C500 Programmable Controller Installation Guide

Revised May 2000

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator and only for the purposes described in this manual.
The following conventions are used to indicate and classify precautions in this manual. Always heed the information provided with them. Failure to heed precautions can result in injury to people or damage to the product.

DANGER Indicates information that, if not heeded, is likely to result in loss of life or serious injury.

WARNING Indicates information that, if not heeded, could possibly result in loss of life or serious injury.

Caution Indicates information that, if not heeded, could result in relatively serious or minor injury, damage to the product, or faulty operation.

OMRON Product References

All OMRON products are capitalized in this manual. The word "Unit" is also capitalized when it refers to an OMRON product, regardless of whether or not it appears in the proper name of the product.
The abbreviation "Ch," which appears in some displays and on some OMRON products, often means "word" and is abbreviated "Wd" in documentation in this sense.
The abbreviation "PC" means Programmable Controller and is not used as an abbreviation for anything else.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of information.

Note Indicates information of particular interest for efficient and convenient operation of the product.

1, 2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

TABLE OF CONTENTS

PRECAUTIONS
1 Intended Audience
2 General Precautions
3 Safety Precautions
4 Operating Environment Precautions
5 Application Precautions
SECTION 1
Introduction
1-1 What is a Control System?
1-2 The Role of the PC
1-3 How Does a PC Work?
SECTION 2
Description of All Components
2-1 CPU Rack
2-2 CPU Power Supply
2-3 Expansion I/O Backplane
2-4 I/O Power Supply
2-5 I/O Control Unit
2-6 I/O Interface Unit
2-7 I/O Units
2-8 Memory Packs
SECTION 3
Assembly
3-1 Mounting the Units
3-2 Memory Packs
3-3 System Configurations
SECTION 4
System Connections
4-1 Current Consumption
4-2 I/O Connections
SECTION 5
Installation Environment
5-1 Cooling
5-2 Mounting Requirements
5-3 Duct Work
5-4 Preventing Noise
SECTION 6Power Considerations
SECTION 7
Safety Considerations
AppendicesA Inspection and Maintenance
B Specifications
C Standard Models
Glossary
Index
Revision History

About this Manual:

This manual describes the installation of the C500 Programmable Controller and includes the sections described below.

Please read this manual carefully and be sure you understand the information provided before attempting to install and operate the C500 Programmable Controller. Be sure to read the following section before operating the C500 Programmable Controller.

Section 1 is an introduction to Programmable Controllers. General information about what a Programmable Controller can do and how a Programmable Controller works is provided.
Section 2 provides a description of all the components of the C500. The names of all the individual parts of each Unit are given.
Section 3 explains how to assemble the C500. A detailed description of how to mount each Unit is provided.

Section 4 outlines the system connections involved in installing a C500 Programmable Controller Systems.
Section 5 contains the requirements for the installation environment of the C500. Suggestions for preventing electrical noise are included.

Section 6 explains the power considerations involved in installing the C500.
Section 7 lists safety considerations that should be kept in mind while installing the C500.
Appendices, a Glossary, and an Index are also included.

[^0]
PRECAUTIONS

This section provides general precautions for using the Programmable Controller (PC) and related devices.
The information contained in this section is important for the safe and reliable application of the PC. You must read this section and understand the information contained before attempting to set up or operate a PC system.

1 Intended Audience
2 General Precautions
3 Safety Precautions
4 Operating Environment Precautions
5 Application Precautions

1 Intended Audience

This manual is intended for the following personnel, who must also have knowledge of electrical systems (an electrical engineer or the equivalent).

- Personnel in charge of installing FA systems.
- Personnel in charge of designing FA systems.
- Personnel in charge of managing FA systems and facilities.

2 General Precautions

The user must operate the product according to the performance specifications described in the operation manuals.
Before using the product under conditions which are not described in the manual or applying the product to nuclear control systems, railroad systems, aviation systems, vehicles, combustion systems, medical equipment, amusement machines, safety equipment, and other systems, machines, and equipment that may have a serious influence on lives and property if used improperly, consult your OMRON representative.
Make sure that the ratings and performance characteristics of the product are sufficient for the systems, machines, and equipment, and be sure to provide the systems, machines, and equipment with double safety mechanisms.
This manual provides information for programming and operating OMRON PCs. Be sure to read this manual before attempting to use the software and keep this manual close at hand for reference during operation.

WARNING It is extremely important that a PC and all PC Units be used for the specified purpose and under the specified conditions, especially in applications that can directly or indirectly affect human life. You must consult with your OMRON representative before applying a PC System to the abovementioned applications.

3 Safety Precautions

WARNING Do not attempt to take any Unit apart while the power is being supplied. Doing so may result in electric shock.
! WARNING
Do not touch any of the terminals or terminal blocks while the power is being supplied. Doing so may result in electric shock.

WARNING Do not attempt to disassemble, repair, or modify any Units. Any attempt to do so may result in malfunction, fire, or electric shock.

4 Operating Environment Precautions

Caution Do not operate the control system in the following locations:

- Locations subject to direct sunlight.
- Locations subject to temperatures or humidity outside the range specified in the specifications.
- Locations subject to condensation as the result of severe changes in temperature.
- Locations subject to corrosive or flammable gases.
- Locations subject to dust (especially iron dust) or salts.
- Locations subject to exposure to water, oil, or chemicals.
- Locations subject to shock or vibration.

Caution Take appropriate and sufficient countermeasures when installing systems in the following locations:

- Locations subject to static electricity or other forms of noise.
- Locations subject to strong electromagnetic fields.
- Locations subject to possible exposure to radioactivity.
- Locations close to power supplies.

1 Caution The operating environment of the PC system can have a large effect on the longevity and reliability of the system. Improper operating environments can lead to malfunction, failure, and other unforeseeable problems with the PC system. Be sure that the operating environment is within the specified conditions at installation and remains within the specified conditions during the life of the system.

5 Application Precautions

Observe the following precautions when using the PC system.
\lfloor WARNING Always heed these precautions. Failure to abide by the following precautions could lead to serious or possibly fatal injury.

- Always ground the system to 100Ω or less when installing the Units. Not connecting to a ground of 100Ω or less may result in electric shock.
- Always turn OFF the power supply to the PC before attempting any of the following. Not turning OFF the power supply may result in malfunction or electric shock.
- Mounting or dismounting I/O Units, CPU Units, Memory Units, or any other Units.
- Assembling the Units.
- Setting DIP switches or rotary switches.
- Connecting cables or wiring the system.
- Connecting or disconnecting the connectors.

Caution Failure to abide by the following precautions could lead to faulty operation of the PC or the system, or could damage the PC or PC Units. Always heed these precautions.

- Fail-safe measures must be taken by the customer to ensure safety in the event of incorrect, missing, or abnormal signals caused by broken signal lines, momentary power interruptions, or other causes.
- Interlock circuits, limit circuits, and similar safety measures in external circuits (i.e., not in the Programmable Controller) must be provided by the customer.
- Always use the power supply voltages specified in this manual. An incorrect voltage may result in malfunction or burning.
- Take appropriate measures to ensure that the specified power with the rated voltage and frequency is supplied. Be particularly careful in places where the power supply is unstable. An incorrect power supply may result in malfunction.
- Install external breakers and take other safety measures against short-circuiting in external wiring. Insufficient safety measures against short-circuiting may result in burning.
- Do not apply voltages to the Input Units in excess of the rated input voltage. Excess voltages may result in burning.
- Do not apply voltages or connect loads to the Output Units in excess of the maximum switching capacity. Excess voltage or loads may result in burning.
- Disconnect the functional ground terminal when performing withstand voltage tests. Not disconnecting the functional ground terminal may result in burning.
- Be sure that all the mounting screws, terminal screws, and cable connector screws are tightened to the torque specified in this manual. Incorrect tightening torque may result in malfunction.
- Leave the label attached to the Unit when wiring. Removing the label may result in malfunction if foreign matter enters the Unit.
- Remove the label after the completion of wiring to ensure proper heat dissipation. Leaving the label attached may result in malfunction.
- Double-check all wiring and switch settings before turning ON the power supply. Incorrect wiring may result in burning.
- Wire correctly. Incorrect wiring may result in burning.
- Mount Units only after checking terminal blocks and connectors completely.
- Be sure that the terminal blocks, Memory Units, expansion cables, and other items with locking devices are properly locked into place. Improper locking may result in malfunction.
- Check the user program for proper execution before actually running it on the Unit. Not checking the program may result in an unexpected operation.
- Confirm that no adverse effect will occur in the system before attempting any of the following. Not doing so may result in an unexpected operation.
- Changing the operating mode of the PC.
- Force-setting/force-resetting any bit in memory.
- Changing the present value of any word or any set value in memory.
- Resume operation only after transferring to the new CPU Unit the contents of the DM Area, HR Area, and other data required for resuming operation. Not doing so may result in an unexpected operation.
- Do not pull on the cables or bend the cables beyond their natural limit. Doing either of these may break the cables.
- Do not place objects on top of the cables or other wiring lines. Doing so may break the cables.
- Use crimp terminals for wiring. Do not connect bare stranded wires directly to terminals. Connection of bare stranded wires may result in burning.
- When replacing parts, be sure to confirm that the rating of a new part is correct. Not doing so may result in malfunction or burning.
- Before touching a Unit, be sure to first touch a grounded metallic object in order to discharge any static built-up. Not doing so may result in malfunction or damage.

1-1 What is a Control System?
1-2 The Role of the PC
1-2-1 Input Devices
1-2-2 Output Devices
1-3 How Does a PC Work?

Introduction

This section provides general information about Programmable Controllers (Systems) and how they fit into a Control System.

1-1 What is a Control System?

A Control System is the electronic equipment needed to control a particular process. It may include everything from a process control computer, if one is used, to the factory computer, down through the PCs (and there may be many of them networked together), and then on down through the network to the control components: the switches, stepping motors, solenoids, and sensors which monitor and control the mechanical operations.

A Control System can involve very large applications where many different models of PC are networked together or it could be an application as small as a single PC controlling a single output device.

Position Control System

In the typical Control System example shown above, a PC controls the movement of the workpiece bed across two horizontal axes using Limit Switches and Servomotors to monitor and control movement.

1-2 The Role of the PC

The PC is the part of the Control System that directly controls the manufacturing process. According to the program stored in its memory, the PC accepts data from the input devices connected to it, and uses this data to monitor the controlled system. When the program calls for some action to take place, the PC sends data to the output devices connected to it to cause that action to take place. The PC may be used to control a simple, repetitive task, or it may be connected to other PCs, or to a host computer in order to integrate the control of a complex process.

1-2-1 Input Devices

PCs can receive input from either automated or manual devices. The PC could receive data from the user via a pushbutton switch, keyboard, or similar device. Automated input could come from a variety of devices: microswitches, timers, encoders, photosensors, and so on. Some devices, like the Limit Switch shown below, turn ON or OFF when the equipment actually makes contact with them. Other devices, like the Photoelectric Switch and Proximity Switch shown below, use other means, such as light or inductance, in order to get information about the equipment being monitored.

1-2-2 Output Devices

A PC can output to a myriad of devices for use in automated control. Almost anything that you can think of could be controlled (perhaps indirectly) by a PC. Some of the most common devices are motors, Solenoids, Servomotors, Stepping Motors, valves, switches, indicator lights, buzzers, and alarms. Some of these output devices, such as the motors, Solenoids, Servomotors, Stepping Motors, and valves, affect the controlled system directly. Others, such as the indicator lights, buzzers, and alarms, provide output to notify personnel.

Solenoid

Servomotor

Stepping Motor

1-3 How Does a PC Work?

PCs operate by monitoring input signals and providing output signals. When changes are detected in the signals, the PC reacts, through the user-programmed internal logic, to produce output signals. The PC continually cycles the program in its memory to achieve this control.

A program for your applications must be designed, and stored in the PC. This program is then executed as part of the cycle of internal operations of the PC.

Scanning Cycle

When a PC operates, that is, when it executes its program to control an external system, a series of operations are performed inside the PC. These internal operations can be broadly classified into the following four categories:

1. Common (or overseeing) processes, such as watchdog timer operation and testing the program memory.
2. Data input and output.
3. Instruction execution.
4. Peripheral device servicing.

Cycle Time

The total time required for a PC to perform all these internal operations is called the cycle time. The flowchart and diagram on page 7 illustrate these internal operations for a typical PC.

Timing is one of the most important factors in designing a Control System. For accurate operations, it is necessary to have answers to such questions as these:

- How long does it take for the PC to execute all the instructions in its memory?
- How long does it take for the PC to produce a control output in response to a given input signal?
The cycle time of the PC can be automatically calculated and monitored, but it is necessary to have an understanding of the timing relationships within the PC for effective System design and programming.

SECTION 2
 Description of All Components

2-1 CPU Rack
2-2 CPU Power Supply
2-3 Expansion I/O Backplane
2-4 I/O Power Supply
2-5 I/O Control Unit
2-6 I/O Interface Unit
2-7 I/O Units
2-8 Memory Packs

Introduction

This section provides information about the individual Units that make up the C500 PC. First the names of all the parts of the PC are given, followed by any details that apply to the Units that make up the PC. For a description of how the Units fit together to become a PC, refer to 3-3 System Configurations. For information about the model numbers of any of the parts described in this section, refer to Appendix C Standard Models.

2-1 CPU Rack

The following figure shows the names of all the parts of the CPU Rack.
There are seven models of CPU Racks available for the C500 PC. Choose a Backplane with 3, 5 (2 models), 6, 8 (2 models), or 9 I/O slots, depending on your application. Connect the CPU Backplane to an Expansion I/O Rack via the Expansion I/O Connector.

The CPU executes the user program. The model available for the C500 PC does not have a built-in Power Supply or Memory Pack. Choose the Power Supply and memory pack suitable for your application. A peripheral device connector and a memory pack compartment are provided.

Peripheral Device Connector

The CPU is equipped with one connector for peripheral devices. A peripheral device, such as the CPU-Mounting Programming Console, can be mounted directly to the CPU and does not require a connecting cable. To mount the CPU-Mounting Programming Console or any other peripheral device directly to the CPU, follow these steps:

1. Detach the cover of the peripheral device connector with a standard screwdriver.
2. Connect the CPU-Mounting Programming Console to the peripheral device connector.
3. To ensure a positive connection, secure the Programming Console to the CPU by tightening the mounting screws located on the surface of the CPU.

2-2 CPU Power Supply

The CPU Power Supply is mounted to the rightmost slot of the CPU Rack. Three models of Power Supplies are available: 100 to 120 VAC, 200 to 240 VAC, and 24 VDC. The following table summarizes the output capacity of the three models and the current available for I/O Units mounted on the CPU Rack.

Model	Supply Voltage	Output Capacity	Available Current for I/O Units	24 VDC Output Terminal
3G2A5-PS221-E	100 to 120/ 200 to 240 VAC (selectable)	7 A 5 VDC	5 A	Provided
3G2A5-PS223-E	A 5 VDC	10 A	Not provided	
3G2A5-PS213-E	24 VDC	9 A 5 VDC	5 A	Not provided

Note Be sure to keep the total power consumed by all the Units mounted on a Rack within the value stated in the table above. For example, do not mount I/O Units with a total current consumption of 6 A to a Rack supplied by a 7 A Power Supply. As shown in the table above, the available current for I/O Units is only 5 A . For details concerning current consumption, refer to Section 4 System Connections.

3G2A5-PS221-E

3G2A5-PS223-E

3G2A5-PS213-E

2-3 Expansion I/O Backplane

The Expansion I/O Backplane shown in the following diagram, can be used to expand the C500 PC. An Expansion I/O Rack is just like a CPU Rack, except a CPU is not mounted. However, a Power Supply is needed for each Expansion I/O Rack. There are three models of Expansion I/O Backplane available.

I/O Interface Unit
An I/O Interface Unit must be mounted to an Expansion I/O Rack in order to connect the Expansion I/O Rack to another Expansion I/O Rack.
Expansion I/O Backplane

2-4 I/O Power Supply

Just as a Power Supply must be mounted to the CPU Rack, a Power Supply must also be mounted to each Expansion I/O Backplane. There are two Power Supplies available; 100 to 120/200 to 240 VAC and 24 VDC, both of which are explained below. For details, refer to Appendix B Specifications.

Model	Supply Voltage	Output Capacity	Available Current for I/O Units	240 VDC Output Terminal
3G2A5-PS222-E	100 to 120/200 to 240 VAC (selectable)	7A 5 VDC	6.5 A	Provided
3G2A5-PS212-E	24 VDC	7 A 5 VDC	6.5 A	Not provided

Note Be sure to keep the total power consumed by all the Units mounted on a Rack within the value stated in the table above. For example, do not mount I/O Units with a total current consumption of 7A to a Rack supplied by a 7 A Power Supply. As shown in the table above, the available current for I/O Units is only 6.5 A . For details concerning current consumption, refer to Section 4 System Connections.

3G2A5-PS222-E

These terminals are used to supply external DC Input Units. If the Unit requires more than 0.8 A a separate supply must be used. The PC shuts off automatically if a current of more than 0.8 A is drawn from the supply.

3G2A5-PS212-E

2-5 I/O Control Unit

An I/O Control Unit must be mounted to the CPU Rack in order to connect the CPU Rack to an Expansion I/O Rack. An I/O Control Unit can be mounted even if no Expansion I/O Rack is used.

2-6 I/O Interface Unit

An I/O Interface Unit is needed on each Expansion I/O Rack, in order to expand the PC. If there is not an I/O Interface Unit on each Expansion I/O Rack, data communication cannot take place. The I/O Interface Unit is mounted to the leftmost I/O position on the Expansion I/O Backplane.

2-7 I/O Units

I/O Units come in 5 shapes; A-shape, B-shape, C-shape, D-shape, and Eshape. Refer to Appendix B Specifications for the dimensions of each Unit.

A-shape

B-shape

C-shape

D-shape

E-shape

2-8 Memory Packs

The Memory Pack fits into the slot located on the left side of the CPU. Because the Memory Pack is not provided with the PC upon delivery, a Memory Pack must be selected and installed in the CPU. There are two Memory Packs available, either RAM or ROM, that can be used in the C500H PC.

RAM Pack

Data can be randomly written to and read from the RAM Pack, making it possible to enter your own program into the CPU. However, because this is not a fixed program, the memory of the RAM Pack is erased when power is not supplied to the CPU or when the RAM Pack is removed from the CPU.

Caution Do not remove the battery in the CPU when the RAM Pack has been removed from the CPU.

Two models of RAM Packs are available, which vary in memory capacity: 16K, and 24K words. Refer to Appendix C Standard Models for model numbers.

Using a Programming Console, execute FUN (01) and a search operation to check the amount of memory available.

Data contained in the ROM Pack is stored on EPROM chips and cannot be altered or erased during the CPU's operation. Write the user's program to the EPROM chips and mount the chips (3 max.) on the ROM chip. The entire pack is installed in the CPU. Once the data is written to the chip the data will not be lost when the power to the PC is OFF.

3-1 Mounting the Units
3-2 Memory Packs
3-3 System Configurations

When we speak of a PC, we usually think of it as a single object. But actually even the simplest PCs are usually composed of several different devices. In fact a single PC can be physically spread throughout a building, but we still call it one PC.

In this section, we will start with a Backplane and use all the Units discussed in Section 2 Description of All Components to build a PC.

3-1 Mounting the Units

There is no single Unit that can be said to constitute a Rack PC. To build a Rack PC, we start with a Backplane. The Backplane for the C500 is shown below.

C500 Backplane
The Backplane is a simple device having two functions. The first is to provide physical support for the Units to be mounted to it. The second is to provide the connectors and electrical pathways necessary for connecting the Units mounted to it.

The first device we will add to the Backplane is a Power Supply. The Power Supply fits into the rightmost position on the Backplane and provides electricity at the voltages required by the other Units of the PC. It can also be used to power devices other than the PC if necessary.

Power Supply
The core of the PC is the CPU. The CPU contains the program consisting of the series of steps necessary for the control task. The CPU fits into the position directly to the left of the Power Supply.

Unlike the CPU of the Package-type PC, the CPU of the Rack PC has no I/O points built in. So, in order to complete this kind of PC we need to mount one or more I/O Units to the Backplane. Mount the I/O Units to the Backplane by pressing the I/O Unit firmly into position, making sure the connectors are properly mated. Secure the Unit by tightening the mounting screws located on the top and bottom of the Unit.

The figure below shows one I/O Unit mounted directly to the left slot of the CPU Rack.

I/O Units are where the control connections are made from the PC to all the various input devices and output devices. As you can see from the figure, there is still some space available on the right side of the Backplane. This space is for any additional I/O Units that may be required.

The figure above shows a total of eight I/O Units mounted to the Backplane. Backplanes are available in different lengths, and can hold a different number of I/O Units accordingly. Of course, not all I/O Units look exactly alike, but the ones in the figure show their typical appearance. This configuration of Backplane, Power Supply, CPU, and I/O Units is called a CPU Rack. This term refers to the Backplane and all the Units mounted to it. However, if we want to include more than eight I/O Units in our configuration we can add an addi-
tional Backplane. First, though, we have to mount an I/O Control Unit to the leftmost slot of the CPU Rack.

Now we can use a cable to connect the CPU Rack to another Backplane. This Backplane has a Power Supply and I/O Units mounted to it, but it has no CPU of its own. The additional Backplane must also have an I/O Interface Unit mounted to its leftmost position. This configuration of additional Backplane, Power Supply, I/O Units, and I/O Interface Unit is called an Expansion I/O Rack.

The CPU Rack and Expansion I/O Rack shown above are connected by a cable. Remember that this whole configuration is still referred to as one PC. It is possible to keep adding Expansion I/O Racks in this way until the maximum number of I/O points for the system is reached. Each Expansion I/O Rack needs an I/O Interface Unit.

3-2 Memory Packs

The CPU has a removable Memory Pack that stores the user program. Two Memory Packs are available, in either RAM or ROM. You can write your own program into the RAM Pack or you can copy a program that has already been written to an EPROM chip and mount it in the ROM Pack. The EPROM Chip must be mounted to the PROM Writer in order for the program to be written to it. Then the EPROM Chip must be mounted to the ROM Pack.

Mounting the EPROM

 Chip to the ROM PackDepending on the amount of memory required for your application, use 1, 2, or 3 chips. Refer to Appendix B Specifications for specifications of the EPROM chips.
Using the diagram and the table below as a reference, mount the EPROM chips to the correct IC sockets.

The table below summarizes the programming capacity.

Memory size	Jumper setting	IC Socket		
		CHIP 0	CHIP 1	CHIP 2
8K bytes	$\begin{aligned} & 128 \\ & 64 \end{aligned}$	2764	-	-
16K bytes		2764	2764	-
24K bytes		2764	2764	2764
16K bytes	$\begin{array}{l\|l\|} 128 & \begin{array}{ll} 0 \\ 0 \\ 0 & 0 \end{array} \\ \\ \hline \end{array}$	27128	-	-
24K bytes		27128	-	2764

How to Install the Memory Pack

Take the following steps to install the Memory Pack in the CPU.

1. Turn the power to the PC OFF.

Caution Do not attempt to install the Memory Pack in the CPU while the power to the PC is ON. Doing so may cause data to be lost, or may damage the CPU or Memory Pack.
2. Using a standard screwdriver, remove the Memory Pack compartment cover located on the front panel of the CPU. Push in the latch on the cover and slide the cover upward.

Use a standard screwdriver to remove the Memory Pack compartment cover.
3. Insert the Memory Pack (component side facing left) into the Memory compartment. When the Unit is almost completely inserted into the CPU, there may be a slight resistance as the Memory Pack connector mates with the connector inside the CPU. Continue pushing on the Memory Pack until it is inserted completely into the CPU.

4. Reattach the memory compartment cover.

How to Remove the Memory Pack

Follow the steps below to remove the Memory Pack from the CPU.

1. Turn the power to the PC OFF.
2. Using a standard screwdriver, remove the Memory Pack compartment cover located on the front panel of the CPU. Push in the latch on the cover and slide the cover upward.
3. Pull the Memory Pack up and out.

Note Memory in the RAM Pack is erased when the Memory Pack is removed from the CPU and when the CPU Unit is removed from the Rack.

3-3 System Configurations

The following figure shows an assembled C500 CPU Rack and one Expansion I/O Rack. When three Expansion I/O Racks are connected to a CPU Rack, a maximum of $512 \mathrm{I} / \mathrm{O}$ points are available. (Include the Remote I/O Units)

Where I/O Units Can Be
Mounted
The table below summarizes the Units that can be used in the systems described in this manual.

Special I/O Units	The number of Special I/O Units that can be used depends upon the number of points available and the number of points the Special I/O Unit requires.
Host Link Units	Up to one Host Link Units can be mounted. Only one Rack-Mounting Host Link Unit can be mounted to the CPU Rack. A CPU-Mounting Host Link Unit can also be mounted directly to the CPU. Host Link Units cannot be mounted to Expansion I/O Racks. However, these Units cannot be mounted when the SYSMAC Net Link Unit is mounted.
I/O Units	Standard I/O Units are available with 16, 32, or 64 points. Refer to Section 2 Description of All / omponents for details.
Memory Packs	RAM or ROM Packs are available. The ROM Pack requires a separately available EPROM chip. ROM
Remote I/O Master Unit	Up to four Remote I/O Master Units can be mounted to both the I/O Rack and the Expansion I/O Racks. When the Remote I/O Unit is mounted to a Rack, a Rack number must be set so that the CPU can identify the Remote I/O Unit. Mount the Remote I/O Slave Unit to the eleftmost position (the I/O Interface Unit position) on the Slave Rack. For details, refer to the C500 Operation Manual.

The following table summarizes specific Units that can and cannot be mounted in the CPU and Expansion Racks and the number that can be used in each PC. For more information about the Units, refer to the C500 Operation Manual.

Unit	CPU Rack	Expansion Rack
16-, 32-, 64-point I/O	YES	YES
Special I/O	YES	YES
I/O Link	YES	YES
PC Link	YES (2 max.)	NO
Host Link	YES (2 max.)	NO
SYSMAC Net Link	YES (1 max.)	NO
Remote I/O Master	YES	YES
Remote I/O Slave	NO	YES

*One Rack-mounting Host Link Unit can be mounted to the CPU Rack and one CPU-mounting Host Link Unit can be mounted directly to the CPU Unit.

Notes 1. The Position Control Unit and the PID Unit each require two I/O slots on the CPU Rack and the Expansion I/O Racks
2. The following Units can only be mounted to one of the three or five rightmost slots on the CPU Backplane, depending on which Backplane is used.
PC Link
Host Link
SYSMAC Net Link
3. When two or more PCs are linked by the PC Link Unit, a maximum of 32 PC Link Units can be used (linking 31 PCs), in any number of subsystems.
4. SYSMAC Net Link and Host Link cannot be mounted simultaneously.

SECTION 4
 System Connections

4-1 Current Consumption
4-2 I/O Connections

Introduction

In the preceding sections we have covered all the parts of a PC and how they should be assembled. This section provides detailed information on PC connections.

4-1 Current Consumption

The Power Supplies are limited in the total current they can supply to I/O Units. The following table shows the maximum currents allowed.

Power Supplies

Unit	Model	Output Capacity	Current Available for I/O Units
CPU Power Supply	3G2A5-PS221-E 3G2A5-PS211-E	7 A 5 VDC	5 A
	3G2A5-PS213-E	9 A 5 VDC	
	3G2A5-PS223-E	12 A 5 VDC	10 A
	3G2A5-PS222-E	7 A 5 VDC	6.5 A
	3G2A5-PS212-E		

Note Do not exceed the maximum current ratings for each of the voltages supplied by any single Unit listed above. In addition, do not exceed the total maximum power output for any single Unit listed above. Refer to the tables on the following page for the current consumption of individual I/O Units.

Input Units

Unit	Model	Current Consumption (A)
DC Input	3G2A5-ID112	0.01
	3G2A5-ID114	0.34
	3G2A5-ID213	0.02
	3G2A5-ID215	0.16
	3G2A5-ID218	0.16
	3G2A5-ID218CN	0.2
	3G2A5-ID212	0.3
	3G2A5-ID219	0.34
TTL Input	3G2A5-IA121	0.01
	3G2A5-IA222	0.012
	3G2A5-IA223	0.06
	3G2A5-IA122	0.06
	3G2A5-ID501CN	0.2
	3G2A5-IM211	0.01
	3G2A5-IM212	0.2

Output Units

Unit	Model	Current Consumption (A)
Contact Output	3G2A5-OC221	0.1
	3G2A5-OC223	0.1
	3G2A5-OC224	0.2
Transistor Output	3G2A5-OD411	0.16
	3G2A5-OD215	0.2
	3G2A5-OD412	0.23
	3G2A5-OD212	0.23
	3G2A5-OD211	0.3
	3G2A5-OD213	0.46
	3G2A5-OD217	0.16
	C500-OD218	0.23
	C500-OD219	0.16
	3G2A5-OD415CN	0.23
Triac Output	3G2A5-OA121	0.3
	3G2A5-OA222	0.3
	3G2A5-OA223	0.45
	C500-OA225	0.2
	C500-OA226	0.45
TTL Output	C500-OD501CN	0.25
DC Input/Transistor Output Unit	3G2A5-MD211CN	0.26
Dummy I/O	3G2A5-DUM01	0.035

Special I/O Units

Unit	Model	Current Consumption (A)
A/D Converter Input	3G2A5-AD001 to- AD005	0.3 each
	3G2A5-AD006	0.75 each
	3G2A5-AD007	
	C500-AD101	0.88
	C500-AD501	1.2
D/A Converter Output	3G2A5-DA001 to -DA005	0.55 each
	C500-DA101	1.3
High-speed Counter	3G2A5-CT001	0.3
	3G2A5-CT012	0.55
	C500-CT041	1.0
Magnetic Card Reader	3G2A5-MGC01	1.0
PID	3G2A5-PID01-E	1.4
Position Control	3G2A5-NC103-E	Total 1.4
	3G2A5-TU001-E	
	3G2A5-NC111-EV1	Total 1.0
	3G2A5-TU001-E	
	3G2A5-NC221-E	Total 1.3
	3G2A5-TU001	
ASCII	C500-ASC04	0.5 each
ID Sensor	C500-IDS01-V2/IDS02-V1	0.4 each
	C500-IDS21/IDS22	
Ladder Program I/O	3G2A5-LDP01-V1	0.8
File Memory	C1000H-FMR11	0.35 each
	C1000H-FMR21	
Cam Positioner	C500-CP131	0.35

Link Units and Remote I/O Units

Unit	Model	Current Consumption (A)
I/O Link	3G2A5-LK010-(P)E	0.6
PC Link	C500-LK009-V1	0.9
Host Link	C500-LK103 (-P)	1.0 each
	C500-LK203	
Optical Remote I/O Master	3G2A5-RM001-(P)EV1	0.7
SYSMAC Net Link	C500-SNT31-V4	1.4
Wired Remote I/O Master	C500-RM201	0.3

4-2 I/O Connections

Connect the I/O Devices to the I/O Units using AWG (cross-sectional area: $0.3 \mathrm{~mm}^{2}$) for 19-terminal terminal blocks and AWG 22 to lead wire (cross-sectional area: 0.3 to $0.75 \mathrm{~mm}^{2}$) for 10 -terminal terminal blocks. The terminals have screws with $3.5-\mathrm{mm}$ diameter heads and self-raising pressure plates. Connect the lead wires to the terminals as shown. Always use solderless (crimp) terminals. Tighten the screws to a torque of $0.8 \mathrm{~N} \cdot \mathrm{~m}$.

Use M3.5 self-rising screws for the terminal screws of the Power Supply Units.
Always attach crimp terminals to the ends of the lead wires before attaching them to the terminals. Never attach loose or twisted wires.

Tighten the screws on the terminal block to a torque of $0.8 \mathrm{~N} \cdot \mathrm{~m}$. Use crimp terminals for M3.5 screws of the dimensions shown below.

Terminal Block

The terminal block of an I/O Unit can be removed by loosening the mounting screws. You do not have to remove the lead wires from the terminal block in order to remove it from an I/O Unit.

Note Putting I/O Lines and high-tension lines or power lines in the same duct or conduit may cause the I/O Lines to be affected by noise. This may cause a malfunction in the I/O Unit or may cause damage to the I/O Unit or I/O devices.

Terminal block mounting screws Loosen the terminal block mounting screws to remove the terminal block from the I/O Unit. Make sure the mounting screws on the terminal block are tightened after wiring is complete, and the terminal block is remounted to the I/O Unit.

Note When a Triac Output Unit is used to drive a low-current load, the load may not turn completely OFF due to a leakage current. To compensate for the leakage current, connect a bleeder resistor in parallel with the load.

Wiring Examples

The following are examples of how to connect I/O devices to I/O Units. During wiring, work slowly and carefully. If an input device is connected to an Output Unit, damage may result. Check all I/O devices to make sure they meet the specifications (refer to Appendix B Specifications). Be sure to allow for leakage current and load inductance.

DC Input Units

When using the following configurations, the sensor and Input Unit should receive their power from the same supply.

NPN current output

NPN open-collector output

PNP current output

AC Input

Output Units

A fuse placed in the output circuit will protect the output element, circuit board, etc., in the event of a short circuit in the output circuit.

SECTION 5
 Installation Environment

5-1 Cooling
5-2 Mounting Requirements
5-3 Duct Work
5-4 Preventing Noise

Introduction

This section details the necessary environment and conditions for installation of the PC. For specific instructions on mounting Units and wiring for I/O and power, refer to Section 3-3 System Configurations and 4-2 I/O Connections.

Static electricity can cause damage to PC components. Your body can carry an electrostatic charge, especially when the humidity is low. Before touching the PC be sure to first touch a grounded metallic object, such as a water pipe, in order to discharge any static build-up.

5-1 Cooling

There are two points to consider in order to ensure that the PC does not overheat. The first is the clearance between the Racks, and the second is installation of a cooling fan.

Clearance Between
 Racks

The Racks need to have sufficient room between each other to allow for I/O wiring, and additional room to ensure that the I/O wiring does not hamper cooling. However, the Racks must be mounted so that the length of the connecting cable does not exceed $\mathbf{2} \mathbf{m}$, and the total length of the Connecting Cables between all Racks does not exceed 12 m . For details about cable lengths, refer to Appendix C Standard Models. As a general rule, about 70 to 120 mm should be left between any two Racks.

Cooling Fan

A cooling fan is not always necessary, but may be needed in some installations. Try to avoid mounting the PC in a warm area, or over a source of heat. A cooling fan is needed if the ambient temperature may become higher than that specified (refer to Appendix B Specifications). If the PC is mounted in an enclosure install a cooling fan, as shown in the following diagram, to maintain the ambient temperature within specifications.

5-2 Mounting Requirements

The PC consists of from one to nine Racks. Each Rack must be mounted vertically, that is with the printing on the front panels oriented as it would normally read. The Racks should be mounted one above the other with the CPU Rack uppermost.

The PC may be directly mounted to any sturdy support meeting the environmental specifications (refer to Appendix B Specifications).

The duct work shown in the following diagram is not used for mounting the Racks. Although optional, the duct work can be used to house the wires from the I/O Units that run along the sides of the Racks, keeping the wires from becoming entangled with other machines. The figures illustrate the correct way to mount the Racks.

The following figure shows a side view of a mounted CPU and two Expansion I/O Racks. There should be a distance of 70 to 120 mm between the mounted Units.

5-3 Duct Work

If power cables carrying more than 10 A 400 V , or 20 A 220 V must be run alongside the I/O wiring (that is, parallel to it), leave at least 300 mm between the power cables and the I/O wiring as shown below.

If the I/O wiring and power cables must be placed in the same duct (for example, where they are connected to the equipment), shield them from each other using grounded metal plates.

$1=I / O$ wiring
$2=$ General control wiring
$3=$ Power cables

5-4 Preventing Noise

In order to prevent noise from interfering with the operation of the PC, use AWG 14 twisted-pair cables (cross-sectional area: $2 \mathrm{~mm}^{2}$ min.). Avoid mounting the PC close to high-power equipment, and make sure the point of installation is at least 200 mm away from power cables as shown below.

Power lines

Whenever possible, use wiring conduit to hold the I/O wiring. Standard wiring conduit should be used, and it should be long enough to completely contain the I/O wiring and keep it separated from other cables.

SECTION 6
Power Considerations

Introduction

Grounding

Use a commercially available 100 to 120 VAC, 200 to 240 VAC, or 24 VDC power source, according to the PC you are using (refer to Appendix B Specifications). Expansion I/O Racks, if used, must also be connected to the power source. If possible, use independent power sources for the PC, input devices, and output devices. All Racks of the PC may be connected to one power source.

The Line Ground (LG) terminal is a noise-filtered neutral terminal that does not normally require grounding. If electrical noise is a problem, however, this terminal should be connected to the Ground (GR) terminal.

To avoid electrical shock, attach a grounded (earth ground) AWG 14 wire (cross-sectional area: $2 \mathrm{~mm}^{2}$ min.) to the GR terminal. The resistance to ground must be less than 100Ω. Do not use a wire longer than 20 m . Care must be taken, because ground resistance is affected by environmental conditions such as soil composition, water content, time of year, and the length of time since the wire was laid underground.

PC operation may be adversely affected if the ground wire is shared with other equipment, or if the ground wire is attached to the metal structure of a building. When using an Expansion I/O Rack, the Rack must also be grounded to the GR terminal. The same ground can be used for all connections.

Power Failure

A sequential circuit is built into the PC to handle power interruptions. This circuit prevents malfunctions due to momentary power loss or voltage drops. A timing diagram for the operation of this circuit is shown below.

The PC ignores all momentary power failures if the interruption lasts no longer than 10 ms . If the interruption lasts between 10 and 25 ms , the interruption may or may not be detected. If the supply voltage drops below 85% of the rated voltage for longer that 25 ms (less for the DC Power Supply), the PC will stop operating and the external outputs will be automatically turned OFF. Operation is resumed automatically when the voltage is restored to more than 85% of the rated value.

Wiring

The following diagrams show the proper way to connect the power source to the PC. The terminals marked "NC" are not connected internally.

AC Connections

3G2A5-PS221-E/223-E

Be sure to use a wire of at least $1.25 \mathrm{~mm}^{2}$ in thickness.
Use M4 screws for tightening crimp terminals. Use ring crimp terminals for wiring. Do not connect bare stranded wires directly to terminal blocks.

[^1]
DC Connections

3G2A5-PS213-E

Grounding Connections

3G2A5-PS223-E/221-E/213-E

Caution Ground the Power Supplies separately from peripheral devices.

SECTION 7
Safety Considerations

Introduction

There are certain safety requirements to be considered when installing the PC. Some of these, such as the emergency stop circuit (refer to Power Supply), are part of the initial wiring. The considerations described below should be kept in mind when operating the PC and when connecting I/O devices to the PC.

Interlock Circuits

When the PC controls an operation such as the clockwise and counterclockwise operation of a motor, provide an external interlock such as the one shown below to prevent both the forward and reverse outputs from turning ON at the same time.

Interlock circuit

This circuit prevents outputs MC1 and MC2 from both being ON at the same time. Even if the PC is programmed improperly or malfunctions, the motor is protected.

Power Supply Output

The 24 VDC output of the CPU and Expansion I/O Power Supply may be used to power other devices. The output current of these supplies is limited to 0.3 A . A separate Power Supply must be provided if the devices being powered require a higher current.

Input Leakage Current

When two-wire sensors, such as photoelectric sensors, proximity sensors or limit switches with LEDs are connected to the PC as input devices, the input bit may be turned ON erroneously by leakage current. In order to prevent this, connect a bleeder resistor across the input as shown below.

If the leakage current is less than 1.3 mA , there should be no problem. If the leakage current is greater than 1.3 mA , determine the value and rating for the bleeder resistor using the following formulas.
$I=$ leakage current in mA
$R=\frac{7.2}{2.4 \times I-3} \mathrm{k} \Omega$ max.
$\mathrm{W}=\frac{2.3}{\mathrm{R}} \mathrm{W}$ min.

Output Leakage Current

If there is a possibility of leakage current causing a transistor or triac to malfunction, connect a bleeder resistor across the output as shown below.

Determine the value and rating for the bleeder resistor using the following formula.
$R<\frac{E_{\text {ON }}}{1}$
Where
$\mathrm{E}_{\mathrm{on}}=\mathrm{ON}$ voltage of the load
$\mathrm{I}=$ leakage current in mA
R = bleeder resistance

Output Surge Current

When connecting a transistor or triac Output Unit to an output device having a high surge current (such as an incandescent lamp), care must be taken to avoid damage to the Output Unit. The transistor and triac Output Units are capable of withstanding a surge current of ten times the rated current. If the surge current for a particular device exceeds this amount, use the circuit shown below to protect the Output Unit.

Another way of protecting the Output Unit lets the load draw a small current (about one third the rated current) while the output is OFF, significantly reducing the surge current. This circuit (shown below) not only reduces the surge current, but also reduces the voltage across the load at the same time.

Transistor Output
Residual Voltage
When connecting TTL circuits to transistor Output Units, connect a pull-up resistor and a CMOS IC between the two. This is because of the residual voltage left on the transistor output after the output turns OFF.

When an inductive load is connected to an I/O Unit, connect a surge suppressor or diode in parallel with the load as shown in the following diagram. This is so that the back electromagnetic field generated by the load will be absorbed.

Resistor: 50 W
Capacitor: $0.47 \mu \mathrm{~F}$
Voltage: 200 V
Diode: Must withstand voltages of more than three times the load voltage and an average current of 1 A

Electrical Noise

Take appropriate measures when any electrical device likely to produce noise is connected to the PC as a load. Devices generating noise of more than $1,200 \mathrm{~V}$ (such as electromagnetic relays and valves) require noise suppression. For noise sources running on AC power, connect a diode in parallel with the coil of each device.

When mounting a CPU Rack and an Expansion I/O Rack together on a mounting plate, provide a solid ground to the mounting plate. The mounting plate must be plated with a highly conductive surface in order to ensure noise immunity.

Appendices

A Inspection and Maintenance
B Specifications
C Standard Models

A Inspection and Maintenance

Certain consumable items in a PC (such as fuses, relays, or batteries) need occasional replacement. This Appendix explains how to replace each of these items. Refer to Appendix B Specifications for the specifications of individual consumable items. Always keep spare items on hand so that they can be used as immediate replacements.

CPU and Power Supply

Fuses

To replace a fuse in the CPU or Power Supply, follow the steps below.

1. Turn OFF the power to the PC.
2. Remove the fuse holder by turning it approximately 50° counterclockwise with a standard screwdriver.
3. Remove the fuse from the holder.

4. Insert a new fuse.
5. Reattach the fuse holder by turning it approximately 50° clockwise with a standard screwdriver.

Output Unit Fuses

To replace a fuse in an Output Unit, follow the steps below.

1. Turn OFF the power to the PC.
2. Detach the terminal block from the Output Unit, by removing the screws located at the top and bottom of the terminal block.

Mounting screws
Located at the top and bottom.

Terminal block mounting screws Located at the top and bottom of the terminal block.

Cover mounting screws (8)
3. Remove the screws that mount the Output Unit to the Backplane. Pulling the Unit toward you, remove the Output Unit from the Backplane.
4. There are eight screws on each side of the Output Unit. Remove these screws to detach the case from the cover.
5. Pull out the printed circuit board.
6. Insert a new fuse.
7. Reassemble in reverse order.

Output Unit Relays

To replace a Relay in an Output Unit, follow the steps below.

1. Turn OFF the power to the PC.
2. Detach the terminal block from the Output Unit, by removing the screws located at the top and bottom of the terminal block.

3. Remove the screws that mount the Output Unit to the Backplane. Pulling the Unit toward you remove the Output Unit from the Backplane.
4. There are eight screws on each side of the Output Unit. Remove these screws to detach the case from the cover.
5. Pull out the printed circuit board. Place the Relays on the circuit board.
6. Use the Relay Puller to pull out the Relay. Insert a new Relay.
7. Reassemble in reverse order.

Batteries

When the battery is nearly discharged, the ALARM indicator blinks and the message "BATT LOW" appears on the Programming Console. When this occurs, replace the battery within one week to avoid loss of data. The battery comes with its own connector as a set. To replace the Battery Set follow the steps below. The entire replacement must be completed within five minutes to ensure that the data will not be lost.

1. Turn OFF the power to the PC. (If the power was not already ON, turn the power ON for at least one minute before turning the power OFF.)
2. Remove the cover from the battery compartment.
3. Remove the old Battery Set.
4. Install the new Battery Set as shown below.

5. Replace the cover of the battery compartment.
6. When a Programming Console is mounted to the CPU after the battery has been replaced, "BATT LOW" will be displayed. This message can be cleared by pressing CLR, FUN, MONTR, or just turning the power to the PC OFF and the ON again to clear the error message on the Programming Console.

Note The service life of the battery is four years at $25^{\circ} \mathrm{C}$.

B Specifications

Power Supply Model	3G2A5-PS221-E/222-E/223-E	3G2A5-PS212-E/213-E
Supply Voltage	100 to 120/200 to 240 VAC (selectable) $50 / 60 \mathrm{~Hz}$	24 VDC
Operating Voltage Range	85 to 132/170 to 264 VAC	20.4 to 26.4 VDC
Power Consumption	150 VA max.	55 W max.
Output Capacity	$\begin{aligned} & \text { PS221: } 7 \text { A } 5 \text { VDC } \\ & \text { PS223: } 120 \text { A } 5 \text { VDC } \\ & \text { PS222: } 7 \text { A } 5 \text { VDC } \end{aligned}$	$\begin{aligned} & \text { PS213: } 9 \text { A } 5 \text { VDC } \\ & \text { PS212: } 7 \text { A } 5 \text { VDC } \end{aligned}$
24 VDC Output*	0.8 A $24 \mathrm{VDC} \pm 10 \%$	Not provided
Insulation Resistance	$5 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) between AC terminals	
Dielectric Strength**	1,500 VAC $50 / 60 \mathrm{~Hz}$ for 1 minute (between AC and GR terminals) leakage current 10 m A max.	500 VAC $50 / 60 \mathrm{~Hz}$ for 1 minute (between DC and GR terminals) leakage current 1 mA max.
Noise Immunity	1,000 Vp-p, pulse width: $1 \mu \mathrm{~s}$, rise time: 1 ns	
Vibration Resistance	Mechanical durability: 10 to $25 \mathrm{~Hz}, 2 \mathrm{~mm}$ double amplitude, in X, Y, and Z directions, for 2 hours each Electrical durability: $16.7 \mathrm{~Hz}, 1 \mathrm{~mm}$ double amplitude, in X, Y, and Z directions, for 10 minutes each	
Shock	$98 \mathrm{~m} / \mathrm{s}^{2}$ in downward direction, 3 times	
Ambient Temperature	Operating: 0° to $55^{\circ} \mathrm{C}$ Storage: -20° to $65^{\circ} \mathrm{C}$	
Humidity	35% to 85\% RH (without condensation)	
Atmosphere	Must be free from corrosive gasses	
Grounding	Less than 100Ω	
Structure	Panel-mounted	
Weight	8 kilograms max.	

*This output is not provided on Model PS223-E.
${ }^{* *}$ When performing the dielectric strength test or the insulation resistance test be sure to disconnect the LG terminals from the GR (ground) terminals to protect the program and internal parts from damage.

CPU Specifications

Programming Method	Ladder diagram
Instruction Length	1 address/instruction, (1 to 4 words/instruction)
Number of Instructions	71 (12 basic instructions + 59 special instructions)
Execution Time	3 to $8 \mu \mathrm{~s}$ (basic instructions)/22 to $504 \mu \mathrm{~s}$ (special instructions)
Memory Capacity	24K words
I/O bits	512 (0000 through 3115)
IR bits	416 (3200 through 5715)
SR bits	88 (5800 through 6307)
TR bits	8 (0 through 7)
HR bits	512 (0000 through 3115)
LR bits	512 (0000 through 3115) PC Link: max. configuration 8 PCs
Timers/Counters	128 (TIM/CNT 000 through 127) TIMs: 0 through 999.9 s TIMHs: 0 through 99.99 s CNT: 0 through 9999 counts
DM words	512 (0000 through 511) 16 bits/word
Control Input Signal	START INPUT (in RUN mode, PC operates when contacts are closed and stops when contacts are opened) Input Voltage: 24 mA 24 VDC
Control Output Signal	RUN INPUT (Contacts are closed while PC is in RUN mode) Max. switching capacity: 2 A 250 VAC (resistive load) 0.5 A 250 VAC (inductive load, cos of phase angle= 0.4) 2 A 24 VDC
Memory Protection	Status of HR bits, preset value of counters (CNT), and contents of data memory (DM) are retained during power failure. Length of memory protection depends on the Memory Pack model being used (refer to Section 2-8 Memory Packs).
Battery Life	4 years at $25^{\circ} \mathrm{C}$, battery life is shortened at temperatures higher than $25^{\circ} \mathrm{C}$. Replace battery with new one within 1 week when ALARM indicator blinks.
Self-diagnostic Functions	CPU failure (watchdog timer) Battery failure Cycle time error Memory failure I/O bus failure, etc.
Program Check	Program check (executed on start of RUN operation): END missing JMP-JME error Coil duplication Circuit error DIFU/DIFD over error IL/ILC error (Program can be checked by Programming Console or GPC.)

DC Input Units

	3G2A5-ID112	3G2A5-ID213
Input Voltage	5 to $12 \mathrm{VAC}^{+10 \% /-15 \%}$	12 to $24 \mathrm{VAC}^{+10 \%}{ }_{-15 \%}$
Input Impedance	560Ω	$2.2 \mathrm{k} \Omega$
Input Current	16 mA typical (at 12 VDC)	10 mA typical (at 24 VDC)
ON Voltage	$4.0 \mathrm{VDC} \mathrm{min}$.	10.2 VDC min.
OFF Voltage	1.5 VDC max.	3.0 VDC max.
ON Response Time	1.5 ms max .	1.5 ms max .
OFF Response Time	1.5 ms max .	1.5 ms max .
No. of Points	16 (8 points/common, 2 circuits)	16 (8 points/common, 2 circuits)
Internal Current Consumption	10 mA 5 VDC max.	20 mA 5 VDC max.
Weight	450 grams max.	450 grams max.
Circuit Configuration	 Two-wire sensors cannot be connected.	
Terminal Connections		
Dimensions	A-shape	A-shape

DC Input Units

Continued

3G2A5-ID212 (Input)		3G2A5-ID212 (Output)	
Input Voltage	$24 \mathrm{VDC}^{+10 \% /-15 \%}$	Max. Switching Capacity	0.1 A $24 \mathrm{VDC}^{+10 \% /-15 \%}$
Input Impedance	$2.2 \mathrm{k} \Omega$	Leakage Current	0.1 mA max.
Input Current	10 mA typical (at 24 VDC)	Residual Voltage	1.5 V max.
ON Voltage	10.2 VDC min.	ON Response Time	0.2 ms max .
OFF Voltage	3.0 VDC max.	OFF Response Time	0.3 ms max.
ON Response Time	1.5 ms max.	Power for External Supply	24 VDC ± 10 \%
OFF Response Time	1.5 ms max.	Terminal Connections	
	cuit Configuration		er to page 66 for connection.
No. of Points	64		
Internal Current Consumption	300 mA 5 VDC max.		
Weight	450 grams max.		
Dimensions	A-shape		

	3G2A5-ID215 ${ }^{\text {a }}$ 3G2A5-ID218
Input Voltage	12 to $24 \mathrm{VDC}^{+10 \%}{ }_{-15 \%}$
Input Impedance	$2.2 \mathrm{k} \Omega$
Input Current	10 mA typical (at 24 VDC)
ON Voltage	10.2 VDC min.
OFF Voltage	3.0 VDC max.
ON Response Time	15 ms max. $1.5 \mathrm{~ms} \mathrm{max}$.
OFF Response Time	$15 \mathrm{~ms} \mathrm{max}$. . 1.5 ms max.
No. of Points	32 (8 points/common, 4 circuits)
Internal Current Consumption	160 mA 5 VDC max.
Weight	450 grams max.
Circuit Configuration	
Terminal Connections	
Dimensions	B-shape

DC Input Units Continued

	3G2A5-ID219
Input Voltage	$24 \mathrm{VDC}^{+10 \% /-15 \%}$
Input Impedance	$3.3 \mathrm{k} \Omega$
Input Current	7 mA typical (at 24 VDC)
ON Voltage	16.0 VDC min.
OFF Voltage	5.0 VDC max.
ON Response Time	1.5 ms max.
OFF Response Time	1.5 ms max.
No. of Points	64 (8 points/common, 8 circuits) (No. of contacts that can be turned ON changes depending on ambient temperature. See the characteristic data below.)
Internal Current Consumption	
Weight	600 grams max.
Circuit Configuration	No. of points that can be turned ON vs. temperature
Terminal Connections	
Dimensions	D-shape

DC Input Units Continued

	3G2A5-ID218CN
Input Voltage	12 to $24 \mathrm{VAC}^{+10 \%}{ }_{-15 \%}$
Input Impedance	$2.2 \mathrm{k} \Omega$
Input Current	10 mA typical (at 24 VDC)
ON Voltage	10.2 VDC min.
OFF Voltage	3.0 VDC max.
ON Response Time	1.5 ms max.
OFF Response Time	1.5 ms max .
No. of Points	32 (8 points/common, 4 circuits)
Internal Current Consumption	200 mA 5 VDC max.
Weight	450 grams max.
Circuit Configuration	
Terminal Connections	
Dimensions	E-shape, with no 4-terminal block

AC/DC Input Units

	3G2A5-IM211	3G2A5-IM212
Input Voltage	12 to $24 \mathrm{VAC/DC}{ }^{+10 \% /-15 \% ~ 50 / 60 ~ H z ~}$	12 to $24 \mathrm{VAC} / \mathrm{DC}^{+10 \% /-15 \% ~} 50 / 60 \mathrm{~Hz}$
Input Impedance	1.8Ω	$2.2 \mathrm{k} \Omega$
Input Current	10 mA typical (at 24 VDC)	10 mA typical (at 24 VDC)
ON Voltage	10.2 VDC min.	10.2 VDC min.
OFF Voltage	3.0 VDC max.	3.0 VDC max.
ON Response Time	15 ms max.	15 ms max.
OFF Response Time	15 ms max.	15 ms max.
No. of Points	16 (8 points/common, 2 circuits)	32 (8 points/common, 4 circuits)
Internal Current Consumption	10 mA 5 VDC max.	200 mA 5 VDC max.
Weight	450 grams max.	500 grams max.
Circuit Configuration		
Terminal Connections		
Dimensions	A-shape	A-shape

In the case where a large number of bits must be controlled, an ID212 DC Input Unit can simplify wiring by controlling up to 64 bits through only 16 points. Using digital switches or a specially wired keyboard, different combinations of points can access specific bits and words. Two examples of connections using digital switches or a keyboard are given.

Connection Example 1 (Keyboard)

The table below shows how the ID212 DC Input Unit can be wired using a specially wired keyboard. For example, if A on the keyboard is pressed, the combination of DATAO and STB 9 turn ON bit 00, word n. Similarly, the combination of DATA 7 and STB 7 turn ON bit 15 , word $n+3$. The value of word n depends on where the Unit is mounted on the Rack. For details, refer to the C500 Operation Manual.

The table below shows the combinations made possible when the keyboard is wired as shown in the figure above.

Point Number	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
word n												E	D	C	B	A
word $\mathrm{n}+1$																
word $\mathrm{n}+2$																
word $\mathrm{n}+3$	Z	Y	X													

Note Because the DC Input Unit is operated on an extremely small current, make sure there is adequate distance between the DC Input Unit wires and high-tension equipment or power lines. If this cannot
be avoided, use shielded cables when wiring the DC Input Unit. Be sure to keep the total length of the wires less than 10 m .

Connection Example 2
 (Digital Switches)

This example shows how the ID212 DC Input Unit can be wired using digital switches. Just as the keys on the keyboard can access different combinations of words and bits, the digital switches can access different combinations of words and bits. For example, the combination of switch no. 1 and point 00 access word bit 00, word n .

However, for the sake of simplicity the figure below shows the digital switches wired to control 32 bits instead of 64 bits as was shown in Example 1. Wire STB 4, STB 5, STB 6, and STB 7 to access an additional 32 bits.

The table below shows the combinations made possible when the digital switches are wired as shown in the figure above.

Point Number	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
word n	Switch no. 4				Switch no. 3				Switch no. 2				Switch no. 1			
	0	1	0	0	0	0	1	1	0	0	1	1	0	0	0	1
	STB 1								STB 0							
word $\mathrm{n}+1$	Switch no. 8				Switch no. 7				Switch no. 6				Switch no. 5			
word $\mathrm{n}+1$	1	0	0	0	0	1	1	1	0	1	1	0	0	1	0	1
	STB 3								STB 2							

Timing

DC Output Unit
 3G2A5-OD211

By using the OD211 DC Output Unit, a large number of bits can be controlled through only 16 points. Just like the ID211 DC Input Unit, different combinations of points can access bits and words to control different outputs. Using this type of Unit can simplify wiring when many bits must be controlled. Up to 64 bits can be accessed.

Because the output data is positive logic, the terminal output goes high when the output data is logical 1 . The strobe output is negative logic, so when a signal is output, the corresponding terminal goes low. Use positive logic output devices for the load of this Unit. The strobe output is cyclically and automatically output.

The table below shows the combinations made possible when the display is wired as shown in the figure on the preceding page. The value of word n depends on where the Unit is mounted on the Rack. For details, refer to the C500 Operation Manual.

Point Number	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Data Number	07	06	05	04	03	02	01	00	07	06	05	04	03	02	01	00
word n	Display no. 4				Display no. 3				Display no. 2				Display no. 1			
	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1
	STB 1								STB 0							
word $\mathrm{n}+1$	Display no. 8				Display no. 7				Display no. 6				Display no. 5			
	1	0	0	0	0	1	1	1	0	1	1	0	0	1	0	1
	STB 3								STB 2							

Note Because the DC Input Unit is operated on an extremely small current, make sure there is adequate distance between the DC Input Unit wires and high-tension equipment or power lines. If this cannot be avoided, use shielded cables when wiring the DC Input Unit. Be sure to keep the total length of the wires less than 10 m .

Timing

The following timing chart illustrates the operation of the Output Unit when wired as shown on the previous page.

Data 0
Data 1
Data 2

Data 3
Data 4
Data 5
Data 6

TTL Input Units

	3G2A5-ID501CN
Input Voltage	5 VDC $\pm 10 \%$
Input Impedance	$1 \mathrm{k} \Omega$
Input Current	3.5 mA typical (at 24 VDC)
ON Voltage	3 VDC min.
OFF Voltage	1 VDC max.
ON Response Time	1.5 ms max.
OFF Response Time	1.5 ms max.
No. of Points	32 (8 points/common, 4 circuits)
Internal Current Consumption	200 mA 5 VDC max.
Weight	450 grams max.
Circuit Configuration	
Terminal Connections	Use a synchronous TTL buffer. (TTL/LS-TTL/CMOS buffer)
Dimensions	E-shape, with no 4-terminal block

Triac Output Units

	3G2A5-OA121	3G2A5-OA222
Max. switching Capacity	1 A $132 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ (4 A/common, 5 A/Unit)	1 A 250 VAC, $50 / 60 \mathrm{~Hz}$ (4 A/common, 5 A/Unit)
Min. switching Capacity	10 mA (resistive load) 40 mA (inductive load) 10 VAC	10 mA (resistive load) 40 mA (inductive load) 10 VAC
Leakage Current	3 mA (100 VAC) max.	3 mA (100 VAC) max., 6 mA (200 VAC) max.
Residual Voltage	1.2 V max.	1.2 V max.
ON Response Time	1 ms max .	1 ms max .
OFF Response Time	1/2 of load frequency max.	1/2 of load frequency max.
No. of Points	16 (8 points/common, 2 circuits)	16 (8 points/common, 2 circuits)
Internal Current Consumption	300 mA 5 VDC max.	300 mA 5 VDC max.
Fuse Capacity	5 A 250 V (two fuses)	5 A 250 V (two fuses)
Weight	500 grams max.	500 grams max.
Circuit Configuration	The fuse used in this diagram is 5 A 250 V 6.35 dia. x 32.	The fuse used in this diagram is 5 A 250 V 6.35 dia . x 32 .
Terminal Connections		
Dimensions	A-shape	A-shape

Triac Output Units
 Continued

	3G2A5-OA223	C500-OA225
Max. switching Capacity	1 A 250 VAC, $50 / 60 \mathrm{~Hz}$ (4 A/common, 5 A/unit)	1 A 250 VAC, $50 / 60 \mathrm{~Hz}$ (4 A/common, 5 A/unit)
Min. switching Capacity	10 mA (resistive load) 40 mA (inductive load) 10 VAC	10 mA (resistive load) 40 mA (inductive load) 10 VAC
Leakage Current	3 mA (100 VAC) max., 6 mA (200 VAC) max.	2 mA (100 VAC) max., 5 mA (200 VAC) max.
Residual Voltage	1.2 V max.	1.6 V max.
ON Response Time	1 ms max .	1 ms max .
OFF Response Time	1/2 of load frequency max.	1/2 of load frequency max.
No. of Points	24 (8 points/common, 3 circuits)	32 (8 points/common, 4 circuits)
Internal Current Consumption	450 mA 5 VDC max.	200 mA 5 VDC max.
Fuse Capacity	5 A 250 V (three fuses)	Not provided
Power for External Supply	-	320 mA 5 VDC $\pm 10 \%$ max.
Weight	600 grams max.	600 grams max.
Circuit Configuration		$\text { * G3S-201PL } 24 \text { VDC }$
Terminal Connections		
Dimensions	C-shape	C-shape

	C500-OA226
Max. Switching Capacity	1.2 A $250 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ (4 A/common, $5 \mathrm{~A} /$ unit)
Max. Surge Current	15 A for 100 ms pulse width, 30 A for 10 ms pulse width
Min. Switching Capacity	100 mA at $10 \mathrm{VAC}, 50 \mathrm{~mA}$ at 24 VAC 10 mA at $100 \mathrm{VAC}, 10 \mathrm{~mA}$ at 240 VAC
Leakage Current	$1.5 \mathrm{~mA}(120 \mathrm{VAC}, 60 \mathrm{~Hz}$) max., $3.0 \mathrm{~mA}(240 \mathrm{VAC}, 60 \mathrm{~Hz}$) max.
Residual Voltage	1.5 VAC max. for 100 to $600 \mathrm{~mA}, 1.5 \mathrm{VAC}$ for 50 to 100 mA , 5.0 VAC for 10 to 50 mA
ON Response Time	1 ms max.
OFF Response Time	$1 / 2$ of load frequency +1 ms max .
No. of Points	16 (8 points/common, 2 circuits)
Internal Current Consumption	450 mA at 5 VDC max.
Fuse Capacity	$5 \mathrm{~A}, 250 \mathrm{~V} ; 6.35 \mathrm{~mm}$ dia. $\times 32 \mathrm{~mm}$ (two fuses)
Power for External Supply	-
Weight	600 grams max.
Circuit Configuration	
Terminal Connections	
Dimensions	A-shape

Special Considerations

for C500-OA225

Number of Points Per Common Turned ON Simultaneously

The maximum current value allowed per point differs depending on the ambient temperature and the number of points per common that are ON simultaneously. The graph below shows the relationship between the allowable current per point and the number of points ON per common. Be sure not to exceed the values depicted in the graph.

The graph below shows the value of an surge current and the time it takes the current to level to a steady stream of current (current-carrying time). The curved line in the graph represents the maximum value of surge current at which the Unit can operate properly. It is suggested that when opening and closing a load with a large surge current, to keep the value of the surge current to half the value shown the graph (within the shaded area).

Transistor Output Units

	3G2A5-OD411	3G2A5-OD412
Max. switching Capacity	12 to $48 \mathrm{VDC}+10 \%,-15 \% 1 \mathrm{~A}$ (4 A/common, 5 A/Unit)	$12 \text { to } 48 \mathrm{VDC}+10 \%,-15 \% 0.3 \mathrm{~A}$ (2.4 A/common, 4.8 A/Unit)
Leakage Current	0.1 mA max.	0.1 mA max.
Residual Voltage	1.4 V max.	1.5 V max.
ON Response Time	0.2 ms max .	0.2 ms max .
OFF Response Time	0.3 ms max .	0.3 ms max .
No. of Points	16 (16 points/common, 1 circuit)	32 (32 points/common, 1 circuit)
Internal Current Consumption	160 mA 5 VDC max.	230 mA 5 VDC max.
Fuse Capacity	5 A 250 V (two fuses)	1 per circuit, 1 total (not user replaceable)
Power for External Supply	50 mA 12 to $48 \mathrm{VDC} \pm 10 \%$ max.	80 mA 12 to $48 \mathrm{VDC} \pm 10 \%$ max.
Weight	500 grams max.	530 grams max.
Circuit Configuration		
Terminal Connections	Note: Be sure to supply power to B18; otherwise current will leak through the load while the output is OFF. Because the commons are short-circuited internally, they cannot be used separately and must be wired according to the diagram.	
Dimensions	A-shape	B-shape

Transistor Output Units Continued

	3G2A5-OD213
Max. switching Capacity	$16 \mathrm{~mA} / 4.5 \mathrm{~V}$ to $100 \mathrm{~mA} / 26.4 \mathrm{VDC}$ (See chart below.) $800 \mathrm{~mA} / \mathrm{common}, 6.4 \mathrm{~A} / \mathrm{Unit}$
Leakage Current	0.1 mA max.
Residual Voltage	0.4 V max.
ON Response Time	0.2 ms max.
OFF Response Time	0.3 ms max.
No. of Points	$64(8$ points/common, 8 circuits)
Internal Current Consumption	460 mA 5 VDC max. (140 mA +5 mA x no. of ON points)
Fuse Capacity	1 per circuit, 8 total (not user replaceable)
Power for External Supply	170 mA 26.4 VDC max. (2.6 mA x no. of ON points)
Weight	550 grams max.

	3G2A5-OD215		3G2A5-OD217	
Max. switching Capacity	$24 \mathrm{VDC} \pm 10 \%$, $50 \mathrm{~mA} /$ point		$\begin{aligned} & 12 \text { to } 24 \mathrm{VDC}+10 \%,-15 \% 1 \mathrm{~A}(4 \mathrm{~A} / \text { common, } \\ & 5 \mathrm{~A} / \text { Unit) } \end{aligned}$	
Leakage Current	---		0.1 mA max.	
Residual Voltage	1.0 V max.		1.4 V max.	
ON Response Time	0.2 ms max.		0.2 ms max.	
OFF Response Time	0.3 ms max.		0.3 ms max .	
No. of Points	16 (independent common)		16 (8 points/common, 2 circuits)	
Internal Current Consumption	200 mA 5 VDC max.		160 mA 5 VDC max.	
Fuse Capacity	Not provided		5 A 250 V (two fuses)	
Power for External Supply	---		50 mA 12 to $24 \mathrm{VDC} \pm 10 \%$ min.	
Weight	530 grams max.		500 grams max.	
Circuit Configuration				
Terminal Connections				Note: Be sure to connect Power Supplies to 18 and 19.
Dimensions	B-shape		A-shape	

Transistor Output Units Continued

	C500-OD218	C500-OD219
Max. switching Capacity	12 to 24 VDC $+10 \%,-15 \% ~ 0.3 \mathrm{~A}$ (2.4 A/common, 4.8 A/Unit)	$12 \text { to } 24 \text { VDC }+10 \%,-15 \% 2.1 \mathrm{~A}$ ($8 \mathrm{~A} /$ common, $16 \mathrm{~A} /$ Unit)
Leakage Current	0.1 mA max.	0.1 mA max.
Residual Voltage	1.5 V max.	0.7 V max.
ON Response Time	0.2 ms max .	0.2 ms max .
OFF Response Time	0.3 ms max.	0.4 ms max.
No. of Points	32 (16 points/common, 2 circuits)	16 (8 points/common, 2 circuits)
Internal Current Consumption	230 mA 5 VDC max.	160 mA 5 VDC max.
Fuse Capacity	1 per circuit, 2 total (not user replaceable)	10 A 250 V (two fuses)
Power for External Supply	80 mA 12 to $24 \mathrm{VDC} \pm 10 \% \mathrm{~min}$.	100 mA 12 to $24 \mathrm{VDC} \pm 10 \% \mathrm{~min}$.
Weight	530 grams max.	550 grams max.
Circuit Configuration		
Terminal Connections		
Dimensions	B-shape	A-shape

Transistor Output Units Continued

DC Input/Transistor Output Unit

3G2A5-MD211CN			
Output (word n)		Input (word $\mathrm{n}+1$)	
Max. switching Capacity	$12 \text { to } 24 \mathrm{VDC}+10 \%,-15 \% 0.3 \mathrm{~A}$ (2.4 A/common, 4.8 A/unit)	Input Voltage	12 to 24 VDC +10\%, -15\%
Leakage Current	0.1 mA max.	Input Impedance	2.2Ω
Residual Voltage	1.5 V max.	Input Current	10 mA typical (at 24 VDC)
Fuse Capacity	1 per circuit, 2 total (not user replaceable)	ON Voltage	10.2 VDC min.
Power for External Supply	80 mA 12 to $24 \mathrm{VDC} \pm 10 \% \mathrm{max}$.	OFF Voltage	3.0 VDC max.
ON Response Time	0.2 ms max .	ON Response Time	1.5 ms max .
OFF Response Time	0.3 ms max.	OFF Response Time	1.5 ms max.
No. of Points	16 (8 points/common, 2 circuits)	No. of Points	16 (8 points/common, 2 circuits)
Internal Current Consumption	260 mA 5 VDC max.		
Weight	520 grams max.		
Circuit Configuration			
Terminal Connections		Note The maximum switching capacity for solderless connectors is $1 \mathrm{~A} /$ common.	
Dimensions	E-shape		

TTL Output Units

	C500-OD501CN
Max. switching Capacity	$5 \mathrm{VDC} \pm 10 \% 35 \mathrm{~mA} /$ point
Leakage Current	0.1 mA max.
Residual Voltage	0.4 V max.
ON Response Time	0.2 ms max .
OFF Response Time	0.3 ms max.
No. of Points	32 (8 points/common, 4 circuits)
Internal Current Consumption	250 mA 5 VDC max.
Fuse Capacity	Not provided
Power for External Supply	$32 \mathrm{~mA} 5 \mathrm{VDC} \pm 10 \% \mathrm{~min}$.
Weight	450 grams max.
Circuit Configuration	
Terminal Connections	Because the output data is negative logic, the terminal output goes low when output data is logical 1.
Dimensions	E-shape

Dummy I/O Unit

	3G2A5-DUM01	
Selection Function	Unit designation: input/output Point designation: 16/32/64 points	
Internal Current Consumption	35 mA 5 VDC max.	
Power for External Supply	$30 \mathrm{~mA} 24 \mathrm{VDC} \pm 10 \% \mathrm{~min}$.	
Weight	450 grams max.	
Terminal Connections	Point designation 16 points 32 points 64 points	
Dimensions	A-shape	

Note Power is supplied to the Dummy I/O Unit from the 24 VDC output terminal of the Power Supply, which is mounted on the same Rack as the Dummy I/O Unit. Be sure to supply power to the Dummy I/O Unit before supplying power to the CPU. If power is supplied to the Dummy I/O Unit after power is supplied to the CPU, the Dummy I/O Unit is assumed to have only $16 \mathrm{I} / \mathrm{O}$ points, and may result in an I/O Verification Error or an I/O Setting Error.

AC Input Units

	3G2A5-IA121	3G2A5-IA222
Input Voltage	100 to $120 \mathrm{VAC}^{+10 \% /-15 \% ~ 50 / 60 ~ H z ~}$	200 to 240 VAC ${ }^{+10 \% /-15 \% ~} 50 / 60 \mathrm{~Hz}$
Input Impedance	$9.7 \mathrm{k} \Omega(50 \mathrm{~Hz}), 8 \mathrm{k} \Omega(60 \mathrm{~Hz})$	$22 \mathrm{k} \Omega(50 \mathrm{~Hz}), 18 \mathrm{k} \Omega(60 \mathrm{~Hz})$
Input Current	10 mA typical (at 100 VAC)	10 mA typical (at 200 VAC)
ON Voltage	60 VAC min.	120 VAC min.
OFF Voltage	20 VAC max.	40 VAC max.
ON Response Time	35 ms max .	35 ms max.
OFF Response Time	55 ms max .	55 ms max.
No. of Points	16 (8 points/common, 2 circuits)	16 (8 points/common, 2 circuits)
Internal Current Consumption	10 mA 5 VDC max.	12 mA 5 VDC max.
Weight	450 grams max.	450 grams max.
Circuit Configuration		
Terminal Connections		
Dimensions	A-shape	A-shape

AC Input Units Continued

	3G2A5-IA122	3G2A5-IA223
Input Voltage	100 to $120 \mathrm{VAC}^{+10 \% /-15 \% ~ 50 / 60 ~ H z ~}$	200 to 240 VAC ${ }^{+10 \% /-15 \% ~ 50 / 60 ~ H z ~}$
Input Impedance	$9.7 \mathrm{k} \Omega(50 \mathrm{~Hz}), 8 \mathrm{k} \Omega(60 \mathrm{~Hz})$	$22 \mathrm{k} \Omega(50 \mathrm{~Hz}), 18 \mathrm{k} \Omega(60 \mathrm{~Hz})$
Input Current	10 mA typical (at 100 VAC)	10 mA typical (at 200 VAC)
ON Voltage	60 VAC min.	120 VAC min.
OFF Voltage	20 VAC max.	40 VAC max.
ON Response Time	35 ms max .	35 ms max .
OFF Response Time	55 ms max .	55 ms max .
No. of Points	32 (8 points/common, 4 circuits)	32 (8 points/common, 4 circuits)
Internal Current Consumption	60 mA 5 VDC max.	60 mA 5 VDC max.
Weight	600 grams max.	600 grams max.
Circuit Configuration		
Terminal Connections		
Dimensions	C-shape	C-shape

Contact Output Units

	3G2A5-OC221	3G2A5-OC223
Max. switching Capacity	2 A 250 VAC (cos of phase angle=1), 0.5 A 250 VAC (cos of phase angle= 0.4), 2 A 24 VDC (8 A/common, 16 A/Unit)	2 A 250 VAC (cos of phase angle= 1), 0.5 A 250 VAC (cos of phase angle= 0.4), 2 A 24 VDC (32 A/Unit)
Min. switching Capacity	10 mA 5 VDC	10 mA 5 VDC
Power for External Supply	Voltage: 24 VDC ± 10 \% Current: $10 \mathrm{~mA} /$ point, $160 \mathrm{~mA} /$ Unit	Voltage: 24 VDC ± 10 \% Current: $10 \mathrm{~mA} /$ point, $160 \mathrm{~mA} /$ Unit
Bit	G6B-114P-FD-US-M (24 VDC) w/socket	G6B-114P-FD-US-M (24 VDC) w/socket
Service Life of Relay	Electrical: 300,000 operations (resistive load) 100,000 operations (inductive load) Mechanical: 50,000,000 operations	Electrical: 300,000 operations (resistive load) 100,000 operations (inductive load) Mechanical: 50,000,000 operations
ON Response Time	15 ms max .	15 ms max.
OFF Response Time	15 ms max.	15 ms max.
No. of Points	16 (8 points/common, 2 circuits)	16 (independent common)
Internal Current Consumption	100 mA 5 VDC max.	100 mA 5 VDC max.
Weight	450 grams max.	450 grams max.
Circuit Configuration	Relays are mounted on sockets and are replaceable.	Relays are mounted on sockets and are replaceable.
Terminal Connections		
Dimensions	A-shape	B-shape

Contact Output Units Continued

	3G2A5-OC224
Max. switching Capacity	2 A 250 VAC (cos of phase angle= 1), 0.5 A 250 VAC (cos of phase angle= 0.4), 2 A 24 VDC (8 A/common, 32 A/Unit)
Min. switching Capacity	10 mA 5 VDC
Power for External Supply	Voltage: 24 VDC ± 10 \% Current: $10 \mathrm{~mA} /$ point, $320 \mathrm{~mA} /$ Unit
Bit	G6B-114P-FD-US-M (24 VDC) w/socket
Service Life of Relay	Electrical: 300,000 operations (resistive load) 100,000 operations (inductive load) Mechanical: 50,000,000 operations
ON Response Time	15 ms max.
OFF Response Time	15 ms max.
No. of Points	32 (8 points/common, 4 circuits)
Internal Current Consumption	200 mA 5 VDC max.
Weight	600 grams max.
Circuit Configuration	
Terminal Connections	
Dimensions	C-shape

Fuses

Unit Model	Fuse Specifications
3G2A5-PS221-E 3G2A5-PS222-E 3G2A5-PS223-E	3 A 250 V (6.35 dia. x 32)
$\begin{aligned} & \text { 3G2A5-PS211-E } \\ & \text { 3G2A5-PS212-E } \end{aligned}$	4 A 125 V (6.35 dia. x 32)
3G2A5-PS213-E	6.3 A 125 V (6.35 dia. x 32)
$\begin{aligned} & \text { 3G2A5-OD411 } \\ & \text { 3G2A5-OD217 } \\ & \text { 3G2A5-OA223 } \end{aligned}$	5 A 250 V (5.2 dia. x 20)
$\begin{aligned} & \text { 3G2A5-OA121 } \\ & \text { 3G2A5-OA222 } \\ & \text { C500-OA226 } \end{aligned}$	5 A 250 V (6.35 dia. x 32)
C500-OD219	10 A 250 V

Dimensions

All dimensions are in millimeters unless stated otherwise.

CPU Rack

3G2A5-BC081/BC082

3G2A5-BC051/BC052

C500-BC031

C500-BC091

Expansion I/O Rack

3G2A5-BI081

3G2A5-BI051

A-shape I/O Unit

B-shape I/O Unit

C-shape I/O Unit

D-shape I/O Unit

E-shape I/O Unit

Unit Weights

Model	Weight (max.)
3G2C3-CPU11-V1	1 kilogram
3G2A5-PS221/PS222/PS223	each 1.1 kilograms
3G2A5-PS211/PS212	
C500-II101	300 grams
C500-II002	350 grams
3G2A5-BC081	each 2.6 kilograms
3G2A5-BC082	
3G2A5-BI081	
3G2A5-BC051	each 2 kilograms
3G2A5-BC052	
3G2A5-BI051	
C500-BC091	2.8 kilograms
C500-BC061	2.2 kilograms
C500-BC031	1.8 kilograms

Use an I/O Connecting Cable to connect the CPU Rack to an Expansion I/O Backplane or to connect an Expansion I/O Backplane to additional Expansion I/O Backplane.

Fasten the connectors with the locks provided on the connectors to secure the connection between the cable connector and the connector on the Backplane. If the connectors are not properly connected or the I/O Connecting Cable is disconnected during CPU operation, errors such as I/O BUS error and I/O SETTING error will occur.

The length of the connecting cable depends on the distance between the two Racks to be connected. The length of the cable should be approximately 20 cm longer than the distance between the two Racks.

Cable Length (L)	Distance between Rack (max.) (X)
30 cm	10 cm
50 cm	30 cm
80 cm	60 cm
1 m	80 cm
2 m	180 cm

The figures below show the dimensions of the cable and the height of the connector when the cable is connected to the Backplane.

Model	Cable Length (L)
C500-CN312N	30 cm
C500-CN512N	50 cm
C500-CN812N	80 cm
C500-CN122N	1 m
C500-CN222N	2 m

The length of an individual connecting cable can not be extended more than 2 m . Select each I/O cable and organize each device so the cable length is within 2 m .

Note Do not run the I/O connecting cable in the same duct with power lines or other I/O lines.

C Standard Models

CPU Backplane

Name	Remarks		Model
Backplane	9 I/O slots*	5 Link slots	C500-BC091
	8 I/O slots	3 Link slots	3G2A5-BC081
		5 Link slots	3G2A5-BC082
	$6 \mathrm{I} / \mathrm{O}$ slots		C500-BC061
	$5 \mathrm{I} / \mathrm{O}$ slots	3 Link slots	3G2A5-BC051
		5 Link slots	3G2A5-BC052
	3 I/O slots		C500-BC031
CPU	-		3G2C3-CPU11-EV1
RAM Pack	16K words		3G2A5-MR431
	24K words		3G2A5-MR831
ROM Pack	24K words max.		3G2A5-MP831
EPROM Chip	2764250 ns	Writing voltage 21 V	ROM-H
	27128250 ns		ROM-I
	2764200 ns	Writing voltage 12.5 V	ROM-HB-B
	27128200 ns		ROM-IB-B
CPU Power Supply	100 to 120/200 to 240 VAC (selectable)	Output: 7 A 5 VDC	3G2A5-PS221-E
		Output: 12 A 5 VDC	3G2A5-PS223-E
	24 VDC	Output: 7 A 5 VDC	3G2A5-PS211-E
		Output: 9 A 5 VDC	3G2A5-PS213-E
Expansion I/O Power Supply	100 to 120/200 to 240 VAC (selectable)	Output: 7 A 5 VDC	3G2A5-PS222-E
	24 VDC	Output: 7 A 5 VDC	3G2A5-PS212-E
I/O Control Unit	Required to connect Expansion I/O Racks		3G2A5-II101

*The rightmost solt is only for Link Units.

Expansion I/O Backplane

Name	Remarks	Model	
Expansion I/O Backplane	8 slots	3G2A5-BI081	
	5 slots	3G2A5-BI051	
	100 to 120/200 to 240 VAC (selectable)	Output: 7 A 5 VDC	3G2A5-PS222-E
	24 VDC	Output: 7 A 5 VDC	3G2A5-PS212-E
I/O Interface Unit	-	3G2A5-II002	
I/O Connecting Cable	30 cm	C500-CN312N	
	50 cm	C500-CN512N	
	80 cm	C500-CN812N	
	1 m	C500-CN122N	
	2 m	C500-CN222N	

I/O Units

Name		Remarks			Model	
Input Unit	DC	16 mA 5 to 12 VDC		16 pts	3G2A5-ID112	
		10 mA 12 to 24 VDC		16 pts	3G2A5-ID213	
		10 mA 12 to 24 VDC	ON response time: 15 ms max.	32 pts	3G2A5-ID215	
			ON response time: 1.5 ms	32 pts	3G2A5-ID218	
		10 mA 12 to 24 VDC		32 pts	3G2A5-ID218CN	
		7 mA 12 VDC , static		64 pts	3G2A5-ID114	
		10 mA 24 VDC, dynamic		64 pts	3G2A5-ID212	
		7 mA 24 VDC , static		64 pts	3G2A5-ID219	
	AC	10 mA 100 to 120 VAC		16 pts	3G2A5-IA121	
		10 mA 200 to 240 VAC		16 pts	3G2A5-IA222	
		10 mA 100 to 120 VAC		32 pts	3G2A5-IA122	
		10 mA 200 to 240 VAC		32 pts	3G2A5-IA223	
	AC/DC	10 mA 12 to $24 \mathrm{VAC} / \mathrm{DC}$		16 pts	3G2A5-IM211	
		10 mA 12 to $24 \mathrm{VAC} / \mathrm{DC}$		32 pts	3G2A5-IM212	
	TTL	3.5 mA 5 VDC		32 pts	3G2A5-ID501CN	
	Interrupt	13 mA 12 to 24 VDC		8 pts	3G2A5-ID216	
Output Unit	Contact	2 A 250 VAC/24 VDC		16 pts	3G2A5-OC221	
		2A 250 VAC/24 VDC (sep. commons)		16 pts	3G2A5-OC223	
		2A 250 VAC/24 VDC		32 pts	3G2A5-OC224	
	Transistor	1A 12 to 24 VDC		16 pts	3G2A5-OD217	
		1A 12 to 48 VDC		16 pts	3G2A5-OD411	
		50 mA 24 VDC (sep. commons)		16 pts	3G2A5-OD215	
		0.3 A 12 to 24 VDC		32 pts	3G2A5-OD218	
		2.1 A 12 to 24 VDC		16 pts	C500-OD219	
		0.3 A 12 to 48 VDC		32 pts	3G2A5-OD412	
		0.3 A 12 to 24 VDC, PNP output		32 pts	3G2A5-OD212	
		0.3 A 12 to 48 VDC, I/O relay terminal can be connected.		32 pts	3G2A5-OD415CN	
		0.1 A 24 VDC, dynamic		64 pts	3G2A5-OD211	
		0.1 A 24 VDC, static		64 pts	3G2A5-OD213	
	Triac	1 A 132 VAC max. (production scheduled to stop)		16 pts	3G2A5-OA121	
		1 A 250 VAC max. (production scheduled to stop)		16 pts	3G2A5-OA222	
		1 A 250 VAC max.		24 pts	3G2A5-OA223	
		1 A 250 VAC max.		32 pts	C500-OA225	
		1.2 A 250 VAC max.		16 pts	C500-OA226	
Output Unit TTL		$3.5 \mathrm{~mA} 5 \mathrm{VDC}$		32 pts	C500-OD501CN	
DC Input/Transistor Output Unit		12 to 24 VDC	Input: 10 mA	16 pts each	3G2A5-MD211CN	
		Output: 0.3 A				
Dummy I/O Unit			No. of I/O points is selectable		---	3G2A5-DUM01
A/D Conversion Input		4 to 20 mA 1 to 5 V		2 pts	3G2A5-AD001	
		0 to 10 V		2 pts	3G2A5-AD002	
		0 to 5 V		2 pts	3G2A5-AD003	
		-10 to 10 V		2 pts	3G2A5-AD004	
		-5 to 5 V		2 pts	3G2A5-AD005	
		4 to 20 mA 1 to 5 V		4 pts	3G2A5-AD006	
		0 to 10 V		4 pts	3G2A5-AD007	
		0 to $10 \mathrm{~V}, 0$ to 20 mA		8 pts	C500-AD101	
		0 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V},-5$ to $5 \mathrm{~V},-10$ to $10 \mathrm{~V}, 0$ to 20 mA , -20 to 20 mA		16 pts	C500-AD501	

Name	Remarks			Model
D/A Conversion Output	4 to 20 mA 1 to 5 V		2 pts	3G2A5-DA001
	0 to 10 V		2 pts	3G2A5-DA002
	0 to 5 V		2 pts	3G2A5-DA003
	-10 to 10 V		2 pts	3G2A5-DA004
	-5 to 5 V		2 pts	3G2A5-DA005
	4 to $20 \mathrm{~mA}, 1$ to $5 \mathrm{~V}, 0$ to 10 V		4 pts	C500-DA101
	-10 to 10 V		4 pts	C500-DA103
High-speed Counter	6 BCD digits, 50 K cps 1 Set value		1 pt	3G2A5-CT001
	6 BCD digits, 50 Kcps 8 Set value		1 pt	3G2A5-CT012
	$50 \mathrm{kcps}, 7$ modes		2 pts	C500-CT021
	4 Binary digits, 20 Kcps 1 Set value		4 pt	C500-CT041
Magnetic Card Reader	---			3G2A5-MGC01
Connecting Cable	---			3G2A9-CN521
Card Reader	---			3S4YR-MAW2C-04
Card	---			3G2A5-MCD01
PID	---			3G2A5-PID01-E
Position Control	1-axis, for stepping/servo motor			3G2A5-NC103-E
	1-axis, for servo motor			3G2A5-NC111-EV1
	2-axis, for servo motor			C500-NC222-E
	Encoder Adapter			3G2A5-AE001
	Teaching Box	---		3G2A5-TU001-E
				3G2A5-TU002-E
	Connecting Cable for TU002	For NC222-E	2 m	C200H-CN222
			4 m	C200H-CN422
		For NC103-E/111-EV1/121	4 m	C500-CN422
ASCII Unit	RAM + EEPROM			C500-ASC04
Ladder Program I/O	---			C500-LDP01-V1
Cam Positioner	---			C500-CP131
Temperature Sensor Unit	For thermocouples			C500-TS501
	For temperature-resistance thermometers			C500-TS502
ID Sensor Unit	Electromagnetic type	General-purpose		C500-IDS01-V2
		Long-distance		C500-IDS02-V1
	Microwave type	General-purpose		C500-IDS21
		Long-distance		C500-IDS22
ID Adapter	For the C500-IDS02-V1			C500-IDA02
	For the C500-IDS22			C500-IDA22
Read/Write Head	Electromagnetic type			V600-H series
	Microwave type			V620-H series
Data Carrier (see note)	SRAM type for V600-H series.			V600-D $\square \square \mathrm{R} \square \square$
	EEPROM type for V600-H series.			V600-D $\square \square \mathrm{P} \square \square$

Note For Read/Write Head and Data Carrier combinations, refer to the V600 FA ID System R/W Heads and EEPROM Data Carriers Operation Manual and Supplement or V600 FA ID System R/W Heads and SRAM Data Carriers Operation Manual and Supplement.

Link Units and Remote

I/O Units

Name		Remarks				Model	
Host Link	Rack-mounting	APF/PCF				3G2A5-LK101-PEV1	
		PCF				3G2A5-LK101-EV1	
		RS-232C/RS-422				3G2A5-LK201-EV1	
		APF/PCF				C500-LK103-P	
		PCF				C500-LK103	
		RS-232C/RS-422				C500-LK203	
	CPU-mounting	APF/PCF				3G2A6-LK101-PEV1	
		PCF				3G2A6-LK101-EV1	
		RS-232C				3G2A6-LK201-EV1	
		RS-422				3G2A6-LK202-EV1	
PC Link		Links up to 32 PCs					
SYSMAC Net		General-purpose				C500-SNT31-V4	
Optical Remote I/O Master		APF/PCF				3G2A5-RM001-PEV1	
		PCF				3G2A5-RM001-EV1	
Optical Remote I/O Slave		APF/PCF	w/1 optical connector			3G2A5-RT001-PEV1	
		w/2 optical connectors	3G2A5-RT002-PEV1				
		PCF	w/1 optical connector			3G2A5-RT001-EV1	
		w/2 optical connectors	3G2A5-RT002-EV1				
Optical I/O Link			APF/PCF				3G2A5-LK010-PE
		PCF				3G2A5-LK010-E	
Wired Remote I/O Master		-				3G2A5-RM201	
Wired Remote I/O Slave		-				3G2A5-RT201	
Remote Terminal		Input	Specify 12 VDC or 24 VDC.			G71-IC16	
		Output				G71-OD16	
Input Block	AC Input	Specify 100 VAC or 200 VAC.				G7TC-IA16	
	DC Input	Specify 12 VDC or 24 VDC.				G7TC-ID16	
Output Block	Output	Specify 12 VDC or 24 VDC.				G7TC-OC16	
Optical Transmitting I/O		DC Input	No-voltage contact, 100 VAC	8 pts	APF/PCF	3G5A2-ID001-PE	
		PCF			3G5A2-ID001-E		
		AC/DC Input	$\begin{aligned} & 12 \text { to } 24 \mathrm{VAC} / \mathrm{DC} \\ & 100 \mathrm{VAC} \end{aligned}$	8 pts	APF/PCF	3G5A2-IM211-PE	
		PCF			3G5A2-IM211-E		
		AC Input	$\begin{aligned} & 100 \text { VAC } \\ & 100 \text { VAC } \end{aligned}$	8 pts	APF/PCF	3G5A2-IA121-PE	
		PCF			3G5A2-IA121-E		
		Contact Output	$\begin{aligned} & 2 \text { A } 250 \text { VAC/ } \\ & 24 \text { VDC } \\ & 100 / 200 \text { VAC } \end{aligned}$	8 pts	APF/PCF	3G5A2-OC221-PE	
		PCF			3G5A2-OC221-E		
		Triac Output	$\begin{aligned} & \text { 100/200 VAC } \\ & \text { 100/200 VAC } \end{aligned}$	8 pts	APF/PCF	3G5A2-OA222-PE	
		PCF			3G5A2-OA222-E		
		Transistor Output	$\begin{aligned} & 0.3 \text { A } 12 \text { to } \\ & 48 \text { VDC } \\ & 100 / 200 \text { VAC } \end{aligned}$	8 pts	APF/PCF	3G5A2-OD411-PE	
		PCF			3G5A2-OD411-E		

SYSMAC BUS

Name	Remarks	Model
Link Adapter	RS-422, 3 pcs	3G2A9-AL001
	Optical (APF/PCF), 3pcs	3G2A9-AL002-PE
	Optical (PCF), 3pcs	3G2A9-AL002-E
	Optical (APF/PCF), RS-422, RS-232C, 1 pc each	3G2A9-AL004-PE
	Optical (PCF), RS-422, RS-232C, 1 pc each	3G2A9-AL004-E
	Optical (APF/PCF), optical (AGF), 1 pc each	3G2A9-AL005-PE
	Optical (PCF), optical (AGF), 1 pc each	3G2A9-AL005-E
	Optical (APF/PCF), optical (AGF), 2 pcs each	3G2A9-AL006-PE
	Optical (APF/PCF), 1 pc, RS-485 1 pc for Wired Remote I/O system only	3G2A9-AL007-PE
Repeater	APF/PCF	3G5A2-RPT01-PE
	PCF	3G5A2-RPT01-E

All Plastic Optical Fiber

Cable (APF)

Name	Remarks	Model
Plastic Optical Fiber Cable	Cable only, 5 to 100 m in multiples of 5 meters or multiples of 200 or 500 m	3G5A2-PF002
Optical Connector A	2 pcs (brown), for plastic optical fiber 10 m long max.	3G5A2-CO001
Optical Connector B	2 pcs (black) for plastic optical fiber 8 to 20 m long	3G5A2-CO002
Plastic Optical Fiber Cable	$1 \mathrm{~m}, \mathrm{w} /$ optical connector A provided at both ends	3G5A2-PF101

Plastic-Clad Optical

Fiber Cable (PCF)

Name	Remarks		Model
Optical Fiber Cable (indoor)	0.1 m, w/connector	Ambient temperature: -10° to $70^{\circ} \mathrm{C}$	3G5A2-OF011
	1 m , w/connector		3G5A2-OF101
	2 m , w/connector		3G5A2-OF201
	3 m , w/connector		3G5A2-OF301
	5 m , w/connector		3G5A2-OF501
	10 m , w/connector		3G5A2-OF111
	20 m , w/connector		3G5A2-OF211
	30 m , w/connector		3G5A2-OF311
	40 m , w/connector		3G5A2-OF411
	50 m , w/connector		3G5A2-OF511
Optical Fiber Cable (indoor/outdoor)	1 to 500 m (Order in Units of 1 m)	Ambient temperature: -10° to $70^{\circ} \mathrm{C}$	3G5A2-OF002
	501 to 800 m (Order in Units of 1 m)	Ambient temperature: 0° to $55^{\circ} \mathrm{C}$ (Must not be subjected to direct sunlight)	

Peripheral Devices

Name	Remarks		Model
Programming Console	Vertical, w/backlight		3G2A5-PRO13-E
	Horizontal, w/backlight		3G2A6-PRO15-E
Programming Console Connecting Cable	For connecting Programming Console, GPC or FIT. (Only use CN221 [2 m] for Programming Console.)	2 m	3G2A2-CN221
		5 m	C500-CN523
		10 m	C500-CN131
		20 m	C500-CN231
		30 m	C500-CN331
		40 m	C500-CN431
		50 m	C500-CN531
Programming Console Adapter	For extending Programming Console. Connecting cable is separate.		3G2A5-AP001
Programming Console Base			3G2A5-BP001
Data Access Console	-		C200H-DAC01
Handheld Programming Console	-		C200H-PR027-E
Programming Console Adapter	Required for each Handheld Programming Console	-	C500-AP003
Connecting Cable		2 m	C200H-CN222
		4 m	C200H-CN422
PROM Writer	Write voltage 12.5/21 V applicable		C500-PRW06
Printer Interface Unit	Memory Pack is separate.		3G2A5-PRT01-E
Memory Pack (for Printer Interface)	-		C500-MP102-EV3
Printer Connecting Cable	2 m , for connecting printer		SCY-CN201
Floppy Disk Interface Unit			3G2A5-FD103-E
Peripheral Interface Unit	Connecting cable is separate.		3G2A5-IP006-E
Graphic Programming Console	100 to 120 VAC, 32 K , w/comments		3G2A5-GPC03-E
GPC Memory Pack	w/comments for C20, P-type, C120, C500		C500-MP303-EV2
CRT Interface Unit	For connecting GPC to CRT		C500-GD101
Cassette Recorder Connecting Cable	1 m		SCYPOR-PLG01
SYSMAC Support Software (SSS)	Ladder diagram programming software for IBM PC/AT or compatible computer.	3.5" 2DD	C500-ZL3AT1-E

Optional Products

Name	Remarks	Model
Battery	-	3G2A9-BAT08
Relay	24 VDC	G6B-1174P-FD-US-M
I/O Terminal Cover	For 38-pin block, special type	3G2A5-COV11
	For 38-pin block, standard	C500-COV12
	For 20-pin block, standard	C500-COV13
Connector Cover	For I/O connector	3G2A5-COV01
	For Link connector	3G2A5-COV02
	For I/O Control Unit / I/O Interface Unit connector	3G2A5-COV03

Glossary

\(\left.$$
\begin{array}{ll}\text { Backplane } & \begin{array}{l}\text { A base to which Units are mounted to form a Rack. Backplanes provide a } \\
\text { series of connectors for these Units along with wiring to connect them to the } \\
\text { CPU and Power Supply. Backplanes also provide connectors used to } \\
\text { connect them to other Backplanes. In some Systems, different Backplanes } \\
\text { are used for different Racks; in other Systems, Racks differ only by the Units } \\
\text { mounted to them. }\end{array}
$$

A copy of existing data which is valuable if data is accidentally erased.\end{array}\right\}\)| The smallest piece of information that can be represented on a computer. A |
| :--- |
| bit has the value of either zero or one, corresponding to the electrical signals |
| ON and OFF. A bit is one binary digit. |

Glossary

host computer

IBM PC/XT or AT, or compatibles

I/O Expansion Backplane
 I/O Control Unit I/O devices

I/O Expansion Rack

I/O Interface Unit

I/O point

I/O Unit

PC
PC Link Unit

Position Control Unit

Power Supply

Programmable Controller

PROM

PROM Writer

Rack

A computer that is used to transfer data to or receive data from a PC in a Host Link system. The host computer is used for data management and overall system control. Host computers are generally small personal or business computers.

A computer that has similar architecture to, and is logically compatible with an IBM PC/XT computer; and that can run software designed for that computer.

A Backplane used to create an Expansion I/O Rack.
A Unit mounted to the CPU Rack in certain PCs to monitor and control I/O points on Expansion I/O Units.

The devices which are connected to the terminals on I/O Units, Special I/O Units, or Intelligent I/O Units. I/O devices may be part of the Control System if they function to help control other devices, or they may be part of the controlled system if they interact directly with it.

Part of a Rack PC, an Expansion I/O Rack is connected to a CPU Rack to increase the number of slots available for mounting Units.

A Unit mounted to an Expansion I/O Rack in certain PCs to interface the Expansion I/O Rack to the CPU Rack. An I/O Interface Unit is needed when the first Expansion I/O Rack is connected to the CPU Rack via a Connecting Cable. Each Expansion I/O Rack needs an I/O Interface Unit.

The place at which an input signal enters the PC System or an output signal leaves the PC System. In physical terms, an I/O point corresponds to terminals or connector pins on a Unit; in terms of programming, an I/O point corresponds to an I/O bit in the IR area.

The most basic type of Unit mounted to a Backplane. I/O Units include Input Units and Output Units, each of which is available in a range of specifications. I/O Units do not include Special I/O Units, Link Units, etc.

An acronym for Programmable Controller.
A Unit used to connect two or more PCs together so that they can exchange data through their LR areas.

A Special I/O Unit used to control the operation of positioning devices such as Servomotors.

A Unit that mounts to a Backplane in a Rack PC. It provides power at the voltage required by the other Units on the Rack.

A small, computer-like device that can control peripheral equipment, such as an electric door or quality control devices, based on programming and peripheral input devices. Any process that can be controlled using electrical signals can be controlled by a PC. PCs can be used independently or networked together into a system to control more complex operations.
[P(rogrammable) R(ead) O(nly) M(emory)] A type of ROM into which the program or data may be written after manufacture, by a customer, but which is fixed from that time on.

A PROM Writer is a device used to write data to ROM, PROM, and EPROM storage chips.

An assembly that forms a functional unit in a Rack PC System. A Rack consists of a Backplane and the Units mounted to it. These Units include the Power Supply, CPU, and I/O Units. Racks include CPU Racks, Expansion I/O Racks, and I/O Racks. The CPU Rack is the Rack with the CPU mounted to it. An Expansion I/O Rack is an additional Rack that holds extra I/O Units. An I/O Rack is used in the C2000H Duplex System, because there is no room for any I/O Units on the CPU Rack in this System.

Glossary

Rack PC	A PC that is composed of Units mounted to one or more Racks. This configuration is the most flexible, and most large PCs are Rack PCs. A Rack PC is the opposite of a Package-type PC, which has all of the basic I/O, storage, and control functions built into a single package.
RAM	
[R(andom) A(ccess) M(emory)] RAM will not retain data when power is	
disconnected. Therefore data should not be stored in RAM.	

Index

A

AC Input,
Ambient Temperature of PC,
applications, precautions,

ASCII,

B

Backplane
Expansion I/O,
I/O Expansion,
mounting Units to, ,
Bleeder Resistor,
Block, Terminal,

C

Cable

power,
twisted pair,
Clearance, Between PC Racks,
Conditions, Installation,
Conduit,
Connections I/O Units, PC,
control components,
Cooling, PC,
CPU, , ,
and Memory Packs, ,
and RAM Packs,
and ROM Packs,
Backplane,
connector,
core of PC,
Power Supply, ,
Rack,
CPU Rack,
connecting to another Backplane,
Current
input leakage,
output leakage,
output surge,
Current Consumption,
Cycle Time,

D

DC Input Units,
Duct, Wiring,

E

Electrical Noise,
Electrostatic Charge,
Emergency Stop,
Environment, Installation,
EPROM Chip, mounting to ROM PAck,
Examples, wiring,
Expansion I/O Backplane,
Expansion I/O Power Supply,
Expansion I/O Rack, , ,
Expansion I/O Racks, mounting Units to,

F

Factory Computer,
Fan, cooling,

G

Grounding,
Grounding During PC Installation,

H

High Power Equipment, and PC installation, Humidity,

I/O Connections,
I/O Control Unit, ,
I/O Interface Unit, ,
I/O Points, ,
I/O Power Supply,
I/O Unit, ,
Link, power consumption, mounting,
mounting to Backplane, power consumption,

Remote, power consumption, shapes,

A-shape,
B-shape,
C-shape,
D-shape,
E-shape,
Special, power consumption,
I/O Unit 3G2A5-PS213-E,
I/O Unit 3G2A5-PS223-E,
Inductive Load Surge Suppressor,
Input Devices,
Input Leakage Current,
Installation
Environment,
Memory Pack to the CPU,
installation, precautions,
Interlock Circuits,
L
Limit Switch,

M

Memory Pack, installation,
Memory Packs, ,
Mounting
EPROM Chip to ROM Pack, I/O Units,
PC,
Mounting Units,
N

Noise, electrical,
Noise, Preventing,

0

operating environment, precautions,
Output Devices,
Output Leakage Current,
Output Surge Current,
Output Units,
and input devices, and output devices, clearance between racks, components, connections, cooling the, general,
how it operates, I/O Unit mounting, in a Control System, installation environment, its role, mounting requirements,
Peripheral Device Connector,
Photoelectric Switch,
Position Control System,
Position Control Unit, power consumption,
Power Cables,
Power Consideration,
Power Consumption, Units, , ,
Power Failure, detection signal,
Power Reset,
Power Source,
Power Supplies,
Power Supply, Backplane mounting, CPU, ,
Expansion I/O, I/O, in a CPU Rack, in block diagram, output capacity,
Power Supply Output,
precautions applications, general, operating environment, safety,
Preventing Noise,
process control computer,
Programmable Controller, flow chart,
Programmable Controller (also see PC), block diagram,
Programmable Controller (See also PC),
PROM,
Proximity Switch,

Rack, PC,
RAM, ,
RAM Pack,

Remote I/O Unit

Master,
Slave,
Reset, Power,
Residual Voltage,
Resistor, Bleeder,

ROM Pack,

S

Safety Considerations,

safety precautions. See precautions
scanning cycle,
Screw, Terminal Block,
Sensors, in control system,
Servomotor,
Solenoid,
Special I/O Unit, number used,
Static Electricity, preventing,
stepping motor,
Switch
in control system,
limit,
photoelectric,
proximity,
pushbutton,
System Configuration,

T

Temperature, PC,
Terminal Block,
Transistor Output Residual Voltage,
Twisted Pair Cable,

U

Underground, Wires,
Unit
DC Input,
I/O Control, , ,
I/O Interface, , ,
I/O, general, mounting,
Output,
power consumption of, ,

V-W

Voltage, residual,
Wire, shared, problems of,
Wiring
duct,
power source to PC,
Wiring Examples,
Word,
Write program to RAM Pack, PROM,

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W132-E1-4
 Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the previous version.

Revision code	Date	Revised content
1	June 1988	Original production
2	December 1988	Products added to pages 55, 58, 59, and 62.
3	July 1990	Complete revision based on format of W139-E1-2
3A	April 1991	Page 33: Optical and Remote I/O Slave Units have been deleted in the Link Units and Remote I/O table. Page 82: In the table listing AC Input Unit Specifications, the internal current consumption for the 3G2A5-IA222 has been changed to 12 mA 5 VDC. Page 86: A table of fuse specifications has been added. Page 89: A table of Unit weights for the has been added. Pages 89 to 91: The section on I/O Connecting Cables has been completely rewritten. Page 92: Horizontal I/O Connecting Cable Models have been deleted in the Expansion I/O Backplane table.
3B	October 1992	The CPU Power Supply Model number 3G2A5-PS211-E has been changed to 3G2A5-PS213-E throughout the manual.
3C	August 1996	Scan time changed to cycle time throughout the C500-IDSO2-V1 respectively. manual. Appendix C Standard Models com- C500-IDS21/IDS22 added. pletely updated. Page 36: AC switching diagram corrected and Minor layout changes made. note added. Page 74: Circuit contiguration for Page 16: OA223 removed and OD217 added 3G2A5-OD411 corrected. to A-shape. Page 77: Circuit configuration for C500-OD219 Page 32: C500-IDS01-V1 and C500-IDS02 corrected. upgraded to C500-IDS01-V2 and Page 80: $4.7 \mathrm{k} \Omega$ corrected to $10 \mathrm{k} \Omega$ in the cir- cuit configuration and terminal connections.
3D	February 1997	Page xiii, xiv: Precautions added. Page 57: "Degree of Protection" revised to Page 31, 94: Added C500-OA226, note added "Structure." for OA121 and OA222 (p 94). Page 61: Resistance changed. Page 32: Added C500-AD501. Page 73: C500-OA226 added. Page 33, 46, 47: Changed/Added description Page 74, 77, 79: Fuse added. for using crimp terminals. Page 75: Fuse added and resistances Page 45: Added caution. Changed. Page 55: Removed caution. Page 78: C500-OD212 added. Page 97: Name corrected to "SYSMAC BUS."
4	May 2000	Changes were made on the following pages. Pages xii to xiv: Major changes to safety information. Pages 30, 31, 64, 70, 72, 73, 77, 79, 80, 87, 91, 93, 95, 96: Changes made to model numbers. Pages 33, 45-47: Changes made to information on terminals. Page 45: Cautionary information changed. Page 57: "m/s" used instead of "G." Page 73: "C-shape" changed to "A-shape." Pages 75, 76: Changes made to the circuit diagrams. Page 76: Information on wiring output circuits added. Page 87: Row added to table.

[^0]: !WARNING Failure to read and understand the information provided in this manual may result in personal injury or death, damage to the product, or product failure. Please read each section in its entirety and be sure you understand the information provided in the section and related sections before attempting any of the procedures or operations given.

[^1]: 4. Caution Tighten the screws on the terminal block of the AC Power Supply Unit to a torque of $1.2 \mathrm{~N} \cdot \mathrm{~m}$. Loose screws may result in burning or malfunction.
