CURGIoN SI0GH
Suructurad Taxs
W OEG e Glde

— sainple_ed - La-Hrograminer
Eﬂeﬁiwmﬂﬁﬁrwmlwk!ﬂmﬂeb

[DEE|R (SR 4 BE|2s|(ni% (2R ||sLs
IQO\Q

@ = -lem |‘[§ AR AU | —09@'31&1—'-%

o &@@%a@g

Eﬁ@l_i‘ 89 A % | e

&

= 45 NewProject
=-5R NewPLC1[C51G-H] Monitar Mc
23 Symbols
10 Table and Unit Setup
Settings
E;] Memory card
Error log
PLC Clock
% Memory
= “ Programs
= S ngqraml {00) Runni

1il|lx

al cnaeiri.
1

C\'!hotna o

s 0 i . l"l |
[# NewPLC1.StageA_DYDThickSelect.WorkMove[ActuatorCont... [[=] E3

1tF ActuatorControl
{iF Avgvalue_Thresholdcl

15 ovo_ThickSelectContr (* Counts number of limes opening - Cloging limit switch *) ”ﬂ;"’m«g Lsneg LSpos ActumorPos. .. =
T WorkMoveControl_L5¢ I PreyCyclelS = FALSE and LSright = TRUE THEN - |—+ Act |
LS_ONnumber = LS_ONnumber+1, R
END_IF;
PrevCyclelS (= LSright; (* Copies LSright to compare al next execution *) 0 , MagDielopun L?m\s LSnag Beumtoreg.
— } } Fot
FOR | =0 TO 43 DO Fotumon ‘I
I Valua(l) i= SGRT(Shi(Xvalue()) + COS(Yvalue()): by |
END_FOR; z
| /|
ﬂ = &5 NewPLC1 ﬂl Name Address | DataType [F... | FBUsage | Value | Comment | ;i
| fiF Staged_BoxSelect{WorkMoveControl_LSONcount] 7| StegeA_... HS66.05 BOOL (Onfof... Input 0 Limit switch for acutustor left direction
15 WorkMove[ActuatorContrel] Staged_... HS66.06 BOOL (OnjOf... Input 1] Resets number of times For opening - closing ...
= {iF StageA_DVDThickSelect[DVD_ThickSelactControl] Staged_... HS566.07 BOOL (OnfOF... Output n Output For actuator right direction
fF ovDThickudge[AvgValue_ThresholdCheck] StageA_... HS66.08 BOCL (Onjof.. Output O Output for actuator left direction
4T} WorkMove[ActuatorContral] Staged_... HS67 LINT (Signed ... Qutput oL
| 1) 2 I shul!/\ehut?,\:huﬁ/ | EN L

For Help, press Fi I mcus:motor; - Monitor Mode | 37ms BYNC lrung 0.(0, D) - 90% | =i |

Introduction

-Please be sure to read and understand Precautions and Introductions in CX-Programmer Operation Manual
Function Block/Structured Text (W469-E1) and CX-Programmer Operation Manual (W446-E1) before using the
product.

- This guide describes the basic operation procedure of CX-Programmer. Refer to the Help or the Operation Manual
of the PDF file for detailed descriptions.

- To read the PDF files, you need Adobe Reader, a free application distributed by Adobe Systems.
- You can display the PDF files from the [Start] menu on your desktop after installing the CX-Programmer.
- The screen views used in this guide may be different from the actual view, and be subject to change without notice.

- The product names, service names, function names, and logos described in this guide are trademarks or
registered trademarks of their respective companies.

- The symbols (R) and TM are not marked with trademarks and registered trademarks in this guide respectively
- The product names of the other companies may be abbreviated in this guide.

- Microsoft product screen shots reprinted with permission from Microsoft Corporation.

Chapter 1 OMRON FB Library
1. What IS a FUnCthn Block? ..
2. An Example of a Function Block ==« =« rrmrmrrrmrmr e
3. Overview of the OMRON FB Library =« - crrrrrrrrrmrm s e e
3-1. Benefits of the OMRON FB Library ==« rcccrrrrrrrrrrm s s s s s e
3-2. Example of using the OMRON FB Library == - v rrrrrmrmrmrrrr s
3-3. Content of the OMRON FB Library =« -« - crrrrrrrrr s e
3-4. File Catalog and Where to Access the OMRON FB Library =« -rorrrrrrrrmrrrmm e e e

Chapter 2 How to use the OMRON FB Library

1. Explanation of the target program
1-1. Application Specifications
1-2. Specifications of the OMRON FB Part file
1-3.INpUt Program
2. Opening a new project and setting the Device Type
3. Main Window functions
4. Import the OMRON FB Part file
5. Program Creation
5-1. Enter a Normally Open Contact
5-2. Entering an Instance
5-3. Entering Parameters . .
6. Program Error Check (Compile)
7. Going Online
8. MONItONINg = 1
9. Monitoring - 2 Change Parameter Current Value
10.Online BAItiNg .

Chapter 3 Customize the OMRON FB Part file
1. Explanation of target program
1-1. Changing File Specifications
1-2. Changing the contents of the OMRON FB Part file
2. Copy the OMRON FB Part file
3. Add a variable to the Function Block
4. Changing the Function Block Ladder
4-1.Entering @ Contact
4-2. Checking Usage Status of Variables
5. Transferring to the PLC
6. Verifying Operation
7. Online Editing of Function Blocks

Chapter 4 How to use the ST (Structured Text) language

.Whatis the ST Language? -« oot
. Explanation of the target program
. Create a Function Block using STo
. Entering Variables into Function Blocks
CENtry Of ST program oo
. Entering the FB to the Ladder Program and error checking ~ L
CProgram Transfer ...
8. Monitoring the Function Block execution
Reference: Example of an ST program using IF-THEN-ELSE-END_IF o it
Reference: Example of an ST program using String Variables

Chapter 5 Advanced (Componentizing a Program Using FB)
OV BIVIBW .
. How to Proceed Program Development
CApplication EXample L
. How to Proceed Program Development
CEntering FB Definition
Executing Steps using the Simulation Function
. Creating FB Definition Library
7. Entering Main Program
8. Debugging Main Program

NOoO O WN =

A ON -

[«

Supplemental Information
How to delete unused Function Block definitions/ Memory allocation for Function Blocks/ Useful Functions
Chapter 6 Advanced: Creating a Task Program Using Structured Text

Appendix. Examples of ST (Structured Text) -« -ocovre

Contents

Appendix

Introduction
This section provides information that can be used when creating function blocks (FBs) and using the Smart FB Library by CX-Programmer.

Features of OMRON Function Blocks

OMRON function blocks can be written in ladder language or ST (structured text) language, and conform to the IEC 61131-3 standard. The
function blocks provide functions for more efficient design and debugging of the user equipment, as well as easier maintenance.

| Design > Debugging | Maintenance

!

IEC 61131-3 (JIS B3503) Compliance

PLC Program Development Steps and Corresponding Functions

Smart FB Library

The Smart FB Library is a set of function block elements that improve interoperability between OMRON PLC Units and FA components. If
this library is used, it is not necessary to create a ladder program to use basic Unit and FA component functions. This enables the user to
reduce the time spent on previous task, such as determining how to use the device’s functions.

Online Editing of FB Definitions

FB definitions can be changed during operation, so FB definitions can be edited quickly during debugging. In addition, FBs can be used
with confidence even in equipment that must operate 24 hours/day.

Nesting
Not only can programs be created with nested OMRON FBs, it is possible to make easy-to-understand, stress-free operations by switching
windows depending on conditions and displaying structures in a directory-tree format.

Protecting FB Definitions
It is possible to prevent unintentional or unauthorized changes or disclosure of the program by setting passwords for the function block
definitions allocated in the project file and protecting the definitions based on their purpose.

Offline Debugging with the Simulator

The PLC program’s operation can be checked on the desktop, so program quality can be improved and verified early on. Both the ladder
and ST can be executed in the computer application.

String Operations for Variable Support
The functions that perform string data operations in ST language not only support string variables, they also strengthen the instructions
(functions) used to communicate with string data 1/O.

FB Generation Function
Existing PLC programs can be reused and easily converted to FBs.

Chapter 1
OMRON FB Library

OMRON FB Library

1. What is a Function Block?

“Function Blocks” are predefined programs (or functions) contained within a single program element that may be
used in the ladder diagram. A contact element is required to start the function, but inputs and outputs are editable
through parameters used in the ladder arrangement.

The functions can be reused as the same element (same memory) or occur as a new element with its own memory

assigned.
Partial Ladder program for machine A Defining Inputs and Outputs ...
Input Process (algorithm) Output
Control Device 1 \ Control Device n
X1 Xn
i 2 A A Al A |
- JL) g Bn I L) 4
TIM TIM
1 > n
#0100 #0100
Y1 Tn Yn
_F- '®" — '@ Yn
I ./ - o/
Z1 Zn
() () Zn
\J J \J
Produce template
Partial Ladder program for machine A N
Function Block definition J
Control Device 1 \
Device Control
P On Device Control
EN ENO — EN ENO fum
A1 A X X1
B1 B Y VY1 Allocate to
z bz Ladder 1A X
program
P Sets input / output Function Block =B Y T
ontrol Device
// parameters Instance (call statement)
Z p—
P On Device Control
—— o [3 ENO
A2 MA X X2
B2 8B Y B v2
Z -t 22

Function Block definition - This contains the defined logic (algorithm) and I/O interface. The memory addresses are not allocated in the Function Block Definition
Function Block instance (call statement) --- This is the statement that will call the function block instance when used by the ladder program, using the memory allocated
to the instance

OMRON FB Library

2. An Example of a Function Block

The following figures describe an example of a function block for a time limit circuit, to be used in the ladder. It is
possible to edit the set point of the TIM instruction to reallocate the set time for turning off the output in the ladder
rung. Using the function block as shown below, it is possible to make the time limit of the circuit arbitrary by only
changing one specific parameter.

By enabling the input parameter to

Ladder diagram be editable, it is possible to allow an
arbitrary time limit circuit.
000.0 TIMOQOO ™ ;
il g 0000 [P_On PULSE
#0020] EN ENO
Start Q = 001.00
001'0'0 000.00
001.00 #0020 Time
)
\
Timing chart
_T Start T FB
000.00 — | —H= TIM |
\ 4 T _FB
Time
001.00 Q
< >] }—
2.0 sec Q

A function is also provided to generate function blocks based on existing ladder programs.
For details, refer to Overview of Helpful Functions, Generating FBs Based on an Existing Ladder Program.

1-2

OMRON FB Library

3. Overview of the OMRON FB Library

The OMRON FB Library is a collection of predefined Function Block files provided by Omron. These files are
intended to be used as an aid to simplify programs, containing standard functionality for programming PLCs
and Omron FA component functions.

3-1. Benefits of the OMRON FB Library

The OMRON FB Library is a collection of function block examples that aim to improve the connectivity of the
units for PLCs and FA components made by Omron. Here is a list of the benefits to be gained from using the
OMRON FB Library:

(1) No need to create ladder diagrams using basic functions of the PLC units and FA components
More time can be spent on bespoke programs for the external devices, rather than creating basic
ladder diagrams, as these are already available.

(2) Easy to use
A functioning program is achieved by loading the function block file to perform the target functionality,
then by inputting an instance (function block call statement) to the ladder diagram program and
setting addresses (parameters) for the inputs and outputs.

(3) Testing of program operation is unnecessary
Omron has tested the Function Block library. Debugging the programs for operating the unit and FA
components for the PLCs is unnecessary for the user.

(4) Easy to understand
The function block has a clearly displayed name for its body and instances. A fixed name can be
applied to the process.

The instance (function block call statement) has input and output parameters. As the temporary relay
and processing data is not displayed, the values of the inputs and outputs are more visible.
Furthermore, as the modification of the parameters is localised, fine control during debugging etc. is
easier.

Finally, as the internal processing of the function block is not displayed when the instance is used in
the ladder diagram, the ladder diagram program looks simpler to the end user.

(5) Extendibility in the future
Omron will not change the interface between the ladder diagram and the function blocks. Units will
operate by replacing the function block to the corresponding FB for the new unit in the event of PLC
and the FA component upgrades, for higher performance or enhancements, in the future.

A fixed name can be named to the processes.

Current TemparatureOfHaater
EBx202 ReadP EJ\ It is not necessary to create the basic ’

it fpon ®3§__ communications program.
100,01 g0 |gm (BopL) W

&1 | E[TD'JJ{RJD (BO%H% | W 0002

&2 | SFEPD (BO% | Wwioo0n3

&2 (DIT\FG D100

INPUT/OUTPUT data is clear.
Parameters are easy to understand and edit.

OMRON FB Library

3-2-1. Example of using the OMRON FB Library - 1

Controlling the predefined components made by Omron can be easily achieved from the PLC ladder diagram.

- Ability to configure low-cost communications (RS-232C/485)

CS/CJ Series "l FB Access by Function Block
PLC

Example: Communication between
Temperature controller and PLC

CurrentTemparatureOfxHHeater
_EBxx202_ReadPV

Wi 00.00 oL B
e & el
Wi 00.01 &10 | gm’%e‘ect (Eé'])%\}; | W00

&1 | gglrmo (EO%LE | Wil00.02
&2 | %F?o (EO% | W100.03
R . LTS OGO

Serial communications (Compoway/F protocol)

—
- o ollo
=25 : S [loooD
Temperature a . O |:| X
controller } Vi —
Smart sensor [1 In ision sensor ER

Omron Components |

1-4

1-5

3-2-2. Example of using the OMRON FB Library - 2

High performance communications can be made by DeviceNet level.

- Ability to communicate between PLC and DeviceNet slaves easily.

OMRON FB Library

CS/CJ series
PLC

Example: data exchange between

! PLC and the slave devices

Access by Function block

Communicate between
PLC and the devices

DeviceNet

Witz nn

—i
I Wiz &1 j

B3

O T besdlon:
Dret204 GrtNTime Py

ﬁIJL)
ﬂﬂ?« Unith
ikina

e
i
R
SN
gy

i
Fror

H
Explhcnbmor

wigz0

W

W0

min

h Generic slaves such as |10 terminal PLC

Inverter

Wireless

Temperature

controller

Eu=

3-3. Content of the OMRON FB Library

The OMRON FB Library consist of the following:

3-3-1. OMRON FB Part Files

OMRON FB Library

The OMRON FB Part file is prepared using the ladder diagram function block, for defining each function of
the PLC unit and the FA component.
The files contain a program written in ladder diagram and have the extension .CXF.
The file name of the OMRON FB Part file begins with *_’ (under score).
When the OMRON FB Library is installed onto a personal computer, the OMRON FB Part files are

classified in the folder appropriate to each PLC Unit and FA component in the Omron Installation directory.

File

O Back - J

Edit View Favorites Tools

? / Search I

~ Folders E'

Address | [C:\Program Files\OMRONICE-CnelLib\FBL|amranliblPLCiCPU

Folders

|5 C¥-Programmer
) Cr-Protocol
I0) C¥-Sensar
) C#-Therma
) FP Auto-Builder
=) Lib
= I FBL
= I3 omronlib
5 (3 CodsReader
) DigitalTypeSensor
) Inverter
() LaserSensor
= 3 PLC
2 card
=gl
oEN
CHETM
I 5
3 umIT
[PositionController

0 E

~
v

X

Name:

| =] _cruooi_te_Beoio.cxf
_CPUID01_TP_BCD, pdf
_CPUDOZ_TP_BIN1O.cxF
_CPUIDDZ_TP_EIN. pdf
_CPUIONS_TOM_BCD10,cxf
_CPUIDOZ_TOM_BCD.pdf
_CPLID04_TOM_BIN10.cxF
_CPLION4_TGOM_BIN. pdF
_CPUIDOS_TOF_BCD10.cxF
_CPUIDOS_TOF_BCD, pdf
_CPUOOSA_TOF_ECD10.cxf
_CPUDNSA_TOF_BCD.pdf
_CPUID0G_TOF _BINL0,Cxf
_CPUDOG_TOF_BIN. pdf
_CPUID0GA_TOF_BIM1D, cxf
_CPUON&A_TOF_BIM.pdf

<

el FIEYENEVEY Y EYEY Y EYEY Y E Y EUEY B EEY

_CPUNO7_MakeClockPulse_BC...
_CPUOD7_MakeClockPulse_BC, ..
_CPUINNG_MakeClockPulse_EL...
_CPUNNG_MakeClockPulse_BI...

Size
ZKB
94 KB
ZKB
92 KB
ZKB
94 KB
2KB
92 KB
ZKB
96 KB
ZKB
95 KB
ZKB
97 KB
ZKB
93 KB
ZkB
7o KB
ZKB
TSKB

Help

A E’Go

Type

CHF File
FDF File
CHF File:
FDF File
CHF File
FDF File
CHF File
PDF File
CHF File
FDF File
CHF File:
FDF File
CHF File
PDF File:
CHF File
PDF File
CHF File
FDF File
CHF File
FDF File

~

3-3-2. Library reference

The library reference describes the operation specifications of the OMRON FB Part file, and the specifications
of the input and the output parameters for each. The file format for this is PDF.

When the OMRON FB Library is used, the user should select the OMRON FB Part file, set the input / output
parameters, and test the program operations referring to the library reference.

B
2

| Read Data Carrier Data _V60x200_ReadData

FH name

_VE00_ReadDala

Symbol

S tigger

1+
UnitNo. —|

BusyFlag
Head No. —|
Data Camier read address —|
Bites to mad fom Data Camer —|
Fead deta storage area hpe —]|
Fead data storage word address —|
Communications designation —]

Processing designation —|

Cancel —|

G000 _Fiead Data
(BODL)
END
(B00L)
BUSY
(B00L)
0K
(BO0L)
HE
(W ORCY
EmorCode

Carrlersddress
OF:
FeadBytes

(NTY
Commurications
(INTY

Byt Order
(B00L)

Cancel

|— Busy Aag

|- Erorend
| Erorcode

[— Homnal end

(hitaybe omitted)

File name

¥LIBEFBL¥E nglish¥ommmnlib¥RFIDeYAO0E VEKZ00_ReadDatal D.oxd

Fpplicahle
models

CETW-YED0CTINVEDNCT 2 and CITIN-YBOOC1TA/B00CT 2 1D Sensor Units

Basic function

Reads data fram a Data Carrier.

Conditions for
usane

Other

made]

+ This FB cannot be executed ifthe ID Sensor Unitis busy. The NG Flag will turn O if an atternpt is

Funclion
description

Drata is read from the specdified area of the Data Carder spedified by the Uit Mo, gnd, Vendor No
Upto 3048 bytes {1024 words) can be read at one time.
The ward designation for storing the data is specified using the area type and heginning word address. For
example, for D1000, the area type is setto P_DM and the beginning word address is setto 81000

ERnput
condition

output frorm the FB.

Connect ENTo an OR Retween an upwardly diferentiated condifion for the starf rigaer and the BUSY

Resirclions
Input
wariahles

CW-vannc11)

+ Always use an upwardly differentiated condition for EN
+ ITthe input variables are out of range, the ENO Flag will turn OFF and the FB will not be processed
+ Always specify a head nurmber of &1 for One-Head ID Sensor Units (CS1W-¥B00C11 and

1-7

OMRON FB Library

3-4. File Catalog and Where to Access the OMRON FB Library

3-4-1. Catalog of OMRON FB Library files

Type Target components

FA components Temperature controller, Smart sensor, ID sensor, Vision
sensor, 2 dimensions bar code reader, Wireless terminal, etc.

PLC CPU unit, Memory card, Special CPU IO unit (Ethernet,
Controller Link, DeviceNet unit, Temperature control unit),
etc.

Motion control Position control unit, Inverter, Servo motor driver, etc.

components

3-4-2. CX-One installation CD or DVD

OMRON FB Library is contained on the same install CD or DVD as CX-One.
Installation can be selected during CX-One installation.

Install CD or DVD

3-4-3. Accessing OMRON FB Library files from Web server |

The latest version OMRON FB Library files are provided by Omron on the Web server.
New files will be added to support new or enhanced PLC units and FA components.
The download service of the OMRON FB Library is provided as a menu on our Web site.

Web server

The internet

EEEEEEEEEEEEEEEEEEEEEEEEEEENEEEENEEED

Chapter 2

Offline Operation

Explanation of Opening a Import Creating a Program Check

target Program new project FB Library program

1. Explanation of the target program I

This chapter describes how to use OMRON FB Library using the OMRON FB Part file ‘Make ON Time/OFF
Time Clock Pulse in BCD'.

1-1. Application Specifications

The target application specifications are as follows :-
- Pulse is generated after PLC mode is changed to‘run’ or ‘monitor’ mode.
- Output the pulse to address 1.00.
- On time of generated pulse is set at D100.
- Off time of generated pulse is 2 seconds.

1-2. Specifications of the OMRON FB Part file

The OMRON FB Part file ‘Make ON Time/OFF Time Clock Pulse in BCD’ has the following specifications:-

CPU Make ON Time/OFF Time Clock Pulse in BCD
oy CPUQ07_MakeClockPulse_BCD

Basic function | Generates a clock pulse with the specified OM time and OFF time and outputs it to ENO

ikl Amays ON (PO _CPLOD?_MakeClockPulse_BCD
(BOTLY (ROOL 40
OMtime (unit: 100 ms) —| gﬂuﬂm END
OFFtime funit: 100 ms) —| &EE;)
OfiTime
File hame ¥LikREFBEL¥E nglisheeaminlibePLCECPUE CPUO0OT_MakeClockPulse_BCD10.cxy
Applicable TS1-H, GE1-H, and CJTM CPU Unis
models
Condiions for | PLGC Properties
usage « The PY update method for timers and counters must be setto BCD in the PLC Setup

A compiling error will occur if BCOmode is not set.
The mode can be set in the PLC Properties in the Cx-Programmer.

PLG Properties =
ﬂ @eneral | Protection | Function Black |
~ Made
bame: BEIRFCT Progam
Type: CS1G-HGPUM Werify) Diebiue
'z o

7 Use section markees L

7 Display dislog to show PLG Memory Backup Status
¥ Use JR/DRs independently per task

I™ Execute Timer/Counter as Binary

Shared Resources

« Timers
Function ENO will he OFF for the fime setin OFF lime and then will be OMN for the fime setin D& iime.
description
EN oH
L I
OnTime (100 ms)
—
END oM
L [I [N
e :
OtfTime (100 m=)
EM nput Connecithe EN inputfo the Always ON Flag (F_On).
condition
Restrictions + Ifthe input variables are out of range, the EMC Flag will turn OFF and the FB will not be processed
Input + Setthe QN time and OFF time input variahles to between #0000 and #9359 in BCD {100 ms units). Ifa
variahles selting is notwithin range, ENO is turned OFF,
Application In the following example, bit A will be repeatedy ON for 5 s and OFF for 35
eremnls Huags ON(P_Cn) _CRUIO0?_hake Clock Pulse_BED B s
| b (i) (BOOL)Y 40
Ofitiwe fioit: 100ms) _| EN END
50
OFFtiwe gt 100as) _| prting
#30 | pORD)
OffTime
Related FBs Usa the correct FB for the imertounter PY update mode setin the FLC Selup
Bihary mode:
Make 0N TimefQFF Time Clock Pulse in Binary (_CPU00E_MakeClockPulse_BIN)
BCD mode:
Make Oh TirmefJFF Tirme Clock Pulse in BCD { CPUODT MakeClockPulse BCDY
m Variable Tables
Input Variables
Name ariable name Datatype | Default_| Range Descripfion
EN EM BOOL 1 {0N): FB started
0 (OFF): FB hot started.
QM time OnTirne WORD #0000 to Specify the ON time {unit: 100 rmsh.
#9993 For example, #30 means 3 seconds.
OFF time OffTirme WORD #0000 ta Specifythe OFF tirme {unit; 100 ms)
#9999 For example, #30 means 3 seconds.
Output Variables
Name [Variable name [Datatype [Range [Descripfion |

2-1 ENO | ENO | BOOL [| Tutns OM for the OnTirme and OFF for the OffTifme. |

Explanation of Opening a Import Creating a

target Program new project FB Library program

1-3. Input program |

Create the following ladder program:-

g o [Programm Matne : MeswProgrami]
[Section Mame : Sectiont]
‘Worklnput TimingGenerator
_CPUOOY _MakeClockPulze _BCD
P_on [BOOL) (Bl 1.00
|} ERl ERIC 7y
Alvways OM Flag
00 MAORD
JonTime
i ’ #10 (WORD)
JffTime

[Reference] If created as a straightforward ladder diagram, the program would be as below:-

2 Wo.0o TOoo

7 { 11
Check Ob time... [O time timer

TirA

oooo

#O020

TOoo

|
1T
OFF time timer

TirA

0o

D100

1.00

Timer

QFF time
Timer nui

Set value

Timer

O time t
Timer nui

O time
Set value

Generate

Offline Operation

D Program Check

2-2

Offline Operation
Explanation of Openmg a Imp_)ort Creating a Program Check
target Program new project FB Library program

2. Opening a new project and setting the Device Type |

Click the toolbar button [New] in CX-Programmer.

I CX-Programmer
Eile Wiew PLC Tools

ok O] oo ([D) W [| G 2 e
It 035 25
e xa s

UGG

Change PLC %]

T EEEEEER] Y QevicENam
Iz |

Click the left mouse button. seeeett Newrl®ea, -
..o" ° Device Type e o N7
= o 5 €]
i~ Network, Typs ...
IToo\bus ‘_'_f Settings. |
I To use Function Blocks, select the following PLCs: ,-’.
CJ2H, CJ2M, CJ1H-H, CJ1G-H, CJ1M, CS1H-H, ~ Comment -

CS1G-H, CP1H, CP1L, CP1L-E

lU Settings... |
Click the left mouse button

Device Type Seltings [CJ1M] X

v ool Frnmal|

Click the left mouse button L

to select CPU type. Leett (cpu Tipe * e,
=)

Expansion Memor ‘

’7 MNone - I™ Fead Only
"Fi\e temor

@ MNone - ™ Read Only
Make Default |

Timer / Clock
—I eeccssccccccscccccsdeccccccce ancel Help |

I# Install=d
Click [OK] to decide
the selected CPU type.

Total Pragram Area Si

B [Step) - I~ Read Only

Title bar

M Untitled - CX-Programmer - [NewPLC1.NewProgrami.Sectionl [Diagram]]
@E\Ie Edit Wiew Insert PLC Program Tools Window Help

3. Main Window functions |

The main window functionality is explained here.

=181 x
=181 x|

Ded Rk reeaclave(erassaln iE(e2E DR ||

Menus

sxaSEmERErruw | —osaatl k|[Beasean

®IEEE |

EREEEIEEEEET

Tool bar

(i

" .ﬁ"ﬂ 0

Project Tree & settings

< Ml

Section

]

Function Block Definition

5 BB MenPLC1[C516-H] Offine
5 symbols

AF Function Blocks

= o [Program Mame : MewProgram]
[Section Mame : Sectiont]

Table

mory H ‘

B % Programs 0T weeeeereneceresnonen >
5

MewPrograml (00)
o umbe

[»]

1« | _>l;I

\ Proiect /
Status bar | For yessﬂ

Project Workspace

x4 Mame: 7 Address or Yalue: | Comment: |
[/ [[rung 0 (0, 0) - 100% [o
Ladder Window

Name Contents / Function
Title Bar Shows the file name of saved data created in CX-Programmer.
Menus Enables you to select menu items.
Toolbars Enables you to select functions by clicking icons. Select [View] -> [Toolbars], display
toolbars. Dragging toolbars enables you to change the display positions.
Section Enables you to divide a program into several blocks. Each can be created and

displayed separately.

Project Workspace
Project Tree

Controls programs and data. Enables you to copy element data by executing Drag and
Drop between different projects or from within a project.

Ladder Window

A screen for creating and editing a ladder program.

Function Block Definition

Shows Function Block definition.
By selecting the icons, you can copy or delete the selected Function Block definition.
- ¥ is shown if the file is a OMRON FB Part file.

- In the case of a User-defined Function Block, is shown if Ladder, g5Fis shown if ST.

Status Bar

Shows information such as a PLC name, online/offline state, location of the active cell.

2-4

Offline Operation

Explanation of Opening a Import il & D Program Check

target Program new project FB Library program

4. Import the OMRON FB Part file |

Select Function Block definition icon from the project tree using the mouse cursor, right click.
Select Insert Function Block, then select a Library file using mouse to navigate.

Lt g s e
—_% MewProjeck

- @E MewPLC1[CILM] Offline [Section Mame : Sectior
=4 Symbols

R

@ 10 Table and Unit Setup
Settings
G:? Memory
B % Programs
- @ MewPrograml (00)
= symbols

R

Click mouse right button f Section1
— Insert Function Block -E:F 5 EnD

R R

i
2
&
=
2
&
=
2
o
2
&
b
£

R

FEFEFFFF PP FFN PR

— From File... i p
Insert Function Block L4 Ladder

4EF Structured Text

—

Select Function Block Library File 21x|

FEL =l & ® ek E-

Double click mouse left button.
— [OmronLib]

— [Programmable Controller]
— [CPU]

Select each of the above in
series.

) Select the necessary OMRON FB
Double click mouse left button Part file in the ‘Select Function
Block Library’ dialog.

' The default path of the OMRON FB Library is

[:j Fogre | o= | C:\Program Files\Omron\CX-One\Lib\FBL.
@ Files BF type: IFuncliUn Elock. Library Files[*.cxf] j Cancel |

A
\ 4
2]

Look in: I@CF’U j L] ot BB~
Left Click R~ T T) |
‘ CPU007_MakeClockPulse @] _cPunoz_TP_BIh.cxf = S
_BCD.cxf [#] _CPUIO0G_TOM_BCD.cxf _CPUD10_SendData.cxf

] _CPLIOD4_TON_BIM.cxf _CPUDLL_RerieveData.cxf
Left Click the [Open] button =] _CPUOOS_TOF_BCD.cxf] _cPuniz_sendCommand. cxf

[=8] _CPUOOE_TOF_BIN.cxf _CPUOL3_PMCR. cxf

o | i

File name: I_EIF'UDD?_MakeEIoc:kF'uIse_BED.cxf Open I X - i

! You can easily check specifications of
Files of type: | Function Block Library Files(.cf) 4| Cancel | OMRON FB part files by selecting

z registered OMRON FB part files and [FB
Library Reference] from a pop-up menu

Function Block definition © CPU007_MakeClockPulse BCD’ and showing alibrary reference file.

is registered as part of the project file. =-IF Function Blocks |
. . . - Open
E% Programs Save Function Block to File. .
E% MewPrograml {00} £ Comple
% S}.-'ml:u:lls Goto RUng/Step.. .
@ Sectionl & cu
@ END B2 Copy
E EEaste
4 Delete
Function Block Definition ¥ CPUDO?_MakeClockPulse BCD A

FE Library Reference

2-5

Offline Operation

Explanation of Openlng a Import Creating a Program Check
target Program new project FB Library program

5. Program Creation |

Confirm cursor position is at the upper left of Ladder Window to start programming.

T Untitled - CX-Programmer - [NewPLC1.NewPrograml.Sectionl [Diagram]] - Dlll
File Edit Wiew Insert PLC Program Tools Window Help =

DFE(R(@R(s2moc avs|ee||lersaon b E|e s
a O Q |[i[=]iz sl e [AF v ueap | —-O-Qﬁ'ﬁvEl—MHJ@%I@lﬁiHZI'@aﬂ
HEEEEIEEEE T

x| o I[ProgramNamc:Nchrogramﬂ A

[Section Mame : Section]
0ovUCO0L

E-% MewProject
=B MewPLC1[CS1G-H] Offline
P53 Symbols
7 10 Table .
5| Settings 5
: @ Mermory °
E% Programs it e
E‘a MewPrograml {00}
= Symbols
- Fg Sectiont
L EMD
E‘ﬁ Function Blocks
-0 _CPUODT_MakeClockPulse_BCD L |

-
141 | 3
Project / x| o Mame: | Address o Yalue: Comment:

For Help, press F1 | |NewPLC1 (Met:0, Node: 03 - GFfline [| frungo(o, 0 7

5-1. Enter a Normally Open Contact |

eeesseccsssee Press the [C] key on the keyboard to open the [New Contact] dialog.
Use the dropdownbox to select the “P_On” symbol.

I:j -] |- New Contack x|
P On 000000 T, ‘@ j Dgtail}}l Eancell

Deleting commands

e Move the cursor to the command and
then press the DEL key or
Always ON Flag « Move the cursor to the right cell of

| et the command and press the BS key.

“P_On” is a system defined symbol. Its state is always ON.
0 of the upper digit of an address is omitted when shown.
[.] (period) is displayed between a channel number and a relay number.

2-6

Offline Operation
Explanation of Openlng a Import Creating a Program Check
target Program new project FB Library program

5-2. Entering an Instance |

eecceeece Press the [F] key on the keyboard to open the [New Function Block Invocation] dialog.

Mew Function Block Invocation Kl

Enter text to create an FB FB Instance: Il = o |
(iR FB Defirition: |_EPunn?_MakemuckPmse_B@ Cancel |

-
[L Applies a name for the specific

process in the diagram.

eeccseeeccs Shows FB call statement ‘WorklnputTimingGenerator’.
a

(| =

0 [Program Mame : MewPrograrm]

[Section Mame ; Section]

P
FP_On
—

Alweays ON Flag

U B g

5-3. Entering Parameters

P_On (BOOLY
ER

Alvvays OM Flag

RO
n S ENT Snime’
JOfiTime
A |
xq
di0oo j Dgtail>>| Eancell

=

Move the cursor to the left of input parameter.

(U

Enter the address.

[d100] |

{

P_Cn (B
EM
Alaeays OM Fla
ENT Y ? Choose an address for the input
0100 MWIDRDY parameter ‘OnTime’.
=nhme. JonTime
2-7

Offline Operation

Creating a D Program Check
program

Explanation of Opening a Import
target Program new project FB Library

Enter the remaining parameters in the same way.

‘Wiarklnput Timing Generatar

_CPUOCT _MakeClockPulse BCD

P_on (BOOL) (BOOL)
EN EMG |-

Alweays ON Flag

D100 CWORD)
onTirme q@nTime

ENT

Q

{

x
#10 _I

710 =] Detsit>> [0k | Cancel
: Please add the following prefix for
- entering constants as parameters:
ENT “#” (Hexadecimal/BCD)
‘Wiorklnput TimingZenerator Or
I:j _CPUOD? _MakeClockPulze_BCD “‘&” (Decimal)
P_Cn (BOOL) (Bl
|| Enl Rl
Alveays O Flag
u 00 WWORD
onTime -CnTime
#10 AMORD!) ¢
Ij JotTime

x
1.00 |'|.|:IE1 j Dgtail>>| Eancell

=l
[Generated Pulse] I-I'I:":I IGEF'E“E"tE':| pulsd] = 4 I Cancel |

Workinput TimingGener ator

{

{

ENT _CPUNDT _MakeClockPulse_BIGEs b vesressesnsssnasssnnssnsansannans .

F_On (BOGL) (BOCL) 1.00
EN

EWO " Genersted Pulsé

11
1T
Always O Flag

D100 WORD
2nTime -=nTime

#10 (WCIRD

J O Time

Explanation of

target Program

Click @ ooooooooooo-odns\oqo‘gg:

—
—

If program errors are detected,
errors and addresses are
displayed in the Output Window.

—

Double-click on displayed errors,
and the Ladder Diagram cursor
will move to the corresponding
error location, displaying the error
rung in red.

Modify the error. I

2-9

Offline Operation

Openlng a Import Creating a Program Check
new project FB Library program

6. Program Error Check (Compile) |

Before program transfer, check for errors using the program compile.

9 Untitled - CX-Programmer - [NewPLC1.NewPrograml.Sectionl [Diagram]]

@ File Edit Wiew Insert PLC Program Toolk ‘Window Help

DEE R(SQA[+BR 2 ayD

eR|asEan|ln|pga

ST S R AT e oe e 1 e c0tpr B omese e
CRRRE (w2 EEE| LS.
zlx| o .
E% rY—— o [Program Mame : NewProgrami]
EI@;E MewPLC1[C51G-H] Offline [Section Mame : Section]
: =] Symb.ol.s

=

Untitled - CX-Programmer - [NewPLC1.NewProgram1.Section1 [Diagram]]

=10j x|

@File Edit wiew Insert PLC Program Tools Window Help

18 x|
DEEE[ER[s me|o: nu%(er[22880 1 Bl (a2 EEERE L u|a s
aoQlilgizmER[trnirw | —opEEEL || Sm(u s BEEED
LEFAE c=F]S %%

=l fo [Program Name : NewProgram] =
-5 MewPraject 0
BB NewpL1[C516-H] Offiine [Section Mame : Section]
Symbols
§7 10 Table WiorkinpuUtTimingGenerator
Settings
< Memary _CPUODT_MakeClockPulse_BCD
=% Programs 5 6n (0oL (BOGL) 100
: E@ NewProgrami (00) — | EM EMO G
Abwways OM Flag
i Diog WORD)
: onTime -{@nTime
=3 F Funckion Blocks
¥ _CPUN07_MakeClockPulse_BCD o woRD)
IoitTime
noon A oo had
14 | ,
' Projsct f = 4G5 Mame: [P_on Address or Value: [CF113 Comment: [Always OM Flag

[Section Name : Gectioni | =N
wiANING: Duplicated output - OUT 1.00 &t ung 0(6. 1)

WARMNING: Duplicated output - OUT 1.00 at ung 1€, 0

[Section Name : END]

[PLC/Program Mame : NewPLC1/_CPUOO7_MakeClockPulse_BCD]

MewPLLCT - 0 ermors, 2 wamings.
The programs have been checked with the program check option set ba Unit Yer, 3.0,

T[] [FI], Compile A Find Freport j Transter 7. el |)

For Help, press F1 [[MewPLC1{Net:0, Node:0) - Offine

[rung 0(0, 1) - 100% Iz

(=40 Function Blocks
4 _CPUDD7_MakeClockPulse_BCD

Tl

Froject | AI[EEEE Mame: Hlue: [1.00 Comment: |Generated Pulse
2I[TEeion Hame : Section] =]
| WARNING, Duplicated output - OUT 1.00 ot nung 06, 1
1 & ;

[
[PLC/Program Name : NewPLC1/_CPUN07_MakeClackPulse_BCD]

NewPLCT - 0 enors, 2 wamnings.
The programs have been checked with the pragram check option set ta Uit Yer 3.0,
I] & | # 1% Compile A Find Report A Transfer

et 3]

[rung 1 6, 0) - 100% Iz

Far Help, press F1 [[MewPLC1{Net:0,Node:0) - Offline

e Output Window automatically opens at program check.
e The cursor moves to an error location by pressing J or F4 key.
e Output Window closes by pressing the ESC key.

Online Operation

Online Monitorin Online
to transfer 9 Edit

7. Going Online

CX-Programmer provides three methods of connecting, depending on usage.

Normal online. Enables you to go online with a PLC of the device type and method specified when opening a project. I

Auto online. Automatically recognizes the connected PLC and enables you to go online with a PLC with one button.
— Uploads all data, such as programs, from the PLC.

L] [[=]

Online with Simulator. Enables you to go online with CX-Simulator with one button (CX-Simulator must be installed.)l

Online/debug functions when working online with CX-Simulator are

explained in this guide (Install CX-Simulator separately). el
N\ =8|

DedRoR|sse2z [anktw]aksd) roz s TEEE sl

a o Q [[E[ST eliE e & Ar g el 2 |Z2e@wmws e BEER |
R e T

| L)
CIICk % wunn® =" e == |El a ‘i[Program hame : MewPragraml] j

=

Program transfer starts.
x|

Program Downlaad to PLC NewPLC1

v &

Transfering programs..
Biyte 43736 of 59364
Downloading...

CX-5im o1 [

= 1 i 3 4 9])

[ewPLC1.NewProgram1.Section [Diagram]]

ion Tools ‘Window Help

S [#h D 7N e W | By T M AR 2.8 2
The CX-Simulator Console IRl EN =l L L ke = = i = A A = ! BE E2
box is shown. dh 2 EE | 1858 BEE LR BN ML

FyTe— [Program Mame : NevwProgram] The background color of
= jewiProjert .

= NewPLCL[CI1M] Manitor Mode: [Section Mame : Sectiont] tl’;]e Ladd?r Window

1 smbols changes to gray.

@ 10 Table apd Unit 9 gray

Settings| .
Bl The operating mode of _CPUONT_MakeClockPulse_BCD

[BO0L) [BoOLY 1.00
EN ERO

WorklnputTimingGensrator

Generate

=-%4 Programs
D100 RD;
=g MewProgram! (00) Rur St me
S Symbals 0000 Hex
3 Sectionl

#0 [WORD)
B e DFFTime

=-TF Function Blocks
& _CPUOD7_MakeClockPt

Scan time is displayed
(except during Program Mode).

< | BRI
Praject s Name: Axddress o Value: d B
For Help, press F1 MewPLC 1{Simulator) - Monitor Mode 13.7ms SVMC rung 1 (0, 0) - 100% 2'10

Online

to transfer

8. Monitoring - 1

Online Operation

Change the PLC (Simulator)
to Monitor mode.

The on/off status of contacts and coils can be monitored.

CI|Ck %l eeccee

% Untitled - CX-Programmer - [[Stopped] - NewPLC1.NewProgram1.Sectionl [Diagram]] ;lilll

Y File Edit Wew Insert PLC Program Took Window Help N =&l x|
Fro e i e < B p vo i o oe e gy ¢ 3 S0 0 Qo WD 2000 cubbe ol olp o e B oo e e T ETRL
aoQEskEmERGrwirw | —ogeaEL k|G S w5 w T E |

EEEIEEE Y

= |D

| =g

~ -

CX-Programmer v9.4

A

Make sure that there aren't any problems if the PLC is started.
Do you wish to switch the PLC into Monitor mode?

-

Click [Yes].

=

a |i [Program Mame : MewProgram]

If your program has a large volume of data,
the scroll speed of the screen may become
slow when monitoring.

To resolve this, click the icon below to cancel
monitoring, scroll to the address you want to
monitor, then restart the monitor mode.

T

.-+ toggles PLC monitoring on/off

= Untitled - CX-Programmer - [[Running] - NewPLC1.NewProgram1.Section1 [Diagrar 1]]

@Eﬂe Edit Wiew Insert PLC Program Simulation Tools Wwindow Help

D R &k # [OR 4 = Mt Na -
a0 Q IS TR BEE A EY | — o Tk (B Sy E EE
DEBEROE =B EE L 8L8 BE =B G BN

The monitored area is

For Help, press F1

- Zlxl fo 0 [Program Mame : MewPrograim] . . . |
= & Hewrroject displayed in a specified T
= B2 NewPLC1[CI1M] Monitor Made [Section Name - Section] I
S Symbols color.
@7 1 Table and Unit Setup WorklnpulTimingGenerator
Settings
Wemory card _CPUDDY _MskeClockPulss_BCD
i Error log F_on (Bo0L) (BOOL) 1.00
PLC Clock. EN EMNG Generate
<t Memary Blyvays OM Flag
= % Proarams
D100 RO L
= @ NewProgramn] (00) Rur ,g/r\d,?imej
) Symbals 0000 Hex
& Fectionl ———
(WORD)
@ eno JOFFTime
=1 TF Function Blocks
I _CPU0T Maked)
The current values of
parameters are shown.
< (I KT 10|
Project 3] Name: Address or Yalue: Camment:
MewPLC1(Simulator) - Monitor Mode: 13.7ms [SYNC rung 1 (0, 0) - 100%

2-11

Online Operation

Online Monitorin Online
to transfer 9 Edit

9. Monitoring - 2 Change Parameter Current Value

Change the current value of contact/coils or word data in the Ladder Window.

Workinput TimingGenerstor

_CPUDO7_MakeClockPulze_BCD

[BOOL) (BOOL) 1.0
Enl ENC

. E [WORD)
Move the cursor to the input ******* : onTime & HOnTime
parameter ‘D100, i 0000 Hex I

#10 MMORD)
JCffTime

Click mouse right button and
select the menu item

[Set/Reset(S)]
— [Setting Value (V)] ’

Or

A 4

Double click mouse left button. Change the current value of Input

parameter.
Set New Yalue x|
A
addess |70 b > Click [Set] |
Or
Diata type: IUINT / j Cancel |
ENT Ve [Please add the following prefix for
N entering constants as parameters:
#0 to BFFFF [1CH] “#” (Hexadecimal/BCD)
Or
“&” (Decimal)

(U

-

‘Wiorkinput TimingGenerator

_CPUO0Y _MakeClockPulse_BCD

P_on (BOOL) [BOOL) 1.00
} | EM Emi '
Alveays OM Flag
E g} AQANORLY
é onTime ; OnTime
o O020Hex =
#0 MAORDY
JOffTitme

2-12

Online Operation

Online Monitorin Online
to transfer 9 Edit

10. Online Editing

Move the cursor to the rung eeeee
requiring modification.

You can also select multiple
rungs by using the Drag & Drop
facility with the mouse.

—

Select [Program] — [Online Edit]
— [Begin]

e0eccccccccccccccccecccn,
o
SermttTE T e e e e ey

Shortcut: [Ctrl]+[E] i
0 [Program Mame : MewProgram1]
[Section Mame : Section1]
esesesessale,
Move the cursor to the coll R |00 C0 dosesesescsesocenn :
. .
you want to modify. Double Alvays ON Flag : :
click the left mouse button. o100 ° [
onTime
0020 Hex

Double click

UG

Select [Program] — [Online Edit]
— [Send Changes]

Shortcut: [Ctri]+{Shift]+[E]

2-13

Chapter 3

the OMRON FB Part |

3-1

Explanation of Change of
target Program D Sepiic el D FB Definition

1. Explanation of target program

This chapter describes how to customize the OMRON FB Library using the OMRON FB Part file ‘Make ON
Time/OFF Time Clock Pulse in BCD'.

1-1. Changing File Specifications

The OMRON FB Part file ‘Make ON Time/OFF Time Clock Pulse in BCD’ is designed to repeatedly turn off
the ENO for the specified OffTime (unit: 100 msec) and on for the specified OnTime (unit: 100 msec). In this
example, the OMRON FB Part file will be changed to output an invert signal by adding the output parameter
‘INV_ENO'.

EN ON

OnTime(*100ms) i
ENO ON ‘

oFF_ [| | | |
: SffTiméﬂOOms)

INV_.ENO ON -
OFF |

i
i

1-2. Changing the contents of the OMRON FB Part file

To satisfy the requirement described above, the following changes must be made to OMRON FB Part file
‘Make ON Time/OFF Time Clock Pulse in BCD’
1. Add an output parameter ‘INV_ENO’.
2. Add ladder program to output the ENO for inverting the signal.

Caution

In particular, when you customize OMRON FB parts, read CX-Programmer Operation Manual: Function
Blocks and Structured Text before customization to sufficiently understand the specifications of the FB
function. After customization, further, please be sure to sufficiently verify the operation for the created FB
definitions before proceeding with the actual operation. OMRON cannot guarantee the operation of
customized OMRON FB parts. Please note that we cannot answer the questions about customized
OMRON FB parts.

Explanation of Change of
target Program D ey OFlFE P D FB Definition

2. Copy the OMRON FB Part file

Import the ‘Make ON Time/OFF Time Clock Pulse in BCD’ Function Block Part file as explained
in Chapter 1 (FB definition name: _CPU007_MakeClockPulse_BCD)

E% MewProject

E--lﬂ;! MewPLC1[C51G-H] Offline
23 Symbals

ERE)

-~ 10 Table
Settings

-‘v;n"?!’ Mermory

[—]% Programs

=- @ MewPrograml (00}
=8 symbols

Saa

B Sectioni
@ EMD

Select the OMRON FB Part icon =-4F Function Blacks
¥ then right click the MOUSE. eseescoohescccsss of.g;i:__cpunn?_makecmckpulse_ﬁ(:[)

— Copy
E% MewProject

-0 MewPLC1[C516-H] Offline
Ij ----- = symbols

----- #7 10 Table
@ ----- Settings

-G;ﬁ Mernaty
EI% Programs
El‘@ MewProgram1 {00}
LT3 symbols

R

@ Sectionl

@ EMD

_CPUOOT_MakeClockPulse _BCD
o JEF Copy_CPUDOD7 _MakeClockPulse_BCD

’ Change the FB definition name.
@[] El % Prograrns

Select Function Block Definition
icon ﬂ and right click the
mouse.

— Paste

The OMRON FB Partfileis eeeccccces
pasted.

@ MewPrograml {00}
= = Symbals

EEF]

------ @ Sectionl

...... @ EMND

Select pasted Function Block El {F Function Elacks Note:
icon tFand click mouse right *e., .. Hnebion Bint The user can’t create Function Block Definitions
button. Stee,,, T I _CPU007_MakeClockPulse_BCD \yith name starting *_’ (underscore)

— Rename free EH MakeClockPulse_BCD_THY| Please use names not starting with * .

[MakeClockPulse_BCD_INV]

‘ Enable editing of the internal FB Program code.
g
ﬂ General | Pratection | Comments | Memory |
_Select pa;ted anction Block L - [FakeCiock Puse_BCD_INY
IlfL?trtloind right lickhe mouse .""0. EI E Function Blocks @isplav the inside of FB
> Property . JF _CPUDDT_MakeClockPulse_BCD b

BXEM 13k ClockPulse BCDINY

Revizion:

Or

= o

Tick the check box using the left mouse click.

Explanation of

Change of

Sy ellFE g FB Definition

target Program

3. Add a variable to the Function Block

Variable Table I

Open the Function Block Ladder Editor.

 yntitled - CX-Programmer - [NewPLC1.MakeClockPulse_BCD_INY [FB Ladder]] =&l x|

[fJ Ble Edit Wew Insert PLC Program Tools indow Help ~ =&l x|
DEE R SR BB (2 |M%% |JJ@;,%M;“|@.,@@\&, HEEEEEEY S

a o QH_]_]_['.QJI_}EH_-H-M-HPW | —?ﬂﬁ'ﬁ‘El—Nmm?_|§:u_Lﬁz'Eﬂ:|LWE BrREr|ER e s

=P EEsEmEnsmpw EEssEmssERERpREE

Hame | Data Type [AT | Initial valus [Retei... [Comment |
Opens the Function R :
Block Ladder Editor. A

P_ER BOOL CFO03 Error flag
Tp_Data WORD 1] Multiple area of use for internal...
Tim_a TIMER OFF time measurement timer
Select the Function Block icon JEF .
using the mouse cursor and PR PR e o at
double click the left mouse button.

Tim_b TIMER (OM time: measurement timer
Ok _Bit BOOL FALSE Area check OK flag
On_Bit BOOL FALSE Bit For output:

Internals Inputs Outputs Externals
[ting valle check
0

EN
f
artrals execut..

BIN(OZ3) [| BED To Binary

onTime Source word

Ol time
Trp_Data | | Result ward

ultiple ares...
P_ER Ok_Bit

I
Errar flag Ares check OK..
Ok_Bit

1

I H)
Area check OK... Bl 023) BCD To Binary

Ot Time: Source weord

OFF time
Tmp Data | | Result word

IR, L L L

Muitiple: ares
FER k_Bit
Errar fllag Area check O
1 Clreutt execution
10 Ok_E‘lrt Tim_b
lsrea check of.. TN ime measur... Q ™ Timer
. Tim_& Timer number
The original OMRON FB Part file is also able to display ° o i me =k
. . .
ItS |addel’ program, bUt CannOt be edlted) Address or Valug: | o Comment: [BOCL: Conkrols execution of the Function Block.
SePRCA(] -oi‘\-e------------'-h----*mgjmpapalmi,--h--------FW
.
‘ “*e+-+| Ladder Editor
Variable table
ame I Data Tvpe I AT | Initial Yalue | Retai... | Comment I
ENO BOCL FaLSE Indicates successful execution ...

Select Output tab in Variable

""Ir?ptlt%"

Externals

Table using the mouse cursor s« pe s amemas g
And click the left mouse button.

—

Click the right mouse button and X

select Insert Variable(l). —

Data Type: Qa00L = i > Select BOOL for bit data. |

Usage: IDutput j Advanced.. |
Initial % alue: IFALSE vl [Retan

Enter a new variable name. I

(i

LCarmmert:
Irreerting output of ENC| ;I
id
. . . Mame I Data Type | AT I Initial Yalue I Retai... I Comment
nfirm the entered variable i
ggrrect D a5 EMO BOOL FaLSE Indicates succassful execution ...

3-3 ¥ D) LS werking oukput of ENG

Explanation of Change of

Copy of FB part

target Program FB Definition

4. Changing the Function Block Ladder

Add the required ladder diagram on Function Block Ladder edit field.
Move the cursor to the left column of the next rung.

Name | Data Tvpe | AT | Initial Yalue | Retai... | orment |
P_0_0Zs BOOL 0.02 second clock pulse bit
P_0O_1s BOOL 0.1 second clock pulse bit
P_0 25 BOOL 0.2 second clock pulse bit
P 1rin BOOL 1 minute clack, pulse bit
Internals | Inputs | Qukpuks Externals
1 Execute rung
10 Ok_Bit Tim_b
| | H
I I :
Range Check O O time calcula. . T Timer
Tim_a Timer nur
(COFF titne cal...
CrifTime Set value
i tirme #00...
Tim_a
|1 H
I)
OFF time calcul... I Timer
Tim_k Timer nur
Cn titne calo...
CnTime Set value
Con fime: #00...
on_Bit
L
Output Bit
2 Output results to EMNC
18 Ok _Bit on_Bit EMC
| | | |
eupmmnbalimmnn, | —)
a Range Check O, e Output Bit Indicates succe. .
ElE H
21 ‘s
L] >om
n /5 "
*aniunnnnnnnns’
4-1. Entering a Contact |
-1/1- Mew Closed Contack X|
[:j [EnD] ~| Detail>> Cancel
ENO ’
@ 4 res ChECk OK"'xszﬁijLE!’ﬂE‘:ﬁzxzx
4 M
EMO b M
21 bt i
ENT] E :
ndicates succe. .3 :
EEE P
) |
n -{ 3- New Coil x|
[INv_ENG] ~| Detail »» Cancel
INV_ENO -
rea check UK. B for output dncicates succe.. :
. e
21 |} i}
‘ndicates SUCCE.., Irvverting output...‘

ENT

Explanation of Change of
target Program D Cerg v (e D FB Definition

4-2. Checking Usage Status of Variables

As with main ladder program, you can use cross reference pop-up to check usage conditions of

variables.
= Unkitied - CX-Programmer - [NewPLL 1 MakeClockPulse_DCD_TVY [FB Ladder]] alelx
= _ Al
[o=@a|® aa ;ﬂau 2e uw'. tw|asmnlsnmia EEEEE L war]
et R R BEER
[EET=t=R= 3 8
= [osatpe Tar [ravn [oota . Ic-- 1 -
T tevraect) Croms | FasE
= ': MewLCI[CSLG-H] Céfine WOk o Iklnnnlmmhrnmn:.
= TINER CFF Lare Caloulatn Liner
f otk e = ox Fause o =
1 sotees i e fa e |
=¥ Frograns ends [vows | ovpws | Gawmis |
G Mesragrant (00)] o rlq T g T =
E foiy | F
&5 T Furction bhocks 4 14 4
& _CPUNOT_MekeCockPulse BT T Tans Tl i
= o AT fuees Y
‘ﬂ .
FF S caad ™|t
b Tier
2 .w‘mhluanrvduv-hﬂ
L] N B
a5 i}
quu-(l\ﬂx(‘ Cdpnd b4
3
cl i 1
.
; . 131 [el s
Display cross reference '(r'mgr HATEE s B e] T
For Help, pressFL | oL LiNet 0 Hodec) - Offine. I g oo, o) - orw | e
pop-up.

oni Move the cursor.
li

4

“
Project XA o0t Mame: [INV_END Address or value: | Camment: [BOOL:

:II PLC Mame : INewF‘Lm Erowse..
Address Find.

A8 A T [S NN g N NNENIENANENNSENNNNENNNNNNENNSEEEEEENEEERNEEEEE

.
: INY_ENO MakeClockPulse_BC.., 22 OUT[1] :
| | L]
. .
L] |]
. .
| | L]
® NS NN NSNS EEEEE NN SN NN NSNS NSNS EESEEEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEsEemmmmmny
For Help, press F1 [MewPLEL (hat:m, Hode:0) - OFfine [ungn(o, o) - 100% | [om
2| PLC Name: MHewFLC1
¥
Address
Address | Symbol Program)Section ke Instruction
Select LDNOT from cross | | Erogrami E I I
£ by th EMNC MakeClackPulse_BC... 20 QT[]
reterence pop-up by the eescccccccccelne EMNO MakeclockPulse_BC... 21 LDMOT[1]

mouse cursor.

You can see that variable ENO is used in an output coil in the step No.20 as well.

—J
| =

S
2 Output results o ENC (output sariable) /MMMMHNHNJ
18 Ok_Bit ON_Bit E
{ } |} a O
GESbE Q. Output bit ok, ndicates succe..;
3 ENO o W
21 % - u
Melivabes eimece ®
4

3-5 The cursor in the FB Ladder Editor moves to the output coil in the step No.20.

Explanation of Change of
target Program D Cerg v (e D FB Definition

5. Transferring to the PLC |

Transfer the program to the PLC after the function block definitions used in the program have
been created by customizing the Smart FB Library versions.

= untitled - CX-Programmer - [NewPLCLNewPrograml.Section] [iagram]]
W&E&MMFL_CMIWBWM

|DE R Rt B8 AN ?P!L&;ﬁgg ’Iu--';-.m.w-m::. s P S
& x| '_a—r.zumﬁlasnv;suw-!-"‘ 2w asss wBEREE
LR e

Click % | UC ' -'--- Jﬁ r n-i[“mem Mewfrogramt] =

Program transfer starts.

x

Program Download to PLC MewPLC1

Cald &

Transfeming programs...
Byte 43736 of 59364

Downloading...

6. Verifying Operation

Program operation is verified and debugged while changing the value of D100 (ON time), which is

Right-click to display th
Ight-ciick fo dispiay the specified in the function block’s parameters.

pull-down menu and select
Set/Reset — Set value.

‘Worklnput TimingGenerator
OR: MakeClockPulse_BCD_|MY
Double-click the left m
ouble-clic el ouse P_On (BOOL) (BOOL) 1.00
button. I = ENO
Alvvays OM Flag
D100 Joviorm) (BO0OL) Wi .00
onTime HhTime MY _EMO b jryerting Out...
0100 Hex % 1
B P AP PR
#10 [ACORD
OR HCFFTime
ENT

‘ > Changes the input parameter’s PV. I

ﬁ -
Addrese: ||:”':":' (St > > Click the Set
Data type: ||_|”.” / j Cancel | Button.
Value: |nnnzn When inputting a constant,
always input the # prefix
‘nu hetadfliis (for hexadecimal or BCD)
or & prefix (for decimal) to

the left of the number.

Change of
FB Definition

7. Online Editing of Function Blocks

When adding a variable (internal variable) with FB online editing, memory must be
allocated offline in advance in the Memory Tab of the Function Block Properties
Window.

Required Memory: |2? Step Select Online edit reserved memory. I

Select the function block
definition that you want to
edit online, right-click to
display the pull-down menu, Timers

and select Properties. Counters 0

—J q | 2
Select the variable area = = = =
where you want to add a Memory Size Edit for FB Online Edit il

variable in online editing,
right-click to display the Address allocation area : Mon Retain

pull-down menu, and select :
Online edit reserved Reserved memony size (BO0Ls] : ID Cancel |
SO Rezerved memomny zize [non BOOLz] ; IEI

Aszsigned area | Required | Rezeredf
Maon Retain =

Retain

Edit the function block definition online.

i

= & HewProject Function block definitions can be edited online only if
=& 'SJWPLCI[CSIG'H] 3P the PLC’s CPU Unit is unit version 4.0 or later.

a2 Symbols Online editing cannot be used in CX-Simulator

@ 10 Table and Unit Sty 9 :
Settings

Memary card

Errar log

(@] PLC Clack

Select the function block Memo:‘:

definition that you want to =& Programs

edit online, right-click to -4 MewProgram {003 Stopped
display the pull-down 24 Symhbols

menu, and select FB

@ Sectionl
Online Edit — Begin. "***e..,, LB END
Seee.., =-JF Function Blocks
¥ _CPUDNT_MakeClackPulse_BCD

E MakeClockPulse BCD I0Y

Froject § It is possible that the FB

[:j definition is called from more
@ G than one location, so start

editing only after checking

the output window to verify

how the FB definition is used.
@ All Instances which were created From the FE Definition will be affect

Check For the affected Instaces which are lisked in the Qubput window,

Do wou start FE Online Edit?

ClithheYeS Button_o-onooo.-oooooo-oco-oco-oco Ves Mo
3-7

Edit the program section.

=

Change of
FB Definition

After editing the program
section online, right-click
to display the pull-down
menu, and select FB
Online Edit — Send

Changes.

Execute rung
Ok_E‘Ilt Tim_b
f f H
Range Check C... DM time calcula.. i Timer
Tim_a Timer nun]
(CFF time cal...
OFFTime Set valug
(CFF time #0.
Tim_‘a
f H
OFF time calcul T Timer
Tim_k Timer]
M time calc...
CMTime et value
(O time #00
O_Bit
Outtput bit
=
lime Edit
it v Allow Docking
5
Hide
Eloat In Main Window
T Properties P ER
5 m !
|
11
Error Bit
Ck_Rit
| 1

1T
Range Check O...

=

Select the online editing
transfer mode. o

o Normal mode:

The FB source information
is transferred.

e Quick mode:

The FB source information
is not transferred.

Click the Yes Button.

=

FB Online Edit - Transfer

Are you sure want to transfer the edited program to the PLC?

Tranzfer mode

& Momal mode [Transfer FB source)

Transfer takes time, but upload can be done normaly.

™ Buick mode (Do not transfer FB Source]

to the PLC later o enable program upload.

Transfer can be done fast, but it is necessany to tiansfer the FB Source

Mo

The FB definition
information will be
transferred.

=

Tranzfer FB programs to PLC MewPLCT

Tranzferring FB Program infarmatiar. .

Byte 0 of 2638
Downloading... Don't power off PLC.

Cahcel

=

Program Download to PLC HewPLC1

Download successful

ANEEENENENNNEEENNNNNNNNENERENEEEEI
Click the OK Button, eeeeeeeccccccccccccccsssccscssscccsccccccccccccccccsccone ‘ ’

N

CZ-Programmer ¥ 7.0

Click the Yes Button after
verifying that there will be no
adverse effects even if the cycle
time is longer.

@ Are you sure you want to reflect the changes tothe INPUL Signals may be missed.

CIletheYeS Button o..ooooooooooo.oooccccccooo-
End |

3-9

Chapter 4

How to use |

Explanation of Create new Entering Creating Creating Ladder
target Program FB Definition Variables ST Program Program and check

1. What is the ST Language? |

e Tritial Settings *)
HMT[] =2,
The ST (Structured Text) language is a HMITE] = 7

high-level language code for industrial e
controls (mainly PLCs) defined by the IEC i GROTE)

GROTMP = 164FFFF,

61131-3 standard. FORL=17T0 N DO
. . GRCOTMP = GRCTMP HOR =MTIT
It has many control statements, including FOR J:=1T08 DO
IF-THEN-ELSE-END_IF, FOR / WHILE loop, AL
i i CGH=1;
and many ma_thematlcal fUnCt|OnS suc_h as GROTMP = GROTMP AND 16#7FFF, (¢ GROTMP & 0<7FFF #)
SIN/LOG. it is suitable for mathematical B
processing. BNDF
UINT GRCGTMP = WORD_TO_UINT(GRGTMP) / 2,
The ST langu.ag.e supported by CX— GRGTMP := LINT_TO MORD(UINT GRGTMP,
Programmer is in conformance with [FCH=1THEN
CROTMP = GRCTMP OR 1644000 * GROTMP OR 04000 #)
IEC61131-3. ENDIF:
; ; : : IF GT =1 THEN
The arithmetic functions in CX-Programmer GROTMP = GROTMP OR 1648001, (+ GROTMP 3OR 0xA0T1)
. END IF;
are as follows: enD Ok

sine (SIN), cosine (COS), tangent END_FOR:
(TAN), arc-sine (ASIN), arc-cosine IF GROTMP < 0 THEN

CL=1;
(ACOS)! arC'tangent (ATAN), GRCTMP = CRCTMP AMD 16#7FFF; # GROTMP & OxTFFF #)
square root (SQRT), absolute .
value (ABS), logarithm (LOG), ol=g
natural-logarithm (LN), natural- S

H 1ati G 1:=CRCTMP AND 164FF, G GROTMP & OxFF *)

eXpOnent|a| (EXP)’ exponentlatlon ChCTMP = GRCTMP AND 1647F00; * CROTMP & Dx?FDE *)
(EXPT), remainder (MOD) UINT_ GRGTMP = WORD_TO_UINT(GROTMP) / 256,

G2 = UINT_TO_WORD{(UINT_GRGTMP),

Reference: The IEC 61131 standard is an international standard for programming Programmable Logic
Controllers (PLC), defined by the International Electro-technical Commission (IEC).
The standard consists of 7 parts, with part 3 defining the programming of PLCs.

2. Explanation of the target program

This example describes how to create an ST program in a Function Block to calculate the average value of a
measured thickness.

Thicknessverage
AverageCalc_3Ivalue
(Bo0L) (BacL) The data type should be set to REAL to store the data.
] I REAL type allows values with 32 bits of length, see range below:-
(REAL) (REAL) -3.402823 x 10* ~-1.175494 x 10*, 0,
1% scors +1.175494 x 10 ~ +3.402823 x 10*
(REAL)
H{r
(REAL)
FB definition name AverageCalc_3Value
Input symbols X(REAL type), Y (REAL type), Z(REAL type)
Output symbol SCOI'€(REAL type)
ST Program definition SCOIE€ := (X +Yy + z)/ 3.0;

Substitute a value to a symbol is expressed by “ :=". Enter “; 7 (semicolon) to
complete the code.

4-1

Offline Operation

Explanation of Create new Entering Creating Creating Ladder
target Program FB Definition Variables ST Program Program and check

3. Create a Function Block using ST |

Create a Function Block using aRpogans e ‘
=- @ MewPrograml {00}

Structured Text.
Select the Function Block icon Insert Function Black b Ladder
3]5 using a mouse cursor, and e Boicructured Text |
click the right mouse button. Copy From File. ..
— Insert Function Block(l) 2 paste
— Structured Text(S) Delete
’7 Allovs Docking
Hide:

Float In Main Windaw

Properties

E--% MewProject I

E-ED NewPLC1[£516-H] Offine
= Symbols

@ 5l Settings
4::.? Memary

Ij EI% Programs
=] ﬁ MewProgrami {00)

24 Symbals

ANeWFuncthn Block 9000000000000 0000CCCOCOOIOIOIOIOIOIOIEOIEOROROROIEOOOIOEOES
definition is created.

Ij Change the Function Block definition name

B % Programs
=1 @ MewsPrograml (00)
= Symbols Note:

@ Sectionl The user can’t create Function Block Definitions
...... LB END with names starting ‘_’ (underscore).

ction Blacks Please use names not starting with *_".
i gza.ﬂverage(:alc Fvalue

wujewerEals i nes
P | — oo RER | || %

Select the Function Block
definition icon -g5F using ceccccccsssssene
the mouse cursor and right
click the mouse button.

— Rename

Enter
[AverageCalc_3value]

..e+°° Variable Table I

% BrEF |[oReRE

[8 W foman,® S 8 8 S iA fAR AR RN RRNRRRRRRREEY,
Open Function Block ST Editor I ' ‘
b e e e :

Select Function Block definition g L.eeeece2c| ST Edit Field
Icon -gsF by mouse cursorand, 1 e .
double click the left mouse 1 e :
button. i .
E ¢ :

;"an e PLET AT o) - G I I e W 4-2

Entering Creating Creating Ladder

Explanation of Create new
ST Program Program and check

target Program FB Definition Variables

4. Entering Variables into Function Blocks |

Select Variable Table.

ame | Data Tvpe | AT | Initial Value | Retai... | Commenk |
EM EOOL FALSE Controls execution of the Fune...

Select the Input tab using
the mouse cursor. *tceena.,,,

—

Select Insert from the
Pop-up menu.

]

Outputs Externals I

Enter a variable name I

o _ Select REAL I
Enter data for the following. Data Type: QUREAL —-— ”

St lsege:— [ieu O] [e

Data type N

Comment Initial W alue: ID I~ Eetain

Input vwalu)

» Enter and applicable
comment

=
=

’ Enter input symbols x, y, z and output symbol score by repeating the process above. I

Marne | Data Tvpe | AT | Initial Walue | Retai... | Carmment |

EM BOOL FALSE Controls execution of the Func... .

p REAL 0.0 Input value 1 Input Variables I
v REAL 0.0 Input walue 2

Marme | Daka Type | AT | Initial ¥alue | Retai.., | Comment | .
ENC BOOL FiLSE Indicates successful execution ... OUtpUt Variables I

bscore ___JREAL [o0] [Avrage

Reference: The copy and paste operation is available in FB Header. I

Reference: The order of the variables in the FB table becomes the order of parameters on FB

instance (call statement) in the normal ladder view.
To change the order, it is possible to drag & drop variables within the table.

Thicknessiverags

AverageCalc_Ivalue

Marne I Diaka Type | .LV_(EEA'IOOL) CE3L Mame | [aka Ty
-
EM ECL FREAL) READ =alal
® REAL —> score -
W REAL .
gy Output Variables
Input Variables (REAL)

FB instance (call)

4-3

Explanation of Create new Entering Creating Creating Ladder
target Program FB Definition Variables ST Program Program and check

5. Entry of ST program

Select the ST Editor text field in the Function Block ST Editor window.

9% ntitled - CX-Programmer - [NewPLC1.AverageCalc_3value [FB Structured Text]] -8]
[File Edt view Insert PLC Program Tools ‘indow Help —18] x|

e EE L - D e e -
sgalsesErErrrw)l —opaarlk||Elonlene e BERE ||[P RS
I

ol [ame [Daka Type | a1 [ritial valoe [Retai... | Comment

=15 HewPraject EN BOOL FALSE Controls execution of the Func..,
BB NewPLC1[C51G-H] Offine x REAL 00 Input value 1
% Symbals ¥ REAL 0.0 Input value 2
97 10 Table z REAL 0.0 Input value 3
Settings
G Memory
-4 Programs Internals Inputs Outputs Externals
155} NewProgram1 (00) ——
5 symbols T
B gectiont
& eno

=-TF Function Blocks
~45F AwerageCale_3value

b Project /

For Help, press F1 |WewPLC1(et;0,Node:0) - Offine [um

’ Enter text into the field: “score := (x +y +z)/ 3.0;”. I

soore =00 + oy + 20 S 30

When the input expression is a real type
calculation, please enter the constant

value with decimal point and zero for
single decimal places, e.g. ‘3.0’

Reference: User may type Comments in the ST program.
Enter ‘(* and *)’ both ends of comment strings, see below.
This is useful for recording change history, process expressions, etc.

[* Created by Suzuki 552172004 *)
SCcore =[x+ Y+ Z) J'3.IZI;|

Down To Lower Layer

Cut

Copy
Paste

Note: You can jump to a help topic that shows
ST control syntax by selecting [ST Help]
from a pop-up menu in the ST Editor.

Find...
Replace...

Comment Gut

Explanation of Create new Entering Creating Creating Ladder
target Program FB Definition Variables ST Program Program and check

6. Entering the FB to the Ladder Program and error checking

Enter the following FB into the ladder program.
Instance name: ThicknessAvarage
Input parameters: DO, D2, D4

Output parameter: D6 It is able to jump the referred function
Thicknessaverage block definition by entering [Shift]+[F]
AverageCals_Ivalue key when the cursor is in the function
block instance.
000 (BOOL) (BOOL)
I | EM EMC
i (REAL) (REAL) D&
= SCore
02 rEAL Refer page 2-7 for entering FB instances.
Ef) Entering ST FB instances is the same as
entering FB Ladder instances.
04 (REAL)
-z

e

Perform a programs check before transferring the program.

2 Untitled - CX-Programmer - [NewPLC1.NewProgrami.Section] [Diagram] =18]
[F8 Ble Edi wew Inset PLC Program Tools Window Help METES]

DeHE(@(ax | s=aac(ans(ev||essntitiftss TR ula|
ao@|EEEmER(rvew | —coaatlk|[Beplvvat EBERD | DFRRES

2l o I[Prugram Narme : NewPrograml] =

= 8 NewProject o ml
=2 MewPLCI[CS1G-H] OFfline
-1 Symbols
97 10 Table Thicknessaverage
Settings
g Mlemary
5% Programs 0.00 (B00L) (BOOL)
1S5 NewProgram (00) & ENG|
- =3 Symbols
& Sectiont oo (REAL) (REAL) 06
@ eno 4% scorel
=-4F Function Blocks

"8l AwerageCal_dvalue - ReaLy —
v

[Section Name : Sectiont]

AverageCaic_3value

D4 (REALY
Jz

1

I | _l'I
I\ Project / x4 Mame: Aaddress or Yalue: | Comment: |

i PG, NenP L1 (PLC Model T6 15-H LP45] mrre
| Gompiing

[PLC/Program Name : NewPLCT/HewProgram]

[Section Hame : Sectionl]

[Section Name : EN

NewFrogiam - 0 enors, 0 warnings.
The: programs have been checked with the progiam check option set to Lni Yer 3.0,

T[4 *T#1] Compie A Find Report , Transfer 1B D
For Help, press F1 [MewPLC 1 (Net:0,Node:0) - Offine. [rung 1 {0, 0y - 100% [[

Refer page 2-9 for program checking.
The functionality is the same as for Function Block Ladder instances.

It is possible to change or add variables in the Function Block after inputting FB instance
into the ladder editor. If modified, the Ladder editor changes the color of the left bus-bar

of the rung containing the changed Function Block.
When this occurs, please select the instance in the Ladder Editor using the mouse
cursor, and select Update Function Block Instance (U) from the pop-up menu.

Online Operation

Transfer Program Monitoring

7. Program Transfer

Go online to the PLC with CX-Simulator and transfer the program.

= Uaal ey [[$topped] - NowlLO] Sesrogram | Sectisnl [ageas]] alglx
L PL Bogam Jooh rdow i o=
(e @SR Beo - R TR (ALEN L RARBPRBTER W (B
[aaa S mEn o dniw | —cafBElk [Be¢ma vt WEFEr [EREERE
e [A =
2 B e CHCSI] RProge e e]
D Bowbais
10 Tale
o
= [
trakg
i oo
2 ey
= o
1 Mooy am (0] Soppend
9 Secrnt
LT
I Furetion ks
B ek ook
| L]
1] | N
Progect f AT M " ke Yk 00 Fomew

Refer to page 2-10 for steps to go online and

transfer the program.
Change the PLC |

Simulator) to Monitor mode.
() The on/off status of contacts and coils can be monitored.

. EIII [Ble Edt Yiew Insert PLC Program JTools Window Help 7\ e x|
Click = | R ek 2~ oL R e e A L LR RS TIRTY TSN RLRL Y 2T =) = L =1 JEEery
s fifsksERvrnnw | —opaFEl ||k Sowr e BTELL||cEERAS |

o ‘i[Program Mame : NewProgrami] -

=lxl |U

B CX-Programmer, v9.4

] Make sure that there aren't any problems if the PLC is started.
) Do you wish ko switch the PLC into Monitor mode?

Click [Yes] s*ccessscccesssclocessse

= Unkitled - Cx-Programmer - [[Running] - MewPLLLNewdrogram | Section] [[aoram]]

[oFa[men inn|o
[eoal

e |jaliEn s RAR(BSRE 15
EHERGarverw | —op 8Lk [Bémphtt MBIET | GRERA®
e | =

= *amw u = |
= S HewhLCILCSLGHI ity mcton i - Swcsent|
10 Tobi

pre—
ey card

((d

25 4 oo0ooen

Confirm that the PLC is «e..,,
Monitor mode.

g =

. ot [
SZms BN fung 1056 - 100

Transfer Program

Display the Watch Window.

Open the Edit dialog.

ENT

{

Click Browse... button using ***

the mouse left button.

—

Click the 3 button using the
left mouse button, then select
the following:

[Symbols of type]

[Name or address]

LG

CI|Ck[OK] button usingthe ©e00cecccccccsccsccsccsccoe

left mouse button.

4-7

Monitoring

Online Operation

8. Monitoring the Function Block execution

Monitors the present value of parameters in the FB instance using the Watch Window.

L A _ U | i 7]
h, Fromet _ mal Narm: Audbess cn Vs Commer: |
PLCHame | Mame | Address | DataT... | FBUsage | vakie Vabae(B... | Comment d
(| .
BTl D o i = e i
Edit dialog x|

BLL: [HewPLET

Mame or address:

....-.....-o-"'°"'°< Browse... |>

I

o0
veeessees Tl Thpe / Fomat [BOOL (0n/Dff Contact) |
v — | Select REAL(32bit floating point) I

BOOL =
CHANMEL
DINT
DWORD
INT

Find Symbol {Read only} - Any | LINT
LREAL

Look in: NewPLC1 - LAGRD
| | —

Symbols of type: I BOOL

|

UDINT_BGD
UINT

Name or address: ||

= Symbol [nfarmation

=

hd Edit Spmbal | UINT BCD
'7(ULINT s
! ULINT_BGD hd

Select ThicknessAvarage.x I

Laak in: {NewPLCT

Thicknezzdverage.score

Symbolz of bpe: I REAL

icknezziyverage.y

Led Lef Lo

Thicknezzdverage.z

When monitoring internal variables at debug phase,
collective registration is available in addition to the

dress: Edit £
formation

zl
PLC: JMewPLEY =

Mame or address: IThicknessAveraga.x

Browse... I

Data Type / Format: |REAL [Floating Point.Double length] =

=

[EER Y e

e |

individual registration on the Watch Window
through the operation shown here. For the details,

refer “5-8 Batch Registration to Watch Window”.
When the function block is a ladder, conducting

monitoring is available. For the details, refer “5-5
Operation Check- 1”

AULTESS UF vailes | Ll |

—’:I PLC Mame | Mame | Address | Data Type | Format

| FB Usage | Walue | Walue{Binary) | Camment |

MewPLC1 ThicknessAverage.x HS13

REAL (Floating Point, Double length) — Input

+0.0000000 Float +0.0000000 Float Input walue 1

A[ATRTR, sheet! £ sheetd B sheetd f

Reference: Example of an ST program using IF-THEN-ELSE-END _IF

The following ST program checks the average value calculated by the example of page 4-7 against a range (upper
limit or lower limit).

FB Definition: OutputOfDecisionResult
Input symbols: score(REAL type), setover(REAL type), setunder(REAL type)
Output symbols: OK(BOOL type), overNG(BOOL type), underNG(BOOL type)

ST program:
score > setover (* If score > setover, *)
underNG = ; (* Turn off underNG *)
OK := ; (* Turn off OK*)
overNG ;= ; (* Turn on overNG *)

score < setunder * if score =< setover and score < setunder then *)

(
overNG := ; (* Turn on overNG *)
OK := ; (* Turn off OK*)
underNG := ; (* Turn on underNG *)
(* if setover > score > setunder then®)
underNG := ; (* Turn off underNG *)
overNG := ; (* Turn off overNG *)
OK:= ; (* Turn off OK *)

; (* end of IF section*)

Example of an FB instance (the instance name is ‘ThicknessDecision’)

. Decide the average, thick, proper, or thin
ThicknessDecision
OutputOfDecisionResult
200,00 [(=alal] (Bl
| | EM EMNOL
Average calc...
Average (REALY [(=alaliy] 20.00
-{scare overNG L Thick decigion
ThickDecizio... |(REAL) [BCCL) 2002
- zetover underMiZ L Thin decision
ThinDecizion... |(REAL) [(=ala]iy] 2001
H=etuncier DKL Proper decisi...

4-9

Reference: Example of an ST Program Using String Variables

1. Application Example

In this example, a Vision Sensor is used to detect the workpiece’s position and Servomotors are used
to perform positioning on the X and Y axes.

- Vision Sensor

Workpiece //

To serial port

To Servo
Driver/Motor

X axis

2. Interface with the Vision Sensor |

The following messages are transferred between the Vision Sensor and the CPU Unit via the CPU
Unit's RS-232C port.

. “@MEASURE” +CR ~ .
CPU Unit » Vision

RS-232C port P Sensor
“@+1234567890,- 12345678"+CR

When the CPU Unit sends the message “MEASURE"+CR(0x13) from its RS-232C port and the Vision Sensor
receives the message, the following data is sent as string data.

@ | ous X-axis Position (10 digits) | s Y-axis Position (10 digits) CR
T 4 T Y Y T
@ marker Comma Carriage Return (0x13)
+" or

Decimal text string with up to 10 digits
(Padded with spaces on the left if there
are fewer than 10 digits.)

3. Range of Programming in FB (ST) |

The following range of processes are created in the FB.

Set two words of data each for the X and Y coordinate, as the NC Unit's command values.

Receive the workpiece’s present position (X and Y coordinates) from the Vision Sensor through serial
communications.

Analyze the data received from the Vision Sensor to get the workpiece’s present position (X and Y coordinate).
Output the difference between the workpiece’s target position and present position as the NC Unit's command
values.

4. FB (ST) Program

The following ST program satisfies the application’s requirements.
Variable Table

Variahle type |Name Data type |AT Initial walue|Held | Comment
Internal h3ending BOOL FALSE Sending flag

Send status (1: Sending enabled, 2: Sending, 3 Send
Internal nSendStatus INT a completed)
Internal SndEnahleCPUPort [BOOL A392.05 Built-in host link port send ready flag
Internal EndRecvCPUPort |BOOL A3J92.06 Built-in host link port receive completed flag
Internal strxPosition STRING(30) String read from Vision Sensar
Internal str¥Pos STRING[15) ¥-awis present walue termporary variable
Internal strYPos STRING(15]) f-axis present value temporary variahle
Internal nLen IMT a Temparany variahble far reception data analysis
Internal nCommaPos INT a Comma position for reception data analysis
Input hStartFlag BOOL FALSE Send start flag
Input n¥TargetPos DINT 100 ¥-axis target value
Input n'TargetPos DINT 100 “f-axis target value
Cutput rDiff DINT a H-axis command value
Cutput e Diff DINT a Y-axis command value
ST Program

(*Read position information from Vision Sensor and produce command value to the NC Unit.
String format read from Vision Sensor: ‘(X coordinate) (Delimiter character) (Y coordinate)’
X coordinate: Sign + 10 digits max.
Y coordinate: Sign + 10 digits max.
Delimiter: Comma
Example: ‘+1234567890,-654321° (The number of X and Y coordinate digits varies.) *)
(* Detect read start trigger *)
IF (bStartFlag AND NOT(bBusy)) THEN
nStatus := 1;
(*Not executed if data is already being read.*)
END_IF;

(*Read processing*)
CASE nStatus OF
1: (* Read command to bar code reader *)

IF SendEnableCPUPort = TRUE THEN
(* Send if RS-232C port can send data. *)
bBusy := TRUE; (* Turn ON Vision Sensor reading flag. *)
TXD_CPU('MEASURE'); (* Send “Measure once” command. *)
nStatus := 2;
END_IF;
2: (* Get data read from bar code reader. *)

IF EndRecvCPUPort = TRUE THEN

(* If the reception completed flag is ON *)
RXD_CPU(strXYPosition, 25); (* Read reception data to strXYPosition. *)
nStatus := 3;

END_IF;

3: (* Processing after the read *)

(* Analyze the string from the Vision Sensor into X and Y coordinates. *)

nLen := LEN(strXYPosition); (* String length *)
nCommaPos := FIND(strXYPosition, ‘,’); (* Delimiter position *)
strXPos := LEFT(strXYPosition, nCommaPos - 1);
(* Extract X-coordinate string. *)
strYPos := MID(strXYPosition, n"CommaPos + 1, nLen - nCommaPos);
(* Extract Y-coordinate string. *)
(* Convert strings to numbers and extract the command values. *)
nXDiff := nXTargetPos - STRING_TO_DINT(strXPos);
(* Command value := Target value — Present value *)
nYDiff := nYTargetPos - STRING_TO_DINT(strYPos);
(* Command value := Target value — Present value *)
nStatus = 0;
bBusy := FALSE; (* Turn OFF Vision Sensor reading flag. *)

END_CASE;

4-10

5. Example Application in a Ladder Program

The following example shows the FB used in a ladder program.
The X-axis and Y-axis target values are set in DO and D2. If bit W0.0 is turned ON, the
communications are performed in the FB and the command values are output to D10 and D12.

[]
Y Commandyalue_Generste
WaxesCommandalue_Genera
te
P On (Bl Bl
I I ER ErRO L
Alvways QN Flag
W0 .00 (Bl [DIMTY 10
JbStartFlag nxDiff L
] [DIMT [DIMTY 012
AnETargetPos nDiff L
(1) [DIrMT
An TargetPos

4-11

Chapter 5

Advanced

Advanced
Creating FB Entering Main Debugging
Definition .
Library Program Main Program

This chapter describes how to componentize a user program with an example using function blocks.

Program Enter_ing/llé)Bebu
Design 99Ing !
g Definition

1. Overview |

2. How to Proceed Program Development

Generally shown below is a workflow to create a user program with componentization in the case of
the application example below. Deliberate consideration is required especially in program design
process.

(1) Program Design
(2) Creating Components
(2-1) Entering FB Component
(2-2) Debugging FB Component
(2-3) Creating FB Component Library (File Save)
(3) Using Components in Application
(3-1) Importing Components
(3-2) Using Components for Program
(3-3) Debugging Program
(4) Start-Up

3. Application Example |

Shown here is a DVD inspection machine as an example for application.
Process can be primarily categorized into inspection, packing, and assortment.

Inspection "' > @
oK

Measuring

DVD thickness Assortment

5-1

Program
Design

4. How to Proceed Program Development |

Entering/Debu Creating FB

Definition

Library

Application can be materialized by using hardware and software (program) through combination

of requirements.

Following sections describe how to proceed program design using an application example

described before.

4-1 Overview of Design Process |

Specifications should be repeatedly
detailed and integrated to divide and
classify them as shown in the right.

Detailed
General / Specifications
Input from Client Specifications

Specifications . _ General

Specifications

Detailed
- Specifications
Requirement /
+—>

Detailed
Specifications

for Device

Detailed

General lallec
Specifications 4/ Specifications

Detailed
Specifications

0o >
<m0

4-2 Extracting Requirement Specifications |

Shown below are the extracted requirement specifications for this application.

Overview of DVD Inspection Machine (Requirement Specifications)

Req. 1.
Req. 2.

Req. 3.
Req. 4.
Req. 5.

Req. 6.

DVD should be inserted from a loader.
Thickness of DVD should be measured at 3 points. Average thickness of measurements

should be calculated. If it is within its threshold range, DVD should be assorted into a

stocker for good products, or a stocker for bad products if not.

Good DVDs should be packed into the case.
Packed DVDs should be packed into the paper box.
Paper boxes should be classified into 2 types. Switching frequency should be counted to

evaluate a life of limit switch adjacent to actuator of selection part.

Other requirements

* To simplify the description, this document focuses on a part of device (underscored).

Advanced

Entering Main Debugging
Program Main Program

5-2

Entering/Debu Creating FB
gging FB Definition
Definition Library

Program
Design

Entering Main Debugging
Program Main Program

4-3 Detailing Specifications and Extracting Similar Processes |

By detailing the specifications, there you will find similar processes or ones that can be used universally.

Actuator control (Example of similar process)

In this example, you can regard cylinder control for assortment of good and bad products and actuator
control for paper box assortment as the same. Shown below are extracted requirements for these
processes.

e The process has 2 actuators for bilateral movement which operate under input condition for
each.

e Operation of each direction must be interlocked.

e The process has an input signal to reset its operation.

Average_Threshold Check (Example of universal process)

A process should be extracted that will be used universally even if the process itself is used only once
for this application. In this example, a process is extracted that calculates average of measured 3
thickness data of DVD and checks if it is within the threshold. Shown below are extracted requirements
for this process.

¢ Average of 3 measurements must be calculated.
e Average value must be checked if it is within upper and lower limits of the threshold.

These requirements are used as the base for components. Names of components are defined as
“ActuatorContro” FB and “AvgValue_ThresholdCheck” FB.

4-3-1 Creating Specifications for Components

Reuse of components can improve productivity of program development. To make reuse easily available,
it is important to create specifications and insert comments for easier understanding specifications of
input/output or operation without looking into the component.

It is advisable to describe library reference for OMRON FB Library.

5-3

Entering/Debu Creating FB Entering Main Debugging

Program 7 -
. ing FB Definition .
Design I%gefir%tion Library Program Main Program

4-3-2 Example of FB Component Creation |

“ActuatorControl” FB
It should be described in a ladder sequence because it is a process for sequence control.

[Input Variables]

Marne | Data Type | AT | Initial Yalue | Retained | Comment |

EM BOOL FaLSE Controls execution of the Function Block,

PosDirInpuk Bl FaLIE Input For positive direckion

MWeqDirInput BCOOL FaLSE Input For negative direction

LSpos BCOOL FaLSE Lirnit: switch For positive direction

L3neg B FALSE Limit switch For negative direction

[Output Variables]

Mame | Data Tvpe | AT | Initial Yalue | Retained | Cammenkt |

END BOOL FALSE Indicates successful execution of the Function Block. ...

ActuatorPasCut ECOIL FALSE Ackuator oubpuk For positive direction

AckuatorMegiout oL FALSE Actuator oukput For negative direction

[Internal Variables] Line comments for operational
None. overview and input and output

variables allow for easier

o Actustor Cantrol FB
understanding.

0 || Summaty:
If Input for positive direction iz on, then Actuaor output for postive direction iz on until Limit Siwtch for pogp? frect

If Input for negstive direction is on, then Actusor output for negative direction is on until Limit Siwtch for negaive direction.

Input variable:
PosDirinput BOOL
MegDirinput: BOOL
LSpos: BOOL
LEneg BOOL

Ougtput variskle:
ActuatorPosOut BOOL
ActustorMegCut: BOOL

PosDirinput LEneg LEpaos ActustorPosCut
| | N % O
ActustorPosCut ‘
||
1T
1 MegDirlnpt LEpos LEnegy Actustorteg Ot
5 | N A O
Actuatlorl\llegOu‘t ‘
“AvgValue_ThresholdCheck” FB
It should be described in ST because it is a process for numeric calculation and comparison.
[Input Variables]
Mame | pata Tvpe | aT | 1ritial walue | Retained | Comment |
EM BiOL FaLSE Zonkrals execution of the Funckion Block,
Input1 REAL 0.0 Input value 1
Inputz REAL 0.0 Input value 2
Input3 REAL 0.0 Input value 3
IJpLimit; REAL 0.0 Upper limit value
LowLirnit; REAL 0.0 Lowser limit value
[Output Variables]
Mame | Data Type | a7 | Initial ¥alue | Retained | Comment |
ENO BOOL FALSE Indicates successful execution of the Function Block. ..
Result BOoL FaLSE i or MG judge flag
[Internal Variables]
Mame | Data Tvpe | AT | Initial value | Retained | Comrent
Avgvalue REAL 0.0
[* Agarage value calculstion and check of threshould for three values *)
Avgialue = Input! + Input2 + Input3 37 3.0, (* Divides Input 3 values by 3*)
IF ({Avgvalue ==UpLimit) AMD (&vgValue ==LoweLimit)) THEM (* Compare the agarage value if belowy of upper limit or above of lovwer limit *)
Result .= TRLE;
ELSE
Result .= FALSE,
END_IF;
|

Note: Use general names as long as possible for names of FB and variables in ladder diagram and ST,
instead of specific names for the function at creation.

Entering/Debu Creating FB

Entering Main Debugging
Program Main Program

Program

Design gging FB Definition

Definition Library

4-4. Integrating FBs |

Detailed process components are extracted by now. Components for application will be created by
combining them in the following sections.

4-4-1. Combining Existing Components - DVD_ThickSelectControl

Req. 2. “Thickness of DVD should be measured at 3 points. Average thickness of measurements
should be calculated. If it is within its threshold range, DVD should be assorted into a stocker for
good products, or a stocker for bad products if not.” can be regarded as a process that combines
“AvgValue_ThresholdCheck” and “ActuatorControl” investigated in the previous section.
“Combining” these components allows creation of integrated component “DVD_ThickSelectControl”
FB. Shown below is an example of an FB to be created.

[Input Variables]

Mame | Diata Tvpe I AT I Initial Yalue I Retained I Camment

EN BOOL FALSE Controls execution of the Function Block.
L5right BOOL FaLSE Limit switch For cwlinder right direction

LSleft BOOL FaLSE Limit switch For cwlinder left direction
Measurel REAL 0.0 Measurement resulk 1 of DVD thickness {mm)
Measurez REAL 0.0 Measurement result 2 of DVD thickness (mm)
Measure’ REAL 0.0 Measurement resulk 3 of DVD thickness {mm)
[Output Variables]

hame I Daka Tvpe I AT I Initial Yalue I Retained I Comment

ENC BOOL FALSE Indicates successful execution of the Function Block ...
CylinderRightOn BOCOL FaLSE Cukput For sylinder right direction
CylinderLeftion BOOL FaLSE Cukput For sylinder left direction

[Internal Variables]) . o .
| con This FB has its specific name and variable

Marne | Data Tvpe | AT | Initial Yalue | Retained g ’
WorkMave FB [ActuatorContral] names that include “DVD” or “Cylinder”
DVDThickJudge FB [Avgvalue_ThresholdCheck] because it is specifically created for
Judae BCOOL FALSE application.
_udge BCOOL FALSE
a The upper limit i 1.26mm, the lower limit iz 1.14mm. (1.20mm (+-5%))
1] L DThickJudge
Ly alue_ThresholdCheck
|EN| (Bo0L) (BOOL)
|} Eni ENCI-
Measurel (REAL) (BOOL) Juclge
—{Irput Result-
Measure2 (RE&L) .
—{Irputz n
Measured (REAL) .
—Input3 L
+1 26 (REAL) -
—UpLimit
“ +.14 (REZL)
. Lo Litnit
1 Juclge ‘; ant® _dudge
2 L% PrL e = L
2 ° Wioghdte®e
4 ° eunt® ¥ ctustorCartrol
£ . om0 (BOCL)
1| 0y Er EMcy
“ Judlige (B0 (BOOL) CylinderRightOn
. —PozDirlnput ActuatorPosOut
“ _udge ([BOOL) (BOOL) CylinderLefton EmmEm
—MegDirlnput ActustortegCut
LSright (B0
—LSpos
LSlett ([BOOL)
—HLEneqy
—

A function block can be called from within another function block. This is called “nesting”.
To nest, declare a variable of FUNCTION BLOCK(FB) type as its internal variable to use the
variable name as an instance.

Entering/Debu Creating FB
gging FB Definition
Definition Library

Program
Design

Entering Main Debugging
Program Main Program

4-4-2. Adding Functions to Existing Components - WorkMoveControl_LSONcount |

Req. 5. “Paper boxes should be classified into 2 types. Switching frequency should be counted to
evaluate a life of limit switch adjacent to actuator of selection part.” can be materialized by counting
OFF — ON switching of a limit switch as an input for “ActuatorControl”. This component is called
“WorkMoveControl_LSONcount” FB. Shown below is an example of an FB to be created.

[Input Variables]

| Mame | Data Twpe | a7 | Initial ¥alue | Retained | Camment |
EM BOCL FaLSE Controls execution of the Function Block.
RightDirInput BOCL FaLSE Caondition ko mowe actuator to right direction
LeftDirInput BOCL FaLSE Condition ko mowe actuator to left direction
L5right BOCL FALSE Limit switch for acutuator right direction
L3left BOOL FALSE Limit switch for acutuator left direction
Reset BOCL FaLSE Resets number of kimes for opening - closing Ii. ..
[Output Variables]
Mame | Data Tvpe | aT | Initial Yalue | Retained | Comment |
EMO BOOL FALSE Indicates successful execution of the Functio, ..
ActuatorRightOn | BOOL FALSE Cukput For actuator right direction
ActuatorLefton BOCL FALSE Cukput For actuator left direction
L5_OMnumber LIMT 0
[Internal Variables]
Mame | Data Type | AT | Initial Yalue | Retained | Comment
PresCyclel s BOOL FALSE
‘iorkMowe FE [ActuatorContral]

[*Work move cortrol and count of numkber of times open - close of limit switch *)
[* Created by: machine development div. Yamada: 10-01-2005 *)

(* Resets number of times opening - closing limit sivwtch *)
IF Reset = TRUE THEM

PrevCyclel= .= FALSE;
EMD_IF;

[* Callz WorkMove (instance of ActustorContral FB)Y *)
wWiorkhowveRightDirlnput, LeftiDirinput, LSriakt, LSleft, ActustorRBigkton, Actusatorl efton);

[* Courts number of times opening - closing limit switch *)
IF PrevCyclels = FALSE and Laright = TRUE THEM v

LE_OMnumber = LS_ONnumber+1;
EMD_IF;

PrenCyclels (= LSright; (* Copies LSright to compare at next execution *)

How to call FB (function block) from ST

FB to be called: MyFB Instance of MyFB declared in ST: Mylnstance
I/O variable of FB to be called: I/O variable to be passed to FB in ST:

Input: Input1, Input2 Input: STInput1, STInput2

Output: Output1, Output2 Output: STOutput1, STOutput2

In this example, calling of FB instance from ST must be described as
Mylnstance(Input1 := STInput1, Input2 := STInput2, Output1 => STOutput1, Output2 => STOutput2);

When all input/output variables are described, description of variables and assignment operators in one to be
called can be omitted.
Mylnstance(STInput1, STInput2, STOutput1, STOutput2);

By describing variables and assignment operators in one to be called, you can describe only a part of
input/output variables.
Mylnstance(Input1 := STInput1, Output2 => STOutput2);

5-7

Program
Design

Entering/Debu Creating FB

Entering Main Debugging

gging FB Definition Program Main Program

Definition Library

4-5. Total Program Description |

For components (FB) investigated here to work as a program, a circuit must be created that calls a
component integrated from main ladder program.
* Example here limits to Req.2 and 5.

Global Variables]

Mame | Dakta Type | Address | Yalue | Rack Location | |lsage
ﬁStageﬁ._anSelect F& [WorkMoveConkrol _LSOMNoount] iR [Auko]
ﬁStage.ﬁ._D'u'DThickSelect FB [OVD_ThickSeleckCankral] riA [Auka]

* Other instance variables than those to use FB are omitted.
]

| Stages_DVDThickSelect
R
WD _ThickSelectContral

0.00 (B3l [BCOL)
EmM EMO

1.00 (B0
JLSright

1.0 (BOOL)
AL slett

(BO0L)
CylinderRightOn L

(B0
CylinderLeftOn |

Do (REAL)
H{Measzurel

D2 (REAL) =
Atessure2]

D4 (REAL) =
_ MeasureS:

[Stages, BoxSelect l
: Wiorkhoveartrol_LISONcount

P_On (BCDL) . [BOOL)
| EM " ENO |-
Wo.oo (B . (B
JRightDirlnpwt : ActustorRightOn L
WO (BN . (B
JLettDirlnput = ActuatorLefton
3.00 (BNOL) . (LIMT
JLSright . LS _OnNnumber |
L]
3.0 (B .
JLSleft .
L]
L]
010 (BN =
JReset .
]
.
L]
\4

€

Why the instance name is “ StageA***” ?

Although it is not explicitly described in the application example, a program for newly added stage B
can be created only by describing an instance “StageB***” in the program and setting necessary
parameters, without registering a new function block.

As a feature of Omron’s function block, one FB can have more than one instance. By using operation-
verified FB definition (algorithm), a program can be created only by assigning its address.

Program

Design

Entering/Debu
gging FB
Definition

Creating FB
Definition

Entering Main

Debugging

Library

4-5-1. Total Program Structure |

Program

Main Program

This section verifies total program structure including components (function blocks) created here.

[Main Program]

n [] The Uprer fimit i 1 Z6mim, the lawer i i 1.14mm. (1 =
[m. BRG]
DVD_ThickSelectCortrol Jf @@ M EEEE == '> l Anga\ue_Thrashn\dCheck' gy
000 oL B L) "
|} N Eedl & ENGL i A
Measurel (REAL) (B00L)
100 (B0OL) (B00L) 200 inputt Redul
C=right Cylindler Righton Messure2 ResL)
101 (B00L) (B00L) 2m etz
LSt CylinderLeftOon Measured (REAL)
g3
oo (REAL) +1.26 (REAL)
ieasuiret {UpLimit
+114 (REAL)
D2 (REAL] —ALoveLifnit
Messure2 1 Juetge (r— _Judge
D4 (REAL) 2/——
JMezsures 2 l Wiarkove '
4 4
En BOOL . BOOL:
— }7[91) . b Emoj—
Staged_BoxSelect Judge (BOOLY (BOOLY| CyinderRightCn
—{PosDirinput “ ActustorPosCut -
_Judge BOOL BooLy| CyinderLefion
Pon imcoL) 8001 i Retuctorieaon|
1t - LSvight BooL) “
Wo.00 (B00L) - (B00L) 400 LSpos .
RightDirlnput w ActustorRightOn|- Lelett (BOOLY .
Csnes
W OL) '_ (BO0L) 4m -
| eftDirinpLt u Actustorleffont “
300 (B00L) - (LINT) 010 ‘
Lsright ® LS ONnumber |
- o Actustor Cortral FU
301 (BOOL) . Susetary
Lslett . Mg fox psts un, ther cadyad tor st ind Sawtch
w10 B00L) “ W ireud for regalr e Actusor oupd Limk Stwtch for negerve
Resst % e
. Pusakgad BOCL
.
- LSpoxDddL
- LS SO
‘ Ouignd voriabie:
Ao rPusOuBOL
(*Wyork move control and count of number of times open - close of limit switch *) W:mm v rr e
(* Crested by: maching developmert div. Yamads: 10-01-2005) = ! fr? l/;
ArtusrePnsu |
(* Resets number of times opening - closing limit shwtch *) 1 | -*ﬂL,lw Lepo Lsreg BctustoisgOL
IF Reset = TRUE THEN . it] 1
Abuston Mg d
PrewCyclel S = FALSE;] I}
END_IF; ’,1
o
*
T A A k= =) g 8 o =
WiorkhovelRightDirinput, LeftDirinput, LSright, LSleft, ActuatorRightOn, ActuatorLeftOn); l
(* Counts number of times opening - closing limit switch *)
IF PrexiCyclel S = FALSE and LSright = TRUE THEM
LS_Ornumber ;= L5 _Oknumber+1;
END_IF;
PresCyclel S 1= LSright; (* Copizs LSright to compare st next execution #)

Instance names and FB names can be illustrated as follows: (FB name is described in [])

[

[DVD_ThickSelectControl]

StageA_DVDThickSelect [DVD ThickJudge]

[AvgValue_ThresholdCheck]

[WorkMove [ActuatorControl]]

> [WorkMove [ActuatorControl]]

In a structured program, especially to change a lower level component (FB), it is important to understand
parent/children relationship and components’ sharing when process flow must be cleared in case of debugging, etc.
It is advisable to create an understandable diagram of total program structure as design documentation.

StageA BoxSelect
[WorkMoveControl_LSONCcount]

CX-Programmer provides "FB instance viewer" when [Alt]+[5] key is pressed for easier understanding of software
structure constructed by FBs.Also, address can be checked that is assigned to FB instance.

—’:I Em MewPLC1 Mame | Data Type | Address ‘ Comment |
- F6F Staged_BoxSelect{workMoveContral_LSONcount] EN BOOL H513.00 Cortrols execution of the Function Black,
¢ bedIF WorkMove[ActuatorContral] Input1l REAL H514 Input value 1
[=1-FEF Staged_DYDThickSelect[DYD_ThickSeleckCankral] Inputz REAL H516 Input vale 2
; \Thick Tudge] Input3 REAL H518 Input value 3
- - LowLimnit REAL Hszz2 Lower limit value
F WorkMove[AckuatorContral
L 1 UpLimit REAL H5z20 Upper limit valug
Internals 2, rputs A Outputs A Externals /

| X I

Entering/Debu Creating FB Entering Main Debugging

Program ; L
: ing FB Definition .
Design I%gefir?ition Library Program Main Program

5. Entering FB Definition |

This section describes how to enter an actually-designed program and debug it.
New project must be created and “ActuatorControl” FB of Page 5-4 must be entered.

5-1. New Project Creation and PLC Model/CPU Type Setting

Refer to page 2-3 and create a new project. . .
I Select a PC model from the followings to use function

blocks.
CJ2H, CJ2M, CJ1H-H, CJ1G-H, CJ1M, CS1H-H, CS1G-H,

CP1H, CP1L, CP1L-E

2 Untitled - CX-Programmer - [NewPLC1.NewProgram1.Section1 [Diagram]]
Fle Edt Wew Insert PLC Program Iooks Window Help =18l

Dol @n(smaoc acsee||erss|in EEfe g CDDE | ke s

soqEgEMERR A ww | —opEEEl k||[Blem(vunt [BERRD |

CREROS @2EEE| L85 s 8
=

° I [Program Hame : NewProgram1]

I»1

(=<8 NewProject

D NewPLC1[CS1G-H] Offline
5 symbals
@7 10 Table and Unit Setup

[Section Name : Section1]

2% Programs
| =% NewProgram (00)
5 symbols

141
b, Project / x5 Hame: Address or Value: | Comment: |
I [

|NewPLC 1Iek:0,Nade:0) - Offfine [rung (g, 0) - 100%

For Help, press F1

5-2. Creating Ladder Definition FB

Create Ladder definition FB. =% Programs ‘
EI@ MewPrograml (00}
Move the mouse cursor to a d
function block icon {F , then
right-click. Select B '
— Insert Function Block Copy e (e
— Ladder 2 Paste
Delete

IT Allow Docking
Hide

Float In Main Window

‘Prg:erties
E|£F Funihine B!

Now new FB is created. T R R IO 1

Advanced
Entering/Debu Creating FB
gging FB Definition
Definition Library

Program Entering Main

Program

Debugging

Design Main Program

5-3. Entering FB Ladder Program |

Change FB definition name.

El% Prograrms
5 El@ MewPrograml {00}

"5 Symbols Caution: . o
) A user cannot create function block definition name
5 o 9 Sectiont starting from "_".
Move the mouse cursor to a -5 EnD The name must start from a character other than " _".

created function block icon PP = = y ckion Blocks —
then right-click. 5{--;5;.ﬁ.ctuatnrl£untrul

— Rename

Enter [ActuatorControl]. ’

_'__l.lnfllh-ﬂ X Programmer - [NewdLT 1 FunctionBlock] [FB Ladder]
[t e o st MG Booen Lok Wrdo i

[DER ®@R som(2c|atis(ew||assas |
fraal SExERGArnew | —os FEEL k|

Variables Table

Open FB ladder editor. I EFRRRES ﬁg.-;-,-:-.__-.l,,3*;..,”.4.........;........ L L L LT
_——— ——— 2l i [Tl Tootatee Tar [iwwv. I‘.- T ot 1 r

y =3 8 i e] —+++ Ladder Input Screen
Move the mouse cursor to a PaT . RS .
function block icon IEtF, then ’BF:": : Lot ;
double-click to open the eeeececcccccsqescs ',..M : K :
function block ST editor. ! o '
i @ |
:ﬂ ﬁ
Iy st] e | ks or Vakoe: | Commert: | .
Fox Meks, prass F1 IT"WMW__T """" - E't'\cT{ﬁﬂ}-Tl—_l_:

Select the variables table and register variables in the function block.
All variables of “ActuatorControl” FB of page 5-4 must be registered.

Note: Order of variables must be the same as FB instance order.
To change order of variables, select a variable name then drag and drop it.

Select ladder input screen, then enter a ladder program.
All variables of “ActuatorControl” FB of page 5-4 must be registered.

Note: Although you can enter a circuit in the FB ladder editor similar to the main
ladder editor, entering of address in the FB is invalid.

Note: To enter variable list in a line comment, you can select a variable from
variables table then copy it. You can use it for more efficient input.

5-10

Entering/Debu Creating FB

Program : - Entering Main Debugging
: ing FB Definition .
Design I%gefingition Library Program Main Program

5-4. Transferring Program |

Connect to CX-Simulator online, transfer a program, then set PLC (simulator) to monitor mode.

For how to connect online and transfer a
program, see page 2-10.

™ sample_e3 - CX-Programmer - [[Running] - NewPLC1.NewProgram1.Section1 [Diagram]] =101 x|
[¥ Ele Edt Yiew Inset PLC Program Iools MWindow Help =181%|
DEA R SR BE 2 (anner|siEals [RaR2asEBRRE o w ns

s FEEmERMdrrw | —ogaarlX|[EleEnene|E|BEEE|
mEFROE &R E(2E| s
———

-8 NewProject P :I
=88 MewPLC1[C516-H] Monitor Mode
T 29 Symboks ActustorControl
@ 10 Table and Uit Setup P on (B00L) (BOOL)
&) settings —1 ENOL
@ Memary card Alweys ON Flag
000 (BOOL) (BOOL) 004
H Jposbirinput ActustorPosout]
st Memory i 0
& B Programs . o (BooL) (BOOLY 005
| B NewPrograml (00) Running RlegDirinput ActustorilegOut |-
H % Symbols 0 0
! @ Sectionl QR B0y
& eno Lspas
] T Function Blacks 0
FF ActustorCantral
003 (BOOL)
AlSneg

1

< | o < | _’ILI

Project _I_I Mame: ddress or Value: [Comment: |
For Help, press F1 |NewPLC1(Simulator) - Monitor Mode | 25ms [s¥nC |rung 1 (5, 0} - 100% [[[4

5-5. Operation Check-1

Change current parameter value of FB call statement on the main ladder, then check the
operation of “ActuatorControl” FB.
Monitor the instance of ActuatorControl FB first.

Gz
Move the cursor to FB call essececcscecessses
statement, then double-click /
orclick . button.
ronz
0.00
a
om
o
o0z
[Function Block Mame : ActustorControl]
o
003
0 Suminy:
I g for positive drection is on, then Acusor oulpd for positive dieclion i on untl Limd Siwich for posive drection.
1t Ingt for negative drection is on, then Actusor outpat for for negaive direction.
PosDirinput Laneg Lspos ActuatorPosOut
=l 1} vt O—f
. inpat for postive . Lim switch for n,_ [Limé switch forp,
FB ladder instance (under ececcccccccsccccccscsccscscnn. ActustorPosou
condition of address assigned) Actustor outpd 1.
i i 1 Neghiinput Lspos Lsneg Actustorbiegtnd
is monitored. 2 il i i)
mlumm l.hlmlu'n Lim switch forn..,
ActustorblegOul
Actustor outpd 1
2
5-11 —

Entering/Debu Creating FB

Program
Design

Entering Main Debugging

gging FB Definition Program Main Program

Definition Library

Display the main ladder and FB instance (FB ladder called by the main ladder) at the same
time, then check the operation while changing current parameter value of FB call statement in
the main ladder.

= _sample_e3 - CX-Programmer =13 x|
Fle Edt view Insert PLC Program Tools Window Help

DEE ®(ER [saeo: asz|erzess|sn iR asf D0RR|Sw 2|
aaqFEcmERErwew | —opaaxlk|[Eloasvrss @ BERD |
PERROSE R0 8 wns| e s
e FFMI[¥ (Runnina] - NewPLC1.NewProgram1 Section] [Diagram] =100 x|
£ 5 MewProject T] Foemwwa]
=58 NewPLCL[CS1G-H] Moritor Mode Z‘
-5 Symbols (e Goo0 (E00T)
£ 10 Table and Unit Setup I Il
2 Iweays OM Flag
: Settings
8 000 (B00L) (B00L) 004
: gﬁ:ﬁ:’gmd Posbirinput ActuatorPasOR)
@) PLC Clock 0 0
L Memary om (B00L) (B00L) 005
5 Pragrams JrieaDirinput ActustoriegOut |-
¢ -l Newprogram1 (00) Running o o
: 5 Symbols 002 (B00L)
- B Sectiont |-=po=
: .63 Enp o
=-IF Funetion Elocks 003 (BOOL)
ActuatorControl LSneg
0
1 -
Kl | 3
= Hame: Address or Value: | Comment:: | 7
p Z T]
) G { | t
It for positive . 4 imit switeh for n... [Limt swich for p
AP
—
Actuator output 1
1 NesDinpUt Lspos Lsneg sctuatorizoout
f "]
f { | t
Input for nessalive... Linit switch for p... Limit switch for n
ActustorNegout
Actustor output 1
2
ol s 1T | _>I_I
Praject x| 4| (ocal Name: [PosDirTnput Address or Value: [HE27 .02 Comment: [Input for positive direction 7
For Help, press F1 [|NewPLE L{Net:0,Node:i) - Monitor Mode: [oEms [svnC [rng 045, 3) - 100% [[[

5-6. Operation Check-2

Enter following parameter values of FB call statement and check if expected output should be
provided. In this example only (1) is shown, but all combination of conditions must be verified.

(1) Initial State: Turn 0.03 ON. => 0.04 and 0.05 must be OFF. FB instance ladder monitor screen
must be under state that corresponds to the value.

(2) Actuator forward direction operation-1: Turn 0.00 ON => 0.04 must be turned ON. FB instance
ladder monitor screen must be under state that corresponds to the value.

(3) Actuator forward direction operation-2: Turn 0.03 OFF => 0.04 must be ON and 0.05 must be
OFF. FB instance ladder monitor screen must be under state that corresponds to the value.

(4) Actuator forward direction operation-3: Turn 0.02 ON => 0.04 must be OFF and 0.05 must be
OFF. FB instance ladder monitor screen must be under state that corresponds to the value.

AL
P_on (BOOL) (BOOL)
o B 0.00 (BOOL) (BO0L) 004
Always ON Flag : JPosDirinput ActustorPosOut |
0.00 (BOOL) (BOOL) 004 0 0
{Posiriput ActustarPosOut |
T T 0.0 (BOOL) (B00L) 005
HMegDiringput ActustorMegOut £
0m (BOOL) (BOOL) 005 0 0
JMegDirinput ActustorilegOut |
i) i) 002 (BOOL)
JLSpos
002 (BOOL) i
4LSpos
0 0.03 (BC0L)
LSneg
0.03 (BOOL) c .)
Move the cursort0 0.03and ,.ceeceeccces [Sneg o
1
press [ENT] key.

—— 1 must be displayed. IIu ——
- FosDirlnput f \ L=pos
| | I} |

SEt New FE Input fur‘pc:s'rlive - LimMﬂ... Lirnit sw'rllﬁ'l for p...

Address: {003 A ctustorPosOut
I}

Data type: |EOOL x Actuatur‘ DLI.dpu‘l f...
. e LSpos LEney
e 6‘ ; Enter 1 and press [Set] button. I | %

1T T
... Limit swwitch for p.. (Limit switch forn...
0.1 (0CH)
|| Actustorhiegout
T

5-12

Program Entering/Debu Creating FB

gging FB Definition Entering Main Debugging

Design Definition Library Program Main Program

5-7. Entering/Debugging Other FB Definition |

Thus far, entering and debugging for “ActuatorControl” FB are described. Other FB definition
must be entered and debugged as well.

5-8. Batch Registration to Watch Window

For debugging, you can use batch registration of FB instance address to Watch Window instead
of FB ladder monitor.

I [Section Mame : Section]

Edit...
P_Cn BOET GoTo 3
I | ER
Always ON Flag Down To Lower Layer
0.00 (B0 & Un To Upper Laver

HPozDitinp

Update Funckion Elack Invocation

a
nocoo.ocoonocoog-mccolo_ﬁ%gg

Move the cursorto FB call eeeeee
statement you want to register,

g q q 1]
right-click, then select [Register
a q g 0.02 (BOOL)
in Watch Window] in the menu. ILspos Find Bit Addresses
o Find Addresses
003 [BOOL) Find Mnemanics
JLEney
1 b Ut
Copy

Mlarna: ttvmne e vials I Paste I

=

x zl
LT PLC MewPLC1 &
FE Instance: FE Instance: I test hd l
Select Usage and Data type ®eeeeeeeooccecsookimnce Intemnal Usage: IW vl
if necessary. Data Type: Al = Data Type: Bl =
Mame | Data Type | Comment |_Hame | Data Type | Comment
PozDirlnput BOOL Input for positi
MegDirlhput BOOL Input for nega
LSpos BOOL Limit gwitch fo
LSheg BOOL Limit switch fo
ActuatorPozOut BOOL Actuatar outpl
ActuatorMegOut BOOL Actuator outpL
1 | i | |]|
()8 I Cancel | n’ Cancel
e

Select a name to register,
then press [OK] button.

5-13

Program Enter'inglFngu
Design 999
Definition

Creating FB
Definition

Library

Advanced

Entering Main Debugging
Program Main Program

5-9. Executing Steps using the Simulation Function

Setting the simulation function breakpoint and using the Step Execution Function, you can
stop the execution of the program and easily check the processing status during program
execution.

5-9-1. Explanation of the Simulation Buttons

The toolbar buttons below are for use with the simulation function. The function of each button
is described here.

& » mmm

l'_u: ﬂ_l H H ‘ Simulation Buttons

T

Set/Clear Breakpoint
(F9 key)

Select locations (ladder, ST) where you want to
stop while executing the simulation and a red
mark will be displayed by pressing this button.

Clear All Breakpoints

Delete a breakpoint (red mark) set using the Set
Breakpoint button.

Run(Monitor Mode)
(F8 key)

Execute user program. Run mode becomes
monitor mode.

Stop(Program Mode)

Stop user program execution. Run mode
becomes program mode.

Y = | m | ¥ | s

(=

(Shift+F11 key)

Pause User program execution pauses at the cursor
location.

Step Run Execute one user program step.

(F10 key) In the case of a ladder, one instruction, and in the
case of ST, one line.

Step In Execute one user program step.

HJ: (F11 key) In cases where the cursor location calls the FB
call statement, it transfers to the called FB
instance (ladder or ST).

Step Out Execute one user program step.

In cases where the cursor location is the FB
instance, transfers to the base FB call statement.

¥

Continuous Step Run

Executes user program step, but automatically
executes steps continuously after pausing for a
certain amount of time.

Scan Run

Execute one user program scan (one cycle).

5-14

Entering/Debu Creating FB

Program . — Entering Main Debugging
: ing FB Definition .
Design I%gefir?ition Library Program Main Program

5-9-2. Setting Breakpoint and Executing Steps |

Here is an explanation using Simulation Function “WorkMoveControl_LSONcount” FB Debug as
an example.

o sample_e2 - CX-Programmer ol x|
Fle Edt View Insert PLC Program Tools Window Help

DER B[S Be ot |asn2rsaEalsnblResREoD8 |l u(es
aoqisEmERLrniw | —ogaaEl k| ¢Evnnt [E[BEEE
ERRRES %2 CEE (255 | x |

FEEY T T

2l _iolx
-5 NewProject
=2 NewPLCI[CS1GH] StopfProgram Mode ||| ZI
= symbols 2z Stages,_BoxSelect
] 10 Table and Unit Setup : WiorkMaveComtrol_LSCNsount
Settings
[E memary card F_On (BOOL) (BOOL)
By Error log — & BNl
PLC Clock Always ON Flag
<t Memory wWo.00 (B00L) (B0CL) 4.00
= % Pragrams RightDiringut ActuatorRight |
1 4G5} WewProgram? {00) Stopped o Cx 0
i 2 Symbols W01 (BOOL) (BOGL) 4.01
5 sectiont JLeftDirinput ActuatorLefto [
B Enn o n 0
= TF Function Blocks 300 (BOOL) (LINT) Do
ActuatorContral Lsright LS_ONnumber |-
T5F Avgvalue_ThresholdCheck o oL
DYD_ThickSelectContral £ (BOOL)
IEF WorkMoveControl_LSONcount HLSlsft
i
010 (B00L)
JReset
i
3
14| | _>|_|
I Project £ K| Mame: Address or Walue! | Comment: | 4
For Help, press F1 N [MewPLCL{Simulatar} - Stop/Program Made [[3¥nC [rung oo, 2) - 100% [y

Change from run mode to monitor mode.
Display “WorkMoveControl_LSONcount” FB instance.

j‘ i Select
Move the cursor inside the FB |, ¢ 4eeececocsccecssseediioiigncontsl LsoNeount
call statement and double-click P_on "5 (BOOL)
. —_— 4| En ENO|
the mouse or clickthe ., Biways ON Flag
button. it .00 (BOOL) (BOOL) 400
JRigHtDiFnput ActustorRight
] on 0
Wi 0 (BOGL) (BO0L) 401
JLeftDirinput ActustorLeftO [
a n o
3.00 (BOOLY (LINTY oMo
ALt LS_ONnumber |
o oL
301 (BOOL)
JLSIeft
o
o100 (BOOL)
IReset
o

To CL1.5tageh_BoxSelect[WorkMoveControl_LSONcount][FB Instance] 10l =|

@ (*Wiork move control and count of number of times open - close

(* Crested by: maching development div. Yamacs: 10-01-2005

[* Resets number of times opening - closing limit statch *)

IF Reset = TRUE THEM Reset =10
PrewCyclel S = FALSE, PresCyclels =0
ERD_IF,

The present values of the
variables corresponding to the
program are monitored in FB ST

esee
(* Callz WarkMove (instance of ActustorControl FB) =)
wiarkMovelRightDirlnput, LeftDirlnput, LSright, LSleft, ActustorRi RightDirimput = 0, LeftDirlnput = 0, LSright =0, LSleft =0, Ac

H A (* Counts number of times opening - closing limit switch *)
InStance (Wlth aSSIQned address)‘ IF PrewCyclel S = FALSE and LSright = TRUE THEM PrevCyclelS =0, LSright = 0
LS_OMnumber ;= LS_ONnumber+1; LS_OMnumber = 0,L
EMD_IF;

PrevCyclel S = LSright; (* Copies LSright to compare at next ex PrevCyclelS =0, LSright = 0

5-15 STP\/ o ~—
rogram ariables and present values

Program
Design

Entering/Debu Creating FB

Entering Main Debugging

gging FB Definition Program Main Program

Definition Library

Move the cursor to the FB

call statement left input and seeedfos = on

click the @I- button.

=

Click the] button.

Set the current value in the FB call statement parameter and confirm execution condition.
Set the following cases:
RightDirlnput: ON
LeftDirlnput: OFF
LSright: OFF
LSleft: ON
Reset: OFF
In this case, the following outputs are expected:
ActuatorRightOn: ON
ActuatorLeftOn: OFF
LS_ONnumber: 1

Alwways ON Flag

The programs stops at the breakpoint.

PoOn

Alwvays ON Flag

Perform breakpoint input contact. It stops at the following step of FB call statement.

NS

5-16

Advanced

Entering/Debu Creating FB

Program
Design

gging FB Definition Entering Main Debugging

Definition Library

Program Main Program

Turn input parameter “RightDirlnput” and “LSleft” ON in the FB call statement.

Staged,_BoxSelect

(i

Press [«] [4 [4] WiorkhoveContral_LSCMeount

—_—

P_On (BOOL) (BOOL)
I} En ENC
Alvways O Flag
E,,,,,,,,,,,,,,,,,,,,,E BooL) (B00L) 400
E NT : 2 RightDirinput ActustorRight
4 1 7 &n 0
TUTREETTTTT (BooLy (BOOL) 4.01
LeftDirlnput ActustorLeftl
1] n o
300 (BOOLY (LIMTY oo
1 L=right LS _Ohnumber
il oL
301 (BOOLY
LEleft
1]
010 (BOOLY
ENT Reset
] ° -
Press [V [V 1V]
Staged_BoxSelect
WiarkhoweContral_LSOMcount
FPoOn (BOOLY (BOOL)
= = EM EMC
Always ON Flag
@ Wi .00 (B2OL) (B20L) 4.00
RigkitCoirIrpt ActuatorRight

O S

ENT W01 (BOOL) (BOOL) 401
LeftDiringt ActuatorLeftC
u] n u]
300 (BOOL) (LINT) D10
L Srigghit LS_ONnumber
g 3m g(BOOL)
g gLSIeﬂ
oo The necessary input parameters were set.
ik 1] (BOOL)
Reset

]

Click the EIJ button.
[W¥ NewPLC1.StageA_BorSelect[WorkMoveControl_LSONcount][FB Instance] 100 x|

(*Wark move contral and count of number of times open - close
[* Created by machine development div. Yamads: 10-01-2005

. . . Resets number of times opening - closing limit sivwtch *)1
Position of ST Monitor execution { |k 1 Reset = TRLE THEW Reset=0
PrewCyclels = FALSE; PrevCyclels =0
END_IF,

[* Callz Workhove (instance of ActustorControl FB) *)
WorkMoverRightDirlnput, LeftDirlnput, LSright, LSleft, ActustorRi | RightDirinput = 1 | LeftDidnput = 0, LSright = 0, LSleft = 1 , Ac

[* Courts number of times apening - closing limit switch =)

IF PrewCyclel S = FALSE and LSright = TRUE THER PrevCyclelS =0, LSright =0
LS_ONnumber = LS_Ohnumber+1; LS _Ohnumber = 0,
EMD_IF;

PrevCyclel S (= LSright, (* Copies LSright to compare at next ex PrevCyclelS =0, LSright = 0

4 | i | |
5-17 The cursor moves to the first line position of the called ST program.

Program
Design

Creating FB
Definition

Entering/Debu

gging FB
Definition

Entering Main

Program

Debugging
Main Program

Library

(i

Workhove(RightDirinput, LeftDirinput, LSright, LSleft, ActustorRi

‘Transitions from the ST program to the called FB ladder
program.

(* Callz WorkhMove (instance of ActustorControl FB) *)
wt =0, Lsright = 1 , LSleft = 0 | ActustaorRighton =1 | Actuato

Click the m button two times.

¥ NewPLC1.5tages_Boxselect.WorkMove[ActuatorControlJ[FB Instance] -0l x|
ActustorMegOut DBOOL zl
(; mlsggcai,rzlin};:i,w% L=ney LSpos Aduaiorposm
; 5 I I
; b 1T f
ZInput for posti.. Limit switch fo.. [Limit switch fo...
TEctuatorrostit™
|
11
Actustor outp..
1 MegDirlngpt LSpos LSneg ActustorMegOut
3 | | | | 11
Input for negat... Limit switch fo.. |Limit switch fo..
Ié \ ActustorhlegOut
|
N /U 0 J
e v
] '
2 . . fan
Confirm the input conditions are correct from the ST program
to the called parameter.
3
-
|4] | b
2|4 Local Mame: PosDirInput Address or Yalue: [HS26.02 Comment: [Input For positive direction v
[NewPLC1.StageA_BoxSelect. WorkMove[Actuak nkrol][FB Instance] - |D|ﬂ
Click the MF button five times. I Aetustior gV HEE IR ZI
PosDirlnput LSneq LSpos ActuatorPosOut
1| || |
1 1 I
It fior positi... Limit switch fo.. [Limit switch fo.,,
ActustorPosCut o°
| | .
L .
Actustor outp... o
////////////////////// o
Iﬁ 1 Z MegDirlnput LSpoz LSney .o. Actuatortegout
3 E % { {1 .
Zimput for negat... Limit switch fo... [Limit switch fo... .’.
5 4 .
| | Confirm the expected output “ActuatorPosOut
Actustor outp...
value.
2
3
[| H
2 [Local Mame: [MegDirlnput Address or Walue: |H526.03 Comment: [Input For negative direction &

Confirmation has been completed.

Click the ﬂl button.
Return to the calling ST program.

=

(* Calls WarkMaove (instance of ActustorControl FE) *)
wiorkhove RightDirinput, LeftDitinput, LSright, LSlett, ActuatorRi

=0, Lsright =1 , LSleft =0, ActuatnrRigm@duato
L]

: Confirm the previous circuit processing result is correctly reflected in the cafling ST
I:j program monitor screen.

~_=

5-18

Debugging

Creating FB Entering Main
Main Program

Definition
Program

Entering/Debu
Program gging FB

Design Definition

Transfer to the calling ladder program.
® PoOn 1
.] |
T
Click the ﬂl button. Alvays ON Flag

Wyl .00 4.00

4 1

Wi 01 4.

1] 1]
3.00 C10
1 oL
3.01 o
.
L]
0 5
010 s
L]

0 8

L]

.

Confirm the output parameter is reflected correctly.

Hint |
ST program change parameter current value can be performed with the following operation.

— 10 ANAnAnn El , Imput1 = +0.0000

Avovalue = [Inputt + Input2 + Input3 10 3.0; (*Diy | EEEEE

IF (f Awgalue <==UpLimit) M0 (Avghalue ==LowveLimit)) THEM (* Al Copy , UpLimit = +0.000
Result .= TRLUE;
EL=E
Result ;= FALSE,

EMD_IF;

Select the parameter you want to change
‘ with the mouse cursor and click the right
mouse button and select Set = Value

Set New Yalue x|

Set

Address: |H524

Data type: |HEAL j Cancel

i

Value: |1.234E|

-3.402823e+38 to -1.175495e-38,

0.
+1.175495e-38 to +3.4028232+38 [2CH)

’ Set value and click the [Set] button.

Avgialue = Input! + Input2 + Input3 1530 [* Diw
IF ({Avayalue ==UpLimit) AMND (Avgyalue ==LowLimit)) THEM *

Rezuft = TRLIE;

EL=E

Result .= FALZE; Result =0
EMD_IF;

5-19

Program
Design

Creating FB
Definition

Entering/Debu

Debugging
Main Program

gging FB Entering Main

Definition

Program

Select
“DVD_ThickSelectControl” FB,

right-click and select [Save «°

Function Block to File] from
the context menu.

Library

6. Creating FB Definition Library |

To reuse operation-verified FB definition, it must be incorporated into library (file).
Check the hierarchy using project workspace and FB instance viewer, then determine the FB
definition you want to incorporate into library. In this case, it is “DVD_ThickSelectControl” FB.

E-% MewProject
=0 NewPLC1[CS1G-H] Offline

5 symbols

3 10 Table and Unit Setup

3 Settings

g Memnary

EI% Programs

E@ MewPrograml (00}

7 Symbols

Sectionl

b @ END

=-{F Function Blocks

ActuatorControl

3 Symbols
h Sectionl
.F@ END
- Function Blocks
EEF ActuatorControl
- 4EF Awgvalue_ThresholdCheck

o e
ickSelectContral YT ER edqe°®
g
& Conpie
oe® Gota Rung/aten..,
-
Select CX-Programmer Function Block Library File 21x|
E Save in: Iﬁ FEL j - ¥ B~
Froject /7 =]
omronlib
2/ =) 6D NewPLCL ™] FBLD. cxF
2 E-48F Stages_BoxSelect[WarkMoveContral_LSONcount] | sta FBT.cof

Function Blockl.cxf

! o= Sta
= Stages_DYDThickSelect[DYD_ThickSelectControl]
I5F DYDThickJudge[Avavalue_ThresholdCheck]
----- IiF workMove[ActuatorControl]

a g g n g

oy

Select [Save].
—

Save

File narme:

Save as type: IFunctlon Block Library Files[*.cxf] j EIEE

Default folder for saving is C:\Program Files\Omron\CX-One \FBL.
It can be changed by CX-Programmer option setting “FB library storage folder”.

e
Create a folder so that you should be able to classify it easily, such as Userlib\ DVD%

OMRON FB Library is under omronlib folder.

x|

The Following function block{s) used by 'D¥D_ThickSeleckControl have been also saved to
'DVD_ThickSeleckCantral. cxf',

- ActuatorConktrol

- AvgWalue_ThresholdCheck

CX-Programmer ¥5.1

)

When saving FB definition that calls another FB, both FB definition are saved.
When retrieving a project, calling-called relationship is maintained as saved.
It is easier to manage FB definition because saved FB definition is integrated.

5-21

Program
Design

Entering/Debu Creating FB
gging FB Definition
Definition Library

Entering Main Debugging
Program Main Program

7. Entering Main Program |

Add the main program to a project file that contains debugged FB definition. Program to be
entered is one that is described in 4-5. Total Program Description in page 5-7.

[Global Variables]

Mame I Data Tvpe | Address [Yalue | Rack Location |
ﬁStageP._Bu:uxSelect FE ["WaorkMoveControl_LSOMNoount] M [Auto]
ﬁStageP._D'u‘DThickSelect FE [DWD_ThickSeleckCaontral] A [Auto]

* Other instance variables than those to use FB are omitted.

.
Stages_DWDThickSelect
DD _ThickSelectCortral

0.00 (BOOL) (BOOL)
| | EM EMC L
1.00 (BoOL) (BOOL) 200
JLSright CylinderRighton |-
1.01 (BOOL) (BooL) 2/
JLSlett CylinderLeftOn |
i} (REAL)
H{Measurel
D2 (REAL)
{Measure2
D4 (REAL)
AMeasure3

Staged_BoxSelect
: WiorkMoveControl_LSOMNcount

P_On (BOOL) (BOOL)
|} EM EMNO L
W00 (BOOL) (BOOL) 4,00
JRightDirlngLt ActuatorRight On -
W01 (BOOL) (BOoL) 4.0
JLeftDirlrgt ActustorLefton -
3.00 (BOOL) (LIMT) 1o
JLSrigght LS _Ohnumber -
3 (BOOL)
JLSleft
010 (BOOL)
JReset

For how to enter a program, refer to pages from 2-6 to 2-9.

Entering/Debu Creating FB
gging FB Definition
Definition Library

Program
Design

Entering Main Debugging
Program Main Program

8. Debugging Main Program

Main program must be debugged considering followings:
e Program areas that are irrelevant to FB
e Program areas that are relevant to an input parameter to FB
e Program areas that refer to an output parameter from FB
Main program in this example has no such area, thus explanation is omitted.

5-22

Supplemental Information

How to delete unused Function Block definitions

When you delete unused Function Block definitions, it is not enough just to delete the Function Block call statement.

This is because the Function Block instance definitions are registered in the global symbol table.

At this situation, when the compile (program check) is done, then the unused function block instances will be shown on the
output window. You can identify the unused function block instance definitions and delete them easily.

The Function Block definitions and Function Block instances are a part of user program in the CPU unit even if they are not
called, so it is recommended to delete unused Function Block definitions and instances before transferring the program to
the CPU unit.

Execute Compile key

Result of Compilation

=l | Hame

| Data Type | Address | Value | Rack Location | Usage | Comment
EE-3 EN;WP'DiEEt Al e BOCL CFO07 Wwork Less Than (LT) Flag
-5 MewPLC1[CS16G-H] Offline = P_Max_Cycle_Time UDINT az6z Work | Mazimum Cycle Time
553 Symbols S PN BOOL CFo08 Work Negative (M) Flag
W.-'ﬂ 10 Table ©PNE BOGL CFO01 Work Nt Equals [NE) Flag
. ' f:tt‘"gs - POF BOOL CFong Work Owerflow (OF) Flag
-y Preorg:;;s « P_off BOOL CFl14 work | Always OFF Flag
155} HewProgram1 (00) Pon BooL CFLIS BBl Confirm Symbol Delete b |
= * P_OubpuE_CFF Bt BOOL AE00.15 ot
= Symbols
& sectiont © P Step BOOL nz00.12 ot
PP BOOL ot
& Eno = Are you sure you want to delete symbal aaaa?
=-JF Function Blocks =
40 FunctionBlock) | FB [Functior. ..
' Project £
- - PLC: 'MewPLC1" [PLC Model 'C51G-H CPU42") -
i | o q...

i NE; Unused Function Block Instance. This can
[PLCPragram Name - NewPLCT MewProgram1]
[Section Name : Sectionl]

[Section Mame : END]

[PLC/Pragram Name : MewPLC1 FunctionBlackl)]

Double click mouse left button I S

Click mouse left buttog

Function Block definition will be deleted. I

MewPLLT - 0 erors, 1 warning,
The programs have been checked with the program check option set ta Unit Yer. 3.0

Memory allocation for Function Blocks

It is necessary to allocate required memory for each function block instances to execute Function Blocks.
CX-Programmer allocates the memory automatically based on the following setting dialog information.

(PLC menu — Memory Allocation — Function Block/SFC Memory — Function Block/SFC Memory Allocation)
There are 6 types of areas, ‘FB Non Retained’, ‘FB Retained’, ‘FB Timer’, ‘FB Counter’, ‘SFC Bit’, and ‘SFC Word'.
Please change the settings if requires.

® Notice when changing the settings

If you change the ‘Not retain’ or ‘Retain’ area, please consider the allocated memory areas for the special 1O unit
and CPU SIO unit.

@ Special memory area for the Function Blocks
CS1/CJ1-H/CJ1M CPUs (unit version: 3.0 or higher) have a special memory area which is extended hold (H)
relay area.
The address of the area is from H512 to H1535. CX-Programmer sets the area as a default.
Please note that the area cannot be used for the operands of ladder command.

Function Block /SFC Memory Allocation [NewPLC1] ﬂ

Memory Area | Start Address | End Address | Size 0K I

FE Mon Retained 296

FB Rietained H1408 H1535 4”5”“'

FEB Timer T3072 T4035 Edit |

FEB Counter Ca072 C4035 S —

SFC Bt [Share withF... - Default

SFC ward [Share with F .. _ Dt |
Ldvanced.. |

[+ Share SFC with FB Memary
5-23

Useful Functions

Command Operand Input Automatic Search and List Display

It is possible to automatically display a list of symbol names or IO comments when entering the operands of commands.
When entering the operand for contact or output (or special instructions), enter a string, and the dropdown list is
automatically updated to display in symbol names or IO Comments using the defined string. Selecting the item from the
list defines the operand information.

This is an efficient way of entering registered symbol information into the ladder.

Example: Enter text “Temperature” to the edit field in the operand dialog.

x
j Detall »» | Cancel

Click ;| or push [F4] key; all symbols / address having 10 comment containing the text
‘temperature are listed. See below:-

x
| petails>|[oK | cancel |

alarml, “W0.00, Temperature error of the wark, surface [over B0 degrees C)
alarmiz, “W0.01, Temperature eror of the heating plate [over 150 degrees C]
temp_alarm01, .00, Temperature error of top of the equipment A [over 800 d
ternp_alarmilZ, *1.01, Temperature ermor of bothom of the equipment A [over 70

For instance, select ‘temp_alarm01, W1.00, Temperature error of upper case of MachineA’, from the list.
The operand is set to be using symbol ‘alarm01’.

zl
i j Dgtail>>| Eanu:ell

FB Protect Function |

Preventative measures can be implemented by setting the password in the function block definition allocated on project file,
protection corresponding to the use, program know-how leaks, improper changes, and alterations.

@ Prohibit writing and display

By setting the protection classification “Prohibit writing and display,” the corresponding function block definition contents
cannot be displayed. By setting the password protection on the function block definition, program know-how leaks can be
prevented.

@ Prohibit writing only

By setting the protection classification “Prohibit writing only,” the corresponding function block definition contents cannot be
written or changed. By setting the password protection on the function block definition, improper program changes or
modifications can be prevented.

Function Block Protection Setting x|
Function Block Properties |
—4a| General Protection I Comments | Memory | Input a password after selecting a protection type.
@ secuont ST Protection Type
3 Enp & ~
¥ fllows Dicking Prohibit wiiting and display Frohibit wiiting anly
= F Function Blocks il Protection Status:

ActuatorContral Hide

FF Avavalue_ThresholdC, |Nu rotection
o Tha okt Cort Eloat In Main Window B E— Passnond
IeF wwarkMoweContral LS p,g =

- Password [confimation);

Sef Cancel

5-24

5-25

Overview of Helpful Functions

Generating FBs Based on an Existing Ladder Program

FBs can be generated easily based on programs with proven operating results.
This function can accelerate the conversion of program resources to FBs.

Online Edit
Go To

Find Bit Addresses
Find Addresses
Find Mnemonics
& cut
Copy
ﬂ Paste

Delete

Fun

Reusable Eile

Mave

SOLrCE W

Destinatior|

Select the program section
that you want to convert to an
FB and right-click the mouse.

iction Block.{

Show Bung As
Read Only Mode Edit

Insert Below

Insert Above

‘ Select Function Block (ladder) generation.

The FB Variable Allocation Dialog Box will be displayed.
x|

Intemals |Inputs| Dulpulsl \nput!DutputsI

Address | Mame | Type | Afray Sizal AT Spe ‘ 10 Com. ‘

w00 Setting BOOL] Ny
o100 Data WiORD] N
D200 5P WORD] N
w000 AutolGe.. BOOL il N

Cancel |

When necessary, change the usage of variables and addresses (internal variable, input variable, output
variable, or input-output variable) used in the program section. Select the variable and select Change
usage from the pop-up menu.

Address | Mame | Type | Array Size| AT Spe.. | IEI
I

D100 Change usage » [EERGIEEEIEE

Dzoo SP WORD Inputs
w000 AutolGe.. BOOL Outputs

Input/Oukputs

Note:

If a variable does not exist in an address being used in the program, a variable starting with “AutoGen”
will be added automatically.

When the FB is called in the program, parameters are displayed as variable names, so at a minimum we
recommend changing input, output, and input-output variables to easy-to-understand variable names.
To change the names, double-click the address that you want to change in the FB variable allocation
Dialog Box to display a dialog box in which the name can be changed.

-

FB variable allocation x|

Internals Ilnputsl Dutputsl \npul!Dulpulsl

Addiess | Mame | Type | Aray S\za| AT Spe... | 10 Com... |

W0.01 Setting BooL 0 Mo
D100 Data WORD 0 Mo
D200 5P WORD 0 Mo
W0.00 AutoGe.. BOOL 0 Mo

Function Block (Ladder) Generation

FB definition name: IFunctionBIock1

Comment:

Click the OK Button.
e

" Cancel
= =1

Input the FB definition name
and comment, and click the
OK Button. T Ty

To insert an FB call instruction created in the ladder Eﬂ Functinn Fl

program, click the Yes Button. TF FunctionBlockl

i
-]

The FB definition will be created.

CX-Programmer v7.0 |

@ Do viou wish o insert a Function Block call at the paosition of the source ladder ?

—

= D

-~

New Function Block Invocation x|

FB Inzstance: | J |
FE Definition: unctionBlockl i Cancel |

; Input the FB instance name and click the OK Button.

2 FB Guide - CX-Programmer - [NewPLC1.NewProgram1.5ectionl [Diagram]] =10 ﬂ
[File Edit View Insert PLC Program Tools Window Help =12 x|
DEE[fE|ER|redac aus(ee|eses 2R EEREE |0 u
aoa [FEmEmRtirwirw | —oogEELl ik ||FEawwm |8 BEEG
ERFROE (@2 EE 255 w3 ||asr mmpney >
. |
= § HewProject 2 W00 200
BB HewPLC1[CS16-H] OFfline 5/— |
) Symbols
7 10 Table and Unit Setup 3 3 amaaa
{ B settings 7
L Memory FunctionBlock1
-8, pr i
2 e o0
H 5 Symbols
B3 sectionl
& EnD SE%)GLE)nJJ AmnGe(r?f)QCjE)_
E 5} Function Blacks 0 0
- 3F FunctionBlackl 4 200
S Note:
S | This function automatically determines the usage of variables
based on the addresses used in the selected program section, but
& . .
in some cases usage cannot be converted automatically. In these
— cases, refer to Registering Variables First in 3-2-3 Defining
Function Blocks Created by User of the CX-Programmer Operation
Manual: Function Blocks and Structured Text, check the created
h Frojet / 5 4’7 Nm ,7 e FB def_lnltlon, verify operation sufficiently, and proceed with actual
For Help, press FL [NewPLC1{Net:0, Node:0) - Ofine operatlon.

The FB call instruction will be inserted in the ladder program. 526

S Offline Functions

Description

of Program

Creating an
ST Task

Registering
Symbols

Entering the
ST Program

Chapter 6 Advanced: Creating a Task Program Using Structured Text

Task programs can be created using the structured text (ST) language with CX-Programmer. A wider
choice of programming languages is now supported to enable optimizing the language to the control
object. You can select from SFC, ladder diagrams, or structured text.

Structured text was standardized under IEC 61131-3 (JIS B3503) as a high-level textual
programming language for industrial control. Starting with CX-Programmer, structured text can be
used in task programs, in addition to the previous support for use in function blocks.

Note: Refer to page 4-1 for information on using structured text in function blocks.

Controls using IF-THEN-ELSE or FOR/WHILE loops, or numeric calculations using SIN, COS, and
other functions can be easily achieved using actual addresses.

Structured text can thus be used in tasks to easily program numeric calculations using actual
addresses, while structured text can be used in function blocks to enable easily reusing programming.

Note: A task is the smallest programming unit that can be executed in a SYSMAC CS1/CJ1-series CPU Unit.
With controls separated into tasks, execution of non-active tasks is stopped to enable shortening the cycle time.

1. Description of Program

The procedure used to create a program that finds average values is described as an example.

The diameter of a workpiece is measured in three locations and then the average diameter is found. If the
average value is within the allowable range, a green lamp is lit. If the average value is outside the allowable
range, a red lamp is lit. Here, an ST program is created to average the workpiece diameters and determine if
the average value is within the allowable range.

Workpiece
als|a| s
HE mm © [0
ajalo| o)
- Measure Criterion
als e
=0 o [l
ala|a|e)
y Out of In range i
Optical Line Sensor PLC with Analog Input Unit range 9€ Clear Margin

H% Programs
E@ Work_piece_Measurement (000

----- =4 Symbols
[Derant_setting]seess D

[* Average Value Calculstion *)
average:=thickness1+thickness24thickness3)03.0;

[* average =Average YWalue Athickness1 to 3 =Measurement Value 1103 *)

(* Juclgemernit *)
IF flag = 3 THER
IF average = criterion-margin THEM

[* flay =Three Times Messurement Flag *)
[* criterion =Criterion Yalue Amargin =Tolerance *)

.C\verage_Ualue_Calculation (_01) e | red_lamp:=TRLE; (* red_lamp =Red Lamp (without tolerance) *)
= Svmbols ELSIF average = criterion+margin THEM
h red_lamp:=TRLE;
=] _ ELSE

..... e Svrnl:-c-ls green_lamp:=TRLE; [* green_lamp =Green Lamp (within tolerance) *)
E - EMD_IF;

E LED_Display po-ses.e.e o) END_F:

----- EMD

All other programming is done with ladder diagrams.

(1) Initializing Measurement Values and
Setting Margin for Workpiece Diameter
—

(3) Displaying Measurement Values and
Average Value on Seven-segment Display
[

(2) Setting Measurement
Values

6-1

S Offline Functions

Description Creating an Registering Entering the

of Program ST Task Symbols ST Program

2. Creating an ST Task

Creating an ST Task

=l

=-E2 NewPLCI1[C1H-H] OfFine
= Symbols

T 10 Table and Unit Setup
Settings

Ji,.’;"* Memory

EI--% MewPraject
=B NewPLC1[CI1H-H] Offline
=4 symbols
10 Table and Unit Setup
Settings
g Memory
EI% Programs
@ ‘work_piece_Measurement {007
=2 Symbols
@ Default_Setting
@ Measurement
P EnD
@ Result_Display {02)
; =9 Symbols
P LED Display

Right-click the Programs
Icon % and select Insert
Program — Structured Text.

—

A new ST program Will D& eeeececescecscescscesssesesessssesesessssssssssssssssssssossotlosccce

created.

MewPrograml {Unassigned)
=4 Symbols

HEname

Change the name of the ST
program and assigned it to
a task.

,T Allow Docking

Eloat In Main Window

Right-click the icon for the
new program that was E
created @ and SEIECt esssssssssossssosssssslons.]
Properties. A dialog box
will be displayed. |

— =

Program Properties |

Enter the name of the Note: Cyclic tasks
program: ﬂl General IF‘mtectmnI Commentsl are executed

Average Value_Calculation essse mﬁp each cycle.
= /=

Also, select the task type e
from the pull-down menu: sssessssssssssesesesesesesssssescas
Cyclic Task 01 ¥ Operation start

@ Size: 37 Steps

ENT
= Untitled - CX-Programmer - [MewPLC1, Average Value Calculation [Structured Text]] |
Open the ST Editor. I - B Lo Vet MG frop s Bdin Tk M Lk
DEHE B i@ " - DV ALK n ¥ I i
Fi= 0 (e » O & — b |2 P Em | %
CRAROE G2E-H 6% wu s | @85 605> B0 MY »>
ME T (AL
z =l |m =
@ i ?E'mm:x:lzumnlwn :
72} Symbals =
7 10 Table and Uik Setup .
g E
Double-click the ST i
program icon BB, *0t40s,,
The ST Editor will open. RPN | .
E
- LessnnnteuyiRtyl ST Editor
: &
L]

HesswPLC L (Nt =0, Hocke: 0] - Ceffine nng 0 (0, €) - 100% 6_2

S Offline Functions

Description Creating an Registering Entering the

of Program ST Task Symbols ST Program

3. Registering ST Program Symbols

The symbols used in the ST program must be registered.

Open the symbols table. I R e g : T

[DE@ARSRI L DE |2 A% |[ashisn|mdZ el SEET LM %8s

[reaaii@ERER b ruw | —opTaal k|3 (et vetsv MR EER
Double-click the Symbo|s [EREarf | @2Eam2us vad @ Elasranpuep|lesaszs2as

'E' _*—-;ln bt Tosatps |] vakas | T T I
Icon aaan 'fl," BB el Offe
The symbols table will ~“*«=.e,] 15 T s s
. Fettrgs
open. o
. = G Work,pack Maasuraract (20}
bt

— ’

Register new symbols. I

9.0.9,9,0.0.0.0.0.0.0.0.0

Right-click anywhere on sessssssss8000
the symbols table.

Select Insert Symbol from
the pop-Up MENU. ssseesssssssssssssssssssssssssssstoss

The New Symbol Dialog et/ S T
Box will be displayed.

Enter the name of the symbol. I

New Symbol

Select the data type:

—

Mame:

* REAL
Enter the name, data Data type: + BOOL
type, address or value, * INT

and comment for the

symbol.
y Enter the address or value. I

Enter a comment to describe
the symbol.

Cancel

When finished, click the OK Button. I

% ’ Repeat the above procedure to enter all symbols. I

Marne | Data Tvpe | Address [Walue | Rack Location | |Usage | Carnment |.
* red_lamp BOOL 15.00 Work, Red Lamp {without bolerance)

* green_lamp | BOOL 15.01 ‘Wark, Green Lamp (within tolerance)

== thickness1 REAL Dz Work, Measurement Walue 1

== thicknessz REAL D4 Work, Measurement Yalue 2

== thickness3 REAL D& Work, Measurement Walue 3

== average REAL g Work, Awverage Walue

== criterion REAL D10 Work Criberion Yalue

== margin REAL D1z Work, Tolerance

L flag INT Dz0 Wark. Three Times Measurement Flag
Note:

A function to automatically assign address can be used when registering symbols to enable
registering symbols without worrying about actual addresses, just as is possible for symbols used
in function blocks. Refer to the CX-Programmer Operation Manual for details.

S Offline Functions

Creating an Registering Entering the

Description

of Program

ST Task Symbols ST Program

=

Enter the program. I

B

Seo

0 o

L ,‘_o'... .o
O

4. Entering the ST Program |

Open the ST Editor again.

FEeTERssssRsssRsERRRRRRR T,

. .

k .

L "

. fee o

L] L

"

. %
" SEsEEEEEEsEEEEEEEEEEEEEEEEnd
e EEEEETEE——— . S — l.
I — —

8“
— .
[* Average Value Calculation *)

average: =(thickness1 +thickness2+thickness3)3 0, [* average =4verage Walue Athickness1 to 3 =Meazurement %alus 110 3 *)
—
* o P T = ‘.'.

p— * o
F flag = 3 THEM e (* flag =Three Times Measurement Flag *
IF average = criterion-margin THEM '@* criterion =Criterion Yalue Amargin =Taolerance *)
red_lamp:=TRLUE; (’?c.ed_lamp =Red Lamp (without tolerance) *)
ELSIF average = criterion+margin THERN o’
red_lamp:=TRLE; A Note:
-
ELSE A Comments can be added to
green_lamp:=TRLE; green_lamf =Green Lamp (within tolerance) *) an ST program to make it
ErMD_IF, ¢ : L ox
END_IF: : easier to understand: (* *).
¥ S
)
o

In a substitution statement, the value on the right (formula, symbol, or constant) is
substituted for the symbol on the left.

This statement calculates the average value. Three measurements are added together,
divided by 3, and then the result is assigned to the average symbol. Here, the constant 3 is
entered as “3.0” so that it is in the same data type as the average symbol.

average := (thickness1 + thickness2 + thickness3)/3.0;

.’..g'l:’f:lf‘??::-”{.’-’.’-‘.’.’
et

In an IF statement, the IF line is executed if the IF flag = 3 THEN

condition is true. If the condition is false, the lines IF average < criterion-margin THEN
from ELSEIF on will be executed. If both red_lamp := TRUE;

conditions are false, the lines from ELSE on are - ’

ELSEIF average > criterion+margin

4 executed.
) THEN
Here, the average value is evaluated after three red_lamp := TRUE;
measurements are taken. If the average value is ELSE
not in range, the red lamp is lit. If the average green_lamp := TRUE;
value is in range, the green lamp is lit. END_IF;
END_IF;

This completes entering the ST program. The remaining processing is programmed in ladder
diagrams and then the F7 Key is pressed to compile and run an error check.

When the entire program has been completed, an online connection is made with the PLC
and the normal program transfer operation is performed.

6-4

6-5

Appendix. Examples of ST (Structured Text)

IF Statement Examples

IF expressionl THEN statement-listl

[ELSIF expression2 THEN statement-list2]
[ELSE statement-list3]

END_IF;

The expressionl and expression2 expressions must each evaluate to a boolean value. The statement-list is a list of
several simple statements e.g. a:=a+1; b:=3+c; etc.

The IF keyword executes statement-listl if expression1 is true; if ELSIF is present and expressionl is false and
expression2 is true, it executes statement-list2; if ELSE is present and expressionl or expression2 is false, it
executes statement-list3. After executing statement-listl, statement-list2 or statement-list3, control passes to the
next statement after the END_IF.

There can be several ELSIF statements within an IF Statement, but only one ELSE statement.
IF statements can be nested within other IF statements (Refer to example 5).

Example 1
IFa>0THEN In this example, if the variable "a" is greater than zero, then the
b= 0: variable "b" will be assigned the value of zero.
END |,£. If "a" is not greater than zero, then no action will be performed
- upon the variable "b", and control will pass to the program steps
following the END_IF clause.
Example 2 In this example, if the variable "a" is true, then the variable "b" will
IF a THEN be assigned the value of zero.
b = 0: If "a" is false, then no action will be performed upon the variable
- "b", and control will pass to the program steps following the
END_IF; END_IF clause.
Example 3 In this example, if the variable "a" is greater than zero, then the
P variable "b" will be assigned the value of true (1), and control will
IFa>0THEN be passed to the program steps following the END_IF clause.

b := TRUE; If "a" is not greater than zero, then no action is performed upon
ELSE the variable "b" and control is passed to the statement following
b := EALSE: the ELSE clause, and "b" will be assigned the value of false (0).
END IF; Control is then passed to the program steps following the END_IF

- clause.
Example 4 In this example, if the variable "a" is less than 10, then the
IF a < 10 THEN variable "b" will be assigned the value of true (1), and the variable
"c" will be assigned the value of 100. Control is then passed to the
b := TRUE; program steps following the END_IF clause.
¢ :=100; If the variable "a" is equal to or greater than 10 then control is
ELSIF a > 20 THEN passed to the ELSE_IF clause, and if the variable "a" is greater
b := TRUE; than 20, variable "b" will be assigned the value of true (1), and the
= 200: variable "c" will be assigned the value of 200. Control is then
c:= ' passed to the program steps following the END_IF clause.
ELSE
- . If the variable "a" is between the values of 10 and 20 (i.e. both of
b := FALSE; the previous conditions IF and ELSE_IF were false) then control is
¢ = 300; passed to the ELSE clause, and the variable "b" will be assigned
END IF: the value of false (0), and the variable "c" will be assigned the

value of 300. Control is then passed to the program steps
following the END_IF clause.

IF Statement Examples

Example 5
IF a THEN
b := TRUE;
ELSE
IF ¢>0 THEN
d:=0;
ELSE
d:=100;
END_IF;
d :=400;
END_IF;

WHILE Statement Examples

WHILE expression DO
statement-list;
END_WHILE;

The WHILE expression must evaluate to a boolean value. The statement-list is a list of several simple statements.
The WHILE keyword repeatedly executes the statement-list while the expression is true. When the expression

In this example (an example of a nested IF .. THEN
statement), if the variable "a" is true (1), then the variable "b"
will be assigned the value of true (1), and control will be
passed to the program steps following the associated

END_IF clause.

If "a" is false (0), then no action is performed upon the
variable "b" and control is passed to the statement following
the ELSE clause (in this example, another IF .. THEN
statement, which is executed as described in Example 3,
although it should be noted that any of the supported
IEC61131-3 statements may be used).

After the described IF .. THEN statement is executed, the
variable "d" will be assigned the value of 400.

Control is then passed to the program steps following the
END_IF clause.

becomes false, control passes to the next statement after the END_WHILE.

Example 1

WHILE a <10 DO
a=a+1,;
b:=b*2.0;

END_WHILE;

Example 2
WHILE a DO
b:=b+1,
IFb>10 THEN
a:= FALSE;
END_IF;
END_WHILE;

Example 3

WHILE (a + 1) >= (b * 2) DO

a=a+1;
b:=b/c;
END_WHILE;

In this example, the WHILE expression will be evaluated and
if true (i.e. variable "a" is less than 10) then the statement-list
(a:=a+1; and b:=b*2.0;) will be executed. After execution of
the statement-list, control will pass back to the start of the
WHILE expression. This process is repeated while variable
"a" is less than 10. When the variable "a" is greater than or
equal to 10, then the statement-list will not be executed and
control will pass to the program steps following the
END_WHILE clause.

In this example, the WHILE expression will be evaluated and
if true (i.e. variable "a" is true), then the statement-list
(b:=b+1; and the IF .. THEN statement) will be executed.
After execution of the statement-list, control will pass back to
the start of the WHILE expression. This process is repeated
while variable "a" is true. When variable "a" is false, the
statement-list will not be executed and control will pass to the
program steps following the END_WHILE clause.

In this example, the WHILE expression will be evaluated and
if true (i.e. variable "a" plus 1 is greater than or equal to
variable "b" multiplied by 2) then the statement-list (a:=a+1;
and b:=b/c;) will be executed. After execution of the
statement-list, control will pass back to the start of the WHILE
expression. This process is repeated while the WHILE
expression equates to true. When the WHILE expression is
false, then the statement-list will not be executed and control
will pass to the program steps following the END_WHILE
clause.

6-6

6-7

WHILE Statement Examples

Example 4

WHILE (a - b) <= (b + ¢) DO
a=a+1;
b:=b*a;

END_WHILE;

REPEAT Statement Examples

REPEAT
statement-list;
UNTIL expression

END_REPEAT;

In this example, the WHILE expression will be evaluated and if
true (i.e. variable "a" minus variable "b" is less than or equal to
variable "b" plus variable "c") then the statement-list (a:=a+1; and
b:=b*a;) will be executed. After execution of the statement-list,
control will pass back to the start of the WHILE expression. This
process is repeated while the WHILE expression is true. When
the WHILE expression is false, then the statement-list will not be
executed and control will pass to the program steps following the
END_WHILE clause.

The REPEAT expression must evaluate to a boolean value. The statement-list is a list of several simple statements.

The REPEAT keyword repeatedly executes the statement-list while the expression is false. When the expression
becomes true, control passes to the next statement after END REPEAT.

Example 1
REPEAT
a==a+1;
b:=b*2.0;
UNTILa > 10
END_REPEAT;

Example 2
REPEAT
b:=b+1;
IFb>10 THEN
a:= FALSE;
END_IF;
UNTIL a
END_REPEAT;

Example 3
REPEAT
a=a+1;
b:=b/c;
UNTIL (@ +1)>= (b * 2)
END_REPEAT;

Example 4
REPEAT
a=a+1,;
b:=b*a;
UNTIL (a-b)<=(b+¢)
END_REPEAT,;

In this example, the statement-list (a:=a+1; and b:=b*2.0;) will be
executed. After execution of the statement-list the UNTIL expression
is evaluated and if false (i.e. variable "a" is less than or equal to 10),
then control will pass back to the start of the REPEAT expression and
the statement-list will be executed again. This process is repeated
while the UNTIL expression equates to false. When the UNTIL
expression equates to true (i.e. variable "a" is greater than 10) then
control will pass to the program steps following the END_REPEAT
clause.

In this example, the statement-list (b:=b+1; and the IF .. THEN
statement) will be executed. After execution of the statement-list the
UNTIL expression is evaluated and if false (i.e. variable "a" is false),
then control will pass back to the start of the REPEAT expression and
the statement-list will be executed again. This process is repeated
while the UNTIL expression equates to false. When the UNTIL
expression equates to true (i.e. variable "a" is true) then control will
pass to the program steps following the END_REPEAT clause.

In this example, the statement-list (a:=a+1; and b:=b/c;) will be
executed. After execution of the statement-list the UNTIL expression
is evaluated and if false (i.e. variable "a" plus 1 is less than variable
"b" multiplied by 2) then control will pass back to the start of the
REPEAT expression and the statement-list will be executed again.
This process is repeated while the UNTIL expression equates to false.
When the UNTIL expression equates to true (i.e. variable "a" plus 1 is
greater than or equal to variable "b" multiplied by 2) then control will
pass to the program steps following the END_REPEAT clause.

In this example, the statement-list (a:=a+1; and b:=b*a;) will be
executed. After execution of the statement-list the UNTIL expression
is evaluated and if false (i.e. variable "a" minus variable "b" is greater
than variable "b" plus variable "c"), then control will pass back to the
start of the REPEAT expression and the statement-list will be
executed again. This process is repeated while the UNTIL expression
equates to false. When the UNTIL expression equates to true (i.e.
variable "a" minus variable "b" is less than or equal to variable "b" plus
variable "c") then control will pass to the program steps following the
END_REPEAT clause.

FOR Statement Examples

FOR control variable := integer expressionl TO integer expression2 [BY integer expression3] DO
statement-list;
END_FOR;

The FOR control variable must be of an integer variable type. The FOR integer expressions must evaluate to the
same integer variable type as the control variable. The statement-list is a list of several simple statements.

The FOR keyword repeatedly executes the statement-list while the control variable is within the range of integer
expressionl to integer expression2. If the BY is present then the control variable will be incremented by integer
expression3 otherwise by default it is incremented by one. The control variable is incremented after every executed
call of the statement-list. When the control variable is no longer in the range integer expressionl to integer
expression2, control passes to the next statement after the END_FOR.

FOR statements can be nested within other FOR statements.

Example 1 In this example, the FOR expression will initially be evaluated and
variable "a" will be initialized with the value 1. The value of
FORa:=1T0 10 DO variable "a" will then be compared with the 'TO' value of the FOR
b:=b+a; statement and if it is less than or equal to 10 then the statement-
END FOR: list (i.e. b:=b+a;) will be executed. Variable "a" will then be
- ’ incremented by 1 and control will pass back to the start of the
FOR statement. Variable "a" will again be compared with the 'TO'
value and if it is less than or equal to 10 then the statement-list
will be executed again. This process is repeated until the value of
variable "a" is greater than 10, and then control will pass to the
program steps following the END_FOR clause.
In this example, the FOR expression will initially be evaluated and
Example 2 variable "a" will be initialized with the value 1. The value of
FORa:=1TO 10 BY 2 DO variable "a" will then be compared with the 'TO' value of the FOR
b:=b+a statement and if it is less than or equal to 10 then the statement-
: ’ list (i.e. b:=b+a; and c:=c+1.0;) will be executed. Variable "a" will
c:=c+1.0; then be incremented by 2 and control will pass back to the start of
END FOR; the FOR statement. Variable "a" will again be compared with the
- 'TO' value and if it is less than or equal to 10 then the statement-
list will be executed again. This process is repeated until the value
of variable "a" is greater than 10, and then control will pass to the
program steps following the END_FOR clause.
Example 3 . . P
In this example, the FOR expression will initially be evaluated and
FORa:=10TO 1BY-1DO variable "a" will be initialized with the value 10. The value of
b:=b+a; variable "a" will then be compared with the 'TO' value of the FOR
. . statement and if it is greater than or equal to 1 then the statement-
c:=c+10; list (i.e. b:=b+a; and c:=c+1.0;) will be executed. Variable "a" will
END_FOR; then be decremented by 1 and control will pass back to the start
of the FOR statement. Variable "a" will again be compared with
the 'TO' value and if it is greater than or equal to 1 then the
statement-list will be executed again. This process is repeated
until the value of variable "a" is less than 1, and then control will
pass to the program steps following the END_FOR clause.
Example 4 In thi le, the FOR i ill initially b luated and
. n this example, the expression will initially be evaluated an
FORa:=b+1TOc+2DO variable "a" will be initialized with the value of variable "b" plus 1.
d:=d+a; The 'TO' value of the FOR statement will be evaluated to the
e=e+1; value of variable "c" plus 2. The value of variable "a" will then be
END FOR: compared with the 'TO' value and if it is less than or equal to it

then the statement-list (i.e. d:=d+a; and e:=e+1;) will be executed.
Variable "a" will then be incremented by 1 and control will pass
back to the start of the FOR statement. Variable "a" will again be
compared with the 'TO' value and if it is less than or equal to it
then the statement-list will be executed again. This process is
repeated until the value of variable "a" is greater than the 'TO'
value, and then control will pass to the program steps following
the END_FOR clause.

6-8

6-9

FOR Statement Examples

Example 5 In this example, the FOR expression will initially be evaluated and variable "a"
FORa:=b+cTOd-eBYfDO Will be initialized with the value of variable "b" plus variable "c". The 'TO' value
of the FOR statement will be evaluated to the value of variable "d" minus

g:=g+a variable "e". The value of variable "a" will then be compared with the 'TO' value.
h:=h+1.0; If the value of variable "f" is positive and the value of variable "a" is less than or
END FOR: equal to the 'TO' value then the statement-list (i.e. g:=g+a; and h:=h+1.0;) will

be executed. If the value variable "f" is negative and the value of variable "a" is
greater than or equal to the 'TO' value then the statement-list (i.e. g:=g+a; and
h:=h+1.0;) will also be executed. Variable "a" will then be incremented or
decremented by the value of variable "f* and control will pass back to the start
of the FOR statement. Variable "a" will again be compared with the 'TO' value
and the statement-list executed if appropriate (as described above).

This process is repeated until the value of variable "a" is greater than the 'TO'
value (if the value of variable "f" is positive) or until the value of variable "a" is
less than the 'TO' value (if the value of variable "* is negative), and then

control will pass to the program steps following the END_FOR clause.

CASE Statement Examples

CASE expression OF

case labell[, caselabel2] [.. caselabel3] : statement-listl;
[ELSE

statement-list2]
END_CASE;

The CASE expression must evaluate to an integer value. The statement-list is a list of several simple statements.
The case labels must be valid literal integer values e.g. 0, 1, +100, -2 etc..

The CASE keyword evaluates the expression and executes the relevant statement-list associated with a case label
whose value matches the initial expression. Control then passes to the next statement after the END_CASE. If no
match occurs within the previous case labels and an ELSE command is present the statement-list associated with
the ELSE keyword is executed. If the ELSE keyword is not present, control passes to the next statement after the
END_CASE.

There can be several different case labels statements (and associated statement-list) within a CASE statement but
only one ELSE statement.

The “,” operator is used to list multiple case labels associated with the same statement-list.

The “..” operator denotes a range case label. If the CASE expression is within that range then the associated
statement-list is executed, e.g. case label of 1..10 : a:=a+1; would execute the a:=a+1 if the CASE expression is
greater or equal to 1 and less than 10.

Example 1 In this example, the CASE statement will be evaluated and then compared with
CASE a OF each of the CASE statement comparison values (i.e. 2 and 5 in this example).
a
o If the value of variable "a" is 2 then that statement-list will be executed (i.e. b:=1;).
2: b=t Control will then pass to the program steps following the END_CASE clause.
5: ¢=10; If the value of variable "a" is 5 then that statement-list will be executed (i.e. c:=1.0;).
END_CASE; Control will then pass to the program steps following the END_CASE clause.
If the value of variable "a" does not match any of the CASE statement comparison
values then control will pass to the program steps following the END_CASE clause.
In this example, the CASE statement will be evaluated and then compared with
Example 2 each of the CASE statement comparison values (i.e. -2 and 5 in this example).
CASEa+2OF If the value of variable "a" plus 2 is -2 then that statement-list will be executed (i.e.
-2: b:=1; b:=1;). Control will then pass to the program steps following the END_CASE clause.
5: c:=1.0: If the value of variable "a" plus 2 is 5 then that statement-list will be executed (i.e.
S ¢:=1.0;). Control will then pass to the program steps following the END_CASE
ELSE clause. If the value of variable "a" plus 2 is not -2 or 5, then the statement-list in the
d:=1.0; ELSE condition (i.e. d:=1.0;) will be executed. Control will then pass to the program
END_CASE:; steps following the END_CASE clause.

CASE Statement Examples

Example 3
CASEa+3*bOF
1,3: b:=2;
7,11: ¢c:=3.0;
ELSE
d:=4.0;
END_CASE;

Example 4
CASE a OF
-2,2,4: b:=2;
c:=1.0;

6..11,13: c¢:=2.0;
1,3,5: c:=3.0;
ELSE

b:=1;

c:=4.0;
END_CASE;

In this example, the CASE statement will be evaluated and then
compared with each of the CASE statement comparison values (i.e. 1
or 3 and 7 or 11 in this example).

If the value of variable "a" plus 3 multiplied by variable "b" is 1 or 3,
then that statement-list will be executed (i.e. b:=2;). Control will then
pass to the program steps following the END_CASE clause.

If the value of variable "a" plus 3 multiplied by variable "b" is 7 or 11,
then that statement-list will be executed (i.e. ¢:=3.0;). Control will then
pass to the program steps following the END_CASE clause.

If the value of variable "a" plus 3 multiplied by variable "b" is not 1, 3,
7 or 11, then the statement-list in the ELSE condition (i.e. d:=4.0;) will
be executed. Control will then pass to the program steps following the
END_CASE clause.

In this example, the CASE statement will be evaluated and then
compared with each of the CASE statement comparison values, i.e. (-
2,2o0r4)and (6 to 11 or 13) and (1, 3 or 5) in this example.

If the value of variable "a" equals -2, 2 or 4, then that statement-list
will be executed (i.e. b:=2; and c:=1.0;). Control will then pass to the
program steps following the END_CASE clause.

If the value of variable "a" equals 6, 7, 8, 9, 10, 11 or 13 then, that
statement-list will be executed (i.e. ¢c:=2.0;). Control will then pass to
the program steps following the END_CASE clause.

If the value of variable "a" is 1, 3 or 5, then that statement-list will be
executed (i.e. ¢:=3.0;). Control will then pass to the program steps
following the END_CASE clause.

If the value of variable "a" is none of those above, then the statement-
list in the ELSE condition (i.e. b:=1; and c:=4.0;) will be executed.
Control will then pass to the program steps following the END_CASE
clause.

6-10

EXIT Statement Examples

WHILE expression DO
statement-list1;
EXIT,

END_WHILE;

statement-list2;

REPEAT
statement-listl;
EXIT;

UNTIL expression

END_REPEAT;

statement-list2;

FOR control variable := integer expressionl TO integer expression2 [BY integer expression3] DO

statement-listl;

EXIT;
END_FOR;
statement-list2;

The statement-list is a list of several simple statements.

The EXIT keyword discontinues the repetitive loop execution to go to the next statement, and can only be used in
repetitive statements (WHILE, REPEAT, FOR statements). When the EXIT keyword is executed after statement-

listl in the repetitive loop, the control passes to statement-list2 immediately.

Example 1

WHILE a DO

IF ¢ = TRUE THEN
b:=0;EXIT,;

END_IF;

IFb>10 THEN
a:= FALSE;

END_IF;

END_WHILE;

d:=1;

Example 2
a:=FALSE;
FOR i:=1 TO 20 DO
FORj:=0TO 9 DO
IF i>=10 THEN
n:=i*10+j;

a:=TRUE;EXIT;

END_IF;
END_FOR;

IF a THEN EXIT; END_IF;

END_FOR;
d:=1;

If the first IF expression is true (i.e. variable "c" is true), the
statement-list (b:=0; and EXIT;) is executed during the
execution of the WHILE loop. After the execution of the EXIT
keyword, the WHILE loop is discontinued and the control
passes to the next statement (d:=1;) after the END_WHILE
clause.

If the first IF expression is true (i.e. i>=10 is true) in the inside
FOR loop, the statement-list (n:=i*10+j; and a:=TRUE; and
EXIT;) is executed during the execution of the FOR loop.
After the execution of the EXIT keyword, the inside FOR loop
is discontinued and the control passes to the next IF
statement after the END_FOR clause. If this IF expression is
true (i.e. the variable "a" is true), EXIT keyword is executed ,
the outside FOR loop is discontinued after END_FOR clause,
and the control passes to the next statement (d:=1;).

RETURN Statement Examples

statement-listl;
RETURN;
statement-list2;

The statement-list is a list of several simple statements.

The RETURN keyword breaks off the execution of the inside of the Function Block after statement-listl, and then
the control returns to the program which calls the Function Block without executing statement-list2.

Example 1

IF a_1"b>100 THEN If the first or second IF statement is true (i.e. "a_1*b" is larger
c:=TRUE;RETURN; than 100, or "a_2*(b+10)" is larger than 100), the statement

END IF; (c:=TRUE; and RETURN;) is executed. The execution of the

N RETURN keyword breaks off the execution of the inside of
IF a_2%(b+10)>100 THEN the Function Block and the control returns to the program
¢:=TRUE;RETURN; which calls the Function Block.

END_IF;

IF a_3*(b+20)>100 THEN
c:=TRUE;

END_IF;

Array Examples
variable name [subscript index]

An array is a collection of like variables. The size of an array can be defined in the Function Block variable table.
An individual variable can be accessed using the array subscript operator [].

The subscript index allows a specific variable within an array to be accessed. The subscript index must be either a
positive literal value, an integer expression or an integer variable. The subscript index is zero based. A subscript
index value of zero would access the first variable, a subscript index value of one would access the second variable
and so on.

Warning

If the subscript index is either an integer expression or integer variable, you must ensure that the resulting
subscript index value is within the valid index range of the array. Accessing an array with an invalid index
must be avoided. Refer to Example 5 for details of how to write safer code when using variable array
offsets.

In this example variable "a" is an array of 5 elements and has
Example 1 an INT data type. Variable "b" also has an INT data type.
When executed, the first element in the array will be set to the

al0]:=1; value 1, the second element will be set to -2, the third
a[]=-2; element will be set to 3 (i.e. 1+2), the forth element will be set
a[2]: = 1+2; to the value of variable "b" and the fifth element will be set to
a[3]: =b; the value of variable "b" plus 1.
al4] : = b+1;

In this example variable "c" is an array of 2 elements and has
Example 2 a BOOL data type. When executed, the first element in the
c[0] := FALSE; array will be set to false and the second element will be set to
o] - 953: ’ false (i.e. 2 is greater than 3 evaluates to false).

6-12

Array Examples

Example 3

d[9]:=2.0; In this example, variable "d" is an array of 10 elements and
has a REAL data type. When executed, the last element in
the array (the 10th element) will be set to 2.0.

Example 4

a[1] := b[2]; In this example, variable "a" and variable "b" are arrays of the

’ ’ same data type. When executed, the value of the second

element in variable "a" will be set to the value of the third
element in variable "b".

Example 5

a[b] :=1;

a[b+1]:=1;

a[(b+c) *(d-e)] == 1;

Note: As the integer variables and expressions are being used to access the array, the actual index value
will not be known until run time, so the user must ensure that the index is within the valid range of the
array a. For example, a safer way would be to check the array index is valid:

f:= (b+c) *(d-e);
IF (f >0) AND (f<5) THEN
aff] := 1;
END_IF;
Where variable "f" has an INT data type.

Example 6

a[b[1]]:=c; This example shows how an array element expression can be
L used within another array element expression.

a[b[2] + 3]:=c;

6-13

Standard Functions

Function type
Numerical Functions
Arithmetic Functions
Data Type Conversion Functions

Syntax
Absolute values, trigonometric functions, etc.
Exponential (EXPT)
Source_data_type_TO_New_data_type (Variable_name)
Source_data_type_TO_STRING (Variable_name)
STRING_TO_New_data_type (Variable_name)

Number-String Conversion Functions

Data Shift Functions

Bitwise shift (SHL and SHR), bitwise rotation (ROL and ROR),

etc.

Data Control Functions

Upper/lower limit control (LIMIT), etc.

Data Selection Functions

Data selection (SEL), maximum value (MAX), minimum value

(MIN), multiplexer (MUX), etc.

Numerical Functions

Function Argument data type | Return value Description Example
data type
ABS (argument) INT, DINT, LINT, INT, DINT, LINT, |Absolute value [argu- a: = ABS (b)
U|NT, UD|NT, UL|NT, UlNT, UDlNT, ment] (*absolute value of variable
REAL, LREAL ULINT, REAL, b stored in variable a*)
LREAL
SQRT (argument) REAL, LREAL REAL, LREAL Square root: a: = SQRT (b)
argument (*square root of variable b
stored in variable a*)
LN (argument) REAL, LREAL REAL, LREAL Natural logarithm: LOG, [a: =LN (b)
argument (*natural logarithm of vari-
able b stored in variable a*)
LOG (argument) REAL, LREAL REAL, LREAL Common logarithm: a: = LOG (b)
LOG;, argument (*common logarithm of vari-
able b stored in variable a*)
gument (*natural exponential of vari-
able b stored in variable a*)
SIN (argument) REAL, LREAL REAL, LREAL Sine: SIN argument a: = SIN (b)
(*sine of variable b stored in
variable a*)
COS (argument) REAL, LREAL REAL, LREAL Cosine: COS argument |a: = COS (b)
(*cosine of variable b stored
in variable a*)
TAN (argument) REAL, LREAL REAL, LREAL Tangent: TAN argument |a: = TAN (b)
(*tangent of variable b stored
in variable a*)
ASIN (argument) REAL, LREAL REAL, LREAL Arc sine: SIN™" argument a:= ASIN (b) _
(*arc sine of variable b
stored in variable a*)
ACOS (argument) REAL, LREAL REAL, LREAL Arc cosine: COS ™! argu- a:= ACQS (b) '
ment (*arc cosine of variable b
stored in variable a*)

6-14

6-15

Function Argument datatype | Return value Description Example
data type
ATAN (argument) REAL, LREAL REAL, LREAL Arc tangent: TAN " argu- a: = ATAN (b)
ment (*arc tangent of variable b
stored in variable a*)
EXPT (base, expo- |Base REAL, REAL, LREAL Exponential; Base®*Ponent | a: = EXPT (b, c)
nent) LREAL (*Exponential with variable b
Exponent | INT, as the base and variable c
DINT, as the exponent is stored in
LINT, variable a*)
UINT,
UDINT,
ULINT,
REAL,
LREAL
MOD (dividend data, | Dividend |INT, INT, UINT, Remainder a := MOD(b, c)
diViSOI’) data UlNT, UD|NT, UL|NT, (* Remainder found by divid-
UDINT, DINT, LINT ing variable b by variable c is
ULINT, stored in variable a*)
DINT,
LINT
Divisor INT,
UINT,
UDINT,
ULINT,
DINT,
LINT

Note: The data type returned for numerical functions is the same as that used in the argument. Therefore, variables substituted for
function return values must be the same data type as the argument.

Text String Functions

The following functions can be used with CS/CJ-series CPU Units with unit version 4.0 or later, or CJ2-series CPU Units.

Function Argument data type Return Description Example
value
data type
LEN(String) String STRING |INT Detects the length [a: = LEN (b)
of a text string. (*number of characters in string
b stored in variable a*)
LEFT(<Source_string>, Source_ STRING |STRING |Extracts charac- a: = LEFT (b,c)
<Number_of_characters>) |string ters from a text (*number of characters specified
Number_of |INT, string starting from | by variable ¢ extracted from the
characters | UINT the left. left of text string b and stored in
variable a*)
RIGHT(<Source_string>, Source_ STRING |STRING |Extracts charac- a: = RIGHT (b,c)
<Number_of_characters>) |string ters from a text (*number of characters specified
Number_of _[INT, string starting from | by variable ¢ extracted from the
characters | UINT the right. eight of text string b and stored
in variable a*)
MID(<Source_string>, Source_ STRING |STRING |Extracts charac- a: = MID (b,c,d)
<Number_of_characters>, |string ters from a text (*number of characters specified
<Position>) Number_of_|[INT, string. by variable ¢ extracted from text
characters | UINT string b starting at position spec-
” ified by variable d and stored in
Position INT, iable a*
UINT variable a*)

Function Argument data type Return Description Example
value
data type
CONCAT(<Sou_rce_string_1 Source_ STRING |STRING |Concatenates text |a: = CONCAT (b,c...)
*>,<S ource_string_2>,...) |string strings. (*text strings b, c... are joined
Up to , and stored in variable a*)
32 source strings.*
INSERT(<Source_string>, |Source_ STRING |[STRING |Insertone text a: = INSERT (b,c,d)
<Insert_string>,<Position>) | string string into another. | (xext string ¢ inserted into text
Insert_ STRING string b at position specified by
string variable d and resulting string
Position INT, stored in variable a*)
UINT
DELETE(<Source_string>, | Source_ STRING |[STRING |Deletes characters |a: = DELETE (b,c,d)
<Number_of_characters>, |string from a text string. | (*number of characters specified
<Position>) Number_of_|INT, by variable ¢ deleted from text
characters | UINT string b starting from position
Position INT. specified by variable d and _
resulting string stored in variable
UINT a*)
REPLACE(<Source_string | Source_ STRING |STRING |Replaces charac- |a: = REPLACE (b,c,d,e)
>,<Replace_string>, string ters in a text string. | (*number of characters specified
<Number_of_characters>, [Replace | STRING by variable d in source string b
<Position>) string replaced with text string c start-
Number_of_|INT, ing.frto)lm posi(tjon SpI$Ciﬁe(tj .by
characters | UINT variable e and resulting string
— stored in variable a*)
Position INT,
UINT
FIND(<Source_string>, Source_ STRING [INT Finds characters |a: = FIND (b,c)
<Find_string>) string within a text string. | (*first occurrence of text string ¢
Find_string [STRING found in text string b and posi-
tion stored in variable a; O stored
if text string c is not found.*)

6-16

Data Type Conversion Functions

The following data type conversion functions can be used in structured text.

Syntax

Source_data_type TO_New_data_type (Variable_name)
Example: REAL_TO_INT (C)
In this example, the data type for variable C will be changed from REAL to INT.
The fractional part of the value of variable C is rounded off to the closest inte- ger. The following
table shows how values are rounded.

Value of fractional Treatment Examples
part
Less than 0.5 The fractional part is truncated. 149 — -1.49 —>
1 -1
0.5 If the ones digit is an even 05—-0 -05-0
number, the fractional part is 15—-2 -1.5 - -2
truncated. 252 -25—>-2
If the ones digit is an odd 35-4 -35—>-4
number, the fractional part is
rounded up.
Greater than 0.5 The fractional part is rounded up. | 1.51 — -1.51 -
2 -2

Data Type Combinations

The combinations of data types that can be converted are given in the follow- ing table.

(YES = Conversion possible, No = Conversion not possible)

FROM TO
BOOL INT DINT LINT UINT UDINT | ULINT | WORD | DWORD | LWORD | REAL | LREAL | BCD_ BCD_
WORD | DWORD

BOOL No No No No No No No No No No No No No No

INT No No YES YES YES YES YES YES YES YES YES YES YES YES
DINT No YES No YES YES YES YES YES YES YES YES YES YES YES
LINT No YES YES No YES YES YES YES YES YES YES YES No No
UINT No YES YES YES No YES YES YES YES YES YES YES YES YES
UDINT No YES YES YES YES No YES YES YES YES YES YES YES YES
ULINT No YES YES YES YES YES No YES YES YES YES YES No No
WORD No YES YES YES YES YES YES No YES YES No No No No
DWORD | No YES YES YES YES YES YES YES No YES No No No No
LWORD | No YES YES YES YES YES YES YES YES No No No No No
REAL No YES YES YES YES YES YES No No No No YES No No
LREAL No YES YES YES YES YES YES No No No YES No No No
WORD_ | No YES YES No YES YES No No No No No No No No
BCD

g\é/I(DDRD_ No YES YES No YES YES No No No No No No No No

6-17

Number-String Conversion Functions

The following number-string conversion functions can be used in structured text.

Syntax

Source_data_type_TO_STRING (Variable_name)
Example: INT_TO_STRING (C)

In this example, the integer variable C will be changed to a STRING vari- able.
STRING_TO_New_data_type (Variable_name)

Example: STRING_TO_INT (C)

In this example, the STRING variable C will be changed to an integer.

Data Type Combinations

The combinations of data types that can be converted are given in the follow- ing table.

(YES = Conversion possible, No = Conversion not possible)

FROM TO
BOOL INT DINT LINT UINT UDINT ULINT WORD | DWORD | LWORD | REAL LREAL [STRING
BOOL No No No No No No No No No No No No No
INT No No YES YES YES YES YES YES YES YES YES YES YES
DINT No YES No YES YES YES YES YES YES YES YES YES YES
LINT No YES YES No YES YES YES YES YES YES YES YES No
UINT No YES YES YES No YES YES YES YES YES YES YES YES
UDINT No YES YES YES YES No YES YES YES YES YES YES YES
ULINT No YES YES YES YES YES No YES YES YES YES YES No
WORD No YES YES YES YES YES YES No YES YES No No YES
DWORD | No YES YES YES YES YES YES YES No YES No No YES
LWORD | No YES YES YES YES YES YES YES YES No No No No
REAL No YES YES YES YES YES YES YES YES YES No No No
LREAL No YES YES YES YES YES YES YES YES YES No No No
STRING | No YES YES No YES YES No YES YES No No No No

6-18

Data Shift Functions

Function 1st 2nd Return Description Example
argument | argument | value data
data type data type type
SHL(<Shift_target_data>, |BOOL, INT, BOOL, Shifts a bit string to the |a := SHL(b,c)
<Number_of_bits>) WORD, UINT, WORD, left by n bits. (* Result of shifting bit
DWORD, UDINT, DWORD, When shifted, zeros are | string b to the left by ¢
LWORD ULINT, LWORD entered on the right bits is stored in a*)
DINT, side of the bit string.
LINT
SHR(<Shift_target_data>, |BOOL, INT, BOOL, Shifts a bit string to the | a := SHR(b,c)
<Number_of_bits>) WORD, UINT, WORD, right by n bits. (* Result of shifting bit
DWORD, UDINT, DWORD, When shifted, zeros are | string b to the right by ¢
LWORD ULINT, LWORD entered on the left side| bits is stored in a*)
DINT, of the bit string.
LINT
ROL(<Rotation_target_dat |BOOL, INT, BOOL, Rotates a bit string to | a := ROL(b,c)
a>, <Number_of bits>) WORD, UINT, WORD, the left by n bits. (* Result of rotating bit
DWORD, UDINT, DWORD, string b to the left by ¢
LWORD ULINT, LWORD bits is stored in a*)
DINT,
LINT
ROR(<Rotation_target_dat |BOOL, INT, BOOL, Rotates a bit stringto [a := ROR(b, c)
a>, <Number_of_bits>) WORD, UINT, WORD, the right by n bits. (* Result of rotating bit
DWORD, UDINT, DWORD, string b to the right by ¢
LWORD ULINT, LWORD bits is stored in a*)
DINT,
LINT
Data Control Functions
Function 1st 2nd 3rd Return Description Example
argument | argument | argument | value data
data type data type data type type
LIMIT BOOL, BOOL, BOOL, BOOL, Controls the a := LIMIT(b,c,d)
(<Lower_limit_data>, INT, INT, INT, INT, output data (*When c<b, b is
<Input_data>, UINT, UINT, UINT, UINT, depending on stored in a.
<Upper limit data> UDINT, UDINT, UDINT, UDINT, whether the
pper_limit_data>) ULINT, ULINT, ULINT, ULINT, inputdatais | hen bscsd, ¢
DINT, DINT, DINT, DINT, within the range |8 stored in a.
LINT, LINT, LINT, LINT, between the When d<c, d is
WORD, WORD, WORD, WORD, upper and lower | stored in a.*)
DWORD, DWORD, DWORD, DWORD, limits.
LWORD, LWORD, LWORD, LWORD,
REAL, REAL, REAL, REAL,
LREAL LREAL LREAL LREAL

6-19

Data Selection Function

Function 1st 2nd 3rd Return Description Example
argument | argument | argument | value data
data type data type data type type
SEL(<Selection_condition>,| BOOL BOOL, BOOL, BOOL, Selects one of |a := SEL(b,c,d)
<Selection_target_data1>, INT, INT, INT, two data (*When b is
<Selection_target_data2>) UINT, UINT, UINT, according to the | FA| SE, ¢ is
UDINT, UDINT, UDINT, selection condi- | stored in a.
ULINT, ULINT, ULINT, tion. .
DINT, DINT, DINT, When b is
LINT, LINT, LINT, TRUE, dis
WORD, WORD, WORD, stored in a.%)
DWORD, DWORD, DWORD,
LWORD, LWORD, LWORD,
REAL, REAL, REAL,
LREAL LREAL LREAL
MUX(<Extraction_condition>, | INT, BOOL, BOOL, BOOL, Selects a speci- |a =
<Extraction_taget_data1>, |UINT, INT, INT, INT, fied data from a | MUX(b,c,d,...)
<Extraction_target _data2>, | UDINT, UINT, UINT, UINT, maximum of 30 | *The (b+1)th
) ULINT, UDINT, UDINT, UDINT, data according | gata is stored in
DINT, ULINT, ULINT, ULINT, to the extraction a.*)
LINT DINT, DINT, DINT, condition.
LINT, LINT, LINT,
WORD, WORD, WORD,
DWORD, DWORD, DWORD,
LWORD, LWORD, LWORD,
REAL, REAL, REAL,
LREAL LREAL LREAL
MAX(<Target_data1>, BOOL, BOOL, BOOL, BOOL, Selects the a := MAX(b,c,d,
<Target_data2>, INT, INT, INT, INT, maximum value |...)
<Target_data3>, ...) UINT, UINT, UINT, UINT, from a maxi- (* The maximum
* UDINT, UDINT, UDINT, UDINT, mum of 31 data. | yajye of c, d, ...
ULINT, ULINT, ULINT, ULINT, is stored in a.*)
DINT, DINT, DINT, DINT,
LINT, LINT, LINT, LINT,
WORD, WORD, WORD, WORD,
DWORD, DWORD, DWORD, DWORD,
LWORD, LWORD, LWORD, LWORD,
REAL, REAL, REAL, REAL,
LREAL LREAL LREAL LREAL
MIN(<Target_data1>, BOOL, BOOL, BOOL, BOOL, Selects the min-| a := MIN(b,c,d,
<Target_data2>, INT, INT, INT, INT, imum value from|...)
<Target_data3>, ...) UINT, UINT, UINT, UINT, a maximum of (* The minimum
*9 UDINT, UDINT, UDINT, UDINT, 31 data. value of ¢, d, ...
ULINT, ULINT, ULINT, ULINT, is stored in a.*)
DINT, DINT, DINT, DINT,
LINT, LINT, LINT, LINT,
WORD, WORD, WORD, WORD,
DWORD, DWORD, DWORD, DWORD,
LWORD, LWORD, LWORD, LWORD,
REAL, REAL, REAL, REAL,
LREAL LREAL LREAL LREAL

Note 1: For MUX, the arguments can be specified up to 31st argument

(i.e. 30 extraction target data at the maximum).
2: For MAX and MIN, the target data can be specified from 1st argument up to 31st argument
(i.e. 31 target data at the maximum).

6-20

6-21

OMRON Expansion Functions

Function type

Description

Memory Card Functions

Functions that write data to Memory Cards

Communications Functions

Functions that send and received text strings

Angle Conversion Functions

Functions that convert between degrees and radians.

Timer/Counter Functions

Functions that execute various types of timers/
counters.

Memory Card Functions
The following functions can be used with CS/CJ-series CPU Units with unit version 4.0 or later, or CJ2-series CPU Units.

Function

Example

<Directory_name_and_file_

ter>)

WRITE_TEXT(<Write_string>,

name>,<Delimiter>,<Parame-

Argument data type Return Description
value
data type

Write_string | STRING | --- Writes a text
Directory_ | STRING string to a
name_and_ Memory
file_name Card.
Delimiter STRING
Parameter | INT,

UINT,

WORD

WRITE_TEXT(a,b,c,d)

(*text string a is written to a file
with the file name and directory
specified by variable b; if variable
d is 0, the text string is added to
the file along with delimiter speci-
fied by variable c; if variable d is 1,
a new file is created®)

Communications Functions
The following functions can be used with CS/CJ-series CPU Units with unit version 4.0 or later, or CJ2-series CPU Units.

Function Argument data type Return Description Example
value
data type
TXD_CPU(<Send_string>) | Send_string [STRING |--- Sends a text string to | TXD_CPU(a)
the RS-232C porton | (+text string a is sent from
the CPU Unit. the RS-232C port on the
CPU Unit*)
TXD_SCB(<Send_string>, | Send_string |STRING |--- Sends a text string to | TXD_SCB(a,b)
<Serial_port>) Serial_port |INT, the serial porton a (*text string a is sent from
UINT, Serial Communica- the serial port specified by
WORD tions Board. variable b on the Serial
Communications Board*)
TXD_SCU(<Send_string>, | Send_string [STRING |--- Sends a text string to a | TXD_SCU(a,b,c,d)
<SCU_unit_number>, SCU unit INT serial port on a Serial | (+text string a is sent from
<S¢rial_port>,<|nternal_ number UIl\iT Communications Unit. | ihe serial port specified by
logic_port>) WORD variable c on the Serial
; . Communications Unit speci-
Serial_port ILB\II-I[JT fied by variable b using the
WOFéD internal logic port specified
- by variable d*. The variable
Internal_logic | INT, d indicates the internal logic
_port UINT, port number.)
WORD
RXD_CPU(<Storage_ Storage_ STRING |- Receives a text string | RXD_CPU(a,b)
location>,<Number_of_ location from the RS-232C port | (nymber of characters
characters>) Number_of_ [INT, on the CPU Unit. specified by variable b are
characters UINT, received from the RS-232C
WORD port on the CPU Unit and
stored in variable a*)

Function Argument data type Return Description Example
value
data type
RXD_SCB(<Storage_ Storage_ STRING | --- Receives a text string | RXD_SCB(a,b,c)
location>,<Number_of_ location from the serial port on (*number of characters
characters>,<Serial_port>) Number of INT, a Serial Communica- specified by variable b are
characters | UINT, tions Board. received from the serial port
WORD specified by variable ¢ on
; the Serial Communications
Serial_port IL'J\II-II\—IT Board and stored in variable
WORD a’)
RXD_SCU(<Storage_ Storage_ STRING |--- Receives a text string |RXD_SCU(a,b,c,d,e)
location>,<Number_of_ location from a serial porton a | (*nymper of characters
characters>,<SCU_unit_ Number _of_ |INT, Serial Communica- specified by variable b are
number>,<Serial_port>, | characters | UINT, tions Unit. received from the serial port
<Internal_logic_port>) WORD specified by variable d on
SCU unit INT the. Seriall Qommuni(_:ations
number UII\jT Umt speqﬁed by varlgble c
WOR’D using the internal logic port
- specified by variable e and
Serial_port |INT, stored in variable a*. The
UINT, variable e indicates the
WORD internal logic port number.)
Internal_logic | INT,
_port UINT,
WORD

Angle Conversion Instructions

The following functions can be used with CS/CJ-series CPU Units with unit version 4.0 or later, or CJ2-series CPU Units.

Function Argument Return Description Example
data type value data
type

DEG_TO_RAD(argume REAL, REAL, Converts an angle from a:=DEG_TO_RAD(b)

nt) LREAL LREAL degrees to radians. (*an angle in degrees in
variable b is converted to
radians and stored in variable
ar)

RAD_TO_DEG (argu- REAL, REAL, Converts an angle from | a:=RAD_TO_DEG(b)

ment) LREAL LREAL radians to degrees. (*an angle in radians in

variable b is converted to
degrees and stored in
variable a*)

6-22

Timer/Counter Functions

The following functions can be used with CJ2-series CPU Units.

Function Argument data type Retur Description Example
n
value
data
type
TIMX Execution_ BOOL None Name: TIMX(a,b,c)
(<Execution_condition>, | condition HUNDRED-MS (*When execution
<Timer_address>, - TIMER condi- tion a is
<Timer_set_value>) Timer_address [TIMER Operation: satisfied, the TIMX
Timer_set_valu UINT Operates a o timer se.t tq timer set
e decrement- ing timer value c in timer
with units of address b is started.*)
100 ms.
TIMHX Execution_ BOOL None Name: TIMHX(a,b,c)
(<Execution_condition>, | condition TEN-MS TIMER (*When execution
<Timer_address>, - Operation: condi- tion a is
<Timer_set_value>) Timer_address | TIMER Operates a satisfied, the TIMHX
Timer_set_valu UINT dgcrement— ing timer timer se't tq timer set
e with units of 10 value c in timer
ms. address b is started.*)
TMHHX Execution_ BOOL None Name: TMHHX(a,b,c)
(<Execution_condition>, | condition ONE-MS TIMER (*When execution condi-
<Timer_address>, Timer_address | TIMER Operation: tion a is satisfied, the
<Timer_set_value>) Timer_set value | UINT Operates a decrement- | TMHHX timer set to
ing timer with units of 1 | timer set value c in timer
ms. address b is started.”)
TIMUX Execution_ BOOL None Name: TIMUX(a,b,c)
(<Execution_condition>, condition TENTH-MS TIMER (*When execution condi-
<Timer_address>, Timer_address | TIMER Operation: tion a is satisfied, the
<Timer_set_value>) Timer_set_value |UINT Operates a decrement- | TIMUX timer set to timer
ing timer with units of 0.1 | set value c in timer
ms. address b is started.*)
TMUHX Execution_ BOOL None Name: TMUHX(a,b,c)
(<Execution_condition>, | condition HUNDREDTH-MS (*When execution condi-
j!mer_adtdreslp;) Timer_address | TIMER TIMER tion a is satisfied, the
imer_set_value ion- i
e Timer_set value |UINT Operation: 'I_'MUHX timer set_ to_
Operates a decrement- | timer set value c in timer
ing timer with units of address b is started.*)
0.01 ms.
TTIMX Execution_ BOOL None Name: TTIMX(a,b,c,d)
(<Execution_condition>, | condition ACCUMULATIVE (*While execution condi-
<Reset_input>, : TIMER tion a is satisfied, the
<Timer_address>, Reset_input BOOL Operation: TTIMX timer set to timer
<Timer_set_value>) Operates an increment- |set value d in timer
- ing timer with units of 0.1 [address c is started.
Timer_address TIMER S. When the resetinput b is
ON, the timer's PV and
Timer_set_value |UNIT completion flag are

reset.”)

Function Argument data type Return Description Example
value
data type
CNTX(<Count_input>, Count_input BOOL None Name: CNTX(a,b,c,d)
:ggﬁﬁtt_elrnglggr,esp Reset_input BOOL COUNTER (*The CNTX counter set to
—) Operation: counter set value d in
NT .
<Counter_set_value>) Counter_address (E:Ig u Operates a decrement- | counter address c is exe-
ing counter. cuted every time count
Counter_set_ UINT input a is turned ON.
value When the reset input b is
ON, the counter's PV and
completion flag are reset.*)
CNTRX Increment_count |BOOL None Name: CNTRX(a,b,c,d,e)
(<Increment_count>, D t t | BOOL REVERSIBLE *The CNTRX counter
<Decrement_count>, ecremen —coun COUNTER (set to counter set value e
i Reset_input BOOL . ; .
<Reset_input>, = Operation: in counter address d is
ounter_set_value>) ing / decrementing The PV is incremented
Counter_set_ UINT counter. when increment count
value input a is turned ON and
decremented when dec-
rement count input b is
turned ON.
When the resetinput c is
ON, the counter's PV
and completion flag are
reset.”)
TRSET Execution_ BOOL None Name: TRSET(a,b)
(<Execution_condition>, |condition TIMER RESET (*When execution condi-
<Timer_address>) Timer_address | TIMER Operation: tion a is satisfied, the
Resets the specified timer in timer address b
timer. is reset.”)

6-24

OMRON Corporation Industrial Automation Company
Tokyo, JAPAN
Contact: www.ia.omron.com

Regional Headquarters

OMRON EUROPE B.\. OMRON ELECTRONICS LLC

Wegalaan 67-68-2132 JD Hoofddorp One Commerce Drive Schaumburg,

The Netherlands IL 60173-5302 U.S.A.

Tel: (31)2356-81-300/Fax: (31)2356-81-388 Tel: (1) 847-843-7900/Fax: (1) 847-843-7787
OMRON ASIA PACIFIC PTE.LTD. OMRON (CHINA) CO., LTD.

Mo, 4384 Alexandra Road # 05-05/08 (Lobby 2), Room 2211, Bank of China Tower,

Alexandra Technopark, 200 Yin Cheng Zhong Road,

Singapore 119967 PuDong New Area, Shanghai, 200120, China

Tel: (65) 6835=3011/Fax: (B5) 6835-27 11 Tel: (86) 21-5037=2222/Fax: (86) 2150372200

Authorized Distributor:

© OMRON Corporation 2008-2013 Al Rights Reserved.
In the interest of product improvement,
specifications are subject to change without notice.

Printed in Japan
Cat. No. R144-E1-04

	Function Block/Structured Text Introduction Guide
	Introduction
	Contents
	Introduction
	Chapter 1 OMRON FB Library
	1. What is a Function Block?
	2. An Example of a Function Block
	3. Overview of the OMRON FB Library
	3-1. Benefits of the OMRON FB Library
	3-2-1. Example of using the OMRON FB Library - 1
	3-2-2. Example of using the OMRON FB Library - 2

	3-3. Content of the OMRON FB Library
	3-3-1. OMRON FB Part Files
	3-3-2. Library reference

	3-4. File Catalog and Where to Access the OMRON FB Library
	3-4-1. Catalog of OMRON FB Library files
	3-4-2. CX-One installation CD or DVD
	3-4-3. Accessing OMRON FB Library files from Web server

	Chapter 2 How to use the OMRON FB Libarary
	1. Explanation of the target program
	1-1. Application Specifications
	1-2. Specifications of the OMRON FB Part file
	1-3. Input program

	2. Opening a new project and setting the Device Type
	3. Main Window functions
	4. Import the OMRON FB Part file
	5. Program Creation
	5-1. Enter a Normally Open Contact
	5-2. Entering an Instance
	5-3. Entering Parameters

	6. Program Error Check (Compile)
	7. Going Online
	8. Monitoring - 1
	9. Monitoring - 2 Change Parameter Current Value
	10. Online Editing

	Chapter 3 Customize the OMRON FB Part file
	1. Explanation of target program
	1-1. Changing File Specifications
	1-2. Changing the contents of the OMRON FB Part file

	2. Copy the OMRON FB Part file
	3. Add a variable to the Function Block
	4. Changing the Function Block Ladder
	4-1. Entering a Contact
	4-2. Checking Usage Status of Variables

	5. Transferring to the PLC
	6. Verifying Operation
	7. Online Editing of Function Blocks

	Chapter 4 How to use the ST (Structured Text) language
	1. What is the ST Language?
	2. Explanation of the target program
	3. Create a Function Block using ST
	4. Entering Variables into Function Blocks
	5. Entry of ST program
	6. Entering the FB to the Ladder Program and error checking
	7. Program Transfer
	8. Monitoring the Function Block execution
	Reference: Example of an ST program using IF-THEN-ELSE-END_IF
	Reference: Example of an ST Program Using String Variables
	1. Application Example
	2. Interface with the Vision Sensor
	3. Range of Programming in FB (ST)
	4. FB (ST) Program
	5. Example Application in a Ladder Program

	Chapter 5 Advanced (Componentizing a Program Using FB)
	1. Overview
	2. How to Proceed Program Development
	3. Application Example
	4. How to Proceed Program Development
	4-1 Overview of Design Process
	4-2 Extracting Requirement Specifications
	4-3 Detailing Specifications and Extracting Similar Processes
	4-3-1 Creating Specifications for Components
	4-3-2 Example of FB Component Creation

	4-4. Integrating FBs
	4-4-1. Combining Existing Components - DVD_ThickSelectControl
	4-4-2. Adding Functions to Existing Components - WorkMoveControl_LSONcount

	4-5. Total Program Description
	4-5-1. Total Program Structure

	5. Entering FB Definition
	5-1. New Project Creation and PLC Model/CPU Type Setting
	5-2. Creating Ladder Definition FB
	5-3. Entering FB Ladder Program
	5-4. Transferring Program
	5-5. Operation Check-1
	5-6. Operation Check-2
	5-7. Entering/Debugging Other FB Definition
	5-8. Batch Registration to Watch Window
	5-9. Executing Steps using the Simulation Function
	5-9-1. Explanation of the Simulation Buttons
	5-9-2. Setting Breakpoint and Executing Steps

	6. Creating FB Definition Library
	7. Entering Main Program
	8. Debugging Main Program
	Supplemental Information
	How to delete unused Function Block definitions
	Memory allocation for Function Blocks

	Useful Functions
	Command Operand Input Automatic Search and List Display
	FB Protect Function
	Overview of Helpful Functions
	Generating FBs Based on an Existing Ladder Program

	Chapter 6 Advanced: Creating a Task Program Using Structured Text
	1. Description of Program
	2. Creating an ST Task
	3. Registering ST Program Symbols
	4. Entering the ST Program

	Appendix. Examples of ST (Structured Text)
	IF Statement Examples
	WHILE Statement Examples
	REPEAT Statement Examples
	FOR Statement Examples
	CASE Statement Examples
	EXIT Statement Examples
	RETURN Statement Examples
	Array Examples
	Standard Functions
	Numerical Functions
	Text String Functions
	Data Type Conversion Functions
	Number-String Conversion Functions
	Data Shift Functions
	Data Control Functions
	Data Selection Function

	OMRON Expansion Functions
	Memory Card Functions
	Communications Functions
	Angle Conversion Instructions
	Timer/Counter Functions

