

-Please be sure to read and understand Precautions and Introductions in CX-Programmer Operation Manual

Function Block/Structured Text (W469-E1) and CX-Programmer Operation Manual (W446-E1) before using the

product.

- This guide describes the basic operation procedure of CX-Programmer. Refer to the Help or the Operation Manual
 of the PDF file for detailed descriptions.

- To read the PDF files, you need Adobe Reader, a free application distributed by Adobe Systems.

- You can display the PDF files from the [Start] menu on your desktop after installing the CX-Programmer.

- The screen views used in this guide may be different from the actual view, and be subject to change without notice.

- The product names, service names, function names, and logos described in this guide are trademarks or
 registered trademarks of their respective companies.

- The symbols (R) and TM are not marked with trademarks and registered trademarks in this guide respectively

- The product names of the other companies may be abbreviated in this guide.

- Microsoft product screen shots reprinted with permission from Microsoft Corporation.

Introduction


 










































 





1-1
1-2
1-3
1-3
1-4
1-6
1-7

Contents
Chapter 1 OMRON FB Library
 1. What is a Function Block?
 2. An Example of a Function Block
 3. Overview of the OMRON FB Library
 3-1. Benefits of the OMRON FB Library
 3-2. Example of using the OMRON FB Library
 3-3. Content of the OMRON FB Library
 3-4. File Catalog and Where to Access the OMRON FB Library

Chapter 2 How to use the OMRON FB Library
 1. Explanation of the target program
 1-1. Application Specifications
 1-2. Specifications of the OMRON FB Part file
 1-3. Input program
 2. Opening a new project and setting the Device Type
 3. Main Window functions
 4. Import the OMRON FB Part file
 5. Program Creation
 5-1. Enter a Normally Open Contact
 5-2. Entering an Instance
 5-3. Entering Parameters
 6. Program Error Check (Compile)
 7. Going Online
 8. Monitoring - 1
 9. Monitoring - 2 Change Parameter Current Value
 10. Online Editing

Chapter 3 Customize the OMRON FB Part file
 1. Explanation of target program
 1-1. Changing File Specifications
 1-2. Changing the contents of the OMRON FB Part file
 2. Copy the OMRON FB Part file
 3. Add a variable to the Function Block
 4. Changing the Function Block Ladder
 4-1. Entering a Contact
 4-2. Checking Usage Status of Variables
 5. Transferring to the PLC
 6. Verifying Operation
 7. Online Editing of Function Blocks

Chapter 4 How to use the ST (Structured Text) language
 1. What is the ST Language?
 2. Explanation of the target program
 3. Create a Function Block using ST
 4. Entering Variables into Function Blocks
 5. Entry of ST program
 6. Entering the FB to the Ladder Program and error checking
 7. Program Transfer
 8. Monitoring the Function Block execution
 Reference: Example of an ST program using IF-THEN-ELSE-END_IF
 Reference: Example of an ST program using String Variables

Chapter 5 Advanced (Componentizing a Program Using FB)
 1. Overview
 2. How to Proceed Program Development
 3. Application Example
 4. How to Proceed Program Development
 5. Entering FB Definition
 Executing Steps using the Simulation Function
 6. Creating FB Definition Library
 7. Entering Main Program
 8. Debugging Main Program

Supplemental Information
 How to delete unused Function Block definitions/ Memory allocation for Function Blocks/ Useful Functions
Chapter 6 Advanced: Creating a Task Program Using Structured Text

Appendix. Examples of ST (Structured Text)

2-1
2-1
2-1
2-2
2-3
2-4
2-5
2-6
2-6
2-7
2-7
2-9
2-10
2-11
2-12
2-13

3-1
3-1
3-1
3-2
3-3
3-4
3-4
3-5
3-6
3-6
3-7

4-1
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9

















5-1
5-1
5-1
5-2
5-9
5-14
5-20
5-21
5-22

Appendix

                  














Introduction
This section provides information that can be used when creating function blocks (FBs) and using the Smart FB Library by CX-Programmer.

Features of OMRON Function Blocks
OMRON function blocks can be written in ladder language or ST (structured text) language, and conform to the IEC 61131-3 standard. The
function blocks provide functions for more efficient design and debugging of the user equipment, as well as easier maintenance.

Smart FB Library
The Smart FB Library is a set of function block elements that improve interoperability between OMRON PLC Units and FA components. If
this library is used, it is not necessary to create a ladder program to use basic Unit and FA component functions. This enables the user to
reduce the time spent on previous task, such as determining how to use the device’s functions.

Online Editing of FB Definitions
FB definitions can be changed during operation, so FB definitions can be edited quickly during debugging. In addition, FBs can be used
with confidence even in equipment that must operate 24 hours/day.

Nesting
Not only can programs be created with nested OMRON FBs, it is possible to make easy-to-understand, stress-free operations by switching
windows depending on conditions and displaying structures in a directory-tree format.

Protecting FB Definitions
It is possible to prevent unintentional or unauthorized changes or disclosure of the program by setting passwords for the function block
definitions allocated in the project file and protecting the definitions based on their purpose.

Offline Debugging with the Simulator
The PLC program’s operation can be checked on the desktop, so program quality can be improved and verified early on. Both the ladder
and ST can be executed in the computer application.

String Operations for Variable Support
The functions that perform string data operations in ST language not only support string variables, they also strengthen the instructions
(functions) used to communicate with string data I/O.

FB Generation Function
Existing PLC programs can be reused and easily converted to FBs.

Design Debugging Maintenance

IEC 61131-3 (JIS B3503) Compliance

FB Nesting and Support for Operations on String Variables

Smart FB Library

Offline debugging with the Simulator Online Editing of FB Definitions

Protecting FB Definitions

PLC Program Development Steps and Corresponding Functions

FB Generation

Device Control

A

B

X

EN ENO

Z

Y

“Function Blocks” are predefined programs (or functions) contained within a single program element that may be
used in the ladder diagram. A contact element is required to start the function, but inputs and outputs are editable
through parameters used in the ladder arrangement.
The functions can be reused as the same element (same memory) or occur as a new element with its own memory
assigned.

1. What is a Function Block?

An

TIM

Bn Xn

n
#0100

Tn Yn

Zn

Control Device n

Input

An
Bn

Output

Xn

Yn

Zn

Process (algorithm)

A1

TIM

B1 X1

1
#0100

T1 Y1

Z1

Control Device 1

Produce template

OMRON FB Library

Partial Ladder program for machine A Defining Inputs and Outputs …

A1
B1

X1
Y1
Z1

Control Device 1

Partial Ladder program for machine A

Device Control

A
B

X
EN ENO

Z

Y

P_On

A2
B2

X2
Y2
Z2

Control Device 2

P_On

Allocate to
Ladder

program
Sets input / output
parameters

Device Control

A
B

X
EN ENO

Z

Y

Function Block definition

Function Block
Instance (call statement)

Function Block definition … This contains the defined logic (algorithm) and I/O interface. The memory addresses are not allocated in the Function Block Definition
Function Block instance (call statement) … This is the statement that will call the function block instance when used by the ladder program, using the memory allocated
 to the instance

The following figures describe an example of a function block for a time limit circuit, to be used in the ladder. It is
possible to edit the set point of the TIM instruction to reallocate the set time for turning off the output in the ladder
rung. Using the function block as shown below, it is possible to make the time limit of the circuit arbitrary by only
changing one specific parameter.

2. An Example of a Function Block

OMRON FB Library

TIM
0000

#0020

000.00

001.00

001.00

TIM0000

000.00

001.00

2.0 sec

Ladder diagram

Timing chart

000.00

PULSE P_On

001.00

EN ENO

Time #0020

Start Q

TIM
T_FB
Time

Start

Q

Q

T_FB

By enabling the input parameter to
be editable, it is possible to allow an
arbitrary time limit circuit.

A function is also provided to generate function blocks based on existing ladder programs.
For details, refer to Overview of Helpful Functions, Generating FBs Based on an Existing Ladder Program.

1-2

3. Overview of the OMRON FB Library
The OMRON FB Library is a collection of predefined Function Block files provided by Omron. These files are
intended to be used as an aid to simplify programs, containing standard functionality for programming PLCs
and Omron FA component functions.

3-1. Benefits of the OMRON FB Library

The OMRON FB Library is a collection of function block examples that aim to improve the connectivity of the
units for PLCs and FA components made by Omron. Here is a list of the benefits to be gained from using the
OMRON FB Library:

(1) No need to create ladder diagrams using basic functions of the PLC units and FA components

More time can be spent on bespoke programs for the external devices, rather than creating basic
ladder diagrams, as these are already available.

(2) Easy to use

A functioning program is achieved by loading the function block file to perform the target functionality,
then by inputting an instance (function block call statement) to the ladder diagram program and
setting addresses (parameters) for the inputs and outputs.

(3) Testing of program operation is unnecessary

Omron has tested the Function Block library. Debugging the programs for operating the unit and FA
components for the PLCs is unnecessary for the user.

(4) Easy to understand

The function block has a clearly displayed name for its body and instances. A fixed name can be
applied to the process.

The instance (function block call statement) has input and output parameters. As the temporary relay
and processing data is not displayed, the values of the inputs and outputs are more visible.
Furthermore, as the modification of the parameters is localised, fine control during debugging etc. is
easier.

Finally, as the internal processing of the function block is not displayed when the instance is used in
the ladder diagram, the ladder diagram program looks simpler to the end user.

(5) Extendibility in the future

Omron will not change the interface between the ladder diagram and the function blocks. Units will
operate by replacing the function block to the corresponding FB for the new unit in the event of PLC
and the FA component upgrades, for higher performance or enhancements, in the future.

OMRON FB Library

INPUT/OUTPUT data is clear.
Parameters are easy to understand and edit.

A fixed name can be named to the processes.

It is not necessary to create the basic
communications program.

1-3

3-2-1. Example of using the OMRON FB Library - 1

Controlling the predefined components made by Omron can be easily achieved from the PLC ladder diagram.

- Ability to configure low-cost communications (RS-232C/485)

OMRON FB Library

Serial communications (Compoway/F protocol)

Temperature
controller

Smart sensor

Omron Components

CS/C J Series
P L C

Access by Function Block F B

Example: Communication between
Temperature controller and PLC

Vision sensor

1-4

3-2-2. Example of using the OMRON FB Library - 2

High performance communications can be made by DeviceNet level.

- Ability to communicate between PLC and DeviceNet slaves easily.

OMRON FB Library

DeviceNet

Inverter

Generic slaves such as IO terminal

CS/CJ series
PLC

Communicate between
PLC and the devices

PLC Wireless

Temperature
controller

FB

Example: data exchange between
PLC and the slave devices

Access by Function block

1-5

The OMRON FB Library consist of the following:

3-3. Content of the OMRON FB Library

3-3-1. OMRON FB Part Files

The OMRON FB Part file is prepared using the ladder diagram function block, for defining each function of
the PLC unit and the FA component.
The files contain a program written in ladder diagram and have the extension .CXF.
The file name of the OMRON FB Part file begins with ‘_’ (under score).
When the OMRON FB Library is installed onto a personal computer, the OMRON FB Part files are
classified in the folder appropriate to each PLC Unit and FA component in the Omron Installation directory.

3-3-2. Library reference

The library reference describes the operation specifications of the OMRON FB Part file, and the specifications
of the input and the output parameters for each. The file format for this is PDF.
When the OMRON FB Library is used, the user should select the OMRON FB Part file, set the input / output
parameters, and test the program operations referring to the library reference.

OMRON FB Library

1-6

OMRON FB Library is contained on the same install CD or DVD as CX-One.
Installation can be selected during CX-One installation.

3-4. File Catalog and Where to Access the OMRON FB Library

3-4-2. CX-One installation CD or DVD

3-4-3. Accessing OMRON FB Library files from Web server

The latest version OMRON FB Library files are provided by Omron on the Web server.
New files will be added to support new or enhanced PLC units and FA components.
The download service of the OMRON FB Library is provided as a menu on our Web site.

3-4-1. Catalog of OMRON FB Library files

OMRON FB Library

The internet

The internet

Web server

Install CD or DVD

Type Target components

FA components Temperature controller, Smart sensor, ID sensor, Vision
sensor, 2 dimensions bar code reader, Wireless terminal, etc.

PLC CPU unit, Memory card, Special CPU IO unit (Ethernet,
Controller Link, DeviceNet unit, Temperature control unit),
etc.

Motion control
components

Position control unit, Inverter, Servo motor driver, etc.

1-7

This chapter describes how to use OMRON FB Library using the OMRON FB Part file ‘Make ON Time/OFF
Time Clock Pulse in BCD’.

1. Explanation of the target program

1-1. Application Specifications

The target application specifications are as follows :-
 - Pulse is generated after PLC mode is changed to‘run’ or ‘monitor’ mode.
 - Output the pulse to address 1.00.
 - On time of generated pulse is set at D100.
 - Off time of generated pulse is 2 seconds.

1-2. Specifications of the OMRON FB Part file

The OMRON FB Part file ‘Make ON Time/OFF Time Clock Pulse in BCD’ has the following specifications:-

Explanation of
target Program

Opening a
new project

Import
FB Library

Creating a
program Program Check

Offline Operation

2-1

Explanation of
target Program

Opening a
new project

Import
FB Library

Creating a
program Program Check

Offline Operation

1-3. Input program

Create the following ladder program:-

[Reference] If created as a straightforward ladder diagram, the program would be as below:-

2-2

2. Opening a new project and setting the Device Type

Click

Click the left mouse button

! To use Function Blocks, select the following PLCs:
 CJ2H, CJ2M, CJ1H-H, CJ1G-H, CJ1M, CS1H-H,

CS1G-H, CP1H, CP1L, CP1L-E

Click the toolbar button [New] in CX-Programmer.

Click the left mouse button.

Click the left mouse button
 to select CPU type.

Click [OK] to decide
 the selected CPU type.

Explanation of
target Program

Opening a
new project Import FB Library Creating a

program Program Check

Offline Operation

Explanation of
target Program

Opening a
new project

Import
 FB Library

Creating a
program Program Check

Offline Operation

3. Main Window functions

The main window functionality is explained here.

Title bar

Menus

Project Tree

Section

Project Workspace Ladder Window

Tool bar

Status bar

Function Block Definition

Enables you to divide a program into several blocks. Each can be created and
displayed separately. Section

Shows information such as a PLC name, online/offline state, location of the active cell. Status Bar

Function Block Definition

A screen for creating and editing a ladder program. Ladder Window

Controls programs and data. Enables you to copy element data by executing Drag and
Drop between different projects or from within a project.

Project Workspace
Project Tree

Enables you to select functions by clicking icons. Select [View] -> [Toolbars], display
toolbars. Dragging toolbars enables you to change the display positions. Toolbars

Enables you to select menu items. Menus

Shows the file name of saved data created in CX-Programmer. Title Bar

Contents / Function Name

Shows Function Block definition.
By selecting the icons, you can copy or delete the selected Function Block definition.
 - is shown if the file is a OMRON FB Part file.
 - In the case of a User-defined Function Block, is shown if Ladder, is shown if ST.

2-4

4. Import the OMRON FB Part file

Click mouse right button
→ Insert Function Block
→ From File…

Select Function Block definition icon from the project tree using the mouse cursor, right click.
Select Insert Function Block, then select a Library file using mouse to navigate.

Select the necessary OMRON FB
Part file in the ‘Select Function
Block Library’ dialog.

Double click mouse left button.
→ [OmronLib]
→ [Programmable Controller]
→ [CPU]
Select each of the above in
series.

Left Click
‘_CPU007_MakeClockPulse
_BCD.cxf’

Left Click the [Open] button

Function Block Definition

Function Block definition ‘_CPU007_MakeClockPulse_BCD’
is registered as part of the project file.

Double click mouse left button

Explanation of
target Program

Opening a
new project

Import
FB Library

Creating a
program Program Check

Offline Operation

! You can easily check specifications of
OMRON FB part files by selecting
registered OMRON FB part files and [FB
Library Reference] from a pop-up menu
and showing a library reference file.

! The default path of the OMRON FB Library is
 C: Program Files Omron CX-One Lib FBL.

2-5

5. Program Creation

Confirm cursor position is at the upper left of Ladder Window to start programming.

5-1. Enter a Normally Open Contact

Press the [C] key on the keyboard to open the [New Contact] dialog.
Use the dropdownbox to select the “P_On” symbol.

C

P_On

ENT

“P_On” is a system defined symbol. Its state is always ON.
0 of the upper digit of an address is omitted when shown.
[.] (period) is displayed between a channel number and a relay number.

Deleting commands
• Move the cursor to the command and

then press the DEL key or
• Move the cursor to the right cell of

the command and press the BS key.

Explanation of
target Program

Opening a
new project

Import
 FB Library

Creating a
program Program Check

Offline Operation

2-6

5-2. Entering an Instance

Press the [F] key on the keyboard to open the [New Function Block Invocation] dialog. F

 Enter text to create an FB
 instance name.
 [WorkInputTimingGenerator]

ENT

Applies a name for the specific
process in the diagram.

Shows FB call statement ‘WorkInputTimingGenerator’.

P

[d100]

ENT Choose an address for the input
parameter ‘OnTime’.

5-3. Entering Parameters

or ENT Move the cursor to the left of input parameter.

Enter the address.

Explanation of
target Program

Opening a
new project

Import
FB Library

Creating a
program Program Check

Offline Operation

2-7

Enter the remaining parameters in the same way.

P Or ENT

#10

ENT

O

1.00

ENT

[Generated Pulse]

ENT

Please add the following prefix for
entering constants as parameters:
 “#” (Hexadecimal/BCD)
 Or
 “&” (Decimal)

Explanation of
target Program

Opening a
new project

Import
FB Library

Creating a
program Program Check

Offline Operation

2-8

6. Program Error Check (Compile)

Before program transfer, check for errors using the program compile.

Click

Double-click on displayed errors,
and the Ladder Diagram cursor
will move to the corresponding
error location, displaying the error
rung in red.

Modify the error.

• Output Window automatically opens at program check.
• The cursor moves to an error location by pressing J or F4 key.
• Output Window closes by pressing the ESC key.

Explanation of
target Program

Opening a
new project

Import
 FB Library

Creating a
program Program Check

Offline Operation

If program errors are detected,
errors and addresses are
displayed in the Output Window.

2-9

7. Going Online

Online/debug functions when working online with CX-Simulator are
explained in this guide (Install CX-Simulator separately).

The background color of
the Ladder Window
changes to gray.

Scan time is displayed
(except during Program Mode).

The operating mode of
the active PLC is shown.

Click

The CX-Simulator Console
box is shown.

CX-Programmer provides three methods of connecting, depending on usage.

Program transfer starts.

Online
to transfer Monitoring Online

Edit

Online Operation

 Normal online. Enables you to go online with a PLC of the device type and method specified when opening a project.

 Auto online. Automatically recognizes the connected PLC and enables you to go online with a PLC with one button.
 → Uploads all data, such as programs, from the PLC.

 Online with Simulator. Enables you to go online with CX-Simulator with one button (CX-Simulator must be installed.)

2-10

8. Monitoring - 1

The on/off status of contacts and coils can be monitored.

Click

Change the PLC (Simulator)
to Monitor mode.

Click [Yes].

The monitored area is
displayed in a specified
color.

The current values of
parameters are shown.

If your program has a large volume of data,
the scroll speed of the screen may become
slow when monitoring.
To resolve this, click the icon below to cancel
monitoring, scroll to the address you want to
monitor, then restart the monitor mode.

 toggles PLC monitoring on/off

Online
to transfer Monitoring Online

Edit

Online Operation

2-11

9. Monitoring - 2 Change Parameter Current Value

Change the current value of contact/coils or word data in the Ladder Window.

Change the current value of Input
parameter.

Move the cursor to the input
parameter ‘D100’.

Click mouse right button and
select the menu item
[Set/Reset(S)]
→ [Setting Value (V)]

Or

Double click mouse left button.

ENT

 Or
Click [Set]

Online
to transfer Monitoring Online

Edit

Online Operation

Please add the following prefix for
entering constants as parameters:
 “#” (Hexadecimal/BCD)
 Or
 “&” (Decimal)

2-12

10. Online Editing

Move the cursor to the rung
requiring modification.

Select [Program] → [Online Edit]
→ [Begin]

Shortcut: [Ctrl]+[E]

Edit the address to the required bit number (4.11 in the example)

Select [Program] → [Online Edit]
→ [Send Changes]

Shortcut: [Ctrl]+{Shift]+[E]

Double click

End

You can also select multiple
rungs by using the Drag & Drop
facility with the mouse.

Move the cursor to the coil
you want to modify. Double
click the left mouse button.

Online
to transfer Monitoring Online

Edit

Online Operation

2-13

Explanation of
target Program Copy of FB part Change of

FB Definition

1. Explanation of target program

1-1. Changing File Specifications

The OMRON FB Part file ‘Make ON Time/OFF Time Clock Pulse in BCD’ is designed to repeatedly turn off
the ENO for the specified OffTime (unit: 100 msec) and on for the specified OnTime (unit: 100 msec). In this
example, the OMRON FB Part file will be changed to output an invert signal by adding the output parameter
‘INV_ENO’.

1-2. Changing the contents of the OMRON FB Part file

To satisfy the requirement described above, the following changes must be made to OMRON FB Part file
‘Make ON Time/OFF Time Clock Pulse in BCD’
1. Add an output parameter ‘INV_ENO’.
2. Add ladder program to output the ENO for inverting the signal.

OffTime(*100ms)

OnTime(*100ms)

EN ON
OFF

ENO ON
OFF

INV_ENO ON
OFF

This chapter describes how to customize the OMRON FB Library using the OMRON FB Part file ‘Make ON
Time/OFF Time Clock Pulse in BCD’.

Caution
In particular, when you customize OMRON FB parts, read CX-Programmer Operation Manual: Function
Blocks and Structured Text before customization to sufficiently understand the specifications of the FB
function. After customization, further, please be sure to sufficiently verify the operation for the created FB
definitions before proceeding with the actual operation. OMRON cannot guarantee the operation of
customized OMRON FB parts. Please note that we cannot answer the questions about customized
OMRON FB parts.

3-1

2. Copy the OMRON FB Part file

Select the OMRON FB Part icon
 then right click the mouse.
→ Copy

Import the ‘Make ON Time/OFF Time Clock Pulse in BCD’ Function Block Part file as explained
in Chapter 1 (FB definition name: _CPU007_MakeClockPulse_BCD)

Select pasted Function Block
 icon and click mouse right
button.
→ Rename
[MakeClockPulse_BCD_INV]

Note:
The user can’t create Function Block Definitions
With name starting ‘_’ (underscore).
Please use names not starting with ‘_’.

ALT ENT +

Select pasted Function Block
icon and right click the mouse
button.
→ Property

 Or

Enable editing of the internal FB Program code.

Tick the check box using the left mouse click.

Explanation of
target Program Copy of FB part Change of

FB Definition

Change the FB definition name.

Select Function Block Definition
icon and right click the
mouse.
→ Paste

The OMRON FB Part file is
pasted.

3. Add a variable to the Function Block

Open the Function Block Ladder Editor.

Select the Function Block icon
using the mouse cursor and
double click the left mouse button.

Select Output tab in Variable
Table using the mouse cursor
And click the left mouse button.

Click the right mouse button and
select Insert Variable(I).

Enter a new variable name.

Select BOOL for bit data.

Explanation of
target Program Copy of FB part Change of

FB Definition

Opens the Function
Block Ladder Editor.

Variable Table

Ladder Editor

Variable table

Confirm the entered variable is
correct.

The original OMRON FB Part file is also able to display
its ladder program, but cannot be edited.

3-3

4. Changing the Function Block Ladder

Add the required ladder diagram on Function Block Ladder edit field.
Move the cursor to the left column of the next rung.

ENO

ENT

4-1. Entering a Contact

/

O

INV_ENO

ENT

Explanation of
target Program Copy of FB part Change of

FB Definition

3-4

Explanation of
target Program Copy of FB part Change of

FB Definition

4-2. Checking Usage Status of Variables

As with main ladder program, you can use cross reference pop-up to check usage conditions of
variables.

Alt 4 +

Display cross reference
pop-up.

Move the cursor.

You can see that variable ENO is used in an output coil in the step No.20 as well.

Select LDNOT from cross
reference pop-up by the
mouse cursor.

The cursor in the FB Ladder Editor moves to the output coil in the step No.20. 3-5

5. Transferring to the PLC

Transfer the program to the PLC after the function block definitions used in the program have
been created by customizing the Smart FB Library versions.

Click

Program transfer starts.

6. Verifying Operation
Program operation is verified and debugged while changing the value of D100 (ON time), which is
specified in the function block’s parameters.

Right-click to display the
pull-down menu and select
Set/Reset – Set value.

OR:
Double-click the left mouse
button.

ENT

OR

Changes the input parameter’s PV.

When inputting a constant,
always input the # prefix
(for hexadecimal or BCD)
or & prefix (for decimal) to
the left of the number.

Click the Set
Button.

Explanation of
target Program Copy of FB part Change of

FB Definition

3-6

7. Online Editing of Function Blocks

Edit the function block definition online.

When adding a variable (internal variable) with FB online editing, memory must be
allocated offline in advance in the Memory Tab of the Function Block Properties
Window.

Select Online edit reserved memory.

Select the function block
definition that you want to
edit online, right-click to
display the pull-down
menu, and select FB
Online Edit – Begin.

Function block definitions can be edited online only if
the PLC’s CPU Unit is unit version 4.0 or later.
Online editing cannot be used in CX-Simulator.

Select the function block
definition that you want to
edit online, right-click to
display the pull-down menu,
and select Properties.

Select the variable area
where you want to add a
variable in online editing,
right-click to display the
pull-down menu, and select
Online edit reserved
memory.

Click the Yes Button.

It is possible that the FB
definition is called from more
than one location, so start
editing only after checking
the output window to verify
how the FB definition is used.

Explanation of
target Program Copy of FB part Change of

FB Definition

3-7

Edit the program section.

After editing the program
section online, right-click
to display the pull-down
menu, and select FB
Online Edit – Send
Changes.

Select the online editing
transfer mode.

• Normal mode:
The FB source information
is transferred.
• Quick mode:
The FB source information
is not transferred.

Click the Yes Button.

Explanation of
target Program Copy of FB part Change of

FB Definition

3-8

End

The FB definition
information will be
transferred.

Click the OK Button.

Click the Yes Button.

Click the Yes Button after
verifying that there will be no
adverse effects even if the cycle
time is longer.
Input signals may be missed.

3-9

2. Explanation of the target program

This example describes how to create an ST program in a Function Block to calculate the average value of a
measured thickness.

1. What is the ST Language?

The ST (Structured Text) language is a
high-level language code for industrial
controls (mainly PLCs) defined by the IEC
61131-3 standard.
It has many control statements, including
IF-THEN-ELSE-END_IF, FOR / WHILE loop,
and many mathematical functions such as
SIN / LOG. it is suitable for mathematical
processing.
The ST language supported by CX-
Programmer is in conformance with
IEC61131-3.
The arithmetic functions in CX-Programmer
are as follows:

sine (SIN), cosine (COS), tangent
(TAN), arc-sine (ASIN), arc-cosine
(ACOS), arc-tangent (ATAN),
square root (SQRT), absolute
value (ABS), logarithm (LOG),
natural-logarithm (LN), natural-
exponential (EXP), exponentiation
(EXPT), remainder (MOD)

Reference: The IEC 61131 standard is an international standard for programming Programmable Logic
Controllers (PLC), defined by the International Electro-technical Commission (IEC).
The standard consists of 7 parts, with part 3 defining the programming of PLCs.

The data type should be set to REAL to store the data.
REAL type allows values with 32 bits of length, see range below:-
 -3.402823 x 1038 ~ -1.175494 x 10-38, 0,
 +1.175494 x 10-38 ~ +3.402823 x 1038

FB definition name AverageCalc_3Value

Input symbols x(REAL type), y(REAL type), z(REAL type)

Output symbol score(REAL type)

ST Program definition score := (x + y + z) / 3.0;

Substitute a value to a symbol is expressed by “ := ”. Enter “ ; ” (semicolon) to
complete the code.

Explanation of
target Program

Create new
FB Definition

Entering
Variables

Creating
ST Program

Offline Operation

Creating Ladder
 Program and check

4-1

3. Create a Function Block using ST

Create a Function Block using
Structured Text.

Select the Function Block icon
 using a mouse cursor, and
click the right mouse button.
→ Insert Function Block(I)
→ Structured Text(S)

Select the Function Block
definition icon using
the mouse cursor and right
click the mouse button.
→ Rename
Enter
 [AverageCalc_3value]

Open Function Block ST Editor

Select Function Block definition
Icon by mouse cursor and
double click the left mouse
button.

Change the Function Block definition name

A New Function Block
definition is created.

Variable Table

ST Edit Field

Note:
The user can’t create Function Block Definitions
with names starting ‘_’ (underscore).
Please use names not starting with ‘_’.

Explanation of
target Program

Create new
FB Definition

Entering
Variables

Creating
ST Program

Offline Operation

Creating Ladder
 Program and check

4-2

4. Entering Variables into Function Blocks

Select Variable Table.

Select the Input tab using
the mouse cursor.

Select Insert from the
Pop-up menu.

Enter a variable name

Select REAL

Enter and applicable
comment

Enter input symbols x, y, z and output symbol score by repeating the process above.

Reference: The copy and paste operation is available in FB Header.

Input Variables

Output Variables

Reference: The order of the variables in the FB table becomes the order of parameters on FB
 instance (call statement) in the normal ladder view.
 To change the order, it is possible to drag & drop variables within the table.

FB instance (call)

Input Variables

Output Variables

Enter data for the following.
Name
Data type
Comment

Explanation of
target Program

Create new
FB Definition

Entering
Variables

Creating
ST Program

Offline Operation

Creating Ladder
 Program and check

4-3

5. Entry of ST program

Select the ST Editor text field in the Function Block ST Editor window.

Enter text into the field: “score := (x + y + z) / 3.0;”.

Reference: User may type Comments in the ST program.
 Enter ‘(*’ and ‘*)’ both ends of comment strings, see below.
 This is useful for recording change history, process expressions, etc.

When the input expression is a real type
calculation, please enter the constant
value with decimal point and zero for
single decimal places, e.g. ‘3.0’.

Explanation of
target Program

Create new
FB Definition

Entering
Variables

Creating
ST Program

Offline Operation

Creating Ladder
 Program and check

Note: You can jump to a help topic that shows
ST control syntax by selecting [ST Help]
from a pop-up menu in the ST Editor.

4-4

6. Entering the FB to the Ladder Program and error checking

Enter the following FB into the ladder program.
 Instance name: ThicknessAvarage
 Input parameters: D0, D2, D4
 Output parameter: D6

Refer page 2-7 for entering FB instances.
Entering ST FB instances is the same as
entering FB Ladder instances.

Perform a programs check before transferring the program.

Refer page 2-9 for program checking.
The functionality is the same as for Function Block Ladder instances.

It is possible to change or add variables in the Function Block after inputting FB instance
into the ladder editor. If modified, the Ladder editor changes the color of the left bus-bar
of the rung containing the changed Function Block.
When this occurs, please select the instance in the Ladder Editor using the mouse
cursor, and select Update Function Block Instance (U) from the pop-up menu.

It is able to jump the referred function
block definition by entering [Shift]+[F]
key when the cursor is in the function
block instance.

Explanation of
target Program

Create new
FB Definition

Entering
Variables

Creating
ST Program

Offline Operation

Creating Ladder
 Program and check

4-5

7. Program Transfer

Go online to the PLC with CX-Simulator and transfer the program.

The on/off status of contacts and coils can be monitored.

Click

Change the PLC
(Simulator) to Monitor mode.

Click [Yes]

Refer to page 2-10 for steps to go online and
transfer the program.

Confirm that the PLC is
Monitor mode.

Monitoring

Online Operation

Transfer Program

4-6

8. Monitoring the Function Block execution
Monitors the present value of parameters in the FB instance using the Watch Window.

Alt 3 +

ENT

Click Browse… button using
the mouse left button. Select REAL(32bit floating point)

Select ThicknessAvarage.x

Click [OK] button using the
left mouse button.

When monitoring internal variables at debug phase,
collective registration is available in addition to the
individual registration on the Watch Window
through the operation shown here. For the details,
refer “5-8 Batch Registration to Watch Window”.
When the function block is a ladder, conducting
monitoring is available. For the details, refer “5-5
Operation Check- 1”

Display the Watch Window.

Open the Edit dialog.

Click the button using the
left mouse button, then select
the following:
[Symbols of type]
[Name or address]

Monitoring

Online Operation

Transfer Program

4-7

Reference: Example of an ST program using IF-THEN-ELSE-END_IF

The following ST program checks the average value calculated by the example of page 4-7 against a range (upper
limit or lower limit).

FB Definition: OutputOfDecisionResult
Input symbols: score(REAL type), setover(REAL type), setunder(REAL type)
Output symbols: OK(BOOL type), overNG(BOOL type), underNG(BOOL type)

ST program:

IF score > setover THEN (* If score > setover, *)
 underNG := FALSE; (* Turn off underNG *)
 OK := FALSE; (* Turn off OK *)
 overNG := TRUE; (* Turn on overNG *)

ELSIF score < setunder THEN (* if score =< setover and score < setunder then *)
 overNG := FALSE; (* Turn on overNG *)
 OK := FALSE; (* Turn off OK *)
 underNG := TRUE; (* Turn on underNG *)

ELSE (* if setover > score > setunder then*)
 underNG := FALSE; (* Turn off underNG *)
 overNG := FALSE; (* Turn off overNG *)
 OK := TRUE; (* Turn off OK *)

END_IF; (* end of IF section*)

Example of an FB instance (the instance name is ‘ThicknessDecision’)

4-8

Reference: Example of an ST Program Using String Variables

1. Application Example

In this example, a Vision Sensor is used to detect the workpiece’s position and Servomotors are used
to perform positioning on the X and Y axes.

The following range of processes are created in the FB.
Set two words of data each for the X and Y coordinate, as the NC Unit’s command values.
Receive the workpiece’s present position (X and Y coordinates) from the Vision Sensor through serial
communications.
Analyze the data received from the Vision Sensor to get the workpiece’s present position (X and Y coordinate).
Output the difference between the workpiece’s target position and present position as the NC Unit’s command
values.

3. Range of Programming in FB (ST)

2. Interface with the Vision Sensor

The following messages are transferred between the Vision Sensor and the CPU Unit via the CPU
Unit’s RS-232C port.

Vision
Sensor

ＣＰＵ Unit
RS-232C port

“@MEASURE”+CR

“@+1234567890,- 12345678”+CR

When the CPU Unit sends the message “MEASURE”+CR(0x13) from its RS-232C port and the Vision Sensor
receives the message, the following data is sent as string data.

X-axis
code X-axis Position (10 digits) , Y-axis

code Y-axis Position (10 digits) @

“+” or “-”

CR

Comma @ marker

Decimal text string with up to 10 digits
(Padded with spaces on the left if there
are fewer than 10 digits.)

Carriage Return (0x13)

Ｘ axis

Ｙ axis

Vision Sensor

Workpiece

Marker

To serial port

To Servo
Driver/Motor

4-9

The following ST program satisfies the application’s requirements.

4. FB (ST) Program

(*Read position information from Vision Sensor and produce command value to the NC Unit.
String format read from Vision Sensor: ‘(X coordinate) (Delimiter character) (Y coordinate)’
 X coordinate: Sign + 10 digits max.
 Y coordinate: Sign + 10 digits max.
 Delimiter: Comma
Example: ‘+1234567890,–654321’ (The number of X and Y coordinate digits varies.) *)
(* Detect read start trigger *)
IF (bStartFlag AND NOT(bBusy)) THEN
 nStatus := 1;
 (*Not executed if data is already being read.*)
END_IF;

(*Read processing*)
CASE nStatus OF
 1: (* Read command to bar code reader *)

 IF SendEnableCPUPort = TRUE THEN
 (* Send if RS-232C port can send data. *)
 bBusy := TRUE; (* Turn ON Vision Sensor reading flag. *)
 TXD_CPU('MEASURE'); (* Send “Measure once” command. *)
 nStatus := 2;
 END_IF;
 2: (* Get data read from bar code reader. *)

 IF EndRecvCPUPort = TRUE THEN

 (* If the reception completed flag is ON *)
 RXD_CPU(strXYPosition, 25); (* Read reception data to strXYPosition. *)
 nStatus := 3;
 END_IF;
 3: (* Processing after the read *)
 (* Analyze the string from the Vision Sensor into X and Y coordinates. *)
 nLen := LEN(strXYPosition); (* String length *)
 nCommaPos := FIND(strXYPosition, ‘,’); (* Delimiter position *)
 strXPos := LEFT(strXYPosition, nCommaPos - 1);
 (* Extract X-coordinate string. *)
 strYPos := MID(strXYPosition, nCommaPos + 1, nLen - nCommaPos);
 (* Extract Y-coordinate string. *)
 (* Convert strings to numbers and extract the command values. *)
 nXDiff := nXTargetPos - STRING_TO_DINT(strXPos);
 (* Command value := Target value – Present value *)
 nYDiff := nYTargetPos - STRING_TO_DINT(strYPos);
 (* Command value := Target value – Present value *)
 nStatus := 0;
 bBusy := FALSE; (* Turn OFF Vision Sensor reading flag. *)
END_CASE;

Variable Table

ST Program

4-10

5. Example Application in a Ladder Program

The following example shows the FB used in a ladder program.
The X-axis and Y-axis target values are set in D0 and D2. If bit W0.0 is turned ON, the
communications are performed in the FB and the command values are output to D10 and D12.

4-11

This chapter describes how to componentize a user program with an example using function blocks.

1. Overview

2. How to Proceed Program Development

Generally shown below is a workflow to create a user program with componentization in the case of
the application example below. Deliberate consideration is required especially in program design
process.

(1) Program Design
(2) Creating Components
 (2-1) Entering FB Component
 (2-2) Debugging FB Component
 (2-3) Creating FB Component Library (File Save)
(3) Using Components in Application
 (3-1) Importing Components
 (3-2) Using Components for Program
 (3-3) Debugging Program
(4) Start-Up

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

Advanced

3. Application Example

Measuring
DVD thickness

Inspection Packing

Assortment

Shown here is a DVD inspection machine as an example for application.
Process can be primarily categorized into inspection, packing, and assortment.

OK

NG

5-1

Application can be materialized by using hardware and software (program) through combination
of requirements.
Following sections describe how to proceed program design using an application example
described before.

4. How to Proceed Program Development

4-1 Overview of Design Process

Specifications should be repeatedly
detailed and integrated to divide and
classify them as shown in the right.

4-2 Extracting Requirement Specifications

Shown below are the extracted requirement specifications for this application.

Overview of DVD Inspection Machine (Requirement Specifications)
Req. 1. DVD should be inserted from a loader.
Req. 2. Thickness of DVD should be measured at 3 points. Average thickness of measurements

should be calculated. If it is within its threshold range, DVD should be assorted into a
stocker for good products, or a stocker for bad products if not.

Req. 3. Good DVDs should be packed into the case.
Req. 4. Packed DVDs should be packed into the paper box.
Req. 5. Paper boxes should be classified into 2 types. Switching frequency should be counted to

evaluate a life of limit switch adjacent to actuator of selection part.
Req. 6. Other requirements
* To simplify the description, this document focuses on a part of device (underscored).

Input from Client

Requirement
Specifications

for Device Detailed
Specifications

General
Specifications

General
Specifications

General
Specifications

Detailed
Specifications

Detailed
Specifications

Detailed
Specifications

Detailed
Specifications

Detailing

Integrating

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

Advanced

5-2

Actuator control (Example of similar process)
In this example, you can regard cylinder control for assortment of good and bad products and actuator
control for paper box assortment as the same. Shown below are extracted requirements for these
processes.

• The process has 2 actuators for bilateral movement which operate under input condition for
each.

• Operation of each direction must be interlocked.
• The process has an input signal to reset its operation.

Average_Threshold Check (Example of universal process)
A process should be extracted that will be used universally even if the process itself is used only once
for this application. In this example, a process is extracted that calculates average of measured 3
thickness data of DVD and checks if it is within the threshold. Shown below are extracted requirements
for this process.

• Average of 3 measurements must be calculated.
• Average value must be checked if it is within upper and lower limits of the threshold.

These requirements are used as the base for components. Names of components are defined as
“ActuatorContro” FB and “AvgValue_ThresholdCheck” FB.

4-3 Detailing Specifications and Extracting Similar Processes

4-3-1 Creating Specifications for Components

Reuse of components can improve productivity of program development. To make reuse easily available,
it is important to create specifications and insert comments for easier understanding specifications of
input/output or operation without looking into the component.
It is advisable to describe library reference for OMRON FB Library.

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

By detailing the specifications, there you will find similar processes or ones that can be used universally.

Advanced

5-3

“ActuatorControl” FB
It should be described in a ladder sequence because it is a process for sequence control.

4-3-2 Example of FB Component Creation

Line comments for operational
overview and input and output
variables allow for easier
understanding.

“AvgValue_ThresholdCheck” FB
It should be described in ST because it is a process for numeric calculation and comparison.

Note: Use general names as long as possible for names of FB and variables in ladder diagram and ST,
instead of specific names for the function at creation.

[Input Variables]

[Output Variables]

[Internal Variables]
None.

[Input Variables]

[Output Variables]

[Internal Variables]

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

Advanced

5-4

Detailed process components are extracted by now. Components for application will be created by
combining them in the following sections.

4-4. Integrating FBs

Req. 2. “Thickness of DVD should be measured at 3 points. Average thickness of measurements
should be calculated. If it is within its threshold range, DVD should be assorted into a stocker for
good products, or a stocker for bad products if not.” can be regarded as a process that combines
“AvgValue_ThresholdCheck” and “ActuatorControl” investigated in the previous section.
“Combining” these components allows creation of integrated component “DVD_ThickSelectControl”
FB. Shown below is an example of an FB to be created.

4-4-1. Combining Existing Components - DVD_ThickSelectControl

[Input Variables]

[Output Variables]

[Internal Variables]

A function block can be called from within another function block. This is called “nesting”.
To nest, declare a variable of FUNCTION BLOCK(FB) type as its internal variable to use the
variable name as an instance.

Input
Variables

Output
Variables

Internal
Variables

This FB has its specific name and variable
names that include “DVD” or “Cylinder”
because it is specifically created for
application.

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

Advanced

5-5

Req. 5. “Paper boxes should be classified into 2 types. Switching frequency should be counted to
evaluate a life of limit switch adjacent to actuator of selection part.” can be materialized by counting
OFF → ON switching of a limit switch as an input for “ActuatorControl”. This component is called
“WorkMoveControl_LSONcount” FB. Shown below is an example of an FB to be created.

[Input Variables]

[Output Variables]

[Internal Variables]

How to call FB (function block) from ST
FB to be called: MyFB Instance of MyFB declared in ST: MyInstance
I/O variable of FB to be called: I/O variable to be passed to FB in ST:
 Input: Input1, Input2 Input: STInput1, STInput2
 Output: Output1, Output2 Output: STOutput1, STOutput2

In this example, calling of FB instance from ST must be described as
 MyInstance(Input1 := STInput1, Input2 := STInput2, Output1 => STOutput1, Output2 => STOutput2);

When all input/output variables are described, description of variables and assignment operators in one to be
called can be omitted.
 MyInstance(STInput1, STInput2, STOutput1, STOutput2);

By describing variables and assignment operators in one to be called, you can describe only a part of
input/output variables.
 MyInstance(Input1 := STInput1, Output2 => STOutput2);

Ladder FB is called from ST.

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

Advanced

4-4-2. Adding Functions to Existing Components - WorkMoveControl_LSONcount

5-6

For components (FB) investigated here to work as a program, a circuit must be created that calls a
component integrated from main ladder program.
* Example here limits to Req.2 and 5.

4-5. Total Program Description

[Global Variables]

Why the instance name is “StageA***”?
Although it is not explicitly described in the application example, a program for newly added stage B
can be created only by describing an instance “StageB***” in the program and setting necessary
parameters, without registering a new function block.
As a feature of Omron’s function block, one FB can have more than one instance. By using operation-
verified FB definition (algorithm), a program can be created only by assigning its address.

* Other instance variables than those to use FB are omitted.

Either right cylinder ON (2.00) or
left cylinder ON (2.01) as an
output operates by using a limit
switch (1.00, 1.01) at cylinder
drive to assort DVD and 3
measurements (D0-D5) of DVD
thickness as inputs and by turning
contact 0.00 ON.

Either right actuator ON (4.00) or
left actuator ON (4.01) turns ON
based on condition of a limit switch
(3.00, 3.01) at actuator end when
operation input (W0.00) and left
move input (W0.01) to move a box
containing DVD to the right or left.
Also, switching count of the limit
switch is provided to D10-13.

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

Advanced

5-7

This section verifies total program structure including components (function blocks) created here.

4-5-1. Total Program Structure

[Main Program]

Instance names and FB names can be illustrated as follows: (FB name is described in [])

In a structured program, especially to change a lower level component (FB), it is important to understand
parent/children relationship and components’ sharing when process flow must be cleared in case of debugging, etc.
It is advisable to create an understandable diagram of total program structure as design documentation.

CX-Programmer provides "FB instance viewer" when [Alt]+[5] key is pressed for easier understanding of software
structure constructed by FBs.Also, address can be checked that is assigned to FB instance.

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

Advanced

Main program StageA_DVDThickSelect
[DVD_ThickSelectControl]

StageA_BoxSelect
[WorkMoveControl_LSONcount]

DVD ThickJudge
[AvgValue_ThresholdCheck]

WorkMove [ActuatorControl]

WorkMove [ActuatorControl]

5-8

This section describes how to enter an actually-designed program and debug it.
New project must be created and “ActuatorControl” FB of Page 5-4 must be entered.

5. Entering FB Definition

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

5-1. New Project Creation and PLC Model/CPU Type Setting

Refer to page 2-3 and create a new project.

5-2. Creating Ladder Definition FB

Create Ladder definition FB.

Move the mouse cursor to a
function block icon , then
right-click. Select
→ Insert Function Block
→ Ladder

Now new FB is created.

! Select a PC model from the followings to use function
blocks.

 CJ2H, CJ2M, CJ1H-H, CJ1G-H, CJ1M, CS1H-H, CS1G-H,
 CP1H, CP1L, CP1L-E

Advanced

Change FB definition name.

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

Caution:
A user cannot create function block definition name
starting from "_".
The name must start from a character other than "_".

Open FB ladder editor.

Move the mouse cursor to a
created function block icon ,
then right-click.
→ Rename
Enter [ActuatorControl].

Move the mouse cursor to a
function block icon , then
double-click to open the
function block ST editor.

Select the variables table and register variables in the function block.
All variables of “ActuatorControl” FB of page 5-4 must be registered.

Note: Order of variables must be the same as FB instance order.
To change order of variables, select a variable name then drag and drop it.

Select ladder input screen, then enter a ladder program.
All variables of “ActuatorControl” FB of page 5-4 must be registered.

Note: Although you can enter a circuit in the FB ladder editor similar to the main
ladder editor, entering of address in the FB is invalid.

Note: To enter variable list in a line comment, you can select a variable from
variables table then copy it. You can use it for more efficient input.

Variables Table

5-3. Entering FB Ladder Program

Advanced

5-10

Ladder Input Screen

Connect to CX-Simulator online, transfer a program, then set PLC (simulator) to monitor mode.

5-4. Transferring Program

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

For how to connect online and transfer a
program, see page 2-10.

Change current parameter value of FB call statement on the main ladder, then check the
operation of “ActuatorControl” FB.
Monitor the instance of ActuatorControl FB first.

5-5. Operation Check-1

Move the cursor to FB call
statement, then double-click
or click button.

FB ladder instance (under
condition of address assigned)
is monitored.

Advanced

5-11

1 must be displayed.

5-6. Operation Check-2

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

Display the main ladder and FB instance (FB ladder called by the main ladder) at the same
time, then check the operation while changing current parameter value of FB call statement in
the main ladder.

(1) Initial State: Turn 0.03 ON. => 0.04 and 0.05 must be OFF. FB instance ladder monitor screen
must be under state that corresponds to the value.

(2) Actuator forward direction operation-1: Turn 0.00 ON => 0.04 must be turned ON. FB instance
ladder monitor screen must be under state that corresponds to the value.

(3) Actuator forward direction operation-2: Turn 0.03 OFF => 0.04 must be ON and 0.05 must be
OFF. FB instance ladder monitor screen must be under state that corresponds to the value.

(4) Actuator forward direction operation-3: Turn 0.02 ON => 0.04 must be OFF and 0.05 must be
OFF. FB instance ladder monitor screen must be under state that corresponds to the value.

Move the cursor to 0.03 and
press [ENT] key.

Enter 1 and press [Set] button.

Enter following parameter values of FB call statement and check if expected output should be
provided. In this example only (1) is shown, but all combination of conditions must be verified.

Advanced

5-12

Select a name to register,
then press [OK] button.

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

5-7. Entering/Debugging Other FB Definition

Thus far, entering and debugging for “ActuatorControl” FB are described. Other FB definition
must be entered and debugged as well.

5-8. Batch Registration to Watch Window

For debugging, you can use batch registration of FB instance address to Watch Window instead
of FB ladder monitor.

Move the cursor to FB call
statement you want to register,
right-click, then select [Register
in Watch Window] in the menu.

Select Usage and Data type
if necessary.

Advanced

5-13

Set/Clear Breakpoint
(F9 key)

Select locations (ladder, ST) where you want to
stop while executing the simulation and a red
mark will be displayed by pressing this button.

Clear All Breakpoints

Delete a breakpoint (red mark) set using the Set
Breakpoint button.

Run(Monitor Mode)
(F8 key)

Execute user program. Run mode becomes
monitor mode.

Stop(Program Mode) Stop user program execution. Run mode
becomes program mode.

Pause User program execution pauses at the cursor
location.

Step Run
(F10 key)

Execute one user program step.
In the case of a ladder, one instruction, and in the
case of ST, one line.

Step In
(F11 key)

Execute one user program step.
In cases where the cursor location calls the FB
call statement, it transfers to the called FB
instance (ladder or ST).

Step Out
(Shift+F11 key)

Execute one user program step.
In cases where the cursor location is the FB
instance, transfers to the base FB call statement.

Continuous Step Run Executes user program step, but automatically
executes steps continuously after pausing for a
certain amount of time.

Scan Run Execute one user program scan (one cycle).

5-9. Executing Steps using the Simulation Function

Setting the simulation function breakpoint and using the Step Execution Function, you can
stop the execution of the program and easily check the processing status during program
execution.

5-9-1. Explanation of the Simulation Buttons

The toolbar buttons below are for use with the simulation function. The function of each button
is described here.

Simulation Buttons

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

Advanced

5-14

5-9-2. Setting Breakpoint and Executing Steps

Here is an explanation using Simulation Function “WorkMoveControl_LSONcount” FB Debug as
an example.

Change from run mode to monitor mode.
Display “WorkMoveControl_LSONcount” FB instance.

Move the cursor inside the FB
call statement and double-click
the mouse or click the
button.

The present values of the
variables corresponding to the
program are monitored in FB ST
Instance (with assigned address).

ST Program Variables and present values

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

Advanced

5-15

Set the current value in the FB call statement parameter and confirm execution condition.
Set the following cases:
 RightDirInput: ON
 LeftDirInput: OFF
 LSright: OFF
 LSleft: ON
 Reset: OFF
In this case, the following outputs are expected:
 ActuatorRightOn: ON
 ActuatorLeftOn: OFF
 LS_ONnumber: 1

Move the cursor to the FB
call statement left input and
click the button.

Click the button.

Perform breakpoint input contact. It stops at the following step of FB call statement.

The programs stops at the breakpoint.

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

Advanced

5-16

 Press [←] [↓][↓]

The cursor moves to the first line position of the called ST program.

Turn input parameter “RightDirInput” and “LSleft” ON in the FB call statement.

ENT

1

ENT

Press [↓][↓][↓]

1

ENT

The necessary input parameters were set.

Click the button.

Position of ST Monitor execution

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

Advanced

5-17

Transitions from the ST program to the called FB ladder
program.

Click the button two times.

Confirm the input conditions are correct from the ST program
to the called parameter.

Click the button five times.

Confirm the expected output “ActuatorPosOut”
value.

Click the button. Confirmation has been completed.
Return to the calling ST program.

Confirm the previous circuit processing result is correctly reflected in the calling ST
program monitor screen.

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

Advanced

5-18

Transfer to the calling ladder program.

Click the button.

Confirm the output parameter is reflected correctly.

Hint

ST program change parameter current value can be performed with the following operation.

Select the parameter you want to change
with the mouse cursor and click the right
mouse button and select Set ⇒ Value

Set value and click the [Set] button.

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

Advanced

5-19

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

6. Creating FB Definition Library

To reuse operation-verified FB definition, it must be incorporated into library (file).
Check the hierarchy using project workspace and FB instance viewer, then determine the FB
definition you want to incorporate into library. In this case, it is “DVD_ThickSelectControl” FB.

Select
“DVD_ThickSelectControl” FB,
right-click and select [Save
Function Block to File] from
the context menu.

Select [Save].

When saving FB definition that calls another FB, both FB definition are saved.
When retrieving a project, calling-called relationship is maintained as saved.
It is easier to manage FB definition because saved FB definition is integrated.

Advanced

Default folder for saving is C: Program Files Omron CX-One FBL.
It can be changed by CX-Programmer option setting “FB library storage folder”.
OMRON FB Library is under omronlib folder.
Create a folder so that you should be able to classify it easily, such as Userlib DVD.

5-20

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

7. Entering Main Program

Add the main program to a project file that contains debugged FB definition. Program to be
entered is one that is described in 4-5. Total Program Description in page 5-7.

* Other instance variables than those to use FB are omitted.

[Global Variables]

For how to enter a program, refer to pages from 2-6 to 2-9.

Advanced

5-21

Program
Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Library
Entering Main

Program
Debugging

Main Program

8. Debugging Main Program

Main program must be debugged considering followings:
• Program areas that are irrelevant to FB
• Program areas that are relevant to an input parameter to FB
• Program areas that refer to an output parameter from FB

Main program in this example has no such area, thus explanation is omitted.

Advanced

5-22

How to delete unused Function Block definitions

Memory allocation for Function Blocks

When you delete unused Function Block definitions, it is not enough just to delete the Function Block call statement.
This is because the Function Block instance definitions are registered in the global symbol table.
At this situation, when the compile (program check) is done, then the unused function block instances will be shown on the
output window. You can identify the unused function block instance definitions and delete them easily.
The Function Block definitions and Function Block instances are a part of user program in the CPU unit even if they are not
called, so it is recommended to delete unused Function Block definitions and instances before transferring the program to
the CPU unit.

F7 key Execute Compile

Result of Compilation

Double click mouse left button

Function Block definition will be deleted.

Click mouse left button

It is necessary to allocate required memory for each function block instances to execute Function Blocks.
CX-Programmer allocates the memory automatically based on the following setting dialog information.
(PLC menu → Memory Allocation → Function Block/SFC Memory → Function Block/SFC Memory Allocation)
There are 6 types of areas, ‘FB Non Retained’, ‘FB Retained’, ‘FB Timer’, ‘FB Counter’, ‘SFC Bit’, and ‘SFC Word’.
Please change the settings if requires.

 Notice when changing the settings

If you change the ‘Not retain’ or ‘Retain’ area, please consider the allocated memory areas for the special IO unit
and CPU SIO unit.

 Special memory area for the Function Blocks

CS1/CJ1-H/CJ1M CPUs (unit version: 3.0 or higher) have a special memory area which is extended hold (H)
relay area.
The address of the area is from H512 to H1535. CX-Programmer sets the area as a default.
Please note that the area cannot be used for the operands of ladder command.

Supplemental Information

Del key

5-23

Useful Functions

It is possible to automatically display a list of symbol names or IO comments when entering the operands of commands.
When entering the operand for contact or output (or special instructions), enter a string, and the dropdown list is
automatically updated to display in symbol names or IO Comments using the defined string. Selecting the item from the
list defines the operand information.
This is an efficient way of entering registered symbol information into the ladder.

Example: Enter text “Temperature” to the edit field in the operand dialog.

Click or push [F4] key; all symbols / address having IO comment containing the text
‘temperature are listed. See below:-

For instance, select ‘temp_alarm01, W1.00, Temperature error of upper case of MachineA’, from the list.
The operand is set to be using symbol ‘alarm01’.

FB Protect Function

Preventative measures can be implemented by setting the password in the function block definition allocated on project file,
protection corresponding to the use, program know-how leaks, improper changes, and alterations.

 Prohibit writing and display
By setting the protection classification “Prohibit writing and display,” the corresponding function block definition contents
cannot be displayed. By setting the password protection on the function block definition, program know-how leaks can be
prevented.

 Prohibit writing only
By setting the protection classification “Prohibit writing only,” the corresponding function block definition contents cannot be
written or changed. By setting the password protection on the function block definition, improper program changes or
modifications can be prevented.

Command Operand Input Automatic Search and List Display

5-24

Generating FBs Based on an Existing Ladder Program

FBs can be generated easily based on programs with proven operating results.
This function can accelerate the conversion of program resources to FBs.

Overview of Helpful Functions

Select the program section
that you want to convert to an
FB and right-click the mouse.

The FB Variable Allocation Dialog Box will be displayed.

When necessary, change the usage of variables and addresses (internal variable, input variable, output
variable, or input-output variable) used in the program section. Select the variable and select Change
usage from the pop-up menu.

Select Function Block (ladder) generation.

Note:
If a variable does not exist in an address being used in the program, a variable starting with “AutoGen”
will be added automatically.
When the FB is called in the program, parameters are displayed as variable names, so at a minimum we
recommend changing input, output, and input-output variables to easy-to-understand variable names.
To change the names, double-click the address that you want to change in the FB variable allocation
Dialog Box to display a dialog box in which the name can be changed.

5-25

Click the OK Button.

Input the FB definition name
and comment, and click the
OK Button.

The FB definition will be created.

To insert an FB call instruction created in the ladder
program, click the Yes Button.

Input the FB instance name and click the OK Button.

The FB call instruction will be inserted in the ladder program.

Note:
This function automatically determines the usage of variables
based on the addresses used in the selected program section, but
in some cases usage cannot be converted automatically. In these
cases, refer to Registering Variables First in 3-2-3 Defining
Function Blocks Created by User of the CX-Programmer Operation
Manual: Function Blocks and Structured Text, check the created
FB definition, verify operation sufficiently, and proceed with actual
operation.

5-26

Description
of Program

Creating an
ST Task

Registering
Symbols

Entering the
ST Program

1. Description of Program

The procedure used to create a program that finds average values is described as an example.
The diameter of a workpiece is measured in three locations and then the average diameter is found. If the
average value is within the allowable range, a green lamp is lit. If the average value is outside the allowable
range, a red lamp is lit. Here, an ST program is created to average the workpiece diameters and determine if
the average value is within the allowable range.

Chapter 6 Advanced: Creating a Task Program Using Structured Text

Task programs can be created using the structured text (ST) language with CX-Programmer. A wider
choice of programming languages is now supported to enable optimizing the language to the control
object. You can select from SFC, ladder diagrams, or structured text.
Structured text was standardized under IEC 61131-3 (JIS B3503) as a high-level textual
programming language for industrial control. Starting with CX-Programmer, structured text can be
used in task programs, in addition to the previous support for use in function blocks.

Note: Refer to page 4-1 for information on using structured text in function blocks.

Controls using IF-THEN-ELSE or FOR/WHILE loops, or numeric calculations using SIN, COS, and
other functions can be easily achieved using actual addresses.
Structured text can thus be used in tasks to easily program numeric calculations using actual
addresses, while structured text can be used in function blocks to enable easily reusing programming.

Note: A task is the smallest programming unit that can be executed in a SYSMAC CS1/CJ1-series CPU Unit.
With controls separated into tasks, execution of non-active tasks is stopped to enable shortening the cycle time.

Offline Functions

PLC with Analog Input Unit In range Out of
range Clear

Measure Criterion

Margin Optical Line Sensor

Workpiece

(3) Displaying Measurement Values and
Average Value on Seven-segment Display

(1) Initializing Measurement Values and
Setting Margin for Workpiece Diameter

(2) Setting Measurement
Values

All other programming is done with ladder diagrams.

①
②

③

6-1

2. Creating an ST Task

Creating an ST Task

Right-click the Programs
Icon and select Insert
Program – Structured Text.

Right-click the icon for the
new program that was
created and select
Properties. A dialog box
will be displayed.

Open the ST Editor.

Double-click the ST
program icon .
The ST Editor will open.

Change the name of the ST
program and assigned it to
a task.

A new ST program will be
created.

ST Editor

Description
of Program

Creating an
ST Task

Registering
Symbols

Entering the
ST Program

Enter the name of the
program:
Average_Value_Calculation
Also, select the task type
from the pull-down menu:
Cyclic Task 01

ENT

Note: Cyclic tasks
are executed
each cycle.

Offline Functions

6-2

3. Registering ST Program Symbols

Select Insert Symbol from
the pop-up menu.
The New Symbol Dialog
Box will be displayed.

Enter the name of the symbol.

Select the data type:
• REAL
• BOOL
• INT

When finished, click the OK Button.

Repeat the above procedure to enter all symbols.

Enter the name, data
type, address or value,
and comment for the
symbol.

Open the symbols table.

Double-click the Symbols
Icon .
The symbols table will
open.

Right-click anywhere on
the symbols table.

Register new symbols.

Enter the address or value.

Description
of Program

Creating an
ST Task

Registering
Symbols

Entering the
ST Program

Enter a comment to describe
the symbol.

The symbols used in the ST program must be registered.

Note:
A function to automatically assign address can be used when registering symbols to enable
registering symbols without worrying about actual addresses, just as is possible for symbols used
in function blocks. Refer to the CX-Programmer Operation Manual for details.

Offline Functions

6-3

4. Entering the ST Program

Open the ST Editor again.

Enter the program.

Note:
Comments can be added to
an ST program to make it
easier to understand: (* *).

Description
of Program

Creating an
ST Task

Registering
Symbols

Entering the
ST Program

In a substitution statement, the value on the right (formula, symbol, or constant) is
substituted for the symbol on the left.
This statement calculates the average value. Three measurements are added together,
divided by 3, and then the result is assigned to the average symbol. Here, the constant 3 is
entered as “3.0” so that it is in the same data type as the average symbol.

F7

In an IF statement, the IF line is executed if the
condition is true. If the condition is false, the lines
from ELSEIF on will be executed. If both
conditions are false, the lines from ELSE on are
executed.

Here, the average value is evaluated after three
measurements are taken. If the average value is
not in range, the red lamp is lit. If the average
value is in range, the green lamp is lit.

This completes entering the ST program. The remaining processing is programmed in ladder
diagrams and then the F7 Key is pressed to compile and run an error check.
When the entire program has been completed, an online connection is made with the PLC
and the normal program transfer operation is performed.

average := (thickness1 + thickness2 + thickness3)/3.0;

IF flag = 3 THEN
 IF average < criterion-margin THEN
 red_lamp := TRUE;
 ELSEIF average > criterion+margin
THEN
 red_lamp := TRUE;
 ELSE
 green_lamp := TRUE;
 END_IF;
END_IF;

Offline Functions

6-4

IF Statement Examples

IF expression1 THEN statement-list1
[ELSIF expression2 THEN statement-list2]
[ELSE statement-list3]
END_IF;

The expression1 and expression2 expressions must each evaluate to a boolean value. The statement-list is a list of
several simple statements e.g. a:=a+1; b:=3+c; etc.

The IF keyword executes statement-list1 if expression1 is true; if ELSIF is present and expression1 is false and
expression2 is true, it executes statement-list2; if ELSE is present and expression1 or expression2 is false, it
executes statement-list3. After executing statement-list1, statement-list2 or statement-list3, control passes to the
next statement after the END_IF.

There can be several ELSIF statements within an IF Statement, but only one ELSE statement.

IF statements can be nested within other IF statements (Refer to example 5).

Example 1
 IF a > 0 THEN
 b := 0;
END_IF;

Example 2
 IF a THEN
 b := 0;
END_IF;

Example 3
IF a > 0 THEN
 b := TRUE;
ELSE
 b := FALSE;
END_IF;

Example 4
IF a < 10 THEN
 b := TRUE;
 c := 100;
ELSIF a > 20 THEN
 b := TRUE;
 c := 200;
ELSE
 b := FALSE;
 c := 300;
END_IF;

Appendix. Examples of ST (Structured Text)

In this example, if the variable "a" is greater than zero, then the
variable "b" will be assigned the value of zero.
If "a" is not greater than zero, then no action will be performed
upon the variable "b", and control will pass to the program steps
following the END_IF clause.

In this example, if the variable "a" is true, then the variable "b" will
be assigned the value of zero.
If "a" is false, then no action will be performed upon the variable
"b", and control will pass to the program steps following the
END_IF clause.

In this example, if the variable "a" is greater than zero, then the
variable "b" will be assigned the value of true (1), and control will
be passed to the program steps following the END_IF clause.
If "a" is not greater than zero, then no action is performed upon
the variable "b" and control is passed to the statement following
the ELSE clause, and "b" will be assigned the value of false (0).
Control is then passed to the program steps following the END_IF
clause.

In this example, if the variable "a" is less than 10, then the
variable "b" will be assigned the value of true (1), and the variable
"c" will be assigned the value of 100. Control is then passed to the
program steps following the END_IF clause.

If the variable "a" is equal to or greater than 10 then control is
passed to the ELSE_IF clause, and if the variable "a" is greater
than 20, variable "b" will be assigned the value of true (1), and the
variable "c" will be assigned the value of 200. Control is then
passed to the program steps following the END_IF clause.

If the variable "a" is between the values of 10 and 20 (i.e. both of
the previous conditions IF and ELSE_IF were false) then control is
passed to the ELSE clause, and the variable "b" will be assigned
the value of false (0), and the variable "c" will be assigned the
value of 300. Control is then passed to the program steps
following the END_IF clause.

6-5

IF Statement Examples

Example 5
 IF a THEN
 b := TRUE;
ELSE
 IF c>0 THEN
 d := 0;
 ELSE
 d := 100;
 END_IF;
 d := 400;
END_IF;

WHILE Statement Examples

WHILE expression DO
 statement-list;
END_WHILE;

The WHILE expression must evaluate to a boolean value. The statement-list is a list of several simple statements.
The WHILE keyword repeatedly executes the statement-list while the expression is true. When the expression
becomes false, control passes to the next statement after the END_WHILE.

Example 1
 WHILE a < 10 DO
 a := a + 1;
 b := b * 2.0;
END_WHILE;

Example 2
 WHILE a DO
 b := b + 1;
 IF b > 10 THEN
 a:= FALSE;
 END_IF;
END_WHILE;

Example 3
 WHILE (a + 1) >= (b * 2) DO
 a := a + 1;
 b := b / c;
END_WHILE;

In this example (an example of a nested IF .. THEN
statement), if the variable "a" is true (1), then the variable "b"
will be assigned the value of true (1), and control will be
passed to the program steps following the associated
END_IF clause.

If "a" is false (0), then no action is performed upon the
variable "b" and control is passed to the statement following
the ELSE clause (in this example, another IF .. THEN
statement, which is executed as described in Example 3,
although it should be noted that any of the supported
IEC61131-3 statements may be used).

After the described IF .. THEN statement is executed, the
variable "d" will be assigned the value of 400.

Control is then passed to the program steps following the
END_IF clause.

In this example, the WHILE expression will be evaluated and
if true (i.e. variable "a" is less than 10) then the statement-list
(a:=a+1; and b:=b*2.0;) will be executed. After execution of
the statement-list, control will pass back to the start of the
WHILE expression. This process is repeated while variable
"a" is less than 10. When the variable "a" is greater than or
equal to 10, then the statement-list will not be executed and
control will pass to the program steps following the
END_WHILE clause.

In this example, the WHILE expression will be evaluated and
if true (i.e. variable "a" is true), then the statement-list
(b:=b+1; and the IF .. THEN statement) will be executed.
After execution of the statement-list, control will pass back to
the start of the WHILE expression. This process is repeated
while variable "a" is true. When variable "a" is false, the
statement-list will not be executed and control will pass to the
program steps following the END_WHILE clause.

In this example, the WHILE expression will be evaluated and
if true (i.e. variable "a" plus 1 is greater than or equal to
variable "b" multiplied by 2) then the statement-list (a:=a+1;
and b:=b/c;) will be executed. After execution of the
statement-list, control will pass back to the start of the WHILE
expression. This process is repeated while the WHILE
expression equates to true. When the WHILE expression is
false, then the statement-list will not be executed and control
will pass to the program steps following the END_WHILE
clause.

6-6

WHILE Statement Examples

 Example 4
 WHILE (a - b) <= (b + c) DO
 a := a + 1;
 b := b * a;
END_WHILE;

REPEAT Statement Examples

REPEAT
 statement-list;
UNTIL expression
END_REPEAT;

The REPEAT expression must evaluate to a boolean value. The statement-list is a list of several simple statements.

The REPEAT keyword repeatedly executes the statement-list while the expression is false. When the expression
becomes true, control passes to the next statement after END_REPEAT.

Example 1
 REPEAT
 a := a + 1;
 b := b * 2.0;
UNTIL a > 10
END_REPEAT;

Example 2
 REPEAT
 b := b + 1;
 IF b > 10 THEN
 a:= FALSE;
 END_IF;
UNTIL a
END_REPEAT;

Example 3
 REPEAT
 a := a + 1;
 b := b / c;
UNTIL (a + 1) >= (b * 2)
END_REPEAT;

Example 4
 REPEAT
 a := a + 1;
 b := b * a;
UNTIL (a - b) <= (b + c)
END_REPEAT;

In this example, the WHILE expression will be evaluated and if
true (i.e. variable "a" minus variable "b" is less than or equal to
variable "b" plus variable "c") then the statement-list (a:=a+1; and
b:=b*a;) will be executed. After execution of the statement-list,
control will pass back to the start of the WHILE expression. This
process is repeated while the WHILE expression is true. When
the WHILE expression is false, then the statement-list will not be
executed and control will pass to the program steps following the
END_WHILE clause.

In this example, the statement-list (a:=a+1; and b:=b*2.0;) will be
executed. After execution of the statement-list the UNTIL expression
is evaluated and if false (i.e. variable "a" is less than or equal to 10),
then control will pass back to the start of the REPEAT expression and
the statement-list will be executed again. This process is repeated
while the UNTIL expression equates to false. When the UNTIL
expression equates to true (i.e. variable "a" is greater than 10) then
control will pass to the program steps following the END_REPEAT
clause.

In this example, the statement-list (b:=b+1; and the IF .. THEN
statement) will be executed. After execution of the statement-list the
UNTIL expression is evaluated and if false (i.e. variable "a" is false),
then control will pass back to the start of the REPEAT expression and
the statement-list will be executed again. This process is repeated
while the UNTIL expression equates to false. When the UNTIL
expression equates to true (i.e. variable "a" is true) then control will
pass to the program steps following the END_REPEAT clause.

In this example, the statement-list (a:=a+1; and b:=b/c;) will be
executed. After execution of the statement-list the UNTIL expression
is evaluated and if false (i.e. variable "a" plus 1 is less than variable
"b" multiplied by 2) then control will pass back to the start of the
REPEAT expression and the statement-list will be executed again.
This process is repeated while the UNTIL expression equates to false.
When the UNTIL expression equates to true (i.e. variable "a" plus 1 is
greater than or equal to variable "b" multiplied by 2) then control will
pass to the program steps following the END_REPEAT clause.

In this example, the statement-list (a:=a+1; and b:=b*a;) will be
executed. After execution of the statement-list the UNTIL expression
is evaluated and if false (i.e. variable "a" minus variable "b" is greater
than variable "b" plus variable "c"), then control will pass back to the
start of the REPEAT expression and the statement-list will be
executed again. This process is repeated while the UNTIL expression
equates to false. When the UNTIL expression equates to true (i.e.
variable "a" minus variable "b" is less than or equal to variable "b" plus
variable "c") then control will pass to the program steps following the
END_REPEAT clause. 6-7

FOR Statement Examples

FOR control variable := integer expression1 TO integer expression2 [BY integer expression3] DO
 statement-list;
END_FOR;

The FOR control variable must be of an integer variable type. The FOR integer expressions must evaluate to the
same integer variable type as the control variable. The statement-list is a list of several simple statements.

The FOR keyword repeatedly executes the statement-list while the control variable is within the range of integer
expression1 to integer expression2. If the BY is present then the control variable will be incremented by integer
expression3 otherwise by default it is incremented by one. The control variable is incremented after every executed
call of the statement-list. When the control variable is no longer in the range integer expression1 to integer
expression2, control passes to the next statement after the END_FOR.

FOR statements can be nested within other FOR statements.

Example 1
 FOR a := 1 TO 10 DO
 b := b + a;
END_FOR;

Example 2
 FOR a := 1 TO 10 BY 2 DO
 b := b + a;
 c := c + 1.0;
END_FOR;

Example 3
 FOR a := 10 TO 1 BY -1 DO
 b := b + a;
 c := c + 1.0;
END_FOR;

Example 4
 FOR a := b + 1 TO c + 2 DO
 d := d + a;
 e := e + 1;
END_FOR;

In this example, the FOR expression will initially be evaluated and
variable "a" will be initialized with the value 1. The value of
variable "a" will then be compared with the 'TO' value of the FOR
statement and if it is less than or equal to 10 then the statement-
list (i.e. b:=b+a;) will be executed. Variable "a" will then be
incremented by 1 and control will pass back to the start of the
FOR statement. Variable "a" will again be compared with the 'TO'
value and if it is less than or equal to 10 then the statement-list
will be executed again. This process is repeated until the value of
variable "a" is greater than 10, and then control will pass to the
program steps following the END_FOR clause.

In this example, the FOR expression will initially be evaluated and
variable "a" will be initialized with the value 1. The value of
variable "a" will then be compared with the 'TO' value of the FOR
statement and if it is less than or equal to 10 then the statement-
list (i.e. b:=b+a; and c:=c+1.0;) will be executed. Variable "a" will
then be incremented by 2 and control will pass back to the start of
the FOR statement. Variable "a" will again be compared with the
'TO' value and if it is less than or equal to 10 then the statement-
list will be executed again. This process is repeated until the value
of variable "a" is greater than 10, and then control will pass to the
program steps following the END_FOR clause.
In this example, the FOR expression will initially be evaluated and
variable "a" will be initialized with the value 10. The value of
variable "a" will then be compared with the 'TO' value of the FOR
statement and if it is greater than or equal to 1 then the statement-
list (i.e. b:=b+a; and c:=c+1.0;) will be executed. Variable "a" will
then be decremented by 1 and control will pass back to the start
of the FOR statement. Variable "a" will again be compared with
the 'TO' value and if it is greater than or equal to 1 then the
statement-list will be executed again. This process is repeated
until the value of variable "a" is less than 1, and then control will
pass to the program steps following the END_FOR clause.

In this example, the FOR expression will initially be evaluated and
variable "a" will be initialized with the value of variable "b" plus 1.
The 'TO' value of the FOR statement will be evaluated to the
value of variable "c" plus 2. The value of variable "a" will then be
compared with the 'TO' value and if it is less than or equal to it
then the statement-list (i.e. d:=d+a; and e:=e+1;) will be executed.
Variable "a" will then be incremented by 1 and control will pass
back to the start of the FOR statement. Variable "a" will again be
compared with the 'TO' value and if it is less than or equal to it
then the statement-list will be executed again. This process is
repeated until the value of variable "a" is greater than the 'TO'
value, and then control will pass to the program steps following
the END_FOR clause. 6-8

FOR Statement Examples

Example 5
 FOR a := b + c TO d - e BY f DO
 g := g + a;
 h := h + 1.0;
END_FOR;

CASE Statement Examples

CASE expression OF
 case label1 [, case label2] [.. case label3] : statement-list1;
[ELSE
 statement-list2]
END_CASE;

The CASE expression must evaluate to an integer value. The statement-list is a list of several simple statements.
The case labels must be valid literal integer values e.g. 0, 1, +100, -2 etc..

The CASE keyword evaluates the expression and executes the relevant statement-list associated with a case label
whose value matches the initial expression. Control then passes to the next statement after the END_CASE. If no
match occurs within the previous case labels and an ELSE command is present the statement-list associated with
the ELSE keyword is executed. If the ELSE keyword is not present, control passes to the next statement after the
END_CASE.

There can be several different case labels statements (and associated statement-list) within a CASE statement but
only one ELSE statement.

The “,” operator is used to list multiple case labels associated with the same statement-list.

The “..” operator denotes a range case label. If the CASE expression is within that range then the associated
statement-list is executed, e.g. case label of 1..10 : a:=a+1; would execute the a:=a+1 if the CASE expression is
greater or equal to 1 and less than 10.

Example 1
 CASE a OF
 2 : b := 1;
 5 : c := 1.0;
END_CASE;

Example 2
 CASE a + 2 OF
 -2 : b := 1;
 5 : c := 1.0;
ELSE
 d := 1.0;
END_CASE;

In this example, the FOR expression will initially be evaluated and variable "a"
will be initialized with the value of variable "b" plus variable "c". The 'TO' value
of the FOR statement will be evaluated to the value of variable "d" minus
variable "e". The value of variable "a" will then be compared with the 'TO' value.
If the value of variable "f" is positive and the value of variable "a" is less than or
equal to the 'TO' value then the statement-list (i.e. g:=g+a; and h:=h+1.0;) will
be executed. If the value variable "f" is negative and the value of variable "a" is
greater than or equal to the 'TO' value then the statement-list (i.e. g:=g+a; and
h:=h+1.0;) will also be executed. Variable "a" will then be incremented or
decremented by the value of variable "f" and control will pass back to the start
of the FOR statement. Variable "a" will again be compared with the 'TO' value
and the statement-list executed if appropriate (as described above).

This process is repeated until the value of variable "a" is greater than the 'TO'
value (if the value of variable "f" is positive) or until the value of variable "a" is
less than the 'TO' value (if the value of variable "f" is negative), and then
control will pass to the program steps following the END_FOR clause.

In this example, the CASE statement will be evaluated and then compared with
each of the CASE statement comparison values (i.e. 2 and 5 in this example).

If the value of variable "a" is 2 then that statement-list will be executed (i.e. b:=1;).
Control will then pass to the program steps following the END_CASE clause.

If the value of variable "a" is 5 then that statement-list will be executed (i.e. c:=1.0;).
Control will then pass to the program steps following the END_CASE clause.

If the value of variable "a" does not match any of the CASE statement comparison
values then control will pass to the program steps following the END_CASE clause.

In this example, the CASE statement will be evaluated and then compared with
each of the CASE statement comparison values (i.e. -2 and 5 in this example).

If the value of variable "a" plus 2 is -2 then that statement-list will be executed (i.e.
b:=1;). Control will then pass to the program steps following the END_CASE clause.
If the value of variable "a" plus 2 is 5 then that statement-list will be executed (i.e.
c:=1.0;). Control will then pass to the program steps following the END_CASE
clause. If the value of variable "a" plus 2 is not -2 or 5, then the statement-list in the
ELSE condition (i.e. d:=1.0;) will be executed. Control will then pass to the program
steps following the END_CASE clause.

6-9

CASE Statement Examples

Example 3
 CASE a + 3 * b OF
 1, 3 : b := 2;
 7, 11 : c := 3.0;
ELSE
 d := 4.0;
END_CASE;

Example 4
 CASE a OF
-2, 2, 4 : b := 2;
 c := 1.0;
6..11, 13 : c := 2.0;
1, 3, 5 : c := 3.0;
ELSE
 b := 1;
 c := 4.0;
END_CASE;

In this example, the CASE statement will be evaluated and then
compared with each of the CASE statement comparison values (i.e. 1
or 3 and 7 or 11 in this example).

If the value of variable "a" plus 3 multiplied by variable "b" is 1 or 3,
then that statement-list will be executed (i.e. b:=2;). Control will then
pass to the program steps following the END_CASE clause.

If the value of variable "a" plus 3 multiplied by variable "b" is 7 or 11,
then that statement-list will be executed (i.e. c:=3.0;). Control will then
pass to the program steps following the END_CASE clause.

If the value of variable "a" plus 3 multiplied by variable "b" is not 1, 3,
7 or 11, then the statement-list in the ELSE condition (i.e. d:=4.0;) will
be executed. Control will then pass to the program steps following the
END_CASE clause.

In this example, the CASE statement will be evaluated and then
compared with each of the CASE statement comparison values, i.e. (-
2, 2 or 4) and (6 to 11 or 13) and (1, 3 or 5) in this example.

If the value of variable "a" equals -2, 2 or 4, then that statement-list
will be executed (i.e. b:=2; and c:=1.0;). Control will then pass to the
program steps following the END_CASE clause.

If the value of variable "a" equals 6, 7, 8, 9, 10, 11 or 13 then, that
statement-list will be executed (i.e. c:=2.0;). Control will then pass to
the program steps following the END_CASE clause.

If the value of variable "a" is 1, 3 or 5, then that statement-list will be
executed (i.e. c:=3.0;). Control will then pass to the program steps
following the END_CASE clause.

If the value of variable "a" is none of those above, then the statement-
list in the ELSE condition (i.e. b:=1; and c:=4.0;) will be executed.
Control will then pass to the program steps following the END_CASE
clause.

6-10

EXIT Statement Examples

WHILE expression DO
 statement-list1;
 EXIT;
END_WHILE;
statement-list2;

REPEAT
 statement-list1;
 EXIT;
UNTIL expression
END_REPEAT;
statement-list2;

FOR control variable := integer expression1 TO integer expression2 [BY integer expression3] DO
 statement-list1;
 EXIT;
END_FOR;
statement-list2;

The statement-list is a list of several simple statements.

The EXIT keyword discontinues the repetitive loop execution to go to the next statement, and can only be used in
repetitive statements (WHILE, REPEAT, FOR statements). When the EXIT keyword is executed after statement-
list1 in the repetitive loop, the control passes to statement-list2 immediately.

Example 1
WHILE a DO
 IF c = TRUE THEN
 b:=0;EXIT;
 END_IF;
 IF b > 10 THEN
 a:= FALSE;
 END_IF;
END_WHILE;
d:=1;

Example 2
 a:=FALSE;
FOR i:=1 TO 20 DO
 FOR j:=0 TO 9 DO
 IF i>=10 THEN
 n:=i*10+j;
 a:=TRUE;EXIT;
 END_IF;
 END_FOR;
 IF a THEN EXIT; END_IF;
END_FOR;
d:=1;

If the first IF expression is true (i.e. variable "c" is true), the
statement-list (b:=0; and EXIT;) is executed during the
execution of the WHILE loop. After the execution of the EXIT
keyword, the WHILE loop is discontinued and the control
passes to the next statement (d:=1;) after the END_WHILE
clause.

If the first IF expression is true (i.e. i>=10 is true) in the inside
FOR loop, the statement-list (n:=i*10+j; and a:=TRUE; and
EXIT;) is executed during the execution of the FOR loop.
After the execution of the EXIT keyword, the inside FOR loop
is discontinued and the control passes to the next IF
statement after the END_FOR clause. If this IF expression is
true (i.e. the variable "a" is true), EXIT keyword is executed ,
the outside FOR loop is discontinued after END_FOR clause,
and the control passes to the next statement (d:=1;).

6-11

RETURN Statement Examples

statement-list1;
RETURN;
statement-list2;

The statement-list is a list of several simple statements.

The RETURN keyword breaks off the execution of the inside of the Function Block after statement-list1, and then
the control returns to the program which calls the Function Block without executing statement-list2.

Example 1
IF a_1*b>100 THEN
 c:=TRUE;RETURN;
END_IF;
IF a_2*(b+10)>100 THEN
 c:=TRUE;RETURN;
END_IF;
IF a_3*(b+20)>100 THEN
 c:=TRUE;
END_IF;

Array Examples

variable name [subscript index]

An array is a collection of like variables. The size of an array can be defined in the Function Block variable table.

An individual variable can be accessed using the array subscript operator [].

The subscript index allows a specific variable within an array to be accessed. The subscript index must be either a
positive literal value, an integer expression or an integer variable. The subscript index is zero based. A subscript
index value of zero would access the first variable, a subscript index value of one would access the second variable
and so on.

Warning
If the subscript index is either an integer expression or integer variable, you must ensure that the resulting
subscript index value is within the valid index range of the array. Accessing an array with an invalid index
must be avoided. Refer to Example 5 for details of how to write safer code when using variable array
offsets.

Example 1
a[0] := 1;
a[1] := -2;
a[2] : = 1+2;
a[3] : = b;
a[4] : = b+1;

Example 2
c[0] := FALSE;
c[1] := 2>3;

If the first or second IF statement is true (i.e. "a_1*b" is larger
than 100, or "a_2*(b+10)" is larger than 100), the statement
(c:=TRUE; and RETURN;) is executed. The execution of the
RETURN keyword breaks off the execution of the inside of
the Function Block and the control returns to the program
which calls the Function Block.

In this example variable "a" is an array of 5 elements and has
an INT data type. Variable "b" also has an INT data type.
When executed, the first element in the array will be set to the
value 1, the second element will be set to -2, the third
element will be set to 3 (i.e. 1+2), the forth element will be set
to the value of variable "b" and the fifth element will be set to
the value of variable "b" plus 1.

In this example variable "c" is an array of 2 elements and has
a BOOL data type. When executed, the first element in the
array will be set to false and the second element will be set to
false (i.e. 2 is greater than 3 evaluates to false).

6-12

Array Examples

Example 3
 d[9]:= 2.0;

Example 4
 a[1] := b[2];

Example 5
 a[b] := 1;
a[b+1] := 1;
a[(b+c) *(d-e)] := 1;

Note: As the integer variables and expressions are being used to access the array, the actual index value
will not be known until run time, so the user must ensure that the index is within the valid range of the
array a. For example, a safer way would be to check the array index is valid:

f := (b+c) *(d-e);
IF (f >0) AND (f<5) THEN
 a[f] := 1;
END_IF;

Where variable "f" has an INT data type.

Example 6
 a[b[1]]:= c;
a[b[2] + 3]:= c;

In this example, variable "d" is an array of 10 elements and
has a REAL data type. When executed, the last element in
the array (the 10th element) will be set to 2.0.

In this example, variable "a" and variable "b" are arrays of the
same data type. When executed, the value of the second
element in variable "a" will be set to the value of the third
element in variable "b".

This example shows how an array element expression can be
used within another array element expression.

6-13

Standard Functions
Function type Syntax

Numerical Functions Absolute values, trigonometric functions, etc.
Arithmetic Functions Exponential (EXPT)
Data Type Conversion Functions Source_data_type_TO_New_data_type (Variable_name)
Number-String Conversion Functions Source_data_type_TO_STRING (Variable_name)

STRING_TO_New_data_type (Variable_name)
Data Shift Functions Bitwise shift (SHL and SHR), bitwise rotation (ROL and ROR),

etc.
Data Control Functions Upper/lower limit control (LIMIT), etc.
Data Selection Functions Data selection (SEL), maximum value (MAX), minimum value

(MIN), multiplexer (MUX), etc.

Numerical Functions
Function Argument data type Return value

data type
Description Example

ABS (argument) INT, DINT, LINT,
UINT, UDINT, ULINT,
REAL, LREAL

INT, DINT, LINT,
UINT, UDINT,
ULINT, REAL,
LREAL

Absolute value [argu-
ment]

a: = ABS (b)
(*absolute value of variable
b stored in variable a*)

SQRT (argument) REAL, LREAL REAL, LREAL Square root:
√ argument

a: = SQRT (b)
(*square root of variable b
stored in variable a*)

LN (argument) REAL, LREAL REAL, LREAL Natural logarithm: LOGe

argument
a: = LN (b)
(*natural logarithm of vari-
able b stored in variable a*)

LOG (argument) REAL, LREAL REAL, LREAL Common logarithm:
LOG10 argument

a: = LOG (b)
(*common logarithm of vari-
able b stored in variable a*)

EXP (argument) REAL, LREAL REAL, LREAL Natural exponential: ear-

gument
a: = EXP (b)
(*natural exponential of vari-
able b stored in variable a*)

SIN (argument) REAL, LREAL REAL, LREAL Sine: SIN argument a: = SIN (b)
(*sine of variable b stored in
variable a*)

COS (argument) REAL, LREAL REAL, LREAL Cosine: COS argument a: = COS (b)
(*cosine of variable b stored
in variable a*)

TAN (argument) REAL, LREAL REAL, LREAL Tangent: TAN argument a: = TAN (b)
(*tangent of variable b stored
in variable a*)

ASIN (argument) REAL, LREAL REAL, LREAL Arc sine: SIN−1 argument a: = ASIN (b)
(*arc sine of variable b
stored in variable a*)

ACOS (argument) REAL, LREAL REAL, LREAL Arc cosine: COS−1 argu-
ment

a: = ACOS (b)
(*arc cosine of variable b
stored in variable a*)

6-14

Function Argument data type Return value
data type

Description Example

ATAN (argument) REAL, LREAL REAL, LREAL Arc tangent: TAN−1 argu-
ment

a: = ATAN (b)
(*arc tangent of variable b
stored in variable a*)

Base REAL,
LREAL

EXPT (base, expo-
nent)

Exponent INT,
DINT,
LINT,
UINT,
UDINT,
ULINT,
REAL,
LREAL

REAL, LREAL Exponential: Baseexponent a: = EXPT (b, c)
(*Exponential with variable b
as the base and variable c
as the exponent is stored in
variable a*)

Dividend
data

INT,
UINT,
UDINT,
ULINT,
DINT,
LINT

MOD (dividend data,
divisor)

Divisor INT,
UINT,
UDINT,
ULINT,
DINT,
LINT

INT, UINT,
UDINT, ULINT,
DINT, LINT

Remainder a := MOD(b, c)
(* Remainder found by divid-
ing variable b by variable c is
stored in variable a*)

 Note: The data type returned for numerical functions is the same as that used in the argument. Therefore, variables substituted for
function return values must be the same data type as the argument.

Text String Functions
The following functions can be used with CS/CJ-series CPU Units with unit version 4.0 or later, or CJ2-series CPU Units.

Function Argument data type Return
value

data type

Description Example

LEN(String) String STRING INT Detects the length
of a text string.

a: = LEN (b)
(*number of characters in string
b stored in variable a*)

Source_
string

STRING LEFT(<Source_string>,
<Number_of_characters>)

Number_of_
characters

INT,
UINT

STRING Extracts charac-
ters from a text
string starting from
the left.

a: = LEFT (b,c)
(*number of characters specified
by variable c extracted from the
left of text string b and stored in
variable a*)

Source_
string

STRING RIGHT(<Source_string>,
<Number_of_characters>)

Number_of_
characters

INT,
UINT

STRING Extracts charac-
ters from a text
string starting from
the right.

a: = RIGHT (b,c)
(*number of characters specified
by variable c extracted from the
eight of text string b and stored
in variable a*)

Source_
string

STRING

Number_of_
characters

INT,
UINT

MID(<Source_string>,
<Number_of_characters>,
<Position>)

Position INT,
UINT

STRING Extracts charac-
ters from a text
string.

a: = MID (b,c,d)
(*number of characters specified
by variable c extracted from text
string b starting at position spec-
ified by variable d and stored in
variable a*)

 6-15

Function Argument data type Return
value

data type

Description Example

CONCAT(<Source_string_1
>,<S ource_string_2>,...)
*Up to
32 source strings.*

Source_
string

STRING STRING Concatenates text
strings.

a: = CONCAT (b,c...)
(*text strings b, c... are joined
and stored in variable a*)

Source_
string

STRING

Insert_
string

STRING

INSERT(<Source_string>,
<Insert_string>,<Position>)

Position INT,
UINT

STRING Insert one text
string into another.

a: = INSERT (b,c,d)
(*text string c inserted into text
string b at position specified by
variable d and resulting string
stored in variable a*)

Source_
string

STRING

Number_of_
characters

INT,
UINT

DELETE(<Source_string>,
<Number_of_characters>,
<Position>)

Position INT,
UINT

STRING Deletes characters
from a text string.

a: = DELETE (b,c,d)
(*number of characters specified
by variable c deleted from text
string b starting from position
specified by variable d and
resulting string stored in variable
a*)

Source_
string

STRING

Replace_
string

STRING

Number_of_
characters

INT,
UINT

REPLACE(<Source_string
>,<Replace_string>,
<Number_of_characters>,
<Position>)

Position INT,
UINT

STRING Replaces charac-
ters in a text string.

a: = REPLACE (b,c,d,e)
(*number of characters specified
by variable d in source string b
replaced with text string c start-
ing from position specified by
variable e and resulting string
stored in variable a*)

Source_
string

STRING FIND(<Source_string>,
<Find_string>)

Find_string STRING

INT Finds characters
within a text string.

a: = FIND (b,c)
(*first occurrence of text string c
found in text string b and posi-
tion stored in variable a; 0 stored
if text string c is not found.*)

6-16

Value of fractional
part

Treatment Examples

Less than 0.5 The fractional part is truncated. 1.49 →
1

−1.49 →
−1

0.5 If the ones digit is an even
number, the fractional part is
truncated.
If the ones digit is an odd
number, the fractional part is
rounded up.

0.5 → 0
1.5 → 2
2.5 → 2
3.5 → 4

−0.5 → 0
−1.5 → −2
−2.5 → −2
−3.5 → −4

Greater than 0.5 The fractional part is rounded up. 1.51 →
2

−1.51 →
−2

Data Type Conversion Functions
The following data type conversion functions can be used in structured text.

Syntax

Source_data_type_TO_New_data_type (Variable_name)
 Example: REAL_TO_INT (C)
 In this example, the data type for variable C will be changed from REAL to INT.
 The fractional part of the value of variable C is rounded off to the closest inte- ger. The following
 table shows how values are rounded.

Data Type Combinations
The combinations of data types that can be converted are given in the follow- ing table.

TO FROM
BOOL INT DINT LINT UINT UDINT ULINT WORD DWORD LWORD REAL LREAL BCD_

WORD BCD_
DWORD

BOOL No No No No No No No No No No No No No No
INT No No YES YES YES YES YES YES YES YES YES YES YES YES
DINT No YES No YES YES YES YES YES YES YES YES YES YES YES
LINT No YES YES No YES YES YES YES YES YES YES YES No No
UINT No YES YES YES No YES YES YES YES YES YES YES YES YES
UDINT No YES YES YES YES No YES YES YES YES YES YES YES YES
ULINT No YES YES YES YES YES No YES YES YES YES YES No No
WORD No YES YES YES YES YES YES No YES YES No No No No
DWORD No YES YES YES YES YES YES YES No YES No No No No
LWORD No YES YES YES YES YES YES YES YES No No No No No
REAL No YES YES YES YES YES YES No No No No YES No No
LREAL No YES YES YES YES YES YES No No No YES No No No
WORD_
BCD No YES YES No YES YES No No No No No No No No
DWORD_
BCD No YES YES No YES YES No No No No No No No No

(YES = Conversion possible, No = Conversion not possible)

6-17

Number-String Conversion Functions
The following number-string conversion functions can be used in structured text.

Syntax
Source_data_type_TO_STRING (Variable_name)
 Example: INT_TO_STRING (C)
 In this example, the integer variable C will be changed to a STRING vari- able.
STRING_TO_New_data_type (Variable_name)
 Example: STRING_TO_INT (C)
 In this example, the STRING variable C will be changed to an integer.

Data Type Combinations

The combinations of data types that can be converted are given in the follow- ing table.

(YES = Conversion possible, No = Conversion not possible)
TO FROM

BOOL INT DINT LINT UINT UDINT ULINT WORD DWORD LWORD REAL LREAL STRING
BOOL No No No No No No No No No No No No No
INT No No YES YES YES YES YES YES YES YES YES YES YES
DINT No YES No YES YES YES YES YES YES YES YES YES YES
LINT No YES YES No YES YES YES YES YES YES YES YES No
UINT No YES YES YES No YES YES YES YES YES YES YES YES
UDINT No YES YES YES YES No YES YES YES YES YES YES YES
ULINT No YES YES YES YES YES No YES YES YES YES YES No
WORD No YES YES YES YES YES YES No YES YES No No YES
DWORD No YES YES YES YES YES YES YES No YES No No YES
LWORD No YES YES YES YES YES YES YES YES No No No No
REAL No YES YES YES YES YES YES YES YES YES No No No
LREAL No YES YES YES YES YES YES YES YES YES No No No
STRING No YES YES No YES YES No YES YES No No No No

6-18

Function 1st
argument
data type

2nd
argument
data type

Return
value data

type

Description Example

SHL(<Shift_target_data>,
<Number_of_bits>)

BOOL,
WORD,
DWORD,
LWORD

INT,
UINT,
UDINT,
ULINT,
DINT,
LINT

BOOL,
WORD,
DWORD,
LWORD

Shifts a bit string to the
left by n bits.
When shifted, zeros are
entered on the right
side of the bit string.

a := SHL(b,c)
(* Result of shifting bit
string b to the left by c
bits is stored in a*)

SHR(<Shift_target_data>,
<Number_of_bits>)

BOOL,
WORD,
DWORD,
LWORD

INT,
UINT,
UDINT,
ULINT,
DINT,
LINT

BOOL,
WORD,
DWORD,
LWORD

Shifts a bit string to the
right by n bits.
When shifted, zeros are
entered on the left side
of the bit string.

a := SHR(b,c)
(* Result of shifting bit
string b to the right by c
bits is stored in a*)

ROL(<Rotation_target_dat
a>, <Number_of_bits>)

BOOL,
WORD,
DWORD,
LWORD

INT,
UINT,
UDINT,
ULINT,
DINT,
LINT

BOOL,
WORD,
DWORD,
LWORD

Rotates a bit string to
the left by n bits.

a := ROL(b,c)
(* Result of rotating bit
string b to the left by c
bits is stored in a*)

ROR(<Rotation_target_dat
a>, <Number_of_bits>)

BOOL,
WORD,
DWORD,
LWORD

INT,
UINT,
UDINT,
ULINT,
DINT,
LINT

BOOL,
WORD,
DWORD,
LWORD

Rotates a bit string to
the right by n bits.

a := ROR(b, c)
(* Result of rotating bit
string b to the right by c
bits is stored in a*)

Data Shift Functions

Data Control Functions
Function 1st

argument
data type

2nd
argument
data type

3rd
argument
data type

Return
value data

type

Description Example

LIMIT
(<Lower_limit_data>,
<Input_data>,
<Upper_limit_data>)

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

Controls the
output data
depending on
whether the
input data is
within the range
between the
upper and lower
limits.

a := LIMIT(b,c,d)
(*When c<b, b is
stored in a.
When b≤c≤d, c
is stored in a.
When d<c, d is
stored in a.*)

6-19

Data Selection Function
Function 1st

argument
data type

2nd
argument
data type

3rd
argument
data type

Return
value data

type

Description Example

SEL(<Selection_condition>,
<Selection_target_data1>,
<Selection_target_data2>)

BOOL BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

Selects one of
two data
according to the
selection condi-
tion.

a := SEL(b,c,d)
(*When b is
FALSE, c is
stored in a.
When b is
TRUE, d is
stored in a.*)

MUX(<Extraction_condition>,
<Extraction_taget_data1>,
<Extraction_target_data2>,
...)

INT,
UINT,
UDINT,
ULINT,
DINT,
LINT

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

Selects a speci-
fied data from a
maximum of 30
data according
to the extraction
condition.

a :=
MUX(b,c,d,...)
(*The (b+1)th
data is stored in
a.*)

MAX(<Target_data1>,
<Target_data2>,
<Target_data3>, ...)
*2

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

Selects the
maximum value
from a maxi-
mum of 31 data.

a := MAX(b,c,d,
...)
(* The maximum
value of c, d, ...
is stored in a.*)

MIN(<Target_data1>,
<Target_data2>,
<Target_data3>, ...)
*2

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

BOOL,
INT,
UINT,
UDINT,
ULINT,
DINT,
LINT,
WORD,
DWORD,
LWORD,
REAL,
LREAL

Selects the m in-
imum value from
a maximum of
31 data.

a := MIN(b,c,d,
...)
(* The minimum
value of c, d, ...
is stored in a.*)

 Note 1: For MUX, the arguments can be specified up to 31st argument
 (i.e. 30 extraction target data at the maximum).
 2: For MAX and MIN, the target data can be specified from 1st argument up to 31st argument
 (i.e. 31 target data at the maximum).

6-20

OMRON Expansion Functions
Function type Description

Memory Card Functions Functions that write data to Memory Cards
Communications Functions Functions that send and received text strings
Angle Conversion Functions Functions that convert between degrees and radians.
Timer/Counter Functions Functions that execute various types of timers/

counters.

Memory Card Functions
The following functions can be used with CS/CJ-series CPU Units with unit version 4.0 or later, or CJ2-series CPU Units.

Function Argument data type Return
value

data type

Description Example

Write_string STRING
Directory_
name_and_
file_name

STRING

Delimiter STRING

WRITE_TEXT(<Write_string>,
<Directory_name_and_file_
name>,<Delimiter>,<Parame-
ter>)

Parameter INT,
UINT,
WORD

--- Writes a text
string to a
Memory
Card.

WRITE_TEXT(a,b,c,d)
(*text string a is written to a file
with the file name and directory
specified by variable b; if variable
d is 0, the text string is added to
the file along with delimiter speci-
fied by variable c; if variable d is 1,
a new file is created*)

Communications Functions
The following functions can be used with CS/CJ-series CPU Units with unit version 4.0 or later, or CJ2-series CPU Units.

Function Argument data type Return
value

data type

Description Example

TXD_CPU(<Send_string>) Send_string STRING --- Sends a text string to
the R S-232C port o n
the CPU Unit.

TXD_CPU(a)
(*text string a is sent from
the RS-232C port on the
CPU Unit*)

Send_string STRING TXD_SCB(<Send_string>,
<Serial_port>) Serial_port INT,

UINT,
WORD

--- Sends a text string to
the serial port on a
Serial Communica-
tions Board.

TXD_SCB(a,b)
(*text string a is sent from
the serial port specified by
variable b on the Serial
Communications Board*)

Send_string STRING
SCU_unit_
number

INT,
UINT,
WORD

Serial_port INT,
UINT,
WORD

TXD_SCU(<Send_string>,
<SCU_unit_number>,
<Serial_port>,<Internal_
logic_port>)

Internal_logic
_port

INT,
UINT,
WORD

Sends a text string to a
serial port on a Serial
Communications Unit.

TXD_SCU(a,b,c,d)
(*text string a is sent from
the serial port specified by
variable c on the Serial
Communications Unit speci-
fied by variable b using the
internal logic port specified
by variable d*. The variable
d indicates the internal logic
port number.)

Storage_
location

STRING RXD_CPU(<Storage_
location>,<Number_of_
characters>) Number_of_

characters
INT,
UINT,
WORD

--- Receives a text string
from the RS-232C port
on the CPU Unit.

RXD_CPU(a,b)
(*number of characters
specified by variable b are
received from the RS-232C
port on the CPU Unit and
stored in variable a*)

6-21

Function Argument data type Return
value

data type

Description Example

Storage_
location

STRING

Number_of_
characters

INT,
UINT,
WORD

RXD_SCB(<Storage_
location>,<Number_of_
characters>,<Serial_port>)

Serial_port INT,
UINT,
WORD

--- Receives a text string
from the serial port on
a Serial Communica-
tions Board.

RXD_SCB(a,b,c)
(*number of characters
specified by variable b are
received from the serial port
specified by variable c on
the Serial Communications
Board and stored in variable
a*)

Storage_
location

STRING

Number_of_
characters

INT,
UINT,
WORD

SCU_unit_
number

INT,
UINT,
WORD

Serial_port INT,
UINT,
WORD

RXD_SCU(<Storage_
location>,<Number_of_
characters>,<SCU_unit_
number>,<Serial_port>,
<Internal_logic_port>)

Internal_logic
_port

INT,
UINT,
WORD

--- Receives a text string
from a serial port on a
Serial Communica-
tions Unit.

RXD_SCU(a,b,c,d,e)
(*number of characters
specified by variable b are
received from the serial port
specified by variable d on
the Serial Communications
Unit specified by variable c
using the internal logic port
specified by variable e and
stored in variable a*. The
variable e indicates the
internal logic port number.)

Angle Conversion Instructions
The following functions can be used with CS/CJ-series CPU Units with unit version 4.0 or later, or CJ2-series CPU Units.

Function Argument
data type

Return
value data
type

Description Example

DEG_TO_RAD(argume
nt)

REAL,
LREAL

REAL,
LREAL

Converts an angle from
degrees to radians.

a:=DEG_TO_RAD(b)
(*an angle in degrees in
variable b is converted to
radians and stored in variable
a*)

RAD_TO_DEG (argu-
ment)

REAL,
LREAL

REAL,
LREAL

Converts an angle from
radians to degrees.

a:=RAD_TO_DEG(b)
(*an angle in radians in
variable b is converted to
degrees and stored in
variable a*)

6-22

Timer/Counter Functions
The following functions can be used with CJ2-series CPU Units.

Function Argument data type Retur
n

value
data
type

Description Example

TIMX
(<Execution_condition>,
<Timer_address>,
<Timer_set_value>)

Execution_
condition

BOOL None Name:
HUNDRED-MS
TIMER
Operation:
Operates a
decrement- ing timer
with units of
100 ms.

TIMX(a,b,c)
(*When execution
condi- tion a is
satisfied, the TIMX
timer set to timer set
value c in timer
address b is started.*)

Timer_address TIMER

Timer_set_valu
e

UINT

TIMHX
(<Execution_condition>,
<Timer_address>,
<Timer_set_value>)

Execution_
condition

BOOL None Name:
TEN-MS TIMER
Operation:
Operates a
decrement- ing timer
with units of 10
ms.

TIMHX(a,b,c)
(*When execution
condi- tion a is
satisfied, the TIMHX
timer set to timer set
value c in timer
address b is started.*)

Timer_address TIMER

Timer_set_valu
e

UINT

TMHHX
(<Execution_condition>,
<Timer_address>,
<Timer_set_value>)

Execution_
condition

BOOL None Name:
ONE-MS TIMER
Operation:
Operates a decrement-
ing timer with units of 1
ms.

TMHHX(a,b,c)
(*When execution condi-
tion a is satisfied, the
TMHHX timer set to
timer set value c in timer
address b is started.*)

Timer_address TIMER
Timer_set_value UINT

TIMUX
(<Execution_condition>,
<Timer_address>,
<Timer_set_value>)

Execution_
condition

BOOL None Name:
TENTH-MS TIMER
Operation:
Operates a decrement-
ing timer with units of 0.1
ms.

TIMUX(a,b,c)
(*When execution condi-
tion a is satisfied, the
TIMUX timer set to timer
set value c in timer
address b is started.*)

Timer_address TIMER
Timer_set_value UINT

TMUHX
(<Execution_condition>,
<Timer_address>,
<Timer_set_value>)

Execution_
condition

BOOL None Name:
HUNDREDTH-MS
TIMER
Operation:
Operates a decrement-
ing timer with units of
0.01 ms.

TMUHX(a,b,c)
(*When execution condi-
tion a is satisfied, the
TMUHX timer set to
timer set value c in timer
address b is started.*)

Timer_address TIMER
Timer_set_value UINT

TTIMX
(<Execution_condition>,
<Reset_input>,
<Timer_address>,
<Timer_set_value>)

Execution_
condition

BOOL None Name:
ACCUMULATIVE
TIMER
Operation:
Operates an increment-
ing timer with units of 0.1
s.

TTIMX(a,b,c,d)
(*While execution condi-
tion a is satisfied, the
TTIMX timer set to timer
set value d in timer
address c is started.
When the reset input b is
ON, the timer's PV and
completion flag are
reset.*)

Reset_input BOOL

Timer_address TIMER

Timer_set_value UNIT

6-23

Function Argument data type Return
value

data type

Description Example

CNTX(<Count_input>,
<Reset_input>,
<Counter_address>,
<Counter_set_value>)

Count_input BOOL None Name:
COUNTER
Operation:
Operates a decrement-
ing counter.

CNTX(a,b,c,d)
(*The CNTX counter set to
counter set value d in
counter address c is exe-
cuted every time count
input a is turned ON.
When the reset input b is
ON, the counter's PV and
completion flag are reset.*)

Reset_input BOOL
Counter_address COUNT

ER
Counter_set_
value

UINT

CNTRX
(<Increment_count>,
<Decrement_count>,
<Reset_input>,
<Counter_address>,
<Counter_set_value>)

Increment_count BOOL None Name:
REVERSIBLE
COUNTER
Operation:
Operates an increment-
ing / decrementing
counter.

CNTRX(a,b,c,d,e)
(*The CNTRX counter
set to counter set value e
in counter address d is
executed.
The PV is incremented
when increment count
input a is turned ON and
decremented when dec-
rement count input b is
turned ON.
When the reset input c is
ON, the counter's PV
and completion flag are
reset.*)

Decrement_count BOOL
Reset_input BOOL
Counter_address COUNT

ER
Counter_set_
value

UINT

TRSET
(<Execution_condition>,
<Timer_address>)

Execution_
condition

BOOL None Name:
TIMER RESET
Operation:
Resets the specified
timer.

TRSET(a,b)
(*When execution condi-
tion a is satisfied, the
timer in timer address b
is reset.*)

Timer_address TIMER

6-24

	Function Block/Structured Text Introduction Guide
	Introduction
	Contents
	Introduction
	Chapter 1 OMRON FB Library
	1. What is a Function Block?
	2. An Example of a Function Block
	3. Overview of the OMRON FB Library
	3-1. Benefits of the OMRON FB Library
	3-2-1. Example of using the OMRON FB Library - 1
	3-2-2. Example of using the OMRON FB Library - 2

	3-3. Content of the OMRON FB Library
	3-3-1. OMRON FB Part Files
	3-3-2. Library reference

	3-4. File Catalog and Where to Access the OMRON FB Library
	3-4-1. Catalog of OMRON FB Library files
	3-4-2. CX-One installation CD or DVD
	3-4-3. Accessing OMRON FB Library files from Web server

	Chapter 2 How to use the OMRON FB Libarary
	1. Explanation of the target program
	1-1. Application Specifications
	1-2. Specifications of the OMRON FB Part file
	1-3. Input program

	2. Opening a new project and setting the Device Type
	3. Main Window functions
	4. Import the OMRON FB Part file
	5. Program Creation
	5-1. Enter a Normally Open Contact
	5-2. Entering an Instance
	5-3. Entering Parameters

	6. Program Error Check (Compile)
	7. Going Online
	8. Monitoring - 1
	9. Monitoring - 2 Change Parameter Current Value
	10. Online Editing

	Chapter 3 Customize the OMRON FB Part file
	1. Explanation of target program
	1-1. Changing File Specifications
	1-2. Changing the contents of the OMRON FB Part file

	2. Copy the OMRON FB Part file
	3. Add a variable to the Function Block
	4. Changing the Function Block Ladder
	4-1. Entering a Contact
	4-2. Checking Usage Status of Variables

	5. Transferring to the PLC
	6. Verifying Operation
	7. Online Editing of Function Blocks

	Chapter 4 How to use the ST (Structured Text) language
	1. What is the ST Language?
	2. Explanation of the target program
	3. Create a Function Block using ST
	4. Entering Variables into Function Blocks
	5. Entry of ST program
	6. Entering the FB to the Ladder Program and error checking
	7. Program Transfer
	8. Monitoring the Function Block execution
	Reference: Example of an ST program using IF-THEN-ELSE-END_IF
	Reference: Example of an ST Program Using String Variables
	1. Application Example
	2. Interface with the Vision Sensor
	3. Range of Programming in FB (ST)
	4. FB (ST) Program
	5. Example Application in a Ladder Program

	Chapter 5 Advanced (Componentizing a Program Using FB)
	1. Overview
	2. How to Proceed Program Development
	3. Application Example
	4. How to Proceed Program Development
	4-1 Overview of Design Process
	4-2 Extracting Requirement Specifications
	4-3 Detailing Specifications and Extracting Similar Processes
	4-3-1 Creating Specifications for Components
	4-3-2 Example of FB Component Creation

	4-4. Integrating FBs
	4-4-1. Combining Existing Components - DVD_ThickSelectControl
	4-4-2. Adding Functions to Existing Components - WorkMoveControl_LSONcount

	4-5. Total Program Description
	4-5-1. Total Program Structure

	5. Entering FB Definition
	5-1. New Project Creation and PLC Model/CPU Type Setting
	5-2. Creating Ladder Definition FB
	5-3. Entering FB Ladder Program
	5-4. Transferring Program
	5-5. Operation Check-1
	5-6. Operation Check-2
	5-7. Entering/Debugging Other FB Definition
	5-8. Batch Registration to Watch Window
	5-9. Executing Steps using the Simulation Function
	5-9-1. Explanation of the Simulation Buttons
	5-9-2. Setting Breakpoint and Executing Steps

	6. Creating FB Definition Library
	7. Entering Main Program
	8. Debugging Main Program
	Supplemental Information
	How to delete unused Function Block definitions
	Memory allocation for Function Blocks

	Useful Functions
	Command Operand Input Automatic Search and List Display
	FB Protect Function
	Overview of Helpful Functions
	Generating FBs Based on an Existing Ladder Program

	Chapter 6 Advanced: Creating a Task Program Using Structured Text
	1. Description of Program
	2. Creating an ST Task
	3. Registering ST Program Symbols
	4. Entering the ST Program

	Appendix. Examples of ST (Structured Text)
	IF Statement Examples
	WHILE Statement Examples
	REPEAT Statement Examples
	FOR Statement Examples
	CASE Statement Examples
	EXIT Statement Examples
	RETURN Statement Examples
	Array Examples
	Standard Functions
	Numerical Functions
	Text String Functions
	Data Type Conversion Functions
	Number-String Conversion Functions
	Data Shift Functions
	Data Control Functions
	Data Selection Function

	OMRON Expansion Functions
	Memory Card Functions
	Communications Functions
	Angle Conversion Instructions
	Timer/Counter Functions

