~UNCTION Sio&r
lroauG dan Sllde

ample_eZ - CX-Programmer - | = |1|
File Edit Wiew Insert FLC Program Tools window Help

DSE|R SR mE[2c A% (eR|aiEn (s RER(ESIEBTRR LW as|
aoQiszHEr|cirnrw) —opgaaElk |[EleE|ve B/ PEEE |
: = .
|mPEROs k2P EE| 008 & %5 |
(= W [Ru 1 - MewPLC1.MewProgrami I] 4 [NewPLC1.Stage o] 5
E& MewProject IW' e ITr! nerlimi 1= 1.25mm, e loaerlimil s 1.14mm. (1 Z0mm (50
=8 MewPLCL[CS16-H] Monitor Mode e e = o =
----- % Symbiols o g R AgVELe_Theshad Ghe o
: 10 Table and Unit Sety rreeiss B lpew [
o P G i e ¥ =4
3 =rtngs n o Mezsue i REAL) (oo duige
-[E] Memary card er curadflSRRL 2 perurznen . {Fault ez .
= o R,
Errar log et | at::::ﬁl Liiate
A0 ..
(&) PLC Clack iooticeesieceds pmmermd firas
@ Memary [[331re Mezeument .. ud
[=1-%3% Programs " lesn = tital
E@ MewProgrami (00) Running il
. +1.14 iﬂésﬁu
1 uml |
Z Shges _BoxEziec] i ! i
3 Udorkdboue Coninod _ L0 Mooun | -
2 Lcrkiioue -
Elﬂ Function Blocks P_an gpou LT [i4 | | _’l—l
ActuatarContral S L AR o - soot] m
P avgvalue_ThresholdCheck a [kt ﬁ.cl.ub(alnhlo . Zlﬂl Marme: | Address or Yalue: s
DD _ThickSeleckControl oo [T il B + Previyclels = FALSE,
=] o 3
I5F warkiMoveContral_LSOMNCount . - - o EMD_IF;
[l LS_0Nrmbert
o oL
2o I "
@ (* Calls WorkMove (instance of ActustorCortral FE) *)
o0 aoon wWorkhowelRightDirlnput, LeftDirinput, LSright, LSlett, ActustorRightOn,
o
= (* Counts number of times opening - closing limit switch *)
e - IF PresCyclel S = FALSE and LSright = TRUE THEM
4] | 9 LS _Ohnumbet := LS_OMRumber+1; =
i = A Gobal Mame: |Staged_DWDThickSele Address or value: h I | L
Froject 2
fll EEII MewPLC 1 ame Data %I Iame | Address | DataT... | F.| Walue | Walue(Binary) =
E‘ I6F Staged_BoxSelect[workMoveCant Staged_BoxSelect FE [Staged_DVDThickSelect, VD Thickudge Avgialue | HS24 REAL{... I.. +0.0000000 Float | +0,0000000 Flo.
swarkMove[ActuatorContral] | Staged_DWDThickSelect FE[D Staged_DWDThickSelect. DWDThickJudge . Inputl HS14 REAL{... I.. +0.0000000 Float +0.0000000 Flo.
E| Stages_DYDThickSeleck[DVD_Thick Staged_DWDThickSelect DD ThickJudge. Inputz H516 REAL {... I.. +0.0000000 Flogt +0.0000000 Flo.—
I8F DD ThickJudge[wghaiue_Thre Staged_DWDThickSelect DYDThickdudge . Inputs H515 REAL({... I.. +0.0000000 Float | +0.0000000 Flo.
. Stagef_DWDThickSelect DYDThickdudge . UpLimit H520 REAL{... I.. +1.260000Float +1.2A0000 Floal
Wormove[nCtuatorcontrol] naft CUL TR Salark il Todaa |l irnik HES 2 =11, 10 T i Adnnnm Elask S B - TnTnTnnl =|n=ILI
| | » [N I |44 »][I}, sheett £ she rili r
For Help, press F1 [[NewPLC1(Simulator) - Manitor Mode | 15.0ms [sYHC [rung oz, 1) - 70% [R

For CX-Programmer Ver.6.1 (CX-One Ver.1.1)

CX-One / CX-Programmer CD-ROM contains an operation manual PDF file.

Before using this product, you must read “Introduction”, “Safety Cautions”, and “Precautions for
Safe Use”.

“Function Block Implementation Guide” describes basic operations to use OMRON FB Library and hints to create user
program with Function Blocks.

Cautions and detailed explanation are available on Help and PDF Manual.

* Acrobat Reader 4.0 or later is required to read the PDF file.

Contents
Chapter 1 OMRON FB Library

1. What is @ FUNCHON BIOCK? - - - -« o o e 1-1
2. An Example of a Function Block - - - -« - oo 1-2
3. Overview of the OMRON FB Library -« -« oo 1-3
3-1. Benefits of the OMRON FB Library - -« -« vim 1-3
3-2. Example of using the OMRON FB Library - -« -« v 1-4
3-3. Content of the OMRON FB Library -« -+« oo 1-6
3-4. File Catalog and Where to Access the OMRON FB Library -« -« covivinnin 1-7
Chapter 2 How to use the OMRON FB Library
1. Explanation of the target program 2-1
1-1. Application Specifications 2-1
1-2. Specifications of the OMRON FB Partfile i 2-1
1-3. INPUL Program ..o 2-2
2. Opening a new project and setting the Device Type 2-3
3. Main Window fUNCHONS - - . o i e e e e e e e e e e e e e e e 2-4
4. Importthe OMRON FB Partfile e 2-5
5.Program Creation e 2-6
5-1. Entera Normally Open Contact i 2-6
5-2. Entering an INStance o 2-7
5-3. Entering Parameters 2-7
6. Program Error Check (Compile)o ot 2-9
7.G0oINg ONliNE .o 2-10
8. MonItoriNg - 1 oo 2-11
9. Monitoring - 2 Change Parameter CurrentValue 2-12
10.0nline Editing . - - - o oo 2-13
Chapter 3 Customize the OMRON FB Part file
1. Explanation of target program 3-1
1-1. Changing File Specifications 3-1
1-2. Changing the contents of the OMRON FB Partfile 3-1
2. Copythe OMRON FB Partfile e 3-2
3. Add a variable to the Function Block 3-3
4. Changing the Function Block Ladder 3-4
4-1. Entering a Contact 3-4
4-2. Checking Usage Status of Variables 3-5
Chapter 4 How to use the ST (Structured Text) language
1. What is the ST Language? .. 4-1
2. Explanation of the target program« ..o 4-1
3. Create a Function BIOCK USING ST - -« oo it 4-2
4. Entering Variables into Function Blocks -o 4-3
5. Entry of ST program -« - oo oo 4-4
6. Entering the FB to the Ladder Program and error checking - ot 4-5
7. Program TrANS O - o o e e e e e e 4-6
8. Monitoring the Function Block execution i 4-7
Reference: Example of an ST program using IF-THEN-ELSE-END_IF 4-8
Chapter 5 Advanced (Componentizing a Program Using FB)
4 OVEBIVIBW « -« v e e et e e e e e e e e e e e e e e e e e 5-1
2. How to Proceed Program Development .. 5-1
3. ApPliCation EXAmMPIE - -+« « «« v 5-1
4. How to Proceed Program Deve|opment ... 5-2
5. Entering FB Definition - - - -« « v oo oo e e e e e e 5-9
6. Creating FB Definition Library .. 5-20
7. Entering Main Program ... 5-21
8. Debugging Main Program - - -« - oo 5-22

Supplemental Information
How to delete unused Function Block definitions
Memory allocation for Function Blocks
Useful Functions
Appendix. Examples of ST (Structured Text) « -« Appendix

Introduction
This document summarizes tips for using OMRON FB Library and creating function block (FB), which are available for
Omron’s SYSMAC CS1/CJ1-H/CJ1M series CPU unit (unit version 3.0 or later) and CX-Programmer Ver.5.0 or later.

New functions available on CX-Programmer Ver. 6.0

Nesting of FB

Nesting of FBs is now available for easier use of FB as a method to structure and reuse user programs. FB can be called
from a ladder program structured text (ST) program that is converted to FB. Following functions are also supported for this.

Easy understanding of program structure . . . FB Instance Viewer
Management as components including called FBs . . . Saving and loading of files including called FB
Easy jump to called FB . . . Mouse double-click operation on FB Instance (call statement)

Monitoring of FB ladder
As with main ladder program, state of FB ladder program can be monitored.

Cross reference pop-up in FB ladder
As with main ladder program, cross reference pop-up is now available in FB ladder program.
Also supported now is jump to output coil from contact via space key.

Jump to ST help
You can jump Structured Text editor through pop-up menu to a help topic to easily check syntax for ST programming.

Jump to library reference of OMRON FB Library
You can easily view a PDF file of library cross reference that describes specifications from a OMRON FB Library
registered in a project file.

Caution:

Although you can use a program that contains nested FB for a CS1/CJ1-H/CJ1M series CPU unit (unit version 3.0 or
later), if you try to upload a program that contains nested FB by CX-Programmer (Ver.5.0 or older) that does not support
nesting, either you will fail to do so or you will just get one under incomplete state.

If you save the file as it is, you will not be able to tell difference between the incomplete and correct programs.

[In case of CX-Programmer Ver.5.0]

Following messages will be shown after upload is finished:
The PLC properties which are not supported by this version of CX-Programmer are set in the connecting target PLC.
The PLC properties will not be displayed correctly. Do you wish to continue?

[In case of CX-Programmer Ver.4.0]
Following message will be shown after upload is finished:
Function Block or other data besides Ladder are included in the programs.

[In case of CX-Programmer Ver.3.*]
When upload is finished, a message "Decompile error" is displayed and no program will be shown.

New Functions that can be used with CX-Programmer Ver.6.1

ST Monitoring, Execute Steps

In order to facilitate the sequential processing language ST debug, the following functions are supported:
Display current value/change current value during ST Program execution.
Possible to stop execution at the breakpoint, and execute steps using CX-Simulator

FB Protect Function
FB not wanted to be displayed can be concealed. This helps to protect against mistaken changes, know-how leaks, and
improper program changes.

Chapter 1
OMRON FB Library

OMRON FB Library

1. What is a Function Block?

“Function Blocks” are predefined programs (or functions) contained within a single program element that may be
used in the ladder diagram. A contact element is required to start the function, but inputs and outputs are editable
through parameters used in the ladder arrangement.

The functions can be reused as the same element (same memory) or occur as a new element with its own memory

assigned.
Partial Ladder program for machine A | Defining Inputs and Outputs ...
Input Process (algorithm) Output
Control Device 1 \ Control Device n
X1 Xn
i o1 e An il " D "
I L) g Bn I LA) g
TIM TIM
1 > | n
#0100 #0100
Y1 Tn Yn
—IT1I {). _I ! Yn
I) g g
Z1 Zn
{) Zn
\J J \J

Produce template

Partial Ladder program for machine A

Function Block definition }
Control Device 1 *
Device Control
P On Device Control
EN ENO =t EN ENO jmm
Al ™A X X1
B1 M8 Y Pev1 Allocate to
z Hz1 Ladder —A X =
program
- Sets input / output Function Block =B Y T
Control Device /2) parameters Instance (callstatement) }
P On Device Control Z
EN ENO
A2 A X I X2
B2 B Y I Y2
Z It 2z22

Function Block definition -+ This contains the defined logic (algorithm) and 1/O interface. The memory addresses are not allocated in the Function Block Definition
Function Block instance (call statement) --- This is the statement that will call the function block instance when used by the ladder program, using the memory allocated
to the instance

OMRON FB Library

2. An Example of a Function Block

The following figures describe an example of a function block for a time limit circuit, to be used in the ladder. It is

possible to edit the set point of the TIM instruction to reallocate the set time for turning off the output in the ladder
rung. Using the function block as shown below, it is possible to make the time limit of the circuit arbitrary by only

changing one specific parameter.

By enabling the input parameter to
Ladder diagram be editable, it is possible to allow
an arbitrary time limit circuit.

000.00 TIMOQOO ™ ;
L
— | > o000 I P_On PULSE
#0020] | EN ENO
Start Q | 001.00
001.00 000.00
“ 001.00 40020 ™ Time

e\
\

Timing chart
j Start TE
000.00 I_I — | ;I'fl-B TIM
v T FB
Time
001.00 Q
< > — —
2.0 sec Q
7\
\J

OMRON FB Library

3. Overview of the OMRON FB Library

The OMRON FB Library is a collection of predefined Function Block files provided by Omron. These files are
intended to be used as an aid to simplify programs, containing standard functionality for programming PLCs
and Omron FA component functions.

3-1. Benefits of the OMRON FB Library

The OMRON FB Library is a collection of function block examples that aim to improve the connectivity of the
units for PLCs and FA components made by Omron. Here is a list of the benefits to be gained from using the
OMRON FB Library:

(1) No need to create ladder diagrams using basic functions of the PLC units and FA components
More time can be spent on bespoke programs for the external devices, rather than creating basic
ladder diagrams, as these are already available.

(2) Easy to use
A functioning program is achieved by loading the function block file to perform the target functionality,
then by inputting an instance (function block call statement) to the ladder diagram program and
setting addresses (parameters) for the inputs and outputs.

(3) Testing of program operation is unnecessary
Omron has tested the Function Block library. Debugging the programs for operating the unit and FA
components for the PLCs is unnecessary for the user.

(4) Easy to understand
The function block has a clearly displayed name for its body and instances. A fixed name can be
applied to the process.

The instance (function block call statement) has input and output parameters. As the temporary relay
and processing data is not displayed, the values of the inputs and outputs are more visible.
Furthermore, as the modification of the parameters is localised, fine control during debugging etc. is
easier.

Finally, as the internal processing of the function block is not displayed when the instance is used in
the ladder diagram, the ladder diagram program looks simpler to the end user.

(5) Extendibility in the future
Omron will not change the interface between the ladder diagram and the function blocks. Units will
operate by replacing the function block to the corresponding FB for the new unit in the event of PLC
and the FA component upgrades, for higher performance or enhancements, in the future.

A fixed name can be named to the processes.

Current Te mparatureCf-Heater
EEc22 ReadPy CJ\ It is not necessary to create the basic ’

il fRpov ®¥__ communications program.
&1 | ggﬂ?\]o (BO%LI% | Wwiooo2
&2 | SFEE‘I?D (BO% | W o003
&2 (DII\R} 000

INPUT/OUTPUT data is clear.
Parameters are easy to understand and edit.

OMRON FB Library

3-2-1. Example of using the OMRON FB Library - 1

Controlling the predefined components made by Omron can be easily achieved from the PLC ladder diagram.

- Ability to configure low-cost communications (RS-232C/485)

CS/CJ Series "' FB Access by Function Block
PLC

Example: Communication between
Temperature controller and PLC

Current TemparstureOf:Heater
_EBx202_ReadPW

w1 DTD.DD E%]OO L (B%% |
W100.01 &10 | Hwit oot (Bé)%‘n)’ | Wi 07.01

&1 | E[L»eru (BO%L.% | Wioon2
&2 | SFE'IP?D (BO% | Wi0o03
R LS ohpp e

Serial communications (Compoway/F protocol)

—
(- o ollo
SsS g 5 s _‘_i:() looo E—‘_ﬂ
Temperature a . |:| i
controller _E N
Smart sensor } [Vision sensor :?z

Omron Components |

3-2-2. Example of using the OMRON FB Library - 2

High performance communications can be made by DeviceNet level.

- Ability to communicate between PLC and DeviceNet slaves easily.

OMRON FB Library

CS/CJ series
PLC

Example: data exchange between

! PLC and the slave devices

Access by Function block

O T Hemdlont
Dret204 GetONTime Py

| v g o
C _M‘rom &n j|w-‘l?"u"i‘“° % w0201
ommunicate between .
L [W02
PLC and the devices ko R
[BO?B WIS
<||nnm oo
PRl
BoliEre
DeviceNet
I
gg Temperature
a_h controller
Generic slaves such as 10 terminal PLC Wireless
Inverter

bu=

3-3. Content of the OMRON FB Library

The OMRON FB Library consist of the following:

3-3-1. OMRON FB Part Files

OMRON FB Library

The OMRON FB Part file is prepared using the ladder diagram function block, for defining each function of
the PLC unit and the FA component.
The files contain a program written in ladder diagram and have the extension .CXF.
The file name of the OMRON FB Part file begins with *_’ (under score).
When the OMRON FB Library is installed onto a personal computer, the OMRON FB Part files are

classified in the folder appropriate to each PLC Unit and FA component in the Omron Installation directory.

File:

=P

Edit Wiew Favorites Tools Help ‘

Back » & - (1] | @search | Byroiders (BHstory | U5 K X o | -

Address | S cPu =| fe |
Folders % || Mame ¢ | Size [Type -
E1-C] OMRON < |[=] _cpuoo1 _te_pep.cxf 2KB CHF Fle

(] Cx-Programmer _CPUOO_TP_BCD. pdf SSKB FDF File

] Cr-server o8] _cPUODZ_TP_BIN.cxf ZKE CHF File

=1k _CPUODZ_TP_BIN.pof SSKE PDF File

=L PR =] _CPUOD3_TON_BCD. exf ZKB CHFFle

E-L1 Omronlib _CPUOOS_TON_BCD.pdf SSKE PDF File

L1 Barcode Scanner _CPUD4_TON_BIN. coxf 2KB CHF File

-] Inverter _CPLOO4_TON_BIN.pdf SS5KE POFFils

- :::E’ sensar _CPUIDOS_TOF _BCD.oxf ZKE CHF File

EHLIR ax _CPU00S_TOF_BCD.pdf SSKE PDF File

j U] _cPUODG_TOF_BIM.exf ZKB CHFFle

J ETN _CPUODG_TOF_BIN, pdf SSKE PDF File

5 scw _CPU7 _MakeClockPulse_BCD.cf ZKE CHF File

-0 Position Controlle _CPUDOT _MakeClockPulse_BCD.pof SSKB FDF File

..... 1 Remete 10 _CPUO0B_MakeClockPulse_BIN.cxf ZKB CHFFle

..... £ reid _CPUO0S _MakeClockPulse_BIN. pof SSKE PDFFile
®-01 ServoDrives | | 8] _CPUO10_SendData.exf TKB CHFFle L

-] Temperature Con _CPUDI0_SendData.pdf SSKB FDF File

(] vision Sensor _CPUO11_RecieveData.cof 7KE CHF File

{1 outlook Express _CPUDL1_RecieveData.pf SSKE PDFFils

----- L1 windows Media Player =] _cPun12_SendCommand.cxf BKE CXF Fils
| L] Windows hT | ud !;? CPU01Z SendCommand.ndf | S5KE PDF File _I;l

4 » 4 »

|26 object(s) (Disk fres space: 1.73 GE) [s4ake S my computer Vv

The library reference describes the operation specifications of the OMRON FB Part file, and the specifications
of the input and the output parameters for each. The file format for this is PDF.
When the OMRON FB Library is used, the user should select the OMRON FB Part file, set the input / output
parameters, and test the program operations referring to the library reference.

" Bl |
200

Read Data Carrier Data _\/60x200_ReadData

FH harme

_VEO0_Readlata

SyrmBoT

Start tigger _\B0x200_Fead Cata
T (BOo0L) (BO00L)
e End |
— Uit Ho i aseh Busy flag
— it —
Head to. — (Rl @ [Memal end
Dot Carrier read address —| "ban‘g“a) (annns |- Emorend
o | Camerfdaess NG | Emorcade
Bites to read fom Data Carer o WORDy [Gaybe ited.)
Fead dota swrage area vpe —| gﬁfa’:g‘fs EmorCode
Read data storage word address —| gﬁ%”‘“‘n
Communications designation —| (?””e’“am
. Commurications
Frogessing designation —]
Cancel — ?B“’;UU[;'“
Cancel

File narne

¥LIFFBL¥English¥omronib¥RFID¥VE00% VEDx200_ReadDatall.c

Applicable
models

TETFEVBO0CTT ABO0CT 2 and CITAEBO0C 11 AB00CT 2 10 Sensor Unis

Basic funclion

Feads data from a Data Carrier.

Condiions for
usage

Other

« This FB cannat be executed ifthe 1D Sensor Unitis busy. The NG Flag will turn ON if an attempt is
rmade]

Funcion
desctiption

Data is read frorn the specfied area of the Data Carier spednied by the Uit Mo, and Vendor No.

Up to 2048 bytes (1024 words) can be read at one time

The word designation for storing the data is specified using the area type and beginning word address. For
example, for 01000, the area type is setio P_DM and the beginning word address is set to &£1000.

EM input
condition

Connect EN to an OR between an upwardly differentiated condition for the start frigger and the BUSY
output from the FB.

Resticiions
Input
variables

« Always Use an upwardly differentiated condition for EN

« Ifthe input variables are out of range, the ENO Flag will turn OFF and the FB will not be processed.

+ Always specify a head number of &1 for One-Head ID Sensor Units (CS1W-v800C11 and
CIWE00C11).

OMRON FB Library

3-4. File Catalog and Where to Access the OMRON FB Library

3-4-1. Catalog of OMRON FB Library files

Number of OMRON
Type Target components FB Part files (at the
time of February '05)

FA components Temperature controller, Smart sensor, 1D approx. 80
sensor, Vision sensor, 2 dimensions bar
code reader, Wireless terminal

PLC CPU unit, Memory card, Special CPU 10 approx. 95
unit (Ethernet, Controller Link, DeviceNet
unit, Temperature control unit)

Motion control Position control unit
components Inverter .
Servo motor driver

approx. 70

3-4-2. CX-One / CX-Programmer installation CD

OMRON FB Library is contained on the same install CD as CX-One / CX-Programmer.
Installation can be selected during CX-One / CX-Programmer installation.

Install CD

3-4-3. Accessing OMRON FB Library files from Web server

The latest version OMRON FB Library files are provided by Omron on the Web server.
New files will be added to support new or enhanced PLC units and FA components.
The download service of the OMRON FB Library is provided as a menu of Omron Web in each country.

Web server

The internet
!;_I lIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII>)

" The internet

llllllllllllllllllllllllllllllllll’ .

Chapter 2

How to use
the OMRON FB Librar)

Offline Operation

Explanation of Opening a Import Creating a
target Program new project FB Library program Program Check

1. Explanation of the target program

This chapter describes how to use OMRON FB Library using the OMRON FB Part file ‘Make ON Time/OFF
Time Clock Pulse in BCD'.

1-1. Application Specifications

The target application specifications are as follows :-
- Pulse is generated after PLC mode is changed to‘run’ or ‘monitor’ mode.
- Output the pulse to address 1.00.
- On time of generated pulse is set at D100.
- Off time of generated pulse is 2 seconds.

1-2. Specifications of the OMRON FB Part file

The OMRON FB Part file ‘Make ON Time/OFF Time Clock Pulse in BCD’ has the following specifications:-

CPU Make ON Time/OFF Time Clock Pulse in BCD
Wiy CPU007_ MakeClockPulse_BCD
Basic funcfion | Generates a clock pufse with the specified O firne and OFF firne and oufpats i to EMO.
iy Huae 0N P_0n) _CPLO0?_MekeDookPulse_BCOD
(BO0L) (pooly ——4)
ONtime (unit: 100 ms) —| (EJIP/"DRD) ENO
OF Ftime unit: 100 ms) —| SEIEE‘E)
OffTime
File name ¥LiFBLEFEnglish¥ommonlib¥PLC¥CPUE CPUDD7_MakeClockPulse_BCDO.cf
Applicable CS1-H, C51-H, and CITM CFLU Units
rodels
Conditions for | PLC Properfies
usage + The P¥ update method for timers and counters must be setto BCD in the PLC Setup.

Acompiling error will ocedr if BCD mode is ot set.
The mode can be setin the PLC Properties in the CX-Programmet.

H
2' General | Protection | Function Block |
 Mode
Hame: WRERPCT S i
Type: GS1G-H GPUSL Very. | € Debue
_ © Monitor
€ Fun

¢ Use section markers L

[+ Display disloe to show FLG Memory Backup Status
¥ Use JR/DRs indspendently per task

[~ Exscute Timer/Gounter as Binary

Shared Resources

+ Tirners
Function EMO will be OFF far the time setin OFF ime and then will be ON far the time setin CAf time.
description
EN oN
OFF_| L
OnTime (100 ms)
—
END oN T]
OFF J _ | |_| |—
0fTime (100 ms)
EMinput Connectthe EM inputto the Always ON Flag (F_On)
condition
Restrictions + Ifthe input variables are out of range, the ENO Flag wil furn OFF and the FB will not he processed.
Input + Setthe ON Bime and OFF time inputvariables to between #0000 and #9999 in BCD {100 ms units). If 3
variahles setting is not within range, EMNO is turned OFF
Application T the following exarmple, BIitA Wil be repeatedy OMN for 9 5 and OFF for 3 s.
IR Auzys ON(F_n) _CRUDDT_Make ClockPulse_BED oA
| | E————— N ([T ooy f———————
Ofigne gt 100ms) _| EN ENO
50 | (WORD)
OFF#n e @it 1008r5) _| DnTime
#30 | (WORD)
OfTime
Related FBS Use the correct FB for the fimertounter PY update rmode setin the PLC Setup.

Binary mode:
Make ON Time/OFF Time Clock Pulse in Binary (_CPUDDE_MakeClockPulze_BIN)
BCD mode:
ake OM Time/OFF Time Clock Pulse in BCD (_CPUD07_MakeClockPulse_BCD)
mVariable Tables
Input Variables
Mame Yariable name Datatvpe Default | Range Description
EN EM BOOL 1 (ON): FB started
0 (OFF). FB not started.
ONtime onTime WORD #0000 1o Specify the ON time (unit: 100 ms)
#9933 Forexample, #30 means 3 seconds.
OFF time OffTime WORD F0000 o Specify the OFF time {unit. 100 ms).
#9989 Forexample, #30 means 3 seconds.
Qutput Variables
Marne [Varfahle name [Datatype [Range [Description

|
END [END | BOOL | | Turns OM forthe OnTime and OFF forthe OffTime. |

Offline Operation

Explanation of Opening a Import Crgalifelte D Program Check

target Program new project FB Library program

1-3. Input program |

Create the following ladder program:-

e [Program Mame ; MewwProgrami]

[Section Mame : Section]

Wiarklnput TimingGenerstor

_CPUODY _MakeClockPulze_BCD

P_Cn (BOOL) (BOOL) 1.00
| | EM EMC £y
Always OB Flag
L1100 WICRD)
JonTime
| ’ #10 (ORD)
Jot{Time

[Reference] If created as a straightforward ladder diagram, the program would be as below:-

2 Wuid.0o TOoo
7— | % .
Check OM time... | CM time timer TiM Timer
aooo OFF time
Tirmet ru
#0020 Set value
TOooo
1| i
11 .
CFF time timer TiM Timer
oo OM time t
Tirmet ru
D100 O time:
Set value
1.00
Generate

Offline Operation

Explanation of Opening a Import Creating a Program Check

target Program new project FB Library program

2. Opening a new project and setting the Device Type |

Click the toolbar button [New] in CX-Programmer.

I CX-Programmer
File Wiew PLC Tools

Click g """'< w E ||ﬁ |Q_ T :.‘“;pr|—oquu.1r-u_.:,! @ |4 % x.mrr"r
S =@

T

[sxalls

UG

Fox bk, oo Pl | |)]]
x
cecdl Device M am
Click the left mouse button. ‘.,........ f oo, ‘
...o" Device Tupe o
3 ’7|cs1axwa > |f_ Settings... >
Network Type = =
|7 Toolbus _:_f. Settings... |
! To use Function Blocks, select the following PLCs: |omment -—
CS1G-H, CS1H-H, CJ1G-H, CJ1H-H, CJ1M .o° = |
=
[j 0K ¢° I Cancel | Help |

Eﬂ Settings... ‘
Click the left mouse button

Device Type Setlings [(51G/CJ1G] ﬂ

o B0,
oo ® olg
e0®® oo,

Click the left mouse button

CPU Typ L)
to select CPU type. off { M
=

Total Program Area 5i

I1UK [Step] - [Read Only

INUne - I~ | Fead Only

@ File Memory
’V INUne - I~ | Fead Only
Make Default

I:IK | 0..00--.oo.ooo.ooo.oo-.-oo.oo! — Help

Click [OK] to decide
the selected CPU type.

Timer / Clock
¥ [istalled

Expansion Memony ‘

Title bar

= Untitled - CX-|

3. Main Window functions

The main window functionality is explained here.

Programmer - [NewPLC 1.NewProgram1.5ectionl [Diagram]]
Elle Edt Wiew Insert PLC Program Tools ‘Window Help

DEHR(EE bR 2| a%k| 2w |[as8%L01 AR RlEDRTD|L 0[]

Menus

sga BEpErErrew | —opaarlk|[BleE[anus

™

1

Tool bar

TerPL
=k

o
Set

Project Tree < Memory

=2 % Programs Gwrrsrreseeceesrrese o
= (@ MewProgram1 (00}

Section

]

Function Block Definition

ERERE o r EE ||

IF Function Elocks

t

C1[C516-H] Cffline
mbols

Table Jreverssarsosisivivers ; ‘

ﬂ g [Program Mame : MewProgrami]
[Section hame : Sectiont]

things

B sectiont

(L FH

s
Kl | ’

=181 x|
=181 x|

(]

\ Proiect /.
Status bar | Furyess Fi

Project Workspace

=4l Narme: 7 Address or Yalue: | Comment: |
[/ [[lrng 0D, O) - 100% | [[mom
Ladder Window

Name Contents / Function
Title Bar Shows the file name of saved data created in CX-Programmer.
Menus Enables you to select menu items.
Toolbars Enables you to select functions by clicking icons. Select [View] -> [Toolbars], display
toolbars. Dragging toolbars enables you to change the display positions.
Section Enables you to divide a program into several blocks. Each can be created and

displayed separately.

Project Workspace
Project Tree

Controls programs and data. Enables you to copy element data by executing Drag and
Drop between different projects or from within a project.

Ladder Window

A screen for creating and editing a ladder program.

Function Block Definition

Shows Function Block definition.

By selecting the icons, you can copy or delete the selected Function Block definition.
-4 is shown if the file is a OMRON FB Part file.

- In the case of a User-defined Function Block, is shown if Ladder, J&F is shown if ST.

Status Bar

Shows information such as a PLC name, online/offline state, location of the active cell.

Offline Operation

Explanation of Opening a Import Creatingja Program Check

target Program new project FB Library program

4. Import the OMRON FB Part file |

Select Function Block definition icon from the project tree using the mouse cursor, right click.
Select Insert Function Block, then select a Library file using mouse to navigate.

[FTULrEn NEre ey
E% MewPraject I

E@E MewPLC1[C51G-H] Offline [Section Mame : Sect

----- 7 10 Table

----- Setkings

- Memnary

-4 Programs

E‘@ MewPrograml (00)
-5 Symbals

B3 sectionl

-G END
Click mouse right button eeccccccccccccccccnpoeg iF |:'-r3rt Function Block 4 F Ladder
— Insert Function Block Y 4EF Structured Text
— Library File s Uk
Copy. Erom File. .,
ﬁ Paste

Delete

,7 Allow Docking

—
—

Select Function Block Library File e |

Double click mouse left button. o ol e @ &

: Egrrgr?grl;:ﬂable Controller] A ST , Select the necessary OMRON FB
. [CPS] Double click mouse left button Part file in the ‘Select Function
Select each of the above in Block Library’ dialog.

series.

! The default path of the OMRON FB Library is

tj Flergne: | [g | C:\Program Files\Omron \CX-One\Lib \FBL.
@ =l Canicel |

Files Bf tupe: IFunction Block Library Files(®.cxf]

Select Function Block Library File 2x|

Look it IaCPU j L] = B
Left Click v e s RN
‘_CPUOO?_MakeCIockPulse @ _CPUODZ_TP_BIM,cxf S -
_BCD.cxf’ 8] _CPUIO03_TOM_BCD.cxf _CPUDLO_SendData, cxf
] _CPUCD4_TON_BIN,cxf _CPUOL1_RecieveData,cxf
Left Click the [Open] button] _CPUOOS_TOF_BCD.cxf s8] _cPu1z_SendCommand. cxf
8] _CPLIO0G_TOF _BIN.cxf _CPUOL3_PMCR cxf
N [i
File name: I_EF’UDD?_MakeEIDckF’uIse_BED.cxf Open I
! You can easily check specifications of

Files of type: IFunction Block Library Files(* cxf) j Cancel |l OMRON FB part files by selecting
registered OMRON FB part files and [FB
Library Reference] from a pop-up menu

Function Block definition *_ CPU007_MakeClockPulse_BCD' and showing a library reference file.

is registered as part of the project file.

EI i} Function Biocks |
[3

Open

E% Prl:lgrams Save Function Block to File...
El% MewPrograml {00} = o

= Symbals
Gata RungjStes...

EEF]

& cue
Copy
E Paste

Delete

Rename

Function Block Definition

Offline Operation

Creating a D Program Check
program

Confirm cursor position is at the upper left of Ladder Window to start programming.

Explanation of Opening a Import

target Program new project FB Library

5. Program Creation |

T Untitled - CX-Programmer - [NewPLC1.NewPrograml.Sectionl [Diagram]] =10] x|
Flle Edit Wiew Insert PLC Program Tools Window Help =] =l

DR (eR (snrjoc ausev||lesss il eea:

REERS %= BE |2 L5 |
zlx [0 I[ngram Mame : MesPragram?] z

[Section Mame : Section]
eecee,

B % MewProject
E-ER NewPLCI[CS16-H] Offline
i Symhbols .

10 Table o [.
. .
-- Setkings ° °
g Memary o, K
% Programs b °

(3
H : .
EI@ NewPrograml (00} ®ecee®
2 Symbols

@ Sectionl

@ EMD
E|§:F Function Blocks
- 4F _CPUDD?_MakeClockPuise_BCD i

=
14 | v
Project / x4 Name: | Address o Yalus: Conmment:

For Help, press F1 [|NewPLC1(Net:0, Node: 0] - OFffine [[[rung 0¢o, 0 2

5-1. Enter a Normally Open Contact |

eeecssssecces Press the [C] key on the keyboard to open the [New Contact] dialog.
Use the dropdownbox to select the “P_On” symbol.

X
j Dgtail}}l Eancell

(o

-] |- Mew Conktack

P_On (@ﬂ

G |

ENT

Deleting commands

¢ Move the cursor to the command and
then press the DEL key or
Aberarys ON Flag e Move the cursor to the right cell of

| A the command and press the BS key.

“P_On" is a system defined symbol. Its state is always ON.
0 of the upper digit of an address is omitted when shown.

[.] (period) is displayed between a channel number and a relay number.

Offline Operation
Explanation of Openlng a Import Creating a Program Check
target Program new project FB Library program

5-2. Entering an Instance |

sees°°°*** Press the [F] key on the keyboard to open the [New Function Block Invocation] dialog.

Mew Function Block Invocation X|

Enter text to create an FB FE Instance: Il j ok |
T — FB Definitior: |_CPU007_MakeClockPulse_B Cancel |
I Applies a name for the specific
process in the diagram.

<&

ENT seessecses Shows FB call statement ‘WorkInputTimingGenerator’.
u]

(=

U

a [Program Mame : MeswvProgram]

[Section Mame : Section]

b
P_On
—

Alweays OM Flag

Uil dl

5-3. Entering Parameters |

RN

P_On (BOCL)
EM

Alwvays OM Flag

7 [AORD)
n er ENT ﬁ'&nﬂme Move the cursor to the left of input parameter.

OffTime

B |
x
|d1DD j Detail »» | Cancel |

~=

P_On (BOaL)
Em

U

Enter the address.

[d100] |

{

Alavays O Flag
ENT Choose an address for the input
_D1o0 CANORDY parameter ‘OnTime’.
oaime . JonTime

Offline Operation

Creating a D Program Check
program

Explanation of Opening a Import

target Program new project FB Library

Enter the remaining parameters in the same way.

Workinput TimingGenerator

_CPU0OY _MakeClockPulse _BCD

P_On (BIOOL] (BOOL)
EN EMO L

Alveays OM Flag

Dio0 (WIORD)
onTime HConTime

{

HI0 ~| Detail s> m o
~] Detsit>> || ok_|

Please add the following prefix for
entering constants as parameters:

i “#” (Hexadecimal/BCD)
Worklnput Timing Generator Or

{

m

Z

=
||

I:j _CPUDO7 _MakeClockPulse_BCD “&” (Decimal)
P_On (BOoL) (BO0L)
I EN ENG
Alaays O Flag
n o100 (MIORD)
onTime {OnTime
#10 (AORD) £
tj JitTime
Pesssssnsnsnsnsnnpunannnnns -

x

1.00 [1.00 =] Detsit>» |[ok | cancel

{

I'I.EIEI Gernerated pulzs] ill k. I Eanu:ell

Workinput TimingSenerator

[Generated Pulse]

{

ENT _CPUDDT_takeClockPulze_BGE v rasrrasrnassnasnnssnnssnnssnnanng

P_On (Bl (BOCL) 1.00
En

B0 Generated Pulsv.’;

11
1T
Alvearys OM Flag

D100 ORD)
2nTime HOnTime
#10 PAVORD

JOfTime:

Explanation of

target Program

Click %

—
—

Errors and addresses are
displayed in the Output Window.

Offline Operation
Opening a
new project

Import
FB Library

Creating a

program Program Check

6. Program Error Check (Compile) |

Before program transfer, check for errors using the program compile.

Untitled - CX-Programmer - [NewPLC1.MNewProgram1.Sectionl [Diagram]]

File Edt Yiew Insert PLC Program Tools Window Help

DS H BSR[s B2 (aun|eR|assa s pg®
R e LR L R e o T s el (P SR
DRERS &R 2EEE| 8. o
= [0

[Program Mame : MewPrograim |
EI--% MewProject

-0 MewPLCI[C516-H] OFfine
= Symhbals

[Section Matme : Section1]

=

ntitled - CX-Programmer - [NewPLC1.NewPrograml.Sectionl [Diagram]]

=lolx]

[(H File Edit View Insert PLC Program Tools Window Help -8 x|

DEE R ER/[sm|2c | ant(ew||esga 2 |nlR(ar@D000 Lulas

aoalilgiERER[bArHirnw | —opaEELx||Z Salvnnn BEERE

CEERE a2BEEE|2 52|
== [0

= B rerroet o | [Prozram Meme - NewProgrami] =
£ BB HewPLCI[CS16-H] Offine
5 symbols

@7 10 Table

Settings

R Memory

=% Programs i
. =% NewPragram! (00) T

i -5 Symbols

-G Sectionl

[Section Mame : Section1]

WorkinputTimingGenerstor

_CPUOOT_akeClockPulse_BCD

(BOGL)
NG

Alweys OM Flag

D100 (WORD)
B EnD anTime CnTime
=-F Function Blacks

-4 _CPUDD7_MaksClockPulse_BCD

= L _MakeClackPulse_E #a woRD)

Aan

J K | :

' Froject /

2| A6 Mame: P_on

-

Double-click on displayed errors,
and the Ladder Diagram cursor
will move to the corresponding
error location, displaying the error
rung in red.

For Help, press F1

L=

Address of Walus: [CF113 Comment: [always OM Flag

[Section Name : SectionT]

WARNING: Duplicated output - OUT 1.00 at ung 08, 1)
“wWARMNING: Duplicated output - OUT 1.00 &t nung 18, 0)
[Section Name : END.

1
[PLC/Program Mame : NewPLC1/_CPUO07_takeClockPulse_BCD]

MNewPLC1 - 0 emars, 2 wamings.
The programs have been checked with the program check option set to Unit Yer 3.0
(4[| » | # 4 Compile A Find Report & Transter

|MewPLC1{Net:0,Node:0) - Offine

[rung 040, 1) - 100% [

Modify the error. I

- Function Blacks
T 4F _CPUND?_MakeClockPulse_BCD

1 000
I

I4] ;
Project 2 A[EhA Hame: Elue: [1.00 Comment; [Generated Pulse
[[Section Mame : Section1] |
Z[twaRNING: Duplicated output - OUT 1,00 &t mang 08,
WARNING: Duplicated outout - TUT 1.00 at runa 1[5, i
[Section Mame : EMD]
[PLC/Program Mame - NewPLC1/_CPUN07_MakeClockPulse_BCD]
MewPLCT - 0 enorg, 2 warnings.
The programs have been checked with the program check option set to Unit Ver 3.0 x
I 4| & [+ % Compile A Find Report A Transfer "_LI' _'I
For Help, press F1 [[MewPLC1{Net:0, Node: 0] - Ofiine [rung 1 (g, 0) - 100% [v

e Output Window automatically opens at program check.
e The cursor moves to an error location by pressing J or F4 key.
o Output Window closes by pressing the ESC key.

Online Operation

Online Monitorin Online
to transfer 9 Edit

7. Going Online

CX-Programmer provides three methods of connecting, depending on usage.

Normal online. Enables you to go online with a PLC of the device type and method specified when opening a project. I

Auto online. Automatically recognizes the connected PLC and enables you to go online with a PLC with one button.
— Uploads all data, such as programs, from the PLC.

L1 E<fi:2

Online with Simulator. Enables you to go online with CX-Simulator with one button (CX-Simulator must be installed.)l

Online/debug functions when working online with CX-Simulator are

explained in this guide (Install CX-Simulator separately). ﬂil
& x
DSH R SR+ AR 2w NEEE T RS
a Q| (SiEmER &A=y IEIEEIEEEEE
lﬁlﬂ@_@ﬁ‘.{a&glﬁ' |10$16|

Click | mmmn =zl |D - ‘i[ngram Hame : NewProgram] j
x

D

CIle[oK] ©00000000c00000000000ccccco T NP BE0e00000OOOS

Include:

%% Progiam(s]

Program transfer starts.

Settings
Cp? 10 1ae ﬂ
- 553 Symbole Frogiam Dowrload to PLC HenPLCT

- [vl[E] Comments
1 Program index

Download successiul

i~ Spmbols, Comments, Pragram index

Transfer To/From: |Memory card 2

Click [OK] T T T R P Y P P T P PP TP D

€ Transfer files by the task

% Clear program memory ‘
I =7 | LIES|
o m |1 u]»|:||»|l1 @) e — BLE
—@Iﬁl Ew|aliEn &8 RER ASE BT -

[CIEL] LUMHWI—O*"&E'U-'* EIEIEERE The background color of
The CX-Simulator ERRE 6D B 5SS the Ladder Window
Console box is shown. :

changes to gray.

B N PLOL [5G H] Morder Modde
=2 Symbols

7 o R :
[settings E
[Memery

The operating mode of
the active PLC is shown.

Scan time is displayed
(except during Program Mode).

Paed T e | Address or Vaboe: | :
For Hlp, press 1. ewL {Simidator) - ko Mode T T B g G050 109% L

Fstart | 1) & 53 || H1Pes Sancled -punt | tew Fokder | s sampted -t |[Bumtitied - cx-progra.. THOtSmistoe bebug e | (B zmem

Online Operation

Online Monitorin Online
to transfer 9 Edit

8. Monitoring - 1

Change the PLC (Simulator)

to Monitor mode. . .
The on/off status of contacts and coils can be monitored.

W Untitled - CX-Programmetr - [[Stopped] - NewPLC1.NewProgram1.Sectionl [Diagram]] —|= 5[

. [f9 Ele Edit WYiew Insert PLC Program Inols Window Help P~ 1= x|
Click %l oo e eeols e b ochle[B A d o 2 63 0w we geso e oB T elolole o2 B 3 dp e PR Pr R EL DR | S
aoQiglEmER R r#irw | —og BB |[Elew|awen B[P

CREERS 6208 2058

=l |EI I |i[Prugram Mame : MewwProgram1] j

=

| If your program has a large volume of data,
& This command will affect the state of the connected PLC. the SCrO” Speed Of the screen may become
B e D G 7 slow when monitoring.
To resolve this, click the icon below to cancel
monitoring, scroll to the address you want to
monitor, then restart the monitor mode.

= -

S

Click [Yes].

won | -++ toggles PLC monitoring on/off

ILILIEU - LA-Frugranmnner - (| awuppeu) - NewPLC1.NewProgram L.5ectionl [Diagram)
'Flle Edit View Insert PLC Pragram Tools ‘Windaw Help

=lolx|
=131 x|
EEEEN Y e \@puj(r@gmmm@@emgp@rww [w2

soqfisEmER narwirw | —op etk |z S

mRARE | R2EE Nl,gfg}jﬂ The monitored area is
=EN D ezlas: M) displayed in a specified
E 48 MewProject 0 |
=B HewPLCI[CS15-H] StopfPragram Mads [Section Name : Sectiont] CO'Or.
& Symbols

7 10 Table

I Warklnput TimingGenerato)

~[B] Settings

{3 Memary card _CPUOOT_MakeClockPulse BCD

” Emror log ¢ (E00L) (B00L) 100

~{B) PLC Clock 7 EN ERO &
g Memory Alyvays On Flag

=% Programs
)% MewProgram1 (00) Stopped
Symbols

O 00
onTime
0000 He:x:

e 3} Function Blocks
L _CPUDO7_MakeClockPulse]

The current values of
parameters are shown.

Kl |

_>IJ
', Project / =Kl | Mame: Address or Value: | Comment: |
Far Help, press F1 [NewPLC1{Simulator) - StopfProgram Mode [[SYhC [rung 1 (0, 0) - 100% [v

Online Monitorin Online
to transfer 9 Edit

Move the cursor to the input ®®eeeeqpeccccccce P onTime

parameter ‘D100’.

Click mouse right button and
select the menu item
[Set/Reset(S)]

— [Setting Value (V)]

Or

Double click mouse left button.

9. Monitoring - 2 Change Parameter Current Value

Change the current value of contact/coils or word data in the Ladder Window.

Wiarkinput TimingGenerstor

_CPUOOY _MakeClockPulze _BCD

Online Operation

: _on : [BOOL) [BOOLY 1.00
¢ |} ; EN ENO
= Aearys ON Flag #
AR R ol - RD)
H = JOnTime
% 0000 Hex :
#10 (ORD]
J O Time

=

parameter.
Set New ¥alue |
Address: (D100 Set > > Click [Set] |
patayee: [T /7 G| | Bt |
vae: [Hn020 Pleage add the following prefix for
entering constants as parameters:
#0to #FFFF [1CH) “#” (Hexadecimal/BCD)
Or
“&” (Decimal)
Worklnput TimingGenerator

_CPUOOY_MakeClockPulse_BCD

> Change the current value of Input

P_Cn (BOOL) (BOOL) 1.00
|| EN NG T
Alweays O Flag
/ 0 00 |omioRD)
E onTime ; onTime
i O020Hex ¢

N

B et
MAORD)

JOfiTime

Online Operation

Online Monitorin Online
to transfer 9 Edit

10. Online Editing

Move the cursor to the rung eeees
requiring modification.

You can also select multiple
rungs by using the Drag & Drop
facility with the mouse.

—

Select [Program] — [Online Edit]
— [Begin]

[Program Mame : MewProgram1]

[Section Mame : Section1]

Shortcut: [Ctrl]+[E] 0 I

—

o .
Movethecursortothecon R cxx oooo.ooooo.o..oo: :
you want to modify. Double Bhwzys ON Flag . :
click the left mouse button. o100 °
onTime
0020 Hex Double click
#0

Edit the address to the required bit number (4.11 in the example)

UG

Select [Program] — [Online Edit]
— [Send Change]

Shortcut: [Ctri]+{Shift]+[E]

.
P_on .
.
Mgy O Flag .
.
D100 eoeoe0e0e0e e’
OnTime
0020 He:x
#10

End

Chapter 3

Customize y
the OMRON FB Part fil

Explanation of Change of

1. Explanation of target program

This chapter describes how to customize the OMRON FB Library using the OMRON FB Part file ‘Make ON
Time/OFF Time Clock Pulse in BCD'.

1-1. Changing File Specifications

The OMRON FB Part file ‘Make ON Time/OFF Time Clock Pulse in BCD’ is designed to repeatedly turn off
the ENO for the specified OffTime (unit: 100 msec) and on for the specified OnTime (unit: 100 msec). In this
example, the OMRON FB Part file will be changed to output an invert signal by adding the output parameter

‘INV_ENO'.
i 3
| }
EN ON .
OFF |
J: :
i OnTime(*100ms) i
|]
| >]
ENO ON |

OFF | , | | |
| E }
i OffTime(*100ms) i
| }
i i
INV.ENO ON ‘
OFF ' | [| i
|]
| I

1-2. Changing the contents of the OMRON FB Part file

To satisfy the requirement described above, the following changes must be made to OMRON FB Part file
‘Make ON Time/OFF Time Clock Pulse in BCD’
1. Add an output parameter ‘INV_ENO’.
2. Add ladder program to output the ENO for inverting the signal.

Caution
OMRON cannot guarantee the operation of a customized OMRON FB parts. Please be sure to check the process of
your FB part sufficiently before customization and confirm the operation of each FB parts thoroughly after that.

Explanation of

Change of
target Program

FB Definition

D Copy of FB part D

2. Copy the OMRON FB Part file

Import the ‘Make ON Time/OFF Time Clock Pulse in BCD’ Function Block Part file as explained
in Chapter 1 (FB definition name: _CPU007_MakeClockPulse_BCD)

_% MewProject

=-E NewPLC1[C516G-H] CFfiine
----- = Symbals

EEE

{,ﬁ’ Mernary
EI% Programs
E@ MewPrograml (00)
2 Symbals
i sectionl
..Fg END
=-IF Function Blocks
seccccccoceccecceca I CPUDN?_MakeClockPulse BCD
—

Select the OMRON FB Part icon
¥ then right click the mouse.
— Copy

E% MewProject

=2 NewPLC1[C515-H] Offline
@ ----- =3 symbols
----- §70 10 Table

@ ----- . 8] Settings

‘i,.’;?? Mermory
[—]% Programs
=- @ MewProgram? {00)
-'=3 Symbols

; EEE

Select Function Block Definition

icon ﬂ:F and right click the Seee., g sectiont
mouse. *eb., ... @ EMD
— Paste =-IF

_CPU0D7_MakeClockPulse_BCD

The OMRON FB Part file is

veeneseesedlF Copy_CPLOOT MakeClockPulse_BCD

pasted.

- Change the FB definition name.

El % Programs
- @ MewPrograrnl (000
- Symbols

)
tj =

------ L P Sectionl

...... @ EMND

Select pasted Function Block '
< = 1F Function Blocks

icon ItF and click mouse right «« ..
button. ‘
— Rename
[MakeClockPulse_BCD_INV]

* oo JIH MakeClockPulse_BCD_INY] |

¥ CPUOO7 _MakeClockPulse_ECD

Note:

The user can'’t create Function Block Definitions
With name starting ‘_’ (underscore).

Please use names not starting with ‘_".

— =

Select pasted Function Block

'\.&' SR |
icon and right click the mouse <., El 3:'; Function Blocks
button. e, :
> Property oo, F CF'LIEIIII? _MakeClockPulse_BCD
Or

o o

Enable editing of the internal FB Program co
X
ﬁl General |l:ormerls| Meimlyl

M akeClock!

Pulse BCD

isplay the inside of FB

de.

Tick the check box using the left mouse click.

Explanation of

Change of

Copy of FB part FB Definition

target Program

3. Add a variable to the Function Block

Variable Table

Open the Function Block Ladder Editor.
% Untitled - CX-Programmer - [NewPLC1.MakeClockPulse_BCD_INY [FB Ladder]]

Dl RSl |smrR(2c(nst|2r||arEa2n|i bk s ZEED
a Q[EEMERR | —oo BEEL b & 4t i B

le Edt Wew Insert PLC Program Tools Window Help

i
=l ¢ Name Data Type | AT | nitial value | Retai... | Comment |

. u |PER BOOL cFOs Error flag
Opens the Function 16-H] Offline Tmp_Data WORD Multiple: area of use For intsrnal. .

. Tim_s TIMER. OFF time measurement tmer
Block Ladder Editor. Tim_b TIMER OM time measursment timer

o [okmi BOOL FALSE Area check OK flag
on_it BOOL FALSE Bit for output

Inkernals Inputs Qubputs Externals

[1] tting value check
0 EM

F
ortrols execut

Select the Function Block icon ItF
using the mouse cursor and
double click the left mouse button.

Function Blocks
skeClackPulse_BCD

LA AN WakeClockPulse_BCD_INY

P_ER

BI(O23)
onTime

Ol time
Tmp_Data

Iutipie sres
Ok_Bit

I
Error flag
Ok_Elllt

F
Area check Q..

FER

BIN(OZ3)
OifTime

COFF time
Trp_Data

ultiple ares...
Ok_Bit

I
Error flag

1 Circuit execution
o Bt

=

Tin b

— |
rea check OK

i

Sl @
4
.

The original OMRON FB Part file is also able to display %

TinA

Tim_=

IOFF time: me

C—|
Area check OH...

Area check OK..

[1 8D To Binary

Source ward

Result word

M 8o To Binary

Source word

Resutt word

[Timer

Timer number

its ladder program, but cannot be edited. o

Address or Valus: |

* o Comment: [BOGL: Controls execution of the Function Block.

PR

=

Variable table

[l » oY
Yaw -----------------LL—- sdssasnsns

-oiﬂme--------h----I-.----lmrguu(ai)-mmannln-------mmm_

Ladder Editor

Marne | Data Type | AT | Initial ¥alue | Retai. .. | Comment

ENC BOOL FALSE Indicates successful execution ..,
Select Output tab in Variable e
Table using the mouse cursor e Externals

And click the left mouse button.

—

Enter a new variable name. I

Xl

Click the left mouse button and
select Insert Variable(l).

Data Type: ‘ BOaL [— |

r' |
Sdvanced.. |

|
=l

@ Uszage: I Cutput
Initial Value: IFALSE 'I [” Betain
@ Comment:

=
[|

Inwerting autput of ENO|

> Select BOOL for bit data. I

=

[Mame I [ata Type I AT

I Initial VE;|-LI8 I Retai. .. I Comment I

Confirm the entered variable is
correct.

BOOL

FALSE

In

Indicates successful execution ...

ing output of EMNG

Explanation of Change of
target Program D el @12 (2 D FB Definition

4. Changing the Function Block Ladder

Add the required ladder diagram on Function Block Ladder edit field.
Move the cursor to the left column of the next rung.

Name I Data Tvpe I AT I Initial Yalue | Retai. .. | Comment I
P_0_0Zs BOOL 0.02 second clock pulse bit
P_0_1s BOCL 0.1 second clock pulse bit
P_0_2s BOCL 0.2 second clock pulse bit
P 1min BOCL 1 minute clock. pulse bit
Internals Inputs I Oukbputs Externals
1 Execute rung
1a Ck_Bit Tim_k
| | | H
1T I ;
Fange Check Ok time caloula.... T Timer
Tim_a Timer num
(OFF time cal...
OrffTime Set value
(O titme #00...
Tim_a
| | H
1T ;
OFF time caloul.. T Timer
Tim_k Timer num
R time calc. ..
onTime Set value
O time: #00..
on_Ait
L
Ottt Bit
2 Output results to ENC
18 Ok _Bit Cn_Bit EMC
171 171
‘-l_;---h-l-----, 1 —}
anos Check O, :Outpu‘t Bit Indicates succe.
3 = H
et -
" .
irisiseiiiiisseriirt
Cannnnnnnnnnns’
4-1. Entering a Contact |
-1/1- New Closed Contack Xl
Ej [EnD] ~| Detail>> Cancel
ENO -
] _Jprea check oK., Bt 57 ot
4 =
EMC b :
2 o -
il -
ENT . E H
ndicates succe. :
B
—J 22|
n -(}- New Coil x|
I|N"'-"'_END| "’I Detail = Cancel
INV_ENO -
rea check K. Bt for output dndicates succe..;
”“ o ”’”’mif_’éﬁiﬁ””’[
21 L1 L
‘ndicates SUCCE. . Inverting uutput...‘
1

ENT

Explanation of Change of
target Program D el @12 (2 D FB Definition

4-2. Checking Usage Status of Variables

As with main ladder program, you can use cross reference pop-up to check usage conditions of
variables.

= Unkithed - Di-Programmer - [NewPLE | MakeCbockPulse_BCD_INY [FD Ladder]] ST
Fle [t Vew [nsst PLC Progem Took Window Mep =l x|

D@k s hd2c(atbEtr||[aren s nlE a2 TRTE LW a2
JeaalisEmERGrwirw | —cpaaEl k(|3 @m(vss s nBEER |
=R e

il [Hame T Tkl ¥a... | Rt | Comment | =
B vebrooect F_ER B) FALSE e B
B e CUCSLGH) il Frp_Dita WoRD] Cugicatnd e fir ntmrnal ..
2 Syl [R OFF brna calulite trvar
I 10 Tabde o Lt Satn fob R O e caloie bive
% > [n N FALSE Fange Chech OF D&
1 Souaied Shire s rus Pricts b |
Moy
Bmorars wionss [s | cupas | etemas |
i ewbropand (00) OEE Tm_p =]
] Tyboke — } 1 e
Socknd [earge Crieck 01__pei time calcu. _
Peowo s Timer
T Furntion Blosks OFF tme cal.
o _cruon?_MaeCchiubin B0 FFTme || Set vehe
A Miacokuies IO BN
]
T a
| 1 |
CFF trme kil ™ frr
T || T e
I e e — |
G || S
2. | Coutput et o ENO (outout variatie)
18 Ox_Be on_Bt
— | 1
FegeCreck 0. ulpu bE
¥ END
FT) —
bbb e
- \ﬂ 1+ L=l
Display cross reference P] A s 0595 T —
For Help, press FL I w1 (Rt Hocke:6 - Gffine I I [rung 010, 8 - 106% T

pop-up.

Ok_Eit Oh_Eit Move the cursor.

—
M RIS © @utpud b
ENO .
M

T e o

-

‘ I+

Project =2 oot mMame: [INv_ENO address or value: | Comment: [BooL:
2 PLCName: [NewPLCT Biowse
| Address Eind
S ettt et ot o S S S S S S S
M INY_ENO MakeClockPulse_BC... 22 OUT[1] b1
. 1
| | |]
. 1
| | |]
. 1
essusussssssEssssEsEsEEsEEEEEEEEEEES)
For Help, press F1 [MewPLC1{eti0, Mode:0) - Offine [rungo(o, o) - 1000 | [uom
2| PLC Mame : MewPLCT
F
Address :
Address | Symbal | ProgrammSection | Step | Inskruction |
lect LDNOT from crt
Sef ce © 2 ChOSS EMO MakeClockPulse_BC... 20 QT[]
reference pop-up by the |, .. vueeucdbs ENG MakeClackPulse_BC... 21 LONOT[L]

mouse cursor.

You can see that variable ENO is used in an output coil in the step No.20 as well.

)
<%

2 Output results to ENO (outeut variskle))
18 Ok_Rit OR_Bit E [=1s]
[[a C
PSSOy, Outout bt » pIleios sueee |
3 B . i e
21 % e r
rfieat TN
4

The cursor in the FB Ladder Editor moves to the output coil in the step No.20.

Chapter 4

How to use |
the ST (Structured Text)

Offline Operation
Explanation of Create new Entering Creating Creating Ladder
target Program FB Definition Variables ST Program Program and check

1. What is the ST Language? |

¢ Tnitial Settings *)
HMTI] =2
The ST (Structured Text) language is a HMITEZ] = 7

high-level language code for industrial Ne2
controls (mainly PLCs) defined by the IEC { CROIE)

GRGTMP = 16#FFFF;

61131-3 standard. FORI=1T0NDO
. . GRGTMP = GROTMP XDR XMTI1]:
It has many control statements, including FOR J:=17T08 D0
IF-THEN-ELSE-END_IF, FOR / WHILE loop, e
i § CH=1:
g?’j ;nl_agé mtathemtatgialffuncn(:l:s Su;:h als CRGTMP = GRGTMP AND 16#7FFF: (¢ GROTMP & Dx7FFF #)
. it is suitable for mathematica ELSE
. CH:=1;
processing. EMD_IF:
UINT_CRCGTMP = WORD_TO_UINTGRCSTMP) /2,
The ST langu.ag.e SupportEd by CX_ GRCTMP = UINT_TO_MORD{UINT GRGTMPX
Programmer is in conformance with IEC IF GH =1 THEN
CRCTMP = CRCTMP OR 1634000; G CRCTMP OR. 04000 #3
61131-3 standard. END IF;
. . . . IF GT =1 THEN
The arithmetic functions in CX-Programmer GROTMP = GROTMP OR 1688001; t GROTMP YOR 0xA001)
. ENDIF;
Ver.5/6 are as follows: B0 o

sine (SIN), cosine (COS), tangent END_FOR:
(TAN), arc-sine (ASIN), arc-cosine IF GROTMP < 0 THEN

ClL=1;
(ACOS)’ arC'tangent (ATAN)’ GROTMP = GRCTMP AND 16%7FFF; CROTMP & Dx7FFF *)
square root (SQRT), absolute e
value (ABS), logarithm (LOG), oL=o
natural-logarithm (LN), natural- EHD.IF
exponentlal (EXP)’ exponentlat|0n G_1 = CRCTMP AND 16#FF; 6 GROTMP & OxFF *)

CRCTMP = GRCTMP AND 1687F00; O CRCTMP & 0:7F00 2

(EXPT) LINT GROTMP = WORD_TO_LINTIGROTME # 256

C_2 = UINT_TO_WORDIUINT CRGTMPY,

Reference: The IEC 61131 standard is an international standard for programming Programmable Logic
Controllers (PLC), defined by the International Electro-technical Commission (IEC).
The standard consists of 7 parts, with part 3 defining the programming of PLCs.

2. Explanation of the target program

This example describes how to create an ST program in a Function Block to calculate the average value of a
measured thickness.

ThicknessAverage
AverageCalc_Jvalue
_|@oaL) ®oL)| The data type should be set to REAL to store the data.
REAL type allows values with 32 bits of length, see range below:-
READ FEAL -3.402823 x 10%® ~ -1.175494 x 10, 0,
9% score - +1.175494 x 10 ~ +3.402823 x 10*
(REAL)
¥
(REAL)
FB definition name AverageCalc_3Value
Input symbols X(REAL type), Y(REAL type), Z(REAL type)
Output symbol SCOIe(REAL type)
ST Program definiton SCOI€ := (X +y + Z)/ 3.0;

Substitute a value to a symbol is expressed by “ :=". Enter “; ” (semicolon) to
complete the code.

Explanation of

target Program

Create new
FB Definition

Entering
Variables

Creating
ST Program

Creating Ladder

Select the Function Block icon
TE using a mouse cursor, and
click the right mouse button.
— Insert Function Block(l)

— Structured Text(S)

—
—

A New Function Block
definition is created.

—

Select the Function Block
definition icon -JEF using
the mouse cursor and right
click the mouse button.
Select Paste.

— Rename

Enter
[AverageCalc_3value]

Open Function Block ST Editor I

3. Create a Function

Block using ST |

Create a Function Block using
Structured Text.

=4

E% Programs

Change the Function Block definition name

MewPrograml {00}
=4 symbols

& cut
Copy
E Baste

Delete

From File...

,T Allow Docking
Hide

Float In Main Window

Properties

E--% MewProject I

=-EB MewPLC1[CS16G-H] OFfline

----- =5 Symbals

FrT)

37 10 Table
Settings
- Memaory

EI% Programms

=l ‘a MewPrograml (00}

=9 Symbals

T

@ Sectionl

EI@ MewPrograrnl (00)

EI% Programs

=5 Symbols

FEE)

@ Sectionl

Select Function Block definition

Icon 5F by mouse cursor and
double click the left mouse
button.

Note:

The user can’t create Function Block Definitions
with names starting *_’ (underscore).

Please use names not starting with *_".

Offline Operation

Program and check

Leesce**| Variable Table
e - [MesPd 1 rrage ale_tvabue [F) Stroctured Test]] .e® i NIk
[T no By Lk wedem b SIEIES
I EE T R Y I R R AR LN L st P
|cxaTEFEMER g #w | —cs 5% |3 em|es W BIEE |CRRRS
; o N N L Y LT T I TN NN NN NN NNy
o
ibemats [bgas | Gupas | Cowmas |
Leesecee»{ ST Edit Field
P

R —

Fi Hl, press FI

0] - Ol I

Enl, et I I

Entering Creating Creating Ladder

Explanation of Create new

target Program FB Definition Variables ST Program Program and check

4. Entering Variables into Function Blocks |

Select Variable Table.

| Data Type | AT | Initial Yalue | Retai,.. | Commenk |
Controls execution of the Func...

Mame
EM BOOL FALSE

Select the Input tab using
the mouse cursor. *teeeaa..,

—J

Select Insert from the
Pop-up menu.

—

Externals I

Enter a variable name I

Select REAL
Es— p _Sclect REAL |

Enter data for the following. Dt g
S soge: [ieu] [s
Data type -
Comment Initial Walue: ID [~ Betain
Input valis = > Enter and applicable
comment
=

- Enter input symbol x, output symbols y,z by repeating the process above.

Iame | Data Type | a7 | Initial Yalue | Retai.., | Caomment |

EM BOCL FALSE Contrals execution of the Func... .

% REAL 0.0 Input value 1 Input Variables I
W REAL 0.0 Input value 2
e Jmpeal [oo [[lnoutvalie3

Iame | Data Type | AT | Initial Walue | Retai... | Comment | i

EMO BOOL FaLSE Indicates successful execution ... OUtPUt Variables I
score [REAL | Jo.0 | lAvage

Reference: The copy and paste operation is available in FB Header.

Reference: The order of the variables in the FB table becomes the order of parameters on FB

instance (call statement) in the normal ladder view.
To change the order, it is possible to drag & drop variables within the table.

Thicknessaverage

AverageCalc_3value

Mame | [ata Type | .fv_(E?JOOL) 3| - Mame | [aka Ty

EN BooL | - BOOL

% REAL —p [=l

y REAL ,

e Output Variables
Input Variables (REAL)

FB instance (call)

Explanation of Create new Entering Creating Creating Ladder
target Program FB Definition Variables ST Program Program and check

5. Entry of ST program |

Select the ST Editor text field in the Function Block ST Editor window.

= Untitled - LX-Frogrammer - [NewPLLL AverageLalc Jvalue [I0 Structured Text]] =18 x|
[e Bf Yon fmat PLC Bogen Todk Mo b JAEIE
DSH|ch SR %l [0 A% tv||as@s|sn|(hif|erlZ0RT 0 was|
cxa [TeEEERE ey —ocosaA Lk ||Bom|vety|EBREE ||ERE RS
Sl [DetaType [AT [i Vaiue | Retai... | Comment |
5 Jg Howhraject BOOL FALSE Contrels &xecution of the func...
=t _nximl.llf.blh-iﬂm ¥ REAL oo Trput viskse |
521 Symbuis ¥ REAL 0.0 Igad vahsn 2
¥ 10 o z RLAL (i1 Ingus, vahs 3
(5] settngs
4 Mesiny I ——
& S Prograns internals Inputs Outpus Externals
-yl Newbrograml {00} T
2 Sysabols
IF Section
P oo
= Fursction Bocks.
$F AverageCal_valie
I Pt
For Help, press F1 [NewPLE hst:0, Node:0) - Offine T

‘ Enter text into the field: “score := (x +y + z) / 3.0;”.

score =t + v + 20 S 30

When the input expression is a real type
calculation, please enter the constant

value with decimal point and zero for
single decimal places, e.g. ‘3.0’.

Reference: User may type Comments in the ST program.
Enter ‘(*” and *)’ both ends of comment strings, see below.
This is useful for recording change history, process expressions, etc.

[* Created by Suzuki 202172004 *)
SCOre = (X + % + Z) .|'3.|:|;|

Down To Lower Layer

Cut

Copy
Paste

Note: You can jump to a help topic that shows
ST control syntax by selecting [ST Help]
from a pop-up menu in the ST Editor.

Replace...

Comment Out

Explanation of

Create new

Entering

Creating

Creating Ladder

target Program

FB Definition

Variables

ST Program

Program and check

6. Entering the FB to the Ladder Program and error checking

Enter the following FB into the ladder program.
Instance name: ThicknessAvarage
Input parameters: DO, D2, D4

Output parameter: D6 It is able to jump the referred function

block definition by entering [Shift]+[F]
key when the cursor is in the function

ThicknessAverage

AvetageCalc_Jvalue

=

Perform a programs check before transferring the program.

™= untitled - LX-Programmer - [NewPLL1 NewPFrograml Section] [DNagram]

block instance.
0.00 (BOOL) [BOOL)
I I ERl EMOL
[aa} [REAL) [REAL) D&
EES SCare -

Refer page 2-7 for entering FB instances.

[e ER Yow [met PO Propam Took Mdew Helo

|DEE|h SRt (2 A%E(RR||as8 210 |[RER el ZRET L ua |

- -EfREALJ Entering ST FB instances is the same as
entering FB Ladder instances.
D4 (REAL)
4=

=181 %]
=l8ix]

|a @ Z@EmERGrnew | —osgE Ll k ||Z|lan|vvss WBEEE | RERRSE

= |0

9 NewPraject
= B mewe 5L G-H] Offine
722 Syl
Y 10 Takle
[settngs

F oo
=0 Furrction Bocks.
i Avnragecake ol

0 B 1
[Seclion Marme . Seclion]

D2

na

Thickress Aversge

(Boce)
Gl
(RLAL)
i
(REALY
Y

(REAL)
z

AversgeCa vsue

=]

REAL) [
annre

f Prejct f

x4l Name: |

Lot |

Cornpirg..
[PAC/Pangunes Hame - HesPL 01 MesProgram1]
[Section Name : Sectiont |

[Seciion Nase | END]

NewProgeam! - 0 enon, O wamings.

PLE HewPLC1' [PLE Moded U5 10-H CPUAT |

chech opton vt to Und Ve 3.0,

el] ¥

Fer Help, press L

[HewPLT Lt 0, Node:0) - Offine:

rung 1.(0, 0) - 100%

Refer page 2-9 for program checking.
The functionality is the same as for Function Block Ladder instances.

It is possible to change or add variables in the Function Block after inputting FB instance
into the ladder editor. If modified, the Ladder editor changes the color of the left bus-bar

of the rung containing the changed Function Block.
When this occurs, please select the instance in the Ladder Editor using the mouse

cursor, and select Update Function Block Instance (U) from the pop-up menu.

Online Operation

Transfer Program Monitoring

7. Program Transfer

Go online to the PLC with CX-Simulator and transfer the program.

= Uit - €5 Programeer 1 alzi=l
LA ghe [t e et AL ek 3ot aldl x|

Erogrd
[OEE @8R e o A% 2R [ALES 41 [RAR AR - W/ %S
[soaBrEmEmGrnew —ocstawl x| [G/6m 245t WEEEL [CRERE

= 1 Percgeuen| 3
& (8 W3S SomProgram Mede oecten e Secont]
) Syt
10 Tatde
sactras
]
s %
& ey
= R Fropmme ——
5 Moy] £30 Tppod 1
2 Sywboki ém-
B T R o
L)
 econ s Ty
ey
o~
=5 000000
0 |

lal) _'fd

“‘ﬂ'l’i _’.‘J " Mawea: | WUVA_Q_GIW __ C_‘
Refer to page 2-10 for steps to go online and

. transfer the program.
Change the PLC (Simulator) |

to Monitor mode.
The on/off status of contacts and coils can be monitored.

9= Untitled - CX-Programmer - [Stopped] - NewPLC LNewProgram1.5ectioni [Diagram]]
[Fle Edt Wiew Insert PLC Program Tools Window Help

Click B eeeeeencnnnnns oS o § o AT R ¢ Sio o 0 S0 s I8 § QoD o ale ke D Mo [oln o BB RS e S £

o h
| n [Program Mame : MewProgram?] =

@ CX-Programmer ¥5.0 ll

This command will affect the state of the connected PLC,
Do you wish o continue 7

Click [Yes] *seessscccccccccccccss

= Untited - CX-Programmer - L[Running] - SewPLC] NewProgrem] Section] [Disgram]] alolxl
Je [Yew Dot PIC Bogan Dok Widw beb TS|
D@ |h@n | rwe oz Ak e | aAiEs s RER AR BTER - 2L
JooafiffgEEmcraww) —cpagxlk |[2e¢u|as%c WRIEr | oRREAS
w0 =
=0 Ravbvogt Ll =
= Q:wtcl_c;mummm Iimction Marws - Sactin]]
¥ 10 Tatin Thinastame
Seetian.
sy card Hetvagecaic Sk
e |4 ¢ 5
gm.m
i W Prograns
= wamtomnm o : % o
2 symbots 00000 000000
) sectont e
Boo
1 Furtion Hexks 00000000
B dverageak _Tvaue o
- i]
:

Confirm that the PLC is ..., |
Monitor mode.

| o
0 e Vi | Comrmnd:
For Help, press FI L Send g - [iEms B oo 1100, 8 - 100% [I

:

Transfer Program

D

Online Operation

8. Monitoring the Function Block execution

Monitors the present value of parameters in the FB instance using the Watch Window.

Display the Watch Window.

Aiddress on Voo |

Far Helg, press F1

{

Open the Edit dialog.

g 100,) - 100

x
ENT
PLC [MewPLET =
Mame or address: j| cooece® '(Browse. .. I >
eoseee®® soe® -
O eeo®
Click B but L eeesessee DEETipe /Fomat [BOOL (On/OF, Contact =]
ick Browse... button using i _ _
the mouse left button. s | e | Select REAL(32bit floating point) I
BOOL ~
CHAMMEL
@ DIMNT
DWMDRD
- INT
- Iy
Click the ™| button using the i t&%%
left mouse button, then select Laok in: [HewPLET »
the following: Sumbals of me:
wrabols of ype: |BOOL
UDINT_BCD
[Symbols of type] UNT -

[Name or address] Hame or address: |

Edit Spmibol |

INT_BGD
ULINT

= Svmbal Infarmation

=

ULINT BGD

Select ThicknessAvarage.x

Loak: jn; INewF’LE1

ThicknezsAverage score

Sumbols of type; I REAL

IcknessRyYerage.y

Lef L] Lo

Thicknes&&verage:z

Editt

formation

U

~—

I
PLC: JMewPLEY =

Mame or address: IThicknessAverage.x

Browse.. I

Data Type / Fomat: [REAL [Floating Paint.Double length] [~ |

CI|Ck[OK] button usingthe 0000000000000 0000000ccne

left mouse button.

When monitoring internal variables at debug phase,
collective registration is available in addition to the
individual registration on the Watch Window
through the operation shown here. For the details,

refer “5-8 Batch Registration to Watch Window”.
When the function block is a ladder, conducting

monitoring is available. For the details, refer “5-5
Operation Check- 1”

iy = wane | AUUTESS U vaiue; | o |

:‘:II PLC Mame | Name | Address | Data Type | Format | FE Usage | Value | WaluedBinary) | Commentk ‘
MewPLC1 Thicknessfwerage.x HS13 REAL {(Floating Paint, louble length) Input +0,0000000 Float +0,0000000 Float Input value 1
A[AIEI], shest! [Sheeiz f sheetd | —

Reference: Example of an ST program using IF-THEN-ELSE-END _IF

The following ST program checks the average value calculated by the example of page 4-7 against a range (upper
limit or lower limit).

FB Definition: OutputOfDecisionResult
Input symbols: score(REAL type), setover(REAL type), setunder(REAL type)
Output symbols: OK(BOOL type), overNG(BOOL type), underNG(BOOL type)
ST program:

score > setover (* If score > setover, *)

underNG = ; (* Turn off underNG *)

OK := ; (* Turn off OK *)

overNG := ; (* Turn on overNG *)

score < setunder (* if score =< setover and score < setunder then *)

overNG := ; (* Turn on overNG *)

OK = ; (* Turn off OK *)

underNG := ; (* Turn on underNG *)

(* if setover > score > setunder then*)

underNG = ; (* Turn off underNG *)

overNG := ; (* Turn off overNG *)

OK = ; (* Turn off OK *)

; (* end of IF section™)

Example of an FB instance (the instance name is ‘ThicknessDecision’)

' Cecide the average, thick, proper, or thin
ThicknezsDecision
OutputofDecisionFesult
200,00 (B0 (BOOL)
| | EM EMO
Average calc.
AvErage (REAL) (BOCL) 20.00
-{zcare overhG L Thick decizion
ThickDecisio... |(REAL) (BOCL) 2002
- =etover underfiZ L Thin decision
ThinDecizion... |(REAL) (BOCL) 2001
-{=etuncer OK L Proper decisi...

Chapter S

Advanced

Entering/Deb Creating FB . :]
P[r)og_ram D ugging FB D Definition D En’lc:rlng el MngIl;gglng
esign Definition Library rogram ain Frogram

1. Overview |

This chapter describes how to componentize a user program with an example using function blocks.

2. How to Proceed Program Development

Generally shown below is a workflow to create a user program with componentization in the case of
the application example below. Deliberate consideration is required especially in program design
process.

(1) Program Design
(2) Creating Components
(2-1) Entering FB Component
(2-2) Debugging FB Component
(2-3) Creating FB Component Library (File Save)
(3) Using Components in Application
(3-1) Importing Components
(3-2) Using Components for Program
(3-3) Debugging Program
(4) Start-Up

3. Application Example |

Shown here is a DVD inspection machine as an example for application.
Process can be primarily categorized into inspection, packing, and assortment.

Inspection '.' = ::> ﬂ
o Ok

S

Measuring

DVD thickness Assortment

Advanced

Entering/Deb Creating FB . :]
P[;og_ram D ugging FB D Definition D Engzrlng el MD_e b;gglng
esign et Library rogram ain Program

4. How to Proceed Program Development |

Application can be materialized by using hardware and software (program) through combination
of requirements.

Following sections describe how to proceed program design using an application example
described before.

4-1 Overview of Design Process |

Specifications should be repeatedly — / Spocifeatons
detailed and integrated to divide and Input from Client Specifications
classify them as shown in the right. Detailed
Requirement A/v Specficatons
Specifications "~ ——p» General
for Device Speciications ¢ J Detailed

Specifications
General Detailed
Specifications 4/' Specifications

Detailed
Specifications

10 e >
< inegaing (1]

4-2 Extracting Requirement Specifications |

Shown below are the extracted requirement specifications for this application.

Overview of DVD Inspection Machine (Requirement Specifications)

Reqg. 1. DVD should be inserted from a loader.

Req. 2. Thickness of DVD should be measured at 3 points. Average thickness of measurements
should be calculated. If it is within its threshold range, DVD should be assorted into a
stocker for good products, or a stocker for bad products if not.

Req. 3. Good DVDs should be packed into the case.

Req. 4. Packed DVDs should be packed into the paper box.

Req. 5. Paper boxes should be classified into 2 types. Switching frequency should be counted to
evaluate a life of limit switch adjacent to actuator of selection part.

Req. 6. Other requirements

* To simplify the description, this document focuses on a part of device (underscored).

Advanced

Entering/Deb Creating FB
P[;"g.ram D ugging FB D Definition D E"Itf””g el MDebggg'"g
esign et Library rogram ain Program

4-3 Detailing Specifications and Extracting Similar Processes

By detailing the specifications, there you will find similar processes or ones that can be used universally.

Actuator control (Example of similar process)

In this example, you can regard cylinder control for assortment of good and bad products and actuator
control for paper box assortment as the same. Shown below are extracted requirements for these
processes.

e The process has 2 actuators for bilateral movement which operate under input condition for
each.

e Operation of each direction must be interlocked.

e The process has an input signal to reset its operation.

Average_Threshold Check (Example of universal process)

A process should be extracted that will be used universally even if the process itself is used only once
for this application. In this example, a process is extracted that calculates average of measured 3
thickness data of DVD and checks if it is within the threshold. Shown below are extracted requirements
for this process.

¢ Average of 3 measurements must be calculated.
¢ Average value must be checked if it is within upper and lower limits of the threshold.

These requirements are used as the base for components. Names of components are defined as
“ActuatorContro” FB and “AvgValue_ThresholdCheck” FB.

4-3-1 Creating Specifications for Components

Reuse of components can improve productivity of program development. To make reuse easily available,
it is important to create specifications and insert comments for easier understanding specifications of
input/output or operation without looking into the component.

It is advisable to describe library reference for OMRON FB Library.

Program

Design ugging FB

Entering/Deb

Creating FB
Definition

Entering Main

Program

Debugging

Main Program

Definition

Library

4-3-2 Example of FB Component Creation

“ActuatorControl” FB

It should be described in a ladder sequence because it is a process for sequence control.

[Input Variables]

Mame | Data Tvpe | AT | Initial Value | Retained | Carmment

EM BOOL FALSE Contrals execution of the Function Black,

PosDirInput BOOL FALSE Input for positive direction

MeqDirInput BOOL FALSE Input for neqative direction

L3pos BOoL FALSE Lirmit switch For positive direction

L3neg BOoL FALSE Limit switch For negative direction

[Output Variables]

Marne Data Type | AT | Initial Yalue | Retained | Carmment |
ENO BOOL FALSE Indicates successful execution of the Function Block: ...
ActuatorPosout BOCL FALSE Actuator output For positive direckion

ActuatorMegOut BOCL FALSE Actuator output For negative direction

[Internal Variables]
None.

Line comments for operational
overview and input and output

a Actustar Cantral FB
0 || Summary:

variables allow for easier
understanding.

If Input for positive direction i on, then Sctusor output for positive direction is on until Limit Siwtch for posp Fect
If Input for negative direction is on, then Actusor output for negstive direction iz on until Limit Sivtch for negaive direction.

Irpaut wariskle:
PosDitinput: BOCL
MegDirlnput: BOOL
LSpos: BOOL
LEneg:BOCOL

Output wariable:
ActustorPosOut: BOOL
ActustorMegOut BOOL

Posli)irh?put ActustorPosCut

LEpas
|
.y

1T
ActuatorPosOut
|1

ActustortegOut

1T
1 MeDirlngput LEney
| | | S

& 1 [| L4

Actuatoregout
|

“AvgValue_ThresholdCheck” FB
It should be described in ST because it is a process for numeric calculation and comparison.
[Input Variables]

Tame | pataType | AT | 1ritial value | Retained | Camment |
EM BOOL FaLSE Controls execution of the Function Block.
Inputl REAL 0.0 Input value 1
Inputz REAL 0.0 Input value 2
Input3 REAL 0.0 Input value 3
pLirnit REAL 0.0 Upper limit value
LowLirnit REAL 0.0 Lower limit walue
[Output Variables]
Mame | pataType | At | 1ritial value | Retained | Camment |
EMD Bi2noL FaLSE Indicates successful execution of the Funckion Block. ..
Result Bl FaL3E OF or WG judge flag
[Internal Variables]
WE= | Data Tvpe | AT | Iritial Walus | Retained | Comment
Avgialue REAL 0.0

[* Agarage value calculation and check of threshould for three values *)

Avgalue =1 Input! + Input2 + Input3 1530, (* Divides Input 3 values by 3*)
IF ([Avg¥alue ==UpLimit) AMD (AvgYalue ==LowLimit]) THEM (* Compare the agarage value if below of upper limit or abowve of lower limit *)

Result .= TRLUE;
ELSE
Result .= FALSE,

END_IF;
|

Note: Use general names as long as possible for names of FB and variables in ladder diagram and ST,
instead of specific names for the function at creation.

Entering/Deb Creating FB Entering Main Debugging

Program ugging FB Definition

Design D Library Program Main Program

4-4. Integrating FBs |

Detailed process components are extracted by now. Components for application will be created by
combining them in the following sections.

4-4-1. Combining Existing Components - DVD_ThickSelectControl

Req. 2. “Thickness of DVD should be measured at 3 points. Average thickness of measurements
should be calculated. If it is within its threshold range, DVD should be assorted into a stocker for
good products, or a stocker for bad products if not.” can be regarded as a process that combines
“AvgValue_ThresholdCheck” and “ActuatorControl” investigated in the previous section. “Combining”
these components allows creation of integrated component “DVD_ThickSelectControl” FB. Shown
below is an example of an FB to be created.

[Input Variables]

Mame | Daka Tyvpe | AT | Initial Yalue | Retained | Comment

EM BOCL FaLSE Caontrals execution of the Function Block.
L5right BOCL FaLSE Limit switch For cwlinder right direction

Lsleft BOCL FaLsE Limit switch for cwlinder left direction
Measurel REAL 0.0 Measurement result 1 of DYD thickness {mm)
Measurez REAL 0.0 Measurement result 2 of DYD thickness {mm)
Measure3 REAL 0.0 Measurement result 3 of DYD thickness (mm)
[Output Variables]

Mame Data Type I AT I Initial Yalue I Rekained I Comment

ERO B FALSE Indicates successful execution of the Function Block ...
CvlinderRightion BOCL FaLSE Cukput For sylinder right direction
CylinderLeftOn B0l FaLSE Cukput For sylinder left direction

[Internal Variables]
|icon This FB has its specific name and variable

MName | Data Type | aT | Initial Yalue | Retained) .
WorkMove FB [ActuatarControl] names that include “DVD” or “Cylinder”
D¥DThickJudge FB [Avgialue_ThresholdCheck] because it is specifically created for
Judge BOoL FaL3E application.
_Judge BOOL FALSE
1] The upper limit iz 1 26mm, the loweer limit is 1.14mm. (1. 20mm (+-5%1
1] DD ThickJudge
Avgvalue_ThresholdCheck
EM (BO0L) (BO0L)
| Eri ENO
heazLrel (REALY (BooL) Judoe
~Inpotd Result|-
Messure2 (REALY -
It n
heazures (RE&L) .
—Inputs =
(RE&LY
—|UpLimit
A +1.14 (REALY
. —LovwvLimit
1 Judge ', n® _dudge
2 Il/ll “ P .t p—
2 . it
4 . L » e Botuatorcontrol
EM o o DL (B00L)
|} + Er ENE -
. Juclge (BOOL) (BOOL) CylinclerRighton
. —PosDirlnput ActustorPosCut
“ _duddige (BIooL] (BOOL) CylinderLeftOn mmmm
> hlegDirinpLt sctustorleooit
LSright (ECO0OL)
—LSpos
LEleft (B
LEned
S

A function block can be called from within another function block. This is called “nesting”.
To nest, declare a variable of FUNCTION BLOCK(FB) type as its internal variable to use the
variable name as an instance.

Entering/Deb Creating FB

Entering Main Debugging
Program Main Program

Program

Design ugging FB Definition

Definition Library

4-4-2. Adding Functions to Existing Components - WorkMoveControl_LSONcount |

Req. 5. “Paper boxes should be classified into 2 types. Switching frequency should be counted to
evaluate a life of limit switch adjacent to actuator of selection part.” can be materialized by counting
OFF — ON switching of a limit switch as an input for “ActuatorControl”. This component is called
“WorkMoveControl_LSONcount” FB. Shown below is an example of an FB to be created.

Input Variables]
ame | Data Type I AT | Initial ¥alue | Retained | Comment |
ER BOOL FALSE Controls execution of the Function Block.
RightDirInput BOOL FALSE Condition ko move actuakor to right direction
LeftDirInput BOCL FALSE Condition ko move ackuakor to left direction
L5right BOCL FALSE Limit: switch For acutuator right direction
L3left BOOL FALSE Limit switch For acutuator left direction
Reset BOOL FALSE Resets number of kimes For opening - closing li. ..
[Output Variables
Marne Data Tvpe | aT | Initial Yalue | Retained | Comment |
EMO BOOL FALSE Indicates successhul execution of the Functio, ..
ActuatorRightOn | BOOL FaLSE Cukput For actuator right direction
ActuatorLefton BOOL FALSE Cukput For actuator left direction
LS_OMnumber LINT 0
[Internal Variables]
Mame | Data Type | AT | Initial Yalue | Retained | Comment
PrexCyclels ECoL FALSE
WorkMowe FE [ActuatorContral]

[*Wiork move cortrol and count of number of times apen - close of limit switch *)
[* Created by: machine desvelopment div. Yamada: 10-01-2005 *)

(* Resets number of times opening - closing limit siwtch *)
IF Feset = TRUE THEM

PrevCyclels .= FALSE,
EMD_IF;

[* Callz WorkMove (instance of ActustorContral FB) *)
WorkhloveRightDirinput, LeftDirnput, LSright, Lsleft, ActuatorRightOn, Actustorlefton);

[* Courts number of times opening - closing limit switch *) .
F PrevCycleLs = FALSE and LSright = TRUE THER v

L= _OMnumber = LS_OMnumber+1;
EMD_IF;

PrenCyclel s = LSright; (* Copies LSright to compare st next execution *)

How to call FB (function block) from ST

FB to be called: MyFB Instance of MyFB declared in ST: Mylnstance
I/O variable of FB to be called: I/O variable to be passed to FB in ST:

Input: Input1, Input2 Input: STInput1, STInput2

Qutput: Output1, Output2 OQutput: STOutput1, STOutput2

In this example, calling of FB instance from ST must be described as
Mylnstance(Input1 := STInput1, Input2 := STInput2, Output1 => STOutput1, Output2 => STOutput2);

When all input/output variables are described, description of variables and assignment operators in one to be
called can be omitted.
Mylnstance(STInput1, STInput2, STOutput1, STOutput2);

By describing variables and assignment operators in one to be called, you can describe only a part of
input/output variables.
Mylnstance(Input1 := STInput1, Output2 => STOutput2);

Program

Entering/Deb Creating FB

ugging FB Definition Entering Main Debugging

Design Definition Library

Program Main Program

4-5. Total Program Description |

For components (FB) investigated here to work as a program, a circuit must be created that calls a
component integrated from main ladder program.
* Example here limits to Req.2 and 5.

Global Variables]

Mame | Dakta Type | Address | Yalue | Fack Location | |lzage
ﬁStage.ﬁ._anSelect FE [WorkMoveConkrol_LSOMNcount] i [Auko]
ﬁStageﬂ._D'-.-‘DThickSelect FE [DWD_ThickSeleckConkral] i [Auko]

* Other instance variables than those to use FB are omitted.
m

Staged_DWDThickSelect

D _Thick=electCantral
0.00 (BOOL) = (BOGL)
11 EM H EMO L
1.00 (BOCL) (BOCL)
JLSright = CylinderRighton |-
1.0 (BoqL) = (BooL)
JLSlet © 1 CylincerLetton |-
L]
1] (RESL) 2
HMeazure .
D2 (RESL) =
AMeazure? .
D4 (REAL) =
-Measure3]

l Stages,_BoxSelsct l

WDranveG_orrtrnl_LSONcnurrt
P_On (BOOL) . (BOOL)
| | EM . EMO L
L]
W00 (BOOL) . (BOOL)
JRightDirlngLt . ActustorRighton |
W01 (BOOL) H (BOoL)
JLeftDirlrgt . ActuatorLefton -
L]
3.00 (BOOL) . (LIMT)
JLSrigght . LS _CMnumber -
L]
3.m (BOoL) H
JLSleft H
010 (BOOL) .
JReset .
L]

<
<

Why the instance name is “StageA***”?

Although it is not explicitly described in the application example, a program for newly added stage B
can be created only by describing an instance “StageB***” in the program and setting necessary
parameters, without registering a new function block.

As a feature of Omron’s function block, one FB can have more than one instance. By using operation-
verified FB definition (algorithm), a program can be created only by assigning its address.

Program

Design

[Main Program]

Entering/Deb
ugging FB
Definition

Creating FB
Definition
Library

4-6-1. Total Program Structure

Entering Main

Program

Debugging

This section verifies total program structure including components (function blocks) created here.

Main Program

[] The:Upfoer Imit i 1 Z6mim, e lower Imi i 1.19mm. (1 200 (+-5c%
= IR
DWD_ThickSelectCortrol 8 8 @ M 8 8 = = = &8 Avgvale_ThresholdCheck ¥ o g
o0 0oL EN
1} H = EN&, — EN ENCY o
Measuret (RE&L) (Bo0L|
100 (BO0L) (BOOL) 200 inputt Resull-
Lsright CylinderRightCn - Messure? Rea)
g2
101 (B00L) (BOOL) 201
LSleft CylinderLefton | Measure3 (REAL)
imputs
oo (REAL) +.26 (REAL)
Jieasuret ULimt
+114 ((REAL)
b2 (REAL) —LownLimit
a2 1 sige P — e
D4 (REAL) 2 t
JMeasure3 2 ' WerkMove '
4
EN BOO0L; . BOOL;
— }7%\1 ! . i ENO)f
Staped_BoxSelect Judge BooLy . (gooL)| CyinderRighton
[~PosDirinput ® sctustorPosOut -
_udge BOOL: BOOL: CylinterLefton
PTOIH Jwegnmavpm !muamrgvegouif
| | LSright B0l “
Wo.00 ALY - (BOALY 4.00 LSpos .
RightDirinput w ActustorRightOn | LSleft [ESOOL) .
LSned
W 0L % (BOOL) 401 .
LefiDirinput % Aotustorlefionl
300 (B00L) . (LINT) 1o ‘
Lsright ® LS _ONnmber|
- Actusion Contral FU
30 (BOOL) . 0 Surmary
LSlett [} B g i prisece dirrction & o, thers Actuse outgad ol Ll
010 (500L) % M irus for regative deeceon b on, then P L
1 Reset - gad ikl
. PasDalepud BOOL
. Hegliringu BOXK,
.
. LSnegBOOL
' Cudgnd varinbi:
AbamoePosOut B0,
[*Wark move control snd court of number of times open - close of imit switch ©) mm:m Lineg Lspos AcustorPosOut
(* Created by: machine development div. vamads: 10-01-2005 %) S—— 1k e .
AchaoePoeCut |
[* Resets number of times opening - closing limit siwtch *) 1 | uﬂl_,.,lw LSpas LSneg Actustorisgout
IF Reset = TRUE THEM S — 1t | it —
PrevCyclel s = FALSE, b}
EMD_IF; '
o
*
M-Orrorror=r
wiorkhove(RightDirinput, LeftCiringot, LSright, LSleft, ActuatorRightOn, ActustorLetCn;
[* Courts number of times opening - closing imi switch *)
IF PrevCyclelS = FALSE and LSright = TRUE THEM
LS _OMrnumbet 1= LS_OMnumber+1;
END_IF;
PrevCyclel S = LStight; (* Copies LSright to compare &t nest execution)

Instance names and FB names can be illustrated as follows: (FB name is described in [])

[StageA_DVDThickSelect [

DVD ThickJudge
[DVD_ThickSelectControl]

[AvgValue_ThresholdCheck]

—/

[WorkMove [ActuatorControl]]

' [WorkMove [ActuatorControl]]

In a structured program, especially to change a lower level component (FB), it is important to understand

parent/children relationship and components’ sharing when process flow must be cleared in case of debugging, etc.
It is advisable to create an understandable diagram of total program structure as design documentation.

StageA_BoxSelect
[WorkMoveControl_LSONcount]

CX-Programmer Ver.6.0 provides “FB instance viewer” when [Alt]+[5] key is pressed for easier understanding of
software structure constructed by FBs. Also, address can be checked that is assigned to FB instance.

ﬂ E|ED MNewPLC1 Mame | Data Type | Address | Commenkt ‘
StageA_BoxSelect[WarkMoveCantral_LS0Mcount] EM BooL H513.00 Contrals execution of the Function Black,
A WorkMove[ActuatorControl] Inputl REAL H514 Input value 1
=] Staged_DWDThickSelect[DYD_ThickSelectCantral] Inputz REAL H516 Input value 2

DYCThickJudge[AvgValue_ThresholdCheck]: Inpucs REAL Ha18 Input ‘*|'5|LIE 3|

H LowLimit REAL H3ZZ Lower limit value

- 4IF WorkMove[ActuatorControl
orkiloye]ActuatorControl] UpLimit REAL HE20 Upper limit value

Internals b, Inputs f Dutputs Ji Estemals [

|1« [0

Program
Design

Entering/Deb

Creating FB
Definition
Library

Debugging
Main Program

ugging FB Entering Main

Definition

Program

Move the mouse cursor to a
function block icon {F then
right-click. Select

— Insert Function Block

— Ladder

Now new FB is created.

5. Entering FB Definition |

This section describes how to enter an actually-designed program and debug it.
New project must be created and “ActuatorControl” FB of Page 5-4 must be entered.

5-1. New Project Creation and PLC Model/CPU Type Setting

Refer to page 2-3 and create a new project.
I Select a PC model from the followings to
use function blocks.
CS1G-H, CS1H-H, CJ1G-H, CJ1H-H, CJ1M

CX-Programmer - [NewPLC1.NewProgramL.Section1 [Diagram]]
[Ele Edit ¥ew Insert PLC Program Tooks Window Help

1 Untitled -

Do E®ek 2 2c|lans(sw|asgall iR arECRTE | w|s
aoq [isEwEritrirw | —osEEElk [[Z[(en vt B BEED |
FE@@@:&Q[@PO&NW&

| I
Lo

)

[Pragram Hame : NevProgram1]

-5 NewProject

=0 hewpLC1[CS16H] Offine [Section Name : Section]

@7 10 Table and Unit Setup

------ i[5 Settings
Wemory

- Programs

=] @ NewProgram? (00}
5 Symbols

@ Sectionl

i B END

3} Function Elocks

11 |
|4 Hame: Address or Walue: | Comment: |

|NewPLC 1{Net:0,Made:0) - Offfine [[[ruma 0o, 0y - 100% [[

I\ Proiect /

For Help, press F1 [

NiEe

5-2. Creating Ladder Definition FB

Create Ladder definition FB. '?' B prograns
=R @ MewPrograml (00)
: =)

7 Symbuols
; @ Sectioni
- END

Function Blocks

Insert Function Block

o Cut
Copy
E Paste

Delete

,T Allows Docking
Hide

ructure

Erom File...

Eloat In Main YWindow

‘Prgﬂerties

i I:| L

Entering/Deb Creating FB

Program
Design

Entering Main Debugging

ugging FB B Sllely Program Main Program

Definition Library

5-3. Entering FB Ladder Program |

Change FB definition name.
El% Programs
5 El@ MewPrograml (00)

= Caution:
_____ @ szcuom A user cannot create function block definition name

starting from "_".

The name must start from a character other than " _".

Move the mouse cursor to a
copied function block iCON JTE, eeeesecscssib el
then right-click. Select :
— Rename

Enter [ActuatorControl].

..eese*°| Variables Table

= Untithed
[B fde yow ot MG Brogam [ook wedm i

2 Programmer - [SewPLT]FunctionBlock] [FB Ladder]]

DEFEA (SR sm@ 2c (at%E TR [arsh L ndF(s R
aqQl FEEER|GarHrw | — o BEFEL K _I']:,?feaﬁ'-f Hetw M MEE |
Open FB ladder editor. I BERROS @20 EB 2805 &8 o
it e T v Tt rmv.._'tgm T g
. .
o — .-+ Ladder Input Screen
Move the mouse cursor to a B ! Lot
function block icon ItF, then | XN $ ol
double-click to open the IRTTYTETTRRRR PRRY () it : K
. . .
function block ST editor. E .- !
. H
: .
: .
: .
: .
: .
: .
!]
| |
Fer i, e 1 [e o [[et oo | (e

Select the variables table and register variables in the function block.
All variables of “ActuatorControl” FB of page 5-4 must be registered.

Note: Order of variables must be the same as FB instance order.
To change order of variables, select a variable name then drag and drop it.

Select ladder input screen, then enter a ladder program.
All variables of “ActuatorControl” FB of page 5-4 must be registered.

Note: Although you can enter a circuit in the FB ladder editor similar to the main
ladder editor, entering of address in the FB is invalid.

Note: To enter variable list in a line comment, you can select a variable from
variables table then copy it. You can use it for more efficient input.

Entering/Deb Creating FB

Program
Design

ugging FB Definition Entering Main Debugging

Definition Library

Program Main Program

5-4. Transferring Program

Connect to CX-Simulator online, transfer a program, then set PLC (simulator) to monitor mode.

For how to connect online and transfer a
program, see page 2-10.

% _sample_e3 - Cx-Programmer - [[Running] - NewPLC1.NewProgram1.Section] [Diagram]] =1olx|
[Ele Edt view [nsert PLC Program Took Window Help =181

DEH R SR 20 o c(an% 2R |[asgas | RiR|a2RBERR - w|as|
aaQHEENEREr v | — oo BEEL b ||[E]®em %%t B PEED
RS e

—x ZI
=458 NewProject test
=8 NewPLCL[CS1G-H] Maniter Mode

7Y symbok ActustorControl

10 Table and Unit Setup P_on oo (BooL)

Settings = ENOL

Memory card Aways ON Flag

Error log 0.00 (BOOL) (BOCL) 0.04
() PLC Dock Iposbirinput ActuatorPosOut].
G Memary 0 0
1= Programs 001 (BooL) (BOCL) 00s
| 243 NewProgram1 (00) Running ARlegDirinput ActustorhlegOut |-
i 54 Symbols 0 0

P Sectionl

i Do R
=-{F Function Blocks 0

F ActuztorControl

003 (B00L)
Alsney
0

1

4 (B KN | _'ILI

Project =4 Mame: Address or value: [Commenit: |
For Help, press F1 [|WewPLC1(Simulator) - Monitor Mode | 25ms [svnC [runa 1 (5, 0) - 100% [Iz

5-5. Operation Check-1

Change current parameter value of FB call statement on the main ladder, then check the
operation of “ActuatorControl” FB.
Monitor the instance of ActuatorControl FB first.

e

Move the cursorto FBcall ececececscccoscccses
statement, then double-click
orclick Jrz button.

nonzn

‘Summary:
o I Inpud for positive direction is on, then Actuscr output for pastive direction iz on until Limt Shwich for posiive drection,
1 Ingut Tor negative direction = on, than Actusar outpat for neg: Stwich for negaive drection.
PosDirinput ActuntorPosCut
] | 1 | L4 O—
input for postive . Lima switch for n_, [Limé switch forp..
FB ladder instance (under eecccsccscsccsccscssccsccccs ActustorPosout
condition of address assigned) Actustor outpid 1.
. . 1 NegDirinput LSpos LSnag ActustoriegOut
is monitored. 5|— | { | 1 o—
Input for negative... Limd switch for p.. [Limk switch for ..
ActuatorhegOut
I..—.—
Actustor output 1.,
2

Entering/Deb Creating FB

Program
Design

Entering Main Debugging

ugging FB oy Program Main Program

Definition Library

Display the main ladder and FB instance (FB ladder called by the main ladder) at the same
time, then check the operation while changing current parameter value of FB call statement in
the main ladder.

= _sample_e3 - CX-Programmer =13 x|
fle Edt View Inset PLC Program Tools Window Help

DEE R8s aeo: asnew|zist s baRerE BERE s w as|
aoqigemER[Ernew | —ogagxlk|[Eoa(erss B EPERT |
ERAROE (62 28086

—_— ST [Running] - NewPLC1.NewProgram1.Section [Diagram] =10(x|
=3 NowProject T 1 Coewtowa]
=23 MewPLCL[CS1G-H] Monikor Mode: Zl
-5 Symbols (e (Bo0L) B02L)
; 7] 10 Table and Uit Setup Alvvays O Flag
[Settings
i 000 (B00L) (B00L) 004
B8 ey cart Feasmpa scudoresi]
o
(@) PLE Clock 0 o
< Memary 0 (5ooL) (BOOL: 0os
1% rograms IegDirinput ActustorhleOut |
| B g NewProgramt (00) Running o o
: 53 Symbols 002 (B0CL)
-7 Sectiont =00
: .63 Enp o
& I Function Blacks 003 (Bo0L)
+dIF AdustorControl -=nea
0
; ~
|« | >
=K | Mame: Address or walue: [Comment: [Y
— | - { | 11
Input for positive .. Ainit switch for n... Linit switch for p
it
—
Actustor output 1
1 NegDirinput LSpos LSneg ActustorilegOut
5 f { | 14
Input for negslive... Linit switch for p... Liit switch for n
ActugtorhlegOut
Actustor output |
2
4 T LK | ;l_l
Project %l 4| (ocal Name: [PosDirTnput Address or Value: [HE27 .02 Comment: [Input For positive direction 7
For Help, press F1 [|NewPLE L{Net:0,Node:0) - Monitor Mode: [DEms [svhC [rong 045, 3) - 100% [[

5-6. Operation Check-2 |

Enter following parameter values of FB call statement and check if expected output should be
provided. In this example only (1) is shown, but all combination of conditions must be verified.

(1) Initial State: Turn 0.03 ON. => 0.04 and 0.05 must be OFF. FB instance ladder monitor screen
must be under state that corresponds to the value.

(2) Actuator forward direction operation-1: Turn 0.00 ON => 0.04 must be turned ON. FB instance
ladder monitor screen must be under state that corresponds to the value.

(3) Actuator forward direction operation-2: Turn 0.03 OFF => 0.04 must be ON and 0.05 must be
OFF. FB instance ladder monitor screen must be under state that corresponds to the value.

(4) Actuator forward direction operation-3: Turn 0.02 ON => 0.04 must be OFF and 0.05 must be
OFF. FB instance ladder monitor screen must be under state that corresponds to the value.

AL DI
P_Cn (BOOL) (BOOL)
i BN 000 (BOOL) (BOOL) 0.04
Always ON Flag JPosDirinput ActuatorPosOut -
0.00 (BOOL) (BOOL) 0.04 a a
JPosDirinput ActustarPosOut b
0 0 0.0 (B (BOOL) 0.0s
NegDirinput ActuatorNegOut |-
0 (BOOL) (BOOLY 005 1] [i]
HregDirlnput ActustorMegOut b
a a 00z (BOOL)
JLSpos
00z (BOOL)]
dLSpos
a 003 (B
LSneq
0.03 (BOOL) c)
Move the cursort0 0.03and ceeeecccsss L5neg 4 !
1
press [ENT] key. 4

- T Neme: 1 must be displayed. | =
PosDitingput LSpos

Set New Yalue | | |} 14
Input for positive .. leMn... Limit svwitch for p..
Address ciiatorPosOut
|
1T
Datatype: |EOOL vl Actuator output 1.
_— LSpos LSmeg
- H‘-_ :]
Enter 1 and press [Set] button. — —
... Limit svwitch for g, |Limit switch for n...
0,1 [0CH
(0CH) || ActustorilegOut
T

Program Entering/Deb Creating FB

ugging FB Definition Entering Main Debugging

Design Wi Library Program Main Program

5-7. Entering/Debugging Other FB Definition |

Thus far, entering and debugging for “ActuatorControl” FB are described. Other FB definition
must be entered and debugged as well.

5-8. Batch Registration to Watch Window

For debugging, you can use batch registration of FB instance address to Watch Window instead
of FB ladder monitor.

I [Section Mame : Section1]
,’ ,,,,,,,,,,,,,,,,,,,,,, t eﬁ
: Edts
PI_OIn Go To L4
Alwayé C;N Flag Down To Lower Layer
0.00 (BOOL) % Up To Unper Layer
0 -{PosDirinp Update Funckion Block Invocation
Move the cursor to FB call eeceeQ-QM....{\]ELOO
statement you want to register, 0 |
right-click, then select [Register
in Watch Window] in the menu. 00 _(LBsOp%) Find Bit Addresses
0 Find Addresses
003 [(BOOL) Find Mnemonics
dLSneg
1 it
— Copy
T mame T | adeeme ar i B PastE I

=

zl x
BLC NewPLCT ELC [NewPLLT -
FE Instance: h FB Instance: lh
Select Usage and Data type seseseesessescsdbiores, Internal Usage: TN -
if necessary. Liata Type: Al - Data Type: Al -
Mame | Data Type | Comment |_Name | Data Type | Comment
PosDirl nput BOOL Input for positi
MegDirlnput BOOL Input for nega
LSpos BOOL Limit switch fo
LSneg BOOL Limit gwitch fo

ActuatorPosOut
Actuatort egOut

BOOL Actuatar outpy
BOOL Actuator outpy

1] | i

| | 2
)8 I Cancel | / 9' Cancel
/

Select a name to register,
then press [OK] button.

Entering/Deb
ugging FB
Definition

5-9. Executing Steps using the Simulation Function

Advanced

L)

L)

Setting the simulation function breakpoint and using the Step Execution Function, you can
stop the execution of the program and easily check the processing status during program
execution.

This function can be used with CX-One Ver.1.1 and later (CX-Programmer Ver.6.1, CX-Simulator Ver.1.6

and later)

5-9-1. Explanation of the Simulation Buttons |

The toolbar buttons below are for use with the simulation function. The function of each button
is described here.

EA S

"_u: ﬂl » }I ‘ Simulation Buttons

b

Set/Clear Breakpoint
(F9 key)

Select locations (ladder, ST) where you want to
stop while executing the simulation and a red
mark will be displayed by pressing this button.

Clear All Breakpoints

Delete a breakpoint (red mark) set using the Set
Breakpoint button.

Run(Monitor Mode)
(F8 key)

Execute user program. Run mode becomes
monitor mode.

Stop(Program Mode)

Stop user program execution. Run mode
becomes program mode.

Y = | m | ¥ | st

(=

(Shift+F11 key)

Pause User program execution pauses at the cursor
location.
Step Run Execute one user program step.
(F10 key) In the case of a ladder, one instruction, and in the
case of ST, one line.
Step In Execute one user program step.
H (F11 key) In cases where the cursor location calls the FB
-J: call statement, it transfers to the called FB
instance (ladder or ST).
Step Out Execute one user program step.

In cases where the cursor location is the FB
instance, transfers to the base FB call statement.

¥

Continuous Step Run

Executes user program step, but automatically
executes steps continuously after pausing for a
certain amount of time.

Scan Run

Execute one user program scan (one cycle).

Program EMRITEE R Cirzsiilye 172 Entering Main Debugging

Design ngfll?ﬂlgr? Dl_eifg?g'r?,n Program Main Program

5-9-2. Setting Breakpoint and Executing Steps

Here is an explanation using Simulation Function “WorkMoveControl_LSONcount” FB Debug as
an example.

9= sample_e2 - CX-Programmer i [u] 9]
File Edt WYiew Inssrt PLC Program Tools Window Help

DSBS [FResc|ann2r|aias b LR asRBEEE L w|(as
aoq[EEsER[Grwirn | —opaaEl & |[Elecaaeen|B|REEL
EEEEIEEEEEIE TR

[l w0

BE =T
48 NewProject =S-SR,
=8 MewPLC1[C51G-H] StopiProgram Mads -
= symbals 2 _ Stages BoxSelect
10 Table and Unit Setup 2 WorkMoveCantral_LSONcourt
Settings
[E] Memary card P_On (BOOL) (BOOL)
Ry Errar log — el ENCI
PL Clack. Always ON Flag
G Memoary Wo.00 (B00L) (B00L) 4.00
=88 Programs JRighiDifnput ActustorRight L
= @ NewProgram1 (00) Stopped o on o
S Symbols wWo. (BO0L) (B00L) 40
£ Sectiont JleftDirinput ActustorLeftd [
END o n o
=-JF Function Blocks .00 (BO0L) (LIMT) D10
achuatorContral Lsright LS_ONnumber -
JF Avghalue_Thresholdiheck o oL
DVD_ThickSslectControl am (BOOL)
FF WorkMoveControl_LSOcount Lsleft
o
040 (EOOL)
JReset
o
3
] | _r'
N Project // =4l Name: Address or Walue: | Comment: | 7
For Help, press F1 [[[MewPLCi{Simulator) - Stop/Pragram Mode [[5¥nc [rung 00, 2) - 100% [7

Change from run mode to monitor mode.
Display “WorkMoveControl_LSONcount” FB instance.

StageA_E. xSelect

Move the cursor inside the FB 4seelfececcssscsseessssb@ilagont ol Lo

call statement and double-click P_On (B8 (BooL)
the mouse or click the ., Blways ON Flag
o
w000 BOOL BOOL; 4.00
button. _I(?lghtDlalnput Aduam(rR\ghtJ _
i] On 0
¥W0.01 (BOOL) (BOOLY 4.0
LettDirlnput ActustorLefto L
0 n 0
3.00 (BCOL) CLINTY 010
L Sright LS_OMnmbet |-
1} oL
30 (BOOL)
JLSleft
a
010 (BOOL)
Reset
a

(* Created by: machine development div. ¥amada: 10-01-2005

T CL1.5tagen_BoxSelect[WorkMoveControl_LSONcount][FB Instance] o |EI|£|
*Work move control snd count of number of times open - close

(* Resets number of times opening - closing limit siwtch *)

IF Re=set = TRUE THEN Reset =10
PrevCyclels .= FALSE; PrevCyclels =0
END_IF;

The present values of the

variables corresponding to the i Calls WorkMave instance of ActustorCortrol FB) #)
. . workhove(RightDirinput, LeftDirinput, LSright, LSleft, SctustorRi RightDitinput = 0, LeftDirinput = 0, LSright = 0, LSleft =0, Ac
program are monitored in FB ST

(* Counts number of times opening - closing limit switch =)

Instance (with assigned address). IF PrevCycleLS = FALSE and LSright = TRUE THEN PrevCycleLS = 0, LSright = 0
LS_ONnumber = LS_OMnumber+1; LS_OMnumber =0,L
END_IF;

PrewCyclel S = LSright; (* Copies LSright to compare at next ex PrewCycleLs =0, LSright = 0

—~— —~—
ST Program Variables and present values

Advanced
Entering/Deb Creating FB 7 : !
PE;og_ram D ugging FB D Definition D En’lcjerlng Al Mng;gglng
esign STt Library rogram ain Program

Set the current value in the FB call statement parameter and confirm execution condition.
Set the following cases:
RightDirlnput: ON
LeftDirlnput: OFF
LSright: OFF
LSleft: ON
Reset: OFF
In this case, the following outputs are expected:
ActuatorRightOn: ON
ActuatorLeftOn: OFF
LS_ONnumber: 1

Move the cursor to the FB
call statement left input and eeeedfee r on
click the '{:qll button. Alwvarys OM Flag

—
—

The programs stops at the breakpoint.

Click the | button.

& P_On

Alweays OM Flag

Perform breakpoint input contact. It stops at the following step of FB call statement.

=

Program
Design

{

Press [«] [+

—_

{

m
z
5

L

ENT

{

(%)
<«
<«

Pres

-

Click the PJ_]: button.

Position of ST Monitor execution (

[+]

<«

Entering/Deb
ugging FB
Definition

Creating FB
Definition
Library

Entering Main
Program

Debugging
Main Program

Turn input parameter “RightDirlnput” and “LSleft” ON in the FB call statement.

Staged,_BoxSelect
WorkMoveCortrol_L SONcourt
P On (BOOL) (BOOL)
I I EM ERCy
Alveays Ol Flag
Wi 00 (BOOL) (BoOL) 400
RightDirlngLt ActustorRight
1 On 0
Wi 01 (B0 (BOOL) 401
LeftDirlrpt ActustorLeftO
u] n u]
300 (BOOL) (LINTY oo
L Srigghit LE_OMnumber
0 oL
30 (BOOL)
Lsleft
u]
040 (BOOL)
Reset
u]
Staned BoxSelect
WinrkhloveControl_LSOMcount
P_On [BOOL) (BOOL)
{ | Er ERC
Az OM Flag
Wi 00 (BO0L) (BICOL] 400
Riiggrt DirIrigaet ActustorRight
on i}
Wil 0 (BO0L) (BICOL] 40
LeftDirlnpt ActuatorLeftO
1] m 1}
300 (BO0L) (LINTY oo
L Sright LS _Ohnumber
1] oL
epirsee e
F 3m s BooL)
E [Sleft
[ik (BOOL)
Rezet
1]

[NewPLC1.5tageA_BoxSelect[WorkMoveControl_LSONcount][FE Instance]

(*'Work move control and count of number of times open - close
(* Crested by: machine development div. Yamads: 10-01-2005

Resets number of times opening - closing limf stwtch =)
B> I§Reset = TRLUE THEN
PrexCyclels (= FALSE;

END_IF,;

(* Calls Workhove linstance of ActustorControl FB) *1
wWorkhove(RightDirinput, LeftDirinput, LStight, LSleft, ActustarRi

(* Count=s number of times opening - closing limit switch *)
IF PrevCyclel s = FALSE and LSright = TRUE THERM
LS _OmMnumber := LS_CMnumber+1;
END_IF;
PrevCyclel S := LSright; * Copie=s LSright to compare st next ex

< | 2 | 7|

Advanced

The necessary input parameters were set.

=10l x|

Reset =0
PresCyclelS =0

RightDitinput = 1, LeftDitinput =0 LSright =0, LSleft=1 |, Ac

PresCyclelS =0, LSright =0

LS_OMnumber =0 L

PrevCyclelS =0, LSright = 0

The cursor moves to the first line position of the called ST program.

Entering/Deb Creating FB

Program ugging FB Definition Entering Main Debugging

Design Definition Library

Program Main Program

{

warkhovel RightDitinput, LeftDivinput, LSright, LSleft, ActustarRi wt =0, LSright =1 | LSleft = 0, ActustarRightOn =1 | Actusto

, Transitions from the ST program to the called FB ladder
program.

|="> (* Call= WorkhMove (instance of ActustorControl FB) *)

Click the !u; button two times.

[# NewPLC1.Stagea_BoxSelect. WorkMove[ActuatorControl][FB Instance] — IEllil
ActuatoriegOut OBCOL ZI
(7 mlg'fofési/rzlfnf;ﬁ/m? LEneq LSpos ActuatorPosm
E : I}]
5 ” 1T I
ZInput for posti... Limit switch fo... Limit sedteh fo..
b i

EichiatorFasoit
] |
1 T
Actustor outp..

1 MegDirlnput LEpos LEney ActustorMegOut
] | | | |

1 T L] I
Input for negat... Limit switch fo... Limit switch fo...

\ ActustortegOut
] |

_/

1 T
Confirm the input conditions are correct from the ST program

=] z

to the called parameter.
3
[«] | 3|

il;” Local Mame: |PosDirInpuk Address or Yalue: |HS26.02 Commenk: |In|3ut for positive direction o

¥ NewPLC1.Stage, oxSele 'orkMove[Actuato trolJ[FB Instance] — |EI|£|
Click the M button five times. I ARV ONEED ZI
PozDirlngut LSneg LSpos ActustorPosOut
| | | | Il/‘
T T T T
Input for positi... Limit switch fo... [Limit switch fo..
ActuatorPosOut o°
| | .
11
Actustor outp... .0..
1 gmfr':lze{éb(i{riﬁgﬁmzé LSposz LEneg .o. ActuatariegOut
3 2—| I IL/‘I +*
“Input for negat... ALimit svwitch fo.. |Limit switch fo. . o°
E : a
Ej Kb iaou” .
{ Confirm the expected output “ActuatorPosOut”
Actustor outp...
value.
2
3
[| _’|_I
24 Local Mame: MegDirInput Address or Value; H526.03 Comment: [Input For negative direction v
Click the M button. , Confirmation has been completed.
Return to the calling ST program.

(* Calls Workhove (instance of ActustorCortrol FE) *)
wyorkMove(RightDitinpot, LeftDirinput, LSright, LSleft, ActustarRi

wit =0 LSright =1, LSleft =0, Aduatorﬁigm@duatn

Confirm the previous circuit processing result is correctly reflected in the calling ST
Ej program monitor screen.

=

Debugging

Creating FB Entering Main
Main Program

Entering/Deb
Definition
Program

Program ugging FB
Library

Design Definition

3 WiorkMoveCont: .
1 Transfer to the calling ladder program.
#® FP_On
. | |
Click the ﬂl button. g e
Wi0.00 4.00
1 1
W01 4.01
a 0
3.00 o
1 oL
3.01 :
.
. .
010 .
.
D L
.
.

Confirm the output parameter is reflected correctly.

Hint |
ST program change parameter current value can be performed with the following operation.

- LN ANANANA Fleat |nput] = +0.0000
, UpLimit = +0.000

Avgvalug = (Input! + Input2 + Input3 3 4 3.0; ¢ Div | S
IF ([&vgvalie ==UnLimit) AM0D (Avgh alue ==Lowlimit)) THEM [* Ao Copy
Resu

Result = TRUE;
Force

ELZE

-

Select the parameter you want to change
- with the mouse cursor and click the right
mouse button and select Set = Value

i
Address: |H524 Set I

j Cancel |

[rata type: I RE&L

Walue: |1 2344

34028232+ 38 to 1.1 7549538,
0
+1.175495e-38 to +3.402823e+38 [2CH]

, Set value and click the [Set] button.

Avgialue = Input! + Input2 + Input3) £ 3.0, * Diw
IF ([AvgWalue ==UpLimit) AMD (Avgvalue ==LoweLimit)) THEN (*
Re=zult := TRLE;
ELSE
Resutt =0

Result .= FALSE;
EMD_IF;

Entering/Deb Creating FB

Program Entering Main Debugging

Design ugging FB Definition

Definition Library

Program Main Program

6. Creating FB Definition Library |

To reuse operation-verified FB definition, it must be incorporated into library (file).
Check the hierarchy using project workspace and FB instance viewer, then determine the FB
definition you want to incorporate into library. In this case, it is “DVD_ThickSelectControl” FB.

E--% MewProject
R NewPLCI[C515-H] Offline
= Svmbols
O Table and Unit Setup
Settings
@ Memory
EI% Programs
-4} MewProgram1 (00) (-5 Symbols
= Symbols -5 sectiont
B D
E|§:F Function Blocks
JF actuatorControl
{5F Awgialue_ThreshaldCheck.
th
.E WorkMoveContral L5 OPER

e
=-LF Function Blocks
ActuatorControl

oo ®
eeec®?® pe° Sawe Function Block ko File. ..
Select TV ame =
“* H ” . il
DVD_ThickSelectControl” FB, veeseseete’ * & comple
right-click and select [Save se¢***1° ot RungStes
Function Block to File] from -
the context menu.
1
I Save jn. | 3 FBL =l « ® eF EE-
Project / =
amronlib
X[58 MewPLCL [#IFBLD. o
E - FBST.cxf

EEEF Stages_BoxSelect[WorkMoveControl_LSOMcount] | st
V. P
Stages_DVDThickSelect[DYD_ThickSeleckControl]
-JEF C¥DThickJudge[Avgvalue_ThresholdCheck]
-JLF WaorkMove[ActuatorContral]

Function Blackl.cxf

Select [Save].

File name:

A
WO Thi o Save
Save as lype IFunct\on Elock Library Files(*.cxf) ﬂ ElreE

Default folder for saving is C:\Program Files\Omron\ CX-One \FBL.

It can be changed by CX-Programmer option setting “FB library storage folder”.
OMRON FB Library is under omronlib folder.

Create a folder so that you should be able to classify it easily, such as Userlib\ DVD.

CX-Programmer ¥5.1 x|
The following Function block{s) used by 'DVD_ThickSelectContral' have been also saved to
'DYD_ThickSelectControl, cxf,

- ActuatorContral
- Avgvalue_ThresholdCheck

When saving FB definition that calls another FB, both FB definition are saved.
When retrieving a project, calling-called relationship is maintained as saved.
It is easier to manage FB definition because saved FB definition is integrated.

Entering/Deb Creating FB

Program : < Entering Main Debugging
. ugging FB Definition)
Design Dggfinsi;tion Library Program Main Program

7. Entering Main Program |

Add the main program to a project file that contains debugged FB definition. Program to be
entered is one that is described in 4-5. Total Program Description in page 5-7.

[Global Variables]

Mame | Daka Type | Address | Yalue | Rack Location |
ﬂf Stages_BoxSelect FEB ['wWorkMoveZontrol_LSOMoount] rfA [Auato]
ﬂf Staged_DYDThickSelect FE [DWD_ThickSeleckConkral] A [Auko]

* Other instance variables than those to use FB are omitted.

-
Staged _DWDThickSelect
DYD_ThickSelectCortral

0.00 (BO0L) (BOOL)
| EM EMC
1.00 [B3L) [BOL) 2.00
JL Sright CylinderRightOn |-
1.01 (B (B 2.
JLSleft CylinderLeftOn |
Do (RE&L)
H{Measzure
D2 (RE&L)
JMeazure?
D4 (RE&L)
JMeazures

Staged _BoxSelect
WiorkMoveCantrol_LSO0MNcount

P_On (BCDL) [BOOL)
| EM ENO |-
Wo.oo (B (B 4.00
JRightDirlnput ActuatorRightOn L
WO (BN (B 4.01
JLettDirlnput ActustorLettOn |-
3.00 (BNOL) (LIMT 10
JL Sright LS _Ohnumber -
3.0 (B
JLSleft
010 (BN
JRezet

For how to enter a program, refer to pages from 2-6 to 2-9.

Entering/Deb Creating FB . . :
PE;ogram ugging FB Definition EnItDenng e MD_eb;gglng
esign Definition Library rogram G FRIENT

8. Debugging Main Program

Main program must be debugged considering followings:
e Program areas that are irrelevant to FB
¢ Program areas that are relevant to an input parameter to FB
e Program areas that refer to an output parameter from FB
Main program in this example has no such area, thus explanation is omitted.

Supplemental Information

How to delete unused Function Block definitions

When you delete unused Function Block definitions, it is not enough just to delete the Function Block call statement.

This is because the Function Block instance definitions are registered in the global symbol table.

At this situation, when the compile (program check) is done, then the unused function block instances will be shown on the
output window. You can identify the unused function block instance definitions and delete them easily.

The Function Block definitions and Function Block instances are a part of user program in the CPU unit even if they are not
called, so it is recommended to delete unused Function Block definitions and instances before transferring the program to
the CPU unit.

Execute Compile key

Result of Compilation

==l | mame Data Type | Address | Yalug | Rack Location | Usage I Comment
8 ‘% PMewProject =1 I A § BOOL CFO07 tork Less Than (LT) Flag
=B HewPLC1[C516-H] Offline = P_Max_Cyde_Time UDINT A262 Work | Maximum Cycle Tims
554 Symbols Y BOOL CFO0B work | Negative (M) Flag
10 Table P_IE BOOL cFon1 wwork | Hlot Equals (NE) Flag
:ﬁz?; POF BOOL cFoog Work Overflow (OF) Flag
5 % Progroms * P_OFF BOCL CF114 Work Always OFF Flag
" 5 symbols * P_Output_OF_Bit BOOL A500.15 o
- Section * P_Step BOCL AZ00.12 won
- e | ||| BocL Wor & Are you sure you wank to delete symbol aaaa?
=-IF Function Blacks
AiF FunctionBlockl LI
' Project /

2
I7]

C/Pragram Name : NewPLCT/NewPragram1]

[3ection Hame - Sectioni] Click mouse left button
[Section Name : END]
[PLC#Pragram Mame : MewPLC1 /FunctionBlackl)

MewPLCT - 0 erars, 1 warking.
The programs have been checked with the program check option set to Urit Ver 3.0

Function Block definition will be deleted. I

Memory allocation for Function Blocks |

It is necessary to allocate required memory for each function block instances to execute Function Blocks.
CX-Programmer allocates the memory automatically based on the following setting dialog information.

(PLC menu — Function Block Memory — Function Block Memory Allocation)

There are 4 types of areas, ‘Not retain’, ‘Retain’, ‘Timers’, and ‘Counters’. Please change the settings if requires.

® Notice when changing the settings
If you change the ‘Not retain’ or ‘Retain’ area, please consider the allocated memory areas for the special 10 unit
and CPU SIO unit.

® Special memory area for the Function Blocks
CS1/CJ1-H/CJ1M CPUs (unit version: 3.0 or higher) have a special memory area which is extended hold (H)
relay area.
The address of the area is from H512 to H1535. CX-Programmer sets the area as a default.
Please note that the area cannot be used for the operands of ladder command.

Function Block Memory Allocation [NewPLC1]

FB Inztance Area | Start Address | End Address | Size ak.
Maon Fetain 836

Retain H1409 H1535 125 Cancel
Timers T3072 T4095 1024 Edit
Counters C3o72 C4095 1024

Drefault

Advanced...

Fleplel

Useful Functions

Command Operand Input Automatic Search and List Display

It is possible to automatically display a list of symbol names or IO comments when entering the operands of commands.
When entering the operand for contact or output (or special instructions), enter a string, and the dropdown list is
automatically updated to display in symbol names or IO Comments using the defined string. Selecting the item from the
list defines the operand information.

This is an efficient way of entering registered symbol information into the ladder.

Example: Enter text “Temperature” to the edit field in the operand dialog.
-] |- Mew Contack El
I j Detal »» | Cancel

Click ;I or push [F4] key; all symbols / address having IO comment containing the text
‘temperature are listed. See below:-

x
: ~| et [oK | cancel |

alarmil, “0.00, Temperature eror of the waork, suface [over 50 degrees C)
alarmiz, “W0.01, Temperature eror of the heating plate [over 150 degrees C]
temp_alarm01, w1.00, Temperature error of top of the equipment A [over 800 d
temp_alarmlz, *1.01, Temperature ermor of bothom of the equipment A [over 70

For instance, select ‘temp_alarm01, W1.00, Temperature error of upper case of MachineA’, from the list.
The operand is set to be using symbol ‘alarm01°’.

x
. j Detall »» | Cancel

FB Protect Function |

Preventative measures can be implemented by setting the password in the function block definition allocated on project file,
protection corresponding to the use, program know-how leaks, improper changes, and alterations.

@ Prohibit writing and display
By setting the protection classification “Prohibit writing and display,” the corresponding function block definition contents

cannot be displayed. By setting the password protection on the function block definition, program know-how leaks can be
prevented.

@ Prohibit writing only

By setting the protection classification “Prohibit writing only,” the corresponding function block definition contents cannot be

written or changed. By setting the password protection on the function block definition, improper program changes or
modifications can be prevented.

Function Block Protection Setting x|
Function Block Properties |
<u| Geneal Protection I [—— | Memory | Input a password after selecting a protection type.
g secton e on Type:
L& EnD == & Eootiti i - _—
; v fllow Docking Frohibit witing and display Frohibit witing only
=4 F Function, Blocks 2 i Pratection Status: ERCE
ActuatorControl Hice: 2
1 fwgialue_Threshaldc ! [No pratection
Float In Main Window
WD Thic e Felease Password
e WorkMoveControl_Ls:
Password [confimation):
Set Cancel

Appendix. Examples of ST (Structured Text)

IF Statement Examples

IF expression1 THEN statement-list1

[ELSIF expression2 THEN statement-list2]
[ELSE statement-list3]

END_IF;

The expression1 and expression2 expressions must each evaluate to a boolean value. The statement-list is a list of
several simple statements e.g. a:=a+1; b:=3+c; etc.

The IF keyword executes statement-list1 if expression1 is true; if ELSIF is present and expression1 is false and
expression?2 is true, it executes statement-list2; if ELSE is present and expression1 or expression? is false, it
executes statement-list3. After executing statement-list1, statement-list2 or statement-list3, control passes to the
next statement after the END_IF.

There can be several ELSIF statements within an IF Statement, but only one ELSE statement.
IF statements can be nested within other IF statements (Refer to example 5).

Example 1
IFa>0THEN In this example, if the variable "a" is greater than zero, then the
b =0 variable "b" will be assigned the value of zero.
END IF; If "a" is not greater than zero, then no action will be performed
- upon the variable "b", and control will pass to the program steps
following the END_IF clause.
Example 2 In this example, if the variable "a" is true, then the variable "b" will
IE a THEN be assigned the value of zero.
b:=0; If "a" is false, then no action will be performed upon the variable
END IF: "b", and control will pass to the program steps following the
_IFs END_IF clause.
Example 3 In this example, if the variable "a" is greater than zero, then the
variable "b" will be assigned the value of true (1), and control will
IFa>0THEN be passed to the program steps following the END_IF clause.

b == TRUE; If "a" is not greater than zero, then no action is performed upon
ELSE the variable "b" and control is passed to the statement following
b := FALSE; the ELSE clause, and "b" will be assigned the value of false (0).
END_IF; Control is then passed to the program steps following the END_IF

clause.
Example 4 In this example, if the variable "a" is less than 10, then the
IF a <10 THEN variable "b" will be assigned the value of true (1), and the variable
b = TRUE: "c" will be assigned the value of 100. Control is then passed to the
= ’ program steps following the END_IF clause.
¢ = 100; If the variable "a" is equal to or greater than 10 then control is
ELSIF a > 20 THEN passed to the ELSE_IF clause, and if the variable "a" is greater
b := TRUE; than 20, variable "b" will be assigned the value of true (1), and the
¢ := 200 variable "c" will be assigned the value of 200. Control is then
ELéE ’ passed to the program steps following the END_IF clause.
b = FALSE: If the variable "a" is between the values of 10 and 20 (i.e. both of
" ’ the previous conditions IF and ELSE_IF were false) then control is
¢ :=300; passed to the ELSE clause, and the variable "b" will be assigned
END_IF; the value of false (0), and the variable "c" will be assigned the

value of 300. Control is then passed to the program steps
following the END_IF clause.

IF Statement Examples

Example 5
IF a THEN
b := TRUE;
ELSE
IF ¢c>0 THEN
d:=0;
ELSE
d :=100;
END_IF;
d :=400;
END_IF;

WHILE Statement Examples

WHILE expression DO
statement-list,
END_WHILE;

The WHILE expression must evaluate to a boolean value. The statement-list is a list of several simple statements.
The WHILE keyword repeatedly executes the statement-list while the expression is true. When the expression

In this example (an example of a nested IF .. THEN
statement), if the variable "a" is true (1), then the variable "b"
will be assigned the value of true (1), and control will be
passed to the program steps following the associated
END_IF clause.

If "a" is false (0), then no action is performed upon the
variable "b" and control is passed to the statement following
the ELSE clause (in this example, another IF .. THEN
statement, which is executed as described in Example 3,
although it should be noted that any of the supported
IEC61131-3 statements may be used).

After the described IF .. THEN statement is executed, the
variable "d" will be assigned the value of 400.

Control is then passed to the program steps following the
END_IF clause.

becomes false, control passes to the next statement after the END_WHILE.

Example 1

WHILE a <10 DO
a=a+1,;
b:=b*2.0;

END_WHILE;

Example 2
WHILE a DO
b:=b+1;
IFb>10 THEN
a:= FALSE;
END_IF;
END_WHILE;

Example 3

WHILE (a + 1) >= (b *2) DO
a=a+1;
b:=b/c;

END_WHILE;

In this example, the WHILE expression will be evaluated and
if true (i.e. variable "a" is less than 10) then the statement-list
(a:=a+1; and b:=b*2.0;) will be executed. After execution of
the statement-list, control will pass back to the start of the
WHILE expression. This process is repeated while variable
"a" is less than 10. When the variable "a" is greater than or
equal to 10, then the statement-list will not be executed and
control will pass to the program steps following the
END_WHILE clause.

In this example, the WHILE expression will be evaluated and
if true (i.e. variable "a" is true), then the statement-list (b:=b+1;
and the IF .. THEN statement) will be executed. After
execution of the statement-list, control will pass back to the
start of the WHILE expression. This process is repeated while
variable "a" is true. When variable "a" is false, the statement-
list will not be executed and control will pass to the program

steps following the END_WHILE clause.

In this example, the WHILE expression will be evaluated and
if true (i.e. variable "a" plus 1 is greater than or equal to
variable "b" multiplied by 2) then the statement-list (a:=a+1;
and b:=b/c;) will be executed. After execution of the
statement-list, control will pass back to the start of the WHILE
expression. This process is repeated while the WHILE
expression equates to true. When the WHILE expression is
false, then the statement-list will not be executed and control
will pass to the program steps following the END_WHILE
clause.

WHILE Statement Examples

Example 4

WHILE (a - b) <= (b + c) DO
a=a+1,;
b:=b*a;

END_WHILE;

REPEAT Statement Examples

REPEAT
statement-list;
UNTIL expression

END_REPEAT;

In this example, the WHILE expression will be evaluated and if
true (i.e. variable "a" minus variable "b" is less than or equal to
variable "b" plus variable "c") then the statement-list (a:=a+1; and
b:=b*a;) will be executed. After execution of the statement-list,
control will pass back to the start of the WHILE expression. This
process is repeated while the WHILE expression is true. When
the WHILE expression is false, then the statement-list will not be
executed and control will pass to the program steps following the
END_WHILE clause.

The REPEAT expression must evaluate to a boolean value. The statement-list is a list of several simple statements.

The REPEAT keyword repeatedly executes the statement-list while the expression is false. When the expression
becomes true, control passes to the next statement after END_REPEAT.

Example 1
REPEAT
a:=a+1;
b:=b*2.0;
UNTILa> 10
END_REPEAT;

Example 2
REPEAT
b:=b+1;
IFb>10 THEN
a:= FALSE;
END_IF;
UNTIL a
END_REPEAT;

Example 3
REPEAT
a=a+1;
b:=b/c;
UNTIL (a+ 1) >= (b * 2)
END_REPEAT;

Example 4
REPEAT
a:=a+1;
b:=b*a;
UNTIL (a-b)<=(b +cC)
END_REPEAT;

In this example, the statement-list (a:=a+1; and b:=b*2.0;) will be
executed. After execution of the statement-list the UNTIL expression
is evaluated and if false (i.e. variable "a" is less than or equal to 10),
then control will pass back to the start of the REPEAT expression and
the statement-list will be executed again. This process is repeated
while the UNTIL expression equates to false. When the UNTIL
expression equates to true (i.e. variable "a" is greater than 10) then
control will pass to the program steps following the END_REPEAT
clause.

In this example, the statement-list (b:=b+1; and the IF .. THEN
statement) will be executed. After execution of the statement-list the
UNTIL expression is evaluated and if false (i.e. variable "a" is false),
then control will pass back to the start of the REPEAT expression and
the statement-list will be executed again. This process is repeated
while the UNTIL expression equates to false. When the UNTIL
expression equates to true (i.e. variable "a" is true) then control will
pass to the program steps following the END_REPEAT clause.

In this example, the statement-list (a:=a+1; and b:=b/c;) will be
executed. After execution of the statement-list the UNTIL expression
is evaluated and if false (i.e. variable "a" plus 1 is less than variable
"b" multiplied by 2) then control will pass back to the start of the
REPEAT expression and the statement-list will be executed again.
This process is repeated while the UNTIL expression equates to false.
When the UNTIL expression equates to true (i.e. variable "a" plus 1 is
greater than or equal to variable "b" multiplied by 2) then control will
pass to the program steps following the END_REPEAT clause.

In this example, the statement-list (a:=a+1; and b:=b*a;) will be
executed. After execution of the statement-list the UNTIL expression
is evaluated and if false (i.e. variable "a" minus variable "b" is greater
than variable "b" plus variable "c"), then control will pass back to the
start of the REPEAT expression and the statement-list will be
executed again. This process is repeated while the UNTIL expression
equates to false. When the UNTIL expression equates to true (i.e.
variable "a" minus variable "b" is less than or equal to variable "b" plus
variable "c") then control will pass to the program steps following the
END_REPEAT clause.

FOR Statement Examples

FOR control variable := integer expression1 TO integer expression2 [BY integer expression3] DO
statement-list;
END_FOR;

The FOR control variable must be of an integer variable type. The FOR integer expressions must evaluate to the
same integer variable type as the control variable. The statement-list is a list of several simple statements.

The FOR keyword repeatedly executes the statement-list while the control variable is within the range of integer
expression1 to integer expression2. If the BY is present then the control variable will be incremented by integer
expression3 otherwise by default it is incremented by one. The control variable is incremented after every executed
call of the statement-list. When the control variable is no longer in the range integer expression1 to integer
expression2, control passes to the next statement after the END_FOR.

FOR statements can be nested within other FOR statements.

Example 1

FORa:=1TO 10 DO
b:=b+a;

END_FOR;

Example 2

FORa:=1TO10BY 2DO
b:=b+a;

In this example, the FOR expression will initially be evaluated and
variable "a" will be initialized with the value 1. The value of
variable "a" will then be compared with the 'TO' value of the FOR
statement and if it is less than or equal to 10 then the statement-
list (i.e. b:=b+a;) will be executed. Variable "a" will then be
incremented by 1 and control will pass back to the start of the
FOR statement. Variable "a" will again be compared with the 'TO'
value and if it is less than or equal to 10 then the statement-list
will be executed again. This process is repeated until the value of
variable "a" is greater than 10, and then control will pass to the
program steps following the END_FOR clause.

In this example, the FOR expression will initially be evaluated and
variable "a" will be initialized with the value 1. The value of
variable "a" will then be compared with the 'TO' value of the FOR
statement and if it is less than or equal to 10 then the statement-
list (i.e. b:=b+a; and c:=c+1.0;) will be executed. Variable "a" will

c=c+10; then be incremented by 2 and control will pass back to the start of
END_FOR; the FOR statement. Variable "a" will again be compared with the
'TO' value and if it is less than or equal to 10 then the statement-
list will be executed again. This process is repeated until the value
of variable "a" is greater than 10, and then control will pass to the
program steps following the END_FOR clause.
Example 3
_ In this example, the FOR expression will initially be evaluated and
FORa:=10TO1BY-1DO variable "a" will be initialized with the value 10. The value of
b:=b+a; variable "a" will then be compared with the 'TO' value of the FOR
c=c+1.0: statement and if it is greater than or equal to 1 then the statement-
o list (i.e. b:=b+a; and c:=c+1.0;) will be executed. Variable "a" will
END_FOR; then be decremented by 1 and control will pass back to the start
of the FOR statement. Variable "a" will again be compared with
the 'TO' value and if it is greater than or equal to 1 then the
statement-list will be executed again. This process is repeated
until the value of variable "a" is less than 1, and then control will
pass to the program steps following the END_FOR clause.
Example 4
FORa:=b+1TOc+2DO In this example, the FOR expression will initially be evaluated and
di=d+a variable "a" will be initialized with the value of variable "b" plus 1.
) ’ The 'TO' value of the FOR statement will be evaluated to the
e=e+1; value of variable "c" plus 2. The value of variable "a" will then be
END FOR; compared with the 'TO' value and if it is less than or equal to it

then the statement-list (i.e. d:=d+a; and e:=e+1;) will be executed.
Variable "a" will then be incremented by 1 and control will pass
back to the start of the FOR statement. Variable "a" will again be
compared with the 'TO' value and if it is less than or equal to it
then the statement-list will be executed again. This process is
repeated until the value of variable "a" is greater than the 'TO'
value, and then control will pass to the program steps following
the END_FOR clause.

FOR Statement Examples

Example 5 In this example, the FOR expression will initially be evaluated and variable "a"
FORa:=b+cTOd-eBYfDO Wil be initialized with the value of variable "b" plus variable "c". The 'TO' value
of the FOR statement will be evaluated to the value of variable "d" minus

g:=g+a variable "e". The value of variable "a" will then be compared with the 'TO' value.
h:=h+1.0; If the value of variable "f" is positive and the value of variable "a" is less than or
END FOR: equal to the 'TO' value then the statement-list (i.e. g:=g+a; and h:=h+1.0;) will

be executed. If the value variable "f" is negative and the value of variable "a" is
greater than or equal to the 'TO' value then the statement-list (i.e. g:=g+a; and
h:=h+1.0;) will also be executed. Variable "a" will then be incremented or
decremented by the value of variable "f" and control will pass back to the start
of the FOR statement. Variable "a" will again be compared with the 'TO' value
and the statement-list executed if appropriate (as described above).

This process is repeated until the value of variable "a" is greater than the 'TO’
value (if the value of variable "f" is positive) or until the value of variable "a" is
less than the 'TO' value (if the value of variable " is negative), and then
control will pass to the program steps following the END_FOR clause.

CASE Statement Examples

CASE expression OF

case label1 [, case label2] [.. case label3] : statement-list1;
[ELSE

statement-list2]
END_CASE;

The CASE expression must evaluate to an integer value. The statement-list is a list of several simple statements.
The case labels must be valid literal integer values e.g. 0, 1, +100, -2 etc..

The CASE keyword evaluates the expression and executes the relevant statement-list associated with a case label
whose value matches the initial expression. Control then passes to the next statement after the END_CASE. If no
match occurs within the previous case labels and an ELSE command is present the statement-list associated with
the ELSE keyword is executed. If the ELSE keyword is not present, control passes to the next statement after the
END_CASE.

There can be several different case labels statements (and associated statement-list) within a CASE statement but
only one ELSE statement.

“«n

The “,” operator is used to list multiple case labels associated with the same statement-list.

The “..” operator denotes a range case label. If the CASE expression is within that range then the associated
statement-list is executed, e.g. case label of 1..10 : a:=a+1; would execute the a:=a+1 if the CASE expression is
greater or equal to 1 and less than 10.

Example 1 In this example, the CASE statement will be evaluated and then compared with
CASE a OF each of the CASE statement comparison values (i.e. 2 and 5 in this example).
2: b:=1: If the value of variable "a" is 2 then that statement-list will be executed (i.e. b:=1;).
5. c=10: Control will then pass to the program steps following the END_CASE clause.
END CASE: ’ If the value of variable "a" is 5 then that statement-list will be executed (i.e. ¢:=1.0;).
- ’ Control will then pass to the program steps following the END_CASE clause.
If the value of variable "a" does not match any of the CASE statement comparison
values then control will pass to the program steps following the END_CASE clause.
Example 2 In this example, the CASE statement will be evaluated and then compared with
each of the CASE statement comparison values (i.e. -2 and 5 in this example).
CASE a+2OF . . o .
2. b=1- If the value of variable "a" plus 2 is -2 then that statement-list will be executed (i.e.
e 2T h b:=1;). Control will then pass to the program steps following the END_CASE clause.
5: ¢:=1.0; If the value of variable "a" plus 2 is 5 then that statement-list will be executed (i.e.
ELSE ¢:=1.0;). Control will then pass to the program steps following the END_CASE
d=10- clause. If the value of variable "a" plus 2 is not -2 or 5, then the statement-list in the

ELSE condition (i.e. d:=1.0;) will be executed. Control will then pass to the program
END_CASE; steps following the END_CASE clause.

CASE Statement Examples

Example 3
CASEa+3*bOF
1,3: b:=2;
7,11: ¢c:=3.0;
ELSE
d:=4.0;
END_CASE;

Example 4
CASE a OF
-2,2,4: b:=2;
c:=1.0;

6..11,13: ¢ :=2.0;
1,3,5: c:=3.0;
ELSE

b:=1;

c:=4.0;
END_CASE;

In this example, the CASE statement will be evaluated and then
compared with each of the CASE statement comparison values (i.e. 1
or 3 and 7 or 11 in this example).

If the value of variable "a" plus 3 multiplied by variable "b" is 1 or 3,
then that statement-list will be executed (i.e. b:=2;). Control will then
pass to the program steps following the END_CASE clause.

If the value of variable "a" plus 3 multiplied by variable "b" is 7 or 11,
then that statement-list will be executed (i.e. ¢:=3.0;). Control will then
pass to the program steps following the END_CASE clause.

If the value of variable "a" plus 3 multiplied by variable "b" is not 1, 3,
7 or 11, then the statement-list in the ELSE condition (i.e. d:=4.0;) will
be executed. Control will then pass to the program steps following the
END_CASE clause.

In this example, the CASE statement will be evaluated and then
compared with each of the CASE statement comparison values, i.e. (-
2,20r4)and (6 to 11 or 13) and (1, 3 or 5) in this example.

If the value of variable "a" equals -2, 2 or 4, then that statement-list
will be executed (i.e. b:=2; and ¢:=1.0;). Control will then pass to the
program steps following the END_CASE clause.

If the value of variable "a" equals 6, 7, 8, 9, 10, 11 or 13 then, that
statement-list will be executed (i.e. c:=2.0;). Control will then pass to
the program steps following the END_CASE clause.

If the value of variable "a" is 1, 3 or 5, then that statement-list will be
executed (i.e. ¢:=3.0;). Control will then pass to the program steps
following the END_CASE clause.

If the value of variable "a" is none of those above, then the statement-
list in the ELSE condition (i.e. b:=1; and c:=4.0;) will be executed.
Control will then pass to the program steps following the END_CASE
clause.

EXIT Statement Examples

WHILE expression DO
statement-list1,
EXIT;

END_WHILE;

statement-list2;

REPEAT
statement-list1;
EXIT;

UNTIL expression

END_REPEAT;

statement-list2;

FOR control variable := integer expression1 TO integer expression2 [BY integer expression3] DO

statement-list1;

EXIT;
END_FOR;
statement-list2;

The statement-list is a list of several simple statements.

The EXIT keyword discontinues the repetitive loop execution to go to the next statement, and can only be used in
repetitive statements (WHILE, REPEAT, FOR statements). When the EXIT keyword is executed after statement-

list1 in the repetitive loop, the control passes to statement-list2 immediately.

Example 1

WHILE a DO

IF c = TRUE THEN
b:=0;EXIT;

END_IF;

IFb>10 THEN
a:= FALSE;

END_IF;
END_WHILE;
d:=1;

Example 2
a:=FALSE;
FOR i:=1 TO 20 DO
FOR j:=0 TO 9 DO
IF i>=10 THEN
n:=i*10+j;

a:=TRUE;EXIT;

END_IF;
END_FOR;

IF a THEN EXIT; END_IF;

END_FOR;
d:=1;

If the first IF expression is true (i.e. variable "c" is true), the
statement-list (b:=0; and EXIT;) is executed during the
execution of the WHILE loop. After the execution of the EXIT
keyword, the WHILE loop is discontinued and the control
passes to the next statement (d:=1;) after the END_WHILE
clause.

If the first IF expression is true (i.e. i>=10 is true) in the inside
FOR loop, the statement-list (n:=i*10+j; and a:=TRUE; and
EXIT;) is executed during the execution of the FOR loop.
After the execution of the EXIT keyword, the inside FOR loop
is discontinued and the control passes to the next IF
statement after the END_FOR clause. If this IF expression is
true (i.e. the variable "a" is true), EXIT keyword is executed ,
the outside FOR loop is discontinued after END_FOR clause,
and the control passes to the next statement (d:=1;).

RETURN Statement Examples

statement-list1;
RETURN,;
statement-list2;

The statement-list is a list of several simple statements.

The RETURN keyword breaks off the execution of the inside of the Function Block after statement-list1, and then
the control returns to the program which calls the Function Block without executing statement-list2.

Example 1

IF a_1">100 THEN If the first or second IF statement is true (i.e. "a_1*b" is larger

¢:=TRUE;RETURN; than 100, or "a_2*(b+10)" is larger than 100), the statement

END IF; (c:=TRUE; and RETURN;) is executed. The execution of the

P RETURN keyword breaks off the execution of the inside of

IF a_2%(b+10)>100 THEN the Function Block and the control returns to the program
c:=TRUE;RETURN; which calls the Function Block.

END_IF;

IF a_3*(b+20)>100 THEN
c:=TRUE;

END_IF;

Array Examples
variable name [subscript index]

An array is a collection of like variables. The size of an array can be defined in the Function Block variable table.
An individual variable can be accessed using the array subscript operator [].

The subscript index allows a specific variable within an array to be accessed. The subscript index must be either a
positive literal value, an integer expression or an integer variable. The subscript index is zero based. A subscript
index value of zero would access the first variable, a subscript index value of one would access the second variable
and so on.

Warning

If the subscript index is either an integer expression or integer variable, you must ensure that the resulting
subscript index value is within the valid index range of the array. Accessing an array with an invalid index
must be avoided. Refer to Example 5 for details of how to write safer code when using variable array
offsets.

In this example variable "a" is an array of 5 elements and has

Example 1 an INT data type. Variable "b" also has an INT data type.

a[0] :=1; When executed, the first element in the array will be set to the

a[1] := -2; value 1, the second element will be set to -2, the third
T element will be set to 3 (i.e. 1+2), the forth element will be set

a[2] : =1+2; to the value of variable "b" and the fifth element will be set to

a[3]:=b; the value of variable "b" plus 1.

a[4] : = b+1;

Example 2 In this example variable "c" is an array of 2 elements and has

P a BOOL data type. When executed, the first element in the
c[0] := FALSE; array will be set to false and the second element will be set to
c[1] := 2>3; false (i.e. 2 is greater than 3 evaluates to false).

Array Examples

Example 3

d[9]:= 2.0; In this example, variable "d" is an array of 10 elements and
has a REAL data type. When executed, the last element in
the array (the 10th element) will be set to 2.0.

Example 4

a[1] := b[2]; In this example, variable "a" and variable "b" are arrays of the

’ same data type. When executed, the value of the second

element in variable "a" will be set to the value of the third
element in variable "b".

Example 5

alb] :=1;

alb+1] := 1,

a[(b+c) *(d-e)] :=1;

Note: As the integer variables and expressions are being used to access the array, the actual index value
will not be known until run time, so the user must ensure that the index is within the valid range of the
array a. For example, a safer way would be to check the array index is valid:

f:= (b+c) *(d-e);
IF (f>0) AND (f<5) THEN
a[f] =1,
END_IF;
Where variable "f" has an INT data type.

Example 6

a[b[1]]:=c¢; This example shows how an array element expression can be
a[b[2] + 3]:=¢; used within another array element expression.

Numerical Functions and Arithmetic Functions

UDINT, ULINT

Function Name Argument data | Return value |Operation Example
type type
ABS(argument) |Absolute value |INT, DINT, NT, DINT, | argument | a:=ABS(b)
LINT, UINT, |LINT, UINT,
UDINT, UDINT,
ULINT, REAL, |ULINT, REAL,
LREAL LREAL
SQRT(argument) [Square root REAL, LREAL |REAL, LREAL a:=SQRT(b)
LN(argument) Natural REAL, LREAL |REAL, LREAL a:=LN(b)
logarithm
LOG(argument) [Common REAL, LREAL |REAL, LREAL a:=LOG(b)
logarithm
EXP(argument) [Natural REAL, LREAL |REAL, LREAL a:=EXP(b)
exponential
SIN(argument) Sine REAL, LREAL |REAL, LREAL [SIN(argument) |a:=SIN(b)
COS(argument) |Cosine REAL, LREAL |REAL, LREAL | COS(argument) |a:=COS(b)
TAN(argument) | Tangent REAL, LREAL |REAL, LREAL | TAN(argument) |a:=TAN(b)
ASIN(argument) |Arc sine REAL, LREAL |REAL, LREAL a:=ASIN(b)
ACOS(argument) | Arc cosine REAL, LREAL |REAL, LREAL a:=ACOS(b)
ATAN(argument) |Arc tangent REAL, LREAL |REAL, LREAL a:=ATAN(b)
EXPT(base, Exponential Base: REAL, |REAL, LREAL a:=EXPT(b, ¢)
exponent) LREAL
Exponent:
INT, DINT,
LINT, UINT,

OMRON Corporation
Industrial Automation Company
Control Devices Division H.Q.
Shiokoji Horikawa, Shimogyo-ku,
Kyoto, 600-8530

Japan

Tel:(81)75-344-7109
Fax:(81)75-344-7149

Regional Headquarters

OMRON EUROPE B.V.

Wegalaan 67-69, NL-2132 JD Hoofddorp
The Netherlands

Tel:(31)2356-81-300/
Fax:(31)2356-81-388

OMRON ELECTRONICS LLC

1 East Commerce Drive, Schaumburg,

IL 60173 U.S.A.
Tel:(1)847-843-7900/Fax:(1)847-843-8568

OMRON ASIA PACIFIC PTE. LTD.
83 Clemenceau Avenue,

#11-01, UE Square,

Singapore 239920
Tel:(65)6835-3011/Fax: (65)6835-2711

OMRON (CHINA) CO., LTD.

Room 2211, Bank of China Tower,

200 Yin Cheng Zhong Road,

PuDong New Area, Shanghai, 200120 China
Tel:(86)21-5037-2222/Fax:(86)21-5037-2200

Authorized Distributor:

Note: Specifications subject to change without notice.

1633014-5B

Erael

P ———

Cat. No. R133-E01-02
Printed in Japan

