted (SB), and the result channel (R).

The N must be in BCD, and the result is output in BCD.

Section 4Programming Instructions

167

Flowchart Symbol

BCNT(67)

N

SB

R

Data Areas
N

IR, SR, HR, AR, LR, TC, DM, *DM, #

SB

IR, SR, HR, AR, LR, TC, DM, *DM

D

IR, HR, AR, LR, TC, DM, *DM, #

Flags
ER Incorrect digit designator, or DB plus the required number of chan-

nels exceeds the data area.
N is 0.
Total number of ON bits exceeds 9999.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

EQ ON when no bits are ON in the designated channels

Programming Instructions Section 4

168

4-9
BCD Calculations

The BCD calculation instructions - INC(60), DEC(61), ADD(53), ADDL<54>,
SUB(54), SUBL<55>, MUL(55), MULL<56>, DIV(56), DIVL<57>, FDIV<79>,
and ROOT(64) - all perform arithmetic operations on BCD data.

For INC(60) and DEC(61) the input and output channels are the same. That
is, the content of the input channel is overwritten with the instruction result.

STC(95) and CLC(96), which set and clear the carry flag, are included in this
group because most of the BCD operations make use of the carry flag in their
results. Binary arithmetic and shift operations also use the carry flag.

The addition and subtraction instructions use CY in the calculation as well as
in the result. Be sure to clear CY if its previous status is not required in the
calculation.

Each BCD calculation instruction is programmed with a function code. To in-
put these instructions through the Programming Console, you must press
FUN followed by the appropriate function code.

4-9-1
Increment - INC(60)<38>

INC(60) increments four-digit BCD data by one, without affecting carry (CY).
Only the channel to be incremented (Ch) is required as an operand. If 9999 is
incremented, the result will be 0000 and EQ will be set.

Flowchart Symbol

INC(60)

Ch

Data Areas
IR, HR, AR, LR, DM, *DM

Flags
ER The data to be incremented is not in BCD.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

EQ ON when the incremented result is 0.

Application Example
The following program weighs 100 items coming through on a conveyor belt
and stores each item’s weight in DM 0101 to DM 0200. INC(60) is used to
increment the value of the channel that indicates the addresses for storing
the weights.

1. Channels DM 0101 through DM 0200 are cleared to zero before entering
the item weight data.

2. Since DM 0100 is used to indirectly address the destination channel,
#0100 is loaded into DM 0100 as the starting value from which to begin
incrementing.

3. The destination channel address in DM 0100 is compared with 0200,
and the LE flag (25507) is used to prevent further incrementing when the
DM 0200 limit is reached.

Section 4Programming Instructions

169

4. When an item arrives at the position of the scale, the photoswitch PH
turns ON and increments the content of DM 0100.

5. Every time input 00001 turns ON, it outputs a weight from input channel
010 to the DM channel indirectly addressed through DM 0100.

AND 00000

WAIT

Detector input: 00001

Weight input: 010

Yes

No

Jump taken after 100
items completed.

MOV(50)

010

*DM 0100

JMP LBL 10

CNR

DM 0101

DM 0200

MOV(50)

#0100

DM 0100

LBL 0010

CMP(52)

DM 0100

#0200

AND 25506

CJP LBL 20

DIFU(40) 0

00001

WAIT

INC(60)

DM 0100

LBL 0020

Programming Instructions Section 4

170

4-9-2
Decrement -
DEC(61)<39>

DEC(61) decrements four-digit BCD data by 1, without affecting carry (CY).
DEC(61) works the same way as INC(60) except that it decrements the value
instead of incrementing it. Only the channel to be decremented (Ch) is re-
quired as an operand. If 0000 is decremented, the result will be 9999.

Flowchart Symbol

DEC(61)

Ch

Data Areas
IR, HR, AR, LR, DM, *DM

Flags
ER The data to be decremented is not in BCD.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

EQ ON when the decremented result is 0.

4-9-3
Set Carry - STC(95)<40>
and Clear Carry -
CLC(96)<41>

STC(95) sets the carry flag, CY (i.e.,turns CY ON).

CLC(96) clears the carry flag, CY (i.e, turns CY OFF).

Flowchart Symbols

CLC(96)STC(95)

!

Section 4Programming Instructions

171

The carry flag is affected by the following instructions:

Instruction Function codes Meaning of Carry Flag

 1 0

ADD (53)<30> There was an overflow No overflow occurred.

ADDL <54> in the result of an

ADB <50> addition operation.

SUB (54)<31>

SUBL <55> Subtraction result Subtraction result

SBB <51> is negative is positive.

ASL (63)<25> Before shifting, bit 15 Before shifting,

ROL (70)<27> was ON. bit 15 was OFF.

ASR (62)<26> Before shifting, bit 00 Before shifting,

ROR (69)<28> was ON. bit 00 was OFF.

SFTR <84> If right-shifting, bit 00 If right-shifting, bit 00

was ON; was OFF.

If left-shifting, bit 15 If left-shifting, bit 15

was ON; was OFF.

STC (95)<40> STC was executed. ----

CLC (96)<41> ----- CLC was executed.

Caution You should execute CLC(96) before any addition, subtraction, or shift operation
to ensure a correct result.

4-9-4
BCD Add - ADD(53)<30>

ADD(53) adds two four-digit BCD values and the content of CY, and outputs
the result to the specified result channel. CY will be set if the result is greater
than 9999.

Three operands are required: the augend (Au), the addend (Ad), and the re-
sult channel (R).

Flowchart Symbol

ADD(53)

Au

Ad

R

Data Areas
Au and Ad

IR, SR, HR, AR, LR, TC, DM, *DM, #

R

IR, HR, AR, LR, DM, *DM

Programming Instructions Section 4

172

Flags
ER One or both of the channels to be added are not in BCD.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been
exceeded.)

CY Indicates a carry in the result.
EQ ON when the resulting sum is 0.

Application Example
The following example adds two four-digit values and then adds two zeros
together and places the result in the channel following the first result channel.
Adding zeros places the value of the carry flag into the next channel so that
any carry to the fifth digit is preserved. This same type of programming is also
useful when adding eight-digit values to ensure that a ninth digit is not lost.

ADD(53)

#0000

#0000

DM 0101

CLC(96)

ADD(53)

LR 25

#6103

DM 0100

LR25CH

#6103

DM0101 DM0100

5 8 1 1

6 1 0 3

0 0 0 1 1 9 1 4

CY (25504) cleared to 0 with CLC(96)

Places CY
in Dm 0101

4-9-5
Double BCD Add -
ADDL<54>

ADDL<54> totals two eight-digit values (2 channels each) and the content of
CY, and outputs the result to the specified channels. CY will be set if the re-
sult is greater than 9999 9999.

Three operands are required: the first of the two augend channels (Au), the
first of the two addend channels (Ad), and the first of the two result channels.

Flowchart Symbol

ADDL(54)

Au

Ad

R

Data Areas
Au and Ad

IR, SR, HR, AR, LR, TC, DM, *DM

R

IR, HR, AR, LR, DM, *DM

Flags
ER One or more of the channel contents to be added is

not in BCD.

Section 4Programming Instructions

173

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been
exceeded.)

CY Indicates a carry in the result.
EQ ON when the result is 0.

Application Example
The following program adds two twelve-digit values, each held in two consec-
utive channels, and stores the result in four consecutive channels. The au-
gend, addend, and result are 1,209,995,855, 999,090,647,200, and
1,000,300,643,055, respectively. Note that CY is cleared initially because it is
included in the first addition.

The first addition adds the rightmost eight digits of both values. The second
addition adds the leftmost four digits of both values (because CY is set by the
first addition, the carry from the 8th digit is included). The last addition is per-
formed to place the carry from the second addition into the leftmost result
channel.

ADD(53)

#0000

#0000

HR 13

Second addition

LR20

5 8 5 5

7 2 0 0

0 0 6 4 3 0 5 5

LR21

0 9 9 9

9 0 6 4

DM0011 DM0010

HR11 HR10

First addition
CY (25504) cleared

1

1

LR22

0 0 1 2

9 9 9 0

0 0 0 3

DM0012

HR12

CY (25504) set
by first addition

CLC(96)

ADDL(54)

LR 20

DM 0010

HR 10

ADD(53)

LR 22

DM 0012

HR 12

Places CY
in HR13

4-9-6
BCD Subtract -
SUB(54)<31>

SUB(54) subtracts both a four-digit BCD subtrahend (Su) and the content of
CY from a four-digit BCD minuend (Mi) and outputs the result to the specified
result channel (R).

!

Programming Instructions Section 4

174

Flowchart Symbol

SUB(54)

Mi

Su

R

Data Areas
M and Su

IR, SR, HR, AR, LR, TC, DM, *DM, #

R

IR, HR, AR, LR, DM, *DM

Flags
ER Mi and/or the Su channels is not in BCD.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been
exceeded.)

CY ON when the result is negative (i.e., when Mi is less
than Su).

EQ ON when the result is 0.

Caution Be sure to clear the carry flag (CY) with CLC(96) before executing SUB(54) if its
previous status is not required, and check the status of CY after doing a subtrac-
tion with SUB(54). If CY is ON as a result of executing SUB(54) (i.e., if the result is
negative), the result is output as the 10’s complement of the true answer.

To convert the output result to the true value, subtract the value in the result
channel from the constant 0.

Application Example
The following program subtracts the content of DM 0100 from the content of
IR channel 010 and places the result in HR 20. CY (25504) is initially cleared
because its content too is subtracted from the minuend.

If CY is set by executing SUB(54), the result in HR 20 is subtracted from zero
(note that CLC(96) is again required to obtain an accurate result), the result is
placed back in HR 20, and HR 2100 is turned ON to indicate a negative re-
sult.

Section 4Programming Instructions

175

If CY is not set by executing SUB(54), the result is positive, and SKIP(46)
NOT 3 skips the steps required to convert negative results.

CLC(96)

SUB(54)

#0000

HR 20

HR 20

Yes

No

OUT NOT HR 2100

CLC(96)

SUB(54)

010

DM 0100

HR 20

LD 25504

SKIP NOT 3

OUT HR 2100

4-9-7
Double BCD Subtract -
SUBL<55>

SUBL<55> subtracts both an eight-digit BCD subtrahend and the content of
CY from an eight-digit BCD minuend and outputs the result to the specified
result channels.

Three operands are required: the first subtrahend channel (Su), the first min-
uend channel (Mi), and the first result channel (R).

Flowchart Symbol

SUBL(55)

Mi

Su

R

Data Areas
Mi and Su

IR, SR, HR, AR, LR, TC, DM, *DM,

R

IR, HR, AR, LR, DM, *DM

!

Programming Instructions Section 4

176

Flags
ER The content of the Mi, Mi+1, Su, or Su+1 channel is

not in BCD.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been
exceeded.)

CY ON when the resulting content of R and R+1 is
negative.
(i.e., when M is less than Su).

EQ ON when the result is 0.

Caution Be sure to clear the carry flag (CY) with CLC(96) before executing SUBL<55> if
its previous status is not required, and check the status of CY after doing a sub-
traction with SUBL<55>. If CY is ON as a result of executing SUBL<55> (i.e., if
the result is negative), the result is output as the 10’s complement of the true an-
swer.

To convert the output result to the true value, subtract the value in the result
channel from zero. Because inputting an eight-digit constant is not possible,
use CNR or BSET(73) to clear two channels to zero, and then subtract the
result from these two channels. The use of CY to check for a negative result
is the same as for SUB (see previous subsection).

4-9-8
BCD Multiply -
MUL(55)<32>

MUL(55) multiplies a four-digit BCD multiplicand (Md) and a four-digit BCD
multiplier (Mr) and outputs the result to the specified result channels. Two
channels are required to output the result. The first result channel (R) is input
as the third operand.

Flowchart Symbol

MUL(55)

Md

Mr

R

Data Areas
Md and Mr

IR, SR, HR, AR, LR, TC, DM, *DM, #

R

IR, HR, AR, LR, DM, *DM

Flags
ER The content of the Md and/or the Mr channel is not in BCD.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been
exceeded.)

EQ ON when the result is 0.

Section 4Programming Instructions

177

Application Example
In the following example, the BCD data in IR channel 067 is multiplied by the
BCD data in HR 05, and the eight-digit result is output to HR 07 and HR 08.

MUL(55)

067

HR 05

HR 07

4-9-9
Double BCD Multiply -
MULL<56>

MULL<56> multiplies an eight-digit BCD multiplicand and an eight-digit BCD
multiplier and outputs the result to the specified result channels. Two chan-
nels each are required for the multiplicand and the multiplier; four channels
are required for the result.

Three operands are required: the first multiplicand channel (Md), the first mul-
tiplier channel (Mr), and the first result channel (R).

The use of MULL<56> is the same as that of MUL(55), except that longer
units of data are manipulated.

Flowchart Symbol

MULL(56)

Md

Mr

R

Data Areas
Md and Mr

IR, SR, HR, AR, LR, TC, DM, *DM, #

R

IR, HR, AR, LR, DM, *DM

Flags
ER Content of Md, Md+1, M, or M + 1 channels is not in

BCD.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been
exceeded.)

EQ ON when the result is 0.

4-9-10
BCD Divide - DIV(56)<33>

DIV(56) divides a four-digit BCD dividend (Dd) by a four-digit BCD divisor (Dr)
and outputs the result to the specified result channels. Two channels are re-
quired for the output result. The first result channel (R) is input as the third
operand and will receive the quotient. The second result channel will receive
the remainder.

Programming Instructions Section 4

178

Flowchart Symbol

DIV(56)

Dd

Dr

R

Data Areas
Dd and Dr

IR, SR, HR, AR, LR, TC, DM, *DM, #

R

IR, HR, AR, LR, DM, *DM

Flags
ER The content of the Dd and/or the Dr channel is not in BCD.

Dr contains zero.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been
exceeded.)

EQ ON when the result is 0.

4-9-11
Double BCD Divide -
DIVL<57>

DIVL<57> divides an eight-digit BCD dividend by an eight-digit BCD divisor
and outputs the result to the specified result channels. Two channels each
are required for the dividend and the divisor; four channels are required for
the result.

Three operands are required: the first dividend channel (Dd), the first divisor
channel (Dr), and the first result channel (R). The quotient is placed in the
first two result channels, the remainder is placed in the third and fourth.

The use of DIVL<57> is the same as that of DIV(56), except that longer units
of data are manipulated.

Flowchart Symbol

DIVL(57)

Dd

Dr

R

Data Areas
Dd and Dr

IR, SR, HR, AR, LR, TC, DM, *DM

R

IR, HR, AR, LR, DM, *DM

Section 4Programming Instructions

179

Flags
ER Content of Dd, Dd +1, Dr, or Dr + 1 channels is not in BCD.

Dr and Dr+1 contain zero.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

EQ ON when the value of the result is 0.

Application Example
The following example divides the content of IR channels 070 and 071 by the
content of LR 00 and LR 01. The quotient is placed in DM 1234 and DM
1235; the remainder, in DM 1236 and DM 1237.

Remainder

2 3 0 0

0 0 3 5

0 2 8 1 5 7 8 0

9 8 5 5

0 0 0 0

0 0 0 0 0 0 0 0

Dd+1 : 071 Dd+1 : 070

Dr+1 : LR01 Dr : LR00

R+1 : DM1235 R : DM1234

R+3 : DM1237 R+2 : DM1236

Quotient

DIV(57)

070

LR 00

DM 1234

4-9-12
Floating Point Divide -
FDIV<79>

FDIV<79> divides a floating point value by another and outputs a floating
point result. The dividend, divisor, and resulting quotient each require two
channels (8 digits). The rightmost seven digits of each set of channels are
used for the mantissa and the leftmost digit is used for the exponent. The val-
id range for both the input and result is thus 0.0000001 X 10–7 through
0.9999999 X 107. The resulting quotient is truncated to 7 digits.

Three operands are required: the beginning (rightmost) dividend channel
(Dd), the beginning divisor channel (Dr), and the beginning result channel
(R).

Flowchart Symbol

FDIV(79)

Dd

Dr

R

Programming Instructions Section 4

180

Exponent Digit
The rightmost three bits of the exponent digit contain the numeric value of the
exponent; the leftmost bit contains the sign of the exponent.

Bit n
15 14 13 12

exponent (0 to 7)

exponent sign 0: +
 1: –

Data Areas
Dd and Dr

IR, SR, HR, AR, LR, TC, DM, *DM

R

IR, HR, AR, LR, DM, *DM

Flags
ER Content of Dr is 0.

Content of Dd, Dd +1, Dr, or Dr + 1 channels is not in BCD.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

EQ ON when the result is 0.

Application Example
The following example demonstrates how 1-channel dividends and divisors
are moved to two channels each so that floating point division is possible for
them. Each are moved so that an exponent of 4 (positive) is placed in the left-
most digit of the two channels (i.e., the exponent digit) and zeros are placed
in the rightmost three digits. The first four MOV(50) instructions achieve this.
The dividend and divisor are then moved to the remaining digits in two steps
each, and FDIV<79> is executed to place the result in DM 0002 and DM
0003.

Section 4Programming Instructions

181

FDIV(79)

HR 00

HR 02

DM 0002

JMP LBL 0100

FDIV<79> Execution

LBL 0100

DIFU(40) 10

00000

WAIT

MOV(50)

#0000

HR 00

MOV(50)

#0000

HR 02

MOV(50)

#4000

HR 01

MOV(50)

#4000

HR 03

MOVD(83)

DM 0000

#0021

HR 01

MOVD(83)

DM 0000

0300

HR 00

MOVD(83)

DM 0001

0021

HR 03

MOVD(83)

DM 0001

0300

HR 02

HR00

2 0 0 0

9 0 0 0

2 4 3 6 9 6 2 0

HR01

4 3 4 5

4 0 0 7

HR03 HR02

DM0003 DM0002

HR01

4 3 4 5

3 4 5 2

2 0 0 0

DM0000

HR00 HR03

4 0 0 7

0 0 7 9

9 0 0 0

DM0001

HR02

Dividend Divisor

#4000 initially transferred. #0000 initially transferred.

Preparations

0.3452000×104

0.0079000×104

0.4369620×102

Programming Instructions Section 4

182

4-9-13
Square Root -
ROOT(64)<72>

ROOT(64) computes the square root of an eight-digit BCD value and outputs
the truncated four-digit integer result to the specified result channel (R). The
first channel (Sq) of the two consecutive channels containing the value of
which the square root is to be taken is input as the first operand.

Flowchart Symbol

ROOT(64)

Sq

R

Data Areas
Sq

IR, SR, HR, AR, LR, TC, DM, *DM

R

IR, HR, AR, LR, DM, *DM

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)
The source data is not in BCD.

EQ ON when the result is 0.

Application Example
The following program takes the square root of a 1-channel BCD value and
returns the rounded result to another channel. The two channels to be used,
DM 0100 and DM 0101 are first cleared with CNR, the data of which the
square root is to be taken (IR channel 010) is moved into DM 0101 and
ROOT(64) is executed with DM 0100 as the R channel.

The rightmost two digits of the result (the truncated square root of the original
value) are then placed in a final result channel (IR channel 011). The leftmost
two digits are placed in another channel (DM 0103) and tested to see if the
final result channel should be incremented or not; thus rounding the result is
necessary.

4-10
Binary Calculations

The binary calculation instructions - INCB<61>, DECB<62>, ADB<50>,
SBB<51>, MLB<52> and DVB<53> - all perform arithmetic operations on
binary data. A numeric conversions instruction, FUN<69>, to obtain the sine
or cosine of an angle or linear approximations has also been included with
this section because it deals mostly with binary data.

For INCB<61> and DECB<62> the input and output channels are the same.
That is, the content of their input channels is overwritten with the instruction
result.

Each BIN calculation instruction is programmed with a function code. To input
these instructions through the Programming Console, press FUN followed by
the appropriate function code.

The addition and subtraction instructions use CY in the calculation as well as
in the result. Be sure to clear CY if its previous status in not required in the
calculation.

Section 4Programming Instructions

183

Data displays on the Programming Console and explanations in following
subsections all use hexadecimal representation and refer to the number of
hexadecimal digits. Names of instructions, however, have been kept in binary
terms because actual computer operations are in binary. The arithmetic result
will always be the same, regardless of whether hexadecimal or the equivalent
binary representation of numbers are manipulated. Binary and hexadecimal
representations are easily converted back and forth because four binary dig-
its always represent one hexadecimal digit, e.g., binary 1111 represents hexa-
decimal F; binary 0010, hexadecimal 2; and binary 1111 0010, hexadecimal
F2.

Programming applications of binary instructions are similar to those of BCD
instructions. Basically only the type of data being dealt with is different. Refer
to Application Examples under corresponding instructions in 4-8 BCD Calcu-
lations as necessary.

4-10-1
Binary Increment -
INCB<61>

INCB<61> increments 4 digits of hexadecimal data by one, without affecting
carry (CY). Only the channel to be incremented (Ch) is required as an oper-
and. If FFFF is incremented, the result will be 0000 and EQ will be set.

Flowchart Symbol

INCB(61)

Ch

Data Areas
IR, HR, AR, LR, DM, *DM

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)
EQ ON when the incremented result is 0.

4-10-2
Binary Decrement -
DECB<62>

DECB<62> decrements four digits of hexadecimal data by 1, without affecting
carry. Only the channel to be decremented (Ch) is required as an operand. If
0000 is decremented, the result will be FFFF.

Flowchart Symbol

DECB(62)

Ch

Data Areas
IR, HR, AR, LR, DM, *DM

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)
EQ ON when the decremented result is 0.

Programming Instructions Section 4

184

4-10-3
Binary Addition -
ADB<50>

ADB<50> adds a four-digit augend (Au), a four-digit addend (Ad), and the
content of CY and outputs the result to the specified result channel. If the re-
sulting sum is greater than FFFF, the carry flag (CY) will be set.

Flowchart Symbol

ADB(50)

Au

Ad

R

Data Areas
Au and Ad

IR, SR, HR, AR, LR, TC, DM, *DM, #

R

IR, HR, AR, LR, DM, *DM

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)
CY ON when the result is greater than FFFF.
EQ ON when the result is 0.

4-10-4
Binary Subtraction -
SBB<51>

SBB<51> subtracts a four-digit hexadecimal subtrahend (Su) and the content
of carry from a four-digit hexadecimal minuend (Mi) and outputs the result to
the specified result channel (R).

If the difference is a negative value, SBB<51> sets CY and outputs the 2’s
complement of the difference to the result channel. CY must therefore be
tested after using SBB<51> and the result must be subtracted from zero to
obtain the true negative difference if CY is set.

Flowchart Symbol

SBB(51)

Mi

Su

R

Data Areas
Mi and Su

IR, SR, HR, AR, LR, TC, DM, *DM, #

R

IR, HR, AR, LR, DM, *DM

Section 4Programming Instructions

185

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)
CY ON when the result less than 0.
EQ ON when the result is 0.

4-10-5
Binary Multiplication -
MLB<52>

MLB<52> multiplies a four-digit hexadecimal multiplicand (Md) by a four-digit
multiplier (Mr) and outputs the eight-digit hexadecimal result to the specified
result channels. The first result channel (R) is input as the third operand.

Flowchart Symbol

MLB(52)

Md

Mr

R

Data Areas
Md and Mr

IR, SR, HR, AR, LR, TC, DM, *DM, #

R

IR, HR, AR, LR, DM, *DM

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)
EQ ON when the result is 0.

4-10-6
Binary Division -
DVB<53>

DVB<53> divides a four-digit hexadecimal dividend (Dd) by a four-digit divisor
(Dr) and outputs the quotient to the specified result channel (R). The remain-
der is output to the next channel after R.

Flowchart Symbol

DVB(53)

Dd

Dr

R

Data Areas
Dd and Dr

IR, SR, HR, AR, LR, TC, DM, *DM, #

R

IR, HR, AR, LR, DM, *DM

Programming Instructions Section 4

186

Flags
ER Dr is zero.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

EQ ON when the result is 0.

4-10-7
Numeric Conversions
-FUN<69>

This instruction is used to compute the sine and cosine of angles between 0°
and 90°, as well as to compute linear approximations from tables defining
points forming connected line segments.

Three operands are required: the control data (C), the source channel (S),
and the result channel (R). The control data defines which operation is to be
used, i.e., #0000 is input as the control data for sine calculation; #0001 is in-
put for cosine calculation; and a channel is designated for linear approxima-
tion.

If a channel is designated for linear approximation, then the designated chan-
nel defines parameters for the approximation and the line table defining the
points used for approximation follows in channels immediately after C (see
below for details). The line table must all be in the same data area and it can-
not be in both the normal DM area and the expanded portion of DM area (if
expanded DM area is used), although it can be completely in either normal
DM area or completely in the expanded portion (i.e., beyond DM 4096).

Flowchart Symbol

FUN(69)

C

S

R

Data Areas
C

IR, SR, HR, AR, LR, DM, *DM, # (0000 or 0001 only)

S

IR, SR, HR, AR, LR, DM, *DM

R

IR, HR, AR, LR, DM, *DM

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)
An angle greater than 90° has been designated for sine or cosine
conversion.
Table data for linear approximation is not in proper format.

EQ ON when result is 0.

Sine and Cosine
If #0000 is input for the control data, the content of the source channel is as-
sumed to be an angle with one decimal place (e.g., 0300 is 30.0°) and the
sine of the angle will placed in the result channel to the forth place past the
decimal point (e.g., 5000 is 0.5). The fifth place past the decimal is truncated.

Section 4Programming Instructions

187

If #0001 is input for the control data, the cosine of the content of the source
channel will be placed in the result channel in the same fashion as the sine is
for #0000.

Linear Approximation
If the control data is a channel designation, the content of the designated
channel will set parameters for linear approximation based on connected line
segments formed from the table of points found in the channels following the
channel designated as control data. The content of the source channel will be
assumed to be an X coordinate and the Y coordinate necessary to produce a
point on one of the line segments in the line table will be output to the result
channel.

Parameters given in the channel designated for control data are as follows:
Bit 1 is set to 0 if source data is in BCD, 1 if it is binary; bit 2 is set to 0 if the
result is to be in BCD, 1 if it is to be in binary; and bits 0 through 7 are set to
one less than the number of points defined in the line table. Bits 8 through 13
of the designated channel are not used and should be set to zero.

The points in the line table, Xn and Yn, must be input in binary so that Yn is a
function of Xn and so that Xn is less than Xn+1 (i.e., X coordinates must be in
ascending order). These points will form connected lines segments and are
held in the data area following channel C shown below. Note that the last X
coordinate, Xm is listed both first and next to last, and that X0, which is as-
sumed to be zero, is not listed in the table.

Y0

Y1

Y2

X1

X2

Yn

Xn

Ym

Xm

Xm

Y

X

Y2

Y0

Y1

Y3

Y4

X0 X1 X2 X3 X4 Xm

C+1

C+2

C+3
C+4

C+5

C+6

C+ (2m+1)

C+ (2m+2)

The Y coordinate for a given X coordinate will be computed from the two X
coordinates in the table between which the given X coordinate lies. If the giv-
en X coordinate falls between Xn and Xn+1, the equation for the resulting Y
coordinate is as follows:

Y = Yn + (X – Xn) x (Yn+1 – Yn)/(Xn+1 – Xn)

Linear Approximation
Application Example

The following instruction block and line table show how linear approximation
works. Here the corresponding Y coordinate (R) for an X coordinate (S) of
0014 (content of IR channel 010) is computed using a table containing 12

Programming Instructions Section 4

188

points. The line segments are also plotted below for convenience. Actual cal-
culations are as follows:

Y (R) = F00 + (14 – 5) x (402 – F00)/(1A–5)

= F00 – F x 86

= 726

FUN(69)

DM0000

010

011

1 1 0 0 1 0 1DM0000

DM0001

DM0002
DM0003

DM0004

DM0005

DM0006

DM0025
DM0026

C 0 0 B

0 5 F 0

0 0 0 0

0 0 0 5

0 F 0 0

0 0 1 A

0 4 0 2

0 5 F 0

1 F 2 0

Y0

X12

Y1

X1

Y2

X2

X12

Y12

1

15 14 3 2 1 0

Channel designation for linear approximation

Source channel

Result channel

S and R both binary 12 (# of points) – 1

1F20

0F00

0726
0402

0005 0014 001A 05F0

Y

X

4-11
Logic Instructions

The logic instructions - COM(71), ANDW(65), ORW(66), XORW(67), and
XNRW(68) - perform logic operations on channel data.

Each logic instruction is programmed with a function code. To input these in-
structions through the Programming Console, press FUN followed by the ap-
propriate function code.

4-11-1
Complement -
COM(71)<29>

COM(71) inverts the bit status of one channel of data. That is, COM(71)
clears all ON bits and sets all OFF bits in the channel specified (Ch).

To obtain the inverted status of a channel when working in hexadecimal, sub-
tract each hexadecimal digit from 15 to get the hexadecimal digit correspond-
ing to the inverted bits.

Section 4Programming Instructions

189

Flowchart Symbol

COM(71)

Ch

Data Areas
IR, HR, AR, LR, DM, *DM

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been
exceeded.)

EQ ON when all bits of the result are 0.

4-11-2
Logical AND -
ANDW(65)<34>

ANDW(65) logically ANDs two 16-bit channels (I1 and I2) and outputs the
result to the specified channel. In other words, ANDW(65) sets the corre-
sponding bit in the output channel if and only if the corresponding bits in both
inputs channels are 1. The corresponding bit in the result channel will other-
wise be 0.

Flowchart Symbol

ANDW(65)

I1

I2

R

Data Areas
I1 and I2

IR, SR, HR, AR, LR, TC, DM, *DM, #

R

IR, HR, AR, LR, DM, *DM

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been
exceeded.)

EQ ON when all bits of the result are 0.

4-11-3
Logical OR -
ORW(66)<35>

ORW(66) logically ORs two 16-bit channels (I1 and I2) and outputs the result
to the specified result channel (R). In other words, a bit in the output channel
will be 1 if one or both of the corresponding bits in the input data are 1. The
corresponding bit in the result channel will be 0 if both bits are 0.

Programming Instructions Section 4

190

Flowchart Symbol

ORW(66)

I1

I2

R

Data Areas
I1 and I2

IR, SR, HR, AR, LR, TC, DM, *DM, #

R

IR, HR, AR, LR, DM, *DM

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been
exceeded.)

EQ ON when all bits of the result are 0.

4-11-4
Exclusive OR -
XORW(67)<36>

XORW(67) exclusively ORs two 16-bit data channels (I1 and I2) and outputs
the result to the specified result channel (R). In other words, a bit in the out-
put channel will be set to 1 only when the corresponding bits in the input
channels differ. If corresponding bits are both 1 or both 0, the resulting bit will
be 0.

Flowchart Symbol

XORW(67)

I1

I2

R

Data Areas
I1 and I2

IR, SR, HR, AR, LR, TC, DM, *DM, #

R

IR, HR, AR, LR, DM, *DM

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)
EQ ON when all bits of the result are 0.

4-11-5
Exclusive NOR -
XNRW(68)<37>

XNRW(68) exclusively NORs two 16-bit channels (I1 and I2) and outputs the
result to the specified result channel (R). In other words, a bit in the output

Section 4Programming Instructions

191

channel will be 1 only when the corresponding bits in the input channels are
the same. If the status of corresponding bits differ, the result channel will be
set to 0.

Flowchart Symbol

XNRW(68)

I1

I2

R

Data Areas
I1 and I2

 IR, SR, HR, AR, LR, TC, DM, *DM, #

R

IR, HR, AR, LR, DM, *DM

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)
EQ ON when all bits of the result are 0.

4-12
Group Programs

Programming groups of instructions allows various processes to proceed to-
gether. Although only one group program or the main program is executing at
any one time, execution moves between the main program and the various
group programs whenever certain conditions are met, resulting in essentially
parallel execution when considering the high execution speed.

Group programs are always programmed at addresses after the end of the
main program.

4-12-1
Basic Instructions -
GN(10), GS(11), GE(12),
GOFF(15), and GJ(17)

Group Start, GS(11), prepares group programs for execution; Group Number,
GN(10), defines a group program; Group End, GE(12), defines the end of a
group program; Group Off, GOFF(15), turns a group program off or defines
the end of a group program; and Group Jump, GJ(17), moves execution to
the next group program awaiting execution. All of these instructions except
for GJ(27) require a group program number (N) between 000 and 127. Each
number must be used for one group program only, and the same number
must be used at the beginning and end of the same group program.

All group program programs must begin with GN(11) and end with either
GE(12) or GOFF(15).

The group program number is input as part of the instruction line, i.e., be-
tween the FUN number and ENT. No operands are required for any of these
instructions.

Programming Instructions Section 4

192

Flowchart Symbols

GOFF(15) N

GS(11) N

GJ(17)

GN(10) N

GE(12) N

Group Program
Execution

Although group programs allow for parallel execution of several programs,
the programs are not actually executed simultaneously, but in order according
to the group program numbers. Execution always begins with the main pro-
gram and then moves to the next group program that is awaiting execution.

All group programs are placed in an ‘off’ (ended) condition when PC power is
turned on or when the PC is changed from PROGRAM to RUN or MONITOR
mode. To prepare a program for execution, it must be placed on standby by
using GS(11). GS(11) must again be used if a program is going to be ex-
ecuted again after reaching GE(12) (or GOFF(15)) or after having been
stopped with GOFF(15).

Group program execution is actually begun when one of four conditions is
encountered in the main program: GJ(17), WAIT with an OFF execution con-
dition, WAIT NOT with an ON execution condition, or SBS(32) for a subrou-
tine that is already under execution. If there is one or more group programs
awaiting execution (i.e., GS(11) has been executed for them) when one of
these conditions is encountered, execution moves to the lowest numbered
group program awaiting execution.

Once a group program has begun execution, it will continue execution until
GE(12) (or GOFF(15)) has been reached or until one of the above four condi-
tions is encountered. Once GE(12) or one of these conditions is encountered,
execution of the next lowest number group program awaiting execution is be-
gun and continues until GE(12) has been reached or until one of the four con-
ditions is encountered again.

When the last group program awaiting execution has begun execution and
has reached GE(12) or has encountered one of the above conditions, the
main program is returned to at the point from which program execution was
begun. The main program will continue execution until again one of the above
conditions for group program execution is encountered, when group program
execution will again be performed as described above. The process will con-
tinue in cyclic fashion, moving from the main program to the lower number
group program awaiting execution, then through the group programs in order
according to group program number, and then back to the main program
once the highest numbered group program awaiting execution has been left.

When a group program that has not completed execution is re-entered, ex-
ecution continues from the point where execution was interrupted. A group

Section 4Programming Instructions

193

program will thus be entered as many times as necessary to reach GE(12)
(or GOFF(15)).

Once GE(12) has been executed for a group program, that group program is
no longer on standby, and GS(11) must be re-executed for it before it will be
executed again (i.e., before it will be placed back on standby. GS(11) must
also be re-executed for a group program for which GOFF(15) has been ex-
ecuted.

GOFF(15) and GE(12)
Either GOFF(16) or GE(12) may be used at the end of a group program with
the following differences.

When GE(12) is executed for a group program, it goes off standby, but the
status of all outputs, counters, and timers in the group program are main-
tained and timers continue operation.

A designated group program also goes off standby when GOFF(15) is ex-
ecuted for it; however, all IR and LR outputs bits (i.e., those used in OUT,
OUT NOT, OUTC(00), and OUTC(00) NOT) and timers will be reset through
the first SBN(31) or GN(10) for any program group number or the first
GE(12), or GOFF(15) for the designated program group number, following the
GN(10) of the designated program group number. If none of these are en-
countered, resetting will continue through the final address.

Jumps and Labels in
Group Programs

CJP, RPT(37), SKIP(46), and BRZ(59) may be used in a group program to
branch within the group program. All branches (i.e., destinations) for these
instructions must lie within the same group program. You cannot branch from
one group program to another or to/from the main program. All jumps be-
tween group programs and to/from the main program must be achieved as
described above.

Monitoring Group Status
The four statuses of a group, awaiting execution, under execution, ended,
and pause (see 4-11-2 Group Pause - GP(13) and Group Restart - GR(14)),
can be monitored from the Programming Console. See 2-4-11 Group Monitor.
Group program status can also be monitored through Group Execution flags
in AR channels 00 through 07. These flags are ON when a group is awaiting
execution, under execution, or pausing. See 3-5 Auxiliary Relay Area - AR.

Programming Instructions Section 4

194

Application Example:
Basic Group Program
Execution

The following program using two group programs is described below.

Emergency
stop button

Yes

No

Yes

No

Start button

GE(12) 001

LBL 0000

AND 00000

SKIP NOT 2

GS(11) 000

GS(11) 001

AND 00007

SKIP NOT 2

GOFF(15) 000

GOFF(15) 001

GJ(17)

JMP LBL 000

GN(10) 000

OUT 00500

AND 00001

WAIT

OUT NOT 00500

OUT 00502

AND 00003

WAIT

OUT 00501

AND 00002

WAIT

OUT NOT 00501

OUT NOT 00502

GE(12) 000

GN(10) 001

AND 00004

WAIT

OUT 00503

AND 00005

WAIT

OUT NOT 00503

OUT 00504

AND 00006

WAIT

OUT NOT 00504

1. When the start button goes ON, group programs 0 and 1 are placed on
standby.

2. If the emergency button is OFF, GJ is executed, moving execution to the
beginning of group program 0.

3. Group program 0 is executed through AND 00001. If input 00001 is OFF,
execution moves to group program 1. If input 00001 is ON, execution of
group program 0 continues.

4. When execution moves to group program 1, execution continues
through AND 00004. If input 00004 is OFF, execution moves back to the
main program. If input 00004 is ON, execution of group program 1 con-
tinues.

5. When the main program is returned to and loops back to the beginning,
the GS(11) are ignored if the group programs are already on standby.

6. When GJ is executed again, execution returns to group program 0, re-
turning to the point from which it was left (to the beginning if it was com-
pleted).

7. Execution continues moving though the programs until execution is
stopped.

Section 4Programming Instructions

195

8. If the emergency stop button is pressed during execution, GOFF(15)
resets the group programs.

Note that if all WAITs in the group programs cause jumps out of the group
programs, then each group program would have to be entered four times be-
fore reaching GE(12).

Application Example:
Sequential Execution

The following example shows the use of Group Execution flags to control the
sequence of group program execution. In the following example, the main
program is divided into three sections linked with CJP jumps. These jumps
are taken only when the group program(s) associated with that section of the
main program has completed execution.

The first section places group program 0 on standby, executes program sec-
tion 1 (indicated by the dotted line), and then jumps to group 0 (we’ll assume
that nothing in program section 1 would cause a jump). When group 0 is left,
execution returns to the main group (because no other group programs are
awaiting execution). If group program 0 was executed through completion,
AR 0000 (the Group Execution flag for group program 0) will be OFF, and the
next section of the main program will be jumped to from CJP LBL 2. If group
program 0 has not completed execution, label 1 will be returned to, program
section 1 will be executed again, group program 0 will be jumped to, and the
process will be repeated until group program 0 is completed and label 2 at
the beginning of the second section of the main program is jumped to.

The second section of the main program places groups 1 and 2 on standby,
then repeats program section 2 and group programs 1 and 2 until both group
programs 1 and 2 are completed. Note that because now two group pro-
grams are awaiting execution, jumps will be made from group program 1 to
group program 2 (as long as both group programs are awaiting execution)
before returning to the main program. When execution of both group pro-
grams 1 and 2 has completed, CJP LBL 4 moves execution to the third sec-
tion of the main program.

Programming Instructions Section 4

196

The third section of the main program is link to group program 3, which is ex-
ecuted alternately with program section 3 until the group program is com-
pleted. When group program 3 has completed execution, the first section of
the main program is returned to, beginning the process again.

Yes

No

Yes

No

Yes

No

GE(12) 002

LBL 0000

GS(11) 000

LBL 0001

GJ(17)

AND NOT AR 0000

CJP LBL 2

JMP LBL 1

LBL 0002

GS(11) 001

GS(11) 002

LBL 0003

GJ(17)

AND NOT AR 0001

AND NOT AR 0002

CJP LBL 4

JMP LBL 3

LBL 0004

GS(11) 003

LBL 0005

GJ(17)

AND NOT AR 0003

CJP LBL 0

JMP LBL 5

GE(12) 000

GN(10) 000 GN(10) 001

GE(12) 001

GN(10) 003

GE(12) 003

GN(10) 002

Section 4Programming Instructions

197

4-12-2
Group Pause - GP(13)
and Group Restart -
GR(14)

Any group for which GS(11) has been executed, but for which neither GE(12)
nor GOFF(15) has be executed, can be placed in a “pause” condition by ex-
ecuting GP(13) for that group program number. The group program will then
remain in a pause condition until GR(14), GS(11), GE(12) or GOFF(15) is
executed for it.

If GR(14) is executed for a paused group program, the group program will go
on standby and continue execution from the point at which GP(13) was ex-
ecuted the next time the group program is jumped to.

If GS(11) is executed for a paused group program, the group program will go
on standby and continue execution from the beginning of that group program
the next time the group program is jumped to.

If GE(12) or GOFF(15) is executed for a paused group program, the group
program will be ended and GS(11) must be executed for it again to execute it.

GP(13) will be ignored if executed for a group program already in a pause
condition or for a group program that has been ended and not placed back on
standby.

If GP(13) is executed for a group program that is being executed, a jump will
be made to the next group program awaiting execution or back to the main
program if no group programs are awaiting execution.

The group program number (N) of the group program for which GP(13) or
GR(14) is being executed is input as part of the instruction line, i.e., between
the function code and ENT. No operands are required. The group program
number must be between 000 and 127, inclusive.

Flowchart Symbols

GR(14) NGP(13) N

4-12-3
Group Continue - GC(16)

GC(16) is used together with the Group Continue Control bit, SR bit 25211,
and the Data Retention Control bit, SR bit 25212, to continue group program
execution or interrupt routine execution when restarting after a power inter-
ruption.

If SR bits 25211 and 25212 are ON, all group programs for which GC(16) is
executed after restarting will be continued from the point of interruption the
next time they are entered (program execution following power interruptions
always begins at the beginning of the main program (address 00000).

If GS(11) is executed for a group program before GC(16) for any group pro-
gram, execution of that group program will be restarted from the beginning
the next time it is entered.

Timers and counters will retain status during power interruptions. (These can
be reset as necessary using CNR.) Timers in group programs will be re-
started following power interruption only after GJ(17) has been executed.

Programming Instructions Section 4

198

The group program number, N, is input as part of the instruction line, i.e., af-
ter inputting the FUN number and before pressing ENT. Group program num-
bers are between 000 and 127, inclusive. Designate group program number
129 to execute GC(16) for I/O interrupt routines; number 130, for the sched-
uled interrupt routine.

Flowchart Symbol

GC(16) N

Application Example
The following program shows use of the Output OFF bit, 25215, to jump to a
program section that determines group program execution following power
interruption. (Bit 25215 is automatically turned ON following a power interrup-
tion if the Group Continue Control bit and Data Retention Control bits, bits
25211 and 25212, are both ON.)

The following program is designed to continue execution of group programs 0
though 99 at the point where they were interrupted and to restart execution of
group program 100 from the beginning.

Note that bit 25215 is reset so that it will not necessarily be ON the next time
the program is executed.

GOFF(15) 100

OUT NOT 25215

JMP LBL2

Group program
100 reset.

Yes

No Group program
0 through 99
continued.

OUT 25211

OUT 25212

AND 25215

CJP LBL 0

LBL 0001

GS(11) 000

GS(11) 001

GS(11) 100

LBL 0002

GJ(17)

JMP LBL1

LBL 0000

GC(16) 000

GC(16) 001

Section 4Programming Instructions

199

4-12-4
AND Group - ANDG(01)
and OR Group - ORG(02)

ANDG(01) and ORG(02) are used to designate group program or interrupt
routine status as the execution condition for WAIT, CJP, SKIP(46), or
OUTC(00).

An ‘ON’ condition is created if GS(11) has been executed for the group pro-
gram, but neither GE(12) nor GOFF(15) has been. Otherwise an ‘OFF’ condi-
tion is created. ANDG(01) and ORG(02) can also be used with NOT to re-
verse these conditions.

ANDG(01) ANDs the execution condition with the execution condition before
it; ORG(02) ORs it.

The group program number, N, is input as part of the instruction line, i.e., af-
ter inputting the FUN number and before pressing ENT. Group program num-
bers are between 000 and 127, inclusive. Designate group program number
129 to execute for I/O interrupt routines; number 130, for the scheduled inter-
rupt routine.

Note: If a group program number that is not used in the program is desig-
nated, an OFF condition will be created.

Flowchart Symbols

ORG(02) NOT N

ANDG(01) N

ORG(02) N

ANDG(01) NOT N

4-13
Subroutines and
Interrupt Control

4-13-1
Overview

Subroutines break large control tasks into smaller ones and enable you to
reuse a given set of instructions. When the main program calls a subroutine,
control is transferred to the subroutine and the subroutine instructions are
executed. The instructions within a subroutine are written in the same way as
main program code. When all the subroutine instructions have been ex-
ecuted, control returns to the main program to the point just after the subrou-
tine call.

Interrupt routines are different from subroutines in that they are activated by
interrupt signals, by power interruptions, or at specific time intervals rather
than by subroutine calls. Like subroutine calls, interrupts cause a break in the
flow of the main program execution such that the flow can be resumed from
that point at a later time. Interrupts are used to deal with special circum-
stances, such as emergency situations, power interruptions, status confirma-
tions, etc.

Programming Instructions Section 4

200

Multiple interrupts from different sources can occur at the same time. To ef-
fectively deal with this, the PC employs a priority scheme for handling inter-
rupts.

In the case of the scheduled interrupt, the time interval between interrupts is
set by the user and is unrelated to the program execution time. This capability
is useful for periodic supervisory or executive program execution.

Interrupts can be masked to prevent an interrupt routine from being executed
where it is not needed or where interrupting the program is not desirable.

4-13-2
Subroutine Definition -
SBN(31)<92> and
RET(33)<93>

SBN(31) and RET(33) mark the beginning and end, respectively, of a subrou-
tine definition. All subroutines are defined with a subroutine number (N) that
must be between 000 and 999. N is input as part of the SBN(31) instruction
line, i.e. after the function code but before pressing ENT. The subroutine
number is not required when inputting RET.

Flowchart Symbols

RET(33)SBN(31) N

Instructions for subroutines (i.e., instructions bounded by SBN(31) and RET)
should be placed just after the main program code. When the CPU reaches
the first SBN(31) in the program, it assumes that it has reached the end of the
main program area. That is, the CPU scans that portion of the program from
address 00000 to the first SBN(31).

A total of 1,000 subroutines may be defined (i.e., from 000 to 999).

4-13-3
Subroutine Entry -
SBS(32)<91>

The main program calls a subroutine by means of SBS(32).

When SBS(32) is encountered during program execution, program control is
transferred to the subroutine whose number, N, is input with SBS(32). When
the subroutine instructions between SBN(31) and RET(33) for the designate
subroutine have been executed, control returns to the instruction following the
SBS(32) that called the subroutine.

Flowchart Symbol

SBS(32) N

The number of subroutine calls (i.e., the number of times that SBS(32) can be
used) that can be made is unlimited.

Subroutines can be nested (i.e., a subroutine can call another subroutine) up
to as many levels as required. There is no limit.

Flags
ER The specified subroutine does not exist.

A subroutine has called itself.

Section 4Programming Instructions

201

Restrictions
Any SBS(32) that calls an undefined subroutine will be processed as a NOP
and program execution will continue to the next instruction.

A subroutine may not call itself. If an attempt is made to call a subroutine
from within the same subroutine, program execution will stop.

If a jump to a subroutine that is already under execution is attempted (as can
happen with group programs), a jump will be made to the next group program
awaiting execution and the attempted jump to the subroutine will be made
when the initial execution of the subroutine has completed. If the jump to the
subroutine under execution was attempted from an interrupt routine, however,
program execution will stop and remain on standby without jumping to anoth-
er group program.

Subroutine execution status can be check with SBT(34) to ensure that an at-
tempt in not made to jump to a subroutine under execution (see next subsec-
tion).

4-13-4
Subroutine Test -
SBT(34)

SBT(34) is used to check the execution status of a subroutine to prevent
jumps to subroutines under execution. The number of the subroutine (N: 000
through 999) to be tested is input as part of the instruction line, i.e., after the
function code and before pressing ENT.

SBT(34) must be used in combination and just before WAIT, CJP, SKIP(46),
or OUTC(00). The instruction following SBT(34) is executed with the execu-
tion condition determined by the status of the subroutine (YES: not under ex-
ecution; NO: under execution).

If SBT(34) is used before WAIT, program execution will pause until the sub-
routine is not being executed and then proceed to the next instruction. If a
group program is awaiting execution, this WAIT will cause a jump to the next
group program.

IF SBT(34) is used before CJP or SKIP(46), the program will follow the YES
and NO branches according to the execution status of the designated subrou-
tine.

If SBT(34) is used before OUTC(00), the output will be turned ON if the sub-
routine is not being executed.

NOT may be combined with any of these instructions to reverse the response
given above.

Programming Instructions Section 4

202

Flowchart Symbol

SBT(34) N

Application Example
The following example uses SBT(34) to test subroutine 100 before executing
ADD(53). This is necessary because the both the MOV(50) in the subroutine
and the ADD(53) in group program 10 used the same channel, DM 0100. If
the subroutine has not completed execution, the next group program awaiting
execution will be jumped to until subroutine execution is completed.

ADD(53)

DM 0100

HR 10

010Jump made
when 00001
is OFF.

SBN(31) 100

ADD(53)

HR 20

0010

010

AND 00001

WAIT

AND 00001

WAIT

MOV(50)

010

DM 0100

RET(33)

GN(10) 010

SBT(34) 100

WAIT

GE(12)

4-13-5
Interrupt Routines

There are three types of interrupt routines: I/O, scheduled, and power-off.
Each type of interrupt routine is defined between a special label number and
the interrupt return instruction, RTI(44). No operands are required for RTI(44).

Flowchart Symbol

RTI(44)

There is no special instruction to define the beginning of interrupts. All inter-
rupts are begun with one of the special label numbers and ended with
RTI(44). Label numbers LBL 0000 through LBL 0031 define the beginning of
I/O interrupt routines; label number LBL 9998, the beginning of the power-off
interrupt routine; and LBL 9999, the beginning of the scheduled interrupt rou-
tine. Any of these label numbers can be used like normal label numbers when
they are not used for interrupt routines.

!

Section 4Programming Instructions

203

Whenever an interrupt routine is triggered, the instruction being executed at
that time is completed and a jump is made to the label number defining the
interrupt routine that has been triggered. Normal program execution is re-
turned to at the point it was interrupted following completion of the interrupt
routine (i.e., when RTI(44) is executed), except for power-off interrupts, which
end program execution after completion of the routine.

I/O interrupt routines are not executed when masked, and all I/O interrupts
are masked immediately after PC power is turned ON (see next subsection
for details).

Caution If a WAIT instruction in an interrupt routine produces a wait or a subroutine under
execution is called from an interrupt routine, execution will stop. If a subroutine is
required in an interrupt routine and group programs have been used, test the
subroutine with SBT(34) before calling it from the interrupt routine. Execution of
interrupt routines will be delayed by the time required to compete the current in-
struction or to service I/O. This is particularly true with FLIP<44> and FLIR<42>,
which have long execution times. Interrupt routines cannot be called from within
other interrupt routines.

I/O Interrupt Routines
Execution of I/O interrupt routines is triggered by the leading-edge of an inter-
rupt signal from an Interrupt Input Unit. Up to four (0 to 3) Interrupt Input Units
can be used. Interrupt Input Unit numbers are assigned sequentially starting
from 0 at the left (Interrupt Input Units must be mounted to the CPU Rack).

For each Interrupt Input Unit, inputs 0 through 7 may be used for interrupt
signals (unassigned bits in channels assigned to Interrupt Input Units may be
used as work bits in programming). A unique label number is associated with
each bit according to the following table. The ON/OFF status of these bits
show whether an I/O interrupt is ON or OFF, and can be used in program-
ming.

 0

LBL 0000

LBL 0001

LBL 0002

LBL 0003

LBL 0004

LBL 0005

LBL 0006

LBL 0007

 1

LBL 0008

LBL 0009

LBL 0010

LBL 0011

LBL 0012

LBL 0013

LBL 0014

LBL 0015

 2

LBL 0016

LBL 0017

LBL 0018

LBL 0019

LBL 0020

LBL 0021

LBL 0022

LBL 0023

 3

LBL 0024

LBL 0025

LBL 0026

LBL 0027

LBL 0028

LBL 0029

LBL 0030

LBL 0031

0

1

2

3

4

5

6

7

Input
number

Interrupt
Input Unit #

These labels are used to define the starting point for I/O interrupt routines
executed when the input assigned to that interrupt comes ON (as long as the
interrupt is not masked, see 4-12-6 Interrupt Control - MSKS(42) and
CLI(43)). If any of these label numbers are not used for an interrupt routine,
they may be used like any other label number.

Scheduled Interrupts
A scheduled interrupt routine can be programmed by using label number LBL
9999 together with RTI(44). Once activated, the scheduled interrupt routine

!

Programming Instructions Section 4

204

will be executed at the specified time interval regardless of program execu-
tion status. Both MSKS(42) and CLI(43) are required to initiate scheduled
interrupt execution (and Interrupt Input Unit is not required). Once scheduled
interrupt execution has been initiated, MSKS(42) is used to either change the
time interval or to cancel execution of the scheduled interrupts. Refer to
4-12-6 Interrupt Control - MSKS(42) and CLI(43) for details.

Scheduled interrupt routines should be as short and concise as possible and
must never be longer than the time interval set for their execution.

Power-Off Interrupts
A power-off interrupt routine is programmed to provide emergency measures
necessary when system power is interrupted. The power-off interrupt routine
will automatically be executed whenever system power is interrupted as long
as system operation defines it as an operating parameter (see 4-14-3 System
Definition - FUN<49> and as long as a power-off interrupt routine is defined
between label number LBL 9998 and RTI(44).

The power-off interrupt routine is executed only in RUN or MONITOR mode.

Caution The power-off interrupt routine must be programmed to execute within 3 ms. If
this time limit is exceeded, normal completion of the entire routine cannot be
guaranteed, possibly resulting in a failure to preform required emergency mea-
sures.

The user program will not be returned to and the control system will stop after
the power-off interrupt routine has been executed.

Interrupt Priority Levels
When an I/O interrupt is being serviced (i.e., when the interrupt routine is ex-
ecuting), another incoming I/O interrupt must wait for servicing until after the
first is finished.

If two or more I/O interrupt inputs are turned ON simultaneously or if two or
more I/O interrupt routines are awaiting execution when another one finishes
(regardless of the order they entered during execution), the interrupt routines
will be executed in order from the lowest label number.

If a scheduled interrupt occurs during execution of an I/O interrupt routine, the
I/O interrupt routine will be interrupted, the scheduled interrupt routine will be
serviced, and then the I/O interrupt routine will be returned to at the point it
was interrupted.

4-13-6
Interrupt Control -
MSKS(42) and CLI(43)

MSKS(42) and CLI(43) are used to control the interrupt signals for both the
Interrupt Input Units and the scheduled interrupt. MSKS(42) is used to mask
and unmask I/O interrupt signal, to set the time interval for scheduled inter-
rupts, and to cancel execution of scheduled interrupts; CLI(43) is used to set
the time to the first scheduled interrupt and to designate where to maintain or
clear I/O interrupt signals that occur while another I/O interrupt routine is be-
ing executed.

CLI(43)
If an Interrupt Input Unit (N) is designated as part of the instruction line for
CLI(43), i.e., input after the function code, but before pressing ENT, the con-
trol data (C) designates which inputs on that Unit are to be maintained and

Section 4Programming Instructions

205

which are to be cleared when they occur during execution of another interrupt
routine. When the PC is turned ON, all I/O interrupts are set to be maintained.
Bits 00 through 07 of the control data channel correspond with the input num-
bers on the Interrupt Input Unit. All interrupts from inputs whose correspond-
ing bit is ON will be cleared when they occur during execution of an interrupt
routine. If the bit corresponding to an input is OFF, interrupts coming from that
input will be maintained, and interrupts from that input will cause jumps to the
corresponding I/O interrupt routines after completion of the routine that is in
process. Interrupt Input Unit numbers are from 0 to 3. Control data must be
between 0000 and 00FF. Refer to 4-12-7 Mask Read - MSKR(45) for an ex-
ample of how control data and input numbers correspond and are expressed
in hexadecimal.

If 4 is input for N, the control data on the next line designates the time period
that is to expire before the first scheduled interrupt. Time period inputs are
between #0000 and #9999 in units of 10 ms, i.e., inputting #0025 and interval
of 250 ms.

CLI(43) must be used to set the time to the first scheduled interrupt and must
be placed before a MSKS(42) used to set the time interval for scheduled in-
terrupts the first time scheduled interrupt execution is initiated or to restart
execution after it has been cancelled with MSKS(42). This is necessary to
ensure proper operation even if the time to the first scheduled interrupt and
the time interval for scheduled interrupts are the same. The time to the first
scheduled interrupt set with CLI(43) will begin from execution of the following
MSKS(42).

Once scheduled interrupts are being executed, MSKS(42) can be pro-
grammed without CLI(43) to change the time interval for scheduled interrupt.
When the time interval is changed, the new time interval will take effect after
servicing of the next scheduled interrupt, i.e., the time interval that is currently
being counted down will be completed before the new time interval is used.

 The flowchart symbol for CLI(43) is given below.

CLI(43) N

C

MSKS(42)
MSKS(42) is used both to set the time interval at which scheduled interrupts
are to be made and to mask and unmask I/O interrupt signals.

If an Interrupt Input Unit (N) is designated as part of the instruction line, i.e.,
input after the function code, but before pressing ENT, the control data (C)
designates which inputs on that Unit are to be masked and which are to be
cleared. Bits 00 through 07 of the control data channel correspond with the
input numbers on the Interrupt Input Unit. All inputs whose corresponding bit
is ON will be masked, and interrupt inputs will not be acknowledged for them.
If the bit corresponding to an input is OFF, that input is not masked, and inter-
rupts from that input will cause jumps to the corresponding I/O interrupt rou-
tines. Interrupt Input Unit numbers are from 0 to 3. Control data must be be-
tween 0000 and 00FF. Refer to 4-12-7 Mask Read - MSKR(45) for an exam-
ple of how control data and input numbers correspond and are expressed in
hexadecimal.

Programming Instructions Section 4

206

If 4 is input for N, the control data on the next line designates the time interval
at which the scheduled interrupt will be executed. Time interval inputs are
between 0001 and 9999 in units of 10 ms, i.e., inputting 0025 designates an
interval of 250 ms. Scheduled interrupt execution is canceled by designating
a time interval of 0000. To initiate execution of schedule interrupts, MSKS(42)
is always used after CLI(43), as described above. The flowchart symbol for
MSKS(42) is given below.

MSKS(42) N

C

Data Areas
The possible values for N and C are the same for both CLI(43) and
MSKS(42).

N

#0 through #4

C

IR, HR, AR, LR, TC, DM, *DM, #

Flags
ER The specified S or C data is not allowed.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)
The specified data area is exceeded.

4-13-7
Mask Read - MSKR(45)

MSKR(45) is used to access the status of I/O interrupt masks or the time in-
terval for scheduled interrupts.

If an Interrupt Input Unit (N) is designated as part of the instruction line, i.e.,
input after the function code, but before pressing ENT, the status of the inter-
rupt inputs from that Units will be output to the designated channel (Ch). Bits
00 through 07 of the designated channel correspond to the input numbers on
the Interrupt Input Unit. All inputs whose corresponding bit is ON are masked.
If the bit corresponding to an input is OFF, that input is not masked. Interrupt
Input Unit numbers are from 0 to 3. The output status will be between 0000
and 00FF.

If 4 is input for N, the time interval at which the scheduled interrupt routine is
being executed will be output to the designated channel. Time interval out-
puts are between 0001 and 9999 in units of 10 ms, i.e., an output of 0025
designates a time interval of 250 ms. The scheduled interrupt routine is cur-
rently not being executed if a time interval of 0000 is output.

Section 4Programming Instructions

207

Flowchart Symbol

MSKR(45) N

Ch

Data Areas
IR, HR, AR, LR, DM, *DM

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)

Application Example
The following program outputs the status of interrupt input from Interrupt Input
Unit #0 to DM 0100 and the time interval for scheduled interrupts to HR 20.
As shown, interrupt input #3 is currently enabled (not masked) and the rest of
the interrupt inputs on Unit #0 are masked. The time interval output to HR 20
in the example is 100 ms.

100 ms (0010 x 10)

MSKR(45) 0

DM 0100

MSKR(45) 4

HR 20

Interrupt input 7 6 5 4 3 2 1 0

Mask data 1 1 1 1 0 1 1 1

DM0100 0 0 F 7

HR20 0 0 1 0

4-14
Special Instructions

Each of the following instructions serves a special purpose that aids in pro-
gramming, debugging, or system operation.

The process display instruction, S(47) provides process numbers and mes-
sages that aid in monitoring system operation. The failure alarm instructions
FAL(35) and FALS(36) provide error codes and messages that can aid in sys-
tem recovery in the event of a system error. Finally, the system definition in-
struction FUN(49) provides a means to change program execution parame-
ters.

Programming Instructions Section 4

208

4-14-1
Process Display - S(47)

Process display instructions can be inserted into a program so that a process
number and message will be displayed on the Programming Console when-
ever a process display instruction is executed. These are referred to as S
numbers and S messages.

S(47) requires an S number (N), which is input as part of the instruction line,
i.e., after the function code but before pressing ENT. N may be any number
between 0000 and 9999. S(47) also requires the beginning channel (CB) of
the eight channels that hold the S message to be displayed.

The S message can be up to 16 characters in length, each character requir-
ing eight bits, and can be composed of alphanumerics, Japanese kana char-
acters, or symbols. The S message must be input in ASCII. See Appendix E
ASCII Codes for the required inputs for each character.

If the message runs past the end of a data area, only the portion that is in the
same data area as the beginning channel will be displayed. Also, if OD ap-
pears anywhere in the channels holding the S message, only the portion up
to the OD will be displayed.

If a message is not required, any desired constant between #0000 and #9999
may be input in place of a channel designation.

Refer to 2-4 Monitor and Data Change Operations for the procedures to dis-
play S numbers and messages.

Flowchart Symbol

S(47) N

MB

Data Areas
IR, HR, AR, LR, DM, *DM, #

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)

Application Example
The following instruction produces the display shown next to it.

S<47> 0000

DM 0100

DM 0100

DM 0101

DM 0102

DM 0103

4 1 4 2

4 3 4 4

4 5 4 6

O D 4 8

4-14-2
Failure Alarm -
FAL(35)<06> and Severe
Failure Alarm -
FALS(36)<07>

FAL(35) and FALS(36) are diagnostic instructions that can be inserted into a
program so that an eight-bit BCD error code and ASCII message are dis-

Section 4Programming Instructions

209

played on the Programming Console whenever FAL(35) or FALS(36) is ex-
ecuted. The system also outputs FAL(35) and FALS(36) error codes, but the
error codes output by the system are beyond the limit of 99 for programmed
error codes.

Both FAL(35) and FALS(36) require an error code (N), which is input as part
of the instruction line, i.e., after the function code but before pressing ENT. N
may be any number between 00 and 99 for FAL(35) and any number be-
tween 01 and 99 for FALS(36). FAL(35) 00, however, is used to reset the
FAL(35) output area (see below). Each number must be used only once, re-
gardless of whether it is used for FAL(35) or for FALS(36).

Both instructions also require the beginning channel (CB) of the eight chan-
nels that hold the error message to be displayed. The error message can be
up to 16 characters in length, each character requiring eight bits, and can be
composed of alphanumerics, Japanese kana characters, or symbols. The
error message must be input in ASCII. See Appendix E ASCII Codes for the
required inputs for each character.

If the message runs past the end of a data area, only the portion that is in the
same data area as the beginning channel will be displayed. Also, if OD ap-
pears anywhere in the channels holding the error message, only the portion
up to the OD will be displayed.

If a message is not required, any desired constant between #0000 and #9999
may be input in place of a channel designation.

FAL(35) Output Areas
FAL execution lights the warning indicator lamp on the front panel of the
CPU, but program execution continues. FALS(36), however, lights the error
indicator lamp and stops the CPU, suspending program execution. FAL(35)
and FALS(36) error codes are also output to bits 00 through 07 of SR channel
253. This area is also used for system-output error codes.

Resetting FAL(35)
Output

All FAL(35) error codes and numbers are retained in memory even though
only one is output at a time. To reset the FAL(35) area, execute FAL(35) 00.
Each time FAL(35) 00 is executed, another FAL(35) error retained in memory
is output to the FAL(35) area.

Resetting the FALS(36)
Output

To reset the FALS(36) output, remove the cause of the FALS(36) error and
then perform Error/Message Read through the Programming Console (See
2-2-5 Reading Error Messages and 6-2 Reading Error Messages).

Flowchart Symbols

FALS(36) N

CB

FAL(35) N

CB

Data Areas
IR, HR, AR, LR, DM, DM*, #

Flags
ER Indirectly addressed DM channel is non-existent.

(DM data is not in BCD, or the DM area has been exceeded.)

!

Programming Instructions Section 4

210

Caution If improper CB designation causes ER to be turned ON, FALS(36) will not be ex-
ecuted, and program execution will continue without stopping, in spite of the ex-
istence of an emergency, creating a possibly dangerous situation.

Application Example
The following program will execute FAL(35) 01, output the message con-
tained in DM 0100 through DM 0017, and turn ON output 00500 whenever
either 00000 or 00001 is ON. When both of these inputs are OFF, the
FAL(35) area will be cleared and output 00500 is turned OFF. FALS(36) 50
will then be executed whenever input 00002 is ON, stopping program execu-
tion. If 00002 is OFF, FALS(36) 50 will be skipped.

FALS(36) 50

DM 0100

Yes

No

Yes

No

AND 00000

OR 00001

CJP LBL 100

FAL(35) 00

#0000

OUT NOT 00500

LBL 0010

AND 00002

SKIP NOT 1

LBL 0100

FAL(35) 01

DM 0100

OUT 00500

JMP LBL 0010

Managing FAL(35) and
FALS(36)

It is a good practice to make a table of all error codes, error messages, and
notes on all FAL(35) and FALS(36) instructions used in the program.

4-14-3
System Definition -
FUN<49>

Although system operating parameters are set automatically in the CPU, the
system definition instruction allows the user access to certain operating pa-
rameters. These include selecting power-off interrupt routine execution, ex-
panding indirect addressing, changing the scheduler for Unit servicing, inhibit-
ing automatic FAL(35) displays, and enabling programming in other than
PROGRAM mode.

FUN<49> must be preceded by a CMP <20> between AR 10 and AR 01
(never input CMP(52) for this purpose). This CMP<20> must be placed at

Section 4Programming Instructions

211

address 00000, with FUN<49> at address 0001. Only bits 00 through 07 of
the data input for the second operand of the FUN<49> instruction are used to
select the desired parameters; the rest of the instructions must be input as
shown. The instructions and bit allocations are shown next, with XX repre-
senting the digits selected by the programmer.

Flowchart Symbol

CMP<20>

AR 10

AR 01

FUN<49>

000

#5FXX

000

Power-off interrupt routine
execution

Expanding indirect addressing

Changing the scheduler

Inhibiting FAL(35) displays

Enabling programming in RUN and
MONITOR and during Debugging

0 0 0

07 06 05 04 03 02 01 00

Allocations of XX bits

Data Inputs
Acceptable values for XX are from #5F02 through #5F7A. The use of each bit
is described below.

Power-off Interrupts
If a 1 is input for bit 01 of XX, the power-off interrupt programmed between
LBL 9998 and RTI(44) will be executed whenever PC power is interrupted.
See 4-12-5 Interrupt Routines for details.

Expanding Indirect
Addressing

If a 1 is input for bit 03 of XX, indirect addressing will be enabled for all data
areas. When a 1 has been set in bit 03, the content of all channels indicated
by an indirect addresses must be input in binary rather than in BCD as nor-
mal. The following table shows the channels that are indirectly accessed ac-
cording to the content of the DM channel designated with *DM. For example,
programming a MOV(50) of #FFFF to *DM 0000 would move #FFFF to HR

Programming Instructions Section 4

212

10 if the content of DM 0000 was 418A.

*Expanded DM area

DM channel content

0000 through 0FFF

0000 through 270F*

4000 through 40FF

4100 through 413F

4180 through 41E3

41E4 through 41FF

4200 through 43FF

Channel actually accessed

DM 0000 through DM 4095

DM 0000 through DM 9999*

IR and SR channels 000 through 250

LR 00 through LR 63

HR 00 through HR 99

AR 00 through AR 27

TC 000 through TC 511

Changing the Scheduler
Normally, twice the time is allocated to servicing system Units (PC Link Units,
Host Link Units, Network Link Units, etc.) as is allocated to executing the user
program. If servicing of all Units has been completed, however, the remainder
of the allocated time is used for program execution before proceeding to the
next regular program execution cycle. (See Section 5 Program Execution
Time and I/O Response Time for details on normal scheduling.)

If bit 04 of XX is set to 1, all of the time allocated to Unit servicing will be used
for Unit servicing regardless of whether it is required or not. If Unit servicing is
completed, it will be begun again and repeated until the allocated time has
expired, increasing the I/O response time and producing faster processing for
system links.

Inhibiting FAL(35)
Displays

Normally error codes and messages are displayed on the Programming Con-
sole whenever FAL(35) is executed.

If bit 05 of XX is set to 1, error codes and messages will not be displayed un-
less the error read operation is performed from the Programming Console
(See 2-2-5 Reading Error Messages for details.)

Inhibiting error FAL(35) displays is convenient when used with address moni-
toring because it allows you to skip over these displays when checking a pro-
gram. This setting must be used with caution, however, because it inhibits all
FAL(35) displays regardless of the PC mode.

Enabling Programming
in Other than PROGRAM
Mode

If bit 06 of XX is set to 1, instructions can be written, deleted, or inserted dur-
ing program execution. These operations are normally possible only in PRO-
GRAM mode.

If an instruction requiring moving than one display is written into the program,
the lines of the instruction not displayed will contain the default values (nor-
mally zeros). Be sure to set these values as desired.

!

Section 4Programming Instructions

213

Caution Changing a program during execution may produce a dangerous situation un-
less the consequences of the change for the system being controlled by the pro-
gram are fully understood. Change the program only after considering all possi-
ble consequences of the change.

When ENT is pressed to write an instruction into memory, program execution
will pause for a maximum of 2 seconds. Confirm that interrupting program
execution for this period of time will not create a dangerous situation before
pressing ENT.

4-15
Trace Operations

Trace functions include data and step tracing and make debugging user pro-
grams an easier task. To set up and use the data trace functions it is neces-
sary to have a FIT or FA Computer (FC-984) with FSS. Data tracing is possi-
ble either by using TRSM<45> to mark tracing locations or by specifying a
time interval for scheduled tracing.

Data tracing can be used for individual bits or channels in the IR, SR, HR,
AR, and LR area, for bits or present values in the TC area, or for channels in
the DM area. Up to 12 bits and 3 channels can be designated for tracing at
the same time.

Step tracing is possible from the Programming Console. See 2-5-3 Step
Trace for details. The operation of data tracing using the FIT or FSS is de-
scribed in the FIT and FSS Operation Manuals.

Trace Memory Sampling
- TRSM<45>

TRSM<45> causes the data bits or channels specified from the FIT or FA
Computer to be stored in the Trace Memory of the PC. The specified data
may be recorded either at regular intervals or whenever TRSM<45> is ex-
ecuted.

TRSM<45> can be incorporated anywhere in a program and any number of
times to indicate the locations where sampling is to occur. The data in the
Trace Memory can then be monitored through the Programming Console.
(See Section 2)

TRSM<45> requires no operands. All settings for TRSM<45> are made from
the FIT or FA Computer and are not part of the program.

Flowchart Symbol

TRSM(45)

Flags
1812 Trace Complete flag
1813 Tracing flag
1814 Trace Start bit
1815 Sampling Start bit
The Sampling Start bit is set to begin the sampling process, but data is not
actually written to the PC’s Trace Memory until the Trace Start bit is turned
ON. The Sampling Start bit should not be turned ON from the program, only
from the FIT or FA Computer. The Trace Start bit may be turned ON from the

Programming Instructions Section 4

214

program if desired. The Tracing and Trace Complete flags can be accessed
from the program as required.

Application Example
The following merely outlines the data sampling process. Refer to the FIT or
FSS Operation Manual for details.

TRSM<45>

AND 00000

OUTC(00) AR 1814

First, the Sampling Start bit AR 1815 is force-set from the FIT or FA Comput-
er (i.e., turned from OFF to ON) to start the sampling process. When input AR
1815 turns ON, the trace initiator AR 1814 turns ON, and data is sampled
according to the delay frequency (assuming it has been set - refer to the FIT
or FSS Operation Manual).

Monitoring and Trace Memory reading is done from the Programming Con-
sole, FIT or FA Computer.

Delay frequency

AR1815

AR1814

AR1813

AR1812

Sampling

4-16
File Memory Instructions

File memory instructions all involve the transfer of data between the File
Memory area and the PC memory areas. Since the File Memory area resides

Section 4Programming Instructions

215

on an external File Memory Unit, the instructions described in this section can
only be used if there is a File Memory Unit mounted.

File Memory transfers are done in blocks of 128 channels. File Memory Units
are available with a capacity of either 1000 or 2000 blocks. The blocks are
numbered from zero.

Exercise care when transferring a very large number of blocks or channels
since this can greatly increase the overall execution time of the program.

AR 19 through AR 21 contain flags and data channels that provide informa-
tion of file memory instruction execution. Refer to 3-5 Auxiliary Relay Area -
AR for details.

4-16-1
File Memory Read -
FILR<42>

FILR<42> reads data from the File Memory area in 128-channel block units,
and outputs the data to the specified PC destination channels. All destination
channels must be in the same data area.

Three operands are required: the number of blocks to be transferred (N), the
beginning source block (S), and the beginning destination channel (D). S and
N must be in BCD.

If the destination area is too small to accommodate all of the transfer data,
only the portion that will fit will be transferred. Data cannot be transferred to
the extended portion of an expanded DM area if an EPROM chip is being
used for Program Memory.

If a power failure occurs during FILR<42> execution, transfer of the block
which was being transferred when the power failed will be completed before
operation stops.

Flowchart Symbol

FILR<42>

N

S

D

Data Areas
N and S

IR, SR, HR, AR, LR, TC, DM, *DM, #

D

IR, HR, AR, LR, TC, DM, *DM

Flags
ER File Memory Unit is not mounted.

Content of block data is not in BCD.
The specified number of blocks is greater than 999 or 1999.
N and/or S is not in BCD.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

Programming Instructions Section 4

216

AR Flags

AR 1901 Data Transfer flag (ON during transfer)

AR 1902 Transfer Direction flag (OFF for FILR)

AR 1903 - AR 1906 Error while transfer in progress

AR 20 Ch Total number of transfer blocks (four-digit BCD)

AR 21 Ch Remaining number of blocks to be transferred
(four-digit BCD)

4-16-2
File Memory Write -
FILW<43>

FILW<43> transfers data from a PC memory area to the File Memory area.
The data is transferred in 128-channel (block) units.

Three operands are required: the number of blocks to be transferred (N), the
beginning source channel (S), and the beginning destination block (D). D and
N must be in BCD.

If a power failure occurs during FILW<43> execution, transfer of the block
which was being transferred to when the power failed will be completed be-
fore transfer stops.

If the last block of the source transfer area does not have a full 128 channels,
the unused channels of the File Memory block will be left empty (0000).

Flowchart Symbol

FILW<43>

N

S

D

Data Areas
N

IR, SR, HR, AR, LR, TC, DM, *DM, #

S

IR, SR, HR, AR, LR, TC, DM, *DM

D

IR, HR, AR, LR, TC, DM, *DM, #

Flags
ER File Memory Unit is not mounted.

N and/or S is not in BCD.
The specified number of blocks is greater than 999 or 1999.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)

!

Section 4Programming Instructions

217

AR Flags

AR 1901 Data Transfer flag (ON during transfer)

AR 1902 Transfer Direction flag (ON for FILW<43>)

AR 1903 - AR 1906 Error while transfer in progress

AR 20 Ch Total number of transfer blocks (four-digit BCD)

AR 21 Ch Remaining number of blocks to be transferred
(four-digit BCD)

Caution If power-off interrupts are being used, data transfer to the File Memory area may
not be completed if a power failure occurs while FILW<43> is being executed. To
ensure proper data execution, FILW<43> should be re-executed after restarting
the system.

4-16-3
External Program Read -
FILP<44>

FLIP<44> reads data stored in the specified File Memory blocks, transfers it
to the Program Memory area at the addresses immediately following
FLIP<44>, and then executes the transferred program. The transferred pro-
gram data replaces existing program data. Data cannot be transferred when
an EPROM chip is being used for Program Memory.

The transfer data area starts at the specified block and continues to the last
block in the File Memory area.

The only operand required is the beginning block number (BB) of of the data
to be transferred.

Flowchart Symbol

FILP<44>

BB

Data Areas
IR, SR, HR, AR, LR, TC, DM, *DM, #

Flags
ER ROM is being used for memory.

File Memory Unit is not mounted.
Content of B is not in BCD.
The specified number of blocks is greater than 999 or 1999.
Specified blocks are not program (UM) blocks.

!

Programming Instructions Section 4

218

AR Flags

AR 1901 Data Transfer flag (ON during transfer)

AR 1902 Transfer Direction flag (ON for FLIP<44>)

AR 1903 - AR 1906 Error while transfer in progress

AR 20 Ch Total number of transfer blocks (four-digit BCD)

AR 21 Ch Remaining number of blocks to be transferred
(four-digit BCD)

Caution If the File Memory area contains more data than will fit in the designated area of
Program Memory, ER will be set and FLIP<44> will not be executed.

If the content of any block between the specified block and the last block in the
File Memory is not program data (UM), ER will be set and FLIP<44> will not be
executed.

If the beginning of a group program (i.e., GN) is rewritten, that group program will
be ended (i.e., placed off standby), regardless of whether it was being executed
or awaiting execution before execution FLIP.

When FLIP is used in a group program, that group program will be continued af-
ter execution of FLIP until the GE(12) or a jump condition is reached.

When transferring in parts of programs, be sure that all labels, group program
ends (GE), and other instructions with corresponding instructions in the program
before FLIP are provided.

Do not transfer in ladder diagram programs (e.g., those for the C1000H or
C2000H). These will not execute correctly in the C1000HF.

4-17
Intelligent I/O
Instructions

The intelligent I/O instructions are used for input/output operations with an
Intelligent I/O Unit, such as an ASCII Unit. These instructions allow the PC to
send data to and to receive data from an Intelligent I/O Unit.

4-17-1
Intelligent I/O Write -
WRIT(87)<87>

WRIT transfers channel data through the I/O channel allocated to an Intelli-
gent I/O Unit and sequentially writes the data to the memory area of the Intel-
ligent I/O Unit.

Three operands are required: the number of channels to be transferred (N),
the beginning PC source channel to be transferred (S), and the channel allo-
cated to the Intelligent I/O Unit to receive the transfer (D). Channel D must be
between 000 and 127 and must be allocated to an Intelligent I/O Unit. All PC
channels to be transferred must be in the same data area.

Completion of the transfer can be confirmed by using EQ. If the Intelligent I/O
Unit is busy and unable to receive data, the data will be transferred the next
time the WRIT instruction is executed.

Section 4Programming Instructions

219

Flowchart Symbol

WRIT(87)

N

S

D

Data Areas
N

IR, SR, HR, AR, LR, TC, DM, *DM,#

S

IR, SR, HR, AR, LR, TC, DM, *DM

D

IR (000-127)

Flags
ER Destination channel not allocated to an Intelligent I/O Unit.

N is not in BCD.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)
The specified data range exceeds a data area.

EQ OFF while WRIT is in progress; ON when WRIT completes.

Application Example
Products are carried along a conveyor to a scale where they are weighed.
When 100 products have been weighed, the weights are transferred to the
Intelligent I/O Unit through IR channel 003 and then to a printer or other ex-
ternal device.

Scale

PH: 00001

Ch
002

DM 0001

DM 0100

Ch
003

ASCII Unit

Indirect addressing through DM 0000 and incrementing of DM 0000 enables
placing the weights in consecutive channels. A sensor (PH: input 00000) is
used to detect each product as it is being weighted, and the weight is input
through IR channel 002. The flowchart for this process would be as follows:

Programming Instructions Section 4

220

LBL 30

OUT NOT 00100

OUT 00101

JMP LBL 50

Yes

No

Yes

No

MOV(50)

0000

DM 0000

LBL 0010

DIFU(40) 000

00000

WAIT

RPT(37)LBL 10

 #0099

AND 25503

LBL 20

WRIT(87)

#0100

DM 0001

003

INC(60)

DM 0000

MOV(50)

002

*DM 0000

CJP LBL 30

AND 25506

CJP LBL 40

JMP LBL 20

LBL 40

OUT NOT 00101

OUT 00100

LBL 50

BSET(73)

#0000

DM 0000

DM 0100

JMP LBL 10

Note that the ER flag is checked and, if an error has occurred, output 00101
is turned ON and that the EQ flag is check and, if transfer is completed, out-
put 00100 is turned ON. In either case, the DM channels being used for the

Section 4Programming Instructions

221

data are reset to all zeros and the entire process is repeated. If the EQ flag
shows that transfer has not been completed, the WRIT(87) is repeated. Out-
puts 00100 and 00101 can be used for lighting indicators or other appropriate
responses.

4-17-2
Intelligent I/O Read -
READ(88)<88>

READ(88) reads data from the memory area of an Intelligent I/O Unit and
transfers it through the channel allocated to the Intelligent I/O Unit to the des-
tination channels.

Three operands are required: the number of channels to be transferred (N),
the channel allocated to the Intelligent I/O Unit to be transferred from (S), and
the beginning PC destination channel to receive the transfer (D). Channel S
must be between 000 and 127 and must be allocated to an Intelligent I/O
Unit. All PC channels to receive the transfer must be in the same data area.

Completion of the transfer can be confirmed by using EQ. If the Intelligent I/O
Unit is busy and unable to receive data, the data will be transferred the next
time the WRIT instruction is executed.

Flowchart Symbol

READ(88)

N

S

D

Data Areas
N

IR, SR, HR, AR, LR, TC, DM, *DM, #

S

IR (000 - 127)

D

IR, HR, AR, LR, TC, DM, *DM

Flags
ER Source channel is not allocated to an Intelligent I/O Unit.

Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)
The specified data range exceeds a data area.

EQ OFF while READ is in progress; ON when READ completes.

Programming Instructions Section 4

222

4-18
Network Instructions

The Network instructions are used for communicating with devices on a LAN
linked to the PC through a Network Link Unit.

The following flags are used with Network instructions:

25202 - Level 0 Network Data Link Operating flag

25203—Network Error flag

25204—Network Run flag

25205—Level 1 Network Data Link Operating flag

AR 2402—ON when servicing of Network Link or Host Link Unit #1 is stopped

AR 2403 - ON when servicing of Network Link or Host Link Unit #0 is stopped

AR 2413—Network Link or Host Link Unit #1 Connected flag

AR 2414 - Network Link or Host Link Unit #0 Connected flag

4-18-1
Send - SEND(90)<90>

SEND(90) sends data to a device linked through a Network Link Unit.

Three operands are required: the beginning source channel to be sent from
the PC (S), the beginning destination channel on the node to receive the
transmission (D), and the first of the three control channels (C).

The data that will be transmitted is that which is present when SEND(90) is
executed. Do not change the status of any of this data until the transmission
has been completed. Use the Network Error and Run Flags to check whether
or not the transmission operation is finished.

Flowchart Symbol

SEND(90)

S

D

C

Control Data for
SYSMAC NET

Channel Bits 15 to 8 Bits 7 to 0

C Number of channels: 0000 Hex to 03E8 Hex (0 to 1,000)

C + 1 Bit 14:
0: Operating level 1
1: Operating level 0

Network number: 00 Hex to 7F Hex
(0 to 127)

C + 2 Destination port number
NSB: 00, NSU: 01, 02

Destination node number: 00 Hex
to 7E Hex (0 to 126)

Set the network number to 00 Hex when sending within the local network.

NSB: Network Service Board

NSU: Network Service Unit

Section 4Programming Instructions

223

The destination port number is normally set to 00. Refer to the Network Link
System Operation Manual for details.

SEND(90) takes the specified number of channels of data, starting with the
source beginning channel S, sends them to node N, and writes the data to
the destination channels beginning at channel D.

If the node number is set to 0, data will be sent to all linked PC and computer
nodes.

Control Data for SYS-
MAC LINK

Channel Bits 15 to 12 Bits 11 to 08 Bits 7 to 0

C Number of channels: 0000 Hex to 0100 Hex (0 to 256)

C + 1 Bit 12: Set to 0.

Bit 13:
1: Response not required.
0: Response required.

Bit 14:
1: Operating level 0.
0: Operating level 1.

Bit 15: Set to 1.

Number of retries:
0 Hex to F Hex
(0 to 15)

Response time limit
00 Hex to FF Hex
(0.1 to 25.4 s)

Note: The response
time limit will be 2 s if
set to 00 Hex. There
will be no response
time limit if set to
FF Hex.

C + 2 0 0 Destination node
number: 00 Hex to
3E Hex (0 to 62)

Number of retries: If there is no response within the set time, the data will be
resent for the number of times specified in these bits or until a response is
received, whichever comes first.

SEND(90) takes the specified number of channels of data, starting with the
source beginning channel S, sends them to node N, and writes the data to
the destination channels beginning at channel D.

If the node number is set to 0, data will be sent to all linked PC and computer
nodes. There will be no response and no resending regardless of other set-
tings.

Data Areas
S

IR, SR, HR, AR, LR, TC, DM, *DM

D and C

IR, HR, AR, LR, TC, DM, *DM

Flags
ER The specified node number is greater than 126 when using SYSMAC

NET or greater than 62 when using SYSMAC LINK.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)
The data sent overflows a data area.
There is no Network Link Unit.

Programming Instructions Section 4

224

4-18-2
Network Receive -
RECV(98)<98>

RECV(98) receives data from a device linked through a Network Link Unit.

Three operands are required: the beginning source channel on the node from
which to receive (S), the beginning destination channel in the PC to receive
the transmission (D), and the first of the three control channels (C).

The specified number of channels of data sent from node N, beginning with
the source channel S, are written to the requesting PC’s destination channels
beginning at D. Use the Network Error and Run Flags to check whether or not
the transmission operation is finished.

Flowchart Symbol

RECV(98)

S

D

C

Control Data for
SYSMAC NET

Channel Bits 15 to 8 Bits 7 to 0

C Number of channels: 0000 Hex to 03E8 Hex (0 to 1000)

C + 1 Bit 14:
0: Operating level 1
1: Operating level 0

Network number: 00 Hex to 7F Hex
(0 to 127)

C + 2 Source port number
NSB: 00, NSU: 01, 02

Source node number: 01 Hex to 7E
Hex (1 to 126)

Set the network number to 00 Hex when sending within the local network.

NSB: Network Service Board

NSU: Network Service Unit

The source port number is normally set to 00. Refer to the Network Link Sys-
tem Manual for details.

Control Data for
SYSMAC LINK

Channel Bits 15 to 12 Bits 11 to 08 Bits 7 to 0

C Number of channels: 0000 Hex to 0100 Hex (0 to 256)

C + 1 Bit 12: Set to 0.

Bit 13:
1: Response not required.
0: Response required.

Bit 14:
1: Operating level 0.
0: Operating level 1.

Bit 15: Set to 1.

Number of retries:
0 Hex to F Hex
(0 to 15)

Response time limit
00 Hex to FF Hex
(0.1 to 25.4 s)

Note: The response
time limit will be 2 s if
set to 00 Hex. There
will be no response
time limit if set to
FF Hex.

C + 2 0 0 Source node number:
01 Hex to 3E Hex
(1 to 62)

Section 4Programming Instructions

225

The response returned/not returned setting is normally set to 0 (response re-
turned).

Number of retries: If there is no response within the set time, the request to
send will be resent for the number of times specified in these bits or until a
response is received, whichever comes first.

Data Areas
S

IR, SR, HR, AR, LR, TC, DM, *DM

D and C

IR, HR, AR, LR, TC, DM, *DM

Flags
ER The specified node number is not in the range 1 to 126 when using

SYSMAC NET or 1 to 62 when using SYSMAC LINK.
Indirectly addressed DM channel is non-existent.
(DM data is not in BCD, or the DM area has been exceeded.)
The data sent overflows a data area.
There is no Network Link Unit.

4-18-3
About Network Send and
Receive Operations

Network send and receive operations are based on command/response pro-
cessing. That is, the transmission does not complete until the requesting
node acknowledges a response from the target node. Refer to the relevant
SYSMAC LINK Unit or SYSMAC NET Link Unit Operation Manual for details
about command/response operations.

A Network send or receive instruction is executed only once; however multi-
ple send/receive instructions are permitted. To coordinate the error-free ex-
ecution of Network send and receive instructions, use the SR flags described
in the following table.

SR Flag Functions

Network RUN Flag
(SR 25204) 0 during SEND/RECV(98) execution (including command

response processing).

Network Error Flag
(SR 25203) 0 following normal completion of SEND/RECV(98) (i.e,

after reception of response signal)

1 after an unsuccessful SEND/RECV(98) attempt.Error
status is maintained until the next SEND/RECV(98)
occurs.

Error types:
Timeout Error(command/response time is greater
than 1 S)
SEND/RECV(98) Data Error

Programming Instructions Section 4

226

Flag Timing

Network
Run flag

Network
Error flag

Instruction
received

 Transmission
completed normally

Instruction
received

Transmission
 error

Instruc-
tion re-
ceived

Application Example :
Multiple SEND/RECV(98)

To guarantee the success of multiple SEND/RECV(98) operations, your pro-
gram must have exclusive control of the Network Run and Error Flags to con-
firm normal completion of transmissions. Always check the Network Run flag
to confirm that transmissions are not already in process.

The following program can be used for multiple transmissions using
SEND(90) and RECV(98). Either ten channels of data in the PC starting from
DM 0010 are transmitted to ten channels starting at DM 0020 of node #3
(NSB), or sixteen channels of data starting from HR 10 of node 126 (NSB,
port #1) are received into sixteen channels in the PC starting at LR 10.

Section 4Programming Instructions

227

LBL 0030

OUT 00201

JMP LBL 40

XFER(72)

#0010

00000

DM 0010

LBL 0020

MOV(50)

#0010

DM 0003

MOV(50)

#0100

DM 0004

Yes

No

LBL 0010

AND 25204

WAIT

AND NOT 00000

CJP LBL 20

MOV(50)

#000A

DM 0000

MOV(50)

#0000

DM 0001

MOV(50)

#0010

DM 0002

SEND(90)

DM 0010

DM 0020

DM 0000

AND 25204

WAIT

AND 25203

OUTC(00) 00200

LBL 40

Network Run flag

Send/receive input

MOV(50)

#017E

DM 0005

RECV(98)

HR 10

LR 10

DM 0003

Control data set in DM
0000 through DM 0002

Data from IR channels 000
through 009 moved to DM
0010 through DM 0019 to set
desired data for the transfer.

Network transmission

Network Error flag

Output 00200 turned ON to
indicate an error if Network
Error flag is ON

Yes

No

AND 25204

WAIT

AND 25203

CJP LBL 30

OUT NOT 00201

XFER(72)

#0016

LR 10

DM 0030

JMP LBL 40

Data received in LR 10 through LR
25 moved to DM 0030 to 0045 if
transmission is normal

Control data set in
DM 0003 through
DM 0005

Output 00201 turned
ON to indicate an error

228

Section 5
Execution Time and I/O Response Time

One of the most important factors when designing a PC-based control system
is timing. How long does it take the PC to execute all the instructions in the
program? How long does it take the PC to produce an output in response to
an input signal? For accurate system operations, these values must be
known.

Although the execution time of the program can be automatically accessed
through the Programming Console, it is important to understand the concept
of timing when designing and programming a control system.

The purpose of this section is to define execution time and I/O response time
and to show how to calculate these quantities. Execution times for individual
instructions are listed in 5-3 Instruction Execution Times.

5-1
Overall PC Operation

When the PC is turned on, a number of preparations are made before going
into program execution and Unit servicing. These consist of clearing the IR
area and checking hardware and software, including checking the user pro-
gram. If these preparations have been completed normally, the PC moves to
actual system control.

System operation is cyclic, as shown below. The operations on the right side
are separated because they are not handled in the same way as instruction
execution and other Unit servicing (see Time Allocations, below). Network
Link servicing is shown at two different locations because some of it is han-
dled at fixed intervals and some of it is handled as a part of normal peripheral
servicing (see Time Allocations, below). “Required operations” vary with the
system and system status.

Servicing Host Link Unit
#1or Network link servicing

Network link servicing

Preparations

 1
cycle

Required operations

I/O bus check

I/O refreshing

Instruction execution

Peripheral servicing

Servicing Host Link Unit #0

Remote I/O Unit servicing

PC link servicing

Timer processing

Only the first three of these operations are completed each cycle, i.e., it may
take more than one cycle to complete the user program or to complete servic-
ing all Units. The next cycle will start operations at the point they were left the
last cycle.

Section 5Execution Time and I/O Response Time

229

The operation cycle of the PC is fixed to a maximum of 48 ms when a Net-
work Link Unit is not being used and to a maximum of 72 ms Network Link
Unit is being used.

I/O Unit Refreshing
I/O Units mounted to the CPU Rack or to Expansion I/O Racks connected
directly to the CPU Rack are refreshed each time instructions are executed,
except for 64-point Dynamic I/O Units. Dynamic I/O Units are refreshed every
20 ms.

I/O Units mounted to Slave Racks or to Expansion I/O Racks connected to
Slave Racks are refreshed during Remote I/O servicing.

Time Allocations
Although shown as one step in the execution cycle above, instruction execu-
tion and unit servicing is actually broken down into smaller time units as
shown below.

Every 5 ms
(approx.)

0.5 ms 1.0 ms 0.5 ms 1.0 ms

Instruction
execution

 Unit
servicing

Instruction
execution

 Unit
servicing

Remote I/O Unit servicing

PC link servicing

Timer processing

Network link servicing

Every 5 ms
(approx.)

Every 20 ms

Every 20 ms

As shown above, Unit servicing is scheduled in two different ways. Normal
Unit servicing is performed alternately with instruction execution, whereas
Remote I/O, PC link, timer, and some Network link servicing is performed at
fixed intervals.

Twice as long is allocated to Unit servicing as is allocated to instruction ex-
ecution. If all required Unit servicing for that cycle has been completed, how-
ever, the remainder of Unit serving time will be used for instruction execution
before moving on to the next 0.5-ms portion of instruction execution. Approxi-
mately 0.01 ms of each 1-ms portion of the time allocated to Unit servicing
will be required regardless of whether or not the relevant Units are included in
the system. The 1.0-ms portions allocated to Unit servicing sometime require
up to 0.3 ms extra to complete Remote I/O servicing.

One Master Remote I/O Unit is serviced every 5 ms. If there is more than one
Master in the system, multiply the number of Masters by 5 ms to calculate the
time required to service each, e.g., if eight Master are included, any one Mas-
ter will be serviced every 40 ms. This naturally delays I/O response time on
Slave Racks.

Execution Time and I/O Response Time Section 5

230

The following tables describe PC operations and provide the number of repe-
titions and total serving time per cycle for systems with and without Network
links.

Systems without Network Links

Operation

Required operations (battery error checks, mode
change check, Memory Unit check, output check)

I/O bus check (hardware check)

I/O refreshing (reading Input Unit terminal status to
and setting Output Unit terminals according to IR bits)

Instruction execution

Peripheral servicing (Programming Console, FIT, P-
ROM Writer, etc.)

Servicing of Host Link Unit #0

Servicing of Host Link Unit #1

Remote I/O Unit servicing

PC link servicing

Timer processing (updating PV)

Repetitions per cycle

1

1

1

32

8

8

8

9 to 10

2 to 3

4 to 5

Total time per cycle

Approx. 1 ms

Approx. 1 ms

Approx. 1 ms

16 ms min.

8 ms max.

8 ms max.

8 ms max.

3 ms max.

3 ms max.

5 ms max.

Systems with Network Links

Operation

Required operations (battery error checks, mode
change check, Memory Unit check, output check)

I/O bus check (hardware check)

I/O refreshing (reading Input Unit terminal status to and
setting Output Unit terminals according to IR bits)

Instruction execution

Peripheral servicing (Programming Console, FIT, P-
ROM Writer, etc.)

Servicing of Host Link Unit #0

Network link servicing

Remote I/O Unit servicing

PC link servicing

Timer processing (updating PV)

Repetitions per cycle

1

1

1

48

8

8

22

14 to 15

3 to 4

7 to 8

Total time per cycle

Approx. 1 ms

Approx. 1 ms

Approx. 1 ms

24 ms min.

8 ms max.

8 ms max.

22 ms max.

5 ms max.

4 ms max.

8 ms max.

5-2
Changing Time
Allocations

Time allocated to Unit servicing can be altered in two ways: by inhibiting serv-
icing of certain Units to increase the time used for instruction execution or by
forcing the PC to service Units for the entire allocated time.

Section 5Execution Time and I/O Response Time

231

Increasing Instruction
Execution

Servicing can be inhibited to increase the time used for instruction execution
by setting one or more of six control bits in the AR area. If servicing is inhib-
ited, the time normally used for it will be allocated to instruction execution.
The six control bits are as follows:

Control bit

AR 2400

AR 2401

AR 2402

AR 2403

AR 2404

AR 2405

Inhibited servicing

PC Link Unit #1

PC Link Unit #0

Host Link Unit #1 or Network Link Unit

Host Link Unit #0

Peripheral devices

I/O refreshing and Remote I/O Units

These control bits are effective only in MONITOR or PROGRAM mode and
must be set from the program. All of these bits are OFF immediately after PC
power is turned on.

Unit Servicing Priority
The system definition instruction can be used to give priority to Unit servicing
over instruction execution thereby increasing the response speed for Host
Links and SYSMAC NET links.

CMP<20>

AR 10

AR 01

FUN<49>

000

#5FXX

000

0 1 0 0

07 06 05 04 03 02 01 00

Allocations of XX bits
(The settings for bits not indicated here are de-
termined by other system definition settings.)

System Definition Instruction:FUN<49>

Always use CMP<20> and not CMP(52).

Place the above instructions at addresses 00000 and 00001 to give Unit ser-
vicing priority over instruction execution.

If the setting above is not made and there is no Unit for Unit servicing 1 (see
diagram), servicing will be completed in approx. 0.01 ms, and the remaining
time will be allocated to instruction execution as shown below.

Execution Time and I/O Response Time Section 5

232

Unit servicing 1

Instruction execution Unit servicing 2

0.5 ms 0.5 ms
In

st
ru

ct
io

n
ex

ec
ut

io
n

1 ms

If the setting above is made and there is no Unit for Unit servicing 1 (see dia-
gram below), the remaining time will not be allocated to instruction execution.
Unit servicing 2 will be performed before the next instruction is executed.

Unit servicing 2

Unit servicing 1

Unit servicing 3

0.5 ms 0.5 ms

In
st

ru
ct

io
n

ex
ec

ut
io

n

1 ms

In
st

ru
ct

io
n

ex
ec

ut
io

n

If AR 2400 to AR 2405 are ON (servicing prohibited) or if AR 2410 is OFF,
instruction execution will be given priority even if the system definition instruc-
tion above is executed. If AR 2410 is turned ON, the system definition instruc-
tion above will become valid, and Unit servicing will be given priority.

5-3
Instruction Execution
Times

This subsection lists the execution times for all instructions that are available
for the C1000HF. The conditions which may affect the execution time of a
given instruction are described briefly where relevant.

Both maximum and minimum execution times are listed with the conditions
for each being given. IL times are the execution time required when the in-
struction is in an interlock portion of the program and the interlock execution
condition is OFF.

Section 5Execution Time and I/O Response Time

233

Execution times are expressed in µs except where noted. The “Lines” column
provides the number of instruction lines required to input the instruction and
all required operands.

When step tracing in MONITOR mode, add 31 µs per instructions.

Instruction Execution Times

Function
Code

Instruction Lines Execution
Time

Conditions IL

--- And AND 1 5.8 As second or later instruction and
using HR bit

13.0 As first instruction and using IR bit

--- Or OR 1 5.2 As second or later instruction and
using HR bit

13.0 As first instruction and using IR bit

--- Load LD 1 6.1 As second or later instruction and
using HR bit

13.0 As first instruction and using IR bit

--- Block AND AND
LD

1 3.3 ---

--- Block OR OR LD 1 3.1 ---

--- Output OUT 2 8.5 Using HR bit 7.0

11.5 Using IR bit 10.6

--- Wait WAIT 1 4.0 No wait produced 3.4

16.2 Wait produced ---

--- Label LBL 2 3.0 --- 3.4

--- Jump JMP 2 11.0 Direct jump to label

29.1 Jump using channel contents as
label number

--- Conditional
Jump

CJP 2 8.0 NO branch (next step)
Jump

11.9 YES branch (to label)

--- Timer TIM 3 12.9 After time has expired

43.9 Starting timer with SV in IR
channel

--- Counter CNT 4 22.4 After count has expired

42.4 Starting counter with SV in IR
channel

--- Timer/Counter
Reset

CNR 2 14.7 For CNT with SV designated with
constant

30.5 For TIM with SV designated
through indirect DM
address

3 33.6 Resetting stopped TIM or CNT SV

21.4 ms Resetting 10,000 DM channels

--- Shift Register SFT 4 36.8 One-channel shift in HR area 3.4

2.4 ms 128-channel shift in IR area

--- No Operation NOP 1 2.5 --- ---

(00) Conditional Output OUTC 2 9.4 Outputting to HR bit 7.0

12.5 Outputting to IR bit 10.6

Execution Time and I/O Response Time Section 5

234

Instruction Execution Times (Continued)

Function
Code

ILConditionsExecution
Time

LinesInstruction

(01) AND Group ANDG 2 10.5 ---

11.5 As first instruction

(02) OR Group ORG 2 10.5 As second or later instruction

11.5 As first instruction

(10) Basic Instructions GN 2 2.5 --- 3.4

(11) Group Start GS 2 20.7 ---

(12) Group End GE 2 23.7 When group program is ended

37.7 At end of group program

(13) Group Pause GP 2 17.6 ---

(14) Group Restart GR 2 17.3 ---

(15) Group Off GOFF 2 35.25 min.* When group program is ended

53.45 min.* At end of group program

(16) Group Continue GC 2 20.1 ---

(17) Group Jump GJ 1 14.3 ---

(30) Timer Start TMS 3 15.4 For active timer with SV input as
constant

40.0 For non-active timer with SV des-
ignated through indirect DM ad-
dress

(31)
<92>

Subroutine Definition SBN 2 2.5 --- ---

(32)
<91>

Subroutine Entry SBS 2 18.8 --- 3.4

(33)
<93>

Return RET 1 13.0 ---

(34) Subroutine Test SBT 2 10.4 ---

(35)
<06>

FAL(35) Clear FAL
(35) 00

3 15.1 No FAL(35) code present
<06> (35) 00

411 FAL(35) code present

Failure Alarm FAL
(35)

3 48.8 No message present
(35)
01—
99

60.0 Message designated through indi-
rect DM address

(36)
<07>

Severe Failure Alarm FALS 3 38.6 No message present 4.7
<07>

51.1 Message designated through indi-
rect DM address

(37) Repeat RPT 3 15.6 Last repetition 3.4

19.8 First repetition

(38)
<02>

Interlock IL 2 12.2 --- ---

(39)
<03>

Interlock Clear ILC 1 3.3 ---

(40)
<13>

Differentiation Up DIFU 3 10.8 Using HR bit
<13>

15.8 Using IR channel

(41)
<14>

Differentiation Down DIFD 3 11.0 Using HR bit
<14>

15.5 Using IR channel

Section 5Execution Time and I/O Response Time

235

Instruction Execution Times (Continued)

Function
Code

ILConditionsExecution
Time

LinesInstruction

(42) Mask MSKS 2 14.5 For I/O interrupts and constant as
operand

3.4

30.0 For scheduled interrupts and IR
channel as operand

(43) Interrupt Clear CLI 2 14.5 For I/O interrupts and constant as
operand

30.0 For scheduled interrupts and IR
channel as operand

(44) Interrupt Return RTI 1 33.4 --- ---

(45) Mask Read MSKR 2 16.8 For I/O interrupts with result to HR
channel

3.4

43.5 For scheduled interrupts with re-
sult to output channel

(46) Conditional Skip SKIP 2 4.3 When instruction(s) not skipped

46.2 When instruction(s) skipped

(47) Process Display S 2 13.5 ---

(50)
<21>

Move MOV 3 16.9 Using HR channels
<21>

53.2 Input channel to output channel

(51)
<22>

Move Not MVN 3 17.2 Using HR channels
<22>

53.5 Input channel to output channel

(52)
<20>

Compare CMP 3 15.1 Comparing constant and HR chan-
nel

35.9 Comparing input channels

(53)
<30>

BCD Add ADD 4 35.7 Adding input channels with result
to output channel

82.8 Adding input channels with result
to output channel

(54)
<31>

BCD Subtract SUB 4 35.1 Subtracting HR channel from con-
stant or HR channel with result to
HR channel

82.3 Subtracting IR channels with result
to output channel

(55)
<32>

BCD Multiply MUL 4 70.8 Multiplying constant and HR chan-
nel with results to HR channel

120.4 Multiplying input channels with re-
sult to output channel

(56)
<33>

BCD Divide DIV 4 70.5 Dividing constant by HR channel
with results to HR channel

119.6 Dividing input channels with result
to output channel

(57)
<23>

BCD to Binary BIN 3 20.8 Using HR channels
<23>

57.1 Converting input channel with re-
sult to output channel

(58)
<24>

Binary to BCD BCD 3 19.6 Using HR channels
<24>

55.9 Converting input channel with re-
sult to output channel

Execution Time and I/O Response Time Section 5

236

Instruction Execution Times (Continued)

Function
Code

ILConditionsExecution
Time

LinesInstruction

(59) Branch for Zero BRZ 2 13.3 Using HR channel, no jump 3.4

46.8 Using input channel with jump to
input-channel designated label

(60)
<38>

Increment INC 2 21.6 Incrementing non-I/O channel
<38>

47.0 Incrementing output channel

(61)
<39>

Decrement DEC 2 20.7 Using any but I/O channel
<39>

46.1 Using output channel

(62)
<26>

Arithmetic Shift Right ASR 2 15.9 Using any but I/O channel
<26>

41.3 Using output channel

(63)
<25>

Arithmetic Shift Left ASL 2 15.9 Using any but I/O channel
<25>

41.3 Using output channel

(64)
<72>

Square Root ROOT 3 100.0 Using HR channels
<72>

133.9 Using input channels with result to
output channel

(65)
<34>

Logical AND ANDW 4 21.8 Using HR channels
<34>

69.0 Using input channels with result to
output channel

(66)
<35>

Logical OR ORW 4 21.5 Using HR channels
<35>

68.7 Using input channels with result to
output channel

(67)
<36>

Exclusive OR XORW 4 21.9 Using HR channels
<36>

69.0 Using input channels with result to
output channel

(68)
<37>

Exclusive NOR XNRW 4 21.9 Using HR channels
<37>

69.0 Using input channels with result to
output channel

(69)
<28>

Rotate Right ROR 2 16.7 Using HR channel
<28>

41.9 Using output channel

(70)
<27>

Rotate Left ROL 2 16.7 Using HR channel
<27>

42.2 Using output channel

(71)
<29>

Complement COM 2 13.5 Using HR channel
<29>

39.0 Using output channel

(72)
<70>

Block Transfer XFER 4 49.0 Constant to HR channel
<70>

24.4 ms Writing 9999 DM channels to indi-
rectly address destination

(73)
<71>

Block Set BSET 4 36.1 Constant to HR channel
<71>

21.3 ms Writing 9999 DM channels using
indirectly addressed source and
destination

(74)
<73>

Data Exchange XCHG 3 19.7 Exchanging HR channels
<73>

30.0 Exchanging output channels

(75)
<74>

One Digit Shift Left SLD 3 37.8 Shifting HR channel
<74>

18.5 ms Shifting 10,000 DM channels

(76)
<75>

One Digit Shift Right SRD 3 37.8 Shifting HR channel
<75>

18.5 ms Shifting 10,000 DM channels

Section 5Execution Time and I/O Response Time

237

Instruction Execution Times (Continued)

Function
Code

ILConditionsExecution
Time

LinesInstruction

(77)
<76>

4 to 16 Decoder MLPX 4 35.5 Decoding HR channel to HR chan-
nel

3.4

105.0 Decoding input channel to output
channel

(78)
<77>

Encoder DMPX 4 41.9 Encoding HR channel to HR chan-
nel

107.8 Encoding input channel to output
channel

(79)
<78>

Seven-Segment Decoder SDEC 4 39.4 Decoding HR channel to HR chan-
nel

104.9 Decoding input channel to output
channel

(80) Multi-output Timer MTIM 4 59.7 Using HR channels

191.7 Using I/O channels

(87)
<87>

Intelligent I/O Write WRIT 4 83.2 Writing HR channel
<87>

1.7 ms Writing 255 DM channels

(88)
<88>

Intelligent I/O Read READ 4 81.0 Reading HR channel
<88>

1.3 ms Reading 255 DM channels

(90)
<90>

Send SEND 4 107.7 Sending HR channel
<90>

3.5 ms Sending 1,000 DM channels

(94)
<16>

Word Shift WSFT 4 37.9 Shifting constant to HR channel
<16>

22.0 ms Shifting input channel to 10,000
DM channels

(95)
<40>

Set Carry STC 1 5.2 ---

(96)
<41>

Clear Carry CLC 1 4.9 ---

(98)
<98>

SYSNET Receive RECV 4 58.3 Receiving HR channel

104.0 Receiving input channel

<12> Reversible Counter CNTR 3 21.6 During operation with no incre-
ment or decrement

49.0 First execution with SV designated
through input channel

<42> File Memory Read FILR 4 2.9 ms One block

177 ms 79 blocks

<43> File Memory Write FILW 4 3.0 ms One block

171 ms 79 blocks

<44> External Program Read FILP 2 48.6 ms One block

1.15 s 256 blocks

<45> Trace Memory Sampling TRSM 1 4.0 When not tracing ---

94.0 When tracing

<49> System Definition FUN 4 2.5 3.4

<50> Binary Addition ADB 4 24.2 Using HR channels

65.6 Using input channels with result to
output channel

Execution Time and I/O Response Time Section 5

238

Instruction Execution Times (Continued)

Function
Code

ILConditionsExecution
Time

LinesInstruction

<51> Binary Subtraction SBB 4 24.2 Using HR channels 3.4

65.9 Using input channels with result to
output channel

<52> Binary Multiplication MLB 4 47.9 Using HR channels

92.1 Using input channels with result to
output channel

<53> Binary Division DVB 4 56.7 Using HR channels

110.1 Using input channels with result to
output channel

<54> Double BCD Add ADDL 4 79.0 Using HR channels

162.0 Using input channels with result to
output channel

<55> Double BCD Subtract SUBL 4 80.6 Using HR channels

161.5 Using input channels with result to
output channel

<56> Double BCD Multiply MULL 4 203.5 Using HR channels

283.0 Using input channels with result to
output channel

<57> Double BCD Divide DIVL 4 192.5 Using HR channels

287.2 Using input channels with result to
output channel

<58> BCD to Double Binary BINL 3 39.7 Converting HR channel to HR
channel

96.4 Converting input channel to output
channel

<59> Double Binary to Double
BCD

BCDL 3 44.2 Converting HR channel to HR
channel

99.7 Converting input channel to output
channel

<60> Compare Long CMPL 3 25.7 Using HR channels

80.3 Comparing input channels with re-
sult to output channel

<61> Binary Increment INCB 2 13.5 Incrementing any but output chan-
nel

38.9 Incrementing output channel

<62> Binary Decrement DECB 2 13.5 Decrementing any but output
channel

38.9 Decrementing output channel

<67> Bit Counter BCNT 4 44.7 Counting HR channel with result to
HR channel

33.6 ms Counting 9999 indirectly ad-
dressed DM channels with result
to output channel

<68> Block Compare BCMP 4 62.1 Using HR channels

594.9 Comparing input channels with re-
sult to output channel

Section 5Execution Time and I/O Response Time

239

Instruction Execution Times (Continued)

Function
Code

ILConditionsExecution
Time

LinesInstruction

<69> Numeric Conversions FUN 4 96.4 Computing sine or cosine 3.4

1.4 ms Using maximum size table and
channel operand

<79> Floating Point Divide FDIV 4 58.5 Using HR channels

265.0 Dividing input channels with 0 re-
sult to output channel

<80> Single Channel Distribution DIST 4 30.0 Using HR channels

66.8 Moving input channel to output
channel with input-channel desig-
nation for offset

<81> Data Collection COLL 4 31.7 Using HR channels

81.6 Moving input channel to output
channel with input-channel desig-
nation for offset

<82> Move Bit MOVB 4 34.9 Moving HR channel to HR channel

82.1 Moving input channel to output
channel

<83> Move Digit MOVD 4 30.7 Moving HR channel to HR channel

77.9 Moving input channel to output
channel

<84> Reversible Shift Register SFTR 4 40.5 One-channel HR shift with HR
control data

15.4 ms 10,000-channel DM shift with input
channel IR control data

<85> Table Compare TCMP 4 64.5 Comparing HR channels

335.3 Comparing input channels

<86> ASCII Code Conversion ASC 41.5 Converting HR channel to HR
channel

116.9 Converting input channel to output
channel

Execution Time and I/O Response Time Section 5

240

5-4
I/O Response Time

Response time is the time it takes for the PC to output a control signal after it
has received an input signal. How long it takes to respond depends on factors
such as the system configuration and when the CPU receives the input signal
relative to program execution. For more details on response times for config-
urations involving the systems below, refer to the appropriate systems manu-
al as indicated.

PC to Remote I/O Systems: Remote I/O Systems Operation Manual

PC Link Systems: PC Link Systems Operation Manual

Host Link Systems: Host Link Systems Operation Manual

An input will naturally not produce an output unless both an input instruction
and an output instruction are executed for it. In the following calculations X
indicates the time that expires between the receiving the input and executing
an input instruction for it. Y indicates the time from beginning execution of the
input instruction until an output instruction is executed (i.e., the program ex-
ecution time for all instructions from the input instruction through the output
instruction).

5-4-1
CPU Rack Response
Times

The following equations can be used to compute the maximum and minimum
response times for I/O Units mounted to the CPU Rack or to an Expansion
I/O Rack connected directly to the CPU Rack. The timing charts serve to ex-
plain the various elements of the equations.

Normal I/O Units
• Minimum I/O Response Time

The minimum response time occurs when X, the input ON-delay time, is zero
because the instruction using the input was processed immediately after the
input was received (i.e., after the delay time had expired).

Input
instruction
executed.

Output
instruction
executed.

PC

Input ON-delay time

Input

Output

Minimum I/O response time

Output ON-delay time

Y

Minimum I/O Response Time = Input ON-delay time + Y + Output ON delay
time

Section 5Execution Time and I/O Response Time

241

• Maximum I/O Response Time

PC

Input ON-delay time

Input

Output

Minimum I/O response time

Output ON-delay time

Y

Input
instruction
executed.

Output
instruction
executed.

X

Maximum I/O Response Time = Input ON-delay time + X + Y + Output ON
delay time

64-Point I/O Units
In the following calculations [Y/20] indicates the truncated integer of Y divided
by 20.

• Minimum I/O Response Time

Y

PC

Input ON-delay time

Input

Output

Minimum I/O response time

Output ON-delay time

Input
instruction
executed.

Output
instruction
executed.

Dynamic I/O
Unit refreshing

Minimum I/O response time = Input ON-delay time + (([Y/20] +1) x 20) + Out-
put ON-delay time

Execution Time and I/O Response Time Section 5

242

• Maximum I/O Response Time

X Y

PC

Input ON-delay time

Input

Output

Minimum I/O response time

Output ON-delay time

Input
instruction
executed.

Output
instruction
executed.

Dynamic I/O
Unit refreshing

20 ms

Maximum I/O response time = Input ON-delay time + 20 + (([(X + Y)/20] +1) x
20) + Output ON-delay time

5-4-2
Remote I/O Systems

The following calculations assume that both the input and the output are for
I/O Units mounted to Slave Racks. Here, X is the time required to receive an
ON execution condition for a WAIT following an AND for the input (i.e., an
input for the programmed bit).

The time required to service a Master Remote I/O Unit depends on the num-
ber of Masters in the system. The time between servicing any one Master, W
in following equations, is 5 ms times the number of Masters.

The following variable are also used in the following equations.

Transmission Times
ΤSlave (per Slave) = 1.4 ms + (0.2 ms x n)

ΤTT (per Transmission Terminal) = 2 ms x m

Where n = total number of I/O channels used on that Slave Rack

and m = total number of channels used for Optical Transmitting I/O

Units and Transmission terminals

Master Polling Time
ΤMaster = ΣΤSlave + ΣΤTT

In the following calculations [Y/W] indicates the truncated integer of Y divided
by W.

Section 5Execution Time and I/O Response Time

243

Minimum Response
Time

Minimum Response time

Remote I/O servicing

W

Y

PC

Master

Transmission
time

Transmission
time

Slave
Input ON-delay time

Output ON-delay time
Input

Output

Minimum Response time = Input ON-delay time + (([Y/W] +1) x W) + Output
ON-delay time

Maximum Response
Time

Output ON-delay time

X+Y

W

Remote I/O servicing

PC

Master

Master polling time Master polling time

Transmission
 time

Slave

Input

Output

Input ON-delay time

Maximum Response time = Input ON-delay time + W (([(X + Y)/W] +1) x W) +
(Master polling time + transmission time) x 2 + Output ON-delay time

5-4-3
PC Link Systems

When PC links are serviced, the following operations are performed in order.

1.Data exchange between link buffer in PC Link Unit and PC link buffer in PC

2.Data exchange between PC link buffer in PC and LR area

Each PC Link Unit is serviced every 20 ms.

The PC link transmission time is 2.5 ms.

Execution Time and I/O Response Time Section 5

244

The following equations show calculation of the time required from an output
from the LR area of the PC of PC Link Unit #0 to an input in the LR area of
the PC of PC Link Unit #1.

Minimum Response
Time

PC of
PC Link
Unit #0

PC
Link
Unit

LR area

PC link
buffer

 Link
buffer

PC

20 ms PC link processing cycle

PC link service time
Transmission
time

PC of
PC Link
Unit #7

PC
Link
Unit

PC

LR area

PC link
buffer

 Link
buffer

PC link transmission

Minimum Response time = 20 ms + Transmission time + 3 x PC link service
time

Maximum Response
Time

The PC link cycle time is the time required for one PC Link Subsystem from
the time a particular PC Link Unit is serviced until the same Unit is serviced
again. This time equals 5 ms plus 2.5 ms times the number of PC Link Units
in the PC Link Subsystem, where 5 ms is for overhead processing and 2.5 is
the transmission time per Unit.

Section 5Execution Time and I/O Response Time

245

V is 20 ms unless the PC cycle time is less than 20 ms and PC Link Unit link
buffer data cannot be transferred to the PC link buffer in the PC within this
time, in which case it is 40 ms.

PC link cycle time

PC of
PC Link
Unit #0

PC
Link
Unit

LR area

PC link
buffer

 Link
buffer

PC

20 ms PC link processing cycle

PC link service
time

Transmission time

PC of
PC Link
Unit #7

PC
Link
Unit

PC

LR area

PC link
buffer

 Link
buffer

PC link transmission

Maximum Response time = 20 ms + PC link cycle time + Transmission time +
V + 3 x PC link service time

5-4-4
Host Link Systems

The following equations show calculation of the time required from an output
of a command from the host computer until a response to the command is
received.

In the following equations, U is the Host Link service interval and equals 48/8,
or 6 ms, if there is no Network link in the system, and 72/8, or 9 ms, is there
is a Network link. “n” is the number of execution processing times required to
process the command. “2n” is required in the equations because data trans-
fer between the PC and Host Link Unit buffer is executed alternately with ex-
ecution processing.

Command and response processing in the Host Link Unit varies, but together
required a maximum of approximately 10 ms.

A minimum of three service times are required for the PC to receive the host
computer command, process it, and return a response. Processing host com-
puter commands sometimes requires more than one service time.

Execution Time and I/O Response Time Section 5

246

Minimum Response
Time

Execution pro-
cessing time

Host
computer

Buffer in Host
Link Unit

PC

Command

Command

Command

Response

Response

Response

UU

Minimum Response time = Command transmission time + command pro-
cessing time + 2U + U x 2n + Host Link servicing time + Host Link response
processing time + response transmission time

Maximum Response
Time

The maximum response time can be lengthened by 2U by reception timing
(i.e., if Host Link servicing has just been completed).

Command Response

Execution processing time

Command

Host computer

Buffer in Host
Link Unit

PC

Command

Command

Response

Response

Maximum Response time = Command transmission time + command pro-
cessing time + 4U + U x 2n + Host Link servicing time + Host Link response
processing time + response transmission time

Command and Response
Transmission Times

The following transmission times are required at a baud rate of 9,600 bps
with the given command and response formats to read I/O bits from the IR
area.

@ RR 0001Command

Response @ ××××

××

×× RR

0000

0000

FCS

FCS

Transmission time

18.3 ms

18.3 ms

Calculation Example
The following calculations show the minimum and maximum response times
under the conditions described above, as well as the following conditions: the
system does not include a Network Link Unit; U is 6 ms, the Host Link service
time is 1 ms, and the combined Host Link command and response process-
ing time is 5 ms.

Minimum response time = 18.3 + 2 x 6 +1 + 5 + 18.3 = 54.6 ms

Maximum response time = 18.3 + 4 x 6 +1 + 5 + 18.3 = 62.5 ms

247

SECTION 6
Error Messages and Troubleshooting

The C1000HF has self-diagnostic functions to identify many types of abnor-
mal system conditions. These functions minimize downtime and enable quick,
smooth error correction.

The error light on the front panel of the Programming Console indicates hard-
ware errors such as CPU, I/O Unit, and Remote I/O Unit malfunctions. The
warning light indicates such things as battery error or user-defined errors.

In addition, the Programming Console acts as a monitor by displaying explicit
error messages and FAL error codes.

This section lists the error messages displayed on the LCD of the Program-
ming Console.

6-1
Programmed Alarms and
Error Messages

Use the diagnostic instructions, FAL(35) and FALS(36), to program displays
of error codes and messages when user-defined error conditions arise. Note
that it is entirely up to the user to decide the conditions under which a
FAL(35) or FALS(36) is executed. Refer to 4-14-2 Failure Alarm -
FAL(35)<06> and Severe Failure Alarm - FALS(36)<07> for details about how
to use these diagnostic instructions in your program.

When “FAL(35) N” is executed, the value of the FAL(35) error code “N” is
stored as a 2-digit BCD code in the SR area (See 3-3-4 FAL Error Code Out-
put Area). FAL(35) also lights the warning indicator on the front panel of the
CPU.

AND XXXXX

Yes

No

Input indicating abnormal condition

Beginning address
of message

LBL

FAL(35) 01 to 99

DM 0000

CJP

Error Messages and Troubleshooting Section 6

248

When FALS(36) is executed, the error indicator on the front panel of the CPU
lights and system operations are halted.

Yes

No

AND XXXXX

Beginning address
of message

LBL

FALS(36) 01 to 99

DM 0100

CJP

Input indicating emergency

To resume system operations, determine the cause of the error, make correc-
tions, then clear the error. FALS(36) errors must be cleared from the Pro-
gramming Console in PROGRAM mode using the procedure given in 6-2
Reading and Clearing Errors and Messages.

FAL error codes 01 to 99 are assigned as desired by the programmer.
FAL(35) 00 is reserved for clearing other FAL codes and messages present in
the system.

6-2
Reading and Clearing
Errors and Messages

To display an error code or a message on the Programming Console, press
CLR, MONTR, FUN, and ENT. (See 2-2-5 Reading Error Messages for more
information.)

To display the next error or message, press ENT again. If the system is in
PROGRAM mode, pressing ENT clears the error message and code that
were being displayed. Continue pressing ENT, taking note of the errors or
messages, until all have been cleared and the message “ERR CHK OK” is
displayed. Then correct each of the errors.

The buzzer will sound if the system cannot clear an error code or a message
for some reason. If this situation arises, remove the cause of the error and
then display and clear the error again.

The asterisks in the error messages on the following pages indicate variable
numerals in actual displays.

N
ot operating

F
atal

means that the LED is lit, that the LED is not lit.

means that the LED being lit or not makes no difference.

Section 6Error Messages and Troubleshooting

249

6-3
System Errors

Error CPU Leds

State Item Error Display Power Run Error Warning Load
OFF

Waiting for start in-
put

Waiting for Remote
I/O Units

Power interruption

CPU error

Memory error

Program error

I/O bus error

I/O table overflow

Invalid I/O table

System error

Jump error

RTI error

Error Messages and Troubleshooting Section 6

250

Run
output

SR
Area

Error
Code

Probable cause of error Correction

Start input of CPU Power Unit is OFF. Short-circuit the start input terminal of the CPU
Power Unit.

OFF
Remote I/O Unit power off.
Terminator not set or two terminators set
for same Subsystem.

Check the power supply and the terminator set-
tings.

OFF
Power has been cut off for at least 10
ms.

Check voltage source and power lines. Try to
power-up again.

OFF
Watchdog timer 130 ms or more. In PROGRAM mode, power-up the system again.

Check the user program again.

OFF F1
Memory Unit is incorrectly mounted or
missing.
Memory parity error occurred.
Improper instruction.

Do a program check and fix the error.
Make sure that the Memory Unit is mounted cor-
rectly.
Check that the battery is inserted properly.
Clear error after fixing.

OFF F0
Capacity of Program Memory area ex-
ceeded.

Check the program

OFF
(Note)

Failure is in the bus line between the
CPU Rack and the Expansion I/O Racks.

Check the number of points with I/O Table Read,
and use I/O Table Register to match the register
table to the actual table.
Clear error after fixing.

OFF
E1

Same Unit number assigned to more
than one Special I/O Unit.
I/O limitations exceeded when using
CPU02.

Check the Unit numbers with I/O Table Read.
With CPU02 use only slots 0 to 4 on CPU Rack
and no Masters.
Use CPU01 or place I/O Units on Expansion I/O
Rack.

OFF E0
I/O Units have been replaced and the
registered I/O table does not agree with
the I/O Units actually mounted to the PC.

Check the I/O table with I/O Table Verify, and use
I/O Table Register to match the registered table
to the actual table.

OFF 01 to
99

FALS(36) has been executed by the pro-
gram.

Check the program.

OFF F2
Label for jump not in program. Check the program.

OFF F4
RTI used for other than interrupt proc-
essing.

Check the program.

N
on-fatal

means that the LED is lit,

means that the LED being lit or not makes no difference.

Section 6Error Messages and Troubleshooting

251

Error CPU Leds

State Item Error Display Power Run Error Warning Load
OFF

System error

I/O table verification
error

Remote I/O error
Remote
I.O Unit #

Battery error

Host link error

PC link error

Indirect jump error

DM address error

* Load cut-off error

Error Messages and Troubleshooting Section 6

252

Run
output

SR
Area

Error
Code

Probable cause of error Correction

ON

01 to
99

FAL(35) has been executed by the pro-
gram.

Check the program.

ON 25310
ON

E7
The registered I/O table does not agree
with the actual I/O Units.

Check the I/O Unit connections with I/O Table Verify,
and set the I/O Units properly. Then use I/O Table
Register to match the registered table to the actual
table.

ON see
Ref. #1
below

B0 to
B7
(Note)

A failure has occurred in the transmission
line between a Master and Slave.

Check the transmission line between the Master
and Slave.

ON see
Ref. #2
below

F7
Battery is bad or is not installed properly. Check battery connections, or replace battery.

ON see
Ref. #3
below

--- An error between the Host Link Units. Refer to the Host Link Systems Operation Manual.

ON see
Ref. #4
below

--- An error occurred in the PC Link Unit. Refer to the PC Link Systems Operation Manual.

ON 25309
ON

F9
Indirectly addressed label out of range. Check the program.

ON 25315
ON

F8 DM address out of range.
Indirectly addressed DM address is not in
BCD or is out of range.

Check the program.

ON 25215
ON

The Output OFF bit is ON (SR 25215).

Ref. #1: 25312 ON
Refer to Ch 251

Ref. #2: 25308 ON
File Memory Unit Battery Alarm flag AR 1907 ON.

Ref. #3: For Rack-mounting Unit #0, 25311 ON
For Rack-mounting Unit #1, 25206 ON

Ref. #4: See SR 247 to 250

Note: “0 to 7” is the number of the Remote I/O Master Unit.

Section 6Error Messages and Troubleshooting

253

6-4
Program Input Errors

Error indications are sometimes made while writing or reading programs from
the Programming Console. These consist of single-letter codes displayed in
the upper right corner, as shown below. The error codes, meanings, and
some display examples are shown below.

Error
Code

Error Cause and correction Display

R ROM error Attempt made to write/insert/delete instruction or
define/cancel expanded DM area when using ROM
Memory Unit. Replace with RAM Memory Unit to
enable changes.

M Mode error Illegal operation was at-
tempted for the current
mode. Check the mode
and operation require-
ments.

Write operation at-
tempted in other than
PROGRAM mode.

Group program monitor-
ing attempted from
PROGRAM mode.

F Format error • Illegal value set. Password number incor-
rectly input.

• Attempt made to de-
lete other than first line
of instruction.Check al-
lowable ranges for vari-
ables; delete instruction
from first line.

SV range for timer num-
ber exceeded.

DM area exceeded
when extended DM area
not defined.

O Address overflow Last address in Program Memory exceeded; set
address within allowed range.

P Program overflow Designated write or insert operation makes program
too large to fit in Program Memory; check program
size.

N Search error Designated instruction not found through last ad-
dress.

File Memory operation designated with no File
Memory Unit mounted.

Address monitoring designated when program is not
being executed.

Attempt made to start step trace when tracing was
already in progress.

Attempt to read results of step trace before trace
operation has been executed.

Error Messages and Troubleshooting Section 6

254

6-5
Program Errors

The following error messages indicate a problem with the structure or syntax
of the program.

Error Message Probable cause and correction

The program has been destroyed. Write the program into memory again.

The program has been destroyed. Write the program into memory again.

Instructions have not been combined properly:
• LD, AND, OR, AND LD, and/or OR LD.
• WAIT, WAIT NOT, CJP, CJP NOT, SKIP(46), SKIP(46) NOT, OUTC(00) and/or
OUTC(00) NOT with one of the following: AND, OR, LD, TIM, CNT, CNTR<12>,
DIFU(40), DIFD(41).

• A channel between DM 4096 and DM 9999 has been designated as an operand when
expanded DM area has not been designated.
• The variable operand data specified is incorrect.
Check the operand data range for each instruction.

The I/O table cannot be registered, possibly because of too many remote I/O points,
duplicated Unit numbers for Optical Transmitting I/O Units or Transmission Terminals,
no Remote I/O Units, or too many I/O points in system; check all I/O points.

The same label number has been assigned twice; use LBL only once with each label
number.

The corresponding LBL for a given JMP, CJP, etc. does not exist; correct the program
to define all labels used.

GN has been used twice with the same group program number; use GN only once with
each number.

GN has not been used to define a group program number used in GS, GE, GP, GR,
GOFF or GC; correct the program to define all group program numbers used.

SBN has been used twice with the same subroutine number; use SBN only once with
each number.

SBN has not been used to define a subroutine number used in SBS or SBT; correct the
program to define all subroutine numbers used.

SBN and RET have not been used in pairs or a GN has been used between SBN and
RET; correct the program to remove unpaired SBN or RET or remove group program
instruction from middle of subroutine.

Section 6Error Messages and Troubleshooting

255

Error Message Probable cause and correction

IL and ILC have not been used in pairs; correct the program to remove unpaired IL or
ILC.

Same timer/counter number (TC address) has been used twice for TIM, CNT, and/or
CNTR; correct the program to remove duplication.

6-6
File Memory and
Cassette Tape Errors

The following messages indicate errors involving File Memory Unit or cas-
sette tape operations.

File Memory Errors

Error Message Probable cause and correction

Writing has been attempted to a write-protected portion of the File Memory Unit or data
to be read from the File Memory Unit has been destroyed; check File Memory Unit data
and AR 1908 through AR1915, and reset if necessary.

The designated address exceeds the highest Program Memory address.

The verification operation has shown a discrepancy.

Data transfer has been attempted from the File Memory Unit to the PC with a ROM
Memory Unit or a write-protected RAM Memory Unit.
No end block was found in the File Memory Unit; check the content of the Program
Memory block.

UM or CM (Program Memory or Comment Memory) block data cannot be read from
the Programming Console.

Cassette Tape Errors

Error Message Probable cause and correction

The cassette file number and the file number specified by the user do not agree; make
sure the file number is entered correctly, then try the operation again.

The cassette tape contains an error; replace the tape.

The tape was replayed past the proper area:
• For Program Memory data, check the capacity of the Program Memory.
• For DM data, check expanded DM area setting and check to be sure that the ex-
panded portion of DM area is held in RAM.

256

Appendix A

Standard Models

CPU and Associated Units

Name Specifications Model

CPU Backplane 8 slots 3 linkable slots C500-BC081

5 linkable slots C500-BC082

5 slots 3 linkable slots C500-BC051

5 linkable slots C500-BC052

8 slots 6 linkable slots C500-BC091

6 slots 5 linkable slots C500-BC061

3 slots 3 linkable slots C500-BC031

CPU RAM and ROM Units are optional. C1000HF-CPUA1-V1

RAM Unit 8K words C2000-MR831-V2

16K words C2000-MR141-V2

24K words C2000-MR241-V2

32K words C2000-MR341-V2

ROM Unit 32K words max., EPROM chips are optional. C2000-MP341-V1

EP-ROM 2764 150 ns, write voltage: 21 V ROM-HD

27128 150 ns, write voltage: 21 V ROM-ID-B

CPU Backplane Power Supply 100 to 120 VAC or 200 to
240 VAC (selectable)

Output ratings: 7 A, 5
VDC

C500-PS221

Output ratings: 12 A, 5
VDC

C500-PS223

24 VDC Output ratings: 7 A, 5
VDC

C500-PS211

I/O Control Unit Necessary to connect Expansion I/O Backplane C500-II101

File Memory Unit RAM type, 1K blocks C1000H-FMR11

RAM type, 2K blocks C1000H-FMR21

Appendix AStandard Models

257

Expansion I/O Backplane and Associated Units

Name Specifications Model

Expansion I/O Backplane 8 slots C500-BI081

5 slots C500-BI051

Expansion I/O Backplane Power
Supply

100 to 120 VAC or 200 to
240 VAC (selectable)

Output ratings: 7 A, 5
VDC

C500-PS222

24 VDC Output ratings: 7 A, 5
VDC

C500-PS212

I/O Interface Unit --- C500-II002

I/O Connecting Cable Horizontal type 50 cm C500-CN511

Vertical type 30 cm C500-CN312N

50 cm C500-CN512N

80 cm C500-CN812N

1 m C500-CN122N

2 m C500-CN222N

Input Units

Name Specifications Model

Input Units DC 16 mA, 5 to 12 VDC; ON delay: 1.5
ms, OFF delay: 1.5 ms

16 pts 8 pts/common; 2 circuits 3G2A5-ID112

10 mA, 12 to 24 VDC; ON delay:
1.5 ms, OFF delay: 1.5 ms

16 pts 8 pts/common; 2 circuits 3G2A5-ID213

10 mA, 12 to 24 VDC; ON delay:
1.5 ms, OFF delay: 1.5 ms

32 pts 8 pts/common; 4 circuits 3G2A5-ID215

10 mA, 12 to 24 VDC; ON delay:
1.5 ms, OFF delay: 1.5 ms

32 pts 8 pts/common; 4 circuits 3G2A5-ID218

10 mA, 12 to 24 VDC; connector 32 pts 8 pts/common; 4 circuits C500-ID218CN

7 mA, 12 VDC; static; ON delay:
1.5 ms, OFF delay: 1.5 ms

64 pts 8 pts/common; 8 circuits C500-ID114

10 mA, 24 VDC; dynamic scan 64 pts --- 3G2A5-ID212

7 mA, 24 VDC; ON delay: 1.5 ms,
OFF delay: 1.5 ms

64 pts 8 pts/common; 8 circuits 3G2A5-ID219

AC 10 mA, 100 to 120 VAC; ON delay:
35 ms, OFF delay: 55 ms

16 pts 8 pts/common; 2 circuits 3G2A5-IA121

10 mA, 200 to 240 VAC; ON delay:
35 ms, OFF delay: 55 ms

16 pts 8 pts/common; 2 circuits 3G2A5-IA222

10 mA, 100 to 120 VAC; ON delay:
35 ms, OFF delay: 55 ms

32 pts 8 pts/common; 4 circuits 3G2A5-IA122

10 mA, 200 to 240 VAC; ON delay:
35 ms, OFF delay: 55 ms

32 pts 8 pts/common; 4 circuits C500-IA223

AC/DC 10 mA, 12 to 24 VAC/DC; ON
delay: 15 ms, OFF delay: 15 ms

16 pts 8 pts/common; 2 circuits 3G2A5-IM211

10 mA, 12 to 24 VAC/DC; ON
delay: 15 ms, OFF delay: 15 ms

32 pts 8 pts/common; 4 circuits 3G2A5-IM212

TTL 3.5 mA, 5 VDC; connector 32 pts 8 pts/common; 4 circuits C500-ID501CN

Interrupt Input Unit 12 to 24 VDC, 13 mA 8 pts Independent commons C500-ID216

Standard Models Appendix A

258

Output Units

Name Specifications Model

Output Units Contact 2 A, 250 VAC/24 VDC; with relay
sockets; 8 commons

16 pts 8 pts/common; 2 circuits 3G2A5-OC221

2 A, 250 VAC/24 VDC; with relay
sockets; all outputs independent

16 pts Independent commons 3G2A5-OC223

2 A, 250 VAC/24 VDC; with relay
sockets

32 pts 8 pts/common; 4 circuits 3G2A5-OC224

Transistor 1 A, 12 to 24 VDC; no output when
external power supply is OFF

16 pts 8 pts/common; 2 circuits C500-OD217

2.1 A, 12 to 24 VDC 16 pts 8 pts/common; 2 circuits C500-OD219

1 A, 12 to 48 VDC 16 pts 16 pts/common; 1 circuit 3G2A5-OD411

50 mA, 24 VDC; all outputs inde-
pendent

16 pts Independent commons 3G2A5-OD215

0.3 A, 12 to 24 VDC 32 pts 16 pts/common; 2 circuits C500-OD218

0.3 A, 12 to 48 VDC 32 pts 16 pts/common; 2 circuits C500-OD414

0.3 A, 12 to 48 VDC; negative
common; terminal block

32 pts 32 pts/common; 1 circuit 3G2A5-OD412

0.3 A, 12 to 24 VDC; positive com-
mon

32 pts 16 pts/common; 2 circuits 3G2A5-OD212

0.3 A, 12 to 48 VDC; negative
common; connector

32 pts 16 pts/common; 2 circuits C500-OD415CN

0.1 A, 24 VDC; dynamic scan 64 pts --- 3G2A5-OD211

0.1 A, 24 VDC; static connector 64 pts 8 pts/common; 8 circuits 3G2A5-OD213

Triac 1 A, 100 to 240 VAC 32 pts 8 pts/common; 4 circuits C500-OA225

1.2 A, 100 to 240 VAC 16 pts 8 pts/common; 2 circuits C500-OA226

TTL 35 mA, 5 VDC; connector 32 pts 8 pts/common; 4 circuits C500-OD501CN

DC Input/Transistor Output
Unit

12 to 24-VDC inputs: 10 mA; 12 to
24-VDC outputs: 0.3 connector

16 pts
each

--- C500-MD211CN

Dummy I/O Unit Input or output 16, 32,
or 64
points

--- 3G2A5-DUM01

I/O Power Supply Unit Input: 100 to 120/200 to 240 VAC Output:
2A, 24 VDC

--- CV500-IPS01

Appendix AStandard Models

259

Special I/O Units
Name Specifications Model

Analog Input Unit 4 to 20 mA, 1 to 5 V; 2 inputs 2 pts 3G2A5-AD001

0 to 10 V; 2 inputs 2 pts 3G2A5-AD002

0 to 5 V; 2 inputs 2 pts 3G2A5-AD003

–10 to 10 V; 2 inputs 2 pts 3G2A5-AD004

–5 to 5 V; 2 inputs 2 pts 3G2A5-AD005

4 to 20 mA, 1 to 5 V; 4 inputs 4 pts 3G2A5-AD006

0 to 10 V; 4 inputs 4 pts 3G2A5-AD007

0 to 10 V, 0 to 20 mA (selectable); 8 inputs 8 pts C500-AD101

0 to 5 V, 0 to 10 V –5 to 5 V, –10 to 10 V, 0 to 20 mA,
–20 to 20 mA; 16 inputs

16 pts C500-AD501

Analog Output Unit 4 to 20 mA, 1 to 5 V; 2 outputs 2 pts 3G2A5-DA001

0 to 10 V; 2 outputs 2 pts 3G2A5-DA002

0 to 5 V; 2 outputs 2 pts 3G2A5-DA003

–10 to 10 V; 2 outputs 2 pts 3G2A5-DA004

–5 to 5 V; 2 outputs 2 pts 3G2A5-DA005

0 to 20 mA, 1 to 5 V/0 to 10 V (selectable); 4 outputs 4 pts C500-DA101

–10 to 10 V, 4 outputs 4 pts C500-DA103

Temperature Sensor Unit Voltage inputs, supports 8 types of thermocouples 8 pts C500-TS501p

Platinum resistance thermometer

p

C500-TS502

High-speed Counter Unit 6-digit BCD; 50 kcps; one counted input; 1 pair of SV 1 pt 3G2A5-CT001

6-digit BCD; 50 kcps; one counted input; 8 pair of SV 1 pt 3G2A5-CT012

50 kcps; 7 operating modes 2 pts C500-CT021

6-digit BCD; 20 kcps; four counted inputs; 6 modes 4 pts C500-CT041

Position Control Unit For stepping motor; one axis 3G2A5-NC111-EV1

For pulse motors; two axes C500-NC222-E

1-axis control C500-NC113

2-axis control C500-NC211

Encoder Adapter 3G2A5-AE001

Teaching Box For 1 axis 3G2A5-TU001-E

For 2 axes C500-TU002-E

Connecting Cable: To connect C500-TU002-E Teach-
i B t C500 NC222 E

2 m C200H-CN222g
ing Box to C500-NC222-E. 4 m C200H-CN422

Connecting Cable: To connect C500-TU002-E Teaching Box to
3G2A5-NC103-E/NC111-EV1 Position Control Unit.

C500-CN422

Cam Positioner Unit External outputs: 8 pts; Words output to PC: 2 (16 pts.) C500-CP131

ASCII Unit RAM and EEPROM C500-ASC04

Ladder Program I/O Unit Has 40 instructions (same as a C20P.) Input and output points
(16 each.)

C500-LDP01-V1

Standard Models Appendix A

260

Special I/O Units (Continued)

Name Specifications Model

SYSMAC NET Link Unit General-purpose C500-SNT31-V4

SYSMAC LINK Unit Optical C1000H-SLK11

Coaxial C1000H-SLK21-V1

SYSMAC BUS Optical Remote I/O Master
Unit

APF/PCF 3G2A5-RM001-PEV1

Unit

PCF 3G2A5-RM001-EV1

Optical Remote I/O Slave Unit APF/
PCF

W/1 optical connector 3G2A5-RT001-PEV1
PCF

W/2 optical connectors 3G2A5-RT002-PEV1

PCF W/1 optical connector 3G2A5-RT001-EV1

W/2 optical connectors 3G2A5-RT002-EV1

Wired Remote I/O Master Unit --- C500-RM201

Wired Remote I/O Slave Unit --- C500-RT201

SYSMAC BUS
Optical I/O Units

DC Input No-voltage con-
tact

8 pts 100-VAC pow-
er supply

APF/PCF 3G5A2-ID001-PE
Optical I/O Units tact er supply

PCF 3G5A2-ID001-E

AC/DC
Input

12 to 24 VAC/DC 8 pts APF/PCF 3G5A2-IM211-PE
Input

PCF 3G5A2-IM211-E

AC Input 100 VAC 8 pts APF/PCF 3G5A2-IA121-PE

PCF 3G5A2-IA121-E

Contact
Output

2 A, 250 VAC/
24 VDC

8 pts 100/200-VAC
power supply

APF/PCF 3G5A2-OC221-PE
Output 24 VDC power supply

PCF 3G5A2-OC221-E

Transistor
Output

0.3 A, 12 to
48 VDC

8 pts APF/PCF 3G5A2-OD411-PE
Output 48 VDC

PCF 3G5A2-OD411-E

Voice Unit --- C500-OV001

Associated Units Voice Memory Unit Standard message 12 sec-
onds

C500-MP501-H

Specified message 12 sec-
onds

C500-MP501-T

32 sec-
onds

C500-MP503-T

40 sec-
onds

C500-MP504-T

Link Units

Name Specifications Model

Host Link Unit Rack-mounting APF/ PCF C500-LK103-P

PCF C500-LK103

RS-232C/RS-422 C500-LK203

PC Link Unit Maximum of 32 PCs can be linked C500-LK009-V1

Network Link Unit C500-SNT31-V4

Appendix AStandard Models

261

Connecting Units

Name Specifications Model

Link Adapter RS-422, 3 pcs 3G2A9-AL001

Optical (APF/PCF), 3pcs 3G2A9-AL002-PE

Optical (PCF), 3pcs 3G2A9-AL002-E

Optical (APF/PCF), RS-422, RS-232C, 1 pc each 3G2A9-AL004-PE

Optical (PCF), RS-422, RS-232C, 1 pc each 3G2A9-AL004-E

APF Optical Cable

Name Specifications Model

Plastic Optical Fiber Cable Cable only, 5 to 100 m in multiples of 5 m, or multiples of
200 or 500 m

3G5A2-PF002

Optical Connector A 2 pcs (brown), for plastic optical fiber 10 m long max. 3G5A2-CO001

Optical Connector B 2 pcs (black) for plastic optical fiber 8 to 20 m long 3G5A2-CO002

Plastic Optical Fiber Cable 1 m, w/optical connector A provided at both ends 3G5A2-PF101

PCF Optical Cable

Name Specifications Model
Optical Fiber Cable (indoor) 0.1 m, w/connector Ambient temperature: 3G5A2-OF011

1 m, w/connector
Ambient temperature:
–10° to 70°C 3G5A2-OF101

2 m, w/connector 3G5A2-OF201

3 m, w/connector 3G5A2-OF301

5 m, w/connector 3G5A2-OF501

10 m, w/connector 3G5A2-OF111

20 m, w/connector 3G5A2-OF211

30 m, w/connector 3G5A2-OF311

40 m, w/connector 3G5A2-OF411

50 m, w/connector 3G5A2-OF511

Optical Fiber Cable
(indoor/outdoor)

1 to 500 m (order in units of
1 m)

Ambient temperature:
–10° to 70°C 3G5A2-OF002

501 to 800 m (order in units of
1 m)

Ambient temperature: 0°
to 55°C (Must not be sub-
jected to direct sunlight)

Standard Models Appendix A

262

Hard-plastic-clad Quartz Fiber Cable: H-PCF
Up to 800 m of H-PCF cable can be used between Units in the following systems: SYSMAC NET and SYSMAC
LINK. In the SYSMAC BUS system, up to 100 m of H-PCF cable can be used between Units whose model number
suffix contains a P and up to 200 m between other Units whose model number does not contain a P.

You can used connector-equipped cables or assemble cables yourself. The following are required to assemble
H-PCF cable: the cable itself, Optical Connectors, Cable Assembly Tool, Cable Cutter Optical Power Tester, Head
Unit, and Master Fiber. The user must assemble and test the optical connectors. Refer to the H-PCF Installation
Manual for details.

H-PCF cables can be used at an ambient temperature of between –20° and 70°C.

H-PCF Optical Fiber Cords and Cables
Cable type Cable color Cable length Model

Two optical conductors with
f d

Black 10 meters S3200-HCLB101p
feeder 50 meters S3200-HCLB501

100 meters S3200-HCLB102
500 meters S3200-HCLB502
1,000 meters S3200-HCLB103

Orange 10 meters S3200-HCLO101
50 meters S3200-HCLO501
100 meters S3200-HCLO102
500 meters S3200-HCLO502
1,000 meters S3200-HCLO103

Without feeder Black 10 m S3200-HCCB101
50 m S3200-HCCB501
100 m S3200-HCCB102
500 m S3200-HCCB502

Orange 10 m S3200-HCCO101
50 m S3200-HCCO501
100 m S3200-HCCO102
500 m S3200-HCCO502

Two-core optical cord Black 10 m S3200-HBCB101
50 m S3200-HBCB501
100 m S3200-HBCB102
500 m S3200-HBCB502
1,000 m S3200-HBCB103

Appendix AStandard Models

263

H-PCF Optical Fiber Cords and Cables with Connectors
The following diagram illustrates the model number for cables with connectors. tension members and power lines
are provided in the cable. Half-lock connectors use the S3200-COCF2511 and are compatible with C200H SYS-
MAC LINK or SYSMAC NET Link Unit connectors. Full-lock connectors use the S3200-COCF2011 and are com-
patible with CV-series SYSMAC LINK or SYSMAC NET and C1000H SYSMAC LINK Link Unit connectors. Full-
lock connectors cannot be used with C200H connectors.
The above connectors cannot be used with C500 SYSMAC NET Link Unit connectors, cable relays, or NSB. Refer
to the SYSMAC NET Link System Manual for appropriate connectors for these applications.

S3200-CN���-��-��

Cable Length
201 2 m
501 5 m
102 10 m
152 15 m
202 20 m
Blank Over 20 m* *Specify lengths over 20 m separately when ordering.

Connector Type
20-20 Full-lock connecter on each end
20-25 One full-lock and one half-lock connector
25-25 Full lock connector on each end

Optical Connectors
Name Model

SYSMAC NET: CV500-SNT31

SYSMAC LINK: CV500-SLK11, C1000H-SLK11

SYSMAC BUS/2: CV500-RM211/RT211

S3200-COCF2011

SYSMAC NET: C200H-SNT31

SYSMAC LINK: C200H-SLK11

S3200-COCF2511

SYSMAC NET: C500-SNT31-V4
S3200-LSU03-01E/NSB11-E
S3200-NSUA1-00E/NSUG4-00E
FIT10-IF401

S3200-COCH62M

SYSMAC BUS: 3G2A5-RM001-(P)EV1
3G2A5-RT001/RT002-(P)EV1
3G2A9-AL��-(P)E

S3200-COCH82

SYSMAC NET Relay (M) Connector S3200-COCF62M

SYSMAC NET Relay (F) Connector S3200-COCF62F

Cable Assembly Tool and Cutter
Name Model

Cable Assembly Tool S3200-CAK1062

Optical Power Tester
Name Model

SYSMAC NET: CV500-SNT31 S3200-CAT2000

SYSMAC LINK: CV500-SLK11

SYSMAC BUS/2: CV500-RM211/RT211

S3200-CAT2700

SYSMAC BUS: 3G2A5-RM001-(P)EV1
3G2A5-RT001/RT002-(P)EV1

S3200-CAT2820

SYSMAC NET: S3200-LSU03-01E
FIT10-IF401

S3200-CAT3200

Note Each Optical Power Tester is provided with a replaceable Head Unit. There is no difference in type among all
Optical Power Testers except for the head unit. This means the S3200-CAT2000 Optical Power Tester, for
example, can be used as the S3200-CAT2700, S3200-CAT2820, or S3200-CAT3200 Optical Power Tester
by just replacing the Head Unit of the S3200-CAT2000 with those for the S3200-CAT2700,
S3200-CAT2820, or S3200-CAT3200.

Standard Models Appendix A

264

Peripheral Devices

Name Specifications Model

Programming Console Vertical type, w/backlight C500F-PRO19

Programming Console
Adapter

Optional extension cable is necessary. C500-AP001

Programming Console Base
Unit

C500-BP001

Programming Console Handheld type C500F-PRO29

Programming Console
Adapter

Necessary for Handheld Programming Console C500-AP003

Connecting Cable Necessary for Handheld Pro-
gramming Console

Cable length: 2 m C200H-CN222
gramming Console

Cable length: 4 m C200H-CN422

Programming Console
Connecting Cable

For extension and connection
of FIT

Cable length: 2 m 3G2A2-CN221
Connecting Cable of FIT

Cable length: 5 m C500-CN523

Cable length: 10 m C500-CN131

Cable length: 20 m C500-CN231

Cable length: 30 m C500-CN331

Cable length: 40 m C500-CN431

Cable length: 50 m C500-CN531

Cassette Recorder Connect-
ing Cable

Cable length: 1 m SCYP0R-PLG01

Flowchart Support Software 3.5-inch, 2HD (to be released soon) C1000HF-SU410

5-inch 2HD (to be released soon) C1000HF-SU610

8-inch 2D (to be released soon) C1000HF-SU810

Optional Products

Name Specifications Model

Battery --- 3G2A5-BAT08

I/O Terminal Cover For 38-pin block, special type 3G2A5-COV11

For 38-pin block, standard C500-COV12

For 20-pin block, standard C500-COV13

Connector Cover (see note) Protector for I/O bus connector 3G2A5-COV01

Space Unit For I/O Unit 3G2A5-SP002

Note: Only confirmation of setting possible.

265

Appendix B
Programming Console Operations

The following table provides the names, valid modes, and basic key sequences for Programming Console operations.
“Debug” entries under the Mode heading indicate whether an operation can be used during the Debugging operation
entered from PROGRAM mode. Refer to Section 2 Using the Programming Console for operation descriptions and
details.

Preparatory Operations

Mode

Operation Run Mon. Prog. Debug Key sequence

Entering the
Password

Yes Yes Yes No
CLR MONTR ENT

Beeper ON/
OFF

Yes Yes Yes No
SHIFT

B
1 After changing mode

CLR SHIFT CLR SHIFT
B

1 Other times

Clearing
Memory

No No Yes No
CLRSHIFT CLR 9 7

B
1

D
3 ENT

ENT

HR

NOT
SHIFT

LR

DM

[Address]

All memory cleared.

Cleared from input address.

Retained if pressed.

Setting and
Canceling
Expanded
DM Area

See
note

See
note

Yes See
note

CHK
B

1SFT ENT

A

0

B
1ENT

Set.

Cancelled.

Programming Console Operations Appendix B

266

Mode

Operation Key sequenceDebugProg.Mon.Run

Registering
the I/O Table

No No Yes No

SFT CHK ENT ENT

9 7
B

1
D

3 ENT
Channel multipliers registered
next, if necessary.

Verifying the
I/O Table

Yes Yes Yes Yes

SHIFT CHK ENT
C

2 ENT ENT

Reading the
I/O Table

Yes Yes Yes Yes

SFT CHK ENT
B

1 ENT

ENT

SFT ENT

[0—7] [0—7]

Rack
no.

Slot
no.

+ / –

Changing
the I/O Table

No No Yes No

CHG
A

0 ENT

D
3

B
1

I/O Table Read
in progress. O: Output Unit

1: Input Unit

3: Channel

Transferring
the I/O Table

No No Yes No

SFT CHK ENT
D

3 ENT 9

9

7

7

B
1

B
1

C
2

D
3

ENT

Appendix BProgramming Console Operations

267

Program Operations

Mode

Operation Run Mon. Prog. Debug Key sequence

Setting a
Program Ad-
dress

Yes Yes Yes Yes
CLR [Address]

Program
Write

No No Yes No
ENTWRITEAddress currently

displayed.
[Instruction]

Program
Read

Yes Yes Yes Yes

READ ENT
Address currently
displayed.

+ / –

Instruction
Insert

Yes Yes Yes Yes

ENTINS
Address
read

[Program Write
operation]

Instruction
Delete

No No Yes No

DEL ENT
Address currently
read.

Program
Check

No No Yes No
CHK ENT ENT

CLR

To continue

To cancel check

Program
Size Read

Yes Yes Yes Yes

SHIFT READ ENTFinal address
designated.

Programming Console Operations Appendix B

268

Debugging Operations

Mode

Operation Run Mon. Prog. Debug Key sequence

Entering the
Debug Oper-
ation

No No Yes Yes

SHIFT CHK
A

0 ENT

B
1

SHIFT CHK ENT

Entering Debug Operation

No group jumps

Jumps as written

Leaving Debug Operation

Step Execu-
tion

No No Yes Yes

SHIFT SET ENT ENT ENT[Start address]

Step execution

Forced Con-
dition Execu-
tion

No No No Yes

SET

RESET

ENT[Step Execution]

Section
Execution

No No No Yes

SHIFT SET ENT

ENT SHIFT ENT

[Starting
address]

Stopping
address]

[

Appendix BProgramming Console Operations

269

Mode

Operation Key sequenceDebugProg.Mon.Run

Step Trace No No Yes Yes

MONTR LBL CHG ENT

+ / – ENT

[Trigger address
or label]

[Delay]

[Label no.]

Reading
Trace
Memory

No Yes Yes Yes

MONTR FUN
C

2 ENT

+ / –[Step Trace]

Monitoring and Data Change Operations

Mode

Operation Run Mon. Prog. Debug Key sequence

Address
Monitoring

Yes Yes No No

READ ENT
Address currently
displayed.

+ / –

Execution
Address
Monitor

Yes Yes Yes Yes

SHIFT MONTR

SHIFT ENT

ENT HR

NOT

Designated address
displayed.

Currently executed
address displayed.

Programming Console Operations Appendix B

270

Mode

Operation Key sequenceDebugProg.Mon.Run

Data Area
Monitor

Yes Yes Yes Yes

MONTR ENT

+ / –

ENT

[Bit no.]

[Bit in-
struction]

[*/CH and data area
key if required.]

TIM or
CNT

[Channel no.]

[Timer/counter no.]

Force Set/
Reset

No Yes Yes Yes

SET

RESET

ENT
[Data Area
Monitor]

Channel
Data
Changes

No Yes Yes Yes

CHK ENT[Data Area Monitor] [New value]

Binary
Monitor

Yes Yes Yes Yes

SHIFT ENTEXT

+ / –

[Data Area
Monitor]

Binary
Change

No Yes Yes Yes
A

0

B
1

ENT
[Binary
Monitor CHG

Three-Chan-
nel Monitor

Yes Yes Yes Yes

EXT + / – ENT

SFT ENT

[Data Area
Monitor]

(Group program
monitoring)

Appendix BProgramming Console Operations

271

Mode

Operation Key sequenceDebugProg.Mon.Run

Three-Chan-
nel Change

No Yes Yes Yes

ENT
[Three-Channel
Monitor] CHG New value

S Number
and Mes-
sage
Displays

No Yes Yes Yes
ENTDEL

Address currently
read.

File Memory Cassette Operations

Mode

Operation Run Mon. Prog. Debug Key sequence

File Memory
Clear

No Yes Yes Yes
CLR SHIFT EXT ENT

B
1 ENT 9 7

B
1

D
3

ENT ENT

ENT

[Starting
block]

[Ending
block]

File Memory
Write

No Yes Yes Yes
[Ending
address]

CLR SHIFT EXT
B

1 ENT
B

1 ENT

SHIFT

SHIFT

SHIFT

TIM

CNT

CNR

HR

NOT

LR

DM

LR

DM
ENT ENT ENT

ENT*
CH

ENT ENT ENT ENT ENT

[Starting DM
channel]

[No. of
blocks]

[Starting
block]

[Starting
channel]

[Starting
address]

[Starting
block]

Programming Console Operations Appendix B

272

Mode

Operation Key sequenceDebugProg.Mon.Run

File Memory
Verify

No Yes Yes Yes

[Starting
block]

CLR SHIFT EXT
B

1 ENT
B

1 ENT

SHIFT

SHIFT

SHIFT

TIM

CNT

CNR

HR

NOT

LR

DM

LR

DM
ENT ENT ENT

ENT*
CH

ENT ENT ENT ENT

ENT
C

2

C
2

[Starting DM
channel]

[No. of
blocks]

[Starting
channel]

[Starting
address]

[Starting
block]

File Memory
Read

No No Yes No

CLR SHIFT EXT
B

1 ENT
B

1 ENT

SHIFT

SHIFT

SHIFT

TIM

CNT

CNR

HR

NOT

LR

DM

LR

DM
ENT ENT ENT

ENT*
CH

ENT ENT ENT ENT

ENT

B
1

B
1

[Starting DM
channel]

[No. of
blocks]

[Starting
block]

[Starting
channel]

[Starting
address]

[Starting
block]

Appendix BProgramming Console Operations

273

Mode

Operation Key sequenceDebugProg.Mon.Run

File Memory
Read/Write

Yes Yes Yes Yes
CLR SHIFT EXT

C
2 ENT

ENT

+ / –

WRITE ENT

[Starting
block]

[Channel] [New data]

File Memory
Index Read

Yes Yes Yes Yes Block
number]

CLR SHIFT EXT
C

2 ENT

SHIFT READ ENT

+ / –

[Block
number]

[

Saving a
Program to
Tape

No No Yes No

[Starting
address]

CLR EXT ENT ENT ENT
[File
number]

ENT

ENT

[Stopping
address]

[Start recorder]

Within 5 s

Restoring
Program
Data

No No Yes No

CLR EXT ENT
B

1 ENT ENT

ENT

[File
number]

[Starting
address] [Start recorder]

Within 5 s

Programming Console Operations Appendix B

274

Mode

Operation Key sequenceDebugProg.Mon.Run

Verifying
Program
Data

No No Yes No

CLR EXT ENT ENT ENT

ENT

C
2

[File
number]

[Starting
address] [Start recorder]

Within 5 s

DM<–> Cas-
sette Tape:
Save, Re-
store, and
Verify

No No Yes No

CLR
B

1

C
2

ENT

ENT

EXT

[Saving]

[Restor-
ing]

[Verify-
ing]

[File num-
ber]

[Start recorder]

Within 5 s

275

Appendix C
Programming Instructions

This appendix offers only a short description of the function of each instruction, along with the flowchart sym-
bol and data areas used for each. Be sure you understand the limits and requirements of any instruction be-
fore you use it. Refer to Section 4 Programming Instructions for details. Both flowchart (in normal parentheses
like these) and ladder diagram <in pointed parentheses like these> function codes have been provided where
available. Programming Console keys are available for those instructions that do not have function codes.

Programming Instructions: Basic Instructions

Instruction Mnemonic Symbol Function Operands

Load LD

LD B

Used to start instruction block with sta-
tus of designated bit.

B:
IR
SR
HR
AR

Load Inverse LD NOT

LD NOT B

Used to start instruction block with in-
verse of designated bit.

AR
LR
TC

AND AND

AND B

Logically ANDs status of designated bit
with execution condition.

AND IN-
VERSE

AND NOT

AND NOT B

Logically ANDs inverse of designated
bit with execution condition.

OR OR

OR B

Logically ORs status of designated bit
with execution condition.

OR INVERSE OR NOT

OR NOT B

Logically ORs inverse of designated bit
with execution condition.

Block AND AND LD

AND LD

Logically ANDs result of preceding
blocks

None

Block OR OR LD

OR LD

Logically ORs result of preceding blocks

Programming Instructions Appendix C

276

IR SR HR AR LR TC DM #

00000 TO 24615
000 TO 246

24700 TO 25515
247 TO 255

HR 0000 TO HR 9915
HR 00 TO HR 99

AR 0000 TO AR 2715
AR 00 TO AR 27

LR 0000 TO LR 6315
LR 00 TO LR 63

TC 000 TO TC 511 Normal: DM 0000
TO DM 4095
Expanded: DM 0000
TO DM 9999

0000 to 9999

Instruction OperandsFunctionSymbolMnemonic

Output OUT

OUT B

Turns ON designated bit. B:
IR
SR
HR
AR

Output
Inverse

OUT NOT

OUT NOT B

Turns OFF designated bit.
AR
LR

Conditional
Output

OUTC(00)

OUTC B

If execution condition is ON, designated
bit is turned ON; if OFF, bit is turned
OFF.

Inverse
Conditional
Output

OUTC(00)
NOT

OUTC NOT B

If execution condition is ON, designated
bit is turned OFF; if OFF, bit is turned
ON.

Interlock IL(38)<02>

IL(38)

B

Designates beginning of interlocked
program. If interlock bit (B) is OFF, all
outputs turned OFF and all timer PV re-
set between IL(38) and ILC(39). Other
instructions treated as NOP; counter PV
maintained.

B:
IR
SR
HR
AR
LR

Interlock Clear ILC(39)<03>

ILC(39)

Designates end of interlocked program.
If interlock bit is OFF, all outputs turned
OFF and all timer PV reset between
IL(38) and ILC(39). Other instructions
treated as NOP; counter PV main-
tained.

None

Differentiation
Up

DIFU(40)<13>

DIFU(40) N

B

Establishes ON condition for one ex-
ecution after it detects OFF to ON tran-
sition in designated bit (B). Otherwise
OFF condition is maintained. Used be-
fore WAIT, CJP, SKIP(46), OUTC(00).

B:
IR
SR
HR
AR
LR

Differentiation
Down

DIFD(41)<14>

DIFU(41) N

B

Establishes ON condition for one ex-
ecution after it detects ON to OFF tran-
sition in designated bit (B). Otherwise
OFF condition is maintained. Used be-
fore WAIT, CJP, SKIP(46), OUTC(00).

No Operation NOP

NOP

Nothing is executed and next instruction
is moved to.

None

Appendix CProgramming Instructions

277

Programming Instructions: Flow Control

Instruction Mnemonic Symbol Function Operands

Wait WAIT

WAIT

Pauses program execution until execu-
tion condition for it goes ON. Used fol-
lowing LD, AND, OR, AND LD, OR LD,
DIFU(40), DIFD(41), TIM, CNT,
CNTR<12>, ANDG(01), ORG(02), or
SBT(34).

None

Inverse Wait WAIT NOT

WAIT NOT

Pauses execution until execution condi-
tion for it goes OFF. Used following LD,
AND, OR, AND LD, OR LD, DIFU(40),
DIFD(41), TIM, CNT, CNTR<12>,
ANDG(01), ORG(02), or SBT(34).

Label LBL

LBL N

Used to designate destination for jumps
indicated by JMP, CJP, RPT(37), or
BRZ(59).

N:
000 through
999

Jump JMP

JMP L

Used to unconditionally move program
execution to designated label.

L:
IR
SR
HR
AR
LR
TC
DM

Conditional
Jump

CJP

CJP

Moves program execution to designated
label number if preceding condition is
ON, and to instruction immediately fol-
lowing CJP if preceding condition is
OFF.

L:
IR
SR
HR
AR
LR

Inverse
Conditional
Jump

CJP NOT

CJP NOT

Moves program execution to designated
label number if preceding condition is
OFF, and to instruction immediately fol-
lowing CJP if preceding condition is ON.

LR
TC
DM

Repeat RPT(37)

RPT(37) L

R

Used to return to LBL (L) and repeat in-
structions between LBL and RPT(37)
specified number of times (R) before
proceeding to instruction following RPT.

L/R:
IR
SR
HR
AR
LR
TC
DM

Conditional
Skip

SKIP(46)

Yes

No

 SKIP(46) N

Moves program execution to instruction
immediately after designated number of
instructions if preceding condition is
ON, and to instruction immediately fol-
lowing SKIP(46) if preceding condition
is OFF.

N:
1 through 9

Inverse
Conditional
Skip

SKIP(46) NOT

Yes

No

SKIP(46) NOT N

Moves program execution to instruction
immediately after designated number of
instructions if preceding condition is
OFF, and to instruction immediately fol-
lowing SKIP(46) if preceding condition
is ON.

N:
1 through 9

Programming Instructions Appendix C

278

IR SR HR AR LR TC DM #

00000 TO 24615
000 TO 246

24700 TO 25515
247 TO 255

HR 0000 TO HR 9915
HR 00 TO HR 99

AR 0000 TO AR 2715
AR 00 TO AR 27

LR 0000 TO LR 6315
LR 00 TO LR 63

TC 000 TO TC 511 Normal: DM 0000
TO DM 4095
Expanded: DM 0000
TO DM 9999

0000 to 9999

Instruction OperandsFunctionSymbolMnemonic

Branch for
Zero

BRZ(59)

BRZ(59) L

C

Moves program execution to designated
label (L) if operand channel (C) is all
zeros, and to instruction immediately
following BRZ(59) if channel contains
anything else.

L/C:
IR
SR
HR
AR
LR
TC

Inverse
Branch for
Zero

BRZ(59) NOT

BRZ(59) NOT L

C

Moves program execution to instruction
immediately following BRZ(59) if oper-
and channel (C) is all zeros; to desig-
nated label (L) if channel contains any-
thing else.

TC
DM

Appendix CProgramming Instructions

279

Programming Instructions: Timers and Counters

Instruction Mnemonic Symbol Function Operands

Timer TIM

TIM N

SV

TIM 000 through TIM 383 measure in
decrements of 0.1 second from SV be-
tween 0 and 999.9; TIM 384 through
TIM 511, in decrements of 0.01 second
from SV between 0 and 99.99 seconds.
Used before WAIT, CJP, SKIP(46), or
OUTC(00).

N: 000—511
SV:
IR
HR
AR
LR
DM
#

Timer Start TMS(30)

TMS(30) N

SV

Used to define and start timer by desig-
nating timer number (N) and SV.

#
CP:
IR
SR
HR
AR
LR

Counter CNT

CNT N

SV

CP

A preset decrementing counter. Decre-
ments PV when count input pulse goes
from OFF to ON. Used before WAIT,
CJP, SKIP(46), or OUTC(00).

LR
C:
IR
HR
AR
LR
DM

Reversible
Counter

CNTR <12>

CNTR(12) N

SV

C

Increases or decreases PV by one
whenever increment or decrement input
signal goes from OFF to ON. Increment
signal is bit 15 of control channel (C).
Decrement signal is bit 14. Used before
WAIT, CJP, SKIP(46), or OUTC(00).

Timer/Counter
Reset

CNR

CNR N

St

E

Used to reset timers and counters to
their SV or to reset other channels to
zero. To reset one timer or counter, in-
put TC number (N) as part of instruction
line. To reset multiple timers/counters or
other channels, input starting (St) and
end (E) channels.

N: 000—511
St/E:
IR
HR
AR
LR
TC
DM
*DM

Multi-output
Timer

MTIM(80)

MTIM(80)

R

PVC

FSV

An incrementing timer instruction with
eight set values to turn ON eight corre-
sponding output bits in result channel
(R). Bit 08 of result channel is reset in-
put; bit 09, timer pause input. Channel
containing first SV: FSV; Channel to
which PV is output: PVC

FSV/PVC/R:
IR
HR
AR
LR
DM
*DM

Programming Instructions Appendix C

280

IR SR HR AR LR TC DM #

00000 TO 24615
000 TO 246

24700 TO 25515
247 TO 255

HR 0000 TO HR 9915
HR 00 TO HR 99

AR 0000 TO AR 2715
AR 00 TO AR 27

LR 0000 TO LR 6315
LR 00 TO LR 63

TC 000 TO TC 511 Normal: DM 0000
TO DM 4095
Expanded: DM 0000
TO DM 9999

0000 to 9999

Programming Instructions: Data Shifting

Instruction Mnemonic Symbol Function Operands

Shift Register SFT

SFT

S

B

E

Shifts status of designated bit (S) into
shift register defined between beginning
(B) and end (E) channel, and shifts all
bits in register by one.

E B
15 150 0

IN

B/E/S:
IR
SR
HR
AR
LR

Reversible
Shift Register

SFTR<84>

C

B

E

SFTR(84)

Shifts data in specified channel or se-
ries of channels to either left or right.
Beginning (B) and end channel (E)
must be specified. Control channel (C)
contains shift direction, reset input, and
data input.

E B

CY

E B

15 D2 0 15 D1

IN 15 D2 0 15 D1

CY

B/E/C:
IR
HR
AR
LR
DM
*DM

Arithmetic Shift
Left

ASL(63)<25>

ASL(63)

 Ch

Shifts each bit in single channel (Ch) of
data one bit to left, with CY.

Ch
15 00

CY

Ch:
IR
HR
AR
LR
DM
*DMArithmetic Shift

Right
ASR(62)<26>

ASR(62)

 Ch

Shifts each bit in single channel (Ch) of
data one bit to right, with CY.

0 Ch CY

15 00

*DM

Rotate Left ROL(70)<27>

ROL(70)

Ch

Rotates bits in single channel (Ch) of
data one bit to left, with carry (CY).

15 00

CYCh

Rotate Right ROR(69)<28>

ROR(69)

Ch

Rotates bits in single channel (Ch) of
data one bit to right, with carry (CY).

15 00

CY Ch

Appendix CProgramming Instructions

281

Instruction OperandsFunctionSymbolMnemonic

One Digit Shift
Left

SLD(75)<74>

SLD(75) St

B

E

Left shifts data between starting (St)
and end (E) channels by one digit (four
bits).

E

B

B+ 1

St/E
IR
HR
AR
LR
DM
*DM

One Digit Shift
Right

SRD(76)<75>

SRD(76)

St

E

0 E

Right shifts data between starting (St)
and end (E) channels by one digit (four
bits)

 B

B+ 1

Word Shift WSFT(94)
<16>

WSFT(94)

Ch

St

E

Left shifts data between starting (St)
and end (E) channels in channel units,
writing content of specified channel (Ch)
into starting channel.

St/E:
IR
HR
AR
LR
DM
DM

Ch:
IR
SR
HR
AR
LR
TC
DM
*DM

Programming Instructions Appendix C

282

IR SR HR AR LR TC DM #

00000 TO 24615
000 TO 246

24700 TO 25515
247 TO 255

HR 0000 TO HR 9915
HR 00 TO HR 99

AR 0000 TO AR 2715
AR 00 TO AR 27

LR 0000 TO LR 6315
LR 00 TO LR 63

TC 000 TO TC 511 Normal: DM 0000
TO DM 4095
Expanded: DM 0000
TO DM 9999

0000 to 9999

Programming Instructions: Data Movement

Instruction Mnemonic Symbol Function Operands

Move MOV(50)<21>

MOV(50)

S

D

Transfers source data (S) (channel or
four-digit constant) to destination chan-
nel (D).

S:
IR
SR
HR
AR
LR
TC
DM
*DM

Move Not MVN(51)<22>

MVN(51)

S

D

Inverts source data (S) (channel or four-
digit constant) and then transfers it to
destination channel(D).

*DM
#
D:
IR
HR
AR
LR
DM
*DM

Block Set BSET(73)
<71>

BSET(73)

Ch

St

E

Copies content of one channel or con-
stant (Ch) to several consecutive chan-
nels (starting channel (St) through end
channel (E)). Used to change timer/
counter data.

S B

E

St/E
:IR
SR
HR
AR
LR
TC
DM
*DM
#

 Ch:
IR
HR
AR
LR
TC
DM
*DM

Block Transfer XFER(72)
<70>

XFER(72)

N

S

D

Moves content of several consecutive
source channels (S: beginning source
channel) to consecutive destination
channels (D: beginning destination
channel). N: number of channels

S

S + 1

D

D + 1

S + n D + n

No. of
Words

N:
IR
HR
AR
LR
TC
DM
*DM

S :
IR
HR
AR
LR
TC
DM
*DM
D:
IR
SR
HR
AR
LR
TC
DM
*DM
#

Appendix CProgramming Instructions

283

Instruction OperandsFunctionSymbolMnemonic

Move Bit MOVB<82>

MOVB(82)

S

C

D

Transfers designated bit of designated
source channel or constant (S) to des-
ignated bit of designated destination
channel (D). Source and destination
bits specified in control data (C).

S

D

S:
IR
SR
HR
AR
LR
DM
*DM

C:
IR
HR
AR
LR
TC
DM
*DM
#
D:
IR
HR
AR
LR
DM
*DM

Move Digit MOVD<83>

MOVD(83)

S

C

D

Moves hexadecimal content of speci-
fied four-bit source digit (S: source
channel) to specified destination digit(s)
(D: destination channel) for up to four
digits at once. Source and destination
digits specified in control data (C).

S

D

15 0

S:
IR
SR
HR
AR
LR
TC
DM
*DM

C:
IR
HR
AR
LR
TC
DM
*DM
#
D:
IR
HR
AR
LR
TC
DM
*DM

Data
Exchange

XCHG(74)
<73>

XCHG(74)

D1

D2

Exchanges contents of two different
channels (E1 and E2).

E1 E2

D1/D2:
IR
HR
AR
LR
TC
DM
*DM

Programming Instructions Appendix C

284

IR SR HR AR LR TC DM #

00000 TO 24615
000 TO 246

24700 TO 25515
247 TO 255

HR 0000 TO HR 9915
HR 00 TO HR 99

AR 0000 TO AR 2715
AR 00 TO AR 27

LR 0000 TO LR 6315
LR 00 TO LR 63

TC 000 TO TC 511 Normal: DM 0000
TO DM 4095
Expanded: DM 0000
TO DM 9999

0000 to 9999

Instruction OperandsFunctionSymbolMnemonic

Single
Channel
Distribution

DIST<80>

DIST(80)

S

DBs

Of

Moves one channel of source data (S)
to pl destination channel whose ad-
dress is given by destination base
channel (DBs) plus offset (Of).

S
Base(DBs)

+
Offset (OF)

(S) (DBs + Of)

 S:
IR
SR
HR
AR
LR
TC
DM
*DM

DBs:
IR
HR
AR
LR
TC
DM
*DM
Of:
R
HR
AR
LR
TC
DM
*DM
#

Data
Collection

COLL<81>

COLL(81)

SBs

Of

D

Extracts data from source channel and
writes it to destination channel (D).
Source channel is determined by add-
ing offset (Of) to source base channel
(SBs).

Base(DBs)
+

Offset (OF)

(SBs+Of) (D)

SBs:
IR
SR
HR
AR
LR
TC
DM
*DM

Of:
IR
HR
AR
LR
TC
DM
*DM
#
 D:
IR
HR
AR
LR
TC
DM
*DM

Programming Instructions: Data Comparison

Instruction Mnemonic Symbol Function Operands

Compare CMP(52)<20>

CMP(52)

C1

C2

Compares two sets of four-digit hexade-
cimal data (C1 and C2) and outputs re-
sult to GR, EQ, and LE.

C1/C2:
IR
SR
HR
AR
LR
TC
DM

Compare Long CMPL<60>

CMPL(60)

C1

C2

Compares two sets of eight-digit hexa-
decimal data (C1 and C2: rightmost
channels) and outputs result to GR, EQ,
and LE flags in SR area.

DM
*DM
#

Appendix CProgramming Instructions

285

Instruction OperandsFunctionSymbolMnemonic

Block
Compare

BCMP<68>

BCMP(68)

CD

CB

R

Compares 1-channel binary value (CD)
with 16 ranges in comparison table
(CB: First channel of comparison table).
If value falls within any ranges, corre-
sponding bits of result channel (R) set.

CD

CR CB+1
CB+2 CB+3

CB+4 CB+5

CB+30 CB+31

1
0
1

0

Lower limit Upper limit

Lower limit S Upper limit 1

CD:
IR
SR
HR
AR
LR
TC
DM
*DM

CB:
IR
SR
HR
LR
TC
DM
*DM
R:
IR
HR
AR
LR
TC
DM
*DM

Table
Compare

TCMP<85>

TCMP(85)

CD

TB

R

Compares four-digit hexadecimal value
(CD) with values in table consisting of
16 channels (TB: First channel of com-
parison table). If value equals any val-
ue, corresponding bit of result channel
(R) set.

CD CB

CB+ 1

CB+ 13
CB+ 14
CB+ 15

1:agreement
0:disagreement

0
1
0

1
0
1

CD:
IR
SR
HR
AR
LR
TC
DM
*DM
#

TB:
IR
SR
HR
AR
LR
TC
DM
*DM
 R:
IR
HR
AR
LR
TC
DM
*DM

Programming Instructions Appendix C

286

IR SR HR AR LR TC DM #

00000 TO 24615
000 TO 246

24700 TO 25515
247 TO 255

HR 0000 TO HR 9915
HR 00 TO HR 99

AR 0000 TO AR 2715
AR 00 TO AR 27

LR 0000 TO LR 6315
LR 00 TO LR 63

TC 000 TO TC 511 Normal: DM 0000
TO DM 4095
Expanded: DM 0000
TO DM 9999

0000 to 9999

Programming Instructions: Data Conversion

Instruction Mnemonic Symbol Function Operands

BCD to Binary BIN(57)<23>

BIN(57)

S

R

Converts four-digit, BCD data in source
channel (S) into 16-bit binary data, and
outputs converted data to result chan-
nel (R).

x100

x101

x102

x103

x160

x161

x162

x163

S R
(BCD) (BIN)

S:
IR
SR
HR
AR
LR
TC
DM
*DM

R:
IR
HR
AR
LR
DM
*DM

BCD to
Double Binary

BINL<58>

BINL(58)

S

R

Converts BCD value in two source
channels (S: beginning source channel)
into binary and outputs converted data
to two result channels (R: beginning
channel).

S

S + 1

R

R + 1

S:
IR
SR
HR
AR
LR
TC
DM
*DM

 R:
IR
HR
AR
LR
DM
*DM

Binary to BCD BCD(58)<24>

BCD(58)

S

R

Converts binary data in source channel
(S) into BCD, and outputs converted
data to result channel (R).

S:
IR
SR
HR
AR
LR
DM
*DM

 R:
IR
HR
AR
LR
DM
*DM

Double Binary
to Double BCD

BCDL<59>

BCDL(59)

S

R

Converts binary value in two source
channels (S: beginning channel) into
eight digits of BCD data, and outputs
converted data to two result channels
(R: beginning channel).

S

S + 1

R

R + 1

S:
IR
SR
HR
AR
LR
TC
DM
*DM

R:
IR
HR
AR
LR
DM
*DM

Appendix CProgramming Instructions

287

Instruction OperandsFunctionSymbolMnemonic

4 to 16
Decoder

MLPX(77)
<76>

MLPX(77)

S

Di

RB

Converts up to four hexadecimal digits
in source channel (S) into decimal val-
ues from 0 to 15 and turns ON, in result
channel(s) (R), bit(s) corresponding to
converted value. Digits designated in Di
channel.

S 3 2 1 0

3

0 to F

Di

S:
IR
SR
HR
AR
LR
TC
DM
*DM

Di:
IR
HR
AR
LR
TC
DM
*DM
RB:
IR
HR
AR
LR
DM
*DM #

Encoder DMPX(78)
<77>

DMPX(78)

SB

R

Di

Determines position of highest ON bit in
specified beginning source channel
(SB) and turns ON corresponding bit(s)
in result channel (R). First digit desig-
nated with Di

.

S

15 0

3 0

R 3 2 1 0 0 to F

SB:
IR
SR
HR
AR
LR
TC
DM
*DM

R:
IR
HR
AR
LR
 DM
*DM
Di:
IR
HR
AR
LR
TC
DM
*DM
#

Seven-
Segment
Decoder

SDEC(79)
<78>

SDEC(79)

S

Di

DB

Converts hexadecimal values from
source channel (S) to data for seven-
segment display. Result to consecutive
half channels starting at beginning des-
tination channel (DB). Di designates
digit and destination details.

.S 3 2 1 0

Di 0 to F

S:
IR
SR
HR
AR
LR
TC
DM
*DM

Di:
IR
HR
AR
LR
TC
DM
*DM

DB:
IR
HR
AR
LR
DM
*DM

Programming Instructions Appendix C

288

IR SR HR AR LR TC DM #

00000 TO 24615
000 TO 246

24700 TO 25515
247 TO 255

HR 0000 TO HR 9915
HR 00 TO HR 99

AR 0000 TO AR 2715
AR 00 TO AR 27

LR 0000 TO LR 6315
LR 00 TO LR 63

TC 000 TO TC 511 Normal: DM 0000
TO DM 4095
Expanded: DM 0000
TO DM 9999

0000 to 9999

Instruction OperandsFunctionSymbolMnemonic

ASCII Code
Conversion

ASC<86>

ASC(86)

S

Di

DB

Converts hexadecimal values from
source channel (S) to eight-bit ASCII
code beginning at leftmost or rightmost
half of beginning destination channel
(DB). Di designates digit and destina-
tion details.

S 3 2 1 0

Di
8-bit

data

0 to F

S:
IR
SR
HR
AR
LR
TC
DM
*DM

Di:
IR
HR
AR
LR
TC
DM
*DM
#
 DB:
IR
HR
AR
LR
DM
*DM

Bit Counter BCNT<67>

BCNT(67)

N

St

R

Counts number of ON bits in one or
more channels (St:: starting channel)
and outputs result to specified channel
(R). N: number of channels to be
counted

N:
IR
SR
HR
AR
LR
TC
DM
*DM

St:
IR
SR
HR
AR
LR
TC
DM
*DM
D:
IR
HR
AR
LR
TC
DM
*DM
#

Programming Instructions: BCD Calculations

Instruction Mnemonic Symbol Function Operands

Increment INC(60)<38>

INC(60)

Ch

Increments four-digit BCD channel (Ch)
by one, without affecting carry (CY).

Ch:
IR
HR
AR
LR
DM
*DMDecrement DEC(61)<39>

DEC(61)

Ch

Decrements four-digit BCD channel by
1, without affecting carry (CY).

*DM

Set Carry STC(95)<40>

STC(95)

Sets carry flag (i.e.,turns CY ON). None

Clear Carry CLC(96)<41>

CLC(96)

CLC(96) clears carry flag (i.e, turns CY
OFF).

None

Appendix CProgramming Instructions

289

Instruction OperandsFunctionSymbolMnemonic

BCD Add ADD(53)<30>

ADD(53)

Au

Ad

R

Adds two four-digit BCD values and
content of CY, and outputs result to
specified result channel.

CY CYAu + Ad + R

Au/Ad:
IR
SR
HR
AR
LR
TC
DM
*DM
#Double BCD

Add
ADDL<54>

ADDL(54)

Au

Ad

D

CY R+ 1 R

Adds two eight-digit values (2 channels
each) and content of CY, and outputs
result to specified channels.

Au+ 1 Au

+ Ad+ 1 Ad

 + CY

#
 R:
IR
HR
AR
LR
DM
*DM

BCD Subtract SUB(54)<31>

SUS(54)

Mi

Su

R

Subtracts both four-digit BCD subtra-
hend (Su) and content of CY from four-
digit BCD minuend (Mi) and outputs re-
sult to specified result channel (R).

Mi – Sv RCY CY

Mi/Su:
IR
SR
HR
AR
LR
TC
DM
*DM
#Double BCD

Subtract
SUBL<55>

SUBL(55)

Mi

Su

R

Subtracts both eight-digit BCD subtra-
hend and content of CY from eight-digit
BCD minuend and outputs result to
specified result channels.

Mi + 1 Mi

– Su + 1 Su

– CY

CY R + 1 R

#
 R:
IR
HR
AR
LR
DM
*DM

BCD Multiply MUL(55)<32>

MUL(55)

Md

Mr

R

Multiplies four-digit BCD multiplicand
(Md) and four-digit BCD multiplier (Mr)
and outputs result to specified result
channels.

Md X Mr R + 1 R

Md/Mr:
IR
SR
HR
AR
LR
TC
DM
*DM
#

Programming Instructions Appendix C

290

IR SR HR AR LR TC DM #

00000 TO 24615
000 TO 246

24700 TO 25515
247 TO 255

HR 0000 TO HR 9915
HR 00 TO HR 99

AR 0000 TO AR 2715
AR 00 TO AR 27

LR 0000 TO LR 6315
LR 00 TO LR 63

TC 000 TO TC 511 Normal: DM 0000
TO DM 4095
Expanded: DM 0000
TO DM 9999

0000 to 9999

Instruction OperandsFunctionSymbolMnemonic

Double BCD
Multiply

MULL<56>

MULL(56)

Md

Mr

R

Multiplies eight-digit BCD multiplicand
and eight-digit BCD multiplier and out-
puts result to specified result channels.

Md+ 1 Md

Mr+ 1 Md

R + 3 R + 2 R + 1 R

X

 R:
IR
HR
AR
LR
DM
*DM

BCD Divide DIV(56)<33>

DIV(56)

Dd

Dr

R

Divides four-digit BCD dividend (Dd) by
four-digit BCD divisor (Dr) and outputs
result to specified result channels. R
receives quotient; R + 1 receives re-
mainder.

R + 1 RDd ÷ Dr

Dd/Dr:
IR
SR
HR
AR
LR
TC
DM
*DM
#

Double BCD
Divide

DIVL<57>

DIVL(57)

Dd

Dr

R

Divides eight-digit BCD dividend by
eight-digit BCD divisor and outputs re-
sult to specified result channels.

Dd + 1 Dd

Dr + 1 Dr

R + 1 R

R + 3 R + 2

Qotient

Remainder

÷

#
R:
IR
HR
AR
LR
DM
*DM

Floating Point
Divide

FDIV<79>

FDIV(79)

Dd

Dr

R

Divides floating point value by another
and outputs floating point result. Right-
most seven digits of each set of chan-
nels used for mantissa and leftmost dig-
it used for exponent.

Square Root ROOT(64)
<72>

ROOT(64)

Sq

R

Computes square root of eight-digit
BCD value and outputs truncated four-
digit integer result to specified result
channel (R).

Sq Sq

R

Sq:
IR
SR
HR
AR
LR
TC
DM
*DM

R:
IR
HR
AR
LR
DM
*DM

Appendix CProgramming Instructions

291

Programming Instructions: Binary Calculations

Instruction Mnemonic Symbol Function Operands

Binary
Increment

INCB<61>

INCB(61)

Ch

Increments hexadecimal channel (Ch)
by one, without affecting carry (CY).

Ch:
IR
HR
AR
LR
DM
*DMBinary

Decrement
DECB<62>

DECB(62)

Ch

Decrements hexadecimal channel (Ch)
by one, without affecting carry (CY).

*DM

Binary
Addition

ADB<50>

ADB(50)

Au

Ad

R

Adds four-digit augend (Au), four-digit
addend (Ad), and content of CY and
outputs result to specified result chan-
nel.

 Ad

Au

+

+ CY

R

CY

Au/
Ad:
IR
SR
HR
AR
LR
TC
DM
*DM

R:
IR
HR
AR
LR
DM
*DM

Binary
Subtraction

SBB<51>

SBB(51)

Mi

Su

R

Subtracts four-digit hexadecimal subtra-
hend (Su) and content of carry from
four-digit hexadecimal minuend (Mi)
and outputs result to specified result
channel (R).

Mi

Su

CY

R

CY

–

–

Mi/
Su:
IR
SR
HR
AR
LR
TC
DM
*DM
#

R:
IR
HR
AR
LR
DM
*DM

Binary
Multiplication

MLB<52>

MLB(52)

Md

Mr

R

Multiplies four-digit hexadecimal multi-
plicand (Md) by four-digit multiplier (Mr)
and outputs eight-digit hexadecimal re-
sult to specified result channels.

Md

Mr

R

R+ 1

X

Quotient

Remainder

Md/
Mr:
IR
SR
HR
AR
LR
TC
DM
*DM
#

R;
IR
HR
AR
LR
DM
*DM

Programming Instructions Appendix C

292

IR SR HR AR LR TC DM #

00000 TO 24615
000 TO 246

24700 TO 25515
247 TO 255

HR 0000 TO HR 9915
HR 00 TO HR 99

AR 0000 TO AR 2715
AR 00 TO AR 27

LR 0000 TO LR 6315
LR 00 TO LR 63

TC 000 TO TC 511 Normal: DM 0000
TO DM 4095
Expanded: DM 0000
TO DM 9999

0000 to 9999

Instruction OperandsFunctionSymbolMnemonic

Binary
Division

DVB<53>

DVB(53)

Dd

Dr

R

Divides four-digit hexadecimal dividend
(Dd) by four-digit divisor (Dr) and out-
puts result to designated channels (R).

Dd

Dr

R

R+ 1

÷

Quotient

Remainder

Dd/
Dr:
IR
SR
HR
AR
LR
TC
DM
*DM

R:
IR
HR
AR
LR
DM
*DM

Numeric
Conversions

FUN<69>

FUN(69)

C

S

R

Computes sine or cosine of angle, or
computes linear approximations from
tables defining points. Operands re-
quired: control data (C), source channel
(S), and result channel (R). Control data
defines operation (0000: sine; 0001: co-
sine; channel: linear approximation).

C:
IR
SR
HR
AR
LR
DM
*DM
#
(0000
or
0001)

S:
IR
SR
HR
AR
LR
DM
*DM
R:
IR
HR
AR
LR
DM
*DM

Programming Instructions: Logic Instructions

Instruction Mnemonic Symbol Function Operands

Complement COM(71)<29>

COM(71)

Ch

Inverts bit status of one channel (Ch) of
data.

Ch:
IR
HR
AR
LR
DM
*DM

Logical AND ANDW(65)
<34>

ANDW(65)

I1

I2
D

Logically ANDs two 16-bit channels (I1
and I2) and sets corresponding bit in
result channel (R) if corresponding bits
in inputs channels are 1.

I1/I2:
IR
SR
HR
AR
LR
TC
DM
*DM
#Logical OR ORW(66)<35>

ORW(66)

I1

I2

R

Logically ORs two 16-bit channels (I1
and I2) and sets corresponding bit in
output channel if one or both of corre-
sponding bits in input data are 1.

#
 R:
IR
HR
AR
LR
DM
*DM

Appendix CProgramming Instructions

293

Instruction OperandsFunctionSymbolMnemonic

Exclusive OR XORW(67)
<36>

XORW(67)

I1

I2

R

Exclusively ORs two 16-bit data chan-
nels (I1 and I2) and sets bit in result (R)
channel when corresponding bits in in-
put channels differ in status.

I1/I2:
IR
SR
HR
AR
LR
TC
DM
*DM
#Exclusive

NOR
XNRW(68)
<37>

XNRW(68)

I1

I2

R

Exclusively NORs two 16-bit channels
(I1 and I2) and sets bit in result channel
(R) when corresponding bits in input
channels are same in status.

R:
IR
HR
AR
LR
DM
*DM

Programming Instructions Appendix C

294

IR SR HR AR LR TC DM #

00000 TO 24615
000 TO 246

24700 TO 25515
247 TO 255

HR 0000 TO HR 9915
HR 00 TO HR 99

AR 0000 TO AR 2715
AR 00 TO AR 27

LR 0000 TO LR 6315
LR 00 TO LR 63

TC 000 TO TC 511 Normal: DM 0000
TO DM 4095
Expanded: DM 0000
TO DM 9999

0000 to 9999

Programming Instructions: Group Programs

Instruction Mnemonic Symbol Function Operands

Group Number GN(10)
GN(10) N

Defines beginning of group program. N: 000-127

Group Start GS(11)

GS(11) N

Prepares group program for execution
(i.e., places it on standby).

N: 000-127

Group End GE(12)

GE(12) N

Defines end of group program. N: 000-127

Group OFF GOFF(15)

GOFF(15) N

Turns group program off and/or defines
end of group program.

N: 000-127

Group Jump GJ(17)

GJ(17)

Moves execution to next group program
awaiting execution.

None

Group Pause GP(13)

GP(13) N

Places group program in “pause” condi-
tion.

N: 000—127

Group Restart GR(14)

GR(14) N

Places a paused group program back
onto standby.

N: 000—127

Group
Continue

GC(16)

GR(16) N

Used with SR bit 25211 and SR bit
25212 to continue group program or in-
terrupt routine execution after power
interruption.

N: 000—127

AND Group ANDG(01)

ANDG(01) N

Used to designate group program or
interrupt routine status as condition (ON
if executing, pausing, or awaiting ex-
ecution) for AND operation with execu-
tion condition before WAIT, CJP,
SKIP(46), or OUTC(00).

N: 000—127

Inverse AND
Group

ANDG(01)
NOT

ANDG(01) NOT N

 Used to designate group program or
interrupt routine status as condition
(OFF if executing, pausing, or awaiting
execution) for AND operation with ex-
ecution condition before WAIT, CJP,
SKIP(46), or OUTC(00).

N: 000—127

Appendix CProgramming Instructions

295

Instruction OperandsFunctionSymbolMnemonic

OR Group ORG(02)

ORG(02) N

 Used to designate group program or
interrupt routine status as condition (ON
if executing, pausing, or awaiting ex-
ecution) for OR operation with execu-
tion condition before WAIT, CJP,
SKIP(46), or OUTC(00).

N: 000—127

Inverse OR
Group

ORG(02) NOT

ORG(02) NOT N

Used to designate group program or
interrupt routine status as condition
(OFF if executing, pausing, or awaiting
execution) for OR operation with execu-
tion condition before WAIT, CJP,
SKIP(46), or OUTC(00).

N: 000—127

Programming Instructions Appendix C

296

IR SR HR AR LR TC DM #

00000 TO 24615
000 TO 246

24700 TO 25515
247 TO 255

HR 0000 TO HR 9915
HR 00 TO HR 99

AR 0000 TO AR 2715
AR 00 TO AR 27

LR 0000 TO LR 6315
LR 00 TO LR 63

TC 000 TO TC 511 Normal: DM 0000
TO DM 4095
Expanded: DM 0000
TO DM 9999

0000 to 9999

Programming Instructions: Subroutines and Interrupt Control

Instruction Mnemonic Symbol Function Operands

Subroutine SBN(31)<92>
SBN(31) N

 Marks beginning of subroutine pro-
gram.

N: 000—999

Subroutine Re-
turn

RET(33)<93>

RET(33)

 Marks end of subroutine program and
returns control.

N: 000—999

Subroutine
Entry

SBS(32)<91>

SBS(32) N

 Calls subroutine (jumps to it). N: 000—999

Subroutine
Test

SBT(34)

SBT(34) N

 Checks execution status of subroutine
and sets execution condition (YES: not
under execution; NO: under execution)
for next instruction. Used before WAIT,
CJP, SKIP(46), or OUTC(00).

N: 000—999

Interrupt Re-
turn

RTI(44)

RTI(44)

 Defines end of interrupt routine and
ends execution (power-off interrupts) or
returns control (other interrupts).

None

Clear Interrupt CLI(43)

CLI(43) N

C

 Used to set time to first scheduled in-
terrupt and to designate whether to
maintain or clear I/O interrupt signals
that occur while another I/O interrupt
routine is being executed.

N:
0—4

C:
IR
HR
AR
LR
TC
DMMask Interrupt MSKS(42)

MSKS(42) N

C

 Used to mask and unmask I/O interrupt
signals, to set time interval for sched-
uled interrupts, and to cancel execution
of scheduled interrupts.

DM
*DM
#

Mask Read MSKR(45)

MSKR(45) N

Ch

 Used to access status of I/O interrupt
masks or time interval for schedules in-
terrupts.

N: 0—4
Ch:
IR
HR
AR
LR
DM
*DM

Appendix CProgramming Instructions

297

Programming Instructions: Special Instructions

Instruction Mnemonic Symbol Function Operands

Process
Display

S(47)

S(47) N

MB

 Inserted into program so that process
number and message (starting from
channel CB) will be displayed on Pro-
gramming Console whenever instruc-
tion is executed.

N:
0000—9999
CB:
IR
HR
AR
LR
DM
*DM
#

Failure Alarm FAL(35)<06>

FAL(35) N

CB

 Diagnostic instruction inserted into pro-
gram so that error code and message
(starting from channel CB) are dis-
played on Programming Console when
instruction is executed.

N: 01—99
CB:
IR
HR
AR
LR
DM
DM*
#

Failure Reset FAL(35)<06>

FAL(35) N

CB

 Special application of FAL(35) used to
reset FAL output area.

N:
00
CB:
IR
HR
AR
LR
DM
DM*
#

Severe Failure
Alarm

FALS(36)<07>

FALS(36) N

CB

 Diagnostic instruction inserted into pro-
gram so that error code and message
(starting from channel CB) are dis-
played on Programming Console and
program stops when instruction is ex-
ecuted.

N: 01—99
CB:
IR
HR
AR
LR
DM
DM*
#

System
Definition

FUN<49>
CMP<20>

AR 10

AR 01

FUN<49>

000

#5FXX

000

 Provides access to operating parame-
ters, including selecting power-off inter-
rupt routine execution, expanding indi-
rect addressing, changing scheduler for
Unit servicing, inhibiting automatic
FAL(35) displays, and enabling pro-
gramming in other than PROGRAM
mode.

XX:
5F02—5F7A

Trace Memory
Sampling

TRSM<45>

TRSM(45)

 Stores data bits or channels specified
from FIT or FA Computer in Trace
Memory.

None

Programming Instructions Appendix C

298

IR SR HR AR LR TC DM #

00000 TO 24615
000 TO 246

24700 TO 25515
247 TO 255

HR 0000 TO HR 9915
HR 00 TO HR 99

AR 0000 TO AR 2715
AR 00 TO AR 27

LR 0000 TO LR 6315
LR 00 TO LR 63

TC 000 TO TC 511 Normal: DM 0000
TO DM 4095
Expanded: DM 0000
TO DM 9999

0000 to 9999

Programming Instructions: File Memory Instructions

Instruction Mnemonic Symbol Function Operands

File Memory
Read

FILR<42>

FILR<42>

N

S

D

 Reads data from File Memory area in
128-channel block units, and outputs
data to specified PC destination chan-
nels. N: number of blocks to be trans-
ferred; S: beginning source block; D:
beginning destination channel

N/S:
IR
SR
HR
AR
LR
TC
DM
*DM
#

D:
IR
HR
AR
LR
TC
DM
*DM

File Memory
Write

FILW<43>

FILW<43>

N

S

D

 Transfers data from PC memory area
to File Memory area in 128-channel
(block) units. N: number of blocks to be
transferred; S: beginning source chan-
nel; D: beginning destination block

N:
IR
SR
HR
AR
LR
TC
DM
*DM
#

S:
IR
SR
HR
AR
LR
TC
DM
*DM
D:
IR
HR
AR
LR
TC
DM
*DM
#

External
Program Read

FILP<44>

FILP<44>

St

 Reads data stored in specified File
Memory blocks (St): starting block num-
ber), transfers it to Program Memory
area at addresses immediately following
FLIP<44>, and then executes trans-
ferred program.

St:
IR
SR
HR
AR
LR
TC
DM
*DM
#

Appendix CProgramming Instructions

299

Programming Instructions: Intelligent I/O Instructions

Instruction Mnemonic Symbol Function Operands

Intelligent I/O
Write

WRIT(87)
<87>

WRIT(87)

N

S

D

 Transfers channel data through I/O
channel (D) allocated to Intelligent I/O
Unit and sequentially writes data to
memory area of Intelligent I/O Unit. N:
number of channels to be transferred;
S: beginning source PC channel to be
transferred

N:
IR
SR
HR
AR
LR
TC
DM
*DM,
#

S:
IR
SR
HR
AR
LR
TC
DM
*DM
D:
IR
000—
127

Intelligent I/O
Read

READ(88)
<88>

READ(88)

N

S

D

READ(88) reads data from memory
area of Intelligent I/O Unit and transfers
it through channel (S) allocated to Intel-
ligent I/O Unit to destination channels
(D: starting channel). N: number of
channels to be transferred

N:
IR
SR
HR
AR
LR
TC
DM
*DM
#

S:
IR
000—
127
D:
IR
HR
AR
LR
TC
DM
*DM

Programming Instructions: Network Instructions

Instruction Mnemonic Symbol Function Operands

Send SEND(90)
<90>

SEND(90)

S

D

C

Sends data to device linked through
Network Link Unit. S: beginning source
channel to be sent from PC; D: begin-
ning destination channel on node to re-
ceive transmission; C first of three con-
trol channels

The SEND instruction can be used for
SYSMAC NET Link and SYSMAC LINK
Units. The settings of control data vary
according to the type of system used.

S:
IR
SR
HR
AR
LR
TC
DM
*DM

 D/C:
IR
HR
AR
LR
TC
DM
*DM

Network
Receive

RECV(98)
<98>

RECV(98)

S

D

C

 Receives data from device linked
through Network Link Unit. S: begin-
ning source channel on node from
which to receive; D: beginning destina-
tion channel in PC to receive transmis-
sion; C: first of three control channels

The RECV instruction can be used for
SYSMAC NET Link and SYSMAC LINK
Units. The settings of control data vary
according to the type of system used.

S:
IR
SR
HR
AR
LR
TC
DM
*DM

D/C:
IR
HR
AR
LR
TC
DM
*DM

300

Appendix D

Error and Arithmetic Flag Operation
The following table shows which instructions affect the ER, CY, GR, LE, and EQ flags. In general, ER indi-
cates that operand data is not within requirements or that mistakes have been made in indirect addressing.
CY indicates arithmetic or data shift results. GR indicates that a compared value is larger than some standard;
TL, that it is smaller; and EQ, that it is the same. EQ also indicates a result of zero for arithmetic operations.
Refer to subsections of Section 4 Programming Instructions for details.

Vertical arrows in the table indicate the flags that are turned ON and OFF according to the result of the instruc-
tion. Dashes indicate flags that are not affected by the instruction.

Although TIM, TMS, CNT, and CNTR are executed when ER is ON, other instructions with a vertical arrow
under the ER column are not executed if ER is ON. All of the other flags in the following table will also not op-
erate when ER is ON.

Instructions not shown do not affect any of the flags in the table.

Mnemonic Name ER (25503) CY (25504) GR (25505) EQ (25506) LE (25507)

TIM Timer

CNT Counter

CNR Timer/Counter Reset --- --- --- ---

JMP Jump

CJP Conditional Jump

SFT Shift Register

GN(10) Basic Instructions

GS(11) Group Start

GE(12) Group End

GP(13) Group Pause --- --- --- --- ---

GR(14) Group Restart

GOFF(15) Group Off

GC(16) Group Continue

GJ(17) Group Jump

TMS(30) Timer Start --- --- --- ---

SBN(31)<92> Subroutine Definition

SBS(32)<91> Subroutine Entry --- --- --- --- ---

RET(33)<93> Return

SBT(34) Subroutine Test

FAL(35)<06> Failure Alarm

FALS(36)<07> Severe Failure Alarm --- --- --- ---

RPT(37) Repeat

IL(38)<02> Interlock --- --- --- --- ---

Appendix DError and Arithmetic Flag Operation

301

ILC(39)<03> Interlock Clear

DIFU(40)<13> Differentiation Up --- --- --- --- ---

DIFD(41)<14> Differentiation Down

MSKS(42) Mask --- --- --- ---

CLI(43) Interrupt Clear

RTI(44) Interrupt Return --- --- --- --- ---

MSKR(45) Mask Read --- --- --- ---

SKIP(46) Conditional Skip --- --- --- --- ---

S(47) Process Display --- --- --- ---

MOV(50)<21> Move --- --- ---

MVN(51)<22> Move Not

CMP(52)<20> Compare ---

ADD(53)<30> BCD Add --- ---

SUB(54)<31> BCD Subtract

MUL(55)<32> BCD Multiply

DIV(56)<33> BCD Divide

BIN(57)<23> BCD to Binary

BCD(58)<24> Binary to BCD --- --- ---

BRZ(59) Branch for Zero

INC(60)<38> Increment

DEC(61)<39> Decrement

ASR(62)<26> Arithmetic Shift Right --- ---

ASL(63)<25> Arithmetic Shift Left

ROOT(64)<72> Square Root

ANDW(65)<34> Logical AND

ORW(66)<35> Logical OR --- --- ---

XORW(67)<36> Exclusive OR

XNRW(68)<37> Exclusive NOR

ROR(69)<28> Rotate Right --- ---

ROL(70)<27> Rotate Left

COM(71)<29> Complement --- --- ---

XFER(72)<70> Block Transfer

BSET(73)<71> Block Set --- --- --- ---

XCHG(74)<73> Data Exchange

Mnemonic Name ER (25503) CY (25504) GR (25505) EQ (25506) LE (25507)

Error and Arithmetic Flag Operation Appendix D

302

SLD(75)<74> One Digit Shift Left

SRD(76)<75> One Digit Shift Right

MLPX(77)<76> 4 to 16 Decoder --- --- --- ---

DMPX(78)<77> Encoder

SDEC(79)<78> Seven-Segment Decoder

MTIM(80) Multi-output Timer

WRIT(87)<87> Intelligent I/O Write --- --- ---

READ(88)<88> Intelligent I/O Read

SEND(90)<90> Send --- --- --- ---

WSFT(94)<16> Word Shift

STC(95)<40> Set Carry --- ON --- --- ---

CLC(96)<41> Clear Carry --- OFF --- --- ---

RECV(98)<98> Network Receive

CNTR<12> Reversible Counter

FILR<42> File Memory Read --- --- --- ---

FILW<43> File Memory Write

FILP<44> External Program Read

TRSM<45> Trace Memory Sampling --- --- --- --- ---

FUN<49> System Definition

ADB<50> Binary Addition --- ---

SBB<51> Binary Subtraction

MLB<52> Binary Multiplication --- --- ---

DVB<53> Binary Division

ADDL<54> Double BCD Add --- ---

SUBL<55> Double BCD Subtract

MULL<56> Double BCD Multiply

DIVL<57> Double BCD Divide --- --- ---

BINL<58> BCD to Double Binary

BCDL<59> Double Binary to Double
BCD

CMPL<60> Compare Long ---

INCB<61> Binary Increment

DECB<62> Binary Decrement --- --- ---

BCNT<67> Bit Counter

Mnemonic Name ER (25503) CY (25504) GR (25505) EQ (25506) LE (25507)

Appendix DError and Arithmetic Flag Operation

303

BCMP<68> Block Compare

FUN<69> Numeric Conversions

FDIV<79> Floating Point Divide --- --- ---

DIST<80> Single Channel Distribution

COLL<81> Data Collection

MOVB<82> Move Bit --- --- --- ---

MOVD<83> Move Digit

SFTR<84> Reversible Shift Register --- --- ---

TCMP<85> Table Compare --- --- ---

ASC<86> ASCII Code Conversion --- --- --- ---

Mnemonic Name ER (25503) CY (25504) GR (25505) EQ (25506) LE (25507)

304

Appendix E
ASCII Codes

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

0,1,
8,9

2 3 4 5 6 7 A B C D E F

UPPER DIGITS (Upper 4 bits)

LOWER
DIGITS
(LOWER
4 BITS)

305

Appendix F
System Data Sheets

The pages in this appendix can be copied and used for managing system data, in-
cluding I/O channel allocations, program addresses, and FAL(35)/FALS(36) contents.

System Data Sheets Appendix F

306

I/O Allocations

System Prepared by

PC model Diagram number

Inspected by Approved by

Ch Rack # Unit # Unit model Ch Rack # Unit # Unit model

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

Ch Rack # Unit # Unit model Ch Rack # Unit # Unit model

Ch Rack # Unit # Unit model Ch Rack # Unit # Unit model

Appendix FSystem Data Sheets

307

Program Coding Sheet.

5 0
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
6 0
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
7 0
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
8 0
8 1
8 2
8 3
8 4
8 5
8 6
8 7
8 8
8 9
9 0
9 1
9 2
9 3
9 4
9 5
9 6
9 7
9 8
9 9

0 0
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
0 9
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
3 0
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
4 0
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9

System Prepared by

PC model Diagram number

Inspected by Approved by

Address Instruction and
function code

Data Address Instruction and
function code

Data

System Data Sheets Appendix F

308

FAL Instructions, Error Numbers, and Error Messages

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

System Prepared by

PC model Diagram number

Inspected by Approved by

FAL #
(error #)

Message Appropriate response FAL #
(error #)

Message Appropriate response

309

Index

A
abbreviations

for data areas, 112
for flags, 112

ADB, 184
data areas, 184
flags, 184
flowchart symbol, 184

ADD, 171
application example of, 172
data areas, 171
flags, 172
flowchart symbol, 171

ADDL, 172
application example of, 173
flags, 172
flowchart, 172
flowchart symbol, 172

AND, 113

ANDG(01), 199
flowchart symbol, 199

ANDW(65), 189
data areas, 189
flags, 189
flowchart symbol, 189

applications, precautions, xvii

ASC, 164
application example of, 166
data areas, 165
digit designator, 165
flags, 165
symbol flowchart, 165

ASCII, display of data, 59

ASL, 139
data areas, 139
flags, 139
flowchart symbol, 139

ASR(62), 139
data areas, 139
flags, 139
flowchart symbol, 139

assembly tool, 263

B
basic instructions, 113

conditional output, 115
differentiation, 116
interlock, 116
LD, AND, OR, OUT & NOT, 113
no operation, 118

BCD, 157
data areas, 158
flags, 158
flowchart symbol, 157

BCD calculation, double BCD subtract, 175

BCD calculations, 168
BCD Add, 171
BCD divide, 177
BCD multiply, 176
BCD subtract, 173
decrement, 170
double BCD add, 172
double BCD divide, 178
double BCD multiply, 177
floating point divide, 179
increment, 168
set carry and clear carry, 170
square root, 182

BCDL, 158
data areas, 158
flags, 158
flowchart symbol, 158

BCMP, 154
data areas, 155
flags, 155
flowchart symbol, 155
result bits and ranges, 155

BCNT, 166
data areas, 167
flags, 167
symbol flowchart, 167

beeper
error signal, 33
on/off, 28
sounding of, 248

BIN, 156
data areas, 156
flags, 157
flowchart symbol, 156

binary calculations, 182
binary addition, 184
binary decrement, 183
binary division, 185
binary increment, 183
binary multiplication, 185
binary subtraction, 184
numeric conversions, 186

binary channel display, 60

BINL, 157
data areas, 157
flags, 157
flowchart symbol, 157

Index

310

bit
definition of, 90
HR area access, 102
identification (or address), 6
link restart;, 99
LR area access, 104
restart setting of, 95
state monitoring, 57
unused I/O for work, 90, 98

BRZ(59), 124
data areas, 125
flags, 125
flowchart symbol, 125

BRZ(59) NOT, 124
data areas, 125
flags, 125
flowchart symbol, 125

BSET((73), flowchart symbols, 144

BSET(73), 144
application example of, 145
data areas, 144
flags, 144

C
cables, Hard-plastic-clad Quartz Fiber: H-PCF, 262

cassette tape errors, list,explanation of, & solution for, 255

cassette tape operation, 83

channel changes, 59

channels
definition of, 90
I/O use of , 92
reassigning a number, 94
work rather than I/O use of, 92

CJP, 2, 121
data areas, 122
flags, 122
flowchart symbol, 122

CJP & CJP NOT, application example of, , 122

CJP NOT, 121
data areas, 122
flags, 122
flowchart, 122

CLC, 98

CLC(96), 170
flowchart symbol, 170

clearing, of errors & messages, 248

CLI(43), 204
data areas, 206
flowchart symbol, 205

clock
duty factor, 98
in timer/counter area, 106

CMP, 152
application example of, 153
data areas, 152

flags, 152
flowchart symbol, 152

CMPL, 154
data areas, 154
flags, 154
flowchart symbol, 154

CNR, 134
data areas, 134
flags, 134
flowchart symbol, 134

CNT, 129
application example of, 130
data areas, 130
flags, 130
flowchart symbol, 130
reset conditions, 130

CNTR, 131
data areas, 132
flags, 132
flowchart symbol, 131
reset conditions, 131

COLL, 151
data areas, 151
flags, 152
flowchart symbol, 151

COM(71), 188
data areas, 189
flags, 189
flowchart symbol, 189

conditional branches, 6

condition-response, 2

CPU rack response times, 240

cycle operation, of PC system, 228

D
DA, monitoring bits in the area, 57

data comparison, 152
block compare, 154
compare, 152
compare long, 154
table compare, 155

data conversion, 156
4 to 16 decoder, 158
ASCII code conversion, 164
BCD to binary, 156
BCD to double binary, 157
binary to BCD, 157
bit counter, 166
double binary to double BCD, 158
encoder, 160
seven-segment decoder, 162

Index

311

data movement, 143
block set, 144
block transfer, 145
data collection, 151
data exchange, 149
move and move not, 143
move bit, 146
move digit, 147
single channel distribution, 150

data shifting, 135
arithmetic shift left, 139
arithmetic shift right, 139
one digit shift left, 141
one digit shift right, 142
reversible shift register, 138
rotate left, 140
rotate right, 140
shift register, 135
word shift, 142

debugging, 66
operation of, 66

DEC, 170
data areas, 170
flags, 170
flowchart symbol, 170

DECB, 183
data areas, 183
flags, 183
flowchart symbol, 183

delete, instruction, 51

DIFD(41), 116
data areas, 117
flowchart symbol, 117

DIFU(40), 116
data areas, 117
flowchart symbol, 117

DIFU(40) & DIFD(41), application examples of, , 117

DIFU/DIFD, 22

display meanings, 37

displays, explanation of, 65

DIST, 150
data areas, 150
flags, 150
flowchart symbol, 150
spplication example of, 150

DIV, 177
data areas, 178
flags, 178
flowchart symbol, 178

DIVL, 178
application example of, 179
data areas, 178
flags, 179
flowchart symbol, 178

DM, saving,restoring and verification, 88

DMPX(78), 160
application example of, 162
data areas, 161
flags, 161
flowchart symbol, 161

DVB, 185
data areas, 185
flags, 186
flowchart symbol, 185

E
EP-ROM, I/O table correction when using, 40

ER flag, explanation of, 112

errors
after emergency actions, 15
battery alarm flag, 97
concurrent display of, 33
display to user, 33
due to absent units, 94
due to startup in RUN mode, 27
from Host Link Unit (s), 101
I/O table corruption, 40
I/O verification message, 38
illegal BCD use, 97
in clock timing, 98
in I/O table registration, 31
in timing, 12
link unit flag, 98
o, 48
P, 50
power loss error code FAL, 97
R, 51
remote I/O, 99
shown in upper right of display, 41
syntax, 52

errors & messages, reading & clearing of, 248

execution times, of instructions, 232

F
FAL(35), 208

application example of, 210
data areas, 209
diagnostic instruction, 247
flags, 209
flowchart symbol, 209
output areas, 209
resetting output, 209

FAL(35) & FALS(36), management of, 210

FALS(36), 208
application example of, 210
data areas, 209
diagnostic instruction, 248
flags, 209
flowchart symbol, 209
resetting output, 209

Index

312

FDIV, 179
application example of, 180
data areas, 180
exponent digit, 180
flags, 180
flowchart symbol, 179

file memory
clearing of, 73
index read, 82
operations, 73
reading of, 78
reading/writing of, 80
verification of, 76
writing to, 74

file memory errors, list,explanation of, & solution for, 255

file memory instructions, 214
external program read, 217
file memory write, 216

FILP, 217
data areas, 217
flags, 217
flowchart symbol, 217

FILR, 215
data areas, 215
flags, 215
flowchart symbol, 215

FILW, 216
data areas, 216
flags, 216
flowchart symbols, 216

flags, SR area defaults, 95

flow chart, wait instructions, 119

flow control, 119
branch for zero, 124
conditional jump, 121
conditional skip, 124
jump, 120
label, 120
repeat, 122

flowchart function codes, 110

flowchart planning, 6

FM, 108

forcing bit changes, 59

FUN, 186, 210
data areas, 186
data inputs, 211
expanding indirect addressing, 211
flags, 186
flowchart stmbol, 186
flowchart symbol, 211
linear approximation, 187
linear approximation example, 187
power-off interrupts, 211
sine and cosine, 186
use during programming, 41

G
GC(16), 197

application example of, 198
flowchart symbol, 198

GN(10),GS(11),GE(12),GOFF(15) & GJ(17), 191
flowchart symbols, 192

GP(13), 197
flowchart symbol, 197

GR(14), 197
flowchart symbol, 197

group continue control, 96

group monitor, 64

group program
example of basic group program execution, 194
example of sequential execution, 195
execution, 192
monitoring group status, 193

group programs, 191
AND group & OR group, 199
basic instructions, 191
group continue, 197
group pause & group restart, 197

H
Hard-plastic-clad Quartz Fiber: H-PCF, 262

hex, display of data, 59

Host Link System, maximum I/O response time, 246

host link system, minimum I/O response time, 246

HR bit access, 101

I
I/O

channel assignment, 93
dummy units, 94
interrupt routines, 203
no. of points required, 5
optical transmission, 32
points required, 5
response time, 240
table changes, 38
table read, 35
table registration, 31
table registration and multipliers, 32
table registration/verification, 93
verifiaction of table, 34

I/O area, 91

I/O Unit (64-point)
maximum I/O response time, 242
minimum I/O response time, 241

I/O Units, specifications, 257

IL times, definition of, 232

Index

313

IL(38), 116
data areas, 116
flags, 116
flowchart symbols, 116

ILC(39)
data areas, 116
flags, 116
flowchart symbols, 116

INC, 168
application example of, 168
data areas, 168
flags, 168
flowchart symbol, 168

INCB, 183
data areas, 183
flags, 183
flowchart symbol, 183

increasing instruction execution, 231

indirect addressing, 107

insert, instructions, 50

instruction blocks, 113
combination of, 114

instruction execution, increase of, 231

instruction execution times, 232

instruction input, 110
example of BCD add, 111

instructions, file memory read, 215

intelligent I/O instructions, 218
intelligent I/O read, 221
intelligent I/O write, 218

interrupt routines
interrupt priority levels, 204
power-off interrupts, 204
scheduled interrupts, 203

J–K
JMP, 120

application example of, 121
data areas, 120
flags, 120
flowchart symbol, 120

key, SHIFT, 24

key sequence, 42

keys, on the Programming Console, 24

L
ladder diagram function codes, 110

language display switch Japanese/English, 27

LBL, 2, 120
flowchart symbol, 120

LD, 113

loading data from tape, 85

logic instructions, 188
complement, 188

logical instructions
exclusive NOR, 190
exclusive OR, 190
logical AND, 189
logical OR, 189

M
maximum I/O response time

of 64-point I/O unit, 242
of host link system, 246
of normal I/O unit, 241
of PC link system, 244
of remote I/O system, 243

meaning of displays, 34, 37

memory
all clear, 29
allocation of areas;, 91
areas TC, AR, LR & SR, 91
areas UM & TM, 91
clearing areas, 29
partial clear, 30
PM/DM space constraints;, 107
RAM/ROM use;, 108
size of program in, calculation, 54

minimum I/O response time
of 64-point I/O unit, 241
of host link system, 246
of normal I/O unit, 240
of PC link system, 244
of remote I/O system, 243

MLB, 185
data areas, 185
flags, 185
flowchart symbol, 185

MLPX(77), 158
flowchart symbol, 159

mnemonic code, 7

mode changes, 27

MONITOR mode, 26

monitoring, execution address, 56

MOV(50), 143
data areas, 144
flags, 144
flowchart symbols, 144

MOVB, 146
control data, 147
data areas, 147
flags, 147
flowchart symbol, 147

MOVD, 147
application example of, 148
control data, 148
data areas, 148
flowchart symbol, 148

Index

314

MPLX(77)
application example of, 160
data areas, 159
digit designator, 159
flags, 159

MSKR(45), 206
application example of, 207
data areas, 207
flags, 207
flowchart symbol, 207

MSKS(42), 205
data areas, 206
flowchart symbol, 206

MTIM(80), 134
data areas, 135
flags, 135
flowchart symbol, 135
resettiing and pausing, 135

MUL(55), 176
application example of, 177
data areas, 176
flags, 176

MULL, 177
data areas, 177
flags, 177
flowchart symbol, 176, 177

multiple processes, 3

MVN(51), 143
data areas, 144
flags, 144
flowchart symbols, 144

N
Network instructions, 222

Network receive, 224
send, 222
send and receive operations, 225

NOP, 118
flowchart symbol, 119

normal I/O unit
maximum I/O response time, 241
minimum I/O response time, 240

NOT, 113

O
operating environment, precautions, xvi

optical connectors, 263

Optical Power Tester, 263

OR, 113

ORG(02), flowchart symbol, 199

ORW(66), 189
data areas, 190
flags, 190
flowchart symbol, 190

OUT, 113

OUTC(00), 115
data areas, 115
flags, 115
flowchart symbol, 115

OUTC(00) NOT, 115
data areas, 115
flags, 115

output OFF bit, 96

P
password, 28

PC link system
maximum I/O response time, 244
minimum I/O response time, 244

power loss
AR area response to, 102
battery alarm flag, 97
continuation after, 95
error code produced by, 97
LR area response, 102
starting up again, 27
TIM/CNT response, 107

precautions, xv
applications, xvii
general, xvi
operating environment, xvi
safety, xvi

program, mode, 26

program data, verification of, 86

program errors, list,explanation of,& solution for, 254

program input errors, list,explanation of,& solution for, 253

program read, 46

program saving, 84

program tracing, 66

programmed alarms & error messages, 247

programming
addresses, 7
blocks, 7
branches, 7
console display, 4
example, 9
group priorities, 15
groups of commands, 3
input sequence, 12
label use, 10
mnemonics, 7
RUN, 26
steps , 5

Index

315

Programming Console Operations
debugging operations, 268
file memory cassette operations, 271
monitoring & data change operations, 269
preparatory operations, 265
program operations, 267

programming instructions
BCD calculations, 288
binary calculations, 291
data comparison, 284
data conversion, 286
data movement, 282
data shifting, 280
file memory instructions, 298
flow control, 277
group programs, 294
intelligent I/O instructions, 299
logic instructions, 292
Network instructions, 299
special instructions, 297
subroutines & interrupt control, 296
timers & counters, 279

programming timers, 12

R
rack, reservation of channel , 94

READ, 221
data areas, 221
flags, 221
flowchart symbol, 221

reading, of errors & messages, 248

recovering data from tape, 85

RECV(98), 224
control data, 224
data areas, 225
flags, 225
flowchart symbol, 224
operation of, 225

refreshing, of I/O units, 229

remote I/O, 92

remote I/O system
maximum I/O response time, 243
minimum I/O response time, 243

repetitions, number of, 229

response time, of I/O, 240

response times
calculation of min/max, 240
of CPU rack, 240

RET(33), 200
flowchart symbol, 200

ROL(70), 140
data areas, 140
flags, 140
flowchart symbol, 140

ROOT(64), 182
application example, 182
data areas, 182
flags, 182
flowchart symbol, 182

ROR(69), 140
data areas, 141
flags, 141
flowchart symbol, 141

RPT(37), 122
data areas, 123
flags, 123
flowchart symbol, 123
interlock handling, 123
power interruptions, 123

RTI(44), 202
flowchart symbol, 202

runtime monitoring, 55

S
S number an message display, 65

S numbers, 1

S(47), 208
application example of, 208
data areas, 208
flags, 208
flowchart symbol, 208

safety precautions. See precautions

SBB, 184
data areas, 184
flags, 185
flowchart symbol, 184

SBN(31), 200

SBS(32), 200
flags, 200
flowchart symbol, 200
restructions, 201

SBT(34), 201
application example of, 202
flowchart symbol, 202

SDEC(79), 162
application example of, 164
data areas, 163
digit designator, 163
flags, 163
flowchart symbol, 163

section execution, 66
operation of, 69
other operations during, 70

self-diagnostic functions, 247

SEND(90), 222
control data, 222, 223, 224
data areas, 223
flags, 223
flowchart symbol, 222
operation of, 225

Index

316

SEND(90) & RECV(98)
application example of, 226
flag timing, 225

SFT, 135
application example of, 137
data areas, 136
flowchart symbol, 136

SFTR, 138
control channel data, 138
control channel operation, 138
data areas, 138
flags, 138
flowchart symbol, 138

single channel operations, 60

SKIP(46), 124
flowchart symbol, 124

SKIP(46) NOT, 124
flowchart symbol, 124

SLD(75), 141
data areas, 141
flags, 141
flowchart symbol, 141

special instructions, 207
failure alarm and severe failure alarm, 208
process display, 208
system definition, 210

SRD(75)
data areas, 142
flags, 142
flowchart symbol, 142

SRD(76), 142

STC, 97

STC(95), 170
flowchart symbol, 170

step execution, 66
forced condition execution in, 68

step trace, operation of, 71

SUB, 173
application example of, 174
data areas, 174
flags, 174
flowchart symbol, 174

SUBL, 175
data areas, 175
flags, 176
flowchart symbol, 175

subroutines & interrupt control, 199, 202
interrupt control, 204
mask read, 206
subroutine definition, 200
subroutine entry, 200
subroutine test, 201

SYSFLOW, 2

system errors, list, explanation of, & solution for, 249

system operation, explanation of, 228

T
TC area, 107

TCMP, 155
data areas, 156
flags, 156
flowchart symbol, 155
result bits and ranges, 156

three channel
change of, 63
display of, 62

TIM, 126
application examples of, 127
data areas, 127
flags, 127
flowchart symbol, 127
multiple timers, 132
reset conditions, 127
with RPT, 133

TIM instructions, 23

TIM/CNT, change, 47

time allocations, changing of, 230

timer/counter, assignment of numbers, 6

timers & counters, 125
counter, 129
multi-output timer, 134
programming extended, 132
reversible counter, 131
timer, 126
timer start, 128
timer/counter reset, 134

timing
during program branches, 22
of specific actions, 20
source of data, 98
within a group of instructions, 18

timing with clock pulses, 133

TMS(30), 128
application example of, 129
data areas, 129
flags, 129
flowchart symbol, 129
reset conditions, 129

total serving time per cycle, 229

trace memory, how to read, 72

trace operations, 213
trace memory sampling, 213

transmission times, for command & response, 246

TRSM, 213
application example of, 214
flags, 213
flowchart symbol, 213

Index

317

U–W
unit servicing, different ways of, 229

verification of program data, 86

WAIT, 119
flowchart symbol, 119

WAIT instruction, 9

WAIT NOT, 119
flowchart symbol, 119

WRIT, 218
application example, 219
data areas, 219
flags, 219
flowchart symbol, 219

write protection, 40

write protestion, FM area;, 102

WSFT(94), 142
data areas, 143
flags, 143
flowchart symbol, 143

X

XCHG(74), 149
data areas, 150
flags, 150
flowchart symbol, 150

XFER(72), 145
data areas, 146
flags, 146
flowchart symbol, 146

XNRW(67), flags, 191

XNRW(68), 190
data areas, 191
flowchart symbol, 191

XORW(67), 190
data areas, 190
flags, 190
flowchart symbol, 190

318

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W149-E1-02

Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content

1 1989 Original production

02 May 2003 Changes for new product versions.

Changes for SYSMAC LINK.

Additions of new Units.

Addition of PLP information.

Addition of safety precautions.

	C1000HF Operation Manual
	Notice
	TABLE OF CONTENTS
	About this Manual
	PRECAUTIONS
	1 Intended Audience
	2 General Precautions
	3 Safety Precautions
	4 Operating Environment Precautions
	5 Application Precautions

	SECTION 1 Introduction
	1-1 Flowchart Programming
	1-1-1 Sequential Control
	1-1-2 Branched Control
	1-1-3 Parallel Group Control

	1-2 Elementary Programming Steps
	1-2-1 Assessing the Control Task
	1-2-2 Drawing the Flowchart
	1-2-3 Converting into Mnemonic Code

	1-3 Elementary Instructions
	1-4 Programming Examples
	1-4-1 Example 1: WAIT vs CJP/JMP Instructions
	1-4-2 Example 2: WAIT vs Group Instructions
	1-4-3 Example 3: Timing with Group Instructions
	1-4-4 Example 4: Time-Specific Execution
	1-4-5 Example 5: Timers and Execution Timing

	SECTION 2 Using the Programming Console
	2-1 The Programming Console
	2-1-1 The Keyboard
	2-1-2 The Mode Switch
	2-1-3 The Display Message Switch

	2-2 Preparation for Programming
	2-2-1 Entering the Password
	2-2-2 Clearing Memory
	2-2-3 Setting and Canceling Expanded DM Area
	2-2-4 Registering the I/O Table
	2-2-5 Reading Error Messages
	2-2-6 Verifying the I/O Table
	2-2-7 Reading the I/O Table
	2-2-8 Changing the I/O Table
	2-2-9 Transferring the I/O Table

	2-3 Programming Operations
	2-3-1 Setting a Program Address
	2-3-2 Program Write
	2-3-3 Program Read
	2-3-4 Instruction Search
	2-3-5 Instruction Insert
	2-3-6 Instruction Delete
	2-3-7 Program Check
	2-3-8 Program Size Read

	2-4 Monitor and Data Change Operations
	2-4-1 Force Set/Reset
	2-4-2 Channel Data Changes
	2-4-3 Single Channel Operations in Binary
	2-4-4 Three-Channel Operations
	2-4-5 Group Monitor

	2-5 Debugging
	2-5-1 Step Execution
	2-5-2 Section Execution
	2-5-3 Step Trace

	2-6 File Memory Operations
	2-6-1 File Memory Clear
	2-6-2 File Memory Write
	2-6-3 File Memory Verify
	2-6-4 File Memory Read
	2-6-5 File Memory Read/Write
	2-6-6 File Memory Index Read

	2-7 Cassette Tape Operations
	2-7-1 Saving a Program to Tape
	2-7-2 Restoring Program Data
	2-7-3 Verifying Program Data
	2-7-4 DM<–> Cassette Tape: Save, Restore, and Verify

	SECTION 3 Data and Memory Areas
	3-1 Overview
	3-2 I/O and Internal Relay Area - IR
	3-3 Special Relay Area SR
	3-3-1 Group Continue Control Bit
	3-3-2 Data Retention Control Bit
	3-3-3 Output OFF Bit
	3-3-4 FAL Error Code Output Area
	3-3-5 Battery Alarm Flag
	3-3-6 Indirect Jump Error Flag
	3-3-7 I/O Verification Error Flag
	3-3-8 DM Address Error Flag
	3-3-9 Instruction Execution Error Flag, ER
	3-3-10 Arithmetic Operation Flags
	3-3-11 Clock Bits
	3-3-12 Special I/O Flags and Control Bits

	3-4 Holding Relay Area - HR
	3-5 Auxiliary Relay Area - AR
	3-6 Link Relay Area - LR
	3-7 Timer/Counter Area - TC
	3-8 Data Memory Area - DM
	3-9 Program Memory
	3-10 File Memory Area - FM

	Section 4 Programming Instructions
	4-1 Introduction
	4-1-1 Inputting Instructions
	4-1-2 Instruction Operand Data Areas and Flags

	4-2 Basic Instructions
	4-2-1 LD, AND, OR, OUT, and NOT
	4-2-2 Conditional Output - OUTC(00) and OUTC(00) NOT
	4-2-3 Interlock - IL(38)<02> and ILC(39)<03>
	4-2-4 Differentiation - DIFU(40)<13> and DIFD(41)<14>
	4-2-5 No Operation - NOP

	4-3 Flow Control
	4-3-1 WAIT and WAIT NOT
	4-3-2 Label - LBL
	4-3-3 Jump - JMP
	4-3-4 Conditional Jump - CJP and CJP NOT
	4-3-5 Repeat - RPT(37)
	4-3-6 Conditional Skip - SKIP(46) and SKIP(46) NOT
	4-3-7 Branch for Zero - BRZ(59) and BRZ(59) NOT

	4-4 Timers and Counters
	4-4-1 Timer - TIM
	4-4-2 Timer Start - TMS(30)
	4-4-3 Counter - CNT
	4-4-4 Reversible Counter - CNTR <12>
	4-4-5 Programming Extended Timers and Counters
	4-4-6 Timer/Counter Reset - CNR
	4-4-7 Multi-output Timer MTIM(80)

	4-5 Data Shifting
	4-5-1 Shift Register - SFT
	4-5-2 Reversible Shift Register - SFTR<84>
	4-5-3 Arithmetic Shift Left - ASL(63)<25>
	4-5-4 Arithmetic Shift Right - ASR(62)<26>
	4-5-5 Rotate Left - ROL(70)<27>
	4-5-6 Rotate Right - ROR(69)<28>
	4-5-7 One Digit Shift Left - SLD(75)<74>
	4-5-8 One Digit Shift Right - SRD(76)<75>
	4-5-9 Word Shift - WSFT(94)<16>

	4-6 Data Movement
	4-6-1 Move - MOV(50)<21> and Move Not - MVN(51)<22>
	4-6-2 Block Set - BSET(73)<71>
	4-6-3 Block Transfer - XFER(72)<70>
	4-6-4 Move Bit - MOVB<82>
	4-6-5 Move Digit - MOVD<83>
	4-6-6 Data Exchange - XCHG(74)<73>
	4-6-7 Single Channel Distribution - DIST<80>
	4-6-8 Data Collection - COLL<81>

	4-7 Data Comparison
	4-7-1 Compare - CMP(52)<20>
	4-7-2 Compare Long- CMPL<60>
	4-7-3 Block Compare - BCMP<68>
	4-7-4 Table Compare - TCMP<85>

	4-8 Data Conversion
	4-8-1 BCD to Binary - BIN(57)<23>
	4-8-2 BCD to Double Binary - BINL<58>
	4-8-3 Binary to BCD - BCD(58)<24>
	4-8-4 Double Binary to Double BCD - BCDL<59>
	4-8-5 4 to 16 Decoder - MLPX(77)<76>
	4-8-6 Encoder - DMPX(78)<77>
	4-8-7 Seven-Segment Decoder - SDEC(79)<78>
	4-8-8 ASCII Code Conversion - ASC<86>
	4-8-9 Bit Counter - BCNT<67>

	4-9 BCD Calculations
	4-9-1 Increment - INC(60)<38>
	4-9-2 Decrement - DEC(61)<39>
	4-9-3 Set Carry - STC(95)<40> and Clear Carry - CLC(96)<41>
	4-9-4 BCD Add - ADD(53)<30>
	4-9-5 Double BCD Add - ADDL<54>
	4-9-6 BCD Subtract - SUB(54)<31>
	4-9-7 Double BCD Subtract - SUBL<55>
	4-9-8 BCD Multiply - MUL(55)<32>
	4-9-9 Double BCD Multiply - MULL<56>
	4-9-10 BCD Divide - DIV(56)<33>
	4-9-11 Double BCD Divide - DIVL<57>
	4-9-12 Floating Point Divide - FDIV<79>
	4-9-13 Square Root - ROOT(64)<72>

	4-10 Binary Calculations
	4-10-1 Binary Increment - INCB<61>
	4-10-2 Binary Decrement - DECB<62>
	4-10-3 Binary Addition - ADB<50>
	4-10-4 Binary Subtraction - SBB<51>
	4-10-5 Binary Multiplication - MLB<52>
	4-10-6 Binary Division - DVB<53>
	4-10-7 Numeric Conversions -FUN<69>

	4-11 Logic Instructions
	4-11-1 Complement - COM(71)<29>
	4-11-2 Logical AND - ANDW(65)<34>
	4-11-3 Logical OR - ORW(66)<35>
	4-11-4 Exclusive OR - XORW(67)<36>
	4-11-5 Exclusive NOR - XNRW(68)<37>

	4-12 Group Programs
	4-12-1 Basic Instructions - GN(10), GS(11), GE(12), GOFF(15), and GJ(17)
	4-12-2 Group Pause - GP(13) and Group Restart - GR(14)
	4-12-3 Group Continue - GC(16)
	4-12-4 AND Group - ANDG(01) and OR Group - ORG(02)

	4-13 Subroutines and Interrupt Control
	4-13-1 Overview
	4-13-2 Subroutine Definition - SBN(31)<92> and RET(33)<93>
	4-13-3 Subroutine Entry - SBS(32)<91>
	4-13-4 Subroutine Test - SBT(34)
	4-13-5 Interrupt Routines
	4-13-6 Interrupt Control - MSKS(42) and CLI(43)
	4-13-7 Mask Read - MSKR(45)

	4-14 Special Instructions
	4-14-1 Process Display - S(47)
	4-14-2 Failure Alarm - FAL(35)<06> and Severe Failure Alarm - FALS(36)<07>
	4-14-3 System Definition - FUN<49>

	4-15 Trace Operations
	4-16 File Memory Instructions
	4-16-1 File Memory Read - FILR<42>
	4-16-2 File Memory Write - FILW<43>
	4-16-3 External Program Read - FILP<44>

	4-17 Intelligent I/O Instructions
	4-17-1 Intelligent I/O Write - WRIT(87)<87>
	4-17-2 Intelligent I/O Read - READ(88)<88>

	4-18 Network Instructions
	4-18-1 Send - SEND(90)<90>
	4-18-2 Network Receive - RECV(98)<98>
	4-18-3 About Network Send and Receive Operations

	Section 5 Execution Time and I/O Response Time
	5-1 Overall PC Operation
	5-2 Changing Time Allocations
	5-3 Instruction Execution Times
	5-4 I/O Response Time
	5-4-1 CPU Rack Response Times
	5-4-2 Remote I/O Systems
	5-4-3 PC Link Systems
	5-4-4 Host Link Systems

	SECTION 6 Error Messages and Troubleshooting
	6-1 Programmed Alarms and Error Messages
	6-2 Reading and Clearing Errors and Messages
	6-3 System Errors
	6-4 Program Input Errors
	6-5 Program Errors
	6-6 File Memory and Cassette Tape Errors

	Appendix A - Standard Models
	Appendix B - Programming Console Operations
	Appendix C - Programming Instructions
	Appendix D - Error and Arithmetic Flag Operation
	Appendix E - ASCII Codes
	Appendix F - System Data Sheets
	Index
	Revision History

