YRC SCARA Robot Controller

PROGRAMMING MANUAL

Introduction

Our sincere thanks for your purchase of this OMRON YRC series robot controller.

This manual describes robot program commands and related information for using OMRON YRC series
robot controllers. Be sure to read this manual carefully as well as related manuals and comply with their
instructions for using the OMRON robot controllers safely and correctly.

For details on how to operate OMRON robot controllers, refer to the separate controller user's manual that
comes with the OMRON robot controller.

Applicable controllers: YRC (4-axis controller)

Safety precautions

Be sure to read before using

Before using the OMRON robot controller, be sure to read this manual and related manuals, and follow
their instructions to use the robot controller safely and correctly.

Warning and caution items listed in this manual relate to OMRON robot controllers.

When this robot controller is used in a robot controller system, please take appropriate safety measures as
required by the user’s individual system.

This manual classifies safety caution items and operating points into the following levels, along with
symbols for signal words “CAUTION” and “NOTE”.

A CAUTION

"CAUTION" indicates a potentially hazardous situation which, if not avoided, could result in minor or

moderate injury or damage to the equipment or software.

M NOTE

Primarily explains function differences, etc., between software versions.

Explains robot operation procedures in a simple and clear manner.

Note that the items classified into “CAUTION” might result in serious injury depending on the situation
or environmental conditions. So always comply with CAUTION instructions since these are essential to
maintain safety.

Keep this manual carefully so that the operator can refer to it when needed. Also make sure that this manual

reaches the end user.

m System design precautions

A CAUTION

When the program execution stops before it is complete, the program re-executes the command that
has stopped. Keep this point in mind when re-executing the program, for example, when using an arch
motion with the MOVE command, a relative movement command such as the MOVEI or DRIVEI

command, or a communication command such as the SEND command.

CONTENTS

YRC Series
Programming Manual

Chapter 1 Writing Programs

1 The OMRON Robot Language 1-1
2 Characters 1-1
3 Program Basics 1-1
4 Program Names 1-2
5 Identifiers 1-7
6 Comment 1-7
7 Command Statement Format 1-8
Chapter 2 Constants
1 Outline 2-1
2 Numeric constants 2-1
2.1 Integer constants 2-1
2.2 Real constants 2-1
3 Character constants 2-2
Chapter 3 Variables
1 Outline 3-1
2 User Variables & System Variables 3-2
2.1 User Variables 3-2
2.2 System Variables 32
3 Variable Names 3-3
3.1 Dynamic Variable Names 33
3.2 Static Variable Names 3-3
4 Variable Types 3-4
4.1 Numeric variables 3-4
4.2 Character variables 3-4
5 Array variables 3-5
6 Value Assignments 3-5

C ONTENT S Programn‘fil:gc 1\?:11:1?]

7 Type Conversions 3-6
8 Value Pass-Along & Reference Pass-Along 3-6
9 System Variables 37
9.1 Point data variable 3-7
9.2 Shift coordinate variable 3-8
9.3 Point element variable 3-9
9.4 Shift element variable 3-10
9.5 Parallel input variable 3-10
9.6 Parallel output variable 3-11
9.7 Internal output variable 3-12
9.8 Arm lock output variable 3-13
9.9 Timer output variable 3-14
9.10 Serial input variable 3-15
9.11 Serial output variable 3-16
9.12 Serial word input 3-17
9.13 Serial double word input 3-17
9.14 Serial word output 3-18
9.15 Serial double word output 3-18
10 Bit Settings 3-19
11 Valid range of variables 3-20
11.1 Valid range of dynamic variables 3-20
11.2 Valid range of static variables 3-20
11.3 Valid range of dynamic array variables 3-20
12 Clearing variables 3-21
12.1 Clearing dynamic variables 3-21
12.2 Clearing static variables 3-21

Chapter 4 Expressions and Operations

1 Arithmetic operations 4-1
1.1 Arithmetic operators 4-1
1.2 Relational operators 4-1
1.3 Logic operations 4-2
1.4 Priority of arithmetic operation 4-3
1.5 Data format conversion 4-3

2 Character string operations 4-4
2.1 Character string connection 4-4
2.2 Character string comparison 4-4

C ONTENT S Programn‘fil:gc 1\?:11:1?]

3 Point data format 4-5

4 DI/DO conditional expressions 4-6

Chapter 5 Multi-tasking

1 Outline 5-1
2 Task definition 5-1
3 Task status and transition 5-2
3.1 Starting tasks 5-2
3.2 Task scheduling 5-3
3.3 Condition wait in task 5-4
3.4 Suspending tasks (SUSPEND) 5-5
3.5 Restarting tasks (RESTART) 5-5
3.6 Deleting tasks 5-6
3.7 Stopping tasks 5-7
4 Multi-task program example 5-8
5 Sharing the data 5-8
6 Cautionary Items 5-9

Chapter 6 Sequence function

1 Sequence function 6-1
2 Creating a sequence program 6-1
2.1 Programming method 6-1
2.2 Compiling 6-2
3 Executing a sequence program 6-4
3.1 Sequence program STEP execution 6-4
4 Creating a sequence program 6-5
4.1 Assignment statements 6-5
4.2 Input/output variables 6-5
4.3 Timer definition statement 6-7
4.4 Logical operators 6-7
4.5 Priority of logic operations 6-8
4.6 Sequence program specifications 6-8

C ONTENT S Programn‘fil:gc 1\?:11:1?]

Chapter 7 Robot Language Lists

How to read the robot language table 7-1
Command list in alphabetic order 7-3
Function Specific 7-7
Functions: in alphabetic order 7-13
Functions: operation-specific 7-15
1 ABS Acquires absolute values 7-17
2 ABSINIT Resets the current position of a specified axis 7-18
3 ABSRPOS Acquires a machine reference 7-20
4 ABSRST Absolute motor axis return-to-origin operation 7-21
5 ACCEL Specifies/acquires the acceleration coefficient parameter 7-22
6 ARCH Specifies/acquires the acceleration coefficient parameter 7-23
7 ARMCND Arm status acquisition 7-25
8 ARMTYPE SCARA robot hand system 7-26
9 ATN Acquires the arctangent of the specified value 7-27
10 ASPEED Sets the automatic movement speed 7-28
11 AXWGHT Sets/acquires the axis tip weight 7-29
12 CALL Calls a sub-procedure 7-30
13 CHANGE Switches the hand 7-31
14 CHGPRI Changes the priority ranking of a specified task 7-32
15 CHRS$ Acquires a character with the specified character code 7-33
16 COS Acquires the cosine value of a specified value 7-34
17 CURTRQ Acquires the current torque of the specified axis 7-34
18 CUT Terminates another sub task which is currently being executed 7-35
19 DATES Acquires the date 7-36
20 DECEL Specifies/acquires the deceleration rate parameter 7-37
21 DECLARE Declares that a sub-routine or sub-procedure is to be used within 7-38
the COMMON program
22 DEFFN Defines functions which can be used by the user 7-40
23 DEGRAD Angle conversion (angle — radian) 7-41
24 DELAY Program execution waits for a specified period of time 7-42
25 DI Acquires the input status from the parallel port 7-43
26 DIST Acquires the distance between 2 specified points 7-44

CONTENTS

YRC Series
Programming Manual

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

DIM

DO

DRIVE
DRIVEI

END SELECT
END SUB
ERR /ERL
EXIT FOR
EXIT SUB
EXIT TASK
FOR to NEXT
GOSUB to RETURN
GOTO

HALT

HAND

41.1 For SCARA Robots
HOLD

IF

43.1 Simple IF statement
43.2 Block IF statement
INPUT

INT
JTOXY
LABEL Statement
LEFTS$
LEFTY
LEN

LET

LO

LOCx
LSHIFT
MCHREF
MIDS§
MO
MOVE

Declares array variable 7-45
Outputs to parallel port 7-46
Executes absolute movement of specified axes 7-47
Moves the specified robot axes in a relative manner 7-55
Ends the SELECT CASE statement 7-60
Ends the sub-procedure definition 7-61
Acquires the error code / error line No 7-62
Terminates the FOR to NEXT statement loop 7-63
Terminates the sub-procedure defined by SUB to END 7-64
Terminates its own task which is in progress 7-65
Performs loop processing until the variable-specified value is exceeded 7-66
Jumps to a sub-routine 7-67
Executes an unconditional jump to the specified line 7-68
Stops the program and performs a reset 7-69
Defines the hand 7-70

7-70
Temporarily stops the program 7-73
Evaluates a conditional expression value, and executes the 7-74
command in accordance with the conditions

7-74

7-75
Assigns a value to a variable specified from the programming box 7-76
Truncates decimal fractions 7-77
Performs axis unit system conversions (pulse — mm) 7-78
Defines labels at program lines 7-79
Extracts character strings from the left end 7-80
Sets the SCARA robot hand system as a left-hand system 7-81
Acquires a character string length 7-82
Assigns values to variables 7-83
Arm lock output 7-86
Specifies/acquires point data or shift data for a specified axis 7-87
Left-shifts a bit 7-89
Acquires a machine reference 7-90
Acquires a character string from a specified position 7-91
Outputs a specified value to the MO port (internal output) 7-92
Performs absolute movement of all robot axes 7-93

CONTENTS

YRC Series

Programming Manual

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

85
86
87
88
89

90
91
92
93

MOVEI
OFFLINE
ORD

ON ERROR GOTO
ON to GOSUB
ON to GOTO
ONLINE
ORGORD
ORIGIN
ouT
OUTPOS
PATH

PATH END
PATH SET
PATH START
PDEF
PMOVE

Pn

PPNT

PRINT
RADDEG
REM

RESET
RESTART
RESUME
RETURN

RIGHTS$
RIGHTY
RSHIFT

Sn

SELECT CASE

SEND
SERVO
SET
SHARED

Performs absolute movement of all robot axes

Sets a specified communication port to the "offline" mode
Acquires a character code

Jumps to a specified label when an error occurs

Executes the subroutine specified by the <expression> value
Jumps to the label specified by the <expression> value

Sets the specified communication port to the "online" mode
Specifies/acquires the robot's return-to-origin sequence
Performs an incremental mode axis return-to-origin

Turns ON the specified port output

Specifies/acquires the OUT enable position parameter of the robot
Specifies the main robot axis PATH motion path

Ends the movement path setting

Starts the movement path setting

Starts the PATH motion

Defines the pallet used to execute pallet movement commands
Executes a pallet movement command for the robot

Defines points within a program

Creates pallet point data

Displays the specified expression value at the programming box
Performs a unit conversion (radians — degrees)

Inserts a comment

Turns OFF the bits of specified ports, or clears variables
Restarts another task during a temporary stop

Resumes program execution after error recovery processing

Processing which was branched by GOSUB, is returned to the
next line after GOSUB

Extracts a character string from the right end of another character string

Sets the SCARA robot hand system to "Right"
Shifts a bit value to the right
Defines the shift coordinates in the program

Executes the specified command block in accordance with the
<expression> value

Sends <read file> data to the <write file>
Controls the servo status
Turns the bit at the specified output port ON

Enables sub-procedure referencing without passing on the variable

7-109
7-114
7-115
7-116
7-117
7-118
7-119
7-120
7-121
7-122
7-123
7-125
7-131
7-132
7-134
7-135
7-136
7-140
7-142
7-143
7-144
7-145
7-146
7-147
7-148
7-149

7-150
7-151
7-152
7-153
7-154

7-155
7-157
7-158
7-159

CONTENTS

YRC Series
Programming Manual

94 SHIFT Sets the shift coordinates 7-160
95 SIN Acquires the sine value for a specified value 7-161
96 SO Outputs a specified value to the serial port 7-162
97 SPEED Changes the program movement speed 7-163
98 START Starts a new task 7-164
99 STR$ Converts a numeric value to a character string 7-165
100 SQR Acquires the square root of a specified value 7-166
101 SUB to END SUB Defines a sub-procedure 7-167
102 SUSPEND Temporarily stops another task which is being executed 7-169
103 SWI Switches the program being executed 7-170
104 TAN Acquires the tangent value for a specified value 7-171
105 TCOUNTER Timer & counter 7-172
106 TIME$ Acquires the current time 7-173
107 TIMER Acquires the current time 7-174
108 TO Outputs a specified value to the TO port 7-175
109 TOLE Specifies/acquires the tolerance parameter 7-176
110 TORQUE Specifies/acquires the maximum torque command value which 7-177
can be set for a specified axis
111 TRQSTS Acquires the status when DRIVE statement ends 7-179
112 TRQTIME Sets/acquires the time-out period for the torque limit setting option 7-180
113 VAL Converts character strings to numeric values 7-182
114 WAIT Waits until the conditions of the DI/DO conditional expression are met 7-183
115 WAIT ARM Waits until the robot axis operation is completed 7-184
116 WEIGHT Specifies/acquires the tip weight parameter 7-185
117 WEND Ends the WHILE statement's command block 7-186
118 WHERE Acquires the arm's current position (pulse coordinates) 7-187
119 WHILE to WEND Repeats an operation for as long as a condition is met 7-188
120 WHRXY Acquires the arm's current position in Cartesian coordinates 7-189
121 XYTOJ Converts the main group axes Cartesian coordinate data ("mm") 7-190
to joint coordinate data ("pulse")

122 SYSFLG Axis status monitoring flag 7-190
Chapter 8 PATH Statements

1 Overview 8-1
2 Features 8-1

C ONTENT S Programn‘fil:gc 1\?:11:1?]

3 How to use 8-1

4 Cautions when using this function 8-2

Chapter 9 Limitless motion

1 Overview 9-1
2 Operation Procedure 9-1
2.1 Parameters 9-1
2.2 Robot language 9-1
2.3 Sample program 9-2
3 Restrictions 9-3

Chapter 10 Data file description

1 Overview 10-1
1.1 Data file types 10-1
1.2 Cautions 10-1

2 Program file 10-2
2.1 All programs 10-2
2.2 One program 10-3

3 Point file 10-4
3.1 All points 10-4
3.2 One point 10-6

4 Point comment file 10-8
4.1 All point comments 10-8
4.2 One point comment 10-8

5 Parameter file 10-10
5.1 All parameters 10-10
5.2 One parameter 10-12

6 Shift coordinate definition file 10-13
6.1 All shift data 10-13
6.2 One shift definition 10-14

7 Hand definition file 10-15
7.1 All hand data 10-15
7.2 One hand definition 10-16

C ONTENT S Programn‘fil:gc 1\?:[1:1?]

8 Pallet definition file 10-17
8.1 All pallet definitions 10-17
8.2 One pallet definition 10-20

9 Allfile 10-23
9.1 Allfiles 10-23

10 Program directory file 10-24
10.1 Entire program directory 10-24
10.2 One program 10-25

11 Parameter directory file 10-26
11.1 Entire parameter directory 10-26

12 Variable file 10-27
12.1 All variables 10-27
12.2 One variable 10-29

13 Constant file 10-30
13.1 One character string 10-30

14 Array variable file 10-31
14.1 All array variables 10-31
14.2 One array variable 10-32

15 DI file 10-33
15.1 All DI information 10-33
15.2 One DI port 10-34

16 DO file 10-35
16.1 All DO information 10-35
16.2 One DO port 10-36

17 MO file 10-37
171 All MO information 10-37
17.2° One MO port 10-38

18 LO file 10-39
18.1 All LO information 10-39
18.2 One LO port 10-40

19 TO file 10-41
19.1 All TO information 10-41
19.2 One TO port 10-42

C ONTENT S Programn‘fil:gc 1\?:[1:1?]

20 SI file 10-43
20.1 All SI information 10-43
20.2 One SI port 10-44

21 SO file 10-45
21.1 All SO information 10-45
21.2 One SI port 10-46

22 Error message history file 10-47
22.1 All error message history 10-47

23 Error Message History Details File 10-48
23.1 General error message history details 10-48

24 Machine reference file 10-49
24.1 All machine reference file 10-49

25 EOF file 10-50
25.1 EOF data 10-50

26 Serial port communication file 10-51
26.1 Serial port communication file 10-51

27 SIW file 10-52
27.1 All SIW 10-52
27.2 One SIW data 10-53

28 SOW file 10-54
28.1 All SIW 10-54
28.2 One SOW data 10-55

29 Ethernet port communication file 10-56
29.1 Ethernet port communication file 10-56

Chapter 11 User program examples

1 Basic operation 11-1
1.1 Directly writing point data in program 11-1
1.2 Using point numbers 11-2
1.3 Using shift coordinates 11-3
1.4 Palletizing 11-4

1.4.1 Calculating point coordinates 11-4
1.4.2 Utilizing pallet movement 11-6
1.5 DI/DO (digital input and output) operation 11-7

T-10

C ONTENT S Programn‘fil:gc 1\?:11:1?]

2 Application 11-8
2.1 Pick and place between 2 points 11-8
2.2 Palletizing 11-10
2.3 Pick and place of stacked parts 11-12
2.4 Parts inspection (Multi-tasking example) 11-14
2.5 Sealing 11-17
2.6 Connection to an external device through RS-232C (example 1) 11-18
2.7 Connection to an external device through RS-232C (example 2) 11-19

Chapter 12 Online commands

1 Online Command List 12-1
1.1 Online command list: Function specific 12-1
1.2 Online command list: In alphabetic order 12-4

2 Key operation 12-6
2.1 Changing the mode 12-6
2.2 AUTO mode operation 12-7
2.3 MANUAL mode operation 12-9

3 Utility operation 12-12
3.1 Acquiring the program execution status 12-12
3.2 Copy 12-12
3.3 Erase 12-14
3.4 Rename program name 12-16
3.5 Changing the program attribute 12-16
3.6 Initialize 12-17
3.7 Setting the display language 12-18
3.8 Setting the coordinates and units in MANUAL mode 12-19
3.9 Clearing the programming box error message 12-19
3.10 Setting the UTILITY mode 12-20
3.11 Checking and setting the date 12-22
3.12 Checking and setting the time 12-23

4 Data handling 12-24
4.1 Acquiring the display language 12-24
4.2 Acquiring the access level 12-24
4.3 Acquiring the arm status 12-25
4.4 Acquiring the break point status 12-25
4.5 Acquiring the controller configuration status 12-26
4.6 Acquiring the execution level 12-26
4.7 Acquiring the mode status 12-27
4.8 Acquiring the message 12-28

T-11

CONTENTS

YRC Series
Programming Manual

4.9 Acquiring return-to-origin status 12-29
4.10 Acquiring the absolute reset status 12-29
4.11 Acquiring the servo status 12-30
4.12 Acquiring the sequence program execution status 12-30
4.13 Acquiring the speed setting status 12-31
4.14 Acquiring the point coordinates and units 12-31
4.15 Acquiring the version information 12-32
4.16 Acquiring the current positions 12-32
4.17 Acquiring the tasks in RUN or SUSPEND status 12-34
4.18 Acquiring the tasks operation status 12-35
4.19 Acquiring the shift status 12-35
4.20 Acquiring the hand status 12-36
4.21 Acquiring the remaining memory capacity 12-36
4.22 Acquiring the emergency stop status 12-37
4.23 Acquiring the error status by self-diagnosis 12-37
4.24 Acquiring the option slot status 12-38
4.25 Acquiring various values 12-39
4.26 Data readout processing 12-41
4.27 Data write processing 12-42
4.28 Current torque value acquisition 12-43
5 Executing the robot language independently 12-44
5.1 Switching the program 12-44
5.2 Other robot language command processing 12-45
6 Control codes 12-46
6.1 Interrupting the command execution 12-46
Chapter 13 10 commands
1 Overview 13-1
2 10 command format 13-1
3 Sending and receiving IO commands 13-2
4 10 command list 13-4

T-12

CONTENTS

YRC Series
Programming Manual

5 10 command description 13-5
5.1 MOVE command 13-5
5.2 MOVEI command 13-6
5.3 Pallet movement command 13-6
54 Jog movement command 13-7
5.5 Inching movement command 13-7
5.6 Point teaching command 13-8
5.7 Absolute reset movement command 13-8
5.8 Absolute reset command 13-9
5.9 Return-to-origin command 13-9
5.10 Servo command 13-10
5.11 Manual movement speed change command 13-11
5.12 Auto movement speed change command 13-11
5.13 Program speed change command 13-11
5.14 Shift designation change command 13-12
5.15 Hand designation change command 13-12
5.16 Arm designation change command 13-12
5.17 Point display unit designation command 13-12

Chapter 14 Appendix

1 Reserved word list 15-1

2 Robot Language Lists: Command list in alphabetic order 15-3

3 Robot Language Lists: Function Specific 7

4 Functions: in alphabetic order 13

5 Functions: operation-specific 15

6 Execution Level 17

Index

T-13

Chapter 1

Writing Programs

The OMRON Robot Language

N o a0 B~ ON =

Characterscoveevuerieneeienieeee st
Program BasiCscccceevieiiiiiiiniieeeceeee
Program Names.........cccoooveeiiiiiiiinniiieinieeeee

TAENTITIETS v

The OMRON Robot Language

The OMRON robot language is similar to BASIC (Beginner’s All-purpose Symbolic Instruction Code) and
makes even complex robot movements easy to program. This manual explains how to write robot control

programs with the OMRON robot language, including actual examples on how its commands are used.

Characters

The characters and symbols used in the OMRON robot language are shown below.
Only 1-byte characters can be used.
e Alphabetic characters
AtoZ,atoz
e Numbers
0to9
e Symbols
O[1+-*/"=<>&|~_%!#$:;,.""@?
e katakana (Japanese phonetic characters)

» Katakana (Japanese phonetic characters) cannot be entered from a programming box. Katakana can be
used when communicating with a host computer (if it handles katakana).
» Spaces are also counted as characters (1 space = 1 character).

Program Basics

M NOTE

e For sub-procedure details, refer
to the "CALL" and "SUB ~
END SUB" items.

M NOTE

e For details regarding user
defined functions, refer to the
"DEF FN" item.

Programs are written in a "1 line = 1 command" format, and every line must contain a command. Blank
lines (lines with no command) will cause an error when the program is compiled (creation of execution

objects). The program's final line, in particular, must not be blank.

To increase the program's efficiency, processes which are repeated within the program should be written
as subroutines or sub-procedures which can be called from the main routine. Moreover, same processing
items which occurs in multiple programs should be written as common routines within a program named

[COMMON], allowing those processing items to be called from multiple programs.

User functions can be defined for specific calculations. Defined user functions are easily called, allowing

even complex calculations to be easily performed.

Multi-task programs can also be used to execute multiple command statements simultaneously in a parallel

processing manner.

Using the above functions allows easy creation of programs which perform complex processing.

The OMRON Robot Language @ 1-1 I

Program Names

Each program to be created in the robot controller must have its own name.

Programs can be named as desired provided that the following conditions are satisfied:

= Program names may contain no more than 8 characters, comprising a combination of alphanumeric
characters and underscores ().

= Each program must have a unique name (no duplications).

The 4 program names shown below are reserved for system operations, and programs with these names

have a special meaning.

A) FUNCTION
B) SEQUENCE
C) _SELECT
D) COMMON

The functions of these programs are explained below.

| A) FUNCTION

Pressing the USER key in “PROGRAM” mode or “MANUAL” mode allows the user function
to be used. When user functions are used in the "PROGRAM" mode, commands (MOVE,
GOTO, etc.) which are frequently used during program editing can be entered by function
keys. When used in “MANUAL” mode, DO output is available with the function keys without
running the program. The FUNCTION program defines function keys which are used to

execute user functions. The desired functions can be freely assigned to the function keys.

SAMPLE

’FOR MANUAL MODE

*M_F1:"DO(20)ALTERNATE

DO(20)=~DO(20) =+ recceccceccces DO (20) ON/OFF highlighting occurs when the key is pressed.
*M_F2:"DO(21)ALTERNATE

DO(21)=~DO(21) =+ vvrrvnrennsennss DO (21) is highlighted.

*M_F6:"DO(25)MOMENTARY
DO(25)=1DO (25) is set to "1" when the key is pressed.
DO(25)=0D0 (25) is set to "0" when the key is released.

*M_F7:"MOTION

MOVEPP] ccccecccccccencocccccce Movement to Point 1 occurs.

IMOWIE [R]P2 00000000000000000000000 Movement to Point 2 occurs.
’FOR PROGRAM MODE
“P_FlMIOWIE IR, oocoooo0o00000000000000 [MOVE P,] is written to the program when the key is pressed.
“P_THE MIQWVIE IL, c0coc000000000000000000 [MOVE L,] is written to the program when the key is pressed.

“P I GOMY) ¥ eocooooooc00000000000000 [GOTO *] is written to the program when the key is pressed.

I 1-2 @ Chapter 1 Writing Programs

@ Registering editing function keys used in the PROGRAM mode

Format

*P_F <n>: ' <character string>

SO e Denotes the No. of the function key being registered
(n=1to 15).
<character string>............cccccoeu... The character string which is registered and displayed

for the function key.

+ Although up to 65 characters can be entered for a <character string™>, no more than 7 characters are

displayed on the Menu.

SAMPLE

“P_T2MIOWIE IR ooooooo0000000000000 Registers "MOVE P," at the [F2] key.
WP TR IDIRILAY ccooocpoocoo000000000 Registers "DELAY™" at the [F8] key.

@ Registering output command function keys used in the MANUAL mode

Format

*M_F <n>:' <character string>
<Output statement 1>
<Output statement 2>

SO e Denotes the No. of the function key being registered
(n=1to 15).
<character String>..........c.cccc..... The character string which is displayed for the function
key.
<Input/output statement 1> Command statement which is executed when the key
is pressed.
<Input/output statement 2> Command statement which is executed when the key

is released

+ Although up to 65 characters can be entered for a <character string>, no more than 7 characters are

displayed on the Menu.

AMPLE
*M_F2:'MOMENT ¢ cccececceccccccce Displays "MOMENT" at the [F2] key.
IDO(2W)=Il ©0000000000000000000000 DO (20) is turned ON when the [F2] key is pressed.
DO)ED cccoccccccocooccoooocooa DO (20) is turned OFF when the [F2] key is released.
ML IPIAAILTNEIR cocooocoooo000000000 Displays "ALTER" at the [F14] key.
DO(20)=~DO(20) =+ seccecccccacess The DO(20) output status is highlighted when the [F14] key is

pressed.

AN YN UM@Y) For details, refer to the relevant controller manual.

Program Names @ 1-3 I

| B) SEQUENCE

Unlike standard robot programs, the YRC Controller allows the execution of high-speed-
processing programs (sequence programs) in response to robot inputs and outputs (DI, DO,
MO, LO, TO, SI, SO). Specity a program name of "SEQUENCE" to use this function, thus
creating a pseudo PLC within the controller.

When the controller is in the AUTO or MANUAL mode, a SEQUENCE program can be
executed in fixed cycles (regardless of the program execution status) in response to dedicated
DI10 (sequence control input) input signals, with the cycle being determined by the program
capacity. For details, see Chapter 7 "4.6 Sequence program specifications".

This allows sensors, push-button switches, and solenoid valves, etc., to be monitored and
operated by input/output signals.

Moreover, because the sequence programs are written in robot language, they can easily be

created without having to use a new and unfamiliar language.

SAMPLE

DO(20)=~DI(20)
DO(25)=DI(21) AND DI(22)
MO(26)=DO(26) OR DO(25)

12001 3 01 A N(@®1D) For details, see Chapter 7 "Sequence function".

I 1-4 @ Chapter 1 Writing Programs

[~ote

e For details regarding the
"execution level", refer to the
controller manual.

M NOTE

eUsing an ON ERROR
statement allows running the
program in a loop not ending
in an error even without the
program name specified by a
SWI statement.

e An error code issued during
execution of the program is
input into a variable ERR.
"ERR=&0303" means
"Program doesn’t exist".

| O _SELECT

This function allows the user to create a program which is always selected and executed when

the robot program is reset. Specify a program name of " SELECT" to use this function. For
example, if multiple programs exist, and there is a need to switch between the programs by
using DI inputs, simply create a program-switching program named " SELECT". Even if
another program is running, the system always returns to this program when a reset input
occurs after that program stops. The various reset types and their corresponding processing are

as follows (also refer to the program example shown below):

1. When a reset is executed from the Programming Box, a query displays, asking if a change
to" SELECT" is desired. If "No" is pressed, a selection screen displays, allowing the user
to select whether or not a reset is to be executed.

2. When reset by the HALT command in a program, dedicated DI (reset signal) or online
command, the system switches to the " SELECT" program.

3. The operation which occurs at power ON varies according to the "execution level". If
the execution level has been selected as "execute program reset at power ON", a reset is
executed at power ON, and " _SELECT" is then selected.

A program is selected according to the value input from DI3().
When DI3() is 0, the system repeatedly monitors the DI input.
When DI3() is from 1 to 3, the matching program is selected.
When DI3() is other than the above cases, the system quits the program that is currently

running.

SAMPLE

ON ERROR GOTO *ER1

*ST:
SEEECTCASE DI3(()s s alefstatetefale ellafat Branching occurs based on the DI3 "()" value.
CASE 0
GO0 ¥§T ceoccooooooocooo If"0", a return to "*ST" occurs, and the processing is repeated.
CASE 1
SWI<PARTI> c+cccccccocns Ifr1"
CASE 2
SWI <PART2> ¢ccovoosooasne Ifm2r
CASE 3
SWI <PART3> +ececececccce 3"
CASE ELSE
GOTO *FIN ¢ cceccccceceses For any other value, a jump to "*FIN" occurs, and processing ends.
END SELECT
GOTO *ST
*FIN:
HALT
*ER1:
IF ERR=&H0303 THEN *NEXT L <+ ceecee-- A return is executed if a "no program exists" error occurs.
ON ERROR GOTO (=«cccccccecccceee For any other error, processing ends.
*NEXT L:
RESUME NEXT

12001 01 AN(@1D) For details, refer to the command explanations given in this manual.

Program Names @ 1-5 I

| b) coMmMON

A separate "COMMON" program can be created to perform the same processing in multiple
robot programs. The common processing routine which has been written in the COMMON
program can be called and executed as required from multiple programs. This enables efficient

use of the programming space.

The sample COMMON program shown below contains two processing items (obtaining the
distance between 2 points (SUB *DISTANCE), and obtaining the area (*AREA)) which are
written as common routines, and these are called from separate programs (SAMPLE 1 and
SAMPLE 2).

When SAMPLE1 or SAMPLE?2 is executed, the SUB *DISTANCE (A!,B!,C!) and the
* AREA routine specified by the DECLARE statement are executed.

SAMPLE

Program name: SAMPLEL
DECLARE SUB *DISTANCE(A!,B!,C!)
DECLARE *AREA
X!1=2.5
Y!=1.2
CALL *DISTANCE(X!,Y!,REF C!)
GOSUB *AREA
PRINT C!,Z!
HALT

Program name: SAMPLE2
DECLARE SUB *DISTANCE(A!,B!,C!)
DECLARE *AREA
X!=5.5
Y!=0.2
CALL *DISTANCE(X!,Y!,REF C!)
GOSUB *AREA
PRINT C!,Z!
HALT

Program name: COMMON =« cccecececcccccce. Common routine
SUB *DISTANCE(A!,B!,C!)
C!=SQR(A!"2+B!"2)
END SUB
*AREA:
Z!1=X1*Y!
RETURN

IR AN IN@ DY) For details, refer to the command explanations given in this manual.

I 1-6 @ Chapter 1 Writing Programs

Identifiers

"Identifiers" are a combination of characters and numerals used for label names, variable names, and

procedure names. Identifiers can be named as desired provided that the following conditions are satisfied:

Identifiers must consist only of alphanumeric characters and underscores (_). Special symbols cannot be

used, and the identifier must not begin with an underscore ().

The identifier length must not exceed 16 characters (all characters beyond the 16th character are

ignored).

Up to 500 identifiers may be used.

Variable names must not be the same as a reserved word, or the same as a name defined as a system
variable. Moreover, variable name character strings must begin with an alphabetic character. For label

names, however, the "*" mark may be immediately followed by a numeric character.

SAMPLE

LOOP, SUBROUTINE, GET_DATA

1NN YN NM[@ DY) For details regarding reserved words, see Chapter 15 "1. Reserved word list".

n Comment

Characters which follow REM or an apostrophe mark (" ' ") are processed as a comment. Comment

statements are not executed. Moreover, comments may begin at any point in the line.

SAMPLE

REM *#** MAIN PROGRAM ***
(Main program)
##% SUBROUTINE ***

(Subroutine)

HALT "HALT COMMAND ¢ cccececceccns This comment may begin at any point in the line.

Identifiers @ 1-7 I

' Command Statement Format

Format

[<label>:] <statement> [<operand>]

One robot language command must be written on a single line and arranged in the format shown below:

e [tems enclosed in [] can be omitted.

e [tems enclosed in <> must be written in a specific format.

e Items not enclosed in <> should be written directly as shown.

e [tems surrounded by | | are selectable.

e The label can be omitted. When using a label, it must always be preceded by an asterisk (*), and it must
end with a colon (:) (the colon is unnecessary when a label is used as a branching destination).

For details regarding labels, refer to Chapter 8 "45. LABEL Statement".

e Operands may be unnecessary for some commands.

e Programs are executed in order from top to bottom unless a branching instruction is given.

1 line may contain no more than 75 characters.

I 1-8 @ Chapter 1 Writing Programs

Chapter 2

Constants
1 OULIINE. e 2-1
2 NUMETIC CONSTANTS ... 2-1

3 Character CONStANTS «..vvveeeeeeeeeeeeeeee e 2-2

Outline

Constants can be divided into two main categories: "numeric types" and "character types". These categories

are further divided as shown below.

Category Type Details/Range
Numeric Integer Decimal constants
type type -1,073,741,824 to 1,073,741,823

Binary constants
&BOto &B11111111

Hexadecimal constants
&H80000000 to &H7FFFFFFF

Real type Single-precision real numbers
-999,999.9 to +999,999.9

Exponential format single-precision real numbers
-1.0%10* to +1.0*10*

Character Character Alphabetic, numeric, special character, or katakana (Japanese) character

type string string of 75 bytes or less.
Numeric constants
2.1 I Integer constants

1. Decimal constants
Integers from —1,073,741,824 to 1,073,741,823 may be used.
2. Binary constants
Unsigned binary numbers of 8 bits or less may be used. The prefix "&B" is attached to the
number to define it as a binary number.
Range: &BO0 (decimal: 0) to &B11111111 (decimal: 255)
3. Hexadecimal constants
Signed hexadecimal numbers of 32 bits or less may be used. The prefix "&H" is attached to the
number to define it as a hexadecimal number.
Range: &H80000000 (decimal: -2,147,483,648) to &H7FFFFFFF (decimal: 2,147,483,647)

2.2 I Real constants

1. Single-precision real numbers

Real numbers from -999999.9 to +999999.9 may be used.

« 7 digits including integers and decimals. (For example, ".0000001" may be used.)
2. Single-precision real numbers in exponent form

Numbers from -1.0%10* to +1.0*10* may be used.

» Mantissas should be 7 digits or less, including integers and decimals.

Examples: -1. 23456E-12
3. 14E0
IRES

* An integer constant range of —1,073,741,824 to 1,073,741,823 is expressed in signed hexadecimal
number as &HC0000000 to &H3FFFFFFE.

Outline @ 2-1 I

Character constants

Character type constants are character string data enclosed in quotation marks ("). The character string

must not exceed 75 bytes in length, and it may contain upper-case alphabetic characters, numerals, special
characters, or katakana (Japanese) characters.

To include a double quotation mark (") in a string, enter two double quotation marks in succession.

SAMPLE

"OMRON ROBOT"

VERAMIPILIE OIF A oo ooooo0n0000 EXAMPLE OF "A"
PRINT "COMPLETED"
"OMRON ROBOT"

I 2-2 @ Chapter 2 Constants

Chapter 3

Variables

1 OULINE. ..o 3-1
2 User Variables & System Variables..................... 3-2
3 Variable Namesccccoevevienienienieneeeeeeenee. 3-3
4 Variable TYPes.....cccoocerieeiieniieiecieeieeee e 3-4
5 Array variables........cocoeoiiiiniieeeeeeee 3-5
6 Value ASSIZNMENtS.......cceereerieeierieieeierieeie s 3-5
7 Type Conversions........ccceevereeeveenieesveenneesveennens 3-6
8 Value Pass-Along & Reference Pass-Along........ 3-6
9 System Variables........ccoovveviiiiiiiniieiieieeieee. 3-7
10 Bit Settings...ccccoveevieiiiniiieiieicreececeeeeen 3-19
11 Valid range of variablescccceevuverirenennen. 3-20
12 Clearing variablescccocceriiiiiiniiinieieeee, 3-21

| Outline

There are "user variables" which can be freely defined, and "system variables" which have pre-defined

names and functions.

User variables consist of "dynamic variables" and "static variables". "Dynamic variables" are cleared at
program editing, compiling, program resets, and program switching. "Static variables" are not cleared
unless the memory is cleared. The names of dynamic variables can be freely defined, and array variables

can also be used.

Variables can be used simply by specifying the variable name and type in the program. A declaration is not

necessarily required. However, array variables must be pre-defined by a DIM statement.

User variables & system variables

Dynamic variables Integer variables)

Real variables (single-precision) >

Character type Character string variables >

Integer variables)

Static variables

(o=
«»
o
]
<
o
-
—
®
=3
o
@

Real variables (single-precision))

(Input—output variables) (Input variables >
Ln Output variables)
= (Point data variables)
o
g
<
= (Shift coordinate variables)
=
=2
& <Element variables) (Point element variables >
Shift element variables)

LU N AMMGID) For details regarding the above array, see Chapter 3 "5 Array variables".

Outline @ 3-1

User Variables & System Variables

2.1 I User Variables

Numeric type variables consist of an "integer type" and a "real type", and these two types have different
usable numeric value ranges. Moreover, each of these types has different usable variables (character string

variables, array variables, etc.), and different data ranges, as shown below.

Category Variable Type Details/Range
Dynamic Numeric type Integer type variables
variables -1,073,741,824 to 1,073,741,823

(Signed hexadecimal constants: &ZHC0000000 to &H3FFFFFFF)

Real variables (single-precision)
-1.0%10%* to +1.0*10*

Character type Character string variables
Alphabetic, numeric, special character, or katakana (Japanese)
character string of 75 bytes or less.

Static Numeric type Integer type variables
variables -1,073,741,824 to 1,073,741,823

Real variables (single-precision)
-1.0*10* to +1.0*10*

Array Numeric type Integer array variables

M NOTE variables -1,073,741,824 to 1,073,741,823
e Array variables are dynamic Real number array variables (single-precision)
variables. _1.0%10* to +1.0*10°
Character type Character string array variables

Alphabetic, numeric, special character, or katakana (Japanese)
character string of 75 bytes or less.

2.2 I System Variables

As shown below, system variables have pre-defined names which cannot be changed.

Category Type Details Specific Examples
Input/output Input variable External signal / status inputs DI, SI, SIW, SID
variables

Output variable External signal / status outputs DO, SO, SOW, SOD
Point variable Handles point data Pnnnn
Shift variable Specifies the shift coordinate No. as a Sn

numeric constant or expression.

Element Point element Handles point data for each axis, hand LOCx
variables variable system flag, or for the X-arm or Y-arm (point expression)

rotation information.

Shift element Handles shift data in element units. LOCx
variable (shift expression)

AN U N WD) For details, see Section "9 System Variables".

I 3-2 @ Chapter 3 Variables

Variable Names

3.1 I Dynamic Variable Names

Dynamic variables can be named as desired, provided that the following conditions are satisfied:

= The name must consist only of alphanumeric characters and underscores (_). Special symbols cannot be
used.
= The name must not exceed 16 characters (all characters beyond the 16th character are ignored).

= The name must begin with an alphabetic character.

SAMPLE

COUNT ceceeteententcnncancnnccnnnnn O Useis permitted
COUNTI23 ceceeceeecenccnacnaccnccnnnes O Use is permitted
2COUNT ccvecesoccesoccscnsascosnnens X Use is not permitted

= Variable names must not be the same as a reserved word.
Variable names must not begin with characters used for system variable names (pre-defined
variables). These characters include the following: FN, DIn, DOn, MOn, LOn, TOn, SIn, SOn, Pn,

Sn, Hn ("n" denotes a numeric value).

SAMPLE

COUNT cceececcccncceeccacenncancans O Use is permitted
ABS = cccecesccicerecsctiencaanaans X (Reserved word)
[INJAIMIE, ©0000000000000000000000000000 X (FN: pre-defined variable)
GO] = ceceeetccsecscciesecnacssenns X (Sn: pre-defined variable)

LU0 0 N(@ID) For details regarding reserved words, see Chapter 15 "1 Reserved word list".

3.2 I Static Variable Names

Static variable names are determined as shown below, and these names cannot be changed.

Variable Type Variable Name

Integer variable SGIn (n: 0to7)
Real variable SGRn (n: 0to 7)

Static variables are cleared only when initializing is executed by a SYSTEM mode or online command.

1NN YN[For details regarding the clearing of static variables, see Section "12 Clearing variables".

Variable Names @ 3-3 I

- Variable Types

4.1

The type of variable is specified by the type declaration character attached at the end of the variable name.
However, because the names of static variables are determined based on their type, no type declaration
statement is required.

Type Declaration Character Variable Type Specific Examples
$ Character type variables STR1$
% Integer type variables CONT0%, ACT%(1)
! Real type variables CNT1!,CNT1

» Ifno type declaration character is attached, the variable is viewed as a real type.

* Variables using the same identifier are recognized to be different from each other by the type of each

variable.

* ASP_DEF%............... Integer variable

« ASP DEF Real variable) — ASP_DEF% and ASP_DEEF are different variables.
* ASP_DEF! Real variable

« ASP DEF Real variable) — ASP_DEF! and ASP_DEF are the same variables.

I Numeric variables

M NOTE

e When a real number is assigned
to an integer type variable, the
decimal value is rounded off to
the nearest whole number. For
details, refer to Chapter 4 "1.5
Data format conversion".

M NOTE

e The "!" used in real variables
may be omitted .

4.2

I Integer variables

Integer variables and integer array elements can handle an integer from —1,073,741,824 to 1,073,741,823 (in
signed hexadecimal, this range is expressed as &HC0000000 to &H3FFFFFFF).

Examples: R1% =10
R2%(2) =R1% + 10000

I Real variables

Real variables and real array elements can handle a real number from —1.0%10% to 1.0*10%.

Examples: R1! =10.31
R2!(2) =R1% + 1.98E3

I Character variables

Character variables and character array elements can handle a character string of up to 75 characters.
Character strings may include alphabetic characters, numbers, symbols and katakana (Japanese phonetic
characters).

Examples: R1$ ="OMRON"
R2$(2) =R1$ + "MOTOR" "OMRON MOTOR"

I 3-4 @ Chapter 3 Variables

Array variables

Both numeric and character type arrays can be used at dynamic variables.

Using an array allows multiple same-type continuous data to be handled together.

Each of the array elements is referenced in accordance with the parenthesized subscript which appears after
each variable name. Subscripts may include integers or <expressions> in up to 3 dimensions.

In order to use an array, a DIM statement must be declared in advance, and the maximum number of

elements which can be used is the declared subscripts + 1 (0 ~ number of declared subscripts).

 Array variables are all dynamic variables (for details regarding dynamic variables, see Chapter 3 "11

Valid range of variables".)

» The length of an array variable that can be declared with the DIM statement depends on the program
size.

Format

<variable name>[%||(<expression>, [<expression>, [<expression>]])

| %.—

SAMPLE

A%(1) eeeeeeeeeeeeeeeeian, Integer array variable

DATTAI(I@3) eccccocsscaoccaccaseaoe Single-precision real number array variable (3-dimension array)
SMRINGR(1I@) occcocoocoo00000000000 Character array variable

“ Value Assignments

An assignment statement (LET) can also be used to assign a value to a variable.

» "LET" directly specifies an assignment statement, and it can always be omitted.

Format

[LET] <variable> = <expression>

Write the value assignment target variable on the left side, and write the assignment value or the
<expression> on the right side. The <expression> may be a constant, a variable, or an arithmetic

expression, etc.

1200 01 AN(@1D) For details, refer to Chapter 8 "49 LET (Assignment Statement)"

Array variables @ 3-5 I

7 Type Conversions

When different-type values are assigned to variables, the data type is converted as described below.

e When a real number is assigned to an integer type:

The decimal value is rounded off to the nearest whole number.
e When an integer is assigned to a real type:

The integer is assigned as it is, and is handled as a real number.
e When a numeric value is assigned to a character string type:

The numeric value is automatically converted to a character string which is then assigned.

e When a character string is assigned to numeric type:
This assignment is not possible, and an error will occur at the compiling operation. Use the "VAL"

command to convert the character string to a numeric value, and that value is then assigned.

Value Pass-Along & Reference Pass-Along

A variable can be passed along when a sub-procedure is called by a CALL statement. This pass-along can

occur in either of two ways: as a value pass-along, or as a reference pass-along.

I Value pass-along

With this method, the variable's value is passed along to the sub-procedure. Even if this value is changed
within the sub-procedure, the content of the call source variable is not changed.
A value pass-along occurs when the CALL statement's actual argument specifies a constant, an expression,

a variable, or an array element (array name followed by (<subscript>)).

I Reference pass-along

With this method, the variable's reference (address in memory) is passed along to the sub-procedure. If this
value is changed within the sub-procedure, the content of the call source variable is also changed.
A reference pass-along occurs when the CALL statement's actual argument specifies an entire array (an

array named followed by parenthetical content), or when the actual argument is preceded by "REF".

Value pass-along & reference pass-along

Value pass-along Reference pass-along

X$=5 X%=5
CALL *TEST(X%) CALL *TEST(REF X%)
PRINT X% PRINT X%
HALT HALT
' SUB ROUTINE ' SUB ROUTINE
SUB *TEST(A%) SUB *TEST(A%)
A%=A%*10 A%=A%*10
END SUB END SUB
N AN Y,

Execution result: the X% value remains as "5". Execution result: the X% value becomes "50".

3-6 @ Chapter 3 Variables

n System Variables

The following system variables are pre-defined, and other variable names must not begin with the

characters used for these system variable names.

Variable Type Format Meaning

n

Point variable Pnnn /P " ["<expression>"] Specifies a point number.

Shift variable Sn/S " ["<expression>"] " Specifies the shift number as a constant or as
an expression.

Point element variable LOCx (<point expression>) Handles point data for each axis, hand
system flag, or for the X-arm or Y-arm
rotation information.

Shift element variable LOCx (<shift expression>) Handles shift data with the element range.

Parallel input variable DI(mb), DIm(b) Parallel input signal status.

Parallel output variable DO(mb), DOm(b) Parallel output signal setting and status.

Internal output variable MO(mb), MOm(b) Controller's internal output signal setting and
status

Arm lock output variable LO(mb), LOm(b) Axis-specific movement prohibit.

Timer output variable TO(mb), TOm(b) For sequence program's timer function.

Serial input variable SI(mb), SIm(b) Serial input signal status.

Serial output variable SO(mb), SOm(b) Serial output signal setting and status.

Serial word input SIW(m) Serial input's word information status

Serial double-word input SID(m) Serial input's double-word information
status.

Serial word output SOW(m) Serial output's word information status

Serial double-word output SOD(m) Serial output's double-word information
status.

9.1 I Point data variable

This variable specifies a point data number with a numeric constant or expression.

Pnnnn or P" ["<expression>"]"

n: Point numberc.cccceenenee. 0to9
Each bracket in quotation marks ("[" "]") must be written. Brackets are not used to indicate

an item that may be omitted.

A point data number is expressed with a 'P' followed by a number of 4 digits or less, or an
expression surrounded by brackets ("[" <expression> "]").

Point numbers from 0 to 9999 can be specified with point variables.

Examples: PO
P110
P[A]
P [START POINT]
P [A(10)]

System Variables @ 3-7 I

9.2 I Shift coordinate variable

This variable specifies a shift coordinate number with a numeric constant or expression.

Format

Sn or S "["<expression>"]"

n: Shift numbercccoeeveennnn. 0to9
Each bracket in quotation marks ("[" "]") must be written. Brackets are not used to indicate

an item that may be omitted.

A shift number is expressed with an 'S' followed by a 1-digit number or an expression

surrounded by brackets ("[" <expression>"]").

Examples: S1
S[A]
S [BASE]
S [A(10)]

* The "shift coordinate range" for each shift number can be changed from the programming box.

I 3-8 @ Chapter 3 Variables

9.3

I Point element variable

M NOTE

e Hand system flags are only
valid on SCARA robots, and
the point data must be specified
in "mm" units.

e The hand system flag value
may be 0 (no designation),
1 (right-handed system) or 2
(left-handed system).

e X-arm and Y-arm rotation
information is only available in
software Ver.1.66M or higher.

e X-arm and Y-arm rotation
information is only available
on a R6YXTWS500 model
robot with "mm" units point
data. Attempting to use this
information on any other robot
model will result in the "5.37:
Specification mismatch" error,
and execution is stopped.

e For details regarding the
X-arm and Y-arm rotation
information, see Chapter 4 "3.
Point data format".

Specifies point data for each axis, hand system flag, or for the X-arm or Y-arm rotation information.

LOCx (<point expression>)

Values

Extracts the point-data-specified axis coordinates, hand system flag, X-arm rotation

Examples:

.. X,Y,Z,R,A,B (axis setting), F (hand system flag setting),

F1 (X-arm rotation information), F2 (Y-arm rotation

information).

information, and Y-arm rotation information, or changes the value.

A(1)=LOCX(P10)

—The X-axis data of P10 is assigned to array variable A(1).
LOCZ(P[A])=100.0

—The Z-axis data of P[A] is set to 100.0.
LOCF(P100)=1

—Changing the P100 hand system flag to a right-handed system

(The P100 point data must be in "mm" units)
LOCF1(P100)=1

—Changes the P100 X-arm rotation information to 1.

(The P100 point data must be in "mm" units)
LOCF2(P100)=1

—Changes the P100 Y-arm rotation information to 1.

(The P100 point data must be in "mm" units)
B=LOCX(WHERE)

—Assigns the current X-axis motor pulse value to array variable "B".
C(3)=LOCX(WHRXY)

—Assigns the current arm position's X-axis to array variable C(3).
D=LOCX(JTOXY(WHERE))
E=LOCX(XYTOJ(WHRXY))

* Because JTOXY is a command for handling a <point expression>, a "JTOXY(LOCx(WHERE))" or

"XYTOJ(LOCx(WHRXY))" command will result in an error.

System Variables @ 3-9 I

9.4 I Shift element variable

This variable is used with shift data for each element.

Format

LOCx (<shift expression>)

X: AXIS SEttNG .oovevvereeeieeiieiieninee. X,Y,ZR

Extracts the shift-data-specified axis coordinates, or changes the value.

Examples: A(1)=LOCX(S1)
—The X data of S1 is assigned to array variable A(1).
LOCR(S[A])=45.0
—The R data of S[A] is set to 45.0°.

9.5 I Parallel input variable

This variable is used to indicate the status of parallel input signals.

DIm ([b, S b])
DI (mb,+«+vsveresnenanncnns , mb)
m : port NUMbETccceevveuvennnnn. 0to7,10to 17,20 to 27
b : bit definitionc..ceceeveneeee. 0to7

If the bit definition is omitted, bits 0 to 7 are all selected.

Examples: A%=DI1()

—Input status of ports DI(17) to DI(10) is assigned to variable A%.
A 0 to 255 integer can be assigned to A%.

A%=DI5(7,4,0)
—Input status of DI(57), DI(54) and DI(50) is assigned to variable A%.
(If all above signals are 1(ON), then A%=7.)

A%=DI(27,15,10)
—Input status of DI(27), DI(15) and DI(10) is assigned to variable A%.
(If all above signals except DI(10) are 1 (ON), then A%=6.)

WAIT DI(21)=1
—Waits for DI(21) to change to 1(ON).

* When specifying multiple bits, specify them from left to right in descending order (large to small).

* A'0'is entered if there is no actual input board.

I 3-10 @ Chapter 3 Variables

9.6 I Parallel output variable

Specifies the parallel output signal or indicates the output status.

DOM ([b, =+ +vrrrrrnrrnrennes ,b])
DO (mb, -+ verrerensessnens , mb)

m : port number

b : bit definition
If the bit definition is omitted, bits 0 to 7 are all selected.

Examples: A%=D0O2()
—Output status of DO(27) to DO(20) is assigned to variable A%.
A%=D05(7,4,0)
—Output status of DO(57), DO(54) and DO(50) is assigned to variable A%.
(If all above signals are 1(ON), then A%=7.)
A%=D0(37,25,20)
—Output status of DO(37), DO(25) and DO(20) is assigned to variable A%.
(If all above signals except DO(20) are 1 (ON), then A%=6.)
DO3()=B%
—Changes to a status in which the DO(37) to DO(30) output can be indicated
by B%.
For example, if B% is "123": If a binary number is used, "123" will become
"01111011", DO(37) and DO(32) will become "0", and the other bits will
become "1".
DO04(5,4,0)=&B101
—DO(45) and DO(40) become "1", and DO(44) becomes "0".

* When specifying multiple bits, specify them from left to right in descending order (large to small).

» A'0'is entered if there is no actual input board.

System Variables @ 3-11 I

9.7 I Internal output variable

Specifies the controller's internal output signals and indicates the signal status.

MO ([b,+#+voveresnesesnnnns ,b])
MO (Ib,+ =+ vsverernsnesnsnns , mb)
m : port NUMbETcccvervenrenenen. 0to7,10to 17,20 to27
b : bit definitionccoe...... 0to7

« If the bit definition is omitted, bits 0 to 7 are all selected.

Internal output variables which are used only in the controller, can be changed and referenced.
These variables are used for signal communications, etc., with the sequence program.
Ports 0 and 1 are for dedicated internal output variables which can only be referenced (they

cannot be changed).

1. Port 0 indicates the status of origin sensors for axes 1 to 8 (in order from bit 0).
Each bit sets to '1' when the origin sensor turns ON, and to '0' when OFF.
2. Port 1 indicates the HOLD status of axes 1 to 8 (in order from bit 0).

Each bit sets to '1' when the axis is in HOLD status, and to '0' when not.

Bit 7 6 5 4 3 2 1 0
Port 0 Axis 8 Axis 7 Axis 6 Axis 5 Axis 4 Axis 3 Axis 2 Axis 1
Origin sensor statuses 0: OFF / 1: ON
Port 1 Axis 8 Axis 7 Axis 6 Axis 5 Axis 4 Axis 3 Axis 2 Axis 1
Hold status 0: RELEASE / 1: HOLD (Axis 1 is not used)

» Axes where no origin sensor is connected are always ON.

» Being in HOLD status means that the axis movement is stopped and positioned within the target point
tolerance while the servo is still turned ON.

¢ When the servo turns OFF, the HOLD status is released.

* Axes not being used are set to '1".

Examples: A%=MO2 ()
—Internal output status of MO(27) to MO(20) is assigned to variable A%.
A%=MO05(7,4,0)
—Internal output status of MO(57), MO(54)
and MO(50) is assigned to variable A%.
(If all above signals are 1 (ON), then A%=7.)
A%=MO0(37,25,20)
—Internal output status of MO(37), MO(25) and MO(20) is assigned to
variable A%.
(If all above signals except MO(25) are 1 (ON), then A%=5.)

* When specifying multiple bits, specify them from left to right in descending order (large to small).

I 3-12 @ Chapter 3 Variables

9.8 I Arm lock output variable

Specifies axis-specific movement prohibit settings.

LOMm ([by+=+vsveresnennseces ,b])
LO (mb,veveseereresnenecns , mb)
m : port NUMbETccevvrevennnenn 0
b : bit definitioncoeeuveeeenn. 0to7

« If the bit definition is omitted, bits O to 7 are all selected.

The contents of this variable can be output and referred to as needed.
There is only 1 port, and bits 0 to 7 respectively correspond to axes 1 to 8.

When this bit is ON, movement on the corresponding axis is prohibited.

Examples: A%=L0O0()

—Arm lock status of LO(07) to LO(00) is assigned to variable A%.

A%=L00(7,4,0)
—Arm lock status of LO(07), LO(04) and LO(00) is assigned to variable A%.
(If all above signals are 1 (ON), then A%=7.)

A%=L00(06,04,01)
—Arm lock status of LO(06), LO(04) and LO(01) is assigned to variable A%.
(If all above signals except LO(01) are 1 (ON), then A%=6.)

* When specifying multiple bits, specify them from left to right in descending order (large to small).

» Servo OFF to ON switching is disabled if an arm lock is in effect at even 1 axis.

* When performing JOG movement in the MANUAL mode, axis movement is possible at axes where an
arm lock status is not in effect, even if an arm lock status is in effect at another axis.

* When executing movement commands from the program, etc., the "12.3 XX.Arm lock" error will
occur if an arm lock status is in effect at the axis in question. (XX: arm lock enabled axis. Example:
M1 S1)

System Variables @ 3-13 I

9.9 I Timer output variable

This variable is used in the timer function of a sequence program.

TOM ([b++vevvreevesnsnnnnns ,b])
TO (mb,e+vverrrnernsnsnnns , mb)
m : port NUMbETccccververvenenen. 0
b : bit definitioncceeevennnn. 0to7

« If the bit definition is omitted, bits 0 to 7 are all selected.

The contents of this variable can be changed and referred to as needed.
Timer function can be used only in the sequence program. If this variable is output in a normal

program, it is an internal output.

For details regarding sequence program usage examples, refer to the timer usage examples given in Chapter
7 "4.2 Input/output variables".

Examples: A%=TOO0()

—Status of TO(07) to TO(00) is assigned to variable A%.

A%=T00(7,4,0)
—Status of TO(07), TO(04) and TO(00) is assigned to variable A%.
(If all above signals are 1 (ON), then A%=7.)

A%=T0(06,04,01)
—Status of TO(06), TO(04) and TO(01) is assigned to variable A%.
(If all above signals except TO(01) are 1 (ON), then A%=6.)

* When specifying multiple bits, specify them from left to right in descending order (large to small).

I 3-14 @ Chapter 3 Variables

9.10 I Serial input variable

This variable is used to indicate the status of serial input signals.

SIm ([« +vovervrrosesnsnnne ,b])
SI(mb,scceeeeecccceccecees , mb
m : port NUMbETccevvvivinnnne 0to7,10to 17,20 to 27
b : bit definitionccee.... Oto7

« If the bit definition is omitted, bits 0 to 7 are all selected.

Examples: A%=SI1()

—Input status of ports SI(17) to SI(10) is assigned to variable A%.

A%=S15(7,4,0)
—Input status of SI(57), SI(54) and SI(50) is assigned to variable A%.
(If all above signals are 1(ON), then A%=7.)

A%=S1(27,15,10)
—Input status of SI(27), SI(15) and SI(10) is assigned to variable A%.
(If all above signals except SI(10) are 1 (ON), then A%=6.)

WAIT SI(21)=1
— Waits until SI(21) sets to 1 (ON).

* When specifying multiple bits, specify them from left to right in descending order (large to small).

* A'0'is entered if there is no actual serial board.

System Variables @ 3-15 I

9.11 I Serial output variable

This variable is used to define the serial output signals and indicate the output status.

SOm ([b,eeeeeeecceeeeeeccens ,b])
SO (b, +veverevsnsnenenns , mb)

m : port number

b : bit definition
« If the bit definition is omitted, bits 0 to 7 are all selected.

Examples: A%=S02()

—Output status of SO(27) to SO(20) is assigned to variable A%.

A%=S05(7,4,0)
—Output status of SO(57), SO(54) and SO(50) is assigned to variable A%.
(If all above signals are 1(ON), then A%=7.)

A%=S0(37,25,20)
—Output status of SO(37), SO(25) and SO(20) is assigned to variable A%.
(If all above signals except SO(25) are 1 (ON), then A%=5.)

SO3()=B%
—Changes to a status in which the DO(37) to DO(30) output can be indicated

by B%.

For example, if B% is "123": If a binary number is used, "123" will become
"01111011", DO(37) and DO(32) will become "0", and the other bits will
become "1".

S04(5,4,0)=&B101
—DO(45) and DO(40) become "1", and DO(44) becomes "0".

* When specifying multiple bits, specify them from left to right in descending order (large to small).

» External output is unavailable if the serial port does not actually exist.

I 3-16 @ Chapter 3 Variables

9.12 I Serial word input

This variable indicates the status of the serial input word information.

SIW(m)

m : Port No. 2 to 15

The acquisition range is 0 (&H0000) to 65535 (&HFFFF).

Examples: A%=SIW(2)
—The input state from SIW (2) is assigned to variable A%.
A%=SIW(15)
—The input state from SIW (15) is assigned to variable A%.

* The information is handled as unsigned word data.

* '0'is input if the serial port does not actually exist.

9.13 I Serial double word input

This variable indicates the state of the serial input word information as a double word.

Format

SID(m)

m : Port No. 2, 4,6, 8, 10, 12, 14
The acquisition range is -1073741824 (&HC0000000) to 1073741823 (&H3FFFFFFF).

Examples: A%=SID(2)
—The input state from SIW (2) , SIW (3) is assigned to variable A%.
A%=SID(14)
—The input state from SIW (14), SIW (15) is assigned to variable A%.

 The information is handled as signed double word data.
* '0'is input if the serial port does not actually exist.
» An error will occur if the value is not within the acquisition range (&H80000000 to &HBFFFFFFF,
&H40000000 to &H7FFFFFFF.)
» The lower port number data is placed at the lower address.
For example, if STW(2) =&H2345,STW(3) =&H0001, then SID(2) =&H000123245.

System Variables @ 3-17 I

9.14 I Serial word output

Outputs to the serial output word information or indicates the output status.

Format

SOW(m)

m : Port No. 2 to 15

The output range is 0 (&H0000) to 65535 (&HFFFF).
Note that if a negative value is output, the low-order word information will be output after

being converted to hexadecimal.

Examples: A%=SOW(2)
—The output status from SOW (2) is assigned to variable A%.
SOW(15)=A%
—The contents of variable A% are assigned in SOW (15).
If the variable A% value exceeds the output range, the low-order word information will be
assigned.
SOW(15)=-255
—The contents of -255 (&HFFFFFFO1) are assigned to SOW (15).
-255 is a negative value, so the low-order word information (&HFFO1) will be

assigned.

» The information is handled as unsigned word data.

 Ifa serial board does not actually exist, the information is not output externally.

« If a value exceeding the output range is assigned, the low-order 2-byte information is output.

9.15 I Serial double word output

Output the status of serial output word information in a double word, or indicates the output status.

SOD(m)

m : Port No. 2, 4,6, 8, 10, 12, 14
The output range is -1073741824 (&HC0000000) to 1073741823 (&H3FFFFFFF).

Examples: A%=SOD(2)
—The input status from SOW (2) is assigned to variable A%.
SOD(14)=A%
—The contents of variable A% are assigned in SOD (14).

* The information is handled as signed double word data.

« Ifa serial board does not actually exist, the information is not output externally.

e An error will occur if the value is not within the output range (&H80000000 to &HBFFFFFFF,
&H40000000 to &H7FFFFFFF.)

* The lower port number data is placed at the lower address.
For example, if SOW(2) =&H2345,SOW(3) =&H0001, then SOD(2) =&H000123245.

I 3-18 @ Chapter 3 Variables

Bit Settings

Bits can be specified for input/output variables by any of the following methods.

B 1L Single bit

To specify only 1 of the bits, the target port number and bit number are specified in parentheses.

The port number may also be specified outside the parentheses.

Programming example: DOm(b)DOm(b)
Example: DO(25) Specifies bit 5 of port 2.
DO2(5)

I 2. Same-port multiple bits

To specify multiple bits at the same port, those bit numbers are specified in parentheses (separated by
commas) following the port number.

The port number may also be specified in parentheses.
Programming example: DOm(b,b,...,b) DO(mb,mb,...,mb)
Example: DO02(7,5,3) Specifies DO(27), DO(25), DO(23)
DO(27,25,23)

I 3. Different-port multiple bits

To specify multiple bits at different ports, the port number and the 2-digit bit number must be specified in

parentheses and must be separated by commas.

Programming example: DO(mb,mb,...,mb)
Example: DO(37,25,20) Specifies DO(37), DO(25), DO(20).

| 4. All bits of 1 port

To specify all bits of a single port, use parentheses after the port number. Methods 2 and 3 shown above
can also be used.

Programming example: DOm()
Example: DO2() Specifies all the DO(27) to DO(20) bits
—The same result can be obtained by the following:
DO(27,26,25,24,23,22,21,20)
or,
D02(7,6,5,4,3,2,1,0)

Bit Settings @ 3-19 I

Valid range of variables

Variable branching occurs as shown below.

11.1 I Valid range of dynamic variables

Dynamic variables are divided into global variables and local variables, according to their declaration

position in the program. Global and local variables have different valid ranges.

Variable Type Explanation

Global variables Variables are declared outside of sub-procedures (outside of program areas
enclosed by a SUB statement and END SUB statement). These variables
are valid throughout the entire program.

Local variables Variables are declared within sub-procedures and are valid only in these
sub-procedures.

11.2 I Valid range of static variables

Static variable data is not cleared when a program reset occurs. Moreover, variable data can be changed
and referenced from any program.

The variable names are determined as shown below (they cannot be named as desired).

Variable type Variable name

Integer variable SGIn (n: 0to 7)
Real variable SGRn (n: 0to 7)

11.3 I Valid range of dynamic array variables

Dynamic array variables are classified into global array variables and local array variables according to

their declaration position in the program.

Variable Type Explanation

Global variables Variables are declared outside of sub-procedures (outside of program areas
enclosed by a SUB statement and END SUB statement). These variables
are valid throughout the entire program.

Local variables Variables are declared within sub-procedures and are valid only in these
sub-procedures.

 For details regarding arrays, refer to Chapter 3 "5 Array variables".

» A variable declared at the program level can be referenced from a sub-procedure without being passed

along as a dummy argument, by using the SHARED statement (for details, refer to Chapter 8 "91
SHARED").

I 3-20 @ Chapter 3 Variables

Clearing variables

12.1 I Clearing dynamic variables

In the cases below, numeric variables are cleared to zero, and character variables are cleared to a null

string. The variable array is cleared in the same manner.

= When a program is edited.
= When program switching occurs (including SWI command execution).

= When program compiling occurs.

= When a program reset occurs.
= When dedicated input signal DI15 (program reset input) was turned on while the program was stopped
in AUTO mode.
= When either of the following was initialized in SYSTEM mode.
1. Program memory (SYSTEM>INIT>MEMORY>PROGRAM)
2. Entire memory (SYSTEM>INIT>MEMORY>ALL)
= When any of the following online commands was executed.
@RESET, @INIT PGM, @INIT MEM, @INIT ALL, @SWI

= When the HALT statement was executed in the program.

12.2 I Clearing static variables

In the cases below, integer variables and real variables are cleared to zero.

= When the following was initialized in SYSTEM mode.
Entire memory (SYSTEM>INIT>MEMORY>ALL)

= When any of the following online commands was executed.
@INIT MEM, @INIT ALL

Clearing variables @ 3-21 I

Chapter 4

Expressions and Operations

1 Arithmetic Operations..........ccoceeveeeiieeneeniieennenns 4-1
2 Character string Operationscceeeeeevveeenveennen. 4-4
3 Pointdata format.........ccocevienienineieeee, 4-5
4 DI/DO conditional expressions............cc.ceeeueenee. 4-6

Arithmetic operations

1.1 I Arithmetic operators
Operators Usage Example Meaning
+ A+B Adds AtoB
- A-B Subtracts B from A
* A*B Multiplies A by B
/ A/B Divides A by B
" A”B Obtains the B exponent of A (exponent operation)
- -A Reverses the sign of A
MOD A MOD B Obtains the remainder A divided by B

When a "remainder" (MOD) operation involves real numbers, the decimal value is rounded off to the

nearest whole number which is then converted to an integer before the calculation is executed. The

result represents the remainder of an integer division operation.

Examples: A=15MOD 2 — A=1(15/2=7....1)
A=17.34 MOD 5.98 — A=2(17/5=3....2)
1.2 I Relational operators

Relational operators are used to compare 2 values. If the result is "true", a "-1" is obtained. If it is "false", a

"0" is obtained.

Operators Usage Example Meaning

= A=B "-1"if A and B are equal, "0" if not.

<, >< A<>B "-1"if A and B are unequal, "0" if not.

< A<B "-1"if A is smaller than B, "0" if not.

> A>B "-1"if A is larger than B, "0" if not.

<=, =< A<=B "-1"if A is equal to or smaller than B, "0" if not.
>=, => A>=B "-1"if A is equal to or larger than B, "0" if not.
Examples: A=10>5 — Since 10 > 5 is "true", A =-1.

» When using equivalence relational operators with real variables and real arrays, the desired result may
not be obtained due to the round-off error.

Examples:ccoooevveieieieienne. A=2
B=SQR(A!)
IF A!=B!*B! THEN...
— In this case, A! will be unequal to B!*B!.

Arithmetic operations @ 4-1 I

1.3 I Logic operations

Logic operators are used to manipulate 1 or 2 values bit by bit. For example, the status of an I/O port can

be manipulated.

= Depending on the logic operation performed, the results generated are either 0 or 1.

= Logic operations with real numbers convert the values into integers before they are executed.

Operators Functions Meaning

NOT, ~ Logical NOT Reverses the bits.

AND, & Logical AND Becomes "1" when both bits are "1".

OR, | Logical OR Becomes "1" when either of the bits is "1".
XOR Exclusive OR Becomes "1" when both bits are different.

Examples: A%=NOT 13.05 — "-14"1is assigned to A% (reversed after being rounded off to 13).

Bit 7 6 S 4 3 y 1 0
13 0 0 0 0 1 1 0 1
NOT 13=-14 1 1 1 1 0 0 1 0

Examples: A%=3 AND 10 — "2"isassigned to A%

Bit 7 6 5 4 3 2 1 0
3 0 0 0 0 0 0 1 1
10 0 0 0 0 1 0 1 0
3AND10=4 0 0 0 0 0 0 1 0

Examples: A%=3 OR 10 — "11"is assigned to A%

Bit 7 6 5 4 3 2 | (1

3 0 0 0 0 0 0 1 1

10 0 0 0 0 1 0 1 0
30R10=11 0 0 0 0 1 0 1 1

Examples: A%=3 XOR 10 — "9"is assigned to A%

Bit 7 6 5 4 3 2 | 0

3 0 0 0 0 0 0 1 1

10 0 0 0 0 1 0 1 0
30R10=11 0 0 0 0 1 0 0 1

I 4-2 @ Chapter 4 Expressions and Operations

1.4 I Priority of arithmetic operation

Operations are performed in the following order of priority. When two operations of equal priority appear

in the same statement, the operations are executed in order from left to right.

Priority Rank Arithmetic Operation

1 Expressions included in parentheses

2 Functions, variables

3 ~ (exponents)

4 Independent "+" and "-" signs (monominal operators)

5 * (multiplication), / (division)

6 MOD

7 + (addition), - (subtraction)

8 Relational operators

9 NOT, ~ (Logical NOT)

10 AND, & (logical AND)

11 OR, |, XOR (Logical OR, exclusive OR)
1.5 I Data format conversion

Data format is converted in cases where two values of different formats are involved in the same operation.
1. When a real number is assigned to an integer, decimal places are rounded off.
Examples: A%=125.67 — A%=126

2. When integers and real numbers are involved in the same operation, the result

becomes a real number.
Examples: A(0)=125 * 0.25 — A(0)=31.25

3. When an integer is divided by an integer, the result is an integer with the remainder

discarded.

Examples: A(0)=100/3 — A(0)=33

Arithmetic operations @ 4-3 I

Character string operations

2.1 I Character string connection

Character strings may be combined by using the "+" sign.

SAMPLE

A$="OMRON"
B$="ROBOT"
C$="LANGUAGE"
D$="MOUNTER"
E$=AS$+" "+B$+" "+C$
F$=AS$+" "+D$

PRINT E$

PRINT F$

Results: OMRON ROBOT LANGUAGE
OMRON MOUNTER

2.2 I Character string comparison

Characters can be compared with the same relational operators as used for numeric values. Character
string comparison can be used to find out the contents of character strings, or to sort character strings into

alphabetical order.

= In the case of character strings, the comparison is performed from the beginning of each string, character
by character.

= [fall characters match in both strings, they are considered to be equal.

= Even if only one character in the string differs from its corresponding character in the other string, then
the string with the larger (higher) character code is treated as the larger string.

= When the character string lengths differ, the longer of the character strings is judged to be the greater

value string.
All examples below are "true".
Examples: "AA"<"AB"

"X&">|VX#N
"DESK"<"DESKS"

I 4-4 @ Chapter 4 Expressions and Operations

Point data format

[~ote

e The XYZRAB data format
is used for both the joint
coordinate format and the
Cartesian coordinate format.

e Plus (+) signs can be omitted.

e X-arm and Y-arm rotation
information is only available in
software Ver.1.66M onwards.

e X-arm and Y-arm rotation
information is not available
on any robot model except the
R6YXTW500.

There are two types of point data formats: joint coordinate format and Cartesian coordinate format.

Point numbers are in the range of 0 to 9999.

Coordinate Format Data Format Explanation
Joint coordinate + nnnnnnn This is a decimal integer constant of 7 digits
format or less with a plus or minus sign, and can be

specified from —6144000 to 6144000.
Unit: [pulses]

Cartesian coordinate =+ nnn.nn to = nnnnnnn This is a decimal fraction of a total of 7 digits
format including 2 or less decimal places.
Unit: [mm] or [degrees]

When setting an extended hand system flag for SCARA robots, set either 1 or 2 at the end of the data. If a

value other than 1 or 2 is set, or if no value is designated, 0 will be set to indicate that no hand system flag

is set.
Hand System Data Value
RIGHTY (right-handed system) 1
LEFTY (left-handed system) 2

On the REYXTW500 model robot, the X-arm and Y-arm movement range is extended beyond 360 degrees
(The movable range for both the X-arm and Y-arm is -225° to +225°).

Therefore, attempts to convert Cartesian coordinate data ("mm" units) to joint coordinate data (pulse units)
will result in multiple solutions, making the position impossible to determine.

In order to obtain the correct robot position and arm posture when converting to joint coordinates, X-arm
and Y-arm rotation information is added after the "mm" units point data's extended hand system flag.

The Cartesian coordinate data ("mm" units) is then converted to joint coordinate data (pulse units)

according to the specified X-arm and Y-arm rotation information.

To set extended X-arm and Y-arm rotation information at the R6YXTW500 model robot, a "-1", "0", or "1"

value must be specified after the hand system flag. Any other value, or no value, will be processed as "0".

Arm rotation information Data Value

"mm" — pulse converted angle data x (*1) range: -180° <x <= 180° 0
"mm" — pulse converted angle data x (*1) range: 180° < x <= 540° 1
"mm" — pulse converted angle data x (*1) range: -540° <x <= -180° -1

*1: The joint-coordinates-converted pulse data represents each arm's distance (converted to angular

data) from its mechanical origin point.

Point data format @ 4-5 I

- DI/DO conditional expressions

DI/DO conditional expressions may be used to set conditions for WAIT statements and STOPON options
in MOVE statements.

Numeric constants, variables and arithmetic operators that may be used with DI/DO conditional expressions
are shown below.

e Constant
Decimal integer constant, binary integer constant, hexadecimal integer constant
e Variables
Global integer type, global real number type, input/output type
e Operators
Relational operators, logic operators
e Operation priority

1. Relational operators
2.NOT, ~

3.AND, &

4. 0R, |, XOR

Examples: WALIT DI(31)=1 OR DI(34)=1
— The program waits until either DI31 or DI34 turns ON.

I 4-6 @ Chapter 4 Expressions and Operations

Chapter 5
Multi-tasking

1 OULINE. ..o 5-1
2 Task definition......c.cocevienienienieniecceeeeene 5-1
3 Task status and transitioncecceeeveenieniennne. 5-2
4 Multi-task program example.......c..ccccerveerienennne. 5-8
5 Sharing the data........ccccoovivieiiiieneeeeee, 5-8
6 Cautionary [tems.........ccoccevveriievienieneeie e 5-9

Outline

The multi-task function performs multiple processing simultaneously in a parallel manner, and can be

used to create programs of higher complexity. Before using the multi-tasking function, read this section
thoroughly and make sure that you fully understand its contents.

Multi-tasking allows executing two or more tasks in parallel. However, this does not mean that multiple
tasks are executed simultaneously because the controller has only one CPU to execute the tasks. In multi-
tasking, the CPU time is shared among multiple tasks by assigning a priority to each task so that they can

be executed efficiently.

= A maximum of 8 tasks (task 1 to task 8) can be executed in one program.

= Tasks can be prioritized and executed in their priority order (higher priority tasks are executed first).

= The priority level of task 1 is fixed at 32, while the priority of task 2 to task 8 can be set to any level
between 17 and 47.

= Smaller values have higher priority, and larger values have lower priority
(High priority: 17 to 47: low priority).

Task definition

A task is a set of instructions within a program which are executed as a single sequence. As explained
below, a task is defined by assigning a label to it.

1. Assign a label to the first line of the command block which is to be defined as a task.
2. Atthe Task 1 (main task) START statement, specify the label which was assigned at step 1 above.

Task Nos. are then assigned, and the program starts.

The task definition may call for 2 to 8 subtasks. Task 1 (main task) is automatically defined.

* Although all tasks are written within a single program, parallel processing occurs at each of the tasks.

SAMPLE

"MAIN TASK(TASK1)
START *IOTASK,T2 ++-vccceceeerece- *JOTASK is started as Task 2
*ST1:
MOVE P,P1,PO
IF DI(20)= 1 THEN
HALT
ENDIF
GOTO *ST
HALT
*SUB TASK(TASK2)
SOMAGRe 00000000000000000060066000000 Task 2 begins from here
IF DI(21)=1 THEN
DO(30)=1
ELSE
DO(30)=0
ENDIF
GOMO) ONIATIK coooc000000000000000000 Task 2 processing ends here
EXIT TASK

Outline @ 5-1 I

Task status and transition

There are 6 types of task status:

1. STOP status

A task is present but the task processing is stopped.
2. RUN status

A task is present and the task processing is being executed by the CPU.
3. READY status

A task is present and ready to be allocated to the CPU for task processing.
4. WAIT status

A task is present and waiting for an event to begin the task processing.
5. SUSPEND status

A task is present but suspended while waiting to begin the task processing.
6. NON EXISTEN status

No tasks exist in the program. (The START command is used to perform a call).

Task state transition

CPU assignment

‘ Wait for CPU assignment l

Resume Cancel waiting Wait condition

SUSPEND READY 4— WAIT 4— -

Suspend
Stop Stop Start Stop Stop

STOP)

Delete 1 t Call
(NON EXISTEN)

3.1 I Starting tasks

When the program is being executed in the AUTO mode, Task 1 (main task) is automatically selected and
placed in a RUN status when the program begins. Therefore, the delete, forced wait, forced end commands,
etc., cannot be executed for Task 1.

Other tasks (2 to 8 subtasks) will not be called simply by executing the program. The START command
must be used at Task 1 in order to call, start, and place these tasks in a READY status.

¢ The RESTART, SUSPEND, EXIT TASK and CUT commands cannot be executed at Task 1.

I 5-2 @ Chapter 5 Multi-tasking

3.2 I Task scheduling

Task scheduling determines the priority to be used in allocating tasks in the READY (execution enabled)
status to the CPU and executing them.

When there are two or more tasks which are put in the READY status, ready queues for CPU allocation are
used to determine the priority for executing the tasks. One of these READY status tasks is then selected
and executed (RUN status).

Only tasks with the same priority ranking are assigned to a given ready queue. Therefore, where several
tasks with differing priority rankings exist, a corresponding number of ready queues are created. Tasks
within a given ready queue are handled on a first come first serve (FCFS) basis. The task where a READY
status is first established has priority. The smaller the number, the higher the task priority level.

Task scheduling
Priority level
I The head of the task with the highest priority
High Task 1 is put in RUN status.
L
Task 1] Task 3 1 Task 4 Ready queue 1
33
Task 5 Ready queue 2
34
& Task 2 Ready queue 3
Low "

Order in which tasks are put in READY status.

A RUN status task will be moved to the end of the ready queue if placed in a READY status by any of the
following causes:
1) A WAIT status command was executed.

M NOTE 2) The CPU occupation time exceeds a specified time.

* When the prescribed CPU 3) A task with a higher priority level is put in READY status.
occupation time elapses,

the active command is Ready queue

ended, and processing

moves to the next task. .
However, if there are no other [RUN status READY status
tasks of the same or higher / / \
priority (same or higher ready , ,
H]]
queue), the §ame task will be - Task 1 L Task3 b Task4
executed again. | |
Moves to the end of the ready queue, and Task 3 is executed.
i i
— Task 1 — Task 3 — Task4 Task 1
[} [}
Moves to the end of the ready queue, and Task 4 is executed.
i i
Task 3 —1 Task 4 — Task 1 — Task3
[} [}

Execution sequence

Task status and transition @ 5-3

33 I Condition wait in task

A task is put in the WAIT status (waiting for an event) when a command causing a wait status is executed
for that task. At this time, the transition to READY status does not take place until the wait condition is

canceled.

1. When a command causing a wait status is executed, the following transition happens.
= Task for which a command causing a wait status is executed — WAIT status

= Task at the head of the ready queue with higher priority — RUN status

* For example, when a MOVE statement (a command that establishes a WAIT status)

is executed, the CPU sends a "MOVE" instruction to the driver, and then waits for a
"MOVE COMPLETED" reply from the driver. This is a "waiting for an event" status.
In this case, a WAIT status is established at the task which executed the MOVE command, and that task
is moved to the end of the ready queue. A RUN status is then established at the next task.

M NOTE 2. When an event waited by the task in the WAIT status occurs, the following status transition
« If multiple tasks are in WAIT takes place by task scheduling.
status awaiting the same = Task in the WAIT status for which the awaited event occurred — READY status
COl’ldlt.IO'n event, or different However, if the task put in the READY status was at the head of the ready queue with the highest
condition events occur L. . .
simultaneously, all tasks for priority, the following transition takes place.
which the waited events occur 1) Task that is currently in RUN status — READY status

are put in READY status. 2) Task at the head of the ready queue with higher priority — RUN status

* In the above MOVE statement example, the task is moved to the end of the ready queue. Then, when a
"MOVE COMPLETED" reply is received, this task is placed in READY status.

Tasks are put in WAIT status by the following commands.

Event Command

Wait for axis Axis movement MOVE MOVEI
movement to command DRIVE DRIVEI
complete PMOVE SERVO
WAIT ARM
Parameter ACCEL ARCH
command AXWEIGHT DECEL
OUTPOS TOLE
ORGORD WEIGHT
Robot status change CHANGE SHIFT
command LEFTY RIGHTY
ASPEED SPEED
Wait for time to elapse DELAY, SET (Time should be specified.), WAIT (Time
should be specified.)
Wait for condition to be met WAIT
Wait for data to send or to be received SEND
Wait for print buffer to become empty PRINT
Wait for key input INPUT

» The tasks are not put in WAIT status if the event has been established before the above commands are
executed.

I 5-4 @ Chapter 5 Multi-tasking

34 I Suspending tasks (SUSPEND)

The SUSPEND command temporarily stops tasks other than task 1 and places them in SUSPEND status.
The SUSPEND command cannot be used for task 1.

When the SUSPEND command is executed, the status transition takes place as follows.

m Task that executed the SUSPEND command — RUN status
= Specified task — SUSPEND status

Suspending tasks (SUSPEND)

/‘\ SUSPEND

Task 1 — Task2 |1 Task3 » Task 1 Task 3
RUN READY READY RUN READY
| v Task2
> el
The task is placed in a SUSPEND status, SUSPEND

and is removed from the ready queue.

3.5 I Restarting tasks (RESTART)

Tasks in the SUSPEND status can be restarted with the RESTART command. However, the RESTART
command cannot be used for task 1.

When the RESTART command is executed, the status transition takes place as follows.

= Task for which the RESTART command was executed — RUN status
= Specified task — READY status

Restarting tasks (RESTART)

RESTART
Task 1 f— Task3 » Task 1 f— Task3 p— Task2
RUN READY RUN READY READY
E Task 2 5 ‘
SUSPEND The task is placed in a READY status,

and is assigned to a ready queue.

Task status and transition @ 5-5 I

3.6 I Deleting tasks

J Task self-delete (EXIT TASK)

Tasks can delete themselves by using the EXIT TASK command and set to the NON EXISTEN (no task
registration) status. The EXIT TASK command cannot be used for task 1.
When the EXIT TASK command is executed, the status transition takes place as follows.

= Task that executed the EXIT TASK command — NON EXISTEN status
= Task at the head of the ready queue with higher priority — RUN status

Task self-delete (EXIT TASK)

r EXIT TASK

Task 2 —— Task3 |— Task4 » Task 3 —— Task4
RUN READY READY Y 4 . W RUN READY
| 0 Task2))
> :

The task is placed in a NOT EXISTEN status,

NOT EXISTEN
and is removed from a ready queue.

| Other-task delete (CUT)

A task can also be deleted and put in the NON EXISTEN (no task registration) status by the other tasks
using the CUT command. The CUT command cannot be used for task 1.

When the CUT command is executed, the status transition takes place as follows.

= Task that executed the CUT command — RUN
= Specified task — NON EXISTEN

Other-task delete (CUT)

m CUT

Task2 f—1 Task3 [Task4 » Task 2 Task 4
RUN READY READY RUN Y 4 . W READY
| ¢+ | Task 3 E
> LN L
The task is placed in a NOT EXISTEN status, NOT EXISTEN

and is removed from the ready queue.

» If a SUSPEND command is executed for a WAIT-status task, the commands being executed by that
task are ended.

¢ None of these commands can be executed for Task 1.

I 5-6 @ Chapter 5 Multi-tasking

3.7 I Stopping tasks

All tasks stop if any of the following cases occurs.

1. HALT command is executed. (stop & reset)
The program is reset and all tasks other than task 1 are put in the NON EXISTEN status.
Task 1 is put in the STOP status.
2. HOLD command is executed. (temporary stop)
All tasks are put in the STOP status. When the program is restarted, the tasks in the STOP
status set to the READY or SUSPEND status.
3. STOP key on the programming box is pressed or the interlock signal is cut off.
Just as in the case where the HOLD command is executed, all tasks are put in the STOP
status. When the program is restarted, the tasks in the STOP status set to the READY status (or,
the task is placed in a SUSPEND status after being placed in a READY status).
4. When the emergency stop switch on the programming box is pressed or the emergency stop
signal is cut off.
All tasks are put in STOP status. At this point, the power to the robot is shut off and the servo
sets to the non-hold state.
After the canceling emergency stop, when the program is restarted, the tasks in STOP status
are set to the READY or SUSPEND status. However, a servo ON is required in order to restart the

robot power supply.

than 1., then each task is processed from the status in which the task stopped. This holds true when the

power to the controller is turned off and then turned on.

Task status and transition @ 5-7 I

“ Multi-task program example

Tasks are executed in their scheduled order. An example of a multi-task program is shown below.

SAMPLE

*TASK1

START *ST2,T2

START *ST3,T3

*ST1:

DO(20) = 1

WAIT MO(20) = 1

MOVE P,P1,P2,7=0

IF MO(21)=1 THEN *FIN

GOTO *ST1

*FIN:

CUT T2

HALT

*TASK?2

KQTD: eevecacosacnsccaasoaasonasnas Task 2 begins here.
IF DI(20) = 1

MO(20) = 1

DELAY 100

ELSE

MO(20) =0

ENDIF

GOTO *ST2

EXIT TASK EIldS here_
’TASK3 Task 3 begins here.
*ST3:

IF DI(21) = 0 THEN *ST3

IF DI(30) = 0 THEN *ST3

IF DI(33) = 0 THEN *ST3

MO(@21) = 1

EXIT TASK Ends here_

Sharing the data

Point data, shift coordinate definition data, hand definition data, pallet definition data, all global variables
and other variables are shared between all tasks.
Execution of each task can be controlled while using the same variables and data shared with the other

tasks.

« In this case, however, use sufficient caution when rewriting the variable and data because improper

changes may cause trouble in the task processing.

5-8 @ Chapter 5 Multi-tasking

n Cautionary Items

A silence stop may occur if subtasks are continuously started (START command) and ended (EXIT TASK

command) by a main task in an alternating manner.

This occurs for the following reason: if the main task and subtask priority levels are the same, a task
transition to the main task occurs during subtask END processing, and an illegal task status then occurs
when the main task attempts to start a subtask.

Therefore, in order to properly execute the program, the subtask priority level must be set higher than that
of the main task. This prevents a task transition condition from occurring during execution of the EXIT
TASK command.

In the sample program shown below, the priority level of task 1 (main task) is set as 32, and the priority

level of task 2 is set as 31 (the lower the value, the higher the priority).

SAMPLE

FLAG1 =0

*MAIN_TASK:

IF FLAG1=0 THEN

FLAGI = 1

START *TASK2,T2,31 -+« -~ Task 2 (*TASK2) is started at the

priority level of 31.
ENDIF
GOTO *MAIN_TASK

*TASK2:
DRIVE(1,P1)
WAIT ARM(1)
DRIVE(1,P2)
WAIT ARM(1)
FLAG1 =0
EXIT TASK
HALT

Cautionary ltems @ 5-9 I

Chapter 6

Sequence function

Executing a sequence program

A WO N =

Sequence function..........ccccveeeveeecieeecieeceeeeenn

Creating a s€quUence program..........cceceevveerverneenn

Creating a sequence program..............cceeceevemeene

Sequence function

M NOTE

e The "DO12: Sequence program
running" dedicated signal
output occurs while a sequence
program is being executed.

Besides normal robot programs, this YRC controller can execute high-speed processing programs (sequence
programs) in response to the robot input/output (DI, DO, MO, LO TO, SI, SO) signals. This means that
when a sequence program is running, it is running simultaneously with the robot program (2 programs are
running).

When the dedicated "DI10: sequence control input" is ON, the sequence program runs according to its own
cycle in the AUTO or MANUAL mode, regardless of robot program starts and stops.

The sequence program starts running as soon as the controller is turned on (normally, the MANUAL
mode), so it can be used to monitor the status of sensors, push button switches, solenoid valves, etc.

The sequence program can be written in the same robot language used for robot programs. This eliminates
the need to learn a new language and making it easier to program.

General-purpose outputs are not reset while the sequence function is running, even if a program reset
is executed. However, a setting can be specified which allows these outputs to be reset at the sequence
program compiling operation. For details regarding settings required to execute a sequence program, see

section "3 Executing Sequence Programs".

Creating a sequence program

2.1

I Programming method

The following explains how to create a sequence program in order to make use of the sequence function.
First, enter "PROGRAM" mode and create a file with the file name "SEQUENCE". The controller

automatically recognizes that a file with this name is a sequence program.

| Naming a sequence program file

PROGRANMBRRN <TEST10 >
No. Name Line Byte RW/RO
TEST10 12 145 RW
2 LOCATE20 25 320 RW

—

T Enter program name >SEQUENCE

J

Next, input a program. This is no different from the standard robot program creation method. Commands

which can be input are explained later in this manual.

Creating a sequence program

<SEQUENCE>
|

1 ' 2 3 I

1) AND DI 22
3) OR DI (22)

)
36) OR DI (25)) AND DI (2
OR DI (27)

mhww!

Sequence function @ 6-1 I

2.2 I Compiling

After editing the program, it must be compiled as a sequence program. Compiling is performed in the same
way as for robot programs. Press the F5 key on the highest-level screen in "PROGRAM" mode.

Sequence program

<SEQUENCE>
1 f 2 f 3 f
AND DI (22)
OR DI (22)

) OR DI (25)) AND DI (2
(30) OR DI (27)

| CEEE O

U‘|-‘>(}JN!

A check message appears asking if you want to compile the sequence program. Press the F4 key to compile
the program. To cancel this compiling, press the F5 key. The display changes to the compiling screen for
normal robot programs.

Press the F4 key to compile the sequence program.

Compile the sequence program before compiling the main program.

Compiling the sequence program

HNOIERV>COMP | LE <SEQUENCE>
13—
AND DI (22)
OR DI (22)

) OR DI (25)) AND DI (2
(30) OR DI (27)

T Compile for SEQUENCE OK?NIEHEEE T

U‘|-‘>WN!

If there is a syntax error in the program, an error message appears and the program will be listed from the

line with the error When the compiling ends without any error, the program will be listed from its first line.

Compiling error

PROGRAM <SEQUENCE>
—5. 1:Syntax error 2 | 3 f
MO (31) =~MO (30) ‘AB

4 DO (21) =MO (36) OR DI (27)

5 DO (30) =MO (30) OR DI (27)

6 DO (25) =DI (26) AND DO (32)

7 DO (30) =MO (30) OR DI (27)

I 6-2 @ Chapter 6 Sequence function

» The sequence execution program is erased and the letter "s" disappears in the following cases. In these

cases the sequence function cannot be used in "UTILITY" mode.

1. When the sequence program was erased

2. When the sequence program was edited

3. When normal robot program compiling was performed for the sequence program
(The same processing occurs even if the mode is changed to AUTO while in the SEQUENCE
program is selected.)

4. Program data was initialized.

5. A "9.39: Sequence object destroyed.

When you display the directory after the compiling the sequence program, a letter "s" appears to the
left of the program name "SEQUENCE". This means that the sequence program has been compiled
successfully and is ready for use.

Sequence execution program after compiling

MNOIEYNI>D | R <TEST10 >
Name Line Byte RW/RO

1 TEST10 12 145 RW

2 LOCATE20 25 320 RW

3 BSEQUENCE 8 141 RW

T I

Creating a sequence program @ 6-3 I

Executing a sequence program

The following conditions must be satisfied to execute a sequence program. If any of these conditions is not

met, the sequence program cannot be executed.

The sequence execution program has been created by compiling.
2. The sequence function is enabled in "UTILITY" mode.

(For details regarding the UTILITY mode, refer to the controller manual.)
3. The external sequence control input (DI10) contact is closed.

The current operation mode is "MANUAL" or "AUTO".

When all of the above conditions are met, the sequence program can now be executed. While the program

is running, the letter "s" will appear at the left end of the second line of the screen.

Sequence program execution in progress

MANUAL] 50% [MG] [SOHOJ]
S

Current position

M1= 0 M2= 0 *xM3= 0
*M4= 0

T T O — el

For details regarding the UTILITY mode setting procedure, refer to the controller manual.

3.1 I Sequence program STEP execution

The sequence program may be executed line by line while checking one command line at a time.

To do this, press the F5 key on the compile screen. Sequence program compiling is canceled and the
normal robot compile screen then appears.

Press the F4 key to compile and create a normal execution program. Then, execute this program with the
STEP statement in "AUTO" mode to check the operation.

Sequence program STEP execution

l 5 DO (30) =MO (30) OR DI (27)

T compile for SEQUENCE 0K S [T prcs v ey

¥

=

MOICYNY>COMP | LE <SEQUENCE>
} f 1 f 2 f 3 I
DO (20) =DI (21) AND DI (22)
2 MO (30) =DO (23) OR DI (22)
3 MO (31) =~MO (30)
4 DO (21)= (DI (36) OR DI (25)) AND DI (2
5 DO (30) =MO (30) OR DI (27)
T Compile program OK? YES ET Press the F4 key.

I 6-4 @ Chapter 6 Sequence function

“ Creating a sequence program

When creating a sequence program, you may use only assignment statements comprised of input/output

variables and logical operators. An error will occur during compiling if any statement other than assignment

statements is used in the program, and the compiling cannot be completed.

4.1 I Assignment statements

Format

<output variable =<expression>

<internal auxiliary output variable>
<arm lock output variable>
<timer output variable>

<EXPIESSION™ ..ovveveeeieveeerenenens Any one of the following can be used.
« Parallel input/output variables
* Internal auxiliary output variables
* Arm lock output variables
* Timer output variables
« Serial input/output variable

* The logic operation expression shown above

4.2 I Input/output variables

Each variable must be specified in a 1-bit format

« Correct examples DO(35)
MO(24)
DI(16)

« Incorrect examples DO(37, 24)
DI3(4)
MO3()

@ Parallel input variables

Format

DI(mb) i ey MTTnlE 0 e e 008000000000 00000 0to7,10to 17,20 to 27
e s leBiafiiem o cooco0000000000000000 0to7

These variables show the status of the parallel input signal.

@ Parallel output variables

DO(mb) m: Port number « =+ s v eveeeeceetenn 0to7,10to 17,20 to 27
b: blt deﬁnition O0to7

A parallel output is specified, or the output status is referenced. Ports 0 and 1 are for referencing

only, and no outputs can occur there.

Creating a sequence program @ 6-5 I

@ Internal output variables

MO(mb) iimg POV MUImISIEIF © 0 ©0°00000000000000000 0to7,10to 17,20 to 27
b: bitdefinition =c+*sccveeceecceeccens Oto7

These variables are used within the controller and are not output externally. Ports 0 and 1 are for

referencing only, and no outputs can occur there.

@® Arm lock output variables

Lo(mb) m: pOrt number 0
b: bit definition *+++eeccssooeccacscons 0to7

These variables are used to prohibit the arm movement. Movement is prohibited when ON. LO(00) to

LO(07) corresponds to arm 1 to arm 8.

@ Timer output variables

Format

TO(mb) I POTE NUMbEE * + =+ v s svnssnnnsnnnns 0
b: bit definition =+ «++cceevseoocccncs 0to7

There are a total of 8 timer output variables: TO(00) to TO(07). The timer of each variable is defined by
the timer definition statement TIMOO to 07.

@ Serial input variables

SI(mb) I8 POTHi MLImISIEE 00 ° 000 0000000000000000 0to7,10to 17, 20 to 27
b: bitdefinition = c++ccceeeceecccccccns Oto7

Indicates a serial input signal status. Only referencing can occur. No settings are possible.

@ Serial output variables

SO(mb) i @i IiElpEr @ 00 ee00e0080000000000 0to7,10to 17,20 to 27
e s defiaisiom ©ocooc0000000000000000 0to7

Sets or references a serial output signal status. Ports 0 and 1 are for referencing only, and no outputs can

occur there.

6-6 @ Chapter 6 Sequence function

I Timer example

SAMPLE

MINMI02 = 25010 cccocoooccoocoooocoooc0000a Timer 02 is set to 2.5 seconds.
MOY(2)) = IDI([23)) coccoccoooocooanoc00000000 Timer starts when DI(23) switches ON.

* When DI(23) is ON, after 2.5 seconds, TO(02) is set ON.
» When DI(23) is OFF, TO(02) is also OFF.
e When DI(23) isn’t ON after 2.5 second or more, TO(02) does not change to ON.

Timer usage example: Timing chart

DI(23) ‘ |

E Il.6secI
! 2.5sec
TO(02) 4|_|
4.3 I Timer definition statement

Format

TIMmb=<time> m: Port number--c-cccecceccece.e 0
b: bit definition === eeeeeeeeen- 0to7

Values <HME™ oo 100 to 999,900msec (0.1 to 999.9 second)

[Values

The timer definition statement sets the timer value of the timer output variable. This definition
statement may be anywhere in the program.
When the timer definition statement is omitted, the timer setting value of the variable is 0.
TIMOO to 07 correspond to the timer output variables TO(00) to (07).

However, since the units are set every 100msec, values less than 99msec are truncated.

4.4 I Logical operators
Operators Functions Meaning
NOT, ~ Logical NOT Reverses the bits.
AND, & Logical AND Becomes "1" when both bits are "1".
OR, | Logical OR Becomes "1" when either of the bits is "1".

Creating a sequence program @ 6-7 I

4.5 I Priority of logic operations

Priority Ranking Operation Content

1 Expressions in parentheses
2 NOT, ~ (Logical NOT)

3 AND, & (Logical AND)

4 OR, | (Logical OR)

@® Example with a ladder statement substitution

SAMPLE

DO(23)=DI(16)&DO(35)
MO(34)=DO(25) | ~DI(24)
DOB31)=(DI(20) | DO(31))&~DI(21)

Ladder diagram

DI(16) DO(35) DO(23)
1 I | I O

1 I 1 I \J
DO(25) MO(34)
] L)

1 I \ %
~DI(24)

/|

DI(20) ~DI(21) DO(32)
i » O
DO(31) (Self-hold circuit)

i |

NOT cannot be used prior to the first parenthesis " (" or on the left of an expression. For example, the
following commands cannot be used.
*DO(21)=~(DI(30) | DI(32))
~DO(30)=DI(22)&DI(27)
» Numeric values cannot be assigned on the right of an expression.
*MO(35)=1
*DO(26)=0
 There is no need to define a "HALT" or "HOLD" statement at the end of the program.
e The I/O and internal auxiliary output variables used in sequence programs are shared with robot
programs, so be careful not to make improper changes when using the same variables between them.

4.6 I Sequence program specifications
Commands Logical NOT, AND, OR
/0 Same as robot language
Program capacity 4096 bytes (A maximum of 512 variables can be specified.)
Scan time 10 to 30ms depending on the number of steps (This changes automatically.)

I 6-8 @ Chapter 6 Sequence function

Chapter 7
Robot Language Lists

How to read the robot language table

Command list in alphabetic ordercccceevvveenrnnnen.
Function SpecifiC.......ccccuveviiieiiiieiiecieeee e
Functions: in alphabetic order............cccccceevvieniennnnnns
Functions: operation-specificcccceveercveeerreeennnnnn
1 ABS .
2 ABSINIT ...t
3 ABSRPOS.....cciiiiiiie
4 ABSRST ..o
5 ACCEL..coiiiiiiiiieiceeeeeeeecseeene
6 ARCH ..ot
7 ARMOCND ...ttt
8 ARMTYPE ..ot
9 ATN e
10 ASPEED ..ot
11 AXWGHT ..o
12 CALL ..ot
13 CHANGE ..ot

N
Q
s
Q
FU
z

15 CHRS ..o 7-33

16 COS e 7-34
17 CURTRQ..c.eeiiiiiieiiiieieieieeseeeeesieeee 7-34
18 CUT e 7-35
19 DATES ..o 7-36
20 DECEL...coiiiiiiiiieeeeeeeeeee e 7-37
21 DECLARE ..ot 7-38
22 DEF FN ..ottt 7-40
23 DEGRAD ..ot 7-41
24 DELAY ..ottt 7-42
25 DI e 7-43
26 DIST it 7-44
27 DIM ..ottt 7-45
28 DO 7-46
29 DRIVE ..ot 7-47
30 DRIVEI ..ot 7-55
31 END SELECT ..ottt 7-60
32 END SUBA....ooiiiiieieeeeeeeee 7-61
33 ERR/ERL ...ooviiiiiiiiiiiieieeeeeeeee 7-62
34 EXIT FOR...oooiiiiiiiieieeeeeee 7-63
35 EXIT SUB....ooiiiiiiiiteeeeeeeeeee 7-64
36 EXIT TASK oo 7-65
37 FOR to NEXT ..ooiiiiieieeieeeeee 7-66
38 GOSUB to RETURN.......cocceiiiiiiiiieieene 7-67
39 GOTO .o 7-68
40 HALT oo 7-69
41 HAND .o 7-70
42 HOLD ..o 7-73
43 T e 7-74
44 INPUT ..o 7-76
45 INT e 7-77
46 JTOXY oottt 7-78
47 LABEL Statement...........ccccoceeveerienieniennnene. 7-79
48 LEFTS ..o 7-80
49 LEFTY oo 7-81

50 LEN e 7-82

LO oo 7-86
LOCK it 7-87
LSHIFT ..ot 7-89
MCHREFccciiiiiiiiiiceeee, 7-90
MIDS ..o 7-91
MO i 7-92
MOVE ... 7-93
MOVEI ..o, 7-109
OFFLINEcccooiiiiiiiiiiiiice, 7-114
ORD ..ottt 7-115
ON ERROR GOTOccccovviiiiiiiiiins 7-116
ON to GOSUB......c..ooiiiiiiiiiiiciccicees 7-117
ON t0 GOTO....cooiiiiiiiiiieieeceece 7-118
ONLINE......ccoiiiiiiiiiceicccee 7-119
ORGORD.....cciiiiiiiiiicccccee 7-120
ORIGIN....cocoiiiiiiiiiiiiice 7-121
OUT e 7-122
OUTPOS ..., 7-123
PATH ...cooiiiiiiiice 7-125
PATHEND.......cccooiiiiiiiiiiiic, 7-131
PATH SETccoiiiiiiiiiiieeieee 7-132
PATH STARTcccoiiiiiiiiiiiiiiic, 7-134
PDEF ..., 7-135
PMOVE.....ccoiiiieeeceeee 7-136
Pio 7-140
PPNT ... 7-142
PRINT ...ccooviiiiiiiii 7-143
RADDEG.....cccccociiiiniiiiiiinieiceecee 7-144
REM ..o, 7-145
RESET ..ot 7-146
RESTARTccooiiiiiiiiiiiiiiicic, 7-147
RESUMEccciiiiiiiiiiieicce, 7-148
RETURN. ..ot 7-149
RIGHTS .o 7-150

RIGHTY .ot 7-151

87 RSHIFTcooiiiiiiiiiiiiiicc, 7-152

88 ST 7-153
89 SELECT CASE......cccoiiiiiiiiiiiiiiiies 7-154
920 SEND ..ottt 7-155
91 SERVO ..ot 7-157
92 SET .ot 7-158
93 SHARED....cccoiiiiiiiiniiiiicneccceeees 7-159
94 SHIFT..c.oiiiiiiiiiiiiiiiicccccees 7-160
95 SIN Lo 7-161
96 SO o 7-162
97 SPEED ..ottt 7-163
98 START.....ocviiiiiiiiiiiiii, 7-164
99 STRE oo 7-165
100 SQR .o 7-166
101 SUB to END SUB......cccociviiiiiiiiiiiiinns 7-167
102 SUSPEND......cooiiiiiiiiiinieeeicecceicns 7-169
103 SWIL ..o, 7-170
104 TAN oo 7-171
105 TCOUNTERccciiiiiiiiiiiiiiiiiici, 7-172
106 TIMES ... 7-173
107 TIMER ..., 7-174
108 TO o 7-175
109 TOLE ..o, 7-176
110 TORQUEccoiiiiiiiiiiiinicicccce 7-177
111 TRQSTS .o 7-179
112 TRQTIME.....coooiiiiiiiiiiiiiicice 7-180
113 VAL ..o, 7-182
114 WAIT ..o, 7-183
115 WAIT ARM....ccooiiiiiiiniiicinicecceeee, 7-184
116 WEIGHT ..., 7-185
117 WEND ... 7-186
118 WHERE ... 7-187
119 WHILE to WEND........cccoooiiiiiiiiiiie 7-188
120 WHRXY ..o 7-189
121 XYTOJ oo 7-190

122 CSYSFLG ..ot 7-190

How to read the robot language table

The key to reading the following robot language table is explained below.

(M @ 3) “) ®)
\ \ | \ \

Function Conditions Direct

DIM 27 Declares the array variable name and the

6 X Command
number of elements.

(1) No.

Indicates the Item No. where this robot language is explained in detail.

Example of "No." column

No.

DIM

Declares array variable

DIM <array definition> [, <array definitions, -]

<name> [| % |] (<constant> [, <constant> [, <constant>]])
1

$

@ <constant> ...occcercrcee Aty subscript: 0 to 32,767 (positive integer)

GIIIEED) Directly declares the name and length (number of elements) of an array variable. A
maximum of 3 dimensions may be used for the array subscripts. Multiple arrays can
be declared in a single line by using comma () breakpoints to separate the arrays.

« Array subscripts can be "0 to a specified value', with their total number being the <constant> + 1.
* A*9.31: Memory full” error may occur depending on the size of each dimension defined in an
array.

SAMPLE

DT G (1)) cososeseosesossesossazos Defines a integer array
variable A% (0) to A% (10).
(Number of elements: 11).

DIM B(2,3,4) eeeeeereencienccnnes Defines a real array variable
B (0, 0, 0) to B (2, 3, 4).
(Number of elements: 60) .

DIM C%(2,2) ,D! (10) ceeveeceeere Defines an integer array C%
(0,0) to C% (2,2) and a real
array D! (0) to D! (10).

(2) Function
Explains the function of the robot language.
(3) Condition

Lists the conditions under which command execution is enabled.

Condition 1: ~ Commands that can be executed by both direct commands and online commands.
Condition 2: In addition to Condition 1, commands that execute task 1 (main task) only.
Condition 3: In addition to condition 1, commands containing operands that cannot be executed by

direct commands or online commands.
Condition 4: In addition to condition 1, commands which are executed after positioning is completed.
Condition 5: MOVE L and MOVE C can be executed by both direct commands and online
commands, although they are executed after positioning is completed.
The STOPON option cannot be executed by direct commands and online commands.

Condition 6: Commands that cannot be executed by direct commands and online commands.

Regarding robot languages which can be used as both commands and functions, the "execution
enabled" conditions for a "command execution" may differ from those for a "function execution".
In such cases, the respective conditions for the command and function are divided by a slash mark (/).
For example, if condition 4 is applies for a "Command", but there are no conditions for the

"Function", this would be expressed as follows: 4/-

How to read the robot language table @ 7-1

(4) Direct
If "Q" is indicated at this item, both direct commands and online commands can be used.

 Direct commands are input directly from the programming box while in the AUTO mode, and are used
to perform temporary operations. For details, refer to the controller manual.

(5) Type
Indicates the robot language type as "Command" or "Function".
When a command is used as both a "Command" and "Function", this is expressed as follows: Command/

Function

I 7-2 @ Chapter 7 Robot Language Lists

- Command list in alphabetic order

No. Command Function Condition Direct Type
A
1 ABS Acquires the absolute value of a specified value. - - Functions
2 | ABSINIT Resets the current position of a specified main group axis. 4 O Command Statements
ABSRPOS Acquires the machine reference of the specified main - - Functions
group axis. (Valid only for axes where the return-to-origin
method is set as "mark method".)
4 ABSRST Executes a return-to-origin at the robot absolute motor 4 Command Statements
axes.
5 ACCEL Specifies/acquires the acceleration coefficient parameter | 4/- Command Statements/
of the main group. Functions
6 | ARCH Specifies/acquires the arch position parameter of the main | 4/- Command Statements/
group. Functions
7 | ARMCND Acquires the current arm status of the main robot. - - Functions
ARMTYPE Acquires the current "hand system" setting of the main robot. - - Functions
10 | ASPEED Changes the AUTO movement speed of the main group. 4 O Command Statements
9 ATN Acquires the arctangent of the specified value. - - Functions
11 | AXWGHT Specifies/acquires the axis tip weight parameter of the | 4/- @) Command Statements/
main group. Functions
C
12 | CALL Executes (calls) another program. X Command Statements
13 | CHANGE Switches the main robot hand. O Command Statements
14 | CHGPRI Changes the priority ranking of a specified task. X Command Statements
15 | CHRS Acquires a character with the specified character code. - - Functions
16 | COS Acquires the cosine value of a specified value. - - Functions
17 | CURTRQ Acquires the current torque value of the specified main - X Functions
group axis.
18 | CUT Terminates a task currently being executed or temporarily 6 X Command Statements
stopped.
D
19 | DATES$ Acquires the date as a "yy/mm/dd" format character string. - - Functions
20 | DECEL Specifies/acquires the deceleration rate parameter of the | 4/- O Command Statements/
main group. Functions
23 | DEGRAD Converts a specified value to radians («+RADDEG). - Functions
24 | DELAY Waits for the specified period (units: ms). X Command Statements
27 | DIM Declares the array variable name and the number of X Command Statements
elements.
26 | DIST Acquires the distance between 2 specified points. - - Functions
28 | DO Outputs a specified value to the DO port. 1 O Command Statements
29 | DRIVE Moves a specified main group axis to an absolute position. O Command Statements
29 | DRIVE (With T-option) Executes an absolute movement O Command Statements
command for a specified axis.
30 | DRIVEI Moves a specified main group axis to a relative position. 4 O Command Statements
E
33 | ERL Gives the line No. where an error occurred. - - Functions
33 | ERR Gives the error code number of an error which has occurred. - - Functions
34 | EXIT FOR Terminates the FOR to NEXT statement loop. X Command Statements
36 | EXIT TASK Terminates its own task which is in progress. 6 X Command Statements

Command list in alphabetic order @ 7-3 I

No. Command Function Condition Direct Type
F
37 | FOR to NEXT Controls repetitive operations. Executes the FOR to NEXT 6 X Command Statements
statement repeatedly until a specified value is reached.
G
38 | GOSUB to Jumps to a subroutine with the label specified by a 6 X Command Statements
RETURN GOSUB statement, and executes that subroutine.
39 | GOTO Unconditionally jumps to the line specified by a label. 6 X Command Statements
H
40 | HALT Stops the program and performs a reset. X Command Statements
41 | HAND Defines the main robot hand. 4 O Command Statements
42 | HOLD Temporarily stops the program. X Command Statements
I
43 | IF Allows control flow to branch according to conditions. 6 X Command Statements
44 | INPUT Assigns a value to a variable specified from the 1 O Command Statements
programming box.
45 | INT Acquires an integer for a specified value by truncating all - - Functions
decimal fractions.
J
46 | JTOXY Converts joint coordinate data to main group Cartesian - - Functions
coordinate data. («<>XYTOJ)
L
48 | LEFTS Extracts a character string comprising a specified number - - Functions
of digits from the left end of a specified character string.
49 | LEFTY Sets the main robot hand system to "Left". 4 O Command Statements
50 | LEN Acquires the length (number of bytes) of a specified - - Functions
character string.
51 | LET Executes a specified assignment statement. 1 O Command Statements
52 | LO Outputs a specified value to the LO port to enable/disable 1 O Command Statements
axis movement.
53 | LOCx Specifies/acquires point data or shift data for a specified - - Command Statements/
axis. Functions
54 | LSHIFT Shifts a value to the left by the specified number of bits. - - Functions
(«~>RSHIFT)
M
55 | MCHREF Acquires the return-to-origin or absolute-search machine - - Functions
reference for a specified main group axis.
56 | MID$ Extracts a character string of a desired length from a - - Functions
specified character string.
57 | MO Outputs a specified value to the MO port. 1 O Command Statements
58 | MOVE Performs absolute movement of all main robot axes. O Command Statements
59 | MOVEI Performs relative movement of all main robot axes. 4 O Command Statements
(0}
60 | OFFLINE Sets a specified communication port to the "offline" mode. 1 O Command Statements
62 | ON ERROR If an error occurs during program execution, this command 6 X Command Statements
GOTO allows the program to jump to the error processing routine
specified by the label without stopping the program, or it stops
the program and displays the error message.
63 | ONto GOSUB Jumps to a subroutine with labels specified by a GOSUB 6 X Command Statements
statement in accordance with the conditions, and executes
that subroutine.

I 7-4 @ Chapter 7 Robot Language Lists

No. Command Function Condition Direct Type

64 | ON to GOTO Jumps to label-specified lines in accordance with the 6 X Command Statements
conditions.

65 | ONLINE Sets the specified communication port to the "online" mode. 1 O Command Statements

61 | ORD Acquires the character code of the first character in a - - Functions
specified character string.

66 | ORGORD Specifies/acquires the axis sequence parameter for | 4/- O Command Statements/
performing return-to-origin and absolute search operations Functions
in the main group.

67 | ORIGIN Executes a return-to-origin for incremental specs. axes. O Command Statements

68 | OUT Turns ON the bits of the specified output ports and the X Command Statements
command statement ends.

69 | OUTPOS Specifies/acquires the OUT enable position parameter of | 4/- @) Command Statements/
the main group. Functions

P

70 | PATH Sets the movement path. 6 X Command Statements

71 | PATH END Ends the movement path setting. 6 X Command Statements

72 | PATH SET Starts the movement path setting. 6 X Command Statements

73 | PATH START Starts the PATH motion. 6 X Command Statements

74 | PDEF Defines the pallet used to execute pallet movement 1 O Command Statements
commands.

75 | PMOVE Executes the main robot pallet movement command. 4 O Command Statements

76 | Pn Defines points within a program. O Command Statements

77 | PPNT Creates point data specified by a pallet definition number - - Functions
and pallet position number.

78 | PRINT Displays a character string at the programming box screen. 1 O Command Statements

R

79 | RADDEG Converts a specified value to degrees. (+DEGRAD) - - Functions

80 | REM Expresses a comment statement. 6 X Command Statements

81 | RESET Turns the bit of a specified output port OFF. 1 O Command Statements

82 | RESTART Restarts another task during a temporary stop. 6 X Command Statements

83 | RESUME Resumes program execution after error recovery 6 X Command Statements
processing.

85 | RIGHTS Extracts a character string comprising a specified number - - Functions
of digits from the right end of a specified character string.

86 | RIGHTY Sets the main robot hand system to "Right". 4 O Command Statements

87 | RSHIFT Shifts a value to the right by the specified number of bits. - - Functions
(—>LSHIFT)

S

88 | Sn Defines the shift coordinates within the program. O Command Statements

89 | SELECT CASE | Allows control flow to branch according to conditions. X Command Statements

to END SELECT

90 | SEND Sends a file. 1 O Command Statements

91 | SERVO Controls the servo ON/OFF of specified main group axes 4 O Command Statements
or all main group axes.

92 | SET Turns the bit at the specified output port ON. 3 In part | Command Statements

X

94 | SHIFT Sets the shift coordinates for the main robot by using the 4 O Command Statements
shift data specified by a shift variable.

95 | SIN Acquires the sine value for a specified value. - - Functions

9 | SO Outputs a specified value to the SO port. 1 O Command Statements

97 | SPEED Changes the main group's program movement speed. 4 O Command Statements

Command list in alphabetic order @ 7-5 I

No. Command Function Condiion Direct Type

98 | START Specifies the task number and priority ranking of a 6 X Command Statements
specified task, and starts that task.

99 | STRS Converts a specified value to a character string («>VAL) - - Functions

100 | SQR Acquires the square root of a specified value. - - Functions

102 [SUSPEND Temporarily stops another task which is being executed. X Command Statements

103 | SWI Switches the program being executed, performs O Command Statements
compiling, then begins execution from the first line.

T

104 | TAN Acquires the tangent value for a specified value. - - Functions

105 | TCOUNTER Outputs count-up values at 10ms intervals starting from the - - Functions
point when the TCOUNTER variable is reset.

106 | TIMES Acquires the current time as an "hh:mm:ss" format - - Functions
character string.

107 | TIMER Acquires the current time in seconds, counting from 12:00 - - Functions
midnight.

108 | TO Outputs a specified value to the TO port. 1 O Command Statements

109 | TOLE Specifies/acquires the main group tolerance parameter. 4/- O Command Statements/

Functions

110 | TORQUE Specifies/acquires the maximum torque command value | 4/- Command Statements/
which can be set for a specified main group axis. Functions

111 | TRQSTS Acquires the command end status for the DRIVE - - Functions
command with torque limit option executed at the main
group.

112 | TRQTIME Specifies/acquires the current limit time-out period at | 1/- O Command Statements/
the specified main group axis when using a torque limit Functions
option in the DRIVE statement.

\%

113 | VAL Converts the numeric value of a specified character string - - Functions
to an actual numeric value. («<>STRS$)

W

114 | WAIT Waits until the conditions of the DI/DO conditional 6 X Command Statements
expression are met (with time-out).

115 | WAIT ARM Waits until the main group robot axis operation is completed. 6 X Command Statements

116 | WEIGHT Specifies/acquires the main robot tip weight parameter. 4/- O Command Statements/

Functions

118 | WHERE Reads out the current position of the main group robot - - Functions
arm in joint coordinates (pulses).

119 | WHILE to WEND | Controls repeated operations. 6 X Command Statements

120 | WHRXY Reads out the current position of the main group arm as - - Functions
Cartesian coordinates (mm, degrees).

X

121 | XYTOJ Converts the point variable Cartesian coordinate data to - - Functions
the main group's joint coordinate data («+>JTOXY).

122 | SYSFLG Axis status monitoring flag. - - Functions

I 7-6 @ Chapter 7 Robot Language Lists

- Function Specific

Program commands

General commands

No. Command Function Condition Direct Type

27 | DIM Declares the array variable name and the number of | 6 X Command Statements
elements.

51 | LET Executes a specified assignment statement. 1 O Command Statements

80 | REM Expresses a comment statement. 6 X Command Statements

Arithmetic commands

No. Command Function Condition Direct Type
ABS Acquires the absolute value of a specified value. - - Functions
2 | ABSINIT Resets the current position of a specified main group axis. 4 O Command Statements
9 ATN Acquires the arctangent of the specified value. - - Functions
16 | COS Acquires the cosine value of a specified value. - - Functions
23 | DEGRAD Converts a specified value to radians («+RADDEG). - - Functions
26 | DIST Acquires the distance between 2 specified points. - - Functions
45 | INT Acquires an integer for a specified value by truncating all - - Functions
decimal fractions.
54 | LSHIFT Shifts a value to the left by the specified number of bits. - - Functions
(<~RSHIFT)
79 | RADDEG Converts a specified value to degrees. (<DEGRAD) - - Functions
87 | RSHIFT Shifts a value to the right by the specified number of bits. - - Functions
(—LSHIFT)
95 | SIN Acquires the sine value for a specified value. - - Functions
100 | SQR Acquires the square root of a specified value. - - Functions
104 | TAN Acquires the tangent value for a specified value. - - Functions
Date / time
No. Command Function Condition Direct Type
19 | DATE$ Acquires the date as a "yy/mm/dd" format character - - Functions
string.
105 | TCOUNTER Outputs count-up values at 10ms intervals starting from - - Functions
the point when the TCOUNTER variable is reset.
106 | TIME $ Acquires the current time as an "hh:mm:ss" format - - Functions
character string.
107 | TIMER Acquires the current time in seconds, counting from 12:00 - - Functions
midnight.

Function Specific @ 7-7 I

Character string operation

No. Command Function Condition = Direct Type
15 | CHR$ Acquires a character with the specified character code. - - Functions
48 | LEFT $ Extracts a character string comprising a specified number - - Functions

of digits from the left end of a specified character string.
50 | LEN Acquires the length (number of bytes) of a specified - - Functions
character string.

56 | MID $ Extracts a character string of a desired length from a - - Functions

specified character string.

61 | ORD Acquires the character code of the first character in a - - Functions

specified character string.

85 | RIGHT $ Extracts a character string comprising a specified number - - Functions

of digits from the right end of a specified character string.

99 | STR $ Converts a specified value to a character string («<>VAL) - - Functions
113 | VAL Converts the numeric value of a specified character string - - Functions

to an actual numeric value. (<>STRS)

Point, coordinates, shift coordinates

No. Command Function Condition Direct Type

13 | CHANGE Switches the main robot hand. 4 O Command Statements

41 | HAND Defines the main robot hand. 4 O Command Statements

46 | JTOXY Converts joint coordinate data to main group Cartesian - - Functions
coordinate data. («XYTOJ)

49 | LEFTY Sets the main robot hand system to "Left". 4 O Command Statements

76 | Pn Defines points within a program. O Command Statements

77 | PPNT Creates point data specified by a pallet definition number - - Functions
and pallet position number.

86 | RIGHTY Sets the main robot hand system to "Right". O Command Statements

88 | Sn Defines the shift coordinates in the program. O Command Statements

94 | SHIFT Sets the shift coordinates for the main robot by using the O Command Statements
shift data specified by a shift variable.

121 | XYTOJ Converts the point variable Cartesian coordinate data to - - Functions
the main group's joint coordinate data («+>JTOXY).

53 | LOCx Specifies/acquires point data or shift data for a specified - - Command Statements/
axis. Functions

I 7-8 @ Chapter 7 Robot Language Lists

Branching commands

No. Command Function Condition Direct Type
34 | EXIT FOR Terminates the FOR to NEXT statement loop. 6 X Command Statements
37 | FOR to NEXT Controls repetitive operations. Executes the FOR to NEXT 6 X Command Statements
statement repeatedly until a specified value is reached.
38 | GOSUB to Jumps to a subroutine with the label specified by a 6 X Command Statements
RETURN GOSUB statement, and executes that subroutine.
39 | GOTO Unconditionally jumps to the line specified by a label. X Command Statements
43 | IF Allows control flow to branch according to conditions. X Command Statements
63 | ON to GOSUB Jumps to a subroutine with labels specified by a GOSUB X Command Statements
statement in accordance with the conditions, and executes
that subroutine.
64 | ON to GOTO Jumps to label-specified lines in accordance with the 6 X Command Statements
conditions.
89 | SELECT CASE | Allows control flow to branch according to conditions. 6 X Command Statements
to END SELECT
119 | WHILE to WEND | Controls repeated operations. 6 X Command Statements
Error control
No. Command Function Condition Direct Type
62 | ON ERROR If an error occurs during program execution, this 6 X Command Statements
GOTO command allows the program to jump to the error
processing routine specified by the label without stopping
the program, or it stops the program and displays the error
message.
83 | RESUME Resumes program execution after error recovery 6 X Command Statements
processing.
33 | ERL Gives the line No. where an error occurred. - - Functions
33 | ERR Gives the error code number of an error which has - - Functions
occurred.
Program & task control
Program control
No. Command Function Condition Direct Type
12 | CALL Executes (calls) another program. 6 X Command Statements
40 | HALT Stops the program and performs a reset. 6 X Command Statements
42 | HOLD Temporarily stops the program. 6 X Command Statements
103 | SWI Switches the program being executed, performs 2 O Command Statements
compiling, then begins execution from the first line.
Task control
No. Command Function Condition Direct Type
14 | CHGPRI Changes the priority ranking of a specified task. 6 X Command Statements
18 | CUT Terminates a task currently being executed or temporarily 6 X Command Statements
stopped.
36 | EXIT TASK Terminates its own task which is in progress. X Command Statements
82 | RESTART Restarts another task during a temporary stop. X Command Statements

Function Specific @ 7-9 I

No. Command Function Condition Direct Type
98 | START Specifies the task number and priority ranking of a 6 X Command Statements
specified task, and starts that task.
102 [SUSPEND Temporarily stops another task which is being executed. 6 X Command Statements
Robot control
Robot operations
No. Command Function Condition Direct Type
4 | ABSRST Executes a return-to-origin at the robot absolute motor 4 O Command Statements
axes.
13 | CHANGE Switches the main robot hand. 4 O Command Statements
29 | DRIVE Moves a specified main group axis to an absolute position. 4 O Command Statements
30 | DRIVEI Moves a specified main group axis to a relative position. 4 O Command Statements
41 | HAND Defines the main robot hand. 4 O Command Statements
49 | LEFTY Sets the main robot hand system to "Left". 4 O Command Statements
58 | MOVE Performs absolute movement of all main robot axes. 5 O Command Statements
59 | MOVEI Performs relative movement of all main robot axes. 4 O Command Statements
67 | ORIGIN Executes a return-to-origin for incremental specs. axes. 4 O Command Statements
75 | PMOVE Executes the main robot pallet movement command. 4 O Command Statements
86 | RIGHTY Sets the main robot hand system to "Right". 4 O Command Statements
91 | SERVO Controls the servo ON/OFF of specified main group axes 4 O Command Statements
or all main group axes.
Status acquisition
No. Command Function Condition Direct Type
3 ABSRPOS Acquires the machine reference of the specified main - - Functions
group axis. (Valid only for axes where the return-to-origin
method is set as "mark method".)
7 | ARMCND Acquires the current arm status of the main robot. - - Functions
8 | ARMTYPE Acquires the current "hand system" setting of the main - - Functions
robot.
55 | MCHREF Acquires the return-to-origin or absolute-search machine - - Functions
reference for a specified main group axis.
111 | TRQSTS Acquires the command end status for the DRIVE - - Functions
command with torque limit option executed at the main
group.
118 | WHERE Reads out the current position of the main group robot - - Functions
arm in joint coordinates (pulses).
120 [WHRXY Reads out the current position of the main group arm as - - Functions

Cartesian coordinates (mm, degrees).

115 | WAIT ARM

Waits until the main group robot axis operation is
completed.

I 7-10 @ Chapter 7 Robot Language Lists

Status change

No. Command Function Condition Direct Type
5 ACCEL Specifies/acquires the acceleration coefficient parameter | 4/- O Command Statements/
of the main group. Functions
6 | ARCH Specifies/acquires the arch position parameter of the main | 4/- O Command Statements/
group. Functions
10 | ASPEED Changes the AUTO movement speed of the main group. 4 O Command Statements
11 | AXWGHT Specifies/acquires the axis tip weight parameter of the | 4/- @) Command Statements/
main group. Functions
20 | DECEL Specifies/acquires the deceleration rate parameter of the | 4/- @) Command Statements/
main group. Functions
66 | ORGORD Specifies/acquires the axis sequence parameter for | 4/- @) Command Statements/
performing return-to-origin and absolute search operations Functions
in the main group.
69 | OUTPOS Specifies/acquires the OUT enable position parameter of | 4/- @) Command Statements/
the main group. Functions
74 | PDEF Defines the pallet used to execute pallet movement 1 @) Command Statements
commands.
97 | SPEED Changes the main group's program movement speed. 4 O Command Statements
109 | TOLE Specifies/acquires the main group tolerance parameter. 4/- @) Command Statements/
Functions
116 | WEIGHT Specifies/acquires the main robot tip weight parameter. 4/- @) Command Statements/
Functions
Path control
No. Command Function Condition Direct Type
70 | PATH Sets the movement path. 6 X Command Statements
71 | PATH END Ends the movement path setting. 6 X Command Statements
72 | PATH SET Starts the movement path setting. 6 X Command Statements
73 | PATH START Starts the PATH motion. 6 X Command Statements
Torque control
No. Command Function Condition Direct Type
17 | CURTRQ Acquires the current torque value of the specified main - X Functions
group axis.
29 | DRIVE (With T-option) Executes an absolute movement 4 O Command Statements
command for a specified axis.
110 | TORQUE Specifies/acquires the maximum torque command value | 4/- O Command Statements/
which can be set for a specified main group axis. Functions
112 | TRQTIME Specifies/acquires the current limit time-out period at | 1/- @) Command Statements/
the specified main group axis when using a torque limit Functions
option in the DRIVE statement.

Function Specific @ 7-11 I

Input/output & communication control

Input/output control

No. Command Function Condition = Direct Type

24 | DELAY Waits for the specified period (units: ms). 6 X Command Statements

28 | DO Outputs a specified value to the DO port. 1 O Command Statements

52 | LO Outputs a specified value to the LO port to enable/disable 1 O Command Statements
ax1is movement.

57 | MO Outputs a specified value to the MO port. 1 O Command Statements

68 | OUT Turns ON the bits of the specified output ports and the 6 X Command Statements
command statement ends.

81 | RESET Turns the bit of a specified output port OFF. 1 O Command Statements

92 | SET Turns the bit at the specified output port ON. 3 In part | Command Statements

X

96 | SO Outputs a specified value to the SO port. 1 O Command Statements

108 | TO Outputs a specified value to the TO port. 1 O Command Statements

114 | WAIT Waits until the conditions of the DI/DO conditional 6 X Command Statements
expression are met (with time-out).

Programming box

Command

Function

Condition Direct

44 | INPUT Assigns a value to a variable specified from the 1 O Command Statements
programming box.
78 | PRINT Displays a character string at the programming box 1 O Command Statements
screen.
Communication control
No. Command Function Condition = Direct Type
65 | ONLINE Sets the specified communication port to the "online" 1 O Command Statements
mode.
60 | OFFLINE Sets a specified communication port to the "offline" mode. 1 O Command Statements
90 | SEND Sends a file. 1 O Command Statements
Other
Other

122

Command

SYSFLG

Function

Axis status monitoring flag.

Condition Direct

Type

Functions

I 7-12 @ Chapter 7 Robot Language Lists

- Functions: in alphabetic order

No. Function Type Function

A

1 ABS Arithmetic function | Acquires the absolute value of a specified value.

3 ABSRPOS Arithmetic function | Acquires the machine reference of the specified main group axis.
(Valid only for axes where the return-to-origin method is set as "mark
method".)

5 ACCEL Arithmetic function | Acquires the acceleration coefficient parameter of the main group.

6 ARCH Arithmetic function | Acquires the arch position parameter of the main group.

7 ARMCND Arithmetic function | Acquires the current arm status of the main robot.

8 ARMTYPE Arithmetic function | Acquires the current "hand system" setting of the main robot.

9 ATN Arithmetic function | Acquires the arctangent of the specified value.

11 | AXWGHT Arithmetic function | Acquires the axis tip weight parameter of the main group.

C

15 | CHRS Character string | Acquires a character with the specified character code.

function

16 | COS Arithmetic function | Acquires the cosine value of a specified value.

17 | CURTRQ Arithmetic function | Acquires the current torque value of the specified main group axis.

D

19 | DATES Character string | Acquires the date as a "yy/mm/dd" format character string.

function
20 | DECEL Arithmetic function | Acquires the deceleration rate parameter of the main group.
23 DEGRAD Arithmetic function | Converts a specified value to radians («+RADDEG).
26 | DIST Arithmetic function | Acquires the distance between 2 specified points.

E

33 | ERL Arithmetic function | Gives the line No. where an error occurred.

33 | ERR Arithmetic function | Gives the error code number of an error which has occurred.

I

45 | INT Arithmetic function | Acquires an integer for a specified value by truncating all decimal
fractions.

J

46 | JTOXY Point function Converts joint coordinate data to main group Cartesian coordinate data.
(XYTOJ)
L
48 | LEFT$ Character string | Extracts a character string comprising a specified number of digits
function from the left end of a specified character string.

50 | LEN Arithmetic function | Acquires the length (number of bytes) of a specified character string.

53 | LOCx Point function Acquires point data or shift data for a specified axis.

54 | LSHIFT Arithmetic function | Shifts a value to the left by the specified number of bits. (<»RSHIFT)

M

55 MCHREF Arithmetic function | Acquires the return-to-origin or absolute-search machine reference for
a specified main group axis.

56 | MID$ Character string | Extracts a character string of a desired length from a specified character

function string.

Functions: in alphabetic order @ 7-13 I

No. Function Type Function
(0}
61 | ORD Arithmetic function | Acquires the character code of the first character in a specified
character string.
66 | ORGORD Arithmetic function | Acquires the axis sequence parameter for performing return-to-origin
and absolute search operations in the main group.
69 | OUTPOS Arithmetic function | Acquires the OUT enable position parameter of the main group.
P
77 | PPNT Point function Creates point data specified by a pallet definition number and pallet
position number.
R
79 | RADDEG Arithmetic function | Converts a specified value to degrees. («+»DEGRAD)
85 | RIGHTS Character string | Extracts a character string comprising a specified number of digits
function from the right end of a specified character string.
87 | RSHIFT Arithmetic function | Shifts a value to the right by the specified number of bits. («>LSHIFT)
S
95 SIN Arithmetic function | Acquires the sine value for a specified value.
100 | SQR Arithmetic function | Acquires the square root of a specified value.
99 | STR$ Character string | Converts a specified value to a character string («>VAL)
function
T
104 | TAN Arithmetic function | Acquires the tangent value for a specified value.
105 | TCOUNTER Arithmetic function | Outputs count-up values at 10ms intervals starting from the point when
the TCOUNTER variable is reset.
106 | TIMES Character string | Acquires the current time as an "hh:mm:ss" format character string.
function
107 | TIMER Arithmetic function | Acquires the current time in seconds, counting from 12:00 midnight.
109 | TOLE Arithmetic function | Acquires the main group tolerance parameter.
110 | TORQUE Arithmetic function | Acquires the maximum torque command value which can be set for a
specified main group axis.
111 | TRQSTS Arithmetic function | Acquires the command end status for the DRIVE command with
torque limit option executed at the main group.
112 | TRQTIME Arithmetic function | Acquires the current limit time-out period at the specified main group
axis when using a torque limit option in the DRIVE statement.
A\
113 | VAL Arithmetic function | Converts the numeric value of a specified character string to an actual
numeric value. (<>STRS)
\%4
116 | WEIGHT Arithmetic function | Acquires the main robot tip weight parameter.
118 | WHERE Point function Reads out the current position of the main group robot arm in joint
coordinates (pulses).
120 | WHRXY Point function Reads out the current position of the main group arm as Cartesian
coordinates (mm, degrees).
X
121 | XYTOJ Point function Converts the point variable Cartesian coordinate data to the main
group's joint coordinate data («—>JTOXY).
122 | SYSFLG Arithmetic function | Axis status monitoring flag.

I 7-14 @ Chapter 7 Robot Language Lists

- Functions: operation-specific

Point related functions

No. Function name Function

46 JTOXY Converts joint coordinate data to main group Cartesian coordinate data. (<>XYTOJ)

53 LOCx Acquires point data or shift data for a specified axis.

77 PPNT Creates point data specified by a pallet definition number and pallet position number.

118 | WHERE Reads out the current position of the main group robot arm in joint coordinates (pulses).

120 | WHRXY Reads out the current position of the main group arm as Cartesian coordinates (mm, degrees).

121 | XYTOJ Converts the point variable Cartesian coordinate data to the main group's joint coordinate
data («>JTOXY).

Parameter related functions

No. Function name Function
3 ABSRPOS Acquires the machine reference of the specified main group axis. (Valid only for axes
where the return-to-origin method is set as "mark method".)
5 ACCEL Acquires the acceleration coefficient parameter of the main group.
6 ARCH Acquires the arch position parameter of the main group.
7 ARMCND Acquires the current arm status of the main robot.
8 ARMTYPE Acquires the current "hand system" setting of the main robot.
11 AXWGHT Acquires the axis tip weight parameter of the main group.
17 | CURTRQ Acquires the current torque value of the specified main group axis.
20 | DECEL Acquires the deceleration rate parameter of the main group.
50 | LEN Acquires the length (number of bytes) of a specified character string.
55 | MCHREF Acquires the return-to-origin or absolute-search machine reference for a specified main group axis.
61 | ORD Acquires the character code of the first character in a specified character string.
66 | ORGORD Acquires the axis sequence parameter for performing return-to-origin and absolute search
operations in the main group.
69 | OUTPOS Acquires the OUT enable position parameter of the main group.
109 | TOLE Acquires the main group tolerance parameter.
110 | TORQUE Acquires the maximum torque command value which can be set for a specified main group axis.
111 | TRQSTS Acquires the command end status for the DRIVE command with torque limit option
executed at the main group.
112 | TRQTIME Acquires the current limit time-out period at the specified main group axis when using a
torque limit option in the DRIVE statement.
116 | WEIGHT Acquires the main robot tip weight parameter.

Functions: operation-specific @ 7-15

Numeric calculation related functions

No. Function name Function
ABS Acquires the absolute value of a specified value.

9 ATN Acquires the arctangent of the specified value.

16 | COS Acquires the cosine value of a specified value.

23 | DEGRAD Converts a specified value to radians («+*RADDEGQG).

26 | DIST Acquires the distance between 2 specified points.

45 | INT Acquires an integer for a specified value by truncating all decimal fractions.
54 | LSHIFT Shifts a value to the left by the specified number of bits. («RSHIFT)

79 | RADDEG Converts a specified value to degrees. («DEGRAD)

87 | RSHIFT Shifts a value to the right by the specified number of bits. («+LSHIFT)

95 | SIN Acquires the sine value for a specified value.
100 | SQR Acquires the square root of a specified value.
104 | TAN Acquires the tangent value for a specified value.
113 | VAL Converts the numeric value of a specified character string to an actual numeric value. (<>STR$)

Character string calculation related functions

No. Function name Function
15 | CHR$ Acquires a character with the specified character code.
19 | DATE$ Acquires the date as a "yy/mm/dd" format character string.
48 | LEFTS Extracts a character string comprising a specified number of digits from the left end of a
specified character string.
56 | MID $ Extracts a character string of a desired length from a specified character string.
85 | RIGHT $ Extracts a character string comprising a specified number of digits from the right end of a
specified character string.
99 | STR$ Converts a specified value to a character string (<>VAL)

Parameter related functions

No. Function name Function

122 | SYSFLG Axis status monitoring flag.

33 ERL Gives the line No. where an error occurred.

33 [ERR Gives the error code number of an error which has occurred.

105 | TCOUNTER Outputs count-up values at 10ms intervals starting from the point when the TCOUNTER
variable is reset.

106 | TIME $§ Acquires the current time as an "hh:mm:ss" format character string.

107 | TIMER Acquires the current time in seconds, counting from 12:00 midnight.

I 7-16 @ Chapter 7 Robot Language Lists

ABS

Acquires absolute values

Format

ABS (<expression>)

Returns a value specified by an <expression> as an absolute value.
SAMPLE

A=ABS(-326.55) ..cciiiieiiiiiieiee The absolute value of -362.54 (=362.54) is assigned to

variable A.

ABS @ 7-17 I

2 ABSINIT
7 Resets the current position of a specified axis

M NOTE

¢« ABSINIT is available in LLABSINIT (<axis number>)
software version 1.66M or 2.ABSINIT (<axis number>)=<expression>
higher.
e The ABSINIT statements . .
can be used only when the <axis nuUMber>..........ccceevvevenennnn main group: 1to 6
"Limitless motion" parameter <EXPIESSION™oeeviieiiiiieieiennae Otol

is set to "VALID" in the robot

axis parameters. (For details, -
refer to the User's Manual.) INAIBELELI) Resets the current position of the axis specified by <axis number>.

If the <expression> is "0", a reset is possible only if the robot is positioned as shown in

A CAUTION the figure below. To perform multi-turn movement in the same direction, the command
e When the <expression> is statement must be executed after each 360° of movement, and the current position must be
0, the "17.42: Cannot reset reset.

position" error will occur if
the robot's current position is
at a position where a reset is this case, the robot's absolute function is disabled.
impossible.

If the <expression> is "1", a reset occurs regardless of the robot's current coordinates. In

The format 1 operation is identical to a format 2 operation where the <expression> = 0.

"Reset possible" range within a mechanical angle of 360° (16384 [pulse] x speed reduction ratio)

"0" position determined by absolute reset

Reset execution position
For a minus axis polarity: 257 to 1791 [pulse]
For a plus axis polarity: -1791 to -257 [pulse]

* When an origin point shift has been set in the
axis parameters, that shift value is added to the
above range.

7-18 @ Chapter 7 Robot Language Lists

SAMPLE

ABSINITL ..ot Resets the main group's 1st axis at the position

* Following the reset, the current position and target position values become values from which a

distance equivalent to the motor's number-of-turns has been subtracted.
* The reset time per axis is approximately 100ms.
* If a "Limitless motion INVALID" axis is specified, the "5.37: Specification mismatch" error message

displays, and execution is stopped.

@ Restrictions
1. The ABSINIT statement cannot be used at YC-Link specification axes.
2. The ABSINIT statement cannot be used at electric gripper specification axes.

ABSINIT @ 7-19 I

ABSRPOS

Acquires a machine reference

Format

ABSRPOS (<axis 1>)

<AXIS 1> main group: 1to 6

IR IELELN) The machine reference value for a specified <axis number> is acquired (units: %). This
function is valid only for axes where the return-to-origin method is set as "mark method". It

is not valid at axes where the return-to-origin method is set as "sensor" or "stroke end".

» At axes where return-to-origin method is set to "mark" method, absolute reset is possible when the

machine reference value is in a 44 to 56% range.

SAMPLE

A=ABSRPOS(4) ...ccceovvvireenreiecnene The machine reference value for the main group's axis 4 is assigned to variable A.

I 7-20 @ Chapter 7 Robot Language Lists

ABSRST

Absolute motor axis return-to-origin operation

Format

ABSRST

1IN EVELNY This statement executes a direct return-to-origin operation for the robot's absolute motor
axes (absolute reset).

The return-to-origin will fail if the robot stops en route.

» This command is valid at axes where the return-to-origin method is set to other than "mark".

» This command cannot be executed if a return-to-origin is incomplete at an axis where the return-to-
origin method is set as "mark".

* In systems with both absolute motor axes and incremental motor axes, a return-to-origin will occur
only at the absolute motor axes when the ABSRST command is executed.

* The ORIGIN command must be used to perform a return-to-origin at incremental motor axes.
Moreover, the return-to-origin operations occur in the parameter-specified sequence, and the
incremental motor axes will not operate.

SAMPLE

*ABS RST:

IF DI(20)=1 THEN......ccctseirireireeseerenerieeeenen ABSRST executed when DI (20) is "1".
ABSRST

ENDIF

*START:ABSRST......ooiiiiiiiiiiiiieeeee Absolute motor return-to-origin occurs.

Related commands ORIGIN, ORGORD, MCHREF

ABSRST @ 7-21

ACCEL

Specifies/acquires the acceleration coefficient parameter

Format

1. ACCEL <expression>
2. ACCEL (<axis number>)=<expression>

<axis nuUMber>.........cccceeveuvenensnn main group: 1to6

1 to 100 (units: %)

Directly changes the acceleration coefficient parameters to the value specified by the <expression>.
In format 1, the change occurs at all the group axes.

<expression>

In format 2, the change occurs at the axis specified in <axis number>.

 Ifan axis that is set to "no axis" in the system generation is specified, a "5.37: Specification mismatch"

error message displays and command execution is stopped.
» Changes the value which has been set at SYSTEM > PARAMETER > AXIS > ACCEL. Program-
declared values have priority.

I Functions

Format

ACCEL (<axis 1>)

<AXIS 1> main group: 1to 6
IBTIEVEGIN) The acceleration parameter value is acquired for the axis specified at <axis number>.

SAMPLE

ACCEL A ..ottt The acceleration coefficient for all axes becomes 50%.
ACCEL(3)=100
’CYCLE WITH INCREASING ACCELERATION

FOR A=10 TO 100 STEP 10......cccccuevinieiaiannne The acceleration coefficient parameter is increased from

10% to 100% in 10% increments.

Only axis 3 becomes 100%.

ACCELA
MOVE P,PO
MOVE PP1
NEXT A
A=ACCEL(3) ieoieiieieeieeieseeeee e The acceleration coefficient parameter for the main group's
axis 3 is assigned to variable A.
HALT "END TEST"

I 7-22 @ Chapter 7 Robot Language Lists

ARCH

Specifies/acquires the acceleration coefficient parameter

Format

1. ARCH <expression>
2. ARCH (<axis number>)=<expression>

<axis NUMbEr>.......cccocevvereeneennenn main group: 1to 6
<EXPIEeSSION™coovveuieieieiiienennns 1 to 6144000 (Unit: pulses)

1B IENENI) Changes the parameter's arch position to the value indicated in the <expression>.
In format 1, the change occurs at all the group axes.
In format 2, the change occurs at the arch position parameter for the axis specified in <axis

number> to the value specified in <expression>.

« Ifan axis that is set to "no axis" in the system generation is specified, a "5.37: Specification mismatch"

error message displays and command execution is stopped.

I Functions

Format

ARCH (<axis 1>)

<AXIS 1> main group: 1to 6

IR EVELINY Acquires the arch position parameter value of the axis specified at <axis number>.

ARCH @ 7-23

SAMPLE

DIM SAV(3)
GOSUB *SAVE_ARCH
FOR A=1000 TO 10000 STEP 1000
GOSUB *CHANGE_ARCH
MOVE P,P0,Z=0
DO3(0)=1 e Chuck CLOSE
MOVE P,P1,Z=0
DO3(0)=0 .. Chuck OPEN
NEXTA
GOSUB *RESTORE ARCH
HALT
*CHANGE ARCH:
FORB=1TO 4ciriiiiiiiiiiictieeeeeeeeee The arch position parameters ARCH (1) to (4) are assigned
to array variables SAV (0) to (3).

ARCH(B)=A

NEXT B

RETURN

*SAVE_ARCH:

FOR B=1TO 4
SAV(B-1)=ARCH(B)

NEXT B

RETURN

*RESTORE_ARCH:

FOR B=1TO 4
ARCH(B)=SAV(B-1)

NEXT B

RETURN

I 7-24 @ Chapter 7 Robot Language Lists

ARMCND

Arm status acquisition

Format

ARMCND

1B EVELNY This function acquires the current arm status of the SCARA robot. The arm status is "1" for

a left-handed system and "0" for a right-handed system.
This function is enabled only when a SCARA robot is used.

SAMPLE

A=ARMOCND ooiiieiieeeseeeeeeee e The main robot's current arm status is assigned to variable A.
IF A=0 THEN ..c.ooiiiiiiieeeceeeceeeene Right-handed system status.
MOVE P, P100, Z=0
ELSE e Left-handed system status.
MOVE P, P200, Z=0
ENDIF

ARMCND @ 7-25 I

ARMTYPE
7 SCARA robot hand system

Format

ARMTYPE

This function acquires the hand system currently selected for the SCARA robot.

The arm type is "0" for a right-handed system, and "1" for a right-handed system. This
function is enabled only when a SCARA robot is used.

SAMPLE

A=ARMTYPEcccoceiiiiiiiiiinin. The main robot's arm type value is assigned.

IF A=0 THENcccoooiiiiiiiiiiiiiee, The arm type is a right-handed system.
MOVE P,P100,Z=0

ELSE The arm type is a left-handed system.
MOVE P,P200,Z=0

ENDIF

I 7-26 @ Chapter 7 Robot Language Lists

ATN

Acquires the arctangent of the specified value

Format

ATN (<expression>)

ATN: Acquires the arctangent values of the specified <expression> values. The
acquired values are radians within the following range: -n /2 to +m /2

SAMPLE

A(0)=AFATN(Y/X) e The product of the expression (Y/X) arctangent value and
variable A is assigned to array A (0).
A(0)=ATN(0.5) vt The 0.5 arctangent value is assigned to array A (0).

Related commands COS, DEGRAD, RADDEG, SIN, TAN

ATN @ 7-27 I

10 ASPEED

Sets the automatic movement speed

Format

ASPEED <expression>
<EXPIESSION™oveeviieiiiiieieienine 1 to 100 (units: %)
M NOTE Directly changes the automatic movement speed to the value indicated in the <expression>.

This speed change applies to all the robot axes and auxiliary axes. The operation speed is
e Automatic movement speed

specified by programming box
operation or by the ASPEED box operation and by the ASPEED command), and the program movement speed (specified

command. by SPEED command, etc.).
e Program movement speed

specified by SPEED command
or MOVE, DRIVE speed Example:

settings. Automatic movement speed 80%

determined by the product of the automatic movement speed (specified by programming
Operation speed = automatic movement speed x program movement speed.

Program movement speed 50%
Movement speed = 40% (80% x 50%)

SAMPLE

SPEED 70

ASPEED 100

MOVEPPO .. Movement from the current position to PO occurs at 70% speed (=100 * 70).
ASPEED 50

MOVE PPl ... Movement from the current position to P1 occurs at 35% speed (=50 * 70).
MOVE P,P2,S=10......ccccc0ovevee Movement from the current position to P2 occurs at 5% speed (=50 * 10).
HALT

Related commands SPEED

I 7-28 @ Chapter 7 Robot Language Lists

11 AXWGHT

Sets/acquires the axis tip weight

Format

AXWGHT (<axis number>)=<expression>

Values <axis NUMbEr™.......ccooeveeuirieenene main group: 1to 6

<EXPIESSION™ ...ooeenveieeeveieeeenean Varies according to the specified robot.

IRAIETLELNNY Directly changes the axis tip weight parameter for the group's axis specified by the <axis
number> to the <expression> value.
This statement is valid in systems with "MULTI" axes and auxiliary axes (the robot type

and auxiliary axes are factory set prior to shipment).

I Functions

Format

AXWGHT (<axis 1>)

<aXIS 1> main group: 1to 6

IBIENENI) Acquires the value axis tip weight parameter value for the axis specified by the
<expression>.

This statement is valid in systems with "MULTI" axes and auxiliary axes.

SAMPLE

A=5

B=0

C=AXWGHT(1) e Axis tip weight value is acquired (the current value is saved

to variable C).
AXWGHT(1)=A
DRIVE(1,P0)
AXWGHT(1)=B
DRIVE(1,P1)
AXWGHT(1)=Cneeeeceeeee e The axis tip weight value is set again.
HALT

Related commands WEIGHT

AXWGHT @ 7-29 I

12

CALL

Calls a sub-procedure

M NOTE

e When a value is passed on to
a sub-procedure, the original
value of the actual argument
will not be changed even if it is
changed in the sub-procedure.

e When a reference is passed on
to a sub-procedure, the original
value of the actual argument
will also be changed if it is
changed in the sub-procedure.

e For details, see Chapter 3 "8
Value Pass-Along & Reference
Pass-Along".

Format

CALL <label> [(<actual argument> [, <actual argument>...])]

This statement calls up sub-procedures defined by the SUB to END SUB statements.

The <label> specifies the same name as that defined by the SUB statement.

1. When a constant or expression is specified as an actual argument, its value is passed on
to the sub-procedure.

2. When a variable or array element is specified as an actual argument, its value is passed
on to the sub-procedure. It will be passed on as a reference if "REF" is added at the
head of the actual argument.

3. When an entire array (array name followed by parentheses) is specified as an actual

argument, it is passed along as a reference.

e CALL statements containing one actual argument can be used up to 15 times in succession. Note that
this number is reduced if commands which use stacks such as an IF statement or GOSUB statement
are used, or depending on the number of arguments in the CALL statement.

* Always use the END SUB statement to end a sub-procedure which has been called with the CALL
statement. If another statement such as GOTO is used to jump out of the sub- routine, a "5.12: Stack

overflow" error, etc., may occur.

SAMPLE 1

X%=4
Y%=5
CALL *COMPARE (REF X%, REF Y%)
HALT
’SUB ROUTINE: COMPARE
SUB *COMPARE (A%, B%)
IF A% < B% THEN
TEMP%=A%
A%=B%
B%=TEMP%
ENDIF
END SUB

SAMPLE 2

=1
CALL *TEST(1)
HALT
*SUB ROUTINE: TEST
SUB *TEST
X=X+1
IF X < 15 THEN
CALL *TEST(X)
ENDIF
END SUB

Related commands

SUB, END SUB, CALL, DECLARE, EXIT SUB, SHARED

I 7-30 @ Chapter 7 Robot Language Lists

13 CHANGE

Switches the hand

Format

CHANGE Hn

n: The range of hand Nos. which can specified for the main group.
main. groupto 3

INAIENELN) CHANGE is used to switch the robot hand.
Before hand switching can occur, the hands must be defined at the HAND statement. For
details, see section "39 HAND".

SAMPLE

HAND H1= 0 150.0 0.0

HAND H2= -5000 20.00 0.0

P1=150.00 300.00 0.00 0.00 0.00 0.00

CHANGE H2 Changes to hand 2.

MOVE P,P1 Moves the hand 2 tip to P1 (1).
CHANGE HI1 o Changes to hand 1.

MOVE P,P1 Moves the hand 1 tip to P1 (2).
HALT

CHANGE @ 7-31 I

14 CHGPRI
Changes the priority ranking of a specified task

Format

CHGPRI Tn, p
n: Task NO ..o 2t08
p: Task priority ranking 17 to 47

Directly changes the priority ranking of the specified task ("n") to "p".
The priority ranking of the main task (Task 1) is fixed as 32. Even if a priority ranking is
not specified, "32" is adopted as the priority ranking for this task.
The smaller the priority number, the higher the priority (high priority: 17 - low priority: 47).
When a READY status occurs at a task with higher priority, all tasks with lower priority

also remain in a READY status.

SAMPLE

START *SUBTASK,T2,33
G SHIE
MOVE P,P0,P1
IF DI(20) = 1 THEN
CHGPRI T2,32
ELSE
CHGPRI T2,33
ENDIF
GOTO *ST
HALT
’SUBTASK ROUTINE
*SUBTASK:
IF LOCZ(WHERE) > 10000 THEN
DO(20) =1
GOTO *SUBTASK
ENDIF
DO(20) =0
GOTO *SUBTASK
EXIT TASK

Related commands CUT, EXIT TASK, RESTART, SUSPEND, START

I 7-32 @ Chapter 7 Robot Language Lists

15 CHRS

Acquires a character with the specified character code

Format

CHRS (<expression>)
<EXPIEeSSION™covvenieiiieniiienenens 0 to 255

1B EVELNY Acquires a character with the specified character code. An error occurs if the <expression>
value is outside the 0 to 255 range.

SAMPLE

A$=CHRS$(65) "A" is assigned to AS.

Related commands ORD ‘

CHRS$ @ 7-33 I

16 COS

Acquires the cosine value of a specified value

Format

COS (<expression>)

Values <EXPIESSION™oveeviieiiiiieieienens Angle (units: radians)
IR EVELIY Acquires a cosine value for the <expression> value.

SAMPLE

A(0)=BFCOS(C).cveveriiiiiieieieieiseeesese e The product of the C42 variable's cosine value and variable B
is assigned to array A (0).
A(1)=COS(DEGRAD(20))......cccrveuerruerineiriareennen The 20.0° cosine value is assigned to array A (1).

Related commands ATN, DEGRAD, RADDEG, SIN, TAN

/| CURTRQ

Acquires the current torque of the specified axis

Format

CURTRQ (<expression>)

<EXPIESSION™ ...oveeireeeiienieieienen 1to6

IBTIEVEGN) Acquires the current torque value (-100 to 100) of the axis specified by the <expression>.

The current torque value is expressed as a percentage of the maximum torque command

value. Plus/minus signs indicate the direction.

SAMPLE

A = CURTRQ(3).cueeeeiveeiiieeiieaiiesieeneeeiee s The current torque value of the main group's axis 3 is

assigned to variable "A".

I 7-34 @ Chapter 7 Robot Language Lists

18 CUT

Terminates another sub task which is currently being executed 7

Format

CUT Tn

n: Task NO..ooveeviiiiciieeeee 2t08

IR EVELNY Directly terminates another task which is currently being executed or which is temporarily
stopped.

This statement cannot terminate its own task, nor can it terminate Task 1.

SAMPLE C

’TASK1 ROUTINE
*ST:

MO(20) = 0
START *SUBTASK2,T2
MOVE P,P0
MOVE P,P1
WAIT MO(20) = 1
CUT T2
GOTO *ST
HALT
"TASK2 ROUTINE
*SUBTASK2:
P100=JTOXY(WHERE)
IF LOCZ(P100) >= 100.0 THEN
MO(20) = 1
ELSE
DELAY 100
ENDIF
GOTO *SUBTASK2
EXIT TASK

Related commands EXIT TASK, CUT, RESTART, START, SUSPEND

CUT @ 7-35 I

19 DATES

Acquires the date

Format

DATES

Acquires the date as a "yy/mm/dd" format character string.

yy" indicates the year (last two digits), "mm" indicates the month, and "dd" indicates the
day.

Date setting is performed at SYSTEM mode initial processing.
SAMPLE

A$=DATES$

PRINT DATES$

Related commands TIMES

I 7-36 @ Chapter 7 Robot Language Lists

20 DECEL

Specifies/acquires the deceleration rate parameter

Format

1. DECEL <expression>
2. DECEL (<axis number>)=<expression>

<axis NUMbEr>........ccooervereenuenenn main group: 1to6
1 to 100 (units: %)

<expression>

IBIELENIN) Changes the deceleration rate parameter to the <expression> value.
In format 1, the change occurs at all the group axes.

In format 2, the change occurs at the axis specified in <axis number>.

 If an axis that is set to "no axis" in the system generation is specified, a "5.37: Specification mismatch"

error message displays and command execution is stopped.

» Command statements DECEL can be used to change the acceleration parameter.

I Functions

Format

DECEL (<axis 1>)

<AXIS 1> main group: 1to 6

IBIEVELINY Acquires the deceleration rate parameter value for the axis specified by the <expression>.

SAMPLE

A=50
DECEL A
DECEL(3)=100
*CYCLE WITH INCREASING DECELERATION
FOR A =10 TO 100 STEP 10
DECEL A
MOVE P PO
MOVE P P1
NEXT A

A=DECEL(3) ectretrieerieieesetseeseieseie e The deceleration rate parameter for the main group's axis 3

is assigned to variable A.
HALT "END TEST "

DECEL @ 7-37 I

21 DECLARE

Declares that a sub-routine or sub-procedure is to be used within the COMMON program

Format

1. DECLARE <label> [, <label>...]
2. DECLARE SUB <name> [(<dummy argument> [, <dummy argument>]...)]

<label>.....ccooeoviniciniiniicnes Label of the sub-routine defined in the COMMON
& CAUTION
program.
® Only the following external . .
Jabels can be used: GOSUB, <NAME™ ... Name of the sub-procedure defined in the COMMON
CALL, ON to GOSUB. program.
<dummy argument>.................. Sub-procedure argument. Only the "number of arguments"

and the "data type" are significant.

n Directly declares that a label or sub-procedure exists in the COMMON program. If a sub-

procedure is declared, the argument's data type is also checked.

This statement cannot be defined within a sub-procedure.

Because the DECLARE statement declares the existence of a label or sub-procedure within
the COMMON program, it cannot be used within the COMMON program itself. The
DECLARE statement is valid throughout the entire program.

SAMPLE

COMMON program shared label
Program name: DIST1

s

> MAIN PROGRAM

£}

DECLARE *DISTANCE,*AREA
X!=2.5

Y!=1.2

GOSUB *DISTANCE

GOSUB *AREA

HALT

Program name: COMMON

E}

> ’"COMMON’PROGRAM

s

*DISTANCE:
PRINT SQR(X!"2+Y!1/2)
RETURN
*AREA:
PRINT X!*Y!
RETURN

I 7-38 @ Chapter 7 Robot Language Lists

SAMPLE

External program shared sub-procedure
Program name: DIST2

9

> MAIN PROGRAM

El

DECLARE SUB *DISTANCE(X!,Y!,D!)
DECLARE SUB *AREA(X!Y!,Al)
CALL *DISTANCE(2. 5,1. 2,REF D!)
PRINT D!

CALL *AREA(2.5,1.2,REF A!)

PRINT A!

HALT

Program name: COMMON

)

> ’COMMON’ PROGRAM

s

SUB *DISTANCE(X!,Y!,D!)
DI=SQR(X!"2+Y112)

END SUB

SUB *AREA(X!,YLA!)
Al=X1*Y!

END SUB

Related commands CALL, EXIT SUB, GOSUB, ON to GOSUB, SUB, END SUB

DECLARE @ 7-39 I

)44 DEF FN

Defines functions which can be used by the user

Format

DEF FN <name> [%] [(<dummy argument>, [<dummy argument>...])] = <function definition expression>
!

$

<name> Function name. Max. of 16 chars., including "FN".

<dummy argument> Numeric or character string variable.

Defines the functions which can be used by the user. Defined functions are called in the FN

<name> (<variable>) format.

e The <dummy argument> names are the same as the variable names used in the <function definition

expression>. The names of these variables are valid only when the <function definition expression> is
evaluated. There may be other variables with the same name in the program.

* When calling a function that uses a <dummy argument>, specify the constant, variable, or expression
type which is the same as the <dummy argument> type.

e If a variable used in the <function definition expression> is not included in the <dummy argument>
list, the current value of that particular variable is used for the calculation.

* A space must be entered between "DEF" and "FN". If no space is entered, DEFFN will be handled as a
variable.

» The DEF FN statement cannot be used in sub-procedures.

 Definition by the DEF FN statement must be declared before statements which use functions.

SAMPLE

DEF FNPAI=3.141592
DEF FNASIN(X)=ATN(X/SQR(-X"2+1))
... Both the <dummy argument> and <function definition

expression> use "X".

A=FNASIN(B)*10....ccereieieiaiiiiinieniesiesiesienes "X" is not required for calling.

I 7-40 @ Chapter 7 Robot Language Lists

23 DEGRAD

Angle conversion (angle — radian)

Format

DEGRAD (<expression>)
<EXPIEeSSION™covvveeieiiienieienenens Angle (units: degrees)

1B EVELNY The <expression> value is converted to radians.
To convert radians to degrees, use RADDEG.

SAMPLE

A=COS(DEGRAD(30))....0ccvereeierrarirriarenreerenieieeennenes A 30° cosine value is assigned to variable A. n

Related commands ATN, COS, RADDEG, SIN, TAN ‘

DEGRAD @ 7-41 I

24 DELAY

Program execution waits for a specified period of time

Format

DELAY <expression>
<EXPIESSION™oveeviieiiiiieieienine 1 to 3600000 (units: ms)

IRIBLELI) A "program wait" status is established for the period of time specified by the <expression>.

The minimum wait period is 10ms.
SAMPLE

DELAY 3500 3,500ms (3.5 secs) wait
n DELAY A*10

I 7-42 @ Chapter 7 Robot Language Lists

25 DI

Acquires the input status from the parallel port

Format

1. [LET] <expression>= DIm([b,........ ,b])
2. [LET] <expression> = DI(mb,....... ,mb)

Port No.:0to 7, 10 to 17, 20 to 27
Bit definition: 0 to 7

Indicates the parallel input signal status.
If multiple bits are specified, they are expressed from the left in descending order (large to

small).
Enter "0" if no input port exists.
If the [b,...,b] data is omitted, all 8 bits are processed. n

A%=DI2() e The input status from DI (27) to DI (20) is assigned to
variable A%.

A%=DI5(7,4,0) <eoeeeeeeieeeese e The DI (57), DI (54), DI (50) input status is assigned to
variable A% (when all the above signals are "1" (ON), A%
=7).

A%=DI(37,25,20)..c..ccucimiiieiniiiiiniieeseeeeeeen The DI (37), DI (25), DI (20) input status is assigned to variable
A% (when all the above signals except DI (20) are "1" (ON), A%
=6).

For details, refer to Chapter 3 "9.5 Parallel input variable".

DI @ 7-43 I

26 DIST

Acquires the distance between 2 specified points

Format

DIST (<point expression 1>,<point expression 2>)

Values <point expression 1>.................. Cartesian coordinate system point

<point expression 2> Cartesian coordinate system point

Acquires the distance (X,Y,Z)between the 2 points specified by <point expression 1> and
<point expression 2>. An error occurs if the 2 points specified by each <point expression>

do not have a Cartesian coordinates.

SAMPLE

A=DIST(PO,P1).cceiiiiiiiiiiiiiiiiieiecieee e The distance between PO and P1 is assigned to variable
A.

I 7-44 @ Chapter 7 Robot Language Lists

DIM

Declares array variable

Format

DIM <array definition> [, <array definition>,...]

<name> [|%|] (<constant> [, <constant> [, <constant>]])
!

$

<CONStANt™ ...c.eoveieieieierieeeeneae Array subscript: 0 to 32,767 (positive integer)

Directly declares the name and length (number of elements) of an array variable. A n

maximum of 3 dimensions may be used for the array subscripts. Multiple arrays can be

declared in a single line by using comma (,) breakpoints to separate the arrays.

* Array subscripts can be "0 to a specified value", with their total number being the <constant> + 1.

* A "9.31: Memory full" error may occur depending on the size of each dimension defined in an array.

SAMPLE

DIM A%(10) oo Defines a integer array variable A% (0) to A% (10).
(Number of elements: 11).

DIM B(2,3,4) oeeeieeiieee e Defines a real array variable B (0, 0, 0) to B (2, 3, 4).
(Number of elements: 60).

DIM C%(2,2),D!I(10)...ccueeeieiieiiaiiiiieieieieieieeee Defines an integer array C% (0,0) to C% (2,2) and a real

array D! (0) to D! (10).

DIM @ 7-45 I

28 DO

Outputs to parallel port

Format

1. [LET] DOm ([b.......... ,b]) = <expression>
2. [LET] DO (mb,........ ,mb) = <expression>

M POTtNO. v 2107,10t0 17,20 to 27
b: Bit definition............cccccceueeeee Oto7

The output value is the lower left-side bit of the integer-converted <expression> value.

Directly outputs the specified value to the DO port.

If multiple bits are specified, they are expressed from the left in descending order (large to

small).
No output will occur if a nonexistent DO port is specified.

If the [b,...,b] data is omitted, all 8 bits are processed.
Outputs are not possible to DO0() and DO1(). These ports are for referencing only.

SAMPLE

DO2() = &B10111000.......c.cccceiiriririeiirenicnirirnnene DO (27, 25, 24, 23) are turned ON, and DO (26, 22, 21,
20) are turned OFF.

DO02(6,5,1) = &B010 DO (25) are turned ON, and DO (26, 21) are turned OFF.

DO3() =15 e DO (33, 32, 31, 30) are turned ON, and DO (37, 36, 35,
34) are turned OFF.

DO(37,35,27,20) = Ao The contents of the 4 lower bits acquired when variable A is converted

to an integer are output to DO (37, 35, 27, 20) respectively.

Related commands RESET, SET

I 7-46 @ Chapter 7 Robot Language Lists

pA DRIVE

Executes absolute movement of specified axes

Format

DRIVE(<axis number>, <expression>)[,(<axis number>, <expression>)...] [, option]

\LILES <axis nUMbEr>.......c.ccoceverueneenens main group: 1 to 6

<EXPIESSION™ ...coveveieiererreeenenn Motor position (mm, degrees, pulses) or point expression

IN(IENELN) Executes absolute movement commands for specified axes within a group.
This command is also used in the same way for the group's auxiliary axes.
* Movement type: PTP movement of specified axis.

* Point setting method: By direct numeric value input and point definition.

* Options: Speed setting, STOPON conditions setting, torque limit setting, XY setting.
movement direction setting.

Movement type

@ PTP (Point to Point) movement of specified axis:

PTP movement begins after positioning of all axes specified at <axis number> is complete (within the
tolerance range), and the command terminates when the specified axes enter the OUT position range.
When two or more axes are specified, they will reach their target positions simultaneously.

If the next command following the DRIVE command is an executable command such as a signal
output command, that next command will start when the movement axis enters the OUT position
range. In other words, that next command starts before the axis arrives within the target position

tolerance range.

Example:

Signal output (DO, etc.) Signal is output when axis enters within OUT position range.

DELAY DELAY command is executed and standby starts, when axis enters the OUT
position range.

HALT Program stops and is reset when axis enters the OUT position range. Therefore,
axis movement also stops.

HOLD Program temporarily stops when axis enters the OUT position range. Therefore,
axis movement also stops.

WAIT WAIT command is executed when axis enters the OUT position range.

DRIVE @ 7-47

7

The WAIT ARM statement is used to execute the next command after the axis enters the tolerance

range.
DRIVE command
4 N
DRIVE(L,PI) Tarect positi DRIVE(L,P1)
DO(20)=1 argetpostion w1 ARM JPTT ..
DO(20)=1 .

St Tolerance RS -’
OUT position
DO(20) turns ON DO(20) turns ON
- J
4 N\
DRIVE(1,P1) Tarect posit DRIVE(1,P1)
HOLD JUUCEE ArgELPOSION WA 1T ARM JUUTE
4 HOLD oo \‘

.
.
E/ .
D G
.
8 -~
.
.

1
.
~-- 4 ! AT
. . .
J . .
. R . .
- N . .

SN Tolerance g.... -
OUT position
HOLD execution HOLD execution
_ (program temporarily stops) (program temporarily stops))

SAMPLE

DRIVE(1,P0) Axis 1 moves from its current position to the position specified by PO.

Point data setting types

@ Direct numeric value input

The motor position is specified directly in <expression>.

If the motor position's numeric value is an integer, this is interpreted as a "pulse" units. If the motor
position's numeric value is a real number, this is interpreted as a "mm/degrees" units, and each axis
will move from the 0-pulse position to a pulse-converted position.

However, when using the optional XY setting, movement occurs from the coordinate origin position.

SAMPLE

DRIVE(1,10000) ...cveviieviieeiieienieiecrienesienenes Main group's axis 1 moves from its current position to the
10000 pulses position.

7-48 @ Chapter 7 Robot Language Lists

[~ote

e If point data is specified with
both integers and real numbers
in the same statement, all
values are handled in "mm/
degrees" units.

M NOTE

e This defines the maximum
speed, and does not guarantee
that all movement will occur at
specified speed.

M NOTE

e SPEED option and DSPEED
option cannot be used together

Option types

@ Speed setting

@® Point definition

Point data is specified in <expressions>. The axis data specified by the <axis number> is used. If the
point expression is in "mm/degrees" units, movement for each axis occurs from the 0-pulse position to
the pulse-converted position.

However, when using the optional XY setting, movement occurs from the coordinate origin position.

SAMPLE

DRIVE(LPL) oo Main group's axis 1 moves from its current position to the position specified by
PI.
DRIVE(4,P90)....c.cciiiiiiiiiiiniiiieieiceee Axis 4 moves from its current position to the position specified by P90 (deg) relative to the 0

pulse position. (When axis 4 is a rotating axis.)

Format

1. SPEED =<expression>
2. S =<expression>

<EXPIEeSSION™coovvenireiieiiienenane 1 to 100 (units: %)

The program's movement speed is specified as an <expression>.

The actual speed is determined as shown below.

* Robot's max. speed (mm/sec, or deg/sec) x automatic movement speed (%) x program
movement speed (%).

This option is enabled only for the specified DRIVE statement.

Format

1. DSPEED =<expression>
2. DS =<expression>

<EXPIEeSSION™covveeiiiieeiienenens 0.01 to 100.00 (units: %)
The axis movement speed is specified in <expression>.

The actual speed is determined as shown below.

* Robot's max. speed (mm/sec, or deg/sec) x axis movement speed (%).
This option is enabled only for the specified DRIVE statement.

* Movement always occurs at the DSPEED <expression> value (%) without being

affected by the automatic movement speed value (%).

DRIVE @ 7-49

7

@® STOPON conditions setting

STOPON <conditional expression>

Stops movement when the conditions specified by the conditional expression are met.
Because this is a deceleration type stop, there will be some movement (during
deceleration) after the conditions are met.

If the conditions are already met before movement begins, no movement occurs, and
the command is terminated.
This option is enabled only by program execution.

SAMPLE

DRIVE(1,10000),STOPON DI(20)=1
Axis 1 moves from its current position toward the "10000 pulses" position and stops at an

intermediate point if the "DI (20) = 1" condition is met. The next step is then executed.

* When the conditional expression used to designate the STOPON condition is a numeric expression,
the conditions for determining a TRUE or FALSE status can be changed at the controller's "TRUE
conditions" in the "Other parameters" mode.

These conditions apply to all the IF, WHILE, WAIT, STOPON, etc., conditional expressions. For
details, refer to the controller manual.

c CAUTION 1) -1 (default setting) ~ An expression value of "-1" indicates a TRUE status, and "0" indicates a
FALSE status. A "6.35: Incorrect condition expression" error occurs if the
e The torque limit setting cannot
be used at axes where YC-
Link is connected, or at axes 2) not0 Any expression value other than "0" indicates a TRUE status, and "0"

where a power gripper is being indicates a FALSE status.
used. Attempts to specify this
setting at these axes results in a
"5.37 Specification mismatch"

message, and command

The torque limit setting range
differs depending on the robot
model. Setting a torque limit
higher than the maximum level
may cause robot malfunctions <torque limit value>................... 1 to 100 (units: %)
or failure. <torque offset value> -100 to 100

expression value is other than "-1" or "0".

@ Torque limit setting

1. T =<torque limit value>
2. T =(<torque limit value> [,<torque offset value>])

If the specified torque limit . .
value is too small, the axis IBIEVELTNY Moves the axis while under torque control.

movement may not occur. The maximum torque at this time is limited to a value calculated as follows: Rated
Moreover, vertical axes may torque x <torque limit value>/ 100.
fall.

A <torque offset value> is specified to control the torque at vertical axes, etc., where a
fixed load is constantly applied. When the torque limit value setting is omitted, a setting
of "0" is adopted (the setting is also "0" in Format 1).

Specify the torque offset value with reference to the value which displays at the current
command monitor while axis movement is stopped by servo HOLD.

Note, however, that the value displayed at the current command monitor is the maximum
torque ratio. As a general guideline, the torque offset value should be set as approximately
1/3 of the displayed value in order to acquire the rated torque ratio.

* The current command monitor can be displayed by pressing the [DISPLAY] key at the programming
box. For details, refer to the controller manual.

7-50 @ Chapter 7 Robot Language Lists

When the DRIVE statement is executed with this option specified, the axis moves to the
target position while controlling the torque by changing the maximum torque for the axis
to the <torque limit value>.

The maximum movement speed at this time is 10% of the normal operating speed. No
errors will occur even if the axis strikes an obstacle during movement, and the axis torque

(thrust) will not exceed the limit value.

* Command END conditions

1. The command ends when the axis has reached the target position.

2. The command ends when the time (timeout period) specified by the TRQTIME

statement has elapsed while the axis torque (thrust) has reached the limit value.

* TRQSTS command value

1. 1 is set at the TRQSTS function when this command has ended due to a time-out
during which the axis torque has reached its limit value.

2. "0"is set if the command was ended for any other reason.
* Cautions

1. Maximum torque command value which have been changed by the TORQUE
statement do not immediately become effective. They become effective at the next
movement command (MOVE or DRIVE statement, etc.).

2. Even after this command ends, the maximum torque limit and torque control status
remain in effect. The same applies if a stop occurs due to an interlock, etc., while
this command is being executed.

3. Torque control is canceled when an axis related operation is executed. Such
operations include servo ON/OFF switching, and a MOVE command execution, etc.

4. To cancel the maximum torque limit, use the TORQUE statement to specify a new
maximum torque command value.

5. Maximum torque limit is cancelled at the following times regardless of whether or
not a TORQUE statement is used:

* When the controller power is turned ON.

* When the servo is turned OFF.

* When a return-to-origin or an absolute reset (except by the mark method) is
executed.

* When parameter data has been changed or initialized.

DRIVE @ 7-51 I

7

* Restrictions

Two or more axes cannot be specified with this option.
2. Maximum movement speed is set as 10% of the normal operating speed.
3. Manual movement is not possible at axes which are under torque control (axes

where this command has been executed).

SAMPLE

TRQTIME(3)=2500......ccccoeceririniiniiieianens Sets the axis 3 torque control time-out period as 2.5 seconds.
DRIVE(3,P1),T=(20,15)..ccccocuerirveirrcinienne Sets the maximum torque value to 20% of the rated torque, and the torque offset to 15, and
moves the axis 3 from its current position to the point specified by P1 (pushing action).
IF TRQSTS(3)=1 THEN......ccc0eriririarrnnnnd Checks to see if a time-out has occurred.
DO21)=1 it Time-out occurred (pushing is complete). (Result is output to DO(21) in this example.)
ELSE
DOQI)Z0. e Time-out has not occurred. (Reached target position but failed to
complete pushing.) (Result is output to DO(21) in this example.)
ENDIF
TORQUE(3)=100.......ccoeiiriaieiieieieeeeniene Maximum torque command value is returned to original value
(100%).
DRIVE(B,P0) ..coiiiiiiiiiieiiiiieieeeee Torque limit and torque control end, and movement to PO
oceurs.

@ XY setting

Format

XY

Moves multiple specified axes to a position specified by Cartesian coordinates.
All the specified axes arrive at the target position at the same time.
If all axes which can be moved by MOVE statement has been specified, operation is
identical to that which occurs when using MOVE statement.
The following restrictions apply to this command:
1. Axes specified by <axis number> must include the axis 1 and 2.
2. This command can be specified at SCARA robots.

3. Point settings must be in "mm" or "deg" units (real number setting).

SAMPLE

DRIVE(1,P100),(2,P100),(4,P100),XY
.............................. The axis 1, 2 and 4 move from their current positions to the Cartesian

coordinates position specified by P100.

I 7-52 @ Chapter 7 Robot Language Lists

@® Movement direction setting

PLS
MNS

Explanation

<With a "movement direction setting">

* Movement occurs in the specified direction. A PLS setting always results in
plus-direction movement, and a MNS setting always results in minus-direction
movement.

« If the target position and the current position are the same, a 1-cycle movement

mount occurs in the specified direction, then operation stops.

<Without a "movement direction setting">
* Movement occurs in the direction in which the movement distance is shortest.
» If the target position and the current position are the same, no movement

occurs.

» Cautions

When using this option, the maximum movement distance per operation is the
distance equivalent to 1 cycle (360°). If movement which exceeds the 1-cycle
distance is desired, the movement must be divided into 2 or more operations.
When using this option, the DRIVE statement's soft limit values are as shown
below.

Plus-direction soft limit: 67,000,000 [pulse]

Minus-direction soft limit: ~ -67,000,000 [pulse]

¢ Restrictions

Only the axis of a single-axis rotary type robot can be specified.
Simultaneous movement of multiple axes is not possible when a
movement direction has been specified. If such movement is attempted, the
"5.37: Specification mismatch" error will occur (see below).

Example: DRIVE (3,P1), (4,P1), PLS
The PLS and MNS options cannot both be specified simultaneously.
Attempting to use this option for a "limitless motion INVALID" axis will result in
the "2.29: Cannot move without the limit" error.
If a stop is executed by pressing the [STOP] key, etc., during movement which uses
this option (including during a deceleration), the movement distance when restarted

will be equivalent to a 1-cycle distance (360°).

DRIVE @ 7-53 I

7

SAMPLE
DRIVE (4,270.00), PLS

...................... When the robot current position is 260°:
Moves 10° in the plus direction from the current position.
When the robot current position is 280°:
Moves 350° in the plus direction from the current position.

DRIVE (4,270.00), MNS

...................... When the robot current position is 260°:
Moves 350° in the minus direction from the current position.
When the robot current position is 280°:

Moves 10° in the minus direction from the current position.

...................... When the robot current position is 260°:
Moves 10° in the plus direction from the current position.
When the robot current position is 280°:

Moves 10° in the minus direction from the current position.

Related commands TORQUE, TRQTIME, TRQSYS, CURTRQ

I 7-54 @ Chapter 7 Robot Language Lists

DRIVEI

Moves the specified robot axes in a relative manner

Format

DRIVEI(<axis number>, <expression>)[,(<axis number>, <expression>)...][,option]

Values <axis NUMbEr™>.......c.cccooveuivueennene 1to4
<EXPIESSION™ ...coeeveieieienienienens Motor position (mm, deg, pulses) or point expression.

Directly executes relative movement of each axis of a group, including the group's auxiliary
axes.
* Movement type : PTP movement of a specified axis
* Point data setting : Direct coordinate data input, point definition

* Options : Speed setting, STOPON conditions setting

* When DRIVEI motion to the original target position is interrupted and then restarted, the target

position for the resumed movement can be selected as the "MOVEI/DRIVETI start position" in the

controller's "other parameters". For details, refer to the controller manual.

1) KEEP (default setting) Continues the previous (before interruption) movement. The original target
position remains unchanged.

2) RESET Relative movement begins anew from the current position. The new target
position is different from the original one (before interruption). (Backward
compatibility)

Movement type

@ PTP (point-to-point) of specified axis
PTP movement begins after positioning of all axes specified at <axis number> is complete (within the

tolerance range), and the command terminates when the specified axes enter the OUT position range.
When two or more axes are specified, they will reach their target positions simultaneously.

If the next command following the DRIVEI command is an executable command such as a signal
output command, that next command will start when the movement axis enters the OUT position
range. In other words, that next command starts before the axis arrives within the target position

tolerance range.

Example:

Signal output (DO, etc.) Signal is output when axis enters within OUT position range.

DELAY DELAY command is executed and standby starts, when axis enters the OUT
position range.

HALT Program stops and is reset when axis enters the OUT position range. Therefore,
axis movement also stops.

HOLD Program temporarily stops when axis enters the OUT position range. Therefore,
axis movement also stops.

WAIT WAIT command is executed when axis enters the OUT position range.

DRIVEI @ 7-55

7

The WAIT ARM statement is used to execute the next command after the axis enters the tolerance

range.
DRIVEI command
WAIT ARM statement
4)
DRIVEI(1,P1) Tareet bositi DRIVEI(1,P1)
DO(20)=1 arget postion — yy a1 ARM JUUETEN .
DO(Q0)=1 o
ﬁc: > ommmmmmmn): @ |
Tolerance RN -
OUT position
DO(20) turns ON DO(20) turns ON
- J
4 N
DRIVEI(1,P1) Target position PRIVEI(LPD)
HOLD WAIT ARM pemmeel
HOLD lo' \‘
L RGOS
ﬁ*- (omm———)' @ | !
Tolerance RN o
OUT position
HOLD execution HOLD execution
_ (program temporarily stops) (program temporarily stops))

Limitless motion related cautions

*When the "limitless motion" parameter is enabled, the DRIVEI statement soft limit

check values are as follows:
Plus-direction soft limit:

Minus-direction soft limit:

67,000,000 [pulse]
-67,000,000 [pulse]

*When using the DRIVEI statement, the above values represent the maximum movement distance per

operation.

SAMPLE

DRIVEI(1,P0) The axis 1 moves from its current position to the position specified by PO.

7-56 @ Chapter 7 Robot Language Lists

Point data setting types

@ Direct numeric value input
The motor position is specified directly in <expression>.
If the motor position's numeric value is a real number, this is interpreted as a "mm / deg" units, and

each axis will move from the 0-pulse position to a pulse-converted position.

SAMPLE

DRIVEI(1,10000)oveeeieriieeeieieieieesieesienens The axis 1 moves from its current position to the "+10000
pulses" position.
DRIVEI(4,90.00)coveuvvieiiieiiniiiiiniccricienienens The axis 4 moves from its current position to the +90° position

(when axis 4 is a rotating axis).

M NOTE @ Point definition
Point data is specified in <expression>. The axis data specified by the <axis number> is used. The

e If point data is specified with
both integers and real numbers
in the same statement, all point expression is in "mm/degrees" units, movement for each axis occurs from the 0-pulse position to
values are handled in "mm/
degrees" units.

motor position is determined in accordance with the point data defined by the point expression. If the

the pulse-converted position.

SAMPLE

DRIVEI(1,P1) wooieieieieieieeeeee e The axis 1 moves from its current position the distance
specified by P1.
DRIVEI(4,P90).....cceiiiiiiiiiiiienieieieieene The axis 4 moves from its current position the number of

degrees specified by P90 (when axis 4 is a rotating axis).

DRIVEI @ 7-57

7

Option types

@ Speed setting

Format

1. SPEED=<expression>
2. S=<expression>

<EXPIESSION™ ...oveeerieiienienieneenien 1 to 100 (units: %)
~ote
e This defines the maximum " h , di ified by th .
speed. and does not guarantee IBIENELY) The program's movement speed is specified by the <expression>.
that all movement will occur at The actual speed is as follows:
specified speed. * Robot's max. speed (mm/sec, or deg/sec) x automatic movement speed (%) X program

movement speed (%).
This option is enabled only for the specified DRIVEI statement.

SAMPLE
DRIVEI(1,10000),S=10......ccccccererieiiiairanens The axis | moves from its current position to the +10000 pulses position at

10% of the automatic movement speed.

Format

1. DSPEED=<expression>
2. DS=<expression>

<EXPIESSION™oveeviieiiiiieieienine 0.01 to 100.00 (units: %)
M NOTE

e SPEED option and DSPEED h . di ified .
option cannot be used fogether. IDIEVELT) The axis movement speed is specified as an <expression>.

The actual speed is determined as shown below.

* Robot's max. speed (mm/sec, or deg/sec) x axis movement speed (%).

This option is enabled only for the specified DRIVEI statement.

* Movement always occurs at the DSPEED <expression> value (%) without being

affected by the automatic movement speed value (%).

SAMPLE

DRIVEI(1,10000),DS=0.1.......cccceeerirrierrerannen The axis 1 moves from its current position to the +10000 pulses position at
0.1% of the automatic movement speed.

I 7-58 @ Chapter 7 Robot Language Lists

@® STOPON conditions setting

Format

STOPON <conditional expression>

Stops movement when the conditions specified by the conditional expression are met.
Because this is a deceleration type stop, there will be some movement (during
deceleration) after the conditions are satisfied.

If the conditions are already satisfied before movement begins, no movement occurs,
and the command is terminated.

This option is enabled only by program execution.

» When the conditional expression used to designate the STOPON condition is a numeric expression,

the conditions for determining a TRUE or FALSE status can be changed at the controller's "TRUE
conditions" in the "Other parameters" mode. These conditions apply to all the IF, WHILE, WAIT,
STOPON, etc., conditional expressions. For details, refer to the controller manual.

1) -1 (default setting) An expression value of "-1" indicates a TRUE status, and "0" indicates a
FALSE status.
A "6.35: Incorrect condition expression" error occurs if the expression
value is other than "-1" or "0".

2) not 0 Any expression value other than "0" indicates a TRUE status, and "0"

indicates a FALSE status.

SAMPLE

DRIVEI(1,10000),STOPON DI(20)=1

.............................. Axis | moves from its current position toward the "+10000 pulses" position and stops at

an intermediate point if the "DI (20) = 1" condition become satisfied. The next step is then

executed.

DRIVEI @ 7-59 I

R} | END SELECT

Ends the SELECT CASE statement

Format

SELECT [CASE] <expression>

CASE <expression's list 1>
[command block 1]

CASE <expression's list 2>
[command block 2]

[CASE ELSE
[command block n]
END SELECT

Directly ends the SELECT CASE command block.
For details, see section "87 SELECT CASE".

I

WHILE -1
SELECT CASE DI3()
CASE 1,23
CALL *EXEC(1,10)
CASE 4,5,6,7,8,9,10
CALL *EXEC(11,20)
CASE ELSE
CALL *EXEC(21,30)
END SELECT
WEND
HALT

Related commands SELECT CASE

I 7-60 @ Chapter 7 Robot Language Lists

32 END SUB

Ends the sub-procedure definition

Format

SUB <label> [(<dummy argument> [, <dummy argument>...])]
<command block>
END SUB

Ends the sub-procedure definition which begins at the SUB statement.
For details, see section "99 SUB to ENDSUB".

SAMPLE 1

=1
CALL *TEST
PRINT I
HALT
’SUB ROUTINE: TEST
SUB *TEST
1=50
END SUB

Related commands CALL, EXIT SUB, SUB to END SUB ‘

END SUB @ 7-61 I

33 ERR / ERL
7 Acquires the error code / error line No

Format

ERR
ERL

IBIENELNY Variables ERR and ERL are used in error processing routines specified by the ON ERROR
GOTO statement.
ERR gives the error code of the error that has occurred, and ERL gives the line number in

which the error occurred.

SAMPLE 1

IF ERR <> &H604 THEN HALT
IF ERL=20 THEN RESUME NEXT

n Related commands ON ERROR GOTO, RESUME ‘

I 7-62 @ Chapter 7 Robot Language Lists

34 EXIT FOR

Terminates the FOR to NEXT statement loop

Format

EXIT FOR

Directly terminates the FOR to NEXT statement loop, then jumps to the command which
follows the NEXT statement.
This statement is valid only between the FOR to NEXT statements.

* The FOR to NEXT statement loop will end when the FOR statement condition is satisfied or when the
EXIT FOR statement is executed. A "5.12: Stack overflow" error, etc., will occur if another statement
such as GOTO is used to jump out of the loop.

SAMPLE

RSIE

WAIT DI(20)=1

FOR A%=101 TO 109
MOVE P,P100,Z=0
DO(20)=1
MOVE P,P[A%],Z=0
DO(20)=0
IF DI(20)=0 THEN EXIT FOR

NEXT A%

GOTO *ST

HALT

Related commands FOR, NEXT

EXIT FOR @ 7-63 I

35 EXIT SUB

Terminates the sub-procedure defined by SUB to END

Format

EXIT SUB

The EXIT SUB statement terminates the sub-procedure defined by the SUB to END SUB
statements, then jumps to the next command in the CALL statement that called up the sub-
procedure.

This statement is valid only within the sub-procedure defined by the SUB to END SUB

statements.

* To end the sub-procedure defined by the SUB to END SUB statements, use the END SUB statement
or EXIT SUB statement. A "5.12: Stack overflow" error, etc., will occur if another statement such as

GOTO is used to jump out of the loop.

3

MAIN ROUTINE
CALL *SORT2(REF X%.,REF Y%)
HALT
’SUB ROUTINE: SORT
SUB *SORT2(X%, Y%)
IF X%>=Y% THEN EXIT SUB
TMP%=Y %
Y %=X%
X%=TMP%
END SUB

Related commands CALL, SUB to END SUB, END SUB

I 7-64 @ Chapter 7 Robot Language Lists

36 EXIT TASK

Terminates its own task which is in progress

Format

EXIT TASK

INAIELELN) Terminates its own task which is currently being executed.

This statement is valid for all tasks other than task 1 (Task 1 cannot be terminated).

» Even if a task that has started as a subtask jumps to another task processing routine with a statement

such as GO TO, that processing routine is then executed as this subtask processing.

SAMPLE

’TASK1 ROUTINE
STl

MO(20)=0
START *SUBTASK2,T2
MOVE P,P0,P1
WAIT MO(20)=1
GOTO *ST
HALT
"TASK2 ROUTINE
*SUBTASK2:
P100=JTOXY(WHERE)
IF LOCZ(P100)>=100.0 THEN
MO(20)=1
EXIT TASK
ENDIF
DELAY 100
GOTO *SUBTASK2
EXIT TASK

Related commands CUT, RESTART, START, SUSPEND, CHGPRI

EXIT TASK @ 7-65 I

37 FOR to NEXT

Performs loop processing until the variable-specified value is exceeded

Format

FOR <control variable> = <start value> TO <end value> [STEP] <step>]
<command block>
NEXT [<control variable>]

These direct statements repeatedly execute commands between the FOR to NEXT
statements for the <start value> to <end value> number of times, while changing the
<control variable> value in steps specified by <STEP>. If <STEP> is omitted, its value
becomes "1".

The <STEP> value may be either positive or negative.
The <control variable> must be a numeric <simple variable> or <array variable>.

The FOR and NEXT statements are always used as a set.

SAMPLE

'CYCLE WITH CYCLE NUMBER OUTPUT TO DISPLAY
FOR A=1 TO 10
MOVE P,P0
MOVE PP1
MOVE P,P2
PRINT"CYCLE NUMBER=";A
NEXT A
HALT

Related commands EXIT FOR

I 7-66 @ Chapter 7 Robot Language Lists

GOSUB to RETURN

Jumps to a sub-routine

Format

GOSUB <label> * GOSUB can also be expressed as "GO SUB".
<label>:

RETURN

Jumps to the <label> sub-routine specified by the GOSUB statement.
A RETURN statement within the sub-routine causes a jump to the next line of the GOSUB
statement.

» The GOSUB statement can be used up to 29 times in succession. Note that this number of times is
reduced if commands containing a stack such as an IF statement or CALL statement are used.

* When a jump to a subroutine was made with the GOSUB statement, always use the RETURN

statement to end the subroutine. If another statement such as GOTO is used to jump out of the

subroutine, an error such as "5.12: Stack overflow" may occur.

SAMPLE

MOVE P,P0O

GOSUB *CLOSEHAND
MOVE PP1
GOSUB *OPENHAND
GOTO *ST
HALT
’SUB ROUTINE
*CLOSEHAND:
DO(20) = 1
RETURN
*OPENHAND:
DO(20) = 0
RETURN

Related commands RETURN

GOSUB to RETURN @ 7-67 I

39 GOTO

Executes an unconditional jump to the specified line

Format

GOTO <label>* GOTO can also be expressed as "GO TO".

Executes an unconditional jump to the line specified by <label>.
To select a conditional jump destination, use the ON to GOTO, or IF statements.

SAMPLE

’MAIN ROUTINE
GSITE
MOVE P,P0,P1
IF DI(20) = 1 THEN
GOTO *FIN
ENDIF
GOTO *ST
*FIN:
HALT

I 7-68 @ Chapter 7 Robot Language Lists

HALT

Stops the program and performs a reset

Format

HALT[]

<expression>

<character string>

1IN BV Directly stops the program and resets it. If restarted after a HALT, the program runs from
its beginning.

» If an <expression> or <character string> is written in the statement, the contents of the <expression>
or <character string> are displayed on the programming box screen.
« Ifa" SELECT" program name exists, processing will switch to that " SELECT" program after the
HALT command is executed.

SAMPLE

"MAIN ROUTINE
=S
MOVE P,P0,P1
IF DI(20) = 1 THEN
GOTO *FIN
ENDIF
GOTO *ST
*FIN:
HALT "PROGRAM FIN"

In PTP movement specified by movement commands such as MOVE and DRIVE, the next line's command
is executed when the axis enters the OUT position range.

Therefore, if a HALT command exists immediately after a PTP movement command, that HALT command
is executed before the axis arrives in the target position tolerance range.

Likewise, in interpolation movement during MOVE command, the next command is executed immediately
after movement starts. Therefore, if a HALT command exists immediately after the interpolation movement
command during MOVE, that HALT command is executed immediately after movement starts.

In either of the above cases, use the WAIT ARM command if desiring to execute the HALT command after

the axis arrives within the target position tolerance range.

HALT command
4 N
DRIVE(L,P1) — DRIVE(L,P1)
HALT AEELPOSIION WA IT ARM JUURTI, .
HALT - .

Tolerance (N ’
OUT position
HALT execution HALT execution

- J

For details regarding " SELECT", see Chapter 1 "4 Program Names".

HALT @ 7-69 I

41 HAND

Defines the hand

Format

Definition statement:
HAND Hn = <l1st parameter> <2nd parameter> <3rd parameter> [R]

Selection statement:

CHANGE Hn
n:hand NO....ooovvviiieieiee, main group: 0to3 — HAND is used.

The HAND statement only defines the hand. To actually change hands, the CHANGE
statement must be used.
For CHANGE statement details, see section "12 CHANGE".

 If a power OFF occurs during execution of the hand definition statement, the "9.7 Hand check-sum

error" may occur.

41.1 B For SCARA Robots

I 1. When the <4th parameter> “R” is not specified

n Hands installed on the second arm tip are selected (see below).
<lst parameter> Number of offset pulses between the standard second arm position and the

virtual second arm position of hand "n". "+" indicates the counterclockwise

direction [pulse].
<2nd parameter> Difference between the hand "n" virtual second arm length and the standard
second arm length. [mm)]

<3rd parameter> Z-axis offset value for hand "n". [mm)]

When the <4th parameter> "R" is not specified:

Hand 1 Hand 2
20.00mm

I 7-70 @ Chapter 7 Robot Language Lists

SAMPLE
HAND H1= 0 150.0 0.0
HAND H2= -5000 20.00 0.0
Pl1= 150.00 300.00 0.00 0.00 0.00 0.00
CHANGE H2
MOVE PPL oo Tip of hand 2 moves to P1. @
CHANGE H1
MOVE PPL oo Tip of hand 1 moves to P1. @
HALT
SAMPLE:HAND

o 2] N

Hand 2 (150.00, 300.00)
Hand2
‘)\ Hand 1
an
(150.00, 300.00)

N>

HAND @ 7-71 I

I 2. When the <4th parameter> "R" is specified

If the R-axis uses a servo motor, the hands that are offset from the R-axis rotating center are selected (see

below).

<Ist parameter> When the current position of R-axis is 0.00, this parameter shows the angle
of hand "n" from the X-axis plus direction in a Cartesian coordinate system.
("+"indicates the counterclockwise direction.) [degree]

<2nd parameter> Length of hand "n". [mm] (>0)

<3rd parameter> Z-axis offset amount for hand "n". [mm]

When the <4th parameter> "R" is specified

Y
Standard 2nd arm 150.00mm
=
S
\—/ 4 -90.00deg;w
100.00mm | N Hand 2

SAMPLE

HAND H1= 0.00 150.0 0.0 R
HAND H2= -90.00 100.00 0.0 R
P1= 150.00 300.00 0.00 0.00 0.00 0.00
CHANGE H1
MOVE PPL oo Tip of hand 1 moves to P1. @
CHANGE H2
MOVE PPL oot Tip of hand 2 moves to P1. @
HALT
SAMPLE:HAND
o . (2 Y
™N Hand 1 Vg]\.' Hand 2
Y 1 A 1 -
=, } —4
j/ (150.00, 300.00) / (150.00, 300.00)
vl
%) i %) .
|

I 7-72 @ Chapter 7 Robot Language Lists

42 HOLD

Temporarily stops the program

Format

HOLD[<expression> |]

<character string>

IR BN Temporarily stops the program. When restarted, processing resumes from the next line after
the HOLD statement. If an <expression> or <character string> is written in the statement,
the contents of the <expression> or <character string> display on the programming box
screen.

SAMPLE

’MAIN ROUTINE
*ST:
MOVE P,P0,P1
IF DI(20)=1 THEN
HOLD "PROGRAM STOP"
ENDIF
GOTO *ST
HALT

In PTP movement specified by movement commands such as MOVE and DRIVE, the next line's command

is executed when the axis enters the effective OUT position range.

Therefore, if a HOLD command exists immediately after a PTP movement command, that HOLD

command is executed before the axis arrives in the target position tolerance range.

Likewise, in interpolation movement during MOVE command, the next command is executed immediately
after movement starts. Therefore, if a HOLD command exists immediately after the interpolation
movement command during MOVE, that HOLD command is executed immediately after movement starts.
In either of the above cases, use the WAIT ARM command if desiring to execute the HOLD command
after the axis arrives within the target position tolerance range.

HOLD command
4 I
DRIVE(1,P1) — DRIVE(1,P1)
HOLD ArEELPOSIION WA IT ARM JUPTERN .
HOLD - ™

Tolerance A S .
OUT position
HOLD execution HOLD execution

HOLD @ 7-73

43 IF

Evaluates a conditional expression value, and executes the command in accordance with the conditions

* When the conditional expression used to designate the IF statement conditions is a numeric expression,
the conditions for determining a TRUE or FALSE status can be changed at the controller's "TRUE
conditions" in the "Other parameters" mode. These conditions apply to all the IF, WHILE, WAIT,
STOPON, etc., conditional expressions. For details, refer to the controller manual.

1) -1 (default setting) An expression value of "-1" indicates a TRUE status, and "0" indicates a
FALSE status.
A "6.35 Incorrect condition expression" error occurs if the expression
value is other than "-1" or "0".

2) not 0 Any expression value other than "0" indicates a TRUE status, and "0"
indicates a FALSE status.

43.1 I Simple IF statement

<label 1>l [ELSE | <label 2>]

[<command statement | <command statement 2>|

IF <conditional expression> THEN

If the condition specified by the <conditional expression> is met, processing jumps either
to the <label 1> which follows THEN, or to the next line after <command statement 1> is
executed.

If the condition specified by the <conditional expression> is not met, the following

processing occurs:

1. Processing either jumps to the <label 2> specified after the ELSE statement, or to the
next line after <command statement 2> is executed.

2. If nothing is specified after the ELSE statement, no action is taken, and processing

simply jumps to the next line.

SAMPLE

"MAIN ROUTINE
*ST:
MOVE P,P0,P1
IF DI(20)=1 THEN *L1....ccccccoeiiiiiinininnnns If DI (20) is "1", a jump to *L1 occurs.
DO(20)=1
DELAY 100
*L1:
IF DI(21)=1 THEN *ST ELSE *FIN
... If DI (21) is "1", a jump to *ST occurs. If other than "1",
a jump to *FIN occurs.
*FIN:
HALT

I 7-74 @ Chapter 7 Robot Language Lists

KN -

43.2 I Block IF statement

IF <conditional expression 1> THEN
<command block 1>

[ELSEIF <conditional expression 2> THEN
<command block 2>]

[ELSE
<command block n>]

ENDIF

If the condition specified by <conditional expression 1> is met, this statement executes the
instructions specified in <command block 1>, then jumps to the next line after ENDIF.
When an ELSEIF statement is present and the condition specified by <conditional
expression 2> is met, the instructions specified in <command block 2> are executed.
If all the conditions specified by the conditional expression are not met, <command block
n> is executed.

» The IF statement can be used up to 48 times in succession. Note that the maximum number of times is

reduced if commands containing a stack such as a GOSUB or CALL statement are used.

SAMPLE

"MAIN ROUTINE
*ST:

MOVE P,P0,P1
IF DI(21,20)=1 THEN
DO(20)= 1
DELAY 100
WAIT DI(20)=0
ELSEIF DI(21,20)=2 THEN
DELAY 100
ELSE
GOTO *FIN
ENDIF
GOTO *ST
*FIN:
HALT

INPUT

Assigns a value to a variable specified from the programming box

Format

INPUT [<prompt statement>| ; |] [<variable> | [, | <variable> | ,...]
, | |<point variable> <point variable>
<shift variable> <shift variable>

Assigns a value to the variable specified from the programming box.

The input definitions are as follows:

1. When two or more variables are specified by separating them with a comma (,), the
specified input data items must also be separated with a comma (,).

2. At the <prompt statement>, enter a character string enclosed in quotation marks (" ")
that will appear as a message requiring data input. When a semicolon (;) is entered
following the prompt statement, a question mark (?) and a space will appear at the end
of the message. When a comma (,) is entered, nothing will be displayed following the
message.

3. When the <prompt statement> is omitted, only a question mark (?) and a space will be
displayed.

4. The input data type must match the type of the corresponding variables. When data is
input to a point variable or shift variable, insufficient elements are set to "0".

5. If only the ENTER key is pressed without making any entry, the program interprets this
as a"0" or "null string" input. However, if specifying two or more variables, a comma (
,) must be used to separate them.

6. If the specified variable is a character type and a significant space is to be entered before
and after a comma (,), double quotation mark (") or character string, the character
string must be enclosed in double quotation marks ("). Note that in this case, you
must enter two double quotation marks in succession so that they will be identified as a
double quotation mark input.

7. Pressing the ESC key skips this command.

« If the variable and the value to be assigned are different types, an "Input again" message displays and
a "waiting for input" status is established.

* When assigning alphanumeric characters to a character variable, it is not necessary to enclose the
character string in double quotation marks (").

SAMPLE

INPUT A
INPUT "INPUT POINT NUMBER";A1
INPUT "INPUT STRING",BS$(0),B$(1)
INPUT P100

HALT

I 7-76 @ Chapter 7 Robot Language Lists

45 INT

Truncates decimal fractions

Format

INT (<expression>)

1B EVELNY This function acquires an integer with decimal fractions truncated. The maximum integer

value which does not exceed the <expression> value is acquired.

SAMPLE

A=INT(A(0))
B=INT(-1. 233)"-2" is assigned to B.

INT @ 7-77 I

JTOXY

Performs axis unit system conversions (pulse — mm)

M NOTE

e X-arm and Y-arm rotation JTOXY (<point expression>)

information is only available in

ft Ver.1.66M or higher.
software Yer & INIELELN) Converts the joint coordinate data (unit: pulses) specified by the <point expression> into

Cartesian coordinate data (unit: mm, deg.).
On R6YXTWS500 model robots, the X-arm and Y-arm rotation information is also set.

SAMPLE

PLO=JTOXY(WHERE)......cccctriiririireiniecieiennn Current position data is converted to Cartesian coordinate
data.

Related commands XYTOJ

I 7-78 @ Chapter 7 Robot Language Lists

47 LABEL Statement

Defines labels at program lines

Format

*<label> :

Defines a <label> on a program line. A <label> must always begin with an asterisk mark (*),
and it must be located at the beginning of the line.
Although a colon mark (:) is required at the end of the <label> when defining it, this mark is

not required when specifying program jump destinations.

A <label> must begin with an alphabetic or numeric character.
2. Alphanumeric and underbars (_) can be used as the remaining <label> characters.
Special symbols, etc., cannot be used.

3. The <label> must not exceed 16 characters (all characters beyond the 16th character are

ignored).
SAMPLE
TN oosommommomooooooasetoonucinmomonooom: *ST label is defined.
MOVE P,PO
DO(20) = 1
MOVE P,P1
DO(20) =0
GOTO e *ST Jumps to *ST.
HALT

LABEL Statement @ 7-79 I

LEFT$

Extracts character strings from the left end

Format

LEFTS (<character string expression> , <expression>)

<EXPIESSION™oveeviieiiiinieieienene 0to 75

This function extracts a character string with the digits specified by the <expression> from
the left end of the character string specified by <character string expression>.
The <expression> value must be between 0 and 75, otherwise an error will occur.
If the <expression> value is 0, then LEFTS$ will be a null string (empty character string).
If the <expression> value has more characters than the <character string expression>,

LEFTS will become the same as the <character string expression>.

SAMPLE

BS=LEFTS$(AS$,4)....cceiieireieeieeeeieen 4 characters from the left end of A$ are assigned to BS.

Related commands MID$, RIGHTS ‘

I 7-80 @ Chapter 7 Robot Language Lists

LEFTY

Sets the SCARA robot hand system as a left-hand system

Format

LEFTY

This statement specifies left-handed movement to a point specified in Cartesian coordinates.
This statement only selects the hand system, and does not move the robot. If executed
while the robot arm is moving, execution waits until movement is complete (positioned
within tolerance range).

This command is only valid for SCARA robots.

SAMPLE

RIGHTY
MOVE P,P1
LEFTY
MOVE P,P1
RIGHTY
HALT

SAMPLE: LEFTY/RIGHTY

Left-handed system Right-handed system

SCARA robot

Related commands RIGHTY ‘

LEFTY @ 7-81 I

50 LEN

Acquires a character string length

Format

LEN(<character string expression>)

Returns the length (number of bytes) of the <character string expression>.

SAMPLE

B=LEN(AS$)

I 7-82 @ Chapter 7 Robot Language Lists

LET

Assigns values to variables

Format

[LET] <arithmetic assignment statement>

<character string assignment statement>
<point assignment statement>
<shift assignment statement>

INAIELELNN) Directly executes the specified assignment statement. The right-side value is assigned to the
left side. An assignment statement can also be directly written to the program without using
a LET statement.

« If the controller power is turned off during execution of a <point assignment statement> or <shift

assignment statement>, a memory-related error such as the "9.2: Point check-sum error" or the "9.6:

Shift check-sum error" may occur.

I 1. Arithmetic assignment statement

[LET] <arithmetic variable> = <expression>

<point element variable>
<shift element variable>
<parallel output variable>
<internal output variable>
<arm lock output variable>
<timer output variable>

<serial output variable>

ALY <expression™..........cceeeeeenen. Variable, function, numeric value

IBTIEVEGN) The <expression> value is assigned to the left-side variable.

SAMPLE

Al=Bl+1
BY%(1,2,3)=INT(10.88)
LOCZ(P0O)=A!
LOCX(S1)=100.00
DO2()=&B00101101
MO(21,20)=2
LO(00)=1

TO(01)=0

SO12()=255

LET @ 7-83 I

7

I 2. Character string assignment statement

Format

[LET] <character string variable> = <character string expression>

IRIEVELIN) The <character string expression> value is assigned to the character string variable.
Only the plus (+) arithmetic operator can be used in the <character string expression>.

Other arithmetic operators and parentheses cannot be used.

SAMPLE

A$ ="OMRON"
BS$ ="ROBOT"
D$ = A$ +"-"+BS

Execution result: OMRON-ROBOT

e The "+" arithmetic operator is used to link character strings.

I 3. Point assignment statement

Format

[LET] <point variable> = <point expression>

IBOIEVELING) Assigns <point expression> values to point variables.
Only 4 arithmetic operators (+, - *, /) can be used in the <point expression>.

Multiplication and division are performed only for constant or variable arithmetic

operations.

* Addition/subtraction Addition/subtraction is performed for each element of
each axis.

* Multiplicationc.ccco.... Multiplication by a constant or variable is performed for
each element of each axis.

* DivISION ..eovvevvevienininieiieens Division by a constant or variable is performed for each

element of each axis.

Multiplication results vary according to the point data type.
* For pulse unitscccoeueee Assigned after being converted to an integer.
 For "mm" unitsccccoeeue. Assigned after being converted to a real number down to

the 2nd decimal position.

I 7-84 @ Chapter 7 Robot Language Lists

SAMPLE

P1=P10Point 10 is assigned to P1.

P20=P20+P5....cceviiiiiiieiiiiieeeeeeen Each element of point 20 and point 5 is summed and
assigned to P20.

P30=P30-P3....ccoiiiiiiiiiiiiiieeeeeeee Each element of point 3 is subtracted from point 30 and
assigned to P30.

P8O=P70%4......ccoceuiiiiiiiiiiiiiiiiciicce Each element of point 70 is multiplied by 4 and assigned
to P80.

PO0=P5/3 oo Each element of point 5 is divided by 3 and assigned to
P60.

» Multiplication & division examples are shown below.

* Permissible examples P15 * 5, P[E]/A, etc.
* Prohibited examples P10 * P11, 3/P10, etc.

I 4. Shift assignment statement

Format

[LET] <shift variable> = <shift expression>

IDIEVEGIN) Assigns <shift expression> values to shift variables.
Only shift elements can be used in <shift expressions>, and only addition and

subtraction arithmetic operators are permitted. Parentheses cannot be used.

* Addition/subtraction Addition/subtraction is performed for each element of
each axis.
SAMPLE
SI=S0 "shift 0" is assigned to "shift 1".
S2=ST4S0 ..eiiiiiaiiieeiieeiee e Each element of "shift 1" and "shift 0" is summed and

assigned to "shift 2".

» Examples of <shift expression> addition/subtraction: .

* Permissible examples S1+8S2
* Prohibited examples S1+3

LET @ 7-85 I

52 LO

Arm lock output

Format

1. LOO ([b,.....,b]) = <expression>
2. LO (0b......,0b) = <expression>

b: Bit definitioncccocccveennnene 0to7
<expression>

Converted to an integer. The lower bits corresponding to

the bits specified on the left side are valid.

This statement outputs the specified value to the LO port to either prohibit or allow axis
movement.
LO(00) to LO(07) respectively correspond to axes 1 to 8. An arm lock ON status occurs at
axes where bits are set, and axis movement is prohibited. Multiple bits must be specified in

descending order from left to right (large — small).

¢ This statement is valid at axes where movement is started.
SAMPLE

LOO()=&BO0000T0T0.....c.eeuieuieiieiieiieiieiiieieiieienane Prohibits movement at axes 2 and 4.
LOO(2,1)=&B10......ceoiiieieieieieeeieeeeeieeene Prohibits movement at axis 3.

Related commands RESET, SET ‘

I 7-86 @ Chapter 7 Robot Language Lists

53 LOCx

Specifies/acquires point data or shift data for a specified axis

M NOTE

e X-arm and Y-arm rotation 1. LOCx (<point expression>) = <expression>
information is only available in 2. LOCx (<shift expression>) = <expression>
software Ver.1.66M or higher.
Format 1: X ..oooveeriiieieieieeee X,Y,Z,R,A,B (axis setting), F (hand system flag setting),
F1 (X-arm rotation information), F2 (Y-arm rotation
information).
Format 2: x X,Y,Z,R (axis setting)

<EXPIESSION™ ...vvevveieieveireeeenins For axis setting: coordinate value.
For hand system flag setting:
1 (right-handed system) or 2 (left-handed system)
0 (no setting)
For specifies the X-arm rotation information and specifies
the Y-arm rotation information:
0,1,-1
*1: For details regarding the X-arm and Y-arm rotation information, refer to
Chapter 4 "3. Point data format".

Direct format 1: Changes the value of the point data specified axis, the hand system flag,
and the X-arm and Y-arm rotation information.

Format 2: Changes the value of a specified axis from the shift data value.

 Points where data is to be changed must be registered in advance. An error will occur if a value change

is attempted at an unregistered point (where there are no coordinate values).

LOCx @ 7-87 I

I Functions

Format

1. LOCx (<point expression>)
2. LOCx (<shift expression>)

7

Format 1: X ..o, X.,Y,Z,R,A,B (axis setting), F (hand system flag setting),
F1 (X-arm rotation information), F2 (Y-arm rotation
information).

Format 2: X ..oooovvvviieiiceecee X,Y,Z,R (axis setting)

INGIEVELY Format 1: Acquires the value of the point data specified axis, the hand system flag, and the
X-arm and Y-arm rotation information.

Format 2: Acquires a specified axis value from the shift data.

SAMPLE

LOCX(P10)=A(1)... ..The X-axis data of P10 is changed to the array A (1) value.
LOCY(S1)=B .o The Y-axis data of S1 is changed to the B value.

A(1)=LOCK(PLO).eieiieieieieieiieieeeie e The X-axis data of P10 is assigned to array A (1).
B(2)=LOCX(S1)

The X-axis data of S1 is assigned to array B (2).

Related commands Point element variable, shift element variable

I 7-88 @ Chapter 7 Robot Language Lists

54 LSHIFT

Left-shifts a bit

Format

LSHIFT (<expression 1> ,<expression 2>)

Shifts the <expression 1> bit value to the left by the amount of <expression 2>. Spaces left
blank by the shift are filled with zeros (0).

SAMPLE

A=LSHIFT(&B10111011,2)...cccuiuiiiiiairiaiennnnes The 2-bit-left-shifted &B10111011 value (&B11101100)
is assigned to A.

Related commands RSHIFT ‘

LSHIFT @ 7-89 I

55 MCHREF

Acquires a machine reference

Format

MCHREF (<axis 1>)

<AXIS 1> main group: 1to 6

INIBLELN) This function provides the return-to-origin or absolute-search machine reference (unit: %)
for the axis specified by <axis number>.
This function can only be used for axes whose return-to-origin method is set to the sensor

or stroke end method.

SAMPLE

A=MCHREF(1)....ccoeteirieirieieieeieeeseeseeeeennn The main group's axis 1 return-to-origin machine reference

is assigned to variable A.

I 7-90 @ Chapter 7 Robot Language Lists

56 MID$

Acquires a character string from a specified position

Format

MIDS (<character string expression>,<expression 1>[,<expression 2>])

<expression 1>c.cccoveneenne 1to75
<EXPression 2>ceceveeeeeneennnn 0to75

This function extracts a character string of a desired length (number of characters) from
the character string specified by <character string expression>. <expression 1> specifies
the character where the extraction is to begin, and <expression 2> specifies the number of
characters to be extracted.

An error will occur if the <expression 1> and <expression 2> values violate the permissible
value ranges.

If <expression 2> is omitted, or if the number of characters to the right of the character of
<expression 1> is less than the value of <expression 2>, then all characters to the right of
the character specified by <expression 1> will be extracted.

If <expression 1> is longer than the character string, MID$ will be a null string (empty

character string).

SAMPLE

BS=MIDS(AS,2,4)....ccrrrieieiiiiniiieiceirirseieeeens The 2nd to 4th characters (up to the 5th char.) of A$ are
assigned to B$.

Related commands LEFTS, RIGHTS ‘

MID$ @ 7-91 I

57 MO

Outputs a specified value to the MO port (internal output)

Format

1. MOO([b,.....,b]) = <expression>

[D 2. MO(0b,.....,0b) = <expression>

REQ]CE

e For details regarding bit m: port NUMDETcceerreueeneenen. 2to7,10to 17,20 to 27
definitions, see Chapter 3 "10 b: bit definition 0to7
Bit Settings".

<EXPIESSION™covvereiiienreieinns The integer-converted lower bits corresponding to the bit

definition specified at the left side are valid.

IBIIEVEGN) Outputs a specified value to the MO port.
In order to maintain the sensor status and axis HOLD status at each axis, ports "0" and "1"

cannot be used as output ports (these ports are for referencing only).

If multiple bits are specified, they are expressed from the left in descending order (large to
small).

If the [b,...,b] data is omitted, all 8 bits are processed.

* Ports "0" and "1" outputs

Bit 7 6 5 4 K] 2 1 (1
Port 0 Axis 8 Axis 7 Axis 6 Axis 5 Axis 4 Axis 3 Axis 2 Axis 1
Origin sensor status 0: OFF; 1: ON
Port 1 Axis 8 Axis 7 Axis 6 Axis 5 Axis 4 Axis 3 Axis 2 Axis 1
HOLD status 0: No HOLD / 1: HOLD (1 axis is not used)

 For details regarding MO ports "0" and "1", see Chapter 3 "9.7 Internal output variable".
SAMPLE

MO2()=&B10111000.......c.ccoctmirrerireririiiriereiererenae MO (27, 25, 24, 23) are turned ON, and MO (26, 22, 21,
20) are turned OFF.
MO2(6,5,1)=&BO10......ccoeeeiiiriiiiiiiereeee MO (25) are turned ON, and MO (26, 21) are turned OFF.

...MO (33, 32, 31, 30) are turned ON, and MO (37, 36, 35,

34) are turned OFF.
MO(37,35,27,20)=A..ocuieieieieieieeeeeeeeeene The contents of the 4 lower bits acquired when variable A is converted
to an integer are output to MO (37, 35, 27, 20), respectively.

Related commands RESET, SET

I 7-92 @ Chapter 7 Robot Language Lists

58 MOVE

Performs absolute movement of all robot axes

Format

MOVE |PTP |, <point definition> [, option [, option] ...]
1P
IL
C

Executes direct absolute movement of a group's axes.
The MOVE command is used for axes which have been specified as main robot axes. It is
not enabled for other groups, or for auxiliary axes.
* Movement type : PTP, linear interpolation, circular interpolation.
* Point data setting : Direct coordinate data input, point definition.
* Options : Speed setting, arch motion setting, STOPON condition setting,
CONT setting, acceleration setting, deceleration setting, plane

coordinate setting, port output setting.

Linear Arch
Remarks
mterpolatlon mterpolatlon

Enabled only for specified MOVE
Speed setting (SPEED) O statement
. Enabled only for specified MOVE
Speed setting (VEL) X O O statement .
Arch motion 0 > > Enabled only for specified MOVE
statement
STOPON condition setting O O X Enabled only by program
execution .
CONT setting 0O « « Enabled only for specified MOVE
statement .
Acceleration setting x 0 > Enabled only for specified MOVE
statement
Deceleration setting « O « Enabled only for specified MOVE
statement :
Plane coordinate setting > > 0O Enabled only for specified MOVE
statement
. Enabled only for specified MOVE
Port output setting X O O statement

MOVE @ 7-93 I

7

Movement type

@® PTP (point-to-point) movement
Execution START condition: Movement of all specified axes is complete (within the tolerance range).
Execution END condition: All specified axes have entered the OUT position range.
When two or more axes are specified, they will reach their target positions simultaneously. The

movement path of the axes is not guaranteed.

@ Caution regarding commands which follow the MOVE P command:
If the next command following the MOVE P command is an executable command such as a signal
output command, that next command will start when the movement axis enters the OUT position
range. In other words, that next command starts before the axis arrives within the target position

tolerance range.

Example:

Signal output (DO, etc.) Signal is output when axis enters within OUT position range.

DELAY DELAY command is executed and standby starts, when axis enters the OUT
position range.

HALT Program stops and is reset when axis enters the OUT position range. Therefore,
axis movement also stops.

HOLD Program temporarily stops when axis enters the OUT position range. Therefore,
axis movement also stops.

WAIT WAIT command is executed when axis enters the OUT position range.

The WAIT ARM statement is used to execute the next command after the axis enters the

tolerance range.

» The OUT position value is specified by parameter setting.

This value can be changed from within the program by using the OUTPOS command.

MOVE command
4 N
MOVE P,P1 T " it MOVE P,P1
DOQ0)=1 AEELPOSIION AT ARM JUTTI .
DO0)=1
Ommmm— > ——). ® |
Tolerance ... -~
OUT position
DO(20) turns ON DO(20) turns ON
- J
4)
MOVE P,P1 Target position MOVE P,P1
HOLD LemmTms WAIT ARM Lem . .~
'/ HOLD s \‘
O X 8 e O
e Tolerance o _"'
OUT position
HOLD execution HOLD execution
_ (program temporarily stops) (program temporarily stops))

7-94 @ Chapter 7 Robot Language Lists

SAMPLE

MOVE PPO ..o The main robot axis moves from its current position to the
position specified by PO (the same occurs for MOVE PTP,
P0).

« PTP movement is faster than interpolation movement, but when executing continuous movement to

multiple points, a positioning stop occurs at each point.

@ Linear interpolation movement
Execution START condition: Movement of all specified axes is complete (within the tolerance range).
Execution END condition: Movement of all specified axes has begun.
Execution of the immediately following command occurs immediately after axis movement
begins.
When executing linear or circular interpolation in a continuous manner, the 2 movement paths are
linked by connecting the deceleration and acceleration sections, enabling continuous movement
without intermediate stops.
All movement axes arrive at the same time.
However, the following execution END condition applies if a STOPON condition has been specified:

Execution END condition: Movement of all specified axes is complete (within the tolerance range).

In this case, continuous movement for the 2 linked paths is not possible.

@ Caution regarding commands which follow a MOVE L command:
If the next command following the MOVE L command is an executable command such as a signal

output command, that next command will start immediately after axis movement begins.

Example:

Signal output (DO, etc.) Signal is output immediately after movement begins.

DELAY DELAY command is executed and standby starts immediately after movement
begins.

HALT Program stops and is reset immediately after movement begins. Therefore, axis
movement also stops.

HOLD Program temporarily stops immediately after movement begins. Therefore, axis
movement also stops.

WAIT WAIT command is executed immediately after movement begins.

The WAIT ARM statement is used to execute the next command after the axis enters the tolerance

range.

MOVE @ 7-95

* Smooth travel paths and constant speeds between paths may not always be possible, depending on the

axis movement speed, acceleration, and distance between the target points.

* On robots with an R-axis, the R-axis speed may become too fast and cause an error depending on the

R-axis movement distance.

* If a DELAY statement is executed after a MOVE L command, a DELAY timer is activated after the

MOVE L command is executed. Therefore, if a DELAY is desired after reaching the target point,
use the WAIT ARM statement after the MOVE command.
The same applies for other commands such as HALT, etc.

« If the direction changes at an acute angle during interpolation movement, the acceleration/deceleration

speed of the connection section may become too fast, causing an error. In this case, specify a slower
acceleration/deceleration speed at the connection section, or use the WAIT ARM command to revise

the operation pattern.

MOVE command
4 I
MOVE L,P1 MOVE L.P1
DO(20)=1 Target position WAIT ARM
DO20)=1

P

i’ 3
4 \
. @ 1
8 ‘
oL

-

Tolerance
DO(20) turns ON DO(20) turns ON
- J
4 N
MOVE L,P1 MOVE L,P1
HOLD WAIT ARM
HOLD

Target position
” #D. o
. .

S

ems
l' “
—. []
8 ’
- '\ teaet
Tolerance

-

HOLD execution HOLD execution
(program temporarily stops) (program temporarily stops)
- J
SAMPLE
MOVE L,POPL....cccccuiiiiiiniiiininiiicicnnns The main robot axis moves from its current position to the position
specified by PO, P1.
SAMPLE: MOVE L
RN
PO P1
(\ 2 o

_ Tolerance range

Current position

7-96 @ Chapter 7 Robot Language Lists

@ Circular interpolation movement
Execution START condition: Movement of all specified axes is complete (within the tolerance range).
Execution END condition: Movement of all specified axes has begun.
Execution of the immediately following command occurs immediately after axis movement
begins.
When executing linear or circular interpolation in a continuous manner, the 2 movement paths are
linked by connecting the deceleration and acceleration sections, enabling continuous movement
without intermediate stops.
All movement axes arrive at the same time.
In circular interpolation, an arc is generated based on 3 points: the current position, an intermediate
position, and the target position. Therefore, circular interpolation must be specified by an even

number of points.

@ Caution regarding commands which follow a MOVE C command:
If the next command following the MOVE C command is an executable command such as a signal

output command, that next command will start immediately after axis movement begins.

Example:

Signal output (DO, etc.) Signal is output immediately after movement begins.

DELAY DELAY command is executed and standby starts immediately after movement
begins.

HALT Program stops and is reset immediately after movement begins. Therefore, axis
movement also stops.

HOLD Program temporarily stops immediately after movement begins. Therefore, axis
movement also stops.

WAIT WAIT command is executed immediately after movement begins.

The WAIT ARM statement is used to execute the next command after the axis enters the

tolerance range.

MOVE command

(I
MOVE C,P1,P2 MOVE C,P1,P2
DO@0y=1 WAIT ARM
Target position DO(20)=1
R °

Tolerance
DO(20) turns ON
DO(20) turns ON
- J
4)
MOVE C,P1,P2 MOVE C,P1,P2
HOLD WAIT ARM
Target position HOLD
F @ lo:
\ Tolerance
HOLD execution)
(program temporarily stops) HOLD execution)
_ (program temporarily stops))

MOVE @ 7-97

7

SAMPLE

MOVE L,P20......ccccuiiiiinininiiiiiccieas Linear movement occurs from the current position to P20.
MOVE C,P21,P22,P23,P20.................... Arc movement occurs through points P21, P22, P23, P20.
MOVE LP24 ..o Linear movement occurs to P24.

SAMPLE: MOVE C

P22

P23 P21

Current position P20 P24

In continuous interpolation operations, too, there are no stops at intermediate points. However, the
maximum speed is slower than the PTP speed.

Circular interpolation is possible within the following range: radius 1.00mm to 5,000.00mm.

Circle distortion may occur, depending on the speed, acceleration, and the distance between points.

On robots with an R-axis, the R-axis speed may become too fast and cause an error, depending on the
R-axis movement distance.

If a DELAY statement is executed after a MOVE L command, a DELAY timer is activated after the
MOVE L command is executed. Therefore, if a DELAY is desired after reaching the target point,
use the WAIT ARM statement after the MOVE statement.

The same applies for other commands such as HALT, etc.

If the direction changes at an acute angle during interpolation movement, the acceleration/deceleration
speed of the connection section may become too fast, causing an error. In this case, specify a slower
acceleration/deceleration speed at the connection section, or use the WAIT ARM command to revise

the operation pattern.

I 7-98 @ Chapter 7 Robot Language Lists

58 MOVE

Movement command types and the corresponding movement

1. PTP movement

.. OUT position range .
Current position P g Target position

Command ends when movement
enters the OUT position range, and
the next command is then executed.

2. Interpolation movement

. OUT position range .
Current position P S Target position

Command ends immediately after Seoo-”
movement begins, and the next
command is immediately executed?.

3. WAIT ARM

. OUT position range .
Current position P g Target position

The next command is executed when
movement arrives in the tolerance range.

4. STOPON conditional expression

- OUT position range .
Current position P g Target position

The next command is executed when
movement arrives in the tolerance range?.

1) Ifa DELAY statement is executed after an interpolation operation, a DELAY timer is activated immediately
after the movement starts. Therefore, if a DELAY is desired after reaching the target point, use the WAIT ARM
statement after the MOVE command.

2) A deceleration and stop occurs at an intermediate point if the condition specified by the STOPON conditional
expression is met (for details, see the "STOPON Condition Setting" item).

MOVE @ 7-99

7

M NOTE

e If both integers and real
numbers are used together
(mixed), all coordinate values
will be handled in "mm/deg"
units.

e X-arm and Y-arm rotation
information is only available in
software Ver.1.66M or higher.

A CAUTION

e When performing linear
interpolation with a hand
system flag specified, be sure
that the same hand system is
used at the current position
and target position. If the
same hand system is not used,
an error will occur and robot
movement will be disabled.

e When performing a linear
interpolation, the current
position's X-arm and Y-arm
rotation information must be
the same as the movement
destination's X-arm and Y-arm
rotation information. If the
two are different, an error will
occur and movement will be
disabled.

Point data setting types

@ Direct numeric value input

Linear interpolation

XY ZRAB [F] [F1] [F2]

X, Y,Z,R,A,B oo, Space-separated coordinate values for each axis.

Explanation

Hand system flag
X-arm rotation information (R6YXTWS500 model only).
Y-arm rotation information (R6YXTWS500 model only).

Directly specifies coordinate values by a numeric value. If an integer is used, this is
interpreted as "pulse" units, and if a real number (with decimal point) is used, this is
interpreted as "mm/deg" units, with movement occurring accordingly. If both integers
and real numbers are used together (mixed), all coordinate values will be handled in
"mm/deg" units.

This setting method can be used only for PTP and linear interpolation movement types.

Hand system flags can be specified for SCARA robots when directly specifying the
coordinate values in "mm" units.

To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "F". If
a number other than 1 or 2 is set, or if no number is designated, 0 will be set to indicate

that there is no hand system flag.

1: Right-handed system is used to move to a specified position.
2: Left-handed system is used to move to a specified position.

Direct numeric value inputs can be used to set the X-arm and Y-arm rotation
information (*1) only on R6YXTWS500 model robots where the coordinate system-of-
units has been set as "mm".
To set extended X-arm and Y-arm rotation information at the R6YXTWS500 model
robot, a "-1", "0", or "1" value must be specified at F1 and F2. Any other value, or no
X-arm and Y-arm rotation information at all, will be processed as "0".
0: Indicates arm rotation information where movement to the "0" position has
been specified.
1: Indicates arm rotation information where movement to the "1" position has
been specified.
-1: Indicates arm rotation information where movement to the "-1" position

has been specified.

*1: For details regarding the X-arm and Y-arm rotation information, refer to Chapter 4

"3. Point data format".

» At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

MOVE P,10000 10000 1000 1000 0 0

.. PTP movement occurs from current position to the

specified position.

7-100 @ Chapter 7 Robot Language Lists

A CAUTION

e When moving the robot by
linear or circular interpolation
to a point where a hand system
flag is specified, be sure that
the same hand system is used
at both the current and target
positions. If the same hand
system is not used, an error
will occur and robot movement
will be disabled.

A CAUTION

e When performing a linear
and circular interpolation, the
current position's X-arm and
Y-arm rotation information
must be the same as the
movement destination's X-arm
and Y-arm rotation information.
If the two are different, an error
will occur and movement will
be disabled.

@ Point definition @ linear interpolation M Circular interpolation

<point expression>[,<point expression>...]

IRGIEVELNY Specifies a <point expression>. Two or more data items can be designated by separating
them with a comma (,).

Circular interpolation must be specified by an even number of points.

* At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

MOVE PPl .o Moves from the current position to the position specified
by P1.

MOVE P,P20,PO,P100........cccccveiriiiiiiannne. Moves in sequence from the current position to positions

specified by P20, PO, P100.

MOVE @ 7-101

7

Option types

@ Speed setting 1 @ linear interpolation X Circular interpolation

Format

1. SPEED = <expression>
2. S = <expression>

<EXPIeSSION™cceeveereereereeneennnn 1 to 100 (units: %)
M NOTE
e This option specifies only the " . . .
maximum speed and does not Specifies the program speed in an <expression>.
guarantee movement at the The actual speed will be as follows:
specified speed.

* [Robot max. speed (mm/sec)] x [automatic movement speed (%)] X [program
movement speed (%)].

This option is enabled only for the specified MOVE statement.

SAMPLE

MOVE PP10,S=10.....cccoueiiiiiiiiiniiniiienane Moves from the current position to the position specified
by P10, at 10% of the program movement speed.

@ Speed setting 2 linear interpolation M Circular interpolation

Format

VEL = <expression>

<EXPIeSSiON™ccceveeeereeveneennnn For SCARA robot: 1 to 750
M NOTE
e This option specifies only the " . . . - "o .
maximum composite speed and IBIEVELNY Specifies the maximum composite speed (in "mm/sec" units) of the XYZ axes in an
does not guarantee movement <expression>. This option can be used for linear interpolation and circular interpolation
at the specified speed. movements of SCARA robots.

This option is enabled only for the specified MOVE statement.

SAMPLE

MOVE L,P10,VEL=100.........cccecueruerirrrnne. Moves from the current position to the position specified
by P10, at the XYZ maximum composite speed of 100mm/

SecC.

I 7-102 @ Chapter 7 Robot Language Lists

@ Arch motion setting @

Format

X = <expression>

Xttt eeteeere et e e e et e et e et Specifies the X,Y,Z,R,A,B axis.
<EXPIESSION™ ...coveeeieierereenenean An integer value is processed in "pulse" units.
A real number (with decimal point) is process in "mm/deg"

units.

1. The "x" specified axis begins moving toward the position specified by the
<expression> (see "1" in the Fig. below).
2. When the "x" specified axis enters the arch position range, all other axes move
toward the target position (see "2" in the Fig. below).
3. When all axes other than the "x" specified axis enter the arch position range, the "x"
specified axis moves to the target position ("3" in the Fig. below).

4. The command ends when all axis enter the OUT position range.

This option can be used only for PTP movement.
If the "x" specified axis is the X or Y axis, the target position and <expression> must be
specified as an integer (pulse units) for SCARA robots

<expression> value: SCARA type robots.

Target position value: ~ SCARA type robot.

The values are indicated as the motor position rather than the coordinate values.

SAMPLE

MOVE PP1,Z=0...cccocoeiiiniiiiniiiiieeene Z-axis moves 0 pulses from its current position, then

other axes move to P1. Finally, the Z-axis moves to P1.

SAMPLE: MOVE Z

Z-axis arch position range

\,"'\ 2. Other axes movement / N

=] [} [\

Z_O 777777 N\ T L]]

N _'I ‘\ I’

N, - —’I
Other axes' arch
1. Z-axis movement position range 3. Z-axis movement

Current position Target position: P1

MOVE @ 7-103

7

@® STOPON condition setting @ linear interpolation

STOPON <conditional expression>

Stops movement when the conditions specified by the conditional expression are
met. Because this is a deceleration type stop, there will be some movement (during
deceleration) after the conditions are met.

If the conditions are already met before movement begins, no movement occurs, and
the command is terminated.
This option can only be used for PTP movement and linear interpolation movement.

This option is only possible by program execution.

SAMPLE

MOVE P,P100,STOPON DI(20)=1
.............................. Moves from the current position to the position specified by P100. If the "DI (20) = 1"
condition is met during movement, a deceleration and stop occurs, and the next step is then

executed.

* When the conditional expression used to designate the STOPON condition is a numeric expression,

the conditions for determining a TRUE or FALSE status can be changed at the controller's "TRUE

conditions" in the "Other parameters" mode. These conditions apply to all the IF, WHILE, WAIT,

STOPON, etc., conditional expressions. For details, refer to the controller user's manual.

1) -1 (default setting) An expression value of "-1" indicates a TRUE status, and "0" indicates a
FALSE status.
A "6.35 Incorrect condition expression" error occurs if the expression
value is other than "-1" or "0".

2) not 0 Any expression value other than "0" indicates a TRUE status, and "0"
indicates a FALSE status.

I 7-104 @ Chapter 7 Robot Language Lists

@ CONT SEtting....oorrrrrrrrerrrneeeeeeereeeeeeeeeee a
CONT
M NOTE
IRIELELN) When PTP movement is executed with the CONT setting option, the PTP movement

e The CONT setting can be used hich begins i i frer all bl h . ith th

to reduce the PTP movement which begins immediately after all movable axes enter the OUT position range (with the

START positioning time. command being terminated at that point), will begin without waiting for the movable
e The path to the target point is axes to complete their movement into the tolerance range.

not guaranteed. This option can be used only for PTP movement and is enabled only for the specified

MOVE statement.

SAMPLE

MOVE P,P10,P11,CONT
............................. Moves from the current position to the position specified by P10, and then

moves to P11 without waiting for the moving axes to arrive in the tolerance

range.
SAMPLE: MOVE CONT
With CONT setting:
OUT position range
'/—“\\/—
A TN
o — @ rii

,
’
- ,,

Next movement begins after
entering the OUT position range

Current position

Without CONT setting:
OUT position range

P10 --==-& Tolerance range
/

~

Next movement begins after
entering the tolerance range

Current position

MOVE @ 7-105

7

@ Acceleration setting linear interpolation

Format

ACC = <expression>

<EXPIESSION™oovviieiiieieieienene 1 to 100 (units: %)

IBEVELINGY Specifies the robot acceleration rate in an <expression>. The actual robot acceleration is
determined by the acceleration coefficient parameter setting.

This option can be used only for linear interpolation movement and is enabled only for

the specified MOVE statement.

SAMPLE

MOVE L,P100,ACC=10.......c.cccceevevvrrrune.... Moves at an acceleration rate of 10% from the current
position to the position specified by P100.

@ Deceleration setting linear interpolation

Format

DEC = <expression>

<EXPIESSION™cooovireiiriireieinne 1 to 100 (units: %)

Specifies the robot deceleration rate in an <expression>. The actual robot deceleration is
determined by the acceleration coefficient parameter setting (the setting is specified as a
percentage of the acceleration setting value (100%)).
This option can be used only for linear interpolation movement and is enabled only for

the specified MOVE statement.

SAMPLE

MOVE L,P100,DEC=20...............c......... Moves at a deceleration rate of 20% from the current
position to the position specified by P100.

I 7-106 @ Chapter 7 Robot Language Lists

M NOTE

e If no coordinate plane is
specified, the robot moves
along a 3-dimensional circle.

e When a 2-axis robot is used,
the robot moves along a circle
on the XY plane.

@ Coordinate plane setting Circular interpolation

XY
YZ
X

XY coordinate plane
YZ coordinate plane

ZX coordinate plane

IBIEVEGN) When circular interpolation is executed by setting coordinates, this option executes

circular interpolation so that the projection on the specified coordinate plane becomes a
circle.

This option can be used for circular interpolation movement and is enabled only for the
specified MOVE statement.

SAMPLE

P10 = 100.00 100.00 20.00 0.00 0.00 0.00
P11 = 150.00 100.00 0.00 0.00 0.00 0.00
P12 = 150.00 150.00 20.00 0.00 0.00 0.00
P13 = 100.00 150.00 40.00 0.00 0.00 0.00

MOVE P,P10

MOVE C,P11,P12

MOVE C,P13,P10....ccccoeiiiiiiiniinieiciecane Moves continuously along a 3-dimensional circle generated
at P10, P11, P12, and P12, P13, P10.

MOVE C,P11,P12,XY

MOVE C,P13,P10,XY...ccoeiiieieieieieieeenanne. Moves continuously along a circle on an XY plane generated at P10, P11, P12, and P12,

P13, P10. Z-axis moves to the position specified by P12 and P10 (the circle's target

position).

MOVE @ 7-107 I

7

@ Port output setting linear interpolation M Circular interpolation

DO m([b......,b])=<expression 1>@<expression 2>
MO

SO

DO|(mb,......,mb)=<expression 1>@<expression 2>

M
SO
m: port NUMDbETc.covreereeenene 2to7,10to 17,20 to 27
b: bit definitioncccoceeveennnene Oto7
<expression 1> Value which is output to the specified port (only integers
are valid).
<EeXPression 2>oceeeeeeeneenne. Position where the port output occurs. This position can be
specified in "mm" units down to the 2nd decimal position.
CA During linear interpolation or circular interpolation movement, this command option
A UTION outputs the value of <expression 1> to the specified port when the robot reaches the
* Output to ports "0" and "1" is <expression 2> distance (units: "mm") from the start position.
not allowed at DO, MO, and
S0. The <expression 2> numeric value represents a circle radius centered on the movement
START point.
RE@\JCE This command option can only be used with linear or circular interpolation movement,
))) and it can be specified no more than 2 times per each MOVE statement.
e For bit setting details, see
Chapter 3 "10 Bit Settings". If multiple bits are specified, they are expressed from the left in descending order (large

to small).
If the [b,...,b] data is omitted in format 1, all 8 bits are processed.

If no hardware port exists, nothing is output.

SAMPLE 1

MOVE P,PO
MOVE L,P1,DO2()=105@25.85
............................... During linear interpolation movement to P1, 105 (&B01101001) is output to DO2()
when the robot reaches a distance of 25.85mm from P0.

SAMPLE 2

Al=10
B!=20
MOVE L,P2.MO(22)=1@A! . MO(22)=0@B!
.............................. After movement START toward P2, MO(22) switches ON when the robot

has moved a distance of 10mm, and switches OFF when the robot has

moved a distance of 20mm.

Related commands MOVEI, DRIVE, DRIVEI, WAIT ARM

I 7-108 @ Chapter 7 Robot Language Lists

MOVEI

Performs absolute movement of all robot axes

Format

MOVEI | PTP
P

,<point definition> [, option [, option]...]

Executes relative position movement commands for the robot.
It is not enabled for other groups, or for auxiliary axes.
* Movement type : PTP
* Point data setting : Direct coordinate data input, point definition.

* Options : Speed setting

Linear Arch
Remarks
mterpolatlon mterpolatlon

Speed setting (SPEED)]SEtl;?:I::n(t)nly for specified MOVE

 If the MOVEI statement is interrupted and then re-executed, the movement target position can be

selected at the "MOVEI/DRIVEI start position" setting at "Other parameters" in the controller. For

details, refer to the controller user's manual.

1) KEEP (default setting) Continues the previous (before interruption) movement. The original target
position remains unchanged.

2) RESET Relative movement begins anew from the current position. The new target
position is different from the original one (before interruption). (Backward

compatibility)

Movement type

@ PTP (point-to-point) movement
Execution START condition: Movement of all specified axes is complete (within the tolerance range).

Execution END condition: All specified axes have entered the OUT position range.
When two or more axes are specified, they will reach their target positions simultaneously. The

movement path of the axes is not guaranteed.

@ Caution regarding commands which follow the MOVEI command:
If the next command following the MOVEI command is an executable command such as a signal

output command, that next command will start when the movement axis enters the OUT position

range. In other words, that next command starts before the axis arrives within the target position

tolerance range.

MOVE!I @ 7-109 I

Example:

Signal output (DO, etc.) Signal is output when axis enters within OUT position range.

DELAY DELAY command is executed and standby starts, when axis enters the OUT
position range.

HALT Program stops and is reset when axis enters the OUT position range. Therefore,
axis movement also stops.

HOLD Program temporarily stops when axis enters the OUT position range. Therefore,
axis movement also stops.

WAIT WAIT command is executed when axis enters the OUT position range.

The WAIT ARM statement is used to execute the next command after the axis enters the tolerance

range.
MOVEI command
4)
MOVEI P,P1 Tarect positi MOVEI P,P1
DO(20)=1 AECLPOSIION WA TT ARM JUETEIN
DO(20)=1 .
: g
~c> ommmmmmmn): @ ¢
Tolerance RN et
OUT position
DO(20) turns ON DO(20) turns ON
- J
4)
MOVEI P,P1 L MOVEI P,P1
HOLD Target position WAIT ARM —
HOLD s S
:’ PEXIS ‘\
J F 4 4 N E,
o) © o— @ | !
Tolerance RN -~
OUT position
HOLD execution HOLD execution
(program temporarily stops) (program temporarily stops))

-

SAMPLE

MOVEI PPOooviiiiiiiiiiiiieeeeeee From its current position, the main robot axis moves (PTP

movement) the amount specified by P0.

7-110 @ Chapter 7 Robot Language Lists

Point data setting types

@ Direct numeric value input @

Format

XY ZRAB [F] [F1] [F2]

Space-separated coordinate values for each axis.

M NOTE

o If both integers and real
numbers are used together
(mixed), all coordinate values
will be handled in "mm/deg"

Hand system flag
...X-arm rotation information (R6YXTWS500 model only).
Y-arm rotation information (R6YXTWS500 model only).

units.
. IRIEVELNY Directly specifies coordinate values by a numeric value. If an integer is used, this is
e X-arm and Y-arm rotation]]]] o
information is only available in interpreted as "pulse" units, and if a real number is used, this is interpreted as "mm/deg"
software Ver.1.66M or higher. units, with movement occurring accordingly.

Hand system flags can be specified for SCARA robots when directly specifying the
coordinate values in "mm" units.

To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "F". If
a number other than 1 or 2 is set, or if no number is designated, 0 will be set to indicate

that there is no hand system flag.

1: Right-handed system is used to move to a specified position.

2: Left-handed system is used to move to a specified position.

Direct numeric value inputs can be used to set the X-arm and Y-arm rotation
information (*1) only on R6YXTWS500 model robots where the coordinate system-of-
units has been set as "mm".
To set extended X-arm and Y-arm rotation information at the R6YXTWS500 model
robot, a "-1", "0", or "1" value must be specified at F1 and F2. Any other value, or no
X-arm and Y-arm rotation information at all, will be processed as "0".
0: Indicates arm rotation information where movement to the "0" position has
been specified.
1: Indicates arm rotation information where movement to the "1" position has
been specified.
-1: Indicates arm rotation information where movement to the "-1" position

has been specified.

*1: For details regarding the X-arm and Y-arm rotation information, refer to Chapter 4

"3. Point data format".

» At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

MOVEI P, 10000 10000 1000 1000 0 0
.............................. From its current position, the axis moves (PTP movement) the

specified amount (pulse units).

MOVEI @ 7-111 I

@ Point definition @

<point expression>[,<point expression>...]

7

IBIEVELINN) Specifies a <point expression>. Two or more data items can be designated by separating

them with a comma (,).

» At SCARA robots with a hand system flag set in the movement destination's coordinate data, the
specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

MOVEI P,P1 From its current position, the axis moves (PTP movement) the amount specified by P1.

I 7-112 @ Chapter 7 Robot Language Lists

MOVEI

@ Speed setting

Format

1. SPEED = <expression>
2. S = <expression>

<EXPIeSSION™> ...oovvvvvereereerreenennnn 1 to 100 (units: %)
M NOTE
e This option specifies only the " 2 fies th . .
maximum speed and does not IRTIENELNY Specifies the program speed in an <expression>.
guarantee movement at the The actual speed will be as follows:
specified speed. * [Robot max. speed (mm/sec)] x [automatic movement speed (%)] X [program

movement speed (%)].
This option is enabled only for the specified MOVEI statement.

SAMPLE

MOVEI PP10,S=10.....cceriviiieirieiinene From its current position, the axis moves (PTP movement)
the amount specified by P1, at 10% of the program

movement speed.

Related commands MOVE, DRIVE, DRIVEI, WAIT ARM

MOVE!I @ 7-113 I

OFFLINE

Sets a specified communication port to the "offline" mode

Format

OFFLINE [‘ETH ‘]

[|ICMU|]
<EXPIeSSION™oevvveereeneeieneennes ETH, CMU, or no setting
n Changes the communication mode parameter in order to switch the communication mode to
OFFLINE.
ETH ..o Changes the Ethernet communication mode parameter to
OFFLINE and clears the transmission and reception buffers.
CMU or no setting........ Changes the RS-232C communication mode parameter to
OFFLINE, resets the communication error, and clears the
reception buffer.
SAMPLE
OFFLINE
SEND CMU TO A$
SEND CMU TO P10
ONLINE
HALT

I 7-114 @ Chapter 7 Robot Language Lists

61 ORD

Acquires a character code

Format

ORD (<character string expression>)

IR EVELINY Acquires the character code of the first character in a <character string expression>.

SAMPLE n

A=ORD("B") 66 (=&H42) is assigned to A.

Related commands CHRS ‘

ORD @ 7-115 I

ON ERROR GOTO

Jumps to a specified label when an error occurs

Format

1. ON ERROR GOTO <label>
2. ON ERROR GOTO 0

Error output information............. ERR: Error code number

ERE:number where error occurred

Even if an error occurs during execution of the robot language, this statement allows the
program to jump to the error processing routine specified by the <label>, allowing the
program to continue without being stopped (this is not possible for some serious errors.)

If "0" is specified instead of the <label>, the program stops when an error occurs, and an
error message displays.

If ON ERROR GOTO "0" is executed at any place other than an error processing routine,
the ON ERROR GOTO command is canceled (interruption canceled).

The error processing routine can process an error using the RESUME statement and the
error output information (ERR, ERL).

« Ifaserious error such as "17.4: Overload" occurs, the program execution stops.

* The most recently executed "ON ERROR GOTO <label>" statement is valid.

 Ifan error occurs during an error processing routine, the program will stop.

* "ON ERROR GOTO <label>" statements cannot be used within error processing routines.

SAMPLE

ON ERROR GOTO *ERI1
FORA=0TO9
P[A+10]=P[A]
NEXT A
*L.99: HALT
’ERROR ROUTINE
*ER1:
IF ERR = &H0604 THEN *NEXTT1..........ccccceue Checks to see if a "Point doesn't exist" error has occurred.
IF ERR = &H0606 THEN *NEXT2 Checks to see if a "Subscript out of range" error has
occurred.
ON ERROR GOTO 0....covveneiiiiiiiiisiiiicsieiecieienen Displays the error message and stops the program.
*NEXTI:
RESUME NEXT......ccooiiiiiiiiiiiiiiiiieeiieee Jumps to the next line after the error line and resumes
program execution.
*NEXT2:
RESUME *L99......cocoiieiieiieieeseeeeieene Jumps to label ¥*L99 and resumes program execution.

Related commands RESUME

I 7-116 @ Chapter 7 Robot Language Lists

63 ON to GOSUB

Executes the subroutine specified by the <expression> value

Format

ON<expression>GOSUB<label 1>[,<label 2>...]
* GOSUB can also be expressed as "GO SUB".

Values <EXPIESSION™ ...coeenieieieeeieeeenenn 0 or positive integer

The <expression> value determines the program's jump destination.
An <expression> value of "1" specifies a jump to <label 1>, "2" specifies a jump to <label
2>, etc.
Likewise, (<expression> value "n" specifies a jump to <label n>.)
If the <expression> value is "0" or if the <expression> value exceeds the number of existing
labels, no jump occurs, and the next command is executed.
After executing a jump destination subroutine, the next command after the ON to GOSUB

statement is executed.

SAMPLE

"MAIN ROUTINE
GSIE
ON DI3() GOSUB *SUBI1,*SUB2,*SUB3............ *SUBI to *SUB3 are executed.
GOTO *ST Returns to *ST.
HALT
’SUB ROUTINE
*SUBI:
MOVE P,P10,Z=0
RETURN
*SUB2:
DO30)=1
RETURN
*SUB3:
DO(30)=0
RETURN

Related commands GOSUB, RETURN, DECLARE

ON to GOSUB @ 7-117 I

ON to GOTO

Jumps to the label specified by the <expression> value

Format

ON<expression>GOTO<label 1>[,<label 2>...]
* GOTO can also be expressed as "GO TO".

Values <EXPIeSSION™cceveereeneenieneannns 0 or positive integer

n INAIELELY The <expression> value determines the program's jump destination.

An <expression> value of "1" specifies a jump to <label 1>, "2" specifies a jump to <label
2> etc.

Likewise, (<expression> value "n" specifies a jump to <label n>.)

If the <expression> value is "0" or if the <expression> value exceeds the number of existing

labels, no jump occurs, and the next command is executed.

SAMPLE

’MAIN ROUTINE
*ST:
ON DI3() GOTO *L1,¥L2,¥L3 ettt Jumps to *L1 to *L3 in accordance
with the DI3() value.
GOTO *ST ettt Returns to *ST.
HALT
’SUB ROUTINE
*L1:
MOVE P,P10,Z=0
GOTO *ST
*L2:
DO@30)=1
GOTO *ST
*L3:
DO(30) =0
GOTO *ST

Related commands GOTO, DECLARE

I 7-118 @ Chapter 7 Robot Language Lists

65 ONLINE

Sets the specified communication port to the "online" mode

Format

ONLINE [ETH]
‘[cMU |

<EXPIESSION™ ...coeeneeieieeeeeaeenenn ETH, CMU, or no setting

INAIENLELNY Changes the communication mode parameter in order to switch the communication mode to

ONLINE.
ETH ..o Changes the Ethernet communication mode parameter to
ONLINE and clears the transmission and reception buffers.
CMU or no setting........ Changes the RS-232C communication mode parameter to

ONLINE, resets the communication error, and clears the
reception buffer.

SAMPLE

OFFLINE

SEND CMU TO A$
SEND CMU TO P10
ONLINE

HALT

ONLINE @ 7-119 I

ORGORD
7 Specifies/acquires the robot's return-to-origin sequence

Format

ORGORD <expression>
<EXPIESSION™oveiviieeiiiieieienine main group: n to nnnnnn (n : 0 to 6)

Sets the axis sequence parameter for the robot's return-to-origin and absolute search
operations.
The 1 to 6 axes are expressed as "1 to 6" values, respectively, and the <expression> value
must be 1-digit to 6-digit integer.
The same axis cannot be specified twice.
After the specified axes are returned to their origin points in sequence, from left to right, the
remaining axes return to their origin points simultaneously.
If the <expression> value is "0", all axes will be returned to their origin points

simultaneously.

I Functions

Format

ORGORD

IBIIEVEGIN) Acquires the axis sequence parameter for return-to-origin and absolute search operations.

SAMPLE

A=3

ORGORD A e A return-to-origin is executed first for axis 3.

ABSRST e After the main group's axis 3 return-to-origin is completed, a return-to-
origin is executed for the remaining axes, followed by an absolute reset.

MOVE P,P0O

A=ORGORDcooiiiiiiiiiiiieeeeeeee The main group's return-to-origin sequence parameter is
assigned to variable A.

HALT

Related commands ABSRST, ORIGIN

7-120 @ Chapter 7 Robot Language Lists

67 ORIGIN

Performs an incremental mode axis return-to-origin

Format

ORIGIN

IBIEVELNY This statement performs a return-to-origin for an incremental mode axis, or an absolute
search for a semi-absolute axis.

If the movement is stopped at an intermediate point, an "incomplete return-to-origin" status

will occur.
SAMPLE
ORIGIN e Performs an incremental mode return-to-origin.

Related commands ABSRST, ORGORD, MCHREF ‘

A value other than "0" must be set for the execution <level> in order to execute the ORIGIN command. For

details regarding how to check and change the execution <level> value, see section 13 "3.10 Setting the
UTILITY mode", and section 15 "6 Execution Level".

ORIGIN @ 7-121

OuT

Turns ON the specified port output

A CAUTION

e QOutput to ports "0" and "1" are
not allowed at DO, MO, and
SO.

@
REFERENCE

e For bit setting details, see
Chapter 3 "10 Bit Settings".

Format

OuT DOm([b,.....,b]) [, <time>]

DO(mb,.....,mb)
MOm([b......,b])
MO(mb,.....,mb)
SOm([b......,b])
SO(mb,.....,mb)
LOO([b......,b])
LO(0b,......,0b)
TOO([b......,b])
TO(0b,.....,0b)

m: port NUMDbETcoervereeenene 2to7,10to 17,20 to 27
b: bit definitioncceeveurenene. 0to7
<EXPIeSSION™ ...couevveruereeeneeiieneennes 1 to 3600000 (units: ms)

IBTIEVEGN) This statement turns ON the specified port output and terminates the command. (The

program proceeds to the next line.) Output to that port is then turned OFF after the time
specified by the <expression> has elapsed. If the operation is stopped temporarily at an
intermediate point and then restarted, that port's output is turned OFF when the remaining
<expression> specified time has elapsed.

<expression> values are rounded downward to the nearest even 10 (e.g., 113 — 110). Or, if
a value is less than 10, it becomes 10.

If this <expression> is omitted, the specified port's output remains ON.

Up to 16 OUT statements using <expressions> can be executed at the same time.
Attempting to execute 17 or more OUT statements will activate error "6.26: Insufficient
memory for OUT".

If multiple bits are specified, they are expressed from the left in descending order (large to
small).

If no hardware port exists, nothing is output.

SAMPLE

OUT DO2(),200.......ccccuieiieiieieeieenieenieesieesieenaaenns Turns DO(27 to 20) ON, then turns them OFF 200ms
later.
OUT DO(37,35,27,20).....cvevemeeeeierienenieeneeneeenenenns Turns DO(37, 35, 27, 20) ON.

Related commands DO, MO, SO, TO, LO

I 7-122 @ Chapter 7 Robot Language Lists

OUTPOS

Specifies/acquires the OUT enable position parameter of the robot

Format

1. OUTPOS <expression>
2. OUTPOS (<axis number>)=<expression>

<axis NUMbEr>.......cccocevvereeneennenn main group: 1to 6
1 to 6144000 (Unit: pulses)

<expression>

Changes the parameter's OUT position to the value indicated by the <expression>.
Format 1: The change is applied to the group axes.

Format 2: The change is applied only to the axis specified by <axis number>.

« If an axis that is set to "no axis" in the system generation is specified, a "5.37 : Specification mismatch"

error message displays and command execution is stopped.

I Functions

OUTPOS(<axis 1>)

<AXIS 1> main group: 1to 6

IR EVELNY Acquires the OUT position parameter value for the axis specified by the <expression>.

« Ifan axis that is set to "no axis" in the system generation is specified, a "5.37 : Specification mismatch"

error message displays and command execution is stopped.

OUTPOS @ 7-123 I

7

SAMPLE

*CYCLE WITH DECREASING OUTPOS
DIM SAV(3)
GOSUB *SAVE_OUTPOS
FOR A=1000 TO 10000 STEP 1000
GOSUB *CHANGE_OUTPOS
MOVE P,P0
DO3(0)=1
MOVE PP1

DO3(0)=0
NEXT A
GOSUB *RESTORE_OUTPOS

HALT
*CHANGE_OUTPOS:
FOR B=1TO 4
OUTPOS(B)=A
NEXT B
RETURN
*SAVE_OUTPOS:
FOR B=1TO 4
SAV(B-1)=OUTPOS(B)
NEXT B
RETURN
*RESTORE_OUTPOS:
FOR B=1TO 4
OUTPOS(B)=SAV(B-1)
NEXT B
RETURN

I 7-124 @ Chapter 7 Robot Language Lists

70 PATH

Specifies the main robot axis PATH motion path

Format

PATH |L
©

,<point definition> [, option [, option...]]

IR BN Sets the PATH motion path for the main robot axis. This command can only be executed
between the PATH SET and PATH END commands. If execution is attempted elsewhere,

an error will occur.

* Movement type: Linear interpolation and circular interpolation.
* Point setting: By direct numeric value input and by point definition. n
* Options: Speed setting, coordinate plane setting (for circular interpolation

only), and port output setting.

PATH motion types

@ Linear interpolation movement

"PATH L..." is set for linear interpolation movement.

@ Circular interpolation movement

"PATH C..." is set for circular interpolation movement.

Only the X, Y and Z coordinate values of the specified points are valid for PATH motion. Any other
coordinates use the coordinate values of the PATH motion START point.

The motion path can be connected by repeated PATH commands ("PATH L", "PATH C") to allow
movement without stopping.

PATH @ 7-125 I

7

M NOTE

e X-arm and Y-arm rotation
information is only available in
software Ver.1.66M or higher.

A CAUTION

e The hand system used during
PATH motion must be the
same as the hand system used
at the path motion route's start
point. The same applies if the
path is to pass through points
where hand system flags are
set. Differing hand systems
will cause an error and disable
motion.

The X-arm and Y-arm rotation
information during PATH
movement must be the same as
the X-arm and Y-arm rotation
information at the PATH
movement's START point. If the
two are different, an error will
occur and movement will be
disabled.

Point data setting types

@ Direct numeric value input

linear interpolation

XY ZRAB [F] [F1] [F2]

X, Y,Z,RLA, B Space-separated coordinate values for each axis.
Foe Hand system flag.
F1.. X-arm rotation information (R6YXTWS500 model only).
F2eeeeee e Y-arm rotation information (R6YXTWS00 model only).

Directly specifies coordinate data by a numeric value. If an integer is used, this is
interpreted as "pulse" units, and if a real number (with decimal point) is used, this
is interpreted as "mm" units. If both integers and real numbers are used together

(mixed), all coordinate values will be handled in "mm" units.

With this format, only 1 point can be specified as the movement destination coordinates.

The only type of movement specified by this point data setting is linear interpolation.

Hand system flags can be specified for SCARA robots when directly specifying the
coordinate data in "mm" units.

To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "F". If a
number other than 1 or 2 is set, or if no number is set, 0 will be set to indicate that there

is no hand system flag.

1 : Right-handed system is used to move to a specified position.

2 : Left-handed system is used to move to a specified position.

Direct numeric value inputs can be used to set the X-arm and Y-arm rotation
information (*1) only on R6YXTWS500 model robots where the coordinate system-of-
units has been set as "mm".
To set extended X-arm and Y-arm rotation information at the R6YXTWS500 model
robot, a "-1", "0", or "1" value must be specified at "F1" and "F2". Any other value, or
no X-arm and Y-arm rotation information at all, will be processed as "0".
0: Indicates arm rotation information where movement to the "0" position has
been specified.
1: Indicates arm rotation information where movement to the "1" position has
been specified.
-1: Indicates arm rotation information where movement to the "-1" position

has been specified.

*1: For details regarding the X-arm and Y-arm rotation information, refer to Chapter 4

"3. Point data format".

The same hand system must always be used between a motion path's START and

END points. The hand system cannot be changed between these points.

7-126 @ Chapter 7 Robot Language Lists

A CAUTION

e The hand system used during
PATH motion must be the
same as the hand system used
at the path motion route's start
point. The same applies if the
path is to pass through points
where hand system flags are
set. Differing hand systems
will cause an error and disable
motion.

A CAUTION

e The X-arm and Y-arm rotation
information during PATH
movement must be the same as
the X-arm and Y-arm rotation
information at the PATH
movement's START point. If
the two are different, an error
will occur and movement will
be disabled.

Moreover, the X-arm and Y-arm rotation information must be the same throughout the
movement path, from the path's START to END points. The X-arm and Y-arm rotation

information cannot be changed at any point along the path.

» At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

@® Point definition

SAMPLE
PATH L,10000 10000 1000 1000 0 0

............................ The target position is set in "pulse" units, and linear interpolation
movement Occurs.
PATH L,150.00 250.00 10.00 30.00 0.00 0.00 1
............................. The target position is set in the coordinate values specified by the right-

handed system, and linear interpolation movement occurs.

linear interpolation X Circular interpolation

Format

<point definition> [,<point definition>...]

IDIEVEGN) Specifies the movement destination as <point expression> value. Two or more data

items can be designated by separating them with a comma (,).

For circular interpolation movement, 2 points must be specified for each arc.

» At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

PATH L,P1,P2,P3.. ., Specifies sequential linear interpolation movement to
positions specified by P1, P2 and P3.

PATH C P5,P6,P7,P8....ccccciiiiiiiie Specifies circular interpolation movement through the
following points: current position, P5, P6, and P6, P7, P8.

PATH @ 7-127

M NOTE

e This defines the maximum
speed, and does not guarantee
that all movement will occur at
specified speed.

[§ w~ore

e This option specifies only the
maximum composite speed and
does not guarantee movement
at the specified speed.

Option types

@ Speed setting linear interpolation M Circular interpolation

Format

1. SPEED = <expression>
2. S = <expression>

<EXPIeSSiON™ccceveeeereeeeneennn 1 to 100 (units: %)

The program's movement speed is specified as the <expression> value (units: %).
The actual speed is determined as shown below.
* Robot's max. speed (mm/sec) x automatic movement speed (%)x program movement
speed (%).
This option is enabled only for the specified PATH statement.

SAMPLE
PATH L,P5,S=40.....cccoiiriiiiineesieceeeenes Movement to the position specified by PS5 occurs at 40%

of the program movement speed.

Format

VEL = <expression>

Values IS {01 (e 10) 1> The permissible setting range varies according to the robot

type (units: mm/sec).

The movement speed is specified by the <expression> value (units: mm/sec). An error
will occur if the speed is too fast.
This command is enabled only for the specified PATH statement.

SAMPLE
PATH L,P10,VEL=150......ccccceevuieriiiiiainans Movement to the position specified by P10 occurs at a
speed of 150mm/sec.

I 7-128 @ Chapter 7 Robot Language Lists

@ Coordinate plane setting Circular interpolation

XY
YZ
zX

XY coordinate plane

YZ coordinate plane

ZX coordinate plane

Specifies the coordinate plane on which to draw a circular arc for circular interpolation
movement. If no coordinate plane is specified, 3-dimensional circular interpolation
movement is used.

Only circular interpolation movement can be specified by this coordinate plane setting.

This command is enabled only for the specified PATH statement.

SAMPLE

PATH C,P1,P2, XY .oouiiieeeieiiiiiiiiiiiieeeeeeeeeee, Circular interpolation movement occurs within the XY
plane, with the Z-axis moving to the P2 Z-axis coordinates

position.

PATH @ 7-129 I

7

@ Port output setting linear interpolation X Circular interpolation

DO | m ([b.,.....,.b])=<expression 1> @<expression 2>

SO

DO | (mb......,mb)=<expression 1> @<expression 2>

MO
SO
m: port NUMDETccceerveueeneenee. 2to7,10to0 17,20 to 27
A CAUTI?I:I - b: bit definition 0to7
' g;q;lll; ot‘?v : do :ts D(z)’alr\l/}io’l anlz <expression 1> Value which is output to the specified port (only integers
SO. are valid).
@ <EeXPression 2>cceevevevennennn. Position where the port output occurs. This position can be

REFERENCE specified in "mm" units down to the 2nd decimal position.

e For details regarding bit
definitions, see Chapter 3 "10 During PATH motion, this command option outputs the value of <expression 1> to
Bit Scitings". the specified port when the robot reaches the <expression 2> distance from the start
position.
The <expression 2> numeric value represents a circle radius centered on the movement
START point.
If multiple bits are specified, they are expressed from the left in descending order (large
to small). If the [b,...,b] data is omitted in format 1, all 8 bits are processed.

If no hardware port exists, nothing is output.

SAMPLE

PATH SET

PATH L,P1,DO0)=1@10......ccccveieiririaianen During linear interpolation movement to P1, "1" is output to
DO(20) at a 10mm radius position from the START position.

PATH L,P2,DOQ21)=1@12.5...ccccccvcvveiearann. During linear interpolation movement to P2, "1" is
output to DO(21) at a 12.5mm radius position from
Pl.

PATH END

PATH START

Related commands PATH SET, PATH END, PATH START

For PATH function details, see Chapter 9 "PATH Statements".

I 7-130 @ Chapter 7 Robot Language Lists

71 PATH END

Ends the movement path setting

Format

PATH END

Ends the path setting for PATH motion.
The PATH END command must always be paired with a PATH SET command. The PATH
motion path end-point is the final point specified by the final PATH command (PATH L,
PATH C) which exists between the PATH SET and PATH END commands.
Attempting to execute a PATH END command when no PATH SET command has been

executed will result in an error.

Related commands PATH, PATH SET, PATH START ‘

For PATH function details, see Chapter 9 "PATH Statements".

PATH END @ 7-131 I

72

PATH SET

Starts the movement path setting

M NOTE

o [f both integers and real
numbers are used together
(mixed), all coordinate values
will be handled in "mm/deg"
units.

e X-arm and Y-arm rotation
information is only available in
software Ver.1.66M or higher.

A CAUTION

e The hand system used during
PATH motion must be the
same hand system as that at
the PATH motion's start-point.
An error will occur if the hand
systems are different.

e The X-arm and Y-arm rotation
information during PATH
movement must be the same as
the X-arm and Y-arm rotation
information at the PATH
movement's START point. If the
two are different, an error will
occur and movement will be
disabled.

Format

PATH SET [<point definition>]

Point data setting types

Starts the path setting for PATH motion.

Specifies the <point definition> position as the PATH motion start-point. (This only sets
the PATH motion start point and does not actually begin robot motion.) If the <point
definition> value is omitted, the current robot position is set as the start point.

However, if robot movement is in progress, the target position of that movement becomes
the start point. (Example: The OUT position range is wider for the MOVE command which
precedes the PATH SET command, so the robot is still moving when the PATH SET
command is executed.)

The PATH SET command must always be paired with a PATH END.

When a PATH SET command is executed, the previously set PATH motion path data is
deleted.

* Point data setting : By direct numeric value input and by point definition

@ Direct numeric value input

XY ZRAB [F] [F1] [F2]

X
F..
F1
F2

Explanation

Y,ZR A B Space-separated coordinate values for each axis.

.. Hand system flag.
.. X-arm rotation information (R6YXTWS500 model only).
.. Y-arm rotation information (R6YXTWS500 model only).

Directly specifies the path's start-point coordinates for PATH motion. If an integer is
used, this is interpreted as "pulse" units, and if a real number is used, this is interpreted
as "mm" units (valid down to the 2nd decimal position).

Hand system flags can be specified for SCARA robots when directly specifying the
coordinate data in "mm" units.

To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "F". If a
number other than 1 or 2 is set, or if no number is set, 0 will be set to indicate that there

is no hand system flag.

1: Indicates that a right-handed system is specified for the PATH motion's start-point.
2: Indicates that a left-handed system is specified for the PATH motion's start-point.

Direct numeric value inputs can be used to set the X-arm and Y-arm rotation
information (*1) only on R6YXTWS500 model robots where the coordinate system-of-
units has been set as "mm".

To set extended X-arm and Y-arm rotation information at the R6YXTW500 model
robot, a "-1", "0", or "1" value must be specified at F1 and F2. Any other value, or no

X-arm and Y-arm rotation information at all, will be processed as "0".

7-132 @ Chapter 7 Robot Language Lists

A CAUTION

e The hand system used during
PATH motion must be the
same as the hand system used
at the path motion route's start
point.Differing hand systems
will cause an error and disable
motion.

& CAUTION

e The X-arm and Y-arm rotation
information during PATH
movement must be the same as
the X-arm and Y-arm rotation
information at the PATH
movement's START point. If
the two are different, an error
will occur and movement will
be disabled.

0: Indicates that the PATH movement START point's arm rotation information
has been set at the "0" position.

1: Indicates that the PATH movement START point's arm rotation information
has been set at the "1" position.

-1: Indicates that the PATH movement START point's arm rotation information

has been set at the "-1" position.

*1: For details regarding the X-arm and Y-arm rotation information, refer to
Chapter 4 "3. Point data format".

* At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

PATH SET 120 250.00 55.2 20.33 0 0
............................... PATH motion's start-point is specified in "mm" units as follows: (120.00
250.00 55.20 20.33 0.00 0.00).
PATH SET -51200 80521 7045 204410 0 0

.............................. PATH motion's start-point is specified in "pulse" units.

@® Point definition

Format

<point definition>

The PATH motion's start-point is specified by the <point expression>.

* At SCARA robots with a hand system flag set in the movement destination's coordinate data, the

specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

PATH SET P10....ceiiiiiiiiiiiiiiecccieeee The PATH motion's start-point is set as P10.

PATH SET WHERE..........cccoooiiiiiiiinne The PATH motion's start-point is set as the robot's current
position.

Related commands PATH, PATH END, PATH START

For PATH function details, see Chapter 9 "PATH Statements".

PATH SET @ 7-133 I

73 PATH START

Starts the PATH motion

Format

PATH START

IR EVELNY Starts PATH motion.
Before PATH START can be executed, the PATH motion path must be specified by
the PATH SET command, PATH commands (PATH L, PATH C) and the PATH END

command. The robot must also be positioned at the motion path's start-point which was

n specified by the PATH SET command.
The robot's PATH motion speed is the automatic movement speed (%) which was in effect

when the PATH START was executed, multiplied by the program movement speed (%)
specified by the SPEED command or the (SPEED or S) option of the PATH command. A
speed specified by the "VEL" option of the PATH command does not rely on the automatic

movement speed.

After PATH motion begins, the PATH START command is terminated when the robot
reaches the PATH motion end-point, or when movement is stopped by an interlock, etc.

This command can only be executed in Task 1 (main task).

Related commands PATH, PATH SET, PATH END

For PATH function details, see Chapter 9 "PATH Statements".

I 7-134 @ Chapter 7 Robot Language Lists

74

PDEF

Defines the pallet used to execute pallet movement commands

Format

PDEF(<Pallet definition number> }=<expression 1>, <expression 2> [, <expression 3>]

<Pallet definition number>......... 0to 19
<expression 1> ... Number of points (NX) between P[1] and P[2].
<eXpression 2>ccoceieeeennne Number of points (NY) between P[1] and P[3].
<EXPression 3>cccceveeeenenenn Number of points (NZ) between P[1] and P[5].

Total number of points: <expression 1> X <expression 2>
x <expression 3> must be 32767 or less.

Regarding the P[1] to P[5] definition, see the figure below.

Defines the pallets to permit execution of the pallet movement command.
Also changes the dividing conditions of previously defined pallet data.
After specifying the number of points per axis, the equally-spaced points for each axis are
automatically calculated and defined in the sequence shown in the figure below.
If <expression 3> (Z-axis direction) is omitted, the height direction value becomes "1".

The total number of points defined for a single pallet must not exceed 32,767.

Automatic point calculation

o o)
Ny 7 22 ~03 D 24
19 O20 21
P[5] 16 O 18
o
A Y3 4 Y15
P[3] P[4]
D) o) Ya
NZ Ny 10 M 12
7 O3 9
4 Os 6
Y n ~ A
\Jl UZ] 3
P[] = > P[2]
NX

The point data for pallet definition uses the following data areas.

Pallet definition P[1] P2} P3y | P4 | PS| |

Pallet 0 P3996 P3997 P3998 P3999 P4000
Pallet 1 P3991 P3992 P3993 P3994 P3995
Pallet 19 P3901 P3902 P3903 P3904 P3905
SAMPLE
PDEF(1)=3,4,2 oo Pallet definition 1 is defined as 3 x 4 x 2.

PDEF @ 7-135 I

75 PMOVE
7 Executes a pallet movement command for the robot

Format

PMOVE (<pallet definition number> , <pallet position number>)[,option[,option]...]

<pallet definition number>......... 0to 19
<pallet position number> 1to0 32767

INIELELN) Executes a robot axis "pallet move" command. (The specified pallet numbers must be
registered in advance.)

The PMOVE command applies to all main robot axes. This command do not apply to any
n other group axes, or to auxiliary axes.

* Movement type: PTP

* Pallet definition number: Numeric expression

* Pallet position number: Numeric expression

* Options: Speed setting, arch motion setting, STOPON condition
setting

The position numbers for each pallet definition are shown below.

Position numbers for each pallet definition

NX*NY*NZ

@ @

NY
o o
X*NY*(NZ-1)+1 NX*NY(NZ-1)+NZ
P[5]
L PBI o o P[4]
Nz NXHNY-1)+1 NX*NY
NX+1 O © NX*2
@ P[2]
1 2 NX
P[1]
NX

* Although the XYZ axes move to the positions determined by calculated values, the R-axis moves to
the position specified by pallet point data P[1].

Speed setting (SPEED) Enabled only for specified PMOVE statement
Arch motion Enabled only for specified PMOVE statement
STOPON condition setting Enabled only by program execution

SAMPLE

PMOVE(L16) .ooiiiiiiiiiiiiiiieeiiieeeeieeeeeie e The main robot axis moves from its current position to the

elfelfe] =

position specified by pallet position number 16 of pallet definition
number 1.

I 7-136 @ Chapter 7 Robot Language Lists

Movement type

@ PTP (point-to-point) movement

PTP movement begins after positioning of all movement axes is complete (within the tolerance range),
and the command terminates when the movement axes enter the OUT position range. Although

the movement axes reach their target positions simultaneously, their paths are not guaranteed.

@ Caution regarding commands which follow the PMOVE command:
If the next command following the PMOVE command is an executable command such as a signal
output command, that next command will start when the movement axis enters the OUT position

range. In other words, that next command starts before the axis arrives within the target position OUT

position range.

Example:

Signal output (DO, etc.) Signal is output when axis enters within OUT position range.

DELAY DELAY command is executed and standby starts, when axis enters the OUT
position range.

HALT Program stops and is reset when axis enters the OUT position range. Therefore,
axis movement also stops.

HOLD Program temporarily stops when axis enters the OUT position range. Therefore,
axis movement also stops.

WAIT WAIT command is executed when axis enters the OUT position range.

The WAIT ARM statement is used to execute the next command after the axis enters the tolerance

range.

PMOVE command

f N
PMOVE(0,1) T PMOVE(0,1)
DO(20)=1 ArEELPOSINON WA T ARM ST .
DOQ20)=1 RS S,

Tolerance A S .
OUT position
DO(20) turns ON DO(20) turns ON
- J
4)
PMOVE(, 1) Taroet positi PMOVE(0,1)
HOLD emmmees, 0 PO AT ARM PO
. HOLD e S

B
B e
.

. 4 / \ ; N v
/ § v E | \ '
@ ! ' . @ 1
. ’ ' v '
0 -~ ’

.

.

.
~a- 4 . Sene?
’ . .
3 . .
. & . .
.
. B . .

______ Tolerance oo
OUT position
HOLD execution HOLD execution
_ (program temporarily stops) (program temporarily stops))

PMOVE @ 7-137

7

Option types

@ Speed setting

Format

1. SPEED = <expression>
2. S = <expression>

<EXPIeSSION™occeeeereereereennaninn 1 to 100 (units: %)
M NOTE
e This option specifies only the Specifies th di < ion>. Th dis th .
maximum speed and does not xplanation pecities the program speed 1n an <expression>. The movement speed 1s the automatic
guarantee movement at the movement speed multiplied by the program movement speed.
specified speed. This option is enabled only for the specified PMOVE statement.

SAMPLE

PIMOVE(],3), =10 evveeeeeeeeeeeeeeeeesseseseesessessesesesseesssessessesssseessseesesssesseessseseeesssesseeeesseeessssesseessessessssenes
Movement occurs at 10% of the program speed, from the
current position to the position specified by pallet position

number 3 of pallet definition number 1.

@ Arch motion setting

Format

x = <expression>[, X = <expression>...]

X etteetreereeeteeereeee e et e et e e Specifies the Z,R,A,B axis.
<EXPIeSSION™ccoeveeeeeeneennannnn An integer value is processed in "pulse" units.
A real number (with decimal point) is process in "mm/deg"

units.

1. The "x" specified axis begins moving toward the position specified by the
<expression>.
2. When the "x" specified axis enters the arch position range, all other axes move
toward the target position.
3. When all axes other than the "x" specified axis enter the arch position range, and
the "x" specified axis enters the tolerance range of the position specified by the
<expression>, the "x" specified axis then moves to the target position.

4. The command ends when all axis enter the OUT position range.
SAMPLE

PMOVE(1,A),Z=0.....cooovveereinene The Z-axis first moves from the current position to the "0 pulse" position. Then the
other axes move to the position specified by pallet position number A of pallet definition

number 1. Finally the Z-axis moves to the position specified by pallet position number A.

7-138 @ Chapter 7 Robot Language Lists

Format

SAMPLE: PMOVE Z

Z-axis arch position range
e
N,

\,"'\ 2. Other axes movement / \
[} ! \
Z=0 ------ v T |
AN S ‘\ 1’
g \ 7
Other axes' arch T
1. Z-axis movement position range 3. Z-axis movement
Current position Target position: P1
@® STOPON condition setting @

STOPON <conditional expression>

IRIBELELI Stops movement when the conditions specified by the conditional expression are

met. Because this is a deceleration type stop, there will be some movement (during
deceleration) after the conditions are met.

If the conditions are already met before movement begins, no movement occurs, and
the command is terminated.

This option is only possible by program execution.

SAMPLE

PMOVE(A,16),STOPON DI(20)=1
............................... Moves from the current position to the position specified by pallet position number 16 of
pallet definition number A, then decelerates and stops when the condition "DI(20) = 1" is

met.

» When the conditional expression used to designate the STOPON condition is a numeric expression,

the conditions for determining a TRUE or FALSE status can be changed at the controller's "TRUE

conditions" in the "Other parameters" mode. These conditions apply to all the IF, WHILE, WAIT,

STOPON, etc., conditional expressions. For details, refer to the controller user's manual.

1) -1 (default setting) An expression value of "-1" indicates a TRUE status, and "0" indicates a
FALSE status.
A "6.35 Incorrect condition expression" error occurs if the expression
value is other than "-1" or "0".

2)not 0 Any expression value other than "0" indicates a TRUE status, and "0"
indicates a FALSE status.

PMOVE @ 7-139

76 Pn

Defines points within a program

~ote

o If both integers and real
numbers are used together
(mixed), all coordinate values
will be handled in "mm/deg"
units.

e X-arm and Y-arm rotation
information is only available in
software Ver.1.66M or higher.

Format

Pn=xyzrab[f] [fl] [f2]

Tl Point number: 0 to 9999.
X, Vs Zy Ty @y D Point data: the range varies according to the format.
fo... Hand system flag: 1 or 2.
Tl X-arm rotation information : -1, 0, 1 (R6YXTW500 model only).
F2 e Y-arm rotation information : -1, 0, 1 (R6YXTW500 model only).

IR ENELNY Defines the point data.

"n" indicates the point number.
Input data for "x" to "b" must be separated with a space (blank).

nen

If all input data for "x" to "b" are integers (no decimal points), the movement units are
viewed as "pulses". "x" through "b" then correspond to axis 1 through axis 6.

4. If there is even 1 real number (with decimal point) in the input data for "x" through
"b", the movement units are recognized as "'mm"". In this case, "x" to "z" correspond
to the x, y and z coordinates of a Cartesian coordinate system, while "r" to "b"
correspond to axes 4 to 6.

5. The input data ranges are as follows:

For "pulse" units: -6,144,000 to 6,144,000 range

For "mm" units: -99,999.99 to0 99,999.99 range

Hand system flags can be specified for SCARA robots when specifying point definition data
in "mm" units.

To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "f". If a
number other than 1 or 2 is set, or if no number is designated, 0 will be set, indicating that

there is no hand system flag.

1: Indicates a right-handed system point setting.

2: Indicates a left-handed system point setting.

X-arm and Y-arm rotation information (*1) can be specified on REYXTW500 where point
data is defined in "mm" units.

To set extended X-arm and Y-arm rotation information at the R6YXTW500 model robot,
a"-1","0", or "1" value must be specified at fl and f2. Any other value, or no X-arm and

Y-arm rotation information at all, will be processed as "0".

0: Indicates arm rotation information where "0" has been specified.
1: Indicates arm rotation information where "1" has been specified.

-1: Indicates arm rotation information where "-1" has been specified.

*1: For details regarding the X-arm and Y-arm rotation information, refer to
Chapter 4 "3. Point data format".

I 7-140 @ Chapter 7 Robot Language Lists

=

SAMPLE
[~ote

e All input values are handled as PL = v v 0 0 0 0
constants. P2 = 100.00 200.00 50.00 0.00 0.00 0.00

o If controller power is turned P3 = 10.00 0.00 0.00 0.00 0.00 0.00
off during execution of a P10=P2

point definition statement, a FOR A=10TO 15

memory-related error such as _
"9.2: Point check-sum error" P[A+1]=P[A]+P3

may occur. NEXTA
FOR A=10TO 16
MOVE P,P1,P[A]
NEXT A
HALT

Related commands Point assignment statement (LET)

Pn @ 7-141 I

77 PPNT

Creates pallet point data

Format

PPNT(pallet definition number,pallet position number)

Creates the point data specified by the pallet definition number and the pallet position

number.
SAMPLE
n P1O=PPNT(1,24)....ccccciiiiiiiiiiiiiniiiiciccccans Creates, at P10, the point data specified by pallet position

number 24 of pallet definition number 1.

Related commands PDEF, PMOVE

I 7-142 @ Chapter 7 Robot Language Lists

78 PRINT

Displays the specified expression value at the programming box

Format

PRINT [<expression][

>

<expression>...][‘ s ‘]

5 >

Values <EXPIESSION™ ...oveneeieieeerereeenees character string, numeric value, variable.

Displays a specified variable on the programming box screen.

Output definitions are as follows:

1. If numbers or character strings are specified in an <expression>, they display as they
are. If variables or arrays are specified, the values assigned to the specified variables or
arrays display.

2 If no <expression> is specified, only a line-feed occurs.

If the data length exceeds the screen width, a line-feed occurs, and the data wraps to the
next line.

4. If a comma (,) is used as a display delimiter, a space (blank) is inserted between the
displayed items.

5. If a semicolon (;) is used as a display delimiter, the displayed items appear in
succession without being separated.

6. If the data ends with a delimiter, the next PRINT statement is executed without a line-

feed. When not ended with a display delimiter, a line-feed occurs.

» Data communication to the programming box screen occurs in order for the PRINT statement to be
displayed there. Therefore, program execution may be delayed when several PRINT statements are

executed consecutively.

SAMPLE

PRINT A Displays the value of variable A.

PRINT "AT ="AT1 oo Displays the value of variable Al after "Al =".
PRINT "B(0),B(1) = ";B(0);",";B(1)
PRINT P100 oo Displays the P100 value.

Related commands INPUT

PRINT @ 7-143 I

79 RADDEG

Performs a unit conversion (radians — degrees)

Format

RADDEG(<expression>)
<EXPIESSION™ovveviieeiiiieieienine Angle (units: radians)

IRIELEL) Converts the <expression> value to degrees.

SAMPLE

LOCR(P0)=RADDEG(ATN(B))...ccceeeeverririirninianne Converts the variable B arctangent value to degrees, and
assigns it to R-data of PO.

“ Related commands ATN, COS, DEGRAD, SIN, TAN

I 7-144 @ Chapter 7 Robot Language Lists

REM

Inserts a comment

Format

1. REM <character string>
2. '<character string>

IBIEVELINY All characters which follow REM or an apostrophe (') are handled as a comment. This
comment statement is used only to insert comments in the program, and it does not execute

any command. The apostrophe (') can be entered at any point in the line.

SAMPLE

REM *** MAIN PROGRAM ***
#x% SUBROUTINE *#%*
HALT °HALT COMMAND

REM @ 7-145 I

81 RESET

Turns OFF the bits of specified ports, or clears variables

A CAUTION

e Qutput to ports "0" and "1" is
not allowed at DO, MO, and
SO.

@
REFERENCE

e For details regarding bit
definitions, see Chapter 3 "10
Bit Settings".

RESET | DOm([b.......b])

LOO([b.....,b])
LO(Ob,....,0b)
SOm([b.......b])

RESET TCOUNTER
m: port NUMDETcoeverrerrennenen. 2to7,10to 17,20 to 27
b: bit definitionccoee.... 0to7

IBTIEVEGN) Format 1: Turns the bits of specified ports OFF.
Format 2: Clears the 10ms counter variables (10ms counter variables are used to measure

the time in 10ms units).

If multiple bits are specified, they are expressed from the left in descending order (large to

small).
If the [b,...,b] data is omitted, all 8 bits are processed.
SAMPLE
RESET DO2() eoveviieveieieieieeeieieeieieeeveeeseeeseneee Turns OFF DO(27 to 20).
RESET DO2(6,5,1) w.cveveveiereeieieeeieeeieieeveeeeeveneens Turns OFF DO(26, 25, 21).
RESET (37,35,27,20)....cceveueeeeeieiieieieneeeneesennans Turns OFF DO(37, 35, 27, 20).
RESET TCOUNTER........ccccooveiieieiieieeieeeeeen Clears the 10ms counter variables.

Related commands SET, DO, MO, SO, TO, LO

I 7-146 @ Chapter 7 Robot Language Lists

82 RESTART

Restarts another task during a temporary stop

Format

RESTART Tn
n: Task number............cccevenenn. 2t08

Restarts another task that has been temporarily stopped (SUSPEND status).
RESTART cannot be executed for Task 1.

SAMPLE

START *SUBTASK,T2
FLAG=1
*L0:
IF FLAG=1 AND DI2(0)=1 THEN

SUSPEND T2
FLAG=2
WAIT DI2(0)=0

ENDIF
IF FLAG=2 AND DI2(0)=1 THEN
RESTART T2
FLAG=1
WAIT DI2(1)=0
ENDIF
MOVE P,P0
MOVE P,P1
GOTO *L0
HALT
’SUBTASK ROUTINE
*SUBTASK:
DO2(0)=1
DELAY 1000
DO2(0)=0
DELAY 1000
GOTO *SUBTASK
EXIT TASK

Related commands CUT, EXIT TASK, START, SUSPEND

For details, refer to the "Multi-Task" item.

RESTART @ 7-147 I

83 RESUME

Resumes program execution after error recovery processing

Format

1. RESUME NEXT
2. RESUME <label>

RE@\ICE IRTIEVETTN) Resumes program execution after recovery from an error.
« For details, see Chapter 8 "60 Depending on its location, a program can be resumed in the following 3 ways:

ON ERROR GOTO".
1. RESUME The program resumes from the command which caused the error.
2. RESUME NEXT The program resumes from the next command after the command
which caused the error.
3. RESUME <label> The program resumes from the command specified by the <label>.

» The RESUME statement can also be executed in an error processing routine.

» "Error recovery processing is not possible for serious errors such as "17.4 : Overload", etc.

Related commands ON ERROR GOTO

I 7-148 @ Chapter 7 Robot Language Lists

RETURN

Processing which was branched by GOSUB, is returned to the next line after GOSUB

Format

GOSUB <label> * GOSUB can also be expressed as "GO SUB".

<label>:

RETURN

Ends the subroutine and returns to the next line after the jump source GOSUB statement.
All subroutines (jump destinations) specified by a GOSUB statement must end with a
RETURN statement. Using the GOTO statement, etc., to jump from a subroutine will cause

an error such as the "5.12: Stack overflow", etc.

SAMPLE

ESIE
MOVE P,PO
GOSUB *CLOSEHAND
MOVE P,P1
GOSUB *OPENHAND
GOTO *ST
HALT
’SUB ROUTINE
*CLOSEHAND:
DO(20) =1
RETURN
*OPENHAND:
DO(20) =0
RETURN

Related commands GOSUB

RETURN @ 7-149 I

85 RIGHTS$

Extracts a character string from the right end of another character string

Format

RIGHTS(<character string expression>,<expression>)

<EXPIESSION™oveeviieiiiinieieienene 0to 75

This function extracts a character string with the digits specified by the <expression> from
the right end of the character string specified by <character string expression>.
The <expression> value must be between 0 and 75, otherwise an error will occur.
If the <expression> value is 0, then RIGHT$ will be a null string (empty character string).
If the <expression> value has more characters than the <character string expression>,

RIGHTS will become the same as the <character string expression>.

SAMPLE

BS=RIGHTS(AS,4)...cocoeuemeiirrrieieiinieiaina 4 characters from the right end of A$ are assigned to BS.

Related commands LEFTS, MID$ ‘

I 7-150 @ Chapter 7 Robot Language Lists

RIGHTY

Sets the SCARA robot hand system to "Right"

Format

RIGHTY

IBIEVELNY This statement specifies right-handed movement to a point specified in Cartesian
coordinates. This statement only selects the hand system, and does not move the robot.
If executed while the robot arm is moving, execution waits until movement is complete

(positioned within tolerance range).

SAMPLE

RIGHTY et Specifies a robot "right-handed system" setting (see Fig.1
below).

MOVE P,P1

LEFTY e Specifies a robot "left-handed system" setting (see Fig.2
below).

MOVE P,P1

RIGHTY

HALT

SAMPLE: LEFTY/RIGHTY

P1
f? o %
. @) .

Left-handed system Right-handed system

SCARA robot

Related commands LEFTY

RIGHTY @ 7-151 I

87 RSHIFT

Shifts a bit value to the right

Format

RSHIFT(<expression 1>,<expression 2>)

Shifts the <expression 1> bit value to the right by the amount of <expression 2>. Spaces left
blank by the shift are filled with zeros (0).

SAMPLE

A=RSHIFT(&B10111011,2)....cccoiuiiciciiieiniiianns The 2-bit-right-shifted &B10111011 value (&B00101110)
is assigned to A.

Related commands LSHIFT ‘

I 7-152 @ Chapter 7 Robot Language Lists

88 Sn

Defines the shift coordinates in the program

Format

Sn=xyzr
Tl 0to9
Xy ¥y Zy Tttt -99,999.99 t0 99,999.99

M NOTE INAIELELNN) Defines shift coordinate values in order to shift the coordinates for robot movement. Only
e All input values are handled as "mm" units can be used for these coordinate values ("pulse" units cannot be used).

constants.
*If the contrgller power 18 1. "n" indicates the shift number.

turned off during execution of))

a shift coordinate definition 2. The "x" to "r" input data must be separated with spaces (blanks).

statement, a memory-related 3. The "x" to "r" input data is recognized as "mm" unit data.

error such as "9.6: Shift check- e e . . , . .

4. "x"to"z" correspond to the Cartesian coordinate system's x, y, z coordinate shift values,

sum error" may occur.
and "r" corresponds to the xy coordinates' rotational shift values.

SAMPLE

SO0 = 0.00 0.00 0.00 0.00

S1 = 100.00 200.00 50.00 90.00

P3 = 100.00 0.00 0.00 0.00 0.00 0.00
SHIFT SO

MOVE P,P3

SHIFT S1

MOVE P,P3

HALT

Related commands Shift assignment statement, SHIFT

Sn @ 7-153

SELECT CASE

Executes the specified command block in accordance with the <expression> value

Format

SELECT [CASE] <expression>

CASE <expression list 1>
[command block 1]

[CASE <expression list 2>
[command block 2]]

[CASE ELSE
[command block n]]
END SELECT

IBTIEVEGN) These statements execute multiple command blocks in accordance with the <expression>
value. The setting method is as follows.

1. The <expression list> following CASE statement comprises multiple numerical

expressions and character expressions separated from each other by a comma (,).
n 2. If the <expression> value matches one of expressions contained in the <expression

list>, the specified command block is executed. After executing the command block, the

program jumps to the next command which follows the END SELECT statement.

3. If the <expression> value does not match any of the expressions contained in the
<expression list>, the command block indicated after the CASE ELSE statement is
executed. After executing the command block, the program jumps to the next command
which follows the END SELECT statement.

4. If the <expression> value does not match any of the expressions contained in
<expression list> and no CASE ELSE statement exists, the program jumps to the next
command following the END SELECT statement.

SAMPLE

WHILE -1
SELECT CASE DI3()
CASE 1,23
CALL *EXEC(1,10)
CASE 4,5,6,7,8,9,10
CALL *EXEC(11,20)
CASE ELSE
CALL *EXEC(21,30)
END SELECT
WEND
HALT

I 7-154 @ Chapter 7 Robot Language Lists

SEND

Sends <read file> data to the <write file>

SEND <read file> TO <write file>

M NOTE IR EVELNY Sends <read file> data to the <write file>.
An entire DO, MO, TO, LO, SO, or SOW port (DO(), MO(), etc.), cannot be specified as a

e Examples of erroneous writing

to a read-only file: write file.
SEND CMU TO DIR Moreover, some individual files (DOn(), MOn(), etc.) cannot be specified as a write file. For
SEND PNT TO SI() details, refer to Chapter 11 "Data file description".
e Examples of data format Writing to read-only files (indicated by a "x" in the "WRITE" column of the table shown
mismatches: below) is not permitted.
SEND PGM TO PNT Even if the READ and WRITE files are specified correctly, it may not be possible to
SEND SI() TO SFT execute them if there is a data format mismatch between the files.
Type File Name Definition l‘?‘o‘rmat . READ | WRITE
All Individual File
User All files ALL O O
Program PGM <bbbbbbbb> O O
Point PNT Pn O O
Point comment PCM PCn O O
Parameter PRM /eceeec/ O O
Shift definition SFT Sn O O
Hand definition HND Hn O O
Pallet definition PLT PLn O O
Variable, Variable VAR ab...by O ©)
Constant Array variable ART ab...by(x) O O
Constant “cc...c” O x
Status Program directory DIR <<bbbbbbbb>> O x
Parameter directory DPM O x
Machine reference MRF O x
Error log LOG O x
Remaining memory size MEM O X
Device DI port DI() DIn() O x
DO port DO() DOn() @) O
MO port MO() MOn() @) O
TO port TO() TOn() O O
LO port LO() LOn() @) O
SI port SI() SIn() O x
SO port SO() SOn() O O
SIW port SIW() SIWn() @) x
SOW port SOW() SOWn() @) O
RS-232C CMU O O
Ethernet ETH O O
Other File END code EOF ©) X
N: Number a: Alphabetic character b: Alphanumeric character or underscore (_) QO : Permitted
c¢: Alphanumeric character or special symbol x: Expression (array argument) y: Variable type x : Not permitted

SEND @ 7-155

» The following cautions apply when a restart is performed after a stop occurred during execution of the
SEND statement:

7

1. When reading from RS-232C / Ethernet (SEND CMU TO XXX, SEND ETH TO XXX):
When the SEND statement is stopped during data reading from the reception buffer, the data
acquired up to that point is discarded.

2. When writing to RS-232C / Ethernet (SEND XXX TO CMU, SEND XXX TO ETH):

When the SEND statement is stopped during data writing to the transmission buffer, the data is
written from the beginning.

SAMPLE

SEND PGM TO CMU......ccoooveireirierisieerieneienenes Outputs all user programs from the RS-232C port.

SEND <PRGI1>TO CMU.... ..Outputs the PRG1 program from the RS-232C port.

SEND CMU TO PNT.....ooviiiiiiiinienienieieieieee Inputs a point data file from the RS-232C port.

SEND "T1" TO CMU.....cooiiiiiiiiiiiiieieeene Outputs the "T1" character string from the RS-232C port.

SEND CMU TO AS.....covieiiiiieinieiinieieesieieeeienens Inputs character string data to variable A$ from the RS-
232C port.

For details, refer to Chapter 11 "Data file description".

I 7-156 @ Chapter 7 Robot Language Lists

| SERVO

Controls the servo status

Format

SERVO ON [(<axis number>)]
OFF
FREE
PWR
<axis NUMbEr>.........cccevverveeurnenn main group: 1 to 6
This statement controls the servo ON/OFF at the specified axes or all axes. When the axes
& CAUTION

have been specified by an <axis number> setting, this statement applies only to the specified
eKeep out of the robot

movement range while
the motor power is turned statement applies to all the main axes. In this case, motor power supply ON/OFF switching
OFF by the SERVO OFF
statement. Always check that
the Emergency Stop is ON

when working within the robot *ON....... Turns the servo ON. If no axis is specified, the motor power supply also turns
movement area. ON

* OFF....... Turns the servo OFF and applies the dynamic brake. Axes equipped with brakes

axes within the group. If no axes have been specified by an <axis number> setting, this

occurs simultaneously with the servo ON/OFF operations.

are all locked by the brake. If no axis is specified, the motor power supply also
turns OFF.

* FREE Turns the servo OFF and releases the dynamic brake. The brakes are released at
all axes with brakes. If no axis is specified, the motor power supply also turns
OFF.

* PWR Turns only the motor power supply ON.

« This statement is executed after positioning of all axes is complete (within the tolerance range).

* Individual axis servos cannot be turned ON as long as the motor power is OFF.

SAMPLE

SERVO ON . Turns servos ON at all axes after turning the motor power ON.

SERVO OFF Turns the motor power OFF, then turns the servos at all axes OFF.
Brakes are applied, and a lock status is established at axes equipped
with brakes.

SERVO FREE(3).....ctieuiieieieieisieiesieiesieieneeeeennens The axis 3 (Z-axis) servo is turned OFF, and the brake is released.

SERVO @ 7-157 I

92 SET

Turns the bit at the specified output port ON

Format

SET | DOm([b.......b]) [, <time>]

m: port NUMDbETcccoervereeennne 2t07,10to 17,20 to 27
b: bit definitioncccceevevenene. 0to7
<HME™ v 10 to 3600000 (units: ms)

IBTIEVEG) Turns ON the bits of specified ports.
A CAUTION

The pulse output time (unit: ms) is specified by the <time> value. When the specified time
e QOutput to ports "0" and "1" are

not allowed at DO, MO, and elapses, the output is turned OFF, and command execution ends.
SO.
m If multiple bits are specified, they are expressed from the left in descending order (large to
REQ\ICE small).
e For bit setting details, see If the [b,...,b] data is omitted, all 8 bits are processed.

Chapter 3 "10 Bit Settings". If no hardware port exists, nothing is output.

SAMPLE

51 18 010 210 W Turns ON DO(27 to 20).
SET DO2(6,5,1),200......oooossereeeeeececceeeereereeressesss DO(26,25,21) switches ON for 200ms.
SET DO(37,35,27,20)..ooooeeeeeeeeeereeceeeereeeeeeeeesesses Turns DO(37, 35, 27, 20) ON.

Related commands RESET, DO, MO, SO, TO, LO

I 7-158 @ Chapter 7 Robot Language Lists

SHARED

Enables sub-procedure referencing without passing on the variable

Format

SHARED <variable>[()][,<variable>[()]...]

This statement allows variables declared with a program level code to be referenced with a
sub-procedure without passing on the variables as dummy arguments.
The program level variable used by the sub-procedure is specified by the <variable> value.
A simple variable or an array variable followed by parentheses is specified. If an array is

specified, that entire array is selected.

* Normally, a <dummy argument> passes along the variable to a sub-procedure, but the SHARED
statement allows referencing to occur without passing along the variable.

* The SHARED statement allows variables to be shared only between a program level code and sub-
procedure which are within the same program level.

SAMPLE

DIM Y!(10)
X!1=2.5
Y(10)=1. 2
CALL *DISTANCE
CALL *AREA
HALT
SUB *DISTANCE
SHARED XY !()eveeiieiinieenieeieeeeieeeeiene Variable referencing is declared by SHARED.
PRINT X! 24Y!1(10) 2. e The variable is shared.
END SUB
SUB *AREA
DIM Y!(10)
PRINT X!*Y!(10).ecieieeieiieieeiiieieieieieienee The variable is not shared.
END SUB

Related commands SUB, END SUB

SHARED @ 7-159 I

SHIFT

Sets the shift coordinates

Format

SHIFT <shift variable>

Sets the shift coordinates in accordance with the shift data specified by the <shift variable>.

 This statement is executed after axis positioning is complete (within the tolerance range).

* The default shift setting is SO (no shift values).

SAMPLE

SHIFT S1
MOVE P,P10
SHIFT S[A]
MOVE P,P20
HALT

n Related commands Shift definition statement, shift assignment statement

I 7-160 @ Chapter 7 Robot Language Lists

95 SIN

Acquires the sine value for a specified value

Format

SIN(<expression>)
<EXPIEeSSION™coovveirriienirieenene Angle (units: radians)

1B EVELNY This function gives the sine value for the <expression> value.

SAMPLE

A(0)=SIN(BH24C).c.eerveiiiiieieeeeseseeeseeeeee Assigns the expression B*2+C sine value to array A (0).
A(1)=SIN(DEGRAD(30))....ccccetruerierueueiaeeeanenne Assigns a 30.0° sine value to array A (1).

Related commands ATN, COS, DEGRAD, RADDEG, TAN ‘

SIN @ 7-161 I

SO

Outputs a specified value to the serial port

Format

1. [LET]SOm([b......,b]) = <expression>
2. [LET]SO (mb,.....,mb) = <expression>

m: port NUMDETccceereeueenennnn. 2to7,10to0 17,20 to 27
b: bit definition

Outputs a specified value to the SO port.
A CAUTION

Only the <value> data's integer-converted lower bits corresponding to the bits defined at the

e Outputs to SO0() and SO1()

are not possible. left side can be output.

If multiple bits are specified, they are expressed from the left in descending order (large to
REQ\ICE

small).

If th ta i itt 11 8 bit .
« For bit setting details, see the [b,...,b] data is omitted, all 8 bits are processed

Chapter 3 "10 Bit Settings". If no hardware port exists, nothing is output.
SAMPLE
SO20=&B10TT1000rrvveeeeeereeeeeeeeeeeeseeeseeee SO (27, 25, 24, 23) are turned ON, and SO (26, 22, 21,
20) are turned OFF.

S02(6,5,1)=&B010 ...

SO3()=LS o SO (33, 32, 31, 30) are turned ON, and SO (37, 36, 35,
34) are turned OFF.

SO(37,35,27,20)=A ..o The lower 4 bits of integer-converted variable A are output
to SO (37, 35, 27, 20).

...SO (25) are turned ON, and SO (26, 21) are turned OFF.

Related commands RESET, SET

I 7-162 @ Chapter 7 Robot Language Lists

97 SPEED

Changes the program movement speed

Format

SPEED <expression>
<EXPIEeSSION™coovveeiiiieniieenene 1 to 100 (units: %)

Changes the program movement speed to the speed indicated by the <expression>.
This speed change applies to all the robot axes.
The operation speed is determined by multiplying the automatic movement speed (specified
from the programming box and by the ASPEED command), by the program movement
speed (specified by SPEED command, etc.).
Operation speed = automatic movement speed x program movement speed.
Example:
Automatic movement speed ... 80%
Program movement speed ... 50%
Movement speed = 40% (80% x 50%)

SAMPLE n

ASPEED 100

SPEED 70

MOVE PPO......ooiiiiiiiiiiiieieieeeeeeee e Moves from current position to PO at a speed of 70% (=100 *
70).

SPEED 50

MOVE P, Pl Moves from current position to P1 at a speed of 50% (=100 *
50).

MOVE PP2, S=10.....ciieiieeieeieeeseeeeeeeenene Moves from current position to P2 at a speed of 10% (=100 *
10).

HALT

Related commands ASPEED

SPEED @ 7-163 I

START

Starts a new task

Format

START <label>, Tnl[, p]
n: Task number...........c.ccoeeenene 2t08
p: Task priority ranking.............. 17 to 47

Starts task "n" specified by the <label> with the "p" priority ranking.
If a priority ranking is not specified, "32" is adopted as the priority ranking for this task.
The smaller the priority number, the higher the priority (high priority: 17 <> low priority:
47).
When a READY status occurs at a task with higher priority, all tasks with lower priority

also remain in a READY status.

SAMPLE

START *SUBTASK,T2,33
G SHIE
MOVE P,PO,P1
GOTO *ST
HALT
‘SUBTASK ROUTINE
*SUBTASK:
P100 = WHERE
IF LOCZ(P100) > 10000 THEN
DO(20) = 1
ELSE
DO(20) =0
ENDIF
GOTO *SUBTASK
EXIT TASK

Related commands CUT, EXIT TASK, RESTART, SUSPEND, CHGPRI

I 7-164 @ Chapter 7 Robot Language Lists

STR$

Converts a numeric value to a character string

Format

STR$(<expression>)

1IN EVELNY Converts the value specified by the <expression> to a character string. The <expression>

specifies an integer or real number value.

SAMPLE

B$=STR$(10.01)

Related commands VAL ‘

STR$ @ 7-165 I

100 BRI

Acquires the square root of a specified value

Format

SQR(<expression>)
Values <EXPIESSION™oveeviieiiiinieieienene 0 or positive number.

INNEVELNY Gives the square root of the <expression> value. An error occurs if the <expression> value

is a negative number.

SAMPLE

A=SQR(X"2HY"2).eeeuieiieiiiiiieieieieeeeeein The square root of X*2+Y*2 is assigned to variable A.

I 7-166 @ Chapter 7 Robot Language Lists

101 SUB to END SUB

Defines a sub-procedure

Format

SUB <label> [(<dummy argument> [, <dummy argument> ...])]
<command block>
END SUB

1B EVELNY Defines a sub-procedure.

The sub-procedure can be executed by a CALL statement. When the END SUB statement
is executed, the program jumps to the next command after the CALL statement that was
called. Definitions are as follows.

1. All variables declared within the sub-procedure are local variables, and these are
valid only within the sub-procedure. Local variables are initialized each time the sub-
procedure is called up.

2. Use a SHARED statement in order to use global variables (program level).

3. Use a <dummy argument> when variables are to be passed on. If two or more dummy
arguments are used, separate them by a comma (,).

4. A valid <dummy argument> consists of a name of variable and an entire array (array

name followed by parentheses). An error will occur if array elements (a <subscript>
following the array name) are specified.

* Sub-procedures cannot be defined within a sub-procedure.

» The DECLARE statement cannot be used within a sub-procedure.

A label can be defined within a sub-procedure, but it cannot jump (by a GOTO or GOSUB statement)
to a label outside the sub-procedure.

* Local variables cannot be used with PRINT and SEND statements.

SAMPLE 1

A=1
CALL *TEST
PRINT A
HALT
’SUB ROUTINE: TEST
SUB *TEST
A=500 e Handled as a different variable than the "A" shown above.
END SUB

* In the above example, the program level variable "A" is unrelated to the variable "A" within the sub-

procedure. Therefore, the value indicated in the 3rd line PRINT statement becomes "1".

SUB to END SUB @ 7-167 I

101 SUB to END SUB

SAMPLE 2

X% =4
Y%=5
CALL *COMPARE(REF X%, REF Y%)
PRINT X%,Y %
Z%=1
W% =2
CALL *COMPARE(REF Z%, REF W%)
PRINT Z%,W%
HALT
’SUB ROUTINE: COMPARE
SUB *COMPARE(A%, B%)
IF A% < B% THEN
TEMP% =A%
A% =B%
B% = TEMP%
ENDIF

n —

« In the above example, different variables are passed along as arguments to call the sub-procedure 2

times.

Related commands CALL, DECLARE, EXIT SUB, SHARED

I 7-168 @ Chapter 7 Robot Language Lists

102 SUSPEND

Temporarily stops another task which is being executed

Format

SUSPEND Tn
n: Task number............cccevenenn. 2t08

Temporarily stops (suspends) another task which is being executed.
This statement can also be used for tasks with a higher priority ranking than this task itself.

This statement cannot be specified for the main task (Task number 1).

SAMPLE

START *SUBTASK, T2

SUSFLG=0

*L0:
MOVE P,P0O
MOVE P,P1
WAIT SUSFLG=1
SUSPEND T2
SUSFLG=0

GOTO *L0

HALT

’SUBTASK ROUTINE

*SUBTASK:
WAIT SUSFLG=0
DO2(0)=1
DELAY 1000
DO2(0)=0
DELAY 1000
SUSFLG=1
GOTO *SUBTASK
EXIT TASK

Related commands CUT, EXIT TASK, RESTART, SUSPEND

SUSPEND @ 7-169 I

103 SWI
7 Switches the program being executed

Format

SWI "<"<program name>">"

This statement switches from the current program to the specified program, starting from
the first line after compiling is completed.
Although the output variable status is not changed when the program is switched, the
dynamic variables and array variables are cleared. Operation stops if an error occurs during
compiling. The program name to be switched to must be enclosed in angular brackets (<>).

This command can be executed only in Task 1 (main task).

« If the program specified as the switching target does not exist, message "3.3: Program doesn't exist"
prog P g targ g ar

(code: &H0303) displays and operation stops.
» Execution of a SWI statement is always accompanied by compiling, and the time required for this

compiling depends on the size of the switching target program.

« Ifan error occurs during compiling, an error message line displays and the program stops.

» The SWI statement can only be executed within task 1 (main task). If used within tasks 2 through 8,
the message "6.1: Illegal command" displays and operation stops.

e The STOP key is disabled during compiling.

SAMPLE

SWI<ABC> i Switches the execution program to "ABC".

I 7-170 @ Chapter 7 Robot Language Lists

104 TAN

Acquires the tangent value for a specified value

Format

TAN(<expression>)
<EXPIEeSSION™covvveeieiiienieienenens Angle (units: radians)

IR EVELNY Gives a tangent value for the <expression> value. An error will occur if the <expression>

value is a negative number.

SAMPLE

A(0)=B-TAN(C)..coveeuierieiieieeieieieie et The difference between the tangent values of variable B
and variable C is assigned to array A (0).
A(1)=TAN(DEGRAD(20))....cccceeerrrrererererreereananes The 20.0° tangent value is assigned to array A (1).

Related commands ATN, COS, DEGRAD, RADDEG, SIN ‘

TAN @ 7-171 I

105 TCOUNTER
7 Timer & counter

Format

TCOUNTER

Outputs count-up values at 10ms intervals starting from the point when the TCOUNTER
variable is reset (counter variable value 1 = 10ms).

After counting up to 65,535, the count is reset to 0.

SAMPLE

MOVE P,P0O

WAIT ARM

RESET TCOUNTER

MOVE PPl

WAIT ARM

A =TCOUNTER

PRINT TCOUNTER........cccccooviniiniiiieiiieininnen Displays the PO to P1 movement time at the programming

box until movement enters the tolerance range.

Related commands RESET

I 7-172 @ Chapter 7 Robot Language Lists

L[S TIMES

Acquires the current time

Format

TIMES$

IBIEVELNY Acquires the current time in an hh:mm:ss format character string. "hh" is the hour, "mm"
is the minutes, and "ss" is the seconds. The clock can be set in the SYSTEM mode's initial

processing.

SAMPLE

AS$=TIMES$
PRINT TIME$

Related commands DATES$, TIMER ‘

TIME$ @ 7-173 I

107 TIMER
7 Acquires the current time

A CAUTION

e The time indicated by the TIMER
internal clock may differ
somewhat from the actual time.

Acquires the current time in seconds, counting from 12:00 midnight. This function is used to
measure a program's run time, etc.

The clock can be set in the SYSTEM mode's initial processing.

SAMPLE

A%=TIMER
FOR B=1 TO 10

MOVE P,P0

MOVE PPl

NEXT

A%=TIMER-A%

PRINT A%/60;":";A% MOD 60
HALT

Related commands TIMES$

I 7-174 @ Chapter 7 Robot Language Lists

LSS TO

Outputs a specified value to the TO port

Format

1. [LET]TOO([b......,b]) = <expression>
2. [LET]TO (0Ob......,0b) = <expression>

b: bit definitionc.ccceeeveennen. 0Oto7

Outputs the specified value to the TO port. The output value is the expression's integer-
converted lower bits corresponding to the bit definition specified at the left side.
If multiple bits are specified, they are expressed from the left in descending order (large to
small).
If the [b,...,b] data is omitted, all 8 bits are processed.
The OFF/ON settings for bits which are being used in a SEQUENCE program have priority
while the SEQUENCE program is running.

SAMPLE

TOO() = &B00000110

Related commands RESET, SET ‘

TO @ 7-175 I

ILEES TOLE

Specifies/acquires the tolerance parameter

Format

1. TOLE <expression>

2. TOLE (<axis number>) = <expression>

Values <axis nUMbEr™>.........cccceevevenennnn main group: 1to 6
<expression>

Varies according to the motor which has been specified (units: pulse)

Changes the tolerance parameter to the <expression> value.
Format 1: The change is applied to all axes of each group.

Format 2: The change is applies to only the group axes specified by <axis number>.

 Ifan axis that is set to "no axis" in the system generation is specified, a "5.37 : Specification mismatch"

error message displays and command execution is stopped.
» This statement is executed after positioning of the specified axes is complete (within the tolerance

range).

I Functions

Format

TOLE(<axis 1>)

<aXIS 1> main group: 1to 6

INIEVELTNY Acquires the tolerance parameter value for the axis specified by <axis number>.

SAMPLE

’CYCLE WITH DECREASING TOLERANCE
DIM TOLE(5)
FOR A=200 TO 80 STEP -20
GOSUB *CHANGE_TOLE
MOVE P,P0O
MOVE P,P1
NEXTA
C=TOLE(2)..c.eteteteieieieieeeeeeseseeieee The tolerance parameter of the main group's axis 2 is assigned to variable C.
HALT
*CHANGE_TOLE:
FOR B=1 TO 4
TOLE(B)=A
NEXT B
RETURN

I 7-176 @ Chapter 7 Robot Language Lists

[’ TORQUE

Specifies/acquires the maximum torque command value which can be set for a specified axis

Format

TORQUE(<axis number>) = <expression>

Values <axis NUMbEr™.......ccccoeveeuirieennne main group: 1to 6

<EXPIESSION™ ...oveeveeieeeeeireeenean 1 to 100 (units: %)

A CAUTION

o If the specified torque limit @BIJEVENLTY Changes the maximum torque command value for each group's axes which have been
is too small, the axis may not

: specified by <axis number>. The new value is enabled after the next movement command
move. In this case, press the

emergency stop button before (MOVE or DRIVE statement, etc.) is executed. The torque parameter value does not
proceeding with the operation. change.
o If the specified value is less The maximum torque specified by this statement remains valid until any of the following

than the rated torque, an error
may not occur even if the robot
strikes an obstacle.

operations occur.

* Until another TORQUE command for the same axis is executed.

* Until a torque limit option is executed in a DRIVE statement for the same axis.
* Until controller power is turned off and then on again.

* Until parameters are changed or initialized.

* Until a return-to-origin or an absolute reset & return-to-origin is performed.

* Until the servo is turned off.

 Ifan axis that is set to "no axis" in the system generation is specified, a "5.37 : Specification mismatch"

error message displays and command execution is stopped.

I Functions

Format

TORQUE(<axis 1>)

<AXIS 1> main group: 1to 6

IR EVELNY Acquires the torque setting value for the axis specified by <axis number>.

TORQUE @ 7-177

110 TORQUE

SAMPLE

TRQTIME(3) = 2500........0cceeiriererieieieieienrenenes Sets the torque control time-out period as 2.5 seconds for axis
3.

DRIVE(3,P1),T = (20,15)..cccciiiieiiiniiieicieiee Sets the maximum torque value to 20% of the rated torque, and the
torque offset to 15, then moves axis 3 from its current position to the
point specified by P1 (pushing action).

IF TRQSTS(3) =1 THEN.....ccooiiiiiiiiccnieee Checks if a time-out has occurred.

DO21) = Lot Time-out has occurred (pushing is complete). (Result is
output to DO(21) in this example.)

ELSE

DO21) = 0ueeeeieiieieieeeeeeeeeeeee e Time-out has not occurred. (Reached target position but
failed to complete pushing.) (Result is output to DO(21)
in this example.)

ENDIF

TORQUE(3) = 100......ccieoieeiieiieeiieieeeieeieens Returns the max. torque command value to the original
value (100%).

DRIVE(3,P0)..cceeiiiiiieiiiiiciicieiieieeieieieeeeie Ends the torque limit and torque control, and moves to P0.

A=TORQUE(2) ..The torque setting value for the main group's axis 2 is

assigned to variable A.

Related commands DRIVE, TRQTIME, TRQSTS, CURTRQ

I 7-178 @ Chapter 7 Robot Language Lists

TRQSTS

Acquires the status when DRIVE statement ends

Format

TRQSTS (<axis 1>)

<AXIS 1> main group: 1to 6

1B EVELNY Acquires the status at the completion of a "DRIVE statement with torque limit option" that
was executed for the main group axis specified by <axis number>.
0 ... The DRIVE statement was ended for a reason other than a torque limit time-out.

1 ... The DRIVE statement was ended by torque limit time-out.

« Ifan axis that is set to "no axis" in the system generation is specified, a "5.37 : Specification mismatch"

error message displays and command execution is stopped.

SAMPLE

DRIVE(3,P1), T=20.......

...Moves the main group's axis 3 under torque limit control.

IF TRQSTS(3)=1 THEN......ccceciiiiiiiiiiiiiciene Ended by a time-out with the torque limit value reached.
GOTO *OK

ELSEcoceitetesiitenentenenistensonencnsonensenensssensssenssesensen Movement ended without a time-out occurring.

GOTO *NG

ENDIF

Related commands DRIVE, TRQTIME, CURTRQ ‘

TRQSTS @ 7-179 I

112 TRQTIME
7 Sets/acquires the time-out period for the torque limit setting option

Format

TRQTIME(<axis number>) = <time-out period>

<axis NUMbEr™>........ccoceverreeinnne main group: 1to 6

<time-out period>...........ccceee... 1 to 10000 (units: ms)

INTIELEL) Specifies the torque control time-out period when using the DRIVE statement's torque limit
setting option. This command specifies the time-out period (<time-out period>) for the axis

specified by <axis number>.

A DRIVE statement executed with a torque limit option ends when the axis has reached the
target position, or when the "specified toque limit reached" time has exceeded the time-out
period specified by the TRQTIME statement.

A value is then set in the TRQSTS function, depending on whether or not the "specified
toque limit reached" period has exceeded the time-out period specified by the TRQTIME
statement and this command has ended.

When the controller power is turned on, the time-out period is set to 1 second (1,000ms).

 Although the time-out period is specified in "ms" units, it actually operates in "10ms" units. Therefore,

settings are rounded upward to 10ms. For example, if the setting is a value from 1 to 9, this becomes

10ms. However, if "0" is specified, this becomes 1 second (1000ms).
 Ifan axis that is set to "no axis" in the system generation is specified, a "5.37 : Specification mismatch"

error message displays and command execution is stopped.

I Functions

TRQTIME(<axis 1>)

<axiS 1> main group: 1to 6

INIELELY Acquires the torque limit time-out period for the axis specified by <axis number>.

The time-out period is specified in "ms" units.

I 7-180 @ Chapter 7 Robot Language Lists

1P TRQTIME

SAMPLE

TRQTIME(3)=2500.......c.ccoeiieiarierinieieieieieeenenes Sets the torque control time-out period as 2.5 seconds for axis
3.

DRIVE(3,P1),T=(20,15)...ccceeiiiiiiiniiniiiicniencene Sets the maximum torque value to 20% of the rated torque, and the
torque offset to 15, then moves axis 3 from its current position to the
point specified by P1 (pushing action).

IF TRQSTS(3)=1 THEN......ccooeiriiiiiiinicirend Checks if a time-out has occurred.

DO21)=1 i Time-out has occurred (pushing is complete). (Result is
output to DO(21) in this example.)

ELSE

DOQI)=0.cuieiiiiiiieiieiieeeeeeeee e Time-out has not occurred. (Reached target position but
failed to complete pushing.) (Result is output to DO(21)
in this example.)

ENDIF

TORQUEB)=100......cceieeieienieeieieeeeeeieneeeeens Returns the max. torque command value to the original
value (100%).

DRIVE(3,P0)...cciiiiiiiiiiiiiieieiceeeeeeeee Ends the torque limit and torque control, and moves to P0.

A%=TRQTIME(3).. ...The torque limit time-out period for the main group's axis 3

is assigned to variable A.

Related commands DRIVE, TRQSTS, CURTRQ ‘

TRQTIME @ 7-181 I

113 VAL

Converts character strings to numeric values

Format

VAL (<character string expression>)

Converts the numeric value of the character string specified in the <character string
expression> into an actual numeric value.
The value may be expressed in integer format (binary, decimal, hexadecimal), or real
number format (decimal point format, exponential format).
The VAL value becomes "0" if the first character of the character string is "+", "-", "&" or
anything other than a numeric character.
If there are non-numeric characters or spaces elsewhere in the character string, all
subsequent characters are ignored by this function.

However, for hexadecimal expressions, A to F are considered numeric characters.

SAMPLE

A=VAL("&B100001")

7-182 @ Chapter 7 Robot Language Lists

WAIT

Waits until the conditions of the DI/DO conditional expression are met

Format

WAIT <conditional expression> [,<expression>]

<EXPIEeSSION™covvenieiiieniienenens 10 to 3600000 (units: ms)

Establishes a "wait" status until the condition specified by the <conditional expression> is
met. Specify the time-out period (unit: ms) in the <expression>.
If a time-out period has been specified, this command terminates if the time-out period
elapses before the WAIT condition is met.

The minimum wait time is 10 ms.

* When the conditional expression is a numeric expression, the conditions for determining a TRUE or

FALSE status can be changed at the controller's "TRUE conditions" in the "Other parameters" mode.

These conditions apply to all the IF, WHILE, WAIT, STOPON, etc., conditional expressions. For

details, refer to the controller's user manual.

1) -1 (default setting) An expression value of "-1" indicates a TRUE status, and "0" indicates a
FALSE status. A "6.35: Incorrect condition expression" error occurs if the
expression value is other than "-1" or "0".

2)not 0 Any expression value other than "0" indicates a TRUE status, and "0"
indicates a FALSE status.

SAMPLE

WAIT A=10ciiiiiiiiiiciececececeeceeeeeeae A wait status continues until variable A becomes 10.

WAIT DI2()=&B01010110...........ceenenen.n. Waits until DI(21),(22),(24),(26) are turned on, and
DI(20),(23),(25),(27) is turned off.

WAIT DI2(4,3,2)=&B101....c.oceiriiiireineenene Waits until DI(22) and DI(24) are turned on, and DI(23)
is turned off.

WAIT DI(31)=1 OR DOR21)=1...ccevieiririirinienn A wait status continues until either DI (31) or DO(21) turns ON.

WAIT DI(20)=1,1000.........cceecirimimiinieierieieienenne A wait status continues until DI(20) turns ON. If DI(20) fails

to turn ON within 1 second, the command is terminated.

Related commands DRIVE, DRIVEIL, MOVE, MOVEI

WAIT @ 7-183 I

115 WAIT ARM

Waits until the robot axis operation is completed

Format

WAIT ARM [(<axis number>)]

Values <axis NUMDEr™>.......cccccvvereeneennne main group: 1to 6

I EVELY Establishes a "wait" status until robot axis movement is completed (within the positioning
tolerance range).
If a specific axis in a group has been specified by <axis number>, this command will apply

only to that axis. If there is no <axis number> setting, this command applies to all the group

axes.
SAMPLE
WAIT ARM...ooiiiiiiiiiiiiiiiieeeeeeee e Waits for main robot movement completion.

Related commands DRIVE, DRIVEI, MOVE, MOVEI ‘

I 7-184 @ Chapter 7 Robot Language Lists

116 WEIGHT

Specifies/acquires the tip weight parameter

WEIGHT <expression>
<EXPIEeSSION™coovveeieiiieiieienenene The range varies according to the robot which has been

specified.

INTIENETLINY Changes the tip weight parameter of the main robot to the <expression> value. This change

does not apply to auxiliary axes.

I Functions

Format

WEIGHT

IR EVELINY Acquires the tip weight parameter of the robot.

SAMPLE

A=5

B=2

C=WEIGHT

WEIGHT A

MOVE P,P0O

WEIGHT B

MOVE PP1

WEIGHT C

D=WEIGHT.......cccceetiiiartrianieeniieeiieerieesaeenneens The main robot's tip weight parameter is assigned to W

variable D.
HALT

WEIGHT @ 7-185 I

117 WEND

Ends the WHILE statement's command block

Format

WHILE <conditional expression>

<command block>
WEND

Ends the command block which begins with the WHILE statement. A WEND statement
must always be paired with a WHILE statement.
Jumping out of the WHILE to WEND loop is possible by using the GOTO statement, etc.

SAMPLE

A=0
WHILE DI3(0)=0
A=A+1
MOVE P,P0
MOVE PPl
PRINT "COUNTER=";A
WEND
HALT

Related commands WHILE

I 7-186 @ Chapter 7 Robot Language Lists

118 WHERE

Acquires the arm's current position (pulse coordinates)

Format

WHERE

1IN EVELNY Acquires the arm's current position in joint coordinates.

SAMPLE

PIO=WHEREcociiiiiiiieiieeeee e The current position's pulse coordinate value is assigned
to P10.

Related commands WHRXY

WHERE @ 7-187 I

WHILE to WEND

Repeats an operation for as long as a condition is met

Format

WHILE <conditional expression>
<command block>
WEND

Executes the command block between the WHILE and WEND statements when the
condition specified by the <conditional expression> is met, and then returns to the WHILE
statement to repeat the same operation.

When the <conditional expression> condition is no longer met (becomes false), the program
jumps to the next command after the WEND statement.

If the <conditional expression> condition is not met from the beginning (false), the
command block between the WHILE and WEND statements is not executed, and a jump
occurs to the next statement after the WEND statement.

Jumping out of the WHILE to WEND loop is possible by using the GOTO statement, etc.

» When the conditional expression is a numeric expression, the conditions for determining a TRUE or
FALSE status can be changed at the controller's "TRUE conditions" in the "Other parameters" mode.
These conditions apply to all the IF, WHILE, WAIT, STOPON, etc., conditional expressions. For
details, refer to the controller's user manual.

1) -1 (default setting) An expression value of "-1" indicates a TRUE status, and "0" indicates a
FALSE status. A "6.35: Incorrect condition expression" error occurs if the
expression value is other than "-1" or "0".

2) not 0 Any expression value other than "0" indicates a TRUE status, and "0"

indicates a FALSE status.

SAMPLE 1

A=0
WHILE DI3(0)=0

A=A+1

MOVE P,P0

MOVE P,P1

PRINT "COUNTER=";A
WEND
HALT

SAMPLE 2

WHILE -1 .o Becomes an endless loop because the conditional expression is always TRUE (-1).

MOVE P,P0
IF DI3(0)=1 THEN *END
MOVE P,P1
PRINT "COUNTER=";A
IF DI3(0)=1 THEN *END
WEND
*END
HALT

I 7-188 @ Chapter 7 Robot Language Lists

120 WHRXY

Acquires the arm's current position in Cartesian coordinates

M NOTE

e X-arm and Y-arm rotation WHRXY
information is only available in
software Ver.1.66M or higher.

IR EVELNTY Acquires the arm's current position in Cartesian coordinates.
On R6YXTWS500 model robots, the X-arm and Y-arm rotation information is also set.

SAMPLE

PLIO=WHRXY. ..ot The current position Cartesian coordinate value is assigned
to P10.

Related commands WHERE

WHRXY @ 7-189

121 XYTOJ

Converts the main group axes Cartesian coordinate data ("mm") to joint coordinate data ("pulse")

M NOTE

e X-arm and Y-arm rotation XYTOJ (<point expression>)

information is only available in

software Ver.1.66M or higher.
& IRIELELN) This function converts the Cartesian coordinate data (unit: mm, deg.) specified by the

<point expression> to joint coordinate data (unit: pulses).

* When the command is executed, the data is converted based on the standard coordinates,
shift coordinates and hand definition that were set.

* The converted result differs depending on whether right-handed or left-handed is specified.
* On the R6YXTWS500 model robot, the result varies, depending on the X-arm and Y-arm
rotation information settings.

* To convert joint coordinate data to Cartesian coordinate data, use the JTOXY statement.

SAMPLE

PLO=XYTOJ(P10)..ceeeereeirieeieieirieaans P10 is converted to joint coordinate data.

Ib»2 SYSFLG

Axis status monitoring flag

Format

SYSFLG

Used as an axis status monitoring flag in accordance to the value specified by the SYSFLG

variable.

X SAMPLE
SYSFLG=1

Related commands RESET

I 7-190 @ Chapter 7 Robot Language Lists

Chapter 8
PATH Statements

A WO N =

OVEIVIEW e -
FeaturesS ... ivviieiiiiiieeiee e, -
HOW tO USE oo -

Cautions when using this function

This function moves the robot at a specified speed along a path composed of linear and circular segments.

Because speed fluctuations during movement are minimal, the PATH function is ideal for applications such

as sealing, etc.

Features

= Moves the robot at a constant speed along the entire movement path (except during acceleration from a

stop, and during deceleration just prior to the operation end).

= Permits easy point teaching because the robot speed is not affected by the point teaching positions' level
of precision.

= Permits movement speed changes for the entire movement path, or speed changes for only one portion of
the path (using the speed option).

= Using the DO option permits signal outputs to a specified port at any desired position during movement.

How to use

The following robot language commands must be used as a set in order to use the PATH function.

B PATH SET oot Start of path setting.

= PATH (PATH L, PATCH C) Specifies the path to be used.

PATHEND ..o, End of path setting.

8 PATH START ..ot Starts actual movement along the path.

As shown below, the motion path is specified between the PATH SET and PATH END statements. Simply
specifying a path, however, does not begin robot motion.
Robot motion only occurs when the PATH START statement is executed after the path setting procedure

has been completed.

SAMPLE

MOVE P,P0,Z=0

DATTE ST ©000000000000060006000000 Start of path setting
PATH L.P1,DO(20)=1@10.0

PATH L,P2

PATH C,P12,P13

PATH L,P14,DO(20)=0@20.0

PATTEI BINID) ©000000000000000000600000 End of path setting
MOVE P,P1,Z=0

MOVE P,P0,Z=0

PATH START Path motion is executed

HALT

Overview @ 8-1 I

Cautions when using this function

= Paths may comprise no more than 300 (total) linear and circular segments.

= The robot must be positioned at the path start point when PATH motion is executed (by PATH START

statement).

= At points where circular and linear segments connect, the motion direction of the two connecting
segments should be a close match (as close as possible). An excessive difference in their motion

directions could cause vibration and robot errors.

Circular and linear segment connection point:

if there is a large difference between the motion directions of the connecting segments

Good cﬂ Poor example ‘/ \‘

= Where a linear segment connects to another linear segment, the motion path passes to the inner side of
the connection point. Moreover, as shown in fig. (1) below, the faster the speed, the further to the inner
side the path becomes. To prevent significant speed-related path shifts, add more points as shown in
fig. (2). Note also, that in some cases, the speed may have to be reduced in order to prevent errors from

occurring.

Connection point of 2 linear segments:

suppressing the path shift

(€])
o / Low-speed Add more points .

/\"\

= [fan error occurs due the robot's inability to move at the specified speed:

High-speed A

Robot acceleration/deceleration occurs if the speed setting is changed when PATH motion begins, stops, or
at some point along the path. At such times, an error may occur before motion begins if the distance between
points is too short for the specified speed to be reached. In such cases, a slower speed must be specified. If
the error still occurs after the speed is lowered, adjust the PATH points to increase the length of the linear or

circular segments which contain acceleration or deceleration zones.

= The hand system used during PATH motion must be the same as the hand system used at the path's start
point. The same applies if the path is to pass through points where hand flags are set. Differing hand

systems will cause an error and disable motion.

= The X-arm and Y-arm rotation information during PATH movement must be the same as the X-arm and
Y-arm rotation information at the PATH movement's START point. If the two are different, an error will

occur and movement will be disabled.

= [f the robot is stopped by an interlock function, etc., during PATH motion, this is interpreted as an execution

termination, and the remaining path motion will not be completed even if a restart is executed.

Be sure to read the cautions relating to each command.

8-2 @ Chapter 8 PATH Statements

Chapter 9

Limitless motion

1 OVEIVIEW ..ttt ettt e e e 9-1
2 Operation Procedurecccccoevvievieniienienieenen. 9-1
3 RESICHONS ..ooevieeiieiiieiiecieeeeee e 9-3

| Overview

M NOTE Generally speaking, controllers have a soft limit function which allows the soft limits to be specified by

parameter settings, and operation beyond the soft limits is normally prohibited. However, the "limitless

e The limitless motion function

is available in software version
1.66M or higher.

motion" function permits multi-turn same-direction movement without that soft limit restriction.

2 Operation Procedure

2.1 I Parameters

The "limitless motion" parameter can be enabled in the robot axis parameters.

(For details, see the controller user's manual.)

2.2 I Robot language

The robot language shown below is required in order to use the limitless motion function. For command
M CAUTION

e Limitless motion applies to the
axis which has been specified

as the additional axis in the DRIVE statement (PLS or MNS option specified)
" - . Robot movement
system generation" settings DRIVEI statement
(robot factory settings).

details, see Chapter 8 "Robot Language Lists".

Current position reset ABSINIT statement

Do not attempt to enable
limitless motion at an axis
which has not been specified
as an additional axis. Doing so
will result in the "2.29: Cannot
move without the limit" error
when movement is attempted
using the MOVE statement or
a point trace movement. This
error also disables movement.

Overview @ 9-1

2.3 I Sample program

2.3.1 I For Axis 4 limitless motion

The following program executes limitless movement in the plus direction, in 180.0° increments.

(Settings: Resolver pulse: 16384, speed reduction ratio: 25, limitless motion specified for the main robot's
axis 4, minus axis polarity.)

P0=10.00.00.00.90.00.0..cccoeocrverrreuenene 0.9°=1024[pulse]

P1=0.00.00.0180.90.00.0

* It is recommended that point data be created so that the position to reset the current position is at the

middle of the resettable range.

Axis polarity Recommended reset range
For a "minus" setting Approximately 1024 + 256 [pulse]
For a "plus" setting Approximately -1024 + 256 [pulse]
SAMPLE
WHILE -
DRIVE(4,P1),PLS
WAIT ARM(4)
P100 = WHERE
A%=LOCR(P100) MOD 409600 - -« - - 409600 [pulse] = Machine angle 360°.

IF(A%<257) OR (A%>1791) THEN - - - Checks current position to see if
it is the reset execution position.
DRIVE(4,P0),PLS o eeeveececceeees Moves to the current position reset execution position.
WAIT ARM(4)
ENDIF
ARSI NI} ©0000000000000000000000 Resets the main robot's axis 4 current position.
WEND
HALT

I 9-2 @ Chapter 9 Limitless motion

2.3.2 I For Axis 2 limitless motion

The following program executes limitless movement in the plus direction, in 180.0° increments.

(Settings: Resolver pulse: 16384, speed reduction ratio: 25, limitless motion specified for the main robot's
axis 2, minus axis polarity.)

P0=0.00.90.00.00.00.0u.coccvevrverreennene 0.9°=1024[pulse]

P1=0.0180.00.0 0.0 0.0 0.0

* It is recommended that point data be created so that the position to reset the current position is at the

middle of the resettable range.

Axis polarity Recommended reset range
For a "minus" setting Approximately 1024 + 256 [pulse]
For a "plus" setting Approximately -1024 + 256 [pulse]
SAMPLE
WHILE -1
DRIVE(2,P1),PLS
WAIT ARM(2)
P100 = WHERE
A%=LOCY(P100) MOD 409600 - - » - - 409600 [pulse] = Machine angle 360°.

IF(A%<257) OR (A%>1791) THEN - - - Checks current position to see if
it is the reset execution position.
DRIVE(2,PO),PLS < :-ccccccceceee.. Moves to the current position reset execution position.
WAIT ARM(2)
ENDIF
ABSIINIIT 2 eoooccooo000c0000000000 Resets the main robot's axis 2 current position.
WEND
HALT

Restrictions

OMRON recommends that the return-to-origin method be specified as "sensor" in the axis parameters.

The limitless motion function cannot be used at YC-Link specification axes.

The limitless motion function cannot be used at electric gripper specification axes.

The limitless motion function cannot be used at SCARA robot X and Y axes.

Restrictions @ 9-3 I

Chapter 10

Data file description

1 OVEIVIEW ..ttt
2 Programfile.......cccooiiiiiniiiiiiiiieeeee,
3 Pointfile...ccooeiiiieiiiieeeeee e
4 Point comment file........cccoooiviiiiiiiniiniiiene
5 Parameter filecccooininiiiiiiieeee
6 Shift coordinate definition file

7 Hand definition filecccoooeiiiiiiinieicne
8 Pallet definition file........cccocevveiiiiniininennne.
O AIIE e
10 Program directory filecccccooerviniininninnne
11 Parameter directory file.........cccoeviiviiiiiennnns
12 Variable file ...,
13 Constant file

14 Array variable file

15 Dlfile

16 DOfile

17 MO file

-
(o)
—
@)
=
(¢}

19 TOfile o, 10-41

20 STl 10-43
21 SOle cooieiiiiiic 10-45
22 Error message history fileccocovenieennnen. 10-47
23 Error Message History Details File................. 10-48
24 Machine reference file.........ccccevevereneninenen. 10-49
25 EOF file ..o 10-50
26 Serial port communication file........................ 10-51
27 SIWHALC oo 10-52
28 SOWile. .o 10-54

29 Ethernet port communication file.................... 10-56

1.1 I Data file types

This section explains data files used with a SEND statement and READ/WRITE online commands. There
are 27 different types of data files.

1. Program file

2. Point file

3. Point comment file

4. Parameter file

5. Shift coordinate definition file

6. Hand definition file

7. Pallet definition file

8. All file

9. Program directory file

10. Parameter directory file

11. Variable file

12. Constant file

13. Array variable file

14. Dlfile

15. DO file

16. MO file

17. LOfile

18. TO file

19. SIfile

20. SO file

21. Error message history file

22. Machine reference file

23. EOF file

24. Serial port communication file

25. SIW file

26. SOW file

27. Ethernet port communication file
1.2 I Cautions

Observe the following cautions when handling data files.

= Only 1-byte characters can be used.

= All data is handled as character strings conforming to ASCII character codes.

= Only upper case alphabetic characters may be used in command statements (lower case characters are
prohibited).

= Line lengths must not exceed 75 characters.

= A [cr/lf] data format designation indicates CR code (0Dh) + LF code (0Ah).

= The terms "reading" and "writing" used in this manual indicate the following data flow directions:
Reading: controller — external communication device

Writing: External communication device — controller

Overview @ 10-1 I

Program file

2.1 I All programs

Format

PGM

» Expresses all programs.
* When used as a readout file, all programs currently stored are read out.

» Write files are registered at the controller under the program name indicated at the NAME =

<program name> line.

DATA FORMAT

NAME = <program name> [cr/1f]

aaaaa ...aaaaaaaaaaaaaalcr/If]
aaaaa ...aaaaaaaaaaaaaalcr/If]

NAME = <program name> [cr/If]

aaaaa ...aaaaaaaaaaaaaalcr/If]

aaaaa ...aaaaaaaaaaaaaalcr/If]
[cr/1f]

B e Character code

= <Program names> are shown with 8 characters or less consisting of alphanumeric characters and
underscore ().

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

= A TAB code (09H) is converted to a space.

SAMPLE

SEND PGM TO CMU =+ ecceececcces Outputs all programs from communication port.
SENDCMU TOPGM ¢ ecccceccccccece Inputs all programs from communication port.

Response:
NAME=TEST[cr/If]
A=l1[cr/If]
RESET DO2()[cr/1f]

HALT[cr/If]
[cr/If]

I 10-2 @ Chapter 10 Data file description

2.2 I One program

Format

<program name>

» Expresses a specified program.
* Program name may be up to 8 characters consisting of alphanumeric characters and

non

underscore and must be enclosed by "<" and ">".

* If no program name is specified, the currently selected program is specified.

* An error occurs if the specified program name differs from the program name on the data.

DATA FORMAT

NAME=program name[cr/1f]

aaaaa ...aaaaaaaaaaaaaalcr/lf]

aaaaa ...aaaaaaaaaaaaaalcr/If]

[cr/If]

Ao e e Character code

® <Program names> are shown with 8 characters or less consisting of alphanumeric characters and
underscore ().
= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

= A TAB code is converted to a space.

* At program writing operations, be sure to use the NAME statement to specify the program name.

Program writing cannot occur if the program name is not specified.
When the current mode is "AUTO" or "PROGRAM" mode, and writing into the currently selected

program is not possible.

When a sequence program is being executed, writing into the program name "SEQUENCE" is not

possible.

SAMPLE

SEND <TEST1>TO CMU-=: ¢+ +cccccecccen. Outputs the program "TEST1" from communication port.
SEND CMU TO <TEST1>¢ccccccccccecces Inputs the program "TEST1" from communication port

Response:
NAME=TESTI [cr/If]
A=1[cr/If]

RESET DO2()[cr/If]

HALT[cr/If]
[cr/If]

Program file @ 10-3 I

Point file

3.1 I All points

Format

PNT

» Expresses all point data.
* When used as a readout file, all points currently stored are read out.

* When used as a write file, writing is performed with a point number.

DATA FORMAT (On robots other than R6YXTWS500)

Pmmmm=fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t[cr/If]
Pmmmm=fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t[cr/lf]

Pmmmm=fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t[cr/If]
Pmmmm=fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t[cr/lf]
[er/1f]

DATA FORMAT (On robot R6YXTWS500, with software Ver.1.66M or higher)

Pmmmm= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr [cr/If]
Pmmmm= fxxxxxx {yyyyyy fzzzzzz firrrir faaaaaa thbbbbb t xr yr [cr/lf]

Pmmmm= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr [cr/If]
Pmmmm= fxxxxxx {yyyyyy fzzzzzz firrrir faaaaaa thbbbbb t xr yr [cr/lf]

[cr/If]
M NOTE MMMM ..o Point No.: 0 to 9999
e Integer point data is recognized OO Coordinate sign: + / - / space
;nolf;l:sz;??’s arnif)t:rllin;rzbie; XXXXXX/../bbbbbb....... Represent a numeric value of 8 digits or less. When a dot is included,
"mm" units. this is treated as point data in "mm" units. Each piece of data is
e The X-arm and Y-arm rotation separated by one or more spaces.
information is only available Brrreereeeeee e Extended hand system flag setting for SCARA robots. 1: right hand
in software version 1.66M or
higher. system; 2: left hand system.

D < SRR Extended setting's X-arm rotation information.
0: The "mm — pulse" converted angle data x (*1) range is —180.00° < x <=180.00°.
1: The "mm — pulse" converted angle data x (*1) range is 180.00° <x <= 540.00°.
-1: The "mm — pulse" converted angle data x (*1) range is -540.00° < x <=-180.00°.
D COR S Extended setting's Y-arm rotation information.
0: The "mm — pulse" converted angle data x (*1) range is —180.00° <'y <=180.00°.
1: The "mm — pulse" converted angle data x (*1) range is 180.00° <y <= 540.00°.
-1: The "mm — pulse" converted angle data x (*1) range is -540.00° <y <=-180.00°.
*1: The joint-coordinates-converted pulse data represents each arm's distance (converted to angular data)

from its mechanical origin point.
= Hand system flags are valid only for SCARA robots, with the coordinate data specified in "mm" units.

= [f a number other than "1" or "2" is specified for a hand system flag, or if no number is specified, this is

interpreted as "0" setting (no hand system flag).

I 10-4 @ Chapter 10 Data file description

= X-arm and Y-arm rotation information settings are available only on the R6YXTWS500 robot model
where a "mm" units coordinate system has been set.

= X-arm and Y-arm rotation information is processed as "0" if a numeral other than 0, 1, -1 has been
specified, or if no numeral has been specified.

= A line containing only [cr/If] is added at the end of the file to indicate the end of the file.

SAMPLE (On robots other than R6YXTWS500)

SEND PNTTO CMU-= ¢ cccecccccecees Outputs all points from communication port.

SEND CMU TO PNT:cccccceccecccee Inputs all points from communication port.

Response:

PO = 1 2 3 4 5 6 [er/If]
Pl = 1.00 2.00 3.00 4.00 5.00 6.00 [er/If]
P2 = 1.00 0.00 0.00 0.00 0.00 0.00 [er/If]
P9999= -1.00 0.00 0.00 0.00 0.00 0.00 [cr/If]
[cr/If]

SAMPLE (On robot R6YXTWS500, with software Ver.1.66m or higher)

SEND PNTTO CMU-= ¢ cccccccccecces Outputs all points from communication port.

SEND CMU TO PNT:cccccecccecccee Inputs all points from communication port.

Response:

PO = 1 2 3 4 5 6 [cr/1f]
P1 = 426.20 -160.77 0.01 337.21 0.00 0.00 0 1 0 [er/If]
P = -27.57 -377.84 0.36 193.22 0.00 000 0 -1 0 [er/If]
P9999= -251.66 -419.51 0.00 -127.79 0.00 0.00 2 -1 -l [er/If]
[cr/If]

Point file @ 10-5 I

3.2

I One point

M NOTE

e Integers indicate point data in
"pulse" units, and real numbers
in "mm" units.

e The X-arm and Y-arm rotation
information is only available
in software version 1.66M or
higher.

Format

Pmmmm

» Expresses a specified point.
e "mmmm" must be from 0 to 9999

DATA FORMAT (On robots other than R6YXTW500)
Pmmmm=fxxxxxx fyyyyyy {zzzzzz frrrrrr faaaaaa fbbbbbb t[cr/lf]

DATA FORMAT (On robot R6YXTWS500, with software Ver.1.66M or higher)
Pmmmm= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr [cr/lf]

MMMM ..o Point No.: 0 to 9999
SRR Coordinate sign: +/ - / space
xxxxxx/../bbbbbb....... Represent a numeric value of 8 digits or less. When a dot is included,
this is treated as point data in "mm" units. Each piece of data is

separated by one or more spaces.

ot Extended hand system flag setting for SCARA robots. 1: right hand
system; 2: left hand system.
D1 SRUT TP X-arm rotation information for the R6YXTWS500 robot.

0: The "mm — pulse" converted pulse data x (*1) range is —180.00° <x <= 180.00°.
1: The "mm — pulse" converted pulse data x (¥1) range is 180.00° < x <= 540.00°.
-1: The "mm — pulse" converted pulse data x (*1) range is —540.00° <x <=-180.00°.
) SRS Y-arm rotation information for the R6YXTWS500 robot.
0: The "mm — pulse" converted pulse data x (*1) range is —180.00° <y <= 180.00°.
1: The "mm — pulse" converted pulse data x (*1) range is 180.00° <y <=540.00°.
-1: The "mm — pulse" converted pulse data x (*1) range is —540.00° <y <=-180.00°.
*1: The joint-coordinates-converted pulse data represents each arm's distance (converted to angular data)

from its mechanical origin point.

= Hand system flags are valid only for SCARA robots, with the coordinate data specified in "mm" units.

= [f a number other than "1" or "2" is specified for a hand system flag, or if no number is specified, this is
interpreted as "0" setting (no hand system flag).

= X-arm and Y-arm rotation information settings are available only on the R6YXTWS500 robot model
where a "mm" units coordinate system has been set.

= X-arm and Y-arm rotation information is processed as "0" if a numeral other than 0, 1, -1 has been

specified, or if no numeral has been specified.

I 10-6 @ Chapter 10 Data file description

SAMPLE (On robots other than R6YXTWS500)

SIENID IO Q) ClilUjo 0 00 000000000003 Outputs the specified point from communication port.
SEND CMU TO P100« e ccccceccee Inputs the specified point from communication port.
Response:

PI00= 1 2 3 4 5 6[cr/lf]

SAMPLE (On robot R6YXTW500, with software Ver.1.66M or higher)

SEND P100 TO CMU* » e e s eieeeicenscse Outputs the specified point from communication port.
SEND CMU TO P100« = ¢ ¢+ e v ecevere-e Inputs the specified point from communication port.
Response:

PIOO= 1 2 3 4 5 6 0 1 0cr/lf]

Point file @ 10-7 I

“ Point comment file

4.1 I All point comments

Format

PCM

» Expresses all point comments.
* When used as a readout file, all point comments currently stored are read out.

* When used as a write file, writing is performed with a point comment number.

DATA FORMAT

PCmmmm= sssssssssssssss[cr/1f]

PCmmmm= sssssssssssssss|cr/If]

PCmmmm= sssssssssssssss[cr/1f]

PCmmmm= sssssssssssssss[cr/If]

[cr/If]

MMM .o Point comment number: a number from 0 to 9999
881188 ettt ettt Comment data: which can be up to 15 one-byte characters.
If comment data exceeds 15 characters, then the 16th

character onwards will be deleted.

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND PCM TO CMU= =+ +ccccccecccens Outputs all point comments from communication port.
SENDICMU TO PCMis s ¢ie e iois eiecinioeese Inputs all point comments from communication port.
Response:

PC1=ORIGIN POS[cr/lf]
PC3=WAIT POSJ[cr/If]

PC3999= WORK100[cr/If]
[er/If]

4.2 I One point comment

Format

PCmmmm

» Expresses a specified point comment.
* "mmmm" represents a number from 0 to 9999.

DATA FORMAT

PCmmmm= sssssssssssssss[cr/1f]

I 10-8 @ Chapter 10 Data file description

TN <o Point comment number: a number from 0 to 9999
881088 ettt ettt Comment data: which can be up to 15 one-byte characters.
If comment data exceeds 15 characters, then the 16th

character onwards will be deleted.

SAMPLE

SEND PC1 TO CMU-+ s ¢ cccecccccece. Outputs the specified point comment from communication port.
SEND CMU TOPCl:cccccccccccece. Inputs the specified point comment from communication port.
Response:

PCI1=ORIGIN POS[cr/If]

Point comment file @ 10-9 I

“ Parameter file

5.1 I All parameters

Format

PRM

» Expresses all parameters (including settings in "UTILITY" mode).

* When used as a readout file, all parameters currently stored are read out.

* When used as a write file, only the parameters specified by parameter labels are written.

DATA FORMAT

/parameter label/ > <comment> [cr/If]

RC= xxxxxx [cr/If]

/parameter label/ ’<comment> [cr/If]

R1=xxxxxx R2=yyyyyy [ct/If]

/parameter label/ ’<comment> [cr/If]

Al=xxxxxx A2=yyyyyy A3=zzzzzz A4= rrrrrr[cr/If]

/parameter label/ ’<comment> [cr/If]

[cr/If]

Indicates the entire controller.

R Robot setting: ? / 1: main robot
A? Axis setting: ?: axis No.
<Comment™ccceceveeeeveeenne. Parameter name

= Parameter labels are shown with 6 alphabetic characters.

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

* When writing parameter data, be sure that the servo is off.

» Parameters are already compatible with upper versions. However, parameters might not always be

compatible with lower versions (upward compatibility).

* When you attempt to load a parameter file of new version into a controller of an earlier version, an
error "10.14 : Undefined parameter found" may appear. If this happens, you may load the parameter
by setting the "Skip undefined parameters" parameter to "VALID". For more details, refer to the
"SYSTEM mode" — "Other parameters" section in the robot controller user's manual.

I 10-10 @ Chapter 10 Data file description

Parameter file

SENDPRM TO CMU-: ¢ *cccevcecccccn Outputs all parameters from communication port.
SEND CMU TOPRM ¢ ¢ccccccvccacese Inputs all parameters from communication port.
Response:

/RBTNUM/ *Robot number (V8.01/R1001)[cr/If]

RI= 3000 R2= 3010 [er/lf]

/AXES /’Number of axes[cr/If]

R1= 2 R2= 2 [er/lf]

[AXSNUM/’Axis number (V1.0L/VLOL/VLOLV L1 -wnfmrmefemeefwme=-])[c1/lf]

Al= 5000 A2= 5001 A3= 5010 A4= 5011 [cr/lf]
AS= 0 A6= 0 A7= 0 AS8= 0 [er/lf]
/ATTRIB/ ’Axis attribute[cr/1f]

Al= 33792 A2= 33792 A3= 33792 A4= 33792 [cr/lf]
A5= 256 A6= 256 AT= 256 A8= 256 [cr/lf]
/WEIGHT/ *Tip weight[kg][ct/If]

Rl= 2 R2= 12 [er/lf]

/CURPNO/ ’Port number of output[cr/If]
RC= 20 [er/lf]

/CURPT1/ ’Compare point number][cr/1f]
RC= 0 [er/lf]

/CURPT2/ ’Compare point number2[cr/If]
RC= 0 [er/lf]

[cr/1f]

Parameter file @ 10-11 I

5.2 I One parameter

Format

/parameter label/

» Parameter labels are shown with 6 alphabetic characters.
* When used as a readout file, only the parameter specified by a parameter label is read out.

* When used as a write file, only the parameter specified by a parameter label is written.

DATA FORMAT 1

/parameter label/ ’<comment>[cr/If]
RC= xxxxxx [cr/If]

[cr/1f]

DATA FORMAT 2
/parameter label/ ’<comment>[cr/If]
R?= xxxxxx [cr/If]

[cr/If]

DATA FORMAT 3

/parameter label/ ’<comment>[cr/If]

A?= xxxxxx[ct/If]

[cr/1f]
RC.ooeeeeeeeeeeeeee e Indicates the entire controller.
R? Robot setting: ? / 1: main robot
A7 Axis setting: ?: axis No.
<Comment™ccceeeveerveeennnnn Parameter name

= Parameter labels are shown with 6 alphabetic characters.

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

* When writing parameter data, be sure that the servo is off.

* Parameters are already compatible with upper versions. However, parameters might not always be

compatible with lower versions (upward compatibility).
* When you attempt to load a parameter file of new version into a controller of an earlier version, an

error "10.14 : Undefined parameter found" may appear.

SAMPLE

SEND /ACCEL/TOCMU-=:¢:cvcccccceeccce Outputs the acceleration parameter from communication port.
SEND CMU TO /ACCEL /+ s oceccocccceece Inputs the acceleration parameter from communication port.
Response:

/ACCEL / ’Accel coefficient[%]
Al= 100A2= 100A3= 100A4= 100[cr/If]

[cr/If]

I 10-12 @ Chapter 10 Data file description

n Shift coordinate definition file

6.1 B Allshift data

Format

SFT

» Expresses all shift data.
* When used as a readout file, all shift data currently stored are read out.

* When used as a write file, writing is performed with a shift number.

DATA FORMAT

Sm = fxxxxxx fyyyyyy fzzzzzz frrrrer [cr/lf]
SPm = fxxxxxx fyyyyyy fzzzzzz frrrrrr [cr/lf]
SMm = fxxxxxx fyyyyyy fzzzzzz frrrreer [cr/lf]

Sm = fxxxxxx fyyyyyy fzzzzzz frrrrrr [cr/lf]
SPm = fxxxxxx fyyyyyy fzzzzzz frrrrer [cr/lf]
SMm = fxxxxxx fyyyyyy fzzzzzz frrrrerr [cr/If]

[er/If]
Dttt Shift No.: 0 to 9
L Coordinate sign: +/ - / space
XXXXXX/YYYyyy/../IITIIT. Represent a numeric value of 8 digits or less, having 2 or

less places below the decimal point.

= The SPm and SMm inputs are optional in writing files.
SPm: shift coordinate range plus-side; SMm: shift coordinate range minus-side
= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND SFTTO CMU = ¢ cccecccceccee Outputs all shift data from communication port.
SIEINID)(C1Y IUMIO) NI N0 0000 00000000000 Inputs all shift data from communication port.
Response:

SO0 = 0.00 0.00 0.00 0.00 [cr/If]

SP0O= 0.00 0.00 0.00 0.00 [cr/If]

SMO0= 0.00 0.00 0.00 0.00 [cr/If]

S1 = 1.00 1.00 1.00 1.00 [cr/1f]

SMO9= 9.00 9.00 9.00 9.00 [cr/1f]

[cr/If]

Shift coordinate definition file @ 10-13 I

6.2 B One shift definition

Format

Sm

« Expresses a specified shift definition.

DATA FORMAT
Sm = fxxxxxx fyyyyyy fzzzzzz frrrrree[cr/If]

TNttt Shift No.: 0to 9

L Coordinate sign: +/ - / space
XXXXXX/YYYYYY/. /I Represent a numeric value of 8 digits or less, having 2 or

less places below the decimal point.

SAMPLE

SEND SOTOCMU-=®+ccccccccccecs Outputs the specified shift coordinate from communication port.
SEND CMU TO SO+ 2 oscccececseece Inputs the specified shift coordinate from communication port.
Response:

SO =0.00 0.00 0.00 0.00[cr/lf]
SP0=0.00 0.00 0.00 0.00[cr/f]
SM0=0.00 0.00 0.00 0.00[ct/If]
[cr/If]

I 10-14 @ Chapter 10 Data file description

Hand definition file

7.1 B Allhand data

Format

HND

» Expresses all hand data.
* When used as a readout file, all hand data currently stored are read out.

e When used as a write file, writing is performed with a hand number.

DATA FORMAT

Hm = fxxxxxx fyyyyyy fzzzzzz {R}[cr/If]

Hm = fxxxxxx fyyyyyy fzzzzzz {R}[cr/If]

[cr/If]
It Hand number / 0 to 3: used for main robot
f e Coordinate sign: +/ - / space
XXXXXX/YYYYYY/22227%............... Represent a numeric value of 8 digits or less, having 2

or less places below the decimal point, or an integer of 7
digits or less. (This numeric format depends on the robot
type setting and hand definition type.)

{R} oo Indicates whether a hand is attached to the R-axis.

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND HND TO CMU e s e eis eleisieiseaisese Outputs all hand data from communication port.
SEND CMU TO HND = ¢ e cccceccerce. Inputs all hand data from communication port.
Response:

HO = 0.00 0.00 0.00 [er/1f]

H1 = 1.00 1.00 1.00 [er/1f]

H2 = 2.00 2.00 2.00 [cr/1f]

H3 = 3.00 3.00 3.00 [cr/1f]

H4 = 4.00 4.00 4.00 [cr/1f]

H5 = 5.00 5.00 5.00 [er/1f]

Ho6 = 6.00 6.00 6.00 [er/1f]

H7 = 7.00 7.00 7.00 [er/1f]

[cr/If]

Hand definition file @ 10-15 I

7.2 B One hand definition

Format

Hm

» Expresses a specified hand definition.

DATA FORMAT
Hm = fxxxxxx fyyyyyy {zzzzzz {R}[ct/If]

Mttt Hand number / 0 to 3: used for main robot
OO U ST U SRR UERSRURPRRROPRRONt Coordinate sign: +/ - / space
XXXXXX/YYYYYY/2Z2777............... Represent a numeric value of 8 digits or less, having 2

or less places below the decimal point, or an integer of 7
digits or less. (This numeric format depends on the robot

type setting and hand definition type.)

{R} e Indicates whether a hand is attached to the R-axis.
SAMPLE
SEND H3 T CIVIUjsieietolaietelaleiailofatarete Outputs the specified hand definition data from communication port.
SEND CMUTO H3 e ccccecccccece. Inputs the specified hand definition data from communication port.
Response:

H3 = 3.00 3.00 3.00[ct/If]

I 10-16 @ Chapter 10 Data file description

“ Pallet definition file

8.1 I All pallet definitions

Format

PLT

» Expresses all pallet definitions.

* When used as a readout file, all pallet definitions currently stored are read out.

* When used as a write file, writing is performed with a pallet number.

DATA FORMAT (On robots other than R6YXTWS00)

PLm [cr/If]

PLN = XY [cr/If]

NX = nnn [cr/If]

NY = nnn [cr/If]

NZ = nnn [cr/If]

P[1] = fxxxxxx fyyyyyy {zzzzzz frrrrrr faaaaaa fbbbbbb t[cr/If]

P[5] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t[cr/1f]
PLm [cr/If]

[cr/If]

DATA FORMAT (On robot R6YXTWS500, with software Ver.1.66M or higher)

PLm [cr/If]

PLN = XY [cr/If]

NX = nnn [cr/If]

NY = nnn [cr/If]

NZ = nnn [cr/If]

P[1] = fxxxxxx fyyyyyy fzzzzzz firrrrr faaaaaa fobbbbb t xr yr{cr/If]

P[5] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa thbbbbb t xr yr{cr/If]

PLm [cr/If]
[er/If]
Mot Pallet number: 0 to 19
NN Number of axis points: positive integer
SR Coordinate sign: +/ - / space

XXXXXX/Yyyyyy/../bbbbbb............
Represent a numeric value of 8 digits or less. When a dot is included, this
is treated as coordinate data in "mm" units. Each piece of data is separated
by one or more spaces.

| SRR An extended hand system flag setting for SCARA robots. 1: Right-handed
system, 2: Left-handed system

D < SRR Extended setting for X-arm rotation information.
0: "mm" — pulse converted angle data x (*1) range: -180.00°< x <= 180.00°
1: "mm" — pulse converted angle data x (*1) range: 180.00° < x <= 540.00°

-1: "mm" — pulse converted angle data x (*1) range: -540.00° < x <=-180.00°

Pallet definition file @ 10-17 I

)2 S Extended setting for Y-arm rotation information.
0: "mm" — pulse converted angle data x (*1) range: -180.00° <y <= 180.00°
I: "mm" — pulse converted angle data x (*1) range: 180.00° <y <= 540.00°
-1: "mm" — pulse converted angle data x (*1) range: -540.00° <y <=-180.00°
M NOTE *1: The joint-coordinates-converted pulse data represents each arm's distance (converted to angular

e X-arm and Y-arm rotation data) from its mechanical origin point.
information is only available in

software Ver.1.66M or higher. L . . .
= Hand system flags are enabled only when specifying the coordinate data in "mm" units for SCARA

robots.
= Hand system flags and the X-arm and Y-arm rotation information are ignored during movement where

pallet definitions are used.

= [f a number other than 1 or 2 is set, or if no number is designated, then 0 will be set to indicate that there
is no hand system flag.

= X-arm and Y-arm rotation information settings are available only on the R6YXTWS500 robot model
where a "mm" units coordinate system has been set.

= [f a value other than "0", "1", "-1" is specified at the X-arm and Y-arm rotation information, or if no
value is specified, this will be processed as "0".

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

I 10-18 @ Chapter 10 Data file description

“ Pallet definition file

SAMPLE

SIENID LT MO CMlJeccocccocoooocoo Outputs all pallet definitions from communication port.

SEND CMU TO PLT* ¢ secccecvccacese Inputs all pallet definitions from communication port.

Response:

PLO[cr/1f]

PLN=XY/[cr/If]

NX=3 [cr/If]

NY =4 [cr/If]

Nz=2 [cr/If]

P[1]= 0.00 0.00 0.00 0.00 0.00 0.00 [er/1f]
P[2]= 100.00 0.00 0.00 0.00 0.00 0.00 [cr/If]
P[3]= 0.00 100.00 0.00 0.00 0.00 0.00 [cr/If]
P[4]= 100.00 100.00 0.00 0.00 0.00 0.00 [er/If]
P[5]= 0.00 0.00 50.00 0.00 0.00 0.00 [er/If]
PL1[cr/1f]

PLN= XY[cr/If]

NX = 3[cr/lf]

NY = 4[cr/1f]

Nz = 2[cr/1f]

P[1]= 0.00 0.00 0.00 0.00 0.00 0.00 [er/If]
P[2]= 100.00 100.00 0.00 0.00 0.00 0.00 [er/If]
P[3]= 0.00 200.00 0.00 0.00 0.00 0.00 [er/If]
P[4]= 100.00 200.00 0.00 0.00 0.00 0.00 [er/If]
P[S]= 0.00 0.00 100.00 0.00 0.00 0.00 [cr/If]
[cr/1f]

Pallet definition file @ 10-19 I

8.2 I One pallet definition

Format

PLm

» Expresses a specified pallet definition.
* "m" must be from 0 to 19.

DATA FORMAT (On robots other than R6YXTW500)

PLm [cr/If]

PLN = XY [cr/If]

NX = nnn [er/If]

NY = nnn [cr/If]

NZ = nnn [cr/If]

P[1] = fxxxxxx fyyyyyy {zzzzzz frrrrrr faaaaaa fbbbbbb t[cr/If]

P[5] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t[cr/If]
[cr/If]

DATA FORMAT (On robot R6YXTW500, with software Ver.1.66M or higher)

PLm [cr/If]

PLN = XY [cr/If]

NX = nnn [er/If]

NY = nnn [cr/If]

NZ = nnn [cr/If]

P[1] = fxxxxxx fyyyyyy fzzzzzz firrrrr faaaaaa fbbbbbb t xr yr{cr/If]

P[5] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fhbbbbb t xr yr[cr/1f]
[cr/If]

M NOTE 11 VO Pallet number: 0 to 19

e Integers indicate point data in NNN..ce Number of points for each axis: positive integer
'.'pL,l,lse" ,,unit.s » and real numbers | SO Coordinate sign: +/ - / space
n "mm" units.
XXXXXX/Yyyyyy/../bbbbbb............
Represent a numeric value of 8 digits or less. When a dot is included, this
is treated as point data in "mm" units. Each piece of data is separated by
one or more spaces.
| S An extended hand system flag setting for SCARA robots. 1: Right-handed
system, 2: Left-handed system
D' RSN Extended setting for X-arm rotation information.
0: "mm" — pulse converted angle data x (*1) range: -180.00° < x <= 180.00°
1: "mm" — pulse converted angle data x (*1) range: 180.00° < x <= 540.00°
-1: "mm" — pulse converted angle data x (*1) range: -540.00° < x <= -180.00°
)2 ST Extended setting for Y-arm rotation information.
0: "mm" — pulse converted angle data x (*1) range: -180.00° <y <= 180.00°
1: "mm" — pulse converted angle data x (*1) range: 180.00° <y <= 540.00°
-1: "mm" — pulse converted angle data x (*1) range: -540.00° <y <=-180.00°
*1: The joint-coordinates-converted pulse data represents each arm's distance (converted to angular

data) from its mechanical origin point.

I 10-20 @ Chapter 10 Data file description

M NOTE = Hand system flags are enabled only when specifying the coordinate data in "mm" units for SCARA
e X-arm and Y-arm rotation robots.
information is only available in ~ m Hand system flags and the X-arm and Y-arm rotation information are ignored during movement where
software Ver.1.66M or higher. pallet definitions are used.
= [f a number other than 1 or 2 is set, or if no number is designated, then 0 will be set to indicate that there
is no hand system flag.
= X-arm and Y-arm rotation information settings are available only on the R6YXTWS500 robot model
where a "mm" units coordinate system has been set.
= [f a value other than "0", "1", "-1" is specified at the X-arm and Y-arm rotation information, or if no
value is specified, this will be processed as "0".

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

Pallet definition file @ 10-21

“ Pallet definition file

SENDIPL2 TOICMUieieeieie afe eleletelalele = Outputs the specified pallet definition from communication port as shown below.
SEND CMU TO PL2¢ ¢ cccececcccccnce Inputs the specified pallet definition from communication port as shown below.
Response:

PL2[cr/If]

PLN= XY[cr/lf]

NX= 3[cr/If]

NY= 3[cr/If]

NzZ= 2[cr/If]

P[1]= 100.00 100.00 50.00 90.00 0.00 0.00 [cr/If]
P[2]= 200.00 100.00 50.00 90.00 0.00 0.00 [cr/1f]
P[3]= 100.00 200.00 50.00 90.00 0.00 0.00 [cr/1f]
P[4]= 200.00 200.00 50.00 90.00 0.00 0.00 [cr/1f]
P[5]= 100.00 10.00 100.00 90.00 0.00 0.00 [cr/1f]
[cr/If]

I 10-22 @ Chapter 10 Data file description

B

9.1 | All files

Format

ALL

Expresses the minimum number of data files required to operate the robot system.

[~ote DATA FORMAT

® For details of each file, refer to [PGM] All program format
that file's explanation.

NAME=< program name >

aaaaa....aaaaaaaaaaaaaalcr/lf]

aaaaa....aaaaaaaaaaaaaalcr/lf]

[cr/If]

[PNT] All point format

Pmmmm=fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t[cr/If]

Pmmmm=fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fobbbbbb t[cr/If]
[cr/If]
[PCM] All point comment format

PCmmmm= sssssssssssssss[cr/1f]

PCmmmm= sssssssssssssss[cr/1f]
[cr/If]

[PRM] All parameter format
/parameter label/'<comment> [cr/If]
RC= xxxxxx [cr/lf]

/parameter label/'<comment> [cr/If]

R1= xxxxxx R2= yyyyyy [c1/If]

[er/If]
[END] ALL files end

+ In writing files, [xxx] determines the data file's format, and this format is saved at the controller.

Example: [HND]...All text data up the next [xxx] is saved at the controller as "all hand" format data.

SAMPLE

SEND ALL TO CMU=¢ ¢ cceccoccccese Outputs all files of the entire system from communication port.
SEND CMU TO ALL: = +ccccccccccce. Inputs all files of the entire system from communication port.

All file @ 10-23 I

Program directory file

10.1 I Entire program directory

Format

DIR

» Expresses entire program directory.
* When used as a readout file, information on entire program directory is read out.

e Cannot be used as a write file.

DATA FORMAT

No. Name Line Byte RW/RO Date Time[cr/If]
nnnfgssssssss 1111 bbbbbb XX yy/mm/dd hh:mm[cr/If]
nnnfgssssssss 1 bbbbbb XX yy/mm/dd hh:mm[cr/If]
END[cr/If]
17111 USRS Program directory number: 3 digits
OSSP "o" at program compiling when a program object is created.

"s" at sequence program compiling when a sequence object

is created.
et Shows an asterisk "*" for the currently selected program.
SSSSSSSS veuvverinrerenreneeienteneeieeeneas Program name: 8 digits
TL e Number of program lines: 4 digits
bbbbbD....eeei Byte size of program: 6 digits
XX etveneenrennentensensestesneeneeneeneeneesennan File attribute: 2-digit

RW: Readable/writable
RO: Not writable (read only)

yy/mm/dd ..o Date when the program was updated: 8 digits (including

the "/" marks)
hhimm ., Time when the program was updated: 5 digits

SAMPLE

SENDDIR TO CMU-=* =+ +ccccccccccns Outputs information on all program directory from communication port.
Response:

No. Name Line Byte RW/RO Date Time[cr/1f]
lo* 12345678 5 21 RW 01/06/20 10:35[cr/If]
2 PGM1 5 66 RW 01/06/20 10:35[cr/If]
3 PGM2 5 66 RW 01/06/20 10:35[cr/If]
4 PGM3 5 66 RW 01/06/20 10:35[cr/If]
5 PGM4 5 66 RW 01/06/20 10:35[cr/If]
6 PGM5 5 66 RW 01/06/20 10:35[cr/If]
7 PGM6 5 66 RW 01/06/20 10:35[cr/If]
8s SEQUENCE 1 15 RW 01/06/20 10:35[cr/If]
END[cr/If]

I 10-24 @ Chapter 10 Data file description

10.2 I One program

Format

“<<’<program name>">>"

» Expresses information on one program.

» The program name is enclosed in <<>> double brackets.

DATA FORMAT

No. Name Line Byte RW/RO Date Time[cr/1f]
nnnfgssssssss 1111 bbbbbb XX yy/mm/dd hh:mm[cr/If]
NN e Program directory number: 3 digits
F e "o" at program compiling when a program object is created.

"s" at sequence program compiling when a sequence object

is created.
ettt Shows an asterisk "*" for the currently selected program.
SSSSSSSS wvevererreneareneeniereeereneeneanens Program name: 8 digits
L e Number of program lines: 4 digits
bbbbLD ... Byte size of program: 6 digits
XX tteveeneeneentententetententestesteebe e File attribute: 2-digit

RW: Readable/writable
RO: Not writable (read only)

yy/mm/dd ... Date when the program was updated: 8 digits (including

the "/" marks)
hhimm ..o Time when the program was updated: 5 digits

* Indicates the compiled execution program (program objects compiled for a robot program, or sequence
objects compiled for a sequence program).

SAMPLE

SEND <<TEST>>TO CMU* === Outputs information on the specified program from communication port.
Response:

No. Name Line Byte RW/RO Date Time[cr/If]
3o0* PGM2 5 66 RW 01/06/20 10:35[cr/1f]

Program directory file @ 10-25 I

Parameter directory file

11.1 I Entire parameter directory

Format

DPM

» Expresses entire parameter directory.
* When used as a readout file, information on entire parameter directory is read out.

e Cannot be used as a write file.

DATA FORMAT

/parameter label/ ’<comment>[cr/1f]

/parameter label/ <comment>[cr/If]

/parameter label/ ’<comment>[cr/1f]

[cr/If]

Values <comment™ccceeveeeeiinenenn. Parameter name

= Parameter labels are shown with 6 alphabetic characters.

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE
SENDDPM TO CMU = ecccceccccecnn Outputs information on all parameter directory from communication port.
Response:

/RBTNUM/ "Robot number (V8.01/R1001)[cr/If]

/AXES /’Number of axes[cr/If]

JAXSNUM/ *Axis number(V1.01/V1L.01/VL.01/V 101 ==we/-wmfwenef=-==-/)[ct/If]
/ATTRIB/ ’ Axis attribute[cr/If]

/WEIGHT/ *Tip weight[kg][ct/If]

/ORIGIN/ ’Origin sequence[ct/1f]

/RORIEN/ 'R axis orientation[cr/If]

/CURPNO/ ’Output port number|cr/1f]
/CURPT1/ ’Number of compare point 1[cr/If]
/CURPT2/ ’Number of compare point 2[ct/If]
[cr/1f]

I 10-26 @ Chapter 10 Data file description

Variable file

12.1 I All variables

Format

VAR

» Expresses all global variables.

* When used as a readout file, all global variables currently stored are read out.

* When used as a write file, a specified global variable is written.

DATA FORMAT

<variable name>t = xxxxxx [cr/1f]

<variable name>t = xxxxxx [cr/If]

<variable name>t = xxxxxx [cr/1f]
[cr/If]

<Variable name> Global variable defined in the program. Variable
name is shown with 16 characters or less consisting of

alphanumeric characters and underscore ("_").

ettt ettt Type of variable / !: real type, %: integer type, $: character
string type
XXXXXX 1evverrenvensensensensensensesseneenes Differs depending on the type of variable:

Integer type: integer of 8 digits or less
Real type: real number of 7 digits or less including
decimal fractions

Character type: character string of 70 characters or less

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

Variable file @ 10-27 I

Variable file

SAMPLE 1

SEND VAR TO CMU =+ cccvcccccccns Outputs all global variables from communication port.

Response:
SGI0=0[cr/If]
SGI1=1111[cr/If]
SGI2=2222[cr/If]
SGI3=3333[cr/lf]
SGI4=4444[cr/If]
SGI5=5555[cr/If]
SGI6=6666[cr/If]
SGI7=7777[cr/1f]
SGRO=0[cr/If]
SGRI=1.1111E3[cr/If]
SGR2=2.2222E3[cr/If]
SGR3=3.3333E3[cr/If]
SGR4=4.4444E3[cr/If]
SGR5=5.5555E3[cr/If]
SGR6=6.6666E3[cr/If]
SGR7=7.7777E3[cr/If]
B1%=111[cr/If]
B2%=222[cr/If]
C1$="CNS_1"[cr/If]
C28="CNS_2"[cr/If]
[cr/If]

SAMPLE 2

SEND CMU TO VAR ¢ s eccecocccccns Inputs all global variables from communication port.

I 10-28 @ Chapter 10 Data file description

12.2

I One variable

[~ote

e SGIx indicates an integer type

static variable.

e SGRx indicates a real type

static variable.

Format

<variable name>t

» Expressed one variable.
DATA FORMAT

xxxxxx [cr/1f]

<Variable name>ccocue.... Global variable defined in the program. Variable
name is shown with 16 characters or less consisting of

alphanumeric characters and underscore (" ").

Bttt Type of variable / !: real type, %: integer type, $: character
string type
XXKXXXK tevvevrenreneensensensensensesseseeneas Differs depending on the type of variable:

Integer type: integer of 8 digits or less
Real type: real number of 7 digits or less including
decimal fractions

Character type: character string of 70 characters or less

* Dynamic global variables are registered during compiling. Variables cannot be referred to unless they
are registered.

SAMPLE 1

SEND SGI6 TO CMU[cr/If]+ = s seevececeres Outputs the specified variable SGI6 from communication
port.

Response:

6666[cr/If]

SAMPLE 2

SEND CMU TO SGI6[cr/If] «cececeeecceces Inputs the specified variable SGI6 from communication
port.

Response:

6666 [cr/lf] Data input to the controller.
OK [cr/If] Result output from the controller.

Variable file @ 10-29 I

Constant file

13.1

I One character string

Format

"<character string>"

» Expresses a specified character string.
* When used as a readout file, the specified character string is read out.

e Cannot be used as a write file.

DATA FORMAT

sssss...ssssss[cr/If]

Values SSSSS...SSSSSS . cuvrrrerrerrenrenrenteeeaens Character string: 61 characters or less

= Qutput of a double quotation (") is shown with two successive double quotations.

SAMPLE
SEND ""OMRON ROBOT"" TO CMU

---------------- Outputs the specified character string from communication port.
Response:
"OMRON ROBOT"[cr/If]

I 10-30 @ Chapter 10 Data file description

Array variable file

14.1 I All array variables

Format

ARY

» Expresses all array variables.
* When used as a readout file, all array variables are read out.

* When used as a write file, writing is performed with a specified array variable.

DATA FORMAT

<variable name>t(1{,m{,n}}) = xxxxxx [cr/If]

<variable name>t(1{,m{,n} }) = xxxxxx [cr/If]

<variable name>t(1{,m{,n}}) = xxxxxx [cr/If]

[cr/If]

<Variable name>cc....... Global variable defined in the program. Variable
name is shown with 16 characters or less consisting of

alphanumeric characters and underscore ("_").

Bttt Type of variable / !: real type, %: integer type, $: character string type
I, m, n....Indicate array arguments.
XXXXXX 1vtveneeneeeneaneneaseneeneaseneanens Differs depending on the type of array variable.

Integer type: integer of 8 digits or less

Real type: real number of 7 digits or less including decimal fractions

Character type: character string of 70 characters or less
= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE 1

SEND ARY TOCMU-* s ccecevccccene Outputs all global array variables from communication port.
Response:

A(0)=0[cr/If]
Al(1)=1.E2[cr/If]
Al(2)=2.E2[cr/If]
B%(0,0)=0[c1/1f]
B%(0,1)=1111[cr/1f]
B%(1,0)=2222[cr/If]
B%(1,1)=3333[cr/If]
C$(0,0,0)="ARY 1"[cr/If]
C$(0,0,1)="ARY2"[cr/If]
C$(0,1,0)="ARY3"[cr/If]
C$(0,1,1)="ARY4"[cr/If]
C8$(1,0,0)="ARYS5"[cr/If]
C$(1,0,1)="ARY6"[cr/If]
C$(1,1,0)="ARY7"[cr/If]
C$(1,1,1)="ARY8"[cr/If]

[er/1f]
SAMPLE 2
SEND CMU TOARY ¢ # + e eceececcnse. Inputs all global array variables from communication port.

Array variable file @ 10-31 I

14.2 I One array variable

Format

<variable name> t(1 {,m {,n }})

» Expresses one array variable.

DATA FORMAT

xxxxxx [cr/If]

<Variable name>c..cccoe.... Global variable defined in the program. Variable
name is shown with 16 characters or less consisting of

alphanumeric characters and underscore (" _").

ottt Type of variable / !: real type, %: integer type, $: character
string type

Lim, Do Indicate array arguments.

XXXXXX 1envevtavaneaneneeseasenesseneesenseneas Differs depending on the type of array variable.

Integer type: integer of 8 digits or less
Real type: real number of 7 digits or less including
decimal fractions

Character type: character string of 70 characters or less

 Array variables defined by the DIM statement are registered during compiling. Array variables cannot
be referred to unless they are registered.

SAMPLE 1

SEND C1$(2) TO CMU[cr/If] s+ s e e eveveveeees Outputs the specified array variable C1$(2) from communication
port.

Response:

OMRON ROBOT][cr/If]

SAMPLE 2

SEND CMU TO CI$Q2)[cr/If] =« =+ e v eveeeecens Inputs the specified array variable C18(2) from communication
port.

Response:

OK[cr/If]

I 10-32 @ Chapter 10 Data file description

15.1 I All DI information

Format

DI()

» Expresses all DI (parallel input variable) information.

¢ When used as a readout file, all DI information is read out.

« Cannot be used as a write file.

DATA FORMAT

DI0()=&Bnnnnnnnn [cr/If]
DI1()=&Bnnnnnnnn [cr/1f]

DI27()=&Bnnnnnnnn [cr/If]
[cr/If]

Tt "0" or "1" (total of 8 digits). Corresponds to m7, mo, ...,
m0, reading from the left ("m" is the port No.).

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE
SEND DI() TO CM=-«ccccccccccccse Outputs all DI information from communication port.
Response:

DI0O)=&B10001001[cr/If]
DI1()=&B00000010[cr/If]
DI2()=&B00000000[cr/1f]

DI7()=&B00000000[cr/If]

DI10()=&B00000000[ct/If]
DI11()=&B00000000[cr/1f]
DI12()=&B00000000[ct/If]

DI17()=&B00000000[ct/1f]
DI20()=&B00000000[ct/If]

DI26()=&B00000000[ct/If]
DI27()=&B00000000[ct/If]

[er/If]

DI file @ 10-33 I

15.2 B OneDIport

Format

DIm()

» Expresses the status of one DI port.
» When used as a readout file, the specified DI port status is read out.
» Cannot be used as a write file.
DATA FORMAT
DIm()=&Bnnnnnnnn|[cr/1f]

T 0t07,10t0 17,20 to 27
Tl ettt "0" or "1" (total of 8 digits). Corresponds to m7, m6, ...,
m0, reading from the left ("m" is the port No.).

SAMPLE
SEND DI5() TO CMU s s s e ceceecncecss Outputs the DI5 port status from communication port.
Response:

DI5()=&B00000000[cr/If]

I 10-34 @ Chapter 10 Data file description

16.1 I All DO information

Format

DO(

» Expresses all DO (parallel output variable) information.

¢ When used as a readout file, all DO information is read out.

« Cannot be used as a write file.

DATA FORMAT

DOO0()=&Bnnnnnnnn [cr/If]
DO1()=&Bnnnnnnnn [cr/1f]

DO027()=&Bnnnnnnnn [cr/1f]
[cr/If]

Tt "0" or "1" (total of 8 digits). Corresponds to m7, mo, ...,
m0, reading from the left ("m" is the port No.).

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE
SENDDO() TO CMU-= + ¢+ ccesecececee Outputs all DO information from communication port.
Response:

DO0()=&B10001001[cr/If]
DO1()=&B00000010[cr/If]
DO2()=&B00000000cr/1f]

DO7()=&B00000000[cr/If]

DO10()=&B00000000[ct/If]
DO11()=&B00000000[cr/1f]
DO12()=&B00000000[ct/If]

DO17()=&B00000000[cr/If]
D020()=&B00000000[cr/If]

D026()=&B00000000[cr/1f]
DO027()=&B00000000[cr/1f]
[cr/If]

DO file @ 10-35 I

16.2 B OneDO port

Format

DOm()

» Expresses the status of one DO port.
» When used as a readout file, the specified DO port status is read out.
* When used as a write file, the value is written to the specified DO port. However, writing to
DOO0() and DO1() is prohibited.

e Readout file

DATA FORMAT
DOm()=&Bnnnnnnnn[cr/If]

e Write file

DATA FORMAT
&Bnnnnnnnn[cr/If] or k[cr/If]

Mttt Port number: 0 to 7, 10 to 17, 20 to 27
Tttt "0" or "1" (total of 8 digits). Corresponds to m7, mé, ...,
m0, reading from the left ("m" is the port No.).
K Integer from 0 to 255
» Writing to DO0() and DO1() is prohibited. Only referencing is permitted.

SAMPLE 1

SEND DO5() TO CMUs ¢ s ceisevecses.e. Outputs the DOS port status from communication port.

Response:
DOS5()=&B00000000[cr/1f]

SAMPLE 2

SEND CMU TO DO5()+ s *ccceeceeeces Inputs the DOS port status from communication port.
&B00000111

Response:
OK[cr/If]

I 10-36 @ Chapter 10 Data file description

171 I All MO information

Format

MO()

» Expresses all MO (internal output variable) information.

¢ When used as a readout file, all MO information is read out.

« Cannot be used as a write file.

DATA FORMAT

MOO0()=&Bnnnnnnnn [cr/If]
MO1()=&Bnnnnnnnn [cr/If]

MO27()=&Bnnnnnnnn [cr/1f]
[cr/If]

Tt "0" or "1" (total of 8 digits). Corresponds to m7, mo, ...,
m0, reading from the left ("m" is the port No.).

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE
SEND MO() TO CMU=® + =+ ecececccceee Outputs all MO information from communication port.
Response:

MO0()=&B 10001001 [cr/If]
MO1()=&B00000010[cr/If]
MO2()=&B00000000[cr/If]

MO7()=&B00000000cr/If]

MO10()=&B00000000]cr/If]
MO11()=&B00000000[ct/If]
MO12()=&B00000000]cr/1f]

MO17()=&B00000000[ct/If]
MO20()=&B00000000[ct/If]

MO26()=&B00000000[cr/1f]
MO27()=&B00000000[cr/1f]
[cr/If]

MO file @ 10-37 I

17.2

Format

-
Q
=
(¢°]
=
C
=
=
2

MOm()

» Expresses the status of one MO port.
* When used as a readout file, the specified MO port status is read out.
* When used as a write file, the value is written to the specified MO port. However, writing to
MOO0() and MO1() is prohibited.

e Readout file

DATA FORMAT
MOm()=&Bnnnnnnnn[cr/If]

e Write file

DATA FORMAT
&Bnnnnnnnn[cr/If] or k[cr/If]

Mttt Port number: 0 to 7, 10 to 17, 20 to 27
Tttt "0" or "1" (total of 8 digits). Corresponds to m7, mé, ...,
m0, reading from the left ("m" is the port No.).
K Integer from 0 to 255

» Writing to MOO() and MO1() is prohibited. Only reference is permitted.

SAMPLE 1

SEND MOS() TO CMU s ¢ eseeescecsesee. Outputs the MOS5 port status from communication port.

Response:
MO5()=&B00000000[cr/1f]

SAMPLE 2

SEND CMU TO MOS5()*+ e s s eccccces Inputs the MOS port status from communication port.
&B00000111

Response:
OK[cr/If]

I 10-38 @ Chapter 10 Data file description

18.1

I All LO information

Format

LO()

» Expresses all LO (internal output variable) information.
¢ When used as a readout file, all LO information is read out.

« Cannot be used as a write file.

DATA FOMAT

LOO0()=&Bnnnnnnnn [cr/If]
[er/If]

Tl "0" or "1" (total of 8 digits). Corresponds to 07, 06, ..., 00,
reading from the left.

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SENDILO()ITOCMU « = eleleleleielele elale ele Outputs all LO status from communication port.

Response:
LO0()=&B10001001[c1/1f]

[cr/If]

LO file @ 10-39 I

18.2 B OneLO port

Format

LO0()

» Expresses the status of one LO port.
» When used as a readout file, the specified LO port status is read out.

* When used as a write file, the value is written to the specified LO port.

e Readout file

DATA FORMAT
LO0()=&Bnnnnnnnn|[cr/If]

e Write file
DATA FORMAT
&Bnnnnnnnn[cr/If] or k[cr/If]
USSP "0" or "1" (total of 8 digits). Corresponds to 07, 06, ..., 00,
reading from the left.
K Integer from 0 to 255
SAMPLE 1
SEND LOO() TO CMU= s eccccecccccccs Outputs the LOO port status from communication port.
Response:

LO0()=&B00000000[cr/If]

SAMPLE 2

SEND CMU TO LOOQ()* + =+ s s esecececes Inputs the LOO port status from communication port.
&B00000111

Response:
OK[cr/If]

I 10-40 @ Chapter 10 Data file description

19.1

I All TO information

Format

TOO

» Expresses all TO (timer output variable) information.
¢ When used as a readout file, all TO information is read out.

« Cannot be used as a write file.

DATA FORMAT

TOO0()=&Bnnnnnnnn [cr/1f]
[er/If]

Tl "0" or "1" (total of 8 digits). Corresponds to 07, 06, ..., 00,
reading from the left ("m" is the port No.).

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND TO() TO CMUleie elaisefeieiole eaielale o Outputs all TO status from communication port.

Response:
TO0()=&B10001001[cr/1f]

[cr/If]

TO file @ 10-41 I

19.2 J OneTO port

Format

TO()

» Expresses the status of one TO port.
* When used as a readout file, the specified TO port status is read out.

* When used as a write file, the value is written to the specified TO port.

e Readout file

DATA FORMAT
TO0()=&Bnnnnnnnn[cr/1f]

e Write file
DATA FORMAT
&Bnnnnnnnn[cr/If] or k[cr/If]
USSP "0" or "1" (total of 8 digits). Corresponds to 07, 06, ..., 00,
reading from the left ("m" is the port No.).
K Integer from 0 to 255
SAMPLE 1
SEND TOO() TO CMU = ¢ ceccoccocecces Outputs the TOO port status from communication port.
Response:

TO0()=&B00000000[cr/If]

SAMPLE 2

SEND CMU TO TOQ()* + =+ =cecvcccceee Inputs the TOO port status from communication port.
&B00000111

Response:
OK[cr/If]

I 10-42 @ Chapter 10 Data file description

20.1 I All SI information

Format

SIO

» Expresses all SI (serial input variable) information.

¢ When used as a readout file, all SI information is read out.

« Cannot be used as a write file.

DATA FORMAT

SI0()=&Bnnnnnnnn [cr/1f]
SI1()=&Bnnnnnnnn [cr/If]

SI27()=&Bnnnnnnnn [cr/If]
[cr/If]

Tt "0" or "1" (total of 8 digits). Corresponds to m7, mo, ...,
m0, reading from the left ("m" is the port No.).

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE
SEND SI) TOCMU : =+ cccccccceccce. Outputs all SI status from communication port.
Response:

SI0()=&B10001001 [cr/If]
SI1()=&B00000010[c1/1f]
S12()=&B00000000[c1/1f]

SI7()=&B00000000[ct/If]

SI10()=&B00000000[ct/If]
SI11()=&B00000000[ct/If]
SI12()=&B00000000[ct/If]

S117()=&B00000000[cr/1f]
S120()=&B00000000[cr/If]

S126()=&B00000000[cr/If]
S127()=&B00000000[ct/If]

[er/If]

Sl file @ 10-43 I

20.2 | OneSIport

Format

SIm()

» Expresses the status of one SI port.
* When used as a readout file, the specified SI port status is read out.

» Cannot be used as a write file.

DATA FORMAT
SIm()=&Bnnnnnnnn[cr/1f]

34 DO Port number: 0 to 7, 10 to 17, 20 to 27
Tl ettt "0" or "1" (total of 8 digits). Corresponds to m7, m6, ...,
m0, reading from the left ("m" is the port No.).

SAMPLE
SEND SIS() TO CMU-=® ¢ s eceececccsccas Outputs the SIS port status from communication port.
Response:

SI15()=&B00000000[cr/1f]

I 10-44 @ Chapter 10 Data file description

21.1 I All SO information

Format

SO()

» Expresses all SO (serial output variable) information.

¢ When used as a readout file, all SO information is read out.

« Cannot be used as a write file.

DATA FORMAT

SO0()=&Bnnnnnnnn [cr/If]
SO1()=&Bnnnnnnnn [cr/If]

SO27()=&Bnnnnnnnn [cr/If]
[cr/If]

Tt "0" or "1" (total of 8 digits). Corresponds to m7, mo, ...,
m0, reading from the left ("m" is the port No.).

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE
SEND SO) TOCMU : ¢ cccccccccece. Outputs all SO status from communication port.
Response:

S00()=&B 10001001 [cr/If]
SO1()=&B00000010cr/If]
S02()=&B00000000[cr/If]

SO7()=&B00000000cr/If]

SO10()=&B00000000cr/If]
SO11()=&B00000000[ct/If]
SO12()=&B00000000]cr/1f]

SO17()=&B00000000[cr/1f]
S0O20()=&B00000000[cr/If]

S026()=&B00000000[cr/If]
S027()=&B00000000[cr/1f]
[cr/If]

SO file @ 10-45 I

21.2 J OneSIport

Format

SOm()

» Expresses the status of one SO port.
* When used as a readout file, the specified SO port status is read out.
* When used as a write file, the value is written to the specified SO port. However, writing to
SO0() and SOI1() is prohibited.

e Readout file

DATA FORMAT
SOm()=&Bnnnnnnnn[ct/If]

e Write file

DATA FORMAT
&Bnnnnnnnn[cr/If] or k[cr/If]

10 DRSS Port number: 0 to 7, 10 to 17, 20 to 27
Tttt "0" or "1" (total of 8 digits). Corresponds to m7, mé, ...,
m0, reading from the left ("m" is the port No.).
K Integer from 0 to 255
* Writing to SO0() and SO1() is prohibited. Only reference is permitted.

SAMPLE 1

SEND'SO5() TO'CMU = » ¢ eie elaseiecioisee s Outputs the SOS5 port status from communication port.

Response:
SO5()=&B00000000[cr/1f]

SAMPLE 2

SEND CMU TO SO5()= = vcvsvecerece-- Inputs the SOS port status from communication port.
&B00000111

Response:
OK[cr/If]

I 10-46 @ Chapter 10 Data file description

Error message history file

22.1 I All error message history

Format

LOG

» Expresses all error message history.
* When used as a readout file, all error message history is read out.

« Cannot be used as a write file.

DATA FORMAT

nnn:yy/mm/dd,hh:mm:ss gg.bb:msg[cr/If]
nnn:yy/mm/dd,hh:mm:ss gg.bb:msg[cr/If]

nnn:yy/mm/dd,hh:mm:ss gg.bb:msg[cr/If]

[cr/If]
NN e Represents an error history serial number and may be up to
500.
yy, mm ,dd....oo Year/Month/Day
hh, mm, SS.......ccccoevvvieireneenn. Hour, Minute, Second
B ettt Error message group
Db Error message category
IS vttt reerereese e Error message

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND LOGTO CMU-*®+cceceecccccss Outputs all error message history from communication port.

Response:
1 :01/06/14,13:19:20 14.22:No start code (@)[cr/1f]
2 :01/06/14,13:18:34 22.3: DC24V power low[cr/If]

498:01/06/12,21:49:54 5.39:1llegal identifier[cr/1f]
499:01/06/12,21:49:14 14.22:No start code (@)[ct/1f]
500:01/06/12,21:49:00 22.3: DC24V power low/[cr/If]

[er/If]

Error message history file @ 10-47 I

Error Message History Details File

23.1 I General error message history details

Format

LEX

 Displays the general error message history details.
 This file cannot be specified as a WRITE file.

DATA FORMAT

nnn.l:yy/mm/dd hh:mm:ss gg.bb:msg,A,N,L,P[cr/If]
nnn.l:M=x,y,z,r,a,b[cr/If]

nnn.l:S=x,y,z,r,a,b[cr/If]

Represents an error history serial number and may be up to 500.
Output line number (max. of 3)

Year/Month/Day

Hour, Minute, Second

Error message group

Error message category

Error message

AUTO operation execution status. 1: AUTO operation in

progress; 0: Other status.

N o Execution program name.

Lo Program's execution line No.

P No. of most recently referenced point.

M= Indicates that all subsequent coordinates are main robot
coordinates.

Current position of each axis.
CR code (0Dh) + LF code (0Ah).

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE
M NOTE

e Error information is output
only for the connected robot. SEND LEX to CMU+ ¢ ceceececcace. Outputs the following general error message history details from the communication port.

Response:
M NOTE 1 .1:01/06/14,13:19:20 14.22: No START code (@),0,TEST ,2,2500[cr/If]
« Robot coordinates display in 1 2:M= 23.80 23.59 0.00 0.00 0.00 0.00[cr/If]
pulse units for axes where an 1 .3:S= 4820 47.99 0.00 0.00 0.00 OOO[Cr/lﬂ
"incompilete Tetum-to-or.igin" 2 .1:01/06/12,13:18:34 22.3: 24VDC low voltage,0,TEST ,6,2500[ct/If]
status exists. Robot coordinates 5\ 11568 23985 0.00 0.00 0.00 0.00[cr/lf]
also display in pulse units on
SCARA robots where reference 2

3:S= 35693 12582 0.00 0.00 0.00 0.00]cr/If]
coordinates have not been 0

specified. 500.1:01/06/12,21:49:00 22.3: 24VDC low voltage,0,TEST ,6,2500[cr/lf]
’ROb/?it °°°ffﬁnt*}tes disPlag in 500.2:M= 38.71 38.50 0.00 0.00 0.00 0.00[ct/If]

t

finiceg uniis o axes WA 500.3:.9= 5148 51.27 0.00 0.00 0.00 0.00[ct/lf]

a "completed return-to-origin

status exists. [cr/1f]

I 10-48 @ Chapter 10 Data file description

Machine reference file

24.1 I All machine reference file

Format

MRF

» Expresses the machine reference data obtained after robots have performed return- to-origin

and absolute search.

« Reads out all machine reference data when used as a readout file.

¢ Cannot be used as a write file.

MIl=nnn% M2=nnn% nnn%]cr/If]
S1=nnn% S2=nnn% nnn%l[cr/1f]
[er/If]
Values INN e Integer from 0 to 100
M2, Indicate the main robot group axes.

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND MRF TO CMU - - - Outputs all machine reference data from communication port.

Response:
Ml= 55%M2= 23%M3= 33% M4= 26%][cr/If]
[er/If]

Machine reference file @ 10-49 I

EOF i

25.1 B EOFdata

Format

EOF

 This file is a special file consisting only of a *Z (=1Ah) code. When transmitting data to an
external device through the communication port, the EOF data can be used to add a Z code
at the end of file.
* When used as a readout file, *Z (=1Ah) is read out.

» Cannot be used as a write file.

DATA FORMAT
~Z (=1Ah)

SAMPLE
SEND PGM TO CMU
SEND EOF TO CMU ¢ e ¢ eccocceccccns Outputs EOF data from communication port.

NAME=TEST]1[cr/If]
A=1{[cr/If]

HALT[cr/If]
[cr/1f]
",

e A ""Z" code may be required at the end of the transmitted file, depending on the specifications of the
receiving device and application.

I 10-50 @ Chapter 10 Data file description

Serial port communication file

26.1 I Serial port communication file

Format

CMU

» Expresses the serial communication port.
» Depends on the various data formats.

SAMPLE
SEND PNT TO CMU ¢ ¢ ccceccecccccns Outputs all point data from communication port.
SEND CMU TO PNT ¢ cccccceccecceee Inputs all point data from communication port.

Serial port communication file @ 10-51 I

SIW e

27.1 | All SIW

Format

SIW()

» Expresses all SIW (serial word input) data.
* Reads out all SIW information in hexadecimal digit when used as a readout file.

e Cannot be used as a write file.

DATA FORMAT

SIW(0)=&Hnnnn [cr/If]
SIW(1)=&Hnnnn [cr/1f]

SIW(15)=&Hnnnn [cr/1f]
[cr/If]

Thateiienieieieete e eeeete e ss s nnes 009, A to F: 4 digits (hexadecimal)

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE
SEND SIW() TO CMU =+ *ccccecccccece Outputs all SIW data from communication port.
Response:

SIW(0)=&H1001[cr/If]
SIW(1)=&H0010[cr/If]
SIW(2)=&H0000[ct/If]

SIW(15)=&H0000[cr/If]
[cr/If]

I 10-52 @ Chapter 10 Data file description

27.2 B OneSIW data

Format

SIW(m)

» Expresses one SIW status.
» Reads out all SIW information in hexadecimal digit when used as a readout file.

¢ Cannot be used as a write file.

DATA FORMAT
SIW(m)=&Hnnnn [cr/1f]

Tl 0to 9, A to F: 4 digits (hexadecimal)
SAMPLE
SEND SIW(5) TO CMU-= = *+ccecececccce. Outputs SIW(5) from communication port.
Response:
SIW(5)=&H1001 [cr/If]

SIW file @ 10-53 I

SOW i

28.1 | All SIW

Format

SOW()

» Expresses all SOW (serial word output) data.
* Reads out all SOW information in hexadecimal digit when used as a readout file.

e Cannot be used as a write file.

DATA FORMAT

SOW(0)=&Hnnnn [cr/If]
SOW(1)=&Hnnnn [cr/1f]

SOW(15)=&Hnnnn [cr/1f]
[cr/If]

Thateiienieieieete e eeeete e ss s nnes 009, A to F: 4 digits (hexadecimal)

= A line containing only [cr/If] is added at the end of the file, indicating the end of the file.

SAMPLE
SEND SOW() TO CMU = ¢ ccceccccccnce Outputs all SOW data from communication port.
Response:

SOW(0)=&H1001[cr/If]
SOW/(1)=&H0010[ct/If]
SOW/(2)=&H0000[ct/If]

SOW(15)=&H0000[cr/If]
[cr/If]

I 10-54 @ Chapter 10 Data file description

28.2 B One SOW data

Format

SOW(m)

» Expresses one SOW status.
* When used as a readout file, the specified SOW port status is read out.
* When used as a write file, the value is written to the specified SOW. However, writing to
SOWO0() and SOW () is prohibited.

e Readout file

DATA FORMAT
SOW(m)=&Hnnnn [cr/If]

o Write file

DATA FORMAT
&Hnnnn

Mt eae e 2to 15

Tl 0to 9, A to F: 4 digits (hexadecimal)
SAMPLE 1
SEND SOW(5) TO CMU= s sccccecccceccs Outputs SOW(5) from communication port.

Response:
SOW(5)=&H1001[cr/If]

SAMPLE 2

SEND CMU TO SOW(5)+ s cccccccecccee Input to SOW(5) from communication port.
&H1001

Response:
OK[cr/If]

SOW file @ 10-55 I

Ethernet port communication file

29.1 I Ethernet port communication file

Format

ETH

» Expresses the Ethernet port.
* Depends on the various data formats.

SAMPLE
SEND PNT TO ETH: s e cccceocccceccs Outputs all point data from the Ethernet port.
SEND ETHTO PNT e+ ccccccccccce.e Inputs all point data from the Ethernet port.

I 10-56 @ Chapter 10 Data file description

Chapter 11

User program examples

1 Basic operation..........ccceeeeveeniiniiienieeeeeeen 11-1

2 ApPlicatioN.......cccuieiiieeiieiieeeee e 11-8

Basic operation

1.1 I Directly writing point data in program

= Overview

The robot arm can be moved by PTP (point-to-point) motion by directly specifying point data in the
program.

Processing flow

START

300.00 300.00 50.00 90.00 0.00 0.00 PTP movement
300.00 100.00 0.00 0.00 0.00 0.00 PTP movement
200.00 200.00 10.00 -90.00 0.00 0.00 PTP movement

STOP

SAMPLE

MOVE P, 300.00 300.00 50.00 90.00 0.00 0.00
MOVE P, 300.00 100.00 0.00 0.00 0.00 0.00
MOVE P, 200.00 200.00 10.00 -90.00 0.00 0.00
HALT

Basic operation @ 11-1 I

1.2 I Using point numbers

= Overview
Coordinate data can be specified by using point numbers in a program. Coordinate data should be entered
beforehand in "MANUAL>POINT" mode, for example as shown below.

POINT DATA

PO= 0.00 0.00 0.00 0.00 0.00 0.00
P1= 100.00 0.00 150.00 30.00 0.00 0.00
P2= 0.00 100.00 50.00 0.00 0.00 0.00
P3= 300.00 300.00 0.00 0.00 0.00 0.00
P4= 300.00 100.00 100.00 90.00 0.00 0.00
P5= 200.00 200.00 0.00 0.00 0.00 0.00

Processing flow

PTP movement to PO

PTP movement to P1
PTP movement to P2
PTP movement to P3
PTP movement to P4
PTP movement to P5

(stor)
SAMPLE 1

MOVE P,P0
MOVE PPl
MOVE P,P2
MOVE P,P3
MOVE P,P4
MOVE P,P5
HALT

SAMPLE 2

FOR J=0TO 5
MOVE P,P[J]

NEXT J

HALT

Although the same operation is executed by both SAMPLE 1 and SAMPLE 2, the program can be
shortened by using point Nos. and the FOR statement.

I 11-2 @ Chapter 11 User program examples

1.3 I Using shift coordinates

= Overview
In the example shown below, after PTP movement from P3 to P5, the coordinate system is shifted +140mm
along the X-axis and -100mm along the Y-axis, and the robot then moves from P3 to P5 again. The shift

coordinate data is set in S1 and P3, P4, P5 are set as described in the previous section ("1.2 Using point

numbers").
SHIFT DATA
S0= 0.00 0.00 0.00 0.00
S1= 140.00 -100.00 0.00 0.00
Shift Coordinate
Y+
! , P3
4+ 1.
: X: 140mm shift, Y: -100mm shift
I
i Ps .
T A- o
! A
I ’ 1
I ,’ 1
Shift Coordinate i e '
S0 T 1 N l
: Shift Coordinate P4 \\\ :
! | S
: "d:" — X+
0 I
100 :/
I
[S e [
140 '
SAMPLE
SEMFT §) ccooocoooccoooooo Shift 0.
FOR J=3 TO 5 Repeated movement from P3 to P5.
MOVE P, P[J]
NEXTJ
SHIFT S1 Changed to "shift 1".
FOIR IK=3MO) Heeoccooooooooooo Repeated movement occurs in the same manner from P3 to PS5.
MOVE P,P[K]
NEXT K

Basic operation @ 11-3 I

1.4 B Palletizing

I 14.1 Calculating point coordinates

= Overview

Repetitive movement between a fixed work supply position PO and each of the equally spaced points on a
pallet can be performed with the following program.

In the drawing below, points N1 to N20 are on Cartesian coordinates, consisting of 5 points positioned at
a 50mm pitch in the X-axis direction and 4 points at a 25mm pitch in the Y-axis direction. The robot arm
moves from point to point in the order of P0-N1-P0-N2...N5-P0-N6-P0... while repeatedly moving back
and forth between point PO and each pallet.

POINT DATA

Work supply position:

PO= 0.0 0.0 0.0 0.0 0.0 0.0
X-axis pitch:

P10= 50.0 0.0 0.0 0.0 0.0 0.0
Y-axis pitch:

P20= 0.0 25.0 0.0 0.0 0.0 0.0
N1 position:

Pl= 100.0 50.0 0.0 0.0 0.0 0.0

Calculating point coordinates

T Y+
1
1
i N16 N17 NI8 NI19 N20
Q---mmoee Q-nmoeoes Q-mooeoe Qoo o
! ! ! ! !
1 NIl 1 NI2 I NI3 i N14 i NI5
Qoo Qoo Qe Qoo -
1 1 1 1 1
1 1 1 1 1
i N6 R\ N8 N\ i NI10
T QT QT QT >
25 1 1 1 1 1
! NI ' N2 L N3 L N4 I NS X+
— O--------- O--------- O--------- O--------- O--------- e
50 o PO
Processing flow
(START)
P200=P1 ettt P1 coordinates are input at P200.
P100=P1 et P1 coordinates are input at P100.
Movementto PO | **ccttet Movement to supply position.
| Repeat 5 times | Movement to P100 | *=*c 0" Movement to P100
P100=P100+P10 | *°"°**°°"" P100 is shifted by the pitch amount
in the X-direction.
| Repeat 4 times |
P200=P200+P20 | s Movement to P200
P100=P200 | e P200 is shifted by the pitch amount
in the Y-direction.

I 11-4 @ Chapter 11 User program examples

P100=P1
P200=P1
FOR J=1TO 4
FORK=1TO 5
MOVE P,P0
MOVE P,P100
P100=P100+P10
NEXT K
P200=P200+P20
P100=P200
NEXT J

Basic operation @ 11-5 I

I 14.2 Utilizing pallet movement

= Overview

Repetitive movement between a fixed work supply position PO and each of the equally spaced points on
a pallet can be performed with the following program. In the drawing below, points N1 to N24 are on
Cartesian coordinates, consisting of 3 points positioned at a SOmm pitch in the X-axis direction, 4 points at
a 50mm pitch in the Y-axis direction, and 2 points at 100mm pitch in the Z-axis direction. The robot arm
moves from point to point in the order of PO-N1-P0-N2...-N5-P0-N6... while repeatedly moving back and
forth between point PO and each pallet.

POINT DATA

Work supply position:

PO= 0.00 0.00 100.00 0.00 0.00 0.00
Pallet definition:

PLO (P3996 to P4000 are used)
NX= 3
NY= 4
NzZ= 2
P3996= 100.00 50.00 100.00 0.00 0.00 0.00
P3997= 200.00 50.00 100.00 0.00 0.00 0.00
P3998= 100.00 200.00 100.00 0.00 0.00 0.00
P3999= 200.00 200.00 100.00 0.00 0.00 0.00
P4000= 100.00 50.00 200.00 0.00 0.00 0.00

Utilizing pallet movement

P3998 P3999
NZ T O O
NY .-° o o
g @) O
@) & ©
U el 1 P3997
' NX !

Processing flow

(START)

| Repeat 24 times | Movementto PO | Movement to supply position (P0).
""""" Repeated for points N1 to N24.

Pallet movement

(STOP)

SAMPLE

FOR I=1 TO 24 Repeated for I = 1 to 24.

MOVE P,P0,Z=0.00+ < «+cccceececne Movement to supply position.
PMOVE (0,1),Z=0.00 + s ¢ ccececeees Movement to pallet point.
NEXT I

MOVE P,P0,7=0.00

I 11-6 @ Chapter 11 User program examples

1.5 I DI/DO (digital input and output) operation

= Overview

The following example shows general-purpose signal input and output operations through the STD.

Processing flow

(START)

Wait until DI2() is allat "0". | <" Wait until DI20 to DI27 become "0".
Setall of DO2 ()to"1". | ecccccoccee D020 to DO27 become "1".
Wait 1 second.
Wait until DI2 (0)isat"1". | eececcccce Wait until DI20 becomes "1".

"1" is assigned to "N".

DI2 (1)="1"

Set DO2 (7,6,1,0) to "1".
Wait 2 seconds
Set all of DO2 () to "0".

END
Set all of DO2 () to “0”.
Wait 0.5 seconds * DO processing ends if DI2(1) is "1".
N=N+1 * Repeated until N=20 if DI2(1) is "0".

SAMPLE

WAIT DI2()=0 Wait until DI20 to D127 become "0".

DO2()=&BI11111111--=-=cccececcnen D020 to DO27 become "1".
DELAY 1000

WA IDI2(@)=llcccoocoocoocooooo000 Wait until DI21 becomes "1".

N=1

*LOOP1:

IF DI2(1)=1 THEN *PROGEND= =+ ==« -« - Jumps to *PROGEND if DI21 = 1.
IF N>20 THEN *ALLEND-+cccccccc- Ended in N > 20 (jumps to *ALLEND).
DO2()=0 D020 to DO27 become "0".

DELAY 500

N=N+1

COMO “ILOQIPl ccecococoooooooooooo Loop is repeated.

’END ROUTINE

*PROGEND: End processing.

DO2(7,6,1,0)=&B1111:¢cccccccccececcs Set DO27, 26, 21, 20 to "1".

DELAY 2000 Wait 2 seconds
DO2()=0 Set DO20 to "0".
*ALLEND:

HALT

Basic operation @ 11-7 I

Application

2.1 I Pick and place between 2 points

= Overview

The following is an example for picking up a part at point A and placing it at point B.

Pick and place between 2 points

z
0
P3 30mm P4
o) o ——
(3]
(1] (2] (4] (5] 50mm
Pl P2
Point A Point B

Precondition

1. Set the robot movement path.

* Movement path: P3—P1—P3—P4—P2—P4

Locate P3 and P4 respectively at a position 50mm above P1 and P2 and set the P1 and P2 positions by

teaching.

2. 1/O signal
| DO (20) | Chuck (gripper) open/close = 0: open, 1: close |

* A 0.1 second wait time is set during chuck open and close.

SAMPLE: When calculating to find P3 and P4

P3=P1 scceicceceiceaiseanseesee. P1 coordinates are assigned to P3.
PAP?) 0cc0000000000000000000000 P2 coordinates are assigned to P4.
LOCZ(P3)=LOCZ(P3)-50.0 < ¢+ e e eceeeecee P3 is shifted 50mm in Z UP direction.
LOCZ(P4)=LOCZ(P4)-50.0+ = ¢+ e v eeeeeees P4 is shifted 50mm in Z UP direction.
MOVE P,P3
GOSUB *OPEN
MOVE PP1
GOSUB *CLOSE
MOVE P,P3
MOVE P,P4
MOVE P,P2
GOSUB *OPEN
MOVE P,P4
HALT
*OPEN: Chuck OPEN routine.
DO2(0)=0
DELAY 100
RETURN
*CLOSE: Chuck CLOSE routine.
DO2(0)=1
DELAY 100
RETURN

I 11-8 @ Chapter 11 User program examples

SAMPLE: When using arch motion

A=) ©0000000000000000000000000 P2 coordinates are assigned to P4.
LOCZ(P4)=LOCZ(P4)-50.0¢ + e+ s eeeveoeees P4 is shifted 50mm in Z UP direction.
GOSUB *OPEN
MQOVE PRP1;Z=30:0}s isislele elais elelelalsiolel o e Arch motion at Z = 30mm.
GOSUB *CLOSE
NIQWITE) 12JP2, 7Z=30{§lo o o e 0 0000000000000 Arch motion at Z = 30mm.
GOSUB *OPEN
MOVE P,P4
HALT
*OPEN: Chuck OPEN routine.
DO2(0)=0
DELAY 100
RETURN
*CLOSE: Chuck CLOSE routine.
DO2(0)=1
DELAY 100
RETURN

Application @ 11-9 I

2.2 I Palletizing

= Overview

The following is an example for picking up parts supplied from the parts feeder and placing them on a
pallet on the conveyor. The pallet is ejected when full.

Palletizing
z
T 0
50mm
. . .
o | e | o
P1: Pallet reference position ~———p> | ¢ | ©
P1 PO

Robot

PO: Part supply position

Parts feeder

= Precondition
1. T/O signal

DI (30) Component detection sensor 1: Parts are supplied
DI(31) Pallet sensor 1: Pallet is loaded
DO (30) Robot hand open/close 0: Open / 1: Close
DO (31) Pallet eject 1: Eject

Robot hand open/close time is 0.1 second and pallet eject time is 0.5 seconds.

2. The points below should be input beforehand as point data.

PO Part supply position

P1 Pallet reference position
P10 X direction pitch

P11 Y direction pitch

3. Vertical movement is performed to a position Z=50mm above the pallet and parts feeder.

I 11-10 @ Chapter 11 User program examples

SAMPLE 1: When point is calculated

WHILE -1 All repeated (-1 is always TRUE).

FOR A=0 TO 2

FOR B=0 TO 2
WAIT DI(3L)=1 «ieie eieieelaieiole elals oleielels o Wait until a pallet "present" status occurs.
WAIT DI(30)=1 ccccccrcccccecccce. Wait until the supplied component "present" status occurs.
DO(0)=0 + s+ v vvrvensnneneenaneanns Robot hand OPENS.
DELAY 100
IMONITE I, Z=500)c 0 ccooecooonoooooe Movement to supply position.
DO30)=]1 +=vevvvneeennneennnnnnnns Robot hand CLOSES.
DELAY 100
P100=P1+P10*B+PI1*Acccccccccccecs Next point is calculated.
MOVE PP100,Z=50.0 - = o cccccccececce Movement to calculated point.
DO0)=0 + s+ vvvrvensnreneanenennns Robot hand OPENS.
DELAY 100

NEXT

NEXT

DRIVE (3,0) +evsevenserencnnencancns Only Z-axis moves to 0.

DOBI)=l seeveereneneeneananeanns Pallet is ejected.

DELAY 500

DO@31)=0

WEND = cceecceatccntccnsasnccnns Loop is repeated.

HALT

SAMPLE 2: When using the palletizing function

* Precondition: Must be defined at pallet "0".
WHILE -1 All repeated.

FOR A=1 TO 9
WAIT DI(31)=1 <ccccccecccccccacce. Wait until a pallet "present" status occurs.
WAIT DI(30)=1 < cccescecccecasescese Wait until the supplied component "present" status occurs.
DO30)=0 == evvvveeeennecnnnnccnns Robot hand OPENS.
DELAY 100
WMIOWIE PIR0 Z=50{)c ccc00oo0cancoooos Movement to supply position.
DOO0)=] +oveveerenenneneananenns Robot hand CLOSES.
DELAY 100
PMOVE(0,A),Z=50.0 ««cccccccecccce. Movement to pallet point.
DO0)=0 + s+ o vverensnseneananennns Robot hand OPENS.
DELAY 100
NEXT
DRIVE(3,0) sveveeeveeeeneecennnnnnns Only Z-axis moves to 0.
DOBI)=l seeveerencnrencanenenans Pallet is ejected.
DELAY 500
DO(31)=0
WEND = ccccecsttccssccosssacsnns Loop is repeated.
HALT

Application @ 11-11 I

2.3 I Pick and place of stacked parts

= Overview

The following is an example for picking up parts stacked in a maximum of 6 layers and 3 blocks and
placing them on the conveyor.

The number of parts per block may differ from others.

Parts are detected with a sensor installed on the robot hand.

Pick and place of stacked parts

7=0.0

— m v v

<
P5 Pl P2 P3
Conveyor Block 1 Block 2 Block 3
= Precondition
1. 1/O signal
DI (30) Component detection sensor 1: Parts are supplied
DI(31) Robot hand open/close 0: Open / 1: Close

» Robot hand open/close time is 0.1 seconds.

2. The points below should be input beforehand as point data.

P1 Bottom of block 1
P2 Bottom of block 2
P3 Bottom of block 3
P5 Position on conveyor

3. Movement proceeds at maximum speeds but slows down when in proximity to the part.

Processing flow

High speed \]/

P4=WHERE

Set the current position
into point data (P4).

I
| | Set the speed at maximum

P5 Pl [

—> P4=WHERE

Load the part onto
conveyor position (P5).

|
rr— Move to position (P4)
1g Spee during parts detection.

P4=WHERE I
=1

- |

Slow down |
I
T | Move to 1. |

P5 P1 \l/

4. Use a STOPON condition in the MOVE statement for sensor detection during movement.

I 11-12 @ Chapter 11 User program examples

SAMPLE

FORA=1TO 3

SPEED 100

GOSUB *OPEN

P6=P[A]

LOCZ(P6)=0.00

MOVE P,P6,2=0.0

WHILE -1
SPEED 20
MOVE P,P[A],STOPON DI3(0)=1
IF DI3(0)=0 THEN *L1
*SENSOR ON
P4=JTOXY(WHERE)
GOSUB *CLOSE
SPEED 100
MOVE P,P5,2=0.0
GOSUB *OPEN
MOVE P,P4,7=0.0

WEND

*L1: >SENSOR OFF

NEXTA

SPEED 100

DRIVE (3,0)

HALT

*OPEN:

DO3(0)=0

DELAY 100

RETURN

*CLOSE:

DO3(0)=1

DELAY 100

RETURN

Application @ 11-13 I

24 I Parts inspection (Multi-tasking example)

= Overview

One robot is used to inspect two different parts and sort them according to the OK/NG results.

The robot picks up the part at point A and moves it to the testing device at point B. The testing device
checks the part and sends it to point C if OK or to point D if NG.

The part at point A’ is picked up and moved to the testing device at point B' in the same way. The testing
device checks the part and sends it to point C’ if OK or to point D’ if NG.

It is assumed that 10 to 15 seconds are required for the testing device to issue the OK/NG results.

Parts inspection (Multi-tasking example)

Parts supply Testing device OK NG

P1
.

P2

[-]z =
4—}3! |E|}z

o]

[[

P11 P12 P1

t

9%}

—

= Precondition

M NOTE 1. 1/O signal

e *1: As the start signal, supply
a 0.1 second pulse signal to the
testing device.

1/0 signal

iO.lseconds: 76543210
kBt man I b
OFF Testing device 1 start (0.1 second) 1: Start *!
Robot chuck open/close 0: Open / 1: Close *?
e *2: Chuck open and close time
is 0.1 seconds. 76543210
DO3
e *3: Each time a test is finished, Testing device 2 start (0.1 second) 1: Start *!
the test completion signal and
OK/NG signal are sent from
the testing device. After testing, 76543210
the test completion signal turns o L Testing device 1 test completed **
ON (=1), and the OK/ NG Testing device 1 OK/NG signal
signal turns ON (=1) when the Part supply 1
result is OK and turns OFF (=0) Part 1 OK
when NG. Part I NG
76543210
DI3
L Testing device 2 test completed **
Testing device 2 OK/NG signal
Part supply 2
Part 2 OK
Part 2 NG

2. The main task (task 1) is used to test part 1 and the subtask (task 2) is used to test part 2.

An exclusive control flag is used to allow other tasks to run while waiting for the test completion

signal from the testing device.

FLAG1 0: Executing Task 1 (Task 2 execution enabled)
1: Task 1 standby (Task 2 execution disabled)
FLAG2 0: Executing Task 2 (Task 1 execution enabled)

1: Task 2 standby

(Task 1 execution disabled)

11-14 @ Chapter 11 User program examples

4,

Flow chart

Processing flow

START

| Exclusive control flag reset

| Subtask start

Exclusive control flag set

Chuck open
|

Move to parts supply position P1
|

Chuck close

Chuck open
|

Move upward 10000 pulses
|

Exclusive control flag reset

|
|
|
|
[Move to testing device 1
|
|
|
|

Testing device 1 start

—_—

Test completed?

| Exclusive control flag set |
|

| Move to testing device 1 |
|

| Chuck close |

eeeececces FLAGI=0 FLAG2=0

esecsccses FELAGI=1

cesssccces ELAGI=0

esecsccses FELAGI=1

Part OK?

| Move to OK parts position

NG parts?

N

| Chuck open
I

| Move upward 10000 pulses
|

| Exclusive control flag reset

Task 2 (subtask) runs in the same flow.

| Move to NG parts position

csecsccscs FELAGI=0

Application @ 11-15

= Program example

SAMPLE

<Main task>
FLAG1=0

FLAG2=0

UPPOS=0.0

START *S1,T2

*L1:

WAIT DI2(2)=1

WAIT FLAG2=0
FLAGI1=1

GOSUB *OPEN
MOVE P,P1,Z=UPPOS
GOSUB *CLOSE
MOVE P,P2,Z=UPPOS
GOSUB *OPEN
DRIVEI (3,-10000)
FLAG1=0

DO2(0)=1

DELAY 100

DO2(0)=0

WAIT DI2(0)=1

WAIT FLAG2=0
FLAGI1=1

MOVE P,P2,Z=UPPOS
GOSUB *CLOSE

IF DI2(1)=1 THEN
'GOOD

WAIT DI4(2)=0
MOVE P,P3,Z=UPPOS
ELSE

'NG

WAIT DI2(4)=0
MOVE P,P4,Z=UPPOS
ENDIF

GOSUB *OPEN
DRIVEI (3,-10000)
FLAG1=0

GOTO *L1

*OPEN:

DO2(1)=0

DELAY 100

RETURN

*CLOSE:

DO2(1)=1

DELAY 100

RETURN

Subtask Start

Part supply standby

Other tasks waiting for standby status.

Exclusive control flag set
Chuck open

Move to part supply position
Chuck close

Move to testing device

Chuck open

Move Z-axis upward Z 10,000 pulses

Exclusive control flag reset

Testing device start

Test completion standby
Task completion standby
Exclusive control flag set
Move to testing device
Chuck close

Test

Part movement standby
Move to OK parts position
Part movement standby

Move to NG parts position

Chuck open

Move Z-axis upward Z 10,000 pulses

Exclusive control flag reset

<Subtask>

*S1

WAIT DI3(2)=1

WAIT FLAG1=0
FLAG2=1

GOSUB *OPEN
MOVE P,P11,Z=UPPOS
GOSUB *CLOSE
MOVE P,P12,7=UPPOS
GOSUB *OPEN
DRIVEI (3,-10000)
FLAG2=0

DO3(0)=1

DELAY 100

DO3(0)=0

WAIT DI3(0)=1

WAIT FLAG1=0
FLAG2=1

MOVE P,P12,Z=UPPOS
GOSUB *CLOSE

IF DI3(1)=1 THEN
'GOOD

WAIT DI3(3)=0

MOVE P,P13,Z=UPPOS
ELSE

'NG

WAIT DI3(4)=0

MOVE P,P14,7=UPPOS
ENDIF

GOSUB *OPEN
DRIVEI (3,-10000)
FLAG2=0

GOTO *S1

I 11-16 @ Chapter 11 User program examples

2.5 B Sealing

= Overview

This section shows an example of the parts sealing operation.

Sealing
P P4
e -
P3
P2
20mm
P6 & ; ----------- - P7
POL """ *p
10mm
= Precondition
1. /O signal
| DO (20) | Valve open/close 1: Open / 0: Close |

2. Set PO to P7 by teaching.

SAMPLE

MOVE P,P0,Z=0

SPEED 40

PATH SET e Start of path setting

PATH L,P1,DO(20)=1@10.0....c.ccoccvrveuirerrirrrriinene Start of coating)

at 10 mm position

PiTH L.p2 . Path setting

PATH C.P3,p (Robot does not operate.)

PATH L,P5

PATH L,P6,S=30

PATH L.,P7,DO20)=0@20.0.......ccoerveeeeerieirinianns End of coating at

20 mm position)

PATH END o End of path setting

PATH START oo Execute PATH motion (Robot starts from PO and stops at P7.)

HALT

Application @ 11-17 I

2.6 I Connection to an external device through RS-232C (example 1)

= Overview
Point data can be written in a program by using an external device connected to the YRC series controller
via the RS-232C port.

= Precondition
1. Input to the external device from the controller
SDATA/X/Y [cr/lf]

2. Output to the controller from the external device

M NOTE
- POINT DATA
e [cr/1f] indicates CR code

(=0Dh) + LF code (=0Ah). P10= 156.42 24391 0.00 0.00 0.00 0.00 [cr/If]

SAMPLE

*INIT
VCMD$="SDATA/X/Y"
PO= 0.00 0.00 0.00 0.00 0.00 0.00
"MAIN ROUTINE
MOVE P, PO
*ST:
SEND VCMD$ TO CMU
SEND CMU TO P10
MOVE P, P10
GOTO *ST

» "SEND xxx TO CMU" outputs the contents specified by "xxx" through the RS-232C.
» "SEND CMU TO xxx" sends data into the files specified by "xxx" through the RS-232C.

I 11-18 @ Chapter 11 User program examples

2.7 I Connection to an external device through RS-232C (example 2)

= Overview
Point data can be created from the desired character strings and written in a program by using an external

device connected to the YRC series controller via the RS-232C port.

= Precondition
1. Input to the external device from the controller
SDATA/X/Y [cr/If]

M NOTE 2. Output to the controller from the external device

e [cr/If] indicates CR code X=156.42, Y=243.91 [cr/If]
(=0Dh) + LF code (=0Ah).

* "SEND xxx TO CMU" outputs the contents specified by "xxx" through the RS-232C.

* "SEND CMU TO xxx" sends data into the files specified by "xxx" through the RS-232C.
* The LEN () function obtains the length of the character string.
» The MIDS () function obtains the specified character string from among the character strings.

* The VAL () function obtains the value from the character string.

Application @ 11-19 I

SAMPLE

’INT
VCMD$="SDATA/X/Y"
VINg=""
VX$=""
vys=""
PO= 0.00 0.00 0.00 0.00 0.00 0.00
Pl1= 100.00 100.00 0.00 0.00 0.00 0.00
"MAIN ROUTINE
MOVE P, PO
*ST:
SEND VCMD$ TO CMU
SEND CMU TO VINS$
=1
VMAX=LEN(VINS)
*LOOP:

IF I>VMAX THEN GOTO *E_LOOP
C$=MID$(VINS,I ,1)
IF C$="X" THEN
=1+2
=1
*X_LOOP:
C$=MIDS$(VINS, J, 1)
IF C$="," THEN
*X1 _LP:
L=J-1
VX$=MIDS$(VINS, I, L)
I=1+1
GOTO *LOOP
ENDIF
J=J+1
IF J>VMAX THEN GOTO *XI _LP
GOTO *X_LOOP
ENDIF
IF C$="Y" THEN
=[+2
=1
*Y LOOP:
C$=MIDS$(VINS, J, 1)
IF C$=","THEN
*Y1 LP:
L=J-1
VY$=MID$(VINS, I, L)
=J+1
GOTO *LOOP
ENDIF
J=J+1
IF J>VMAX THEN GOTO *YI LP
GOTO *Y_LOOP
END IF
=[+1
GOTO *LOOP
*E_LOOP:
WX=VAL(VXS)
WY=VAL(VY$)
LOCX(P11)=WX
LOCY(P11)=WY
MOVE P, P11
GOTO *ST

I 11-20 @ Chapter 11 User program examples

Chapter 12

Online commands

oo a0~ WON =

Online Command List........ccccceeoiiiiiniiiiinnn. 12-1
Key operation..........ccceeeeeeeeeniieniienieeiesie e 12-6
Utility operation.........ccccceeeeeieeecveencveeesieeeene 12-12
Data handling...........ccoovveeiiiiiiiiieee 12-24

Executing the robot language independently..12-44

Control codes

Online Command List

Online commands can be used to operate the controller via an RS-232C interface or via an Ethernet (option).

This chapter explains the online commands which can be used. For details regarding the RS-232C

connection method, refer to the "YRC Controller User's Manual". For details regarding Ethernet, refer to
the "YRC Series Ethernet Manual".

I About termination codes

During data transmission, the controller adds the following codes to the end of a line of transmission data.

e RS-232C

* CR (0Dh) and LF (0Ah) are added to the end of the line when the "Termination code" parameter

of communication parameters is set to "CRLF".

* CR (0Dh) is added to the end of the line when the "Termination code" parameter of communication

parameters is set to "CR".

e Ethernet (option)

* CR (0Dh) and LF (0Ah) are added to the end of the line.

When data is received, then the data up to CR (0Dh) is treated as one line regardless of the "Termination

code" parameter setting, so LF (0Ah) is ignored.

The termination code is expressed as [cr/If] in the detailed description of each online command in "12.2

Key operation" onwards.

1.1 I Online command list: Function specific

I Key operation

Operation type Command

Change mode AUTO mode AUTO

PROGRAM mode PROGRAM 3

MANUAL mode MANUAL

SYSTEM mode SYSTEM
Program Reset program RESET

Execute program RUN

Execute one line STEP 4

Skip one line SKIP

Execute to next line | NEXT

Stop program STOP 2
Set break point BREAK m, n (m: break point No., n: line) 4
Switch execution task CHGTSK 3
Change manual speed Main robot | MSPEED k (k : 1-100) 3
Move to absolute reset position ~ Main robot | ABSADJ k,0 ork, 1 (k:1-6) 3
Absolute reset on each axis ~ Main robot | ABSRESET k (k:1-6)
Return-to-origin Main robot | ORGRTN k (k:1-6) 3
Manual movement (inching) Main robot | INCH ktork-(k:X,Y,Z, R, A, B) 3
Manual movement (jog) Main robot |JOG ktork-(k:X,Y,Z,R, A, B) 3
Point data teaching Main robot |TEACH m (m : point No.) 3

Online Command List @ 12-1 I

B Utility

Operation type Command
Acquire program execution status PADDR 4
Copy program 1 to program 2 <program 1> TO <program 2>
Copy points "m - n" to point "k" COPY Pm-Pn TO Pk 3
Copy point comments "m - n" to point comment "k" PCm-PCn TO PCk
Delete program <program>
Delete points "m - n" Pm-Pn
. ERA 3
Delete point comments "m - n" PCm-PCn
Delete pallet "m" PLm
Rename "program 1" to "program 2" REN <program 1> TO <program 2> 3
Change program attribute ATTR <program> TO s (s : RW/RO) 3
Initialize data ~ Program PGM
Point PNT
Shift SFT
Hand HND
Pallet INIT PLT 3
Point comment PCM
All data except parameters MEM
Parameter PRM
All data (MEM+PRM) ALL
Initialize data ~ Communication parameter | INIT CMU 3
Initialize data Error log INIT LOG 3
Setting Display language LANGUAGE 'k 3
Setting Point units UNIT k 3
Clear line message MSGCLR 1
Setting Access level ACCESS k 3
Setting Execution level EXELVL k 3
Sequence execution flag SEQUENCE k 3
Setting Main hand system ARMTYP m, k 3
Reset internal emergency stop flag EMGRST 1
Check or set date DATE 2
Check or set time TIME 2

Conditions: 1. Always executable.

2. Not executable during inputs from the programming box.

3. Not executable during inputs from the programming box, and while the program is

running.

4. Not executable during inputs from the programming box, while the program is running,

and when specific restrictions apply.

I 12-2 @ Chapter 12 Online commands

I Data handling

Operation type Command Option Condition
Display language LANGUAGE
Access level ACCESS
Arm status ARM
Break point status BREAK
Controller configuration CONFIG
Execution level EXELVL
Mode indication MOD
Error message MSG [m, n]
Return-to-origin status ORIGIN
Absolute reset status ABSRST
Servo status SERVO
Sequence execution flag status SEQUENCE
AUTO/MANUAL speed status SPEED
Point unit status UNIT
Version information VER
Acquiring status Cyrrent main robot position (pulse coordinate) ? WHERE 1
Current main robot position i
(inclucﬁng exgzdczzr(::ta:ier)lg) WHRXY
Task number TASKS
Task operation status TSKMON
Selected shift status SHIFT
Selected hand status HAND
Remaining memory capacity MEM
Emergency stop status EMG
Error status by self-diagnosis SELFCHK
Option slot status OPSLOT
Main group current torque value CHKTRQ
Numerical data Numerical expression
Character string data Character string expression
Point data Point expression
Shift data Shift expression
Data readout READ 2
Data write WRITE 2

I Robot language independent execution

Operation type Command Condition
Program switching 4

SWI < >
Robot language executable independently ‘ program

I Control code

Operation type Command Condition

Execution language interruption ~C(=03H) 1

Conditions: 1. Always executable.
2. Not executable during inputs from the programming box.
3. Not executable during inputs from the programming box, and while the program is
running.
4. Not executable during inputs from the programming box, while the program is running,

and when specific restrictions apply.

Online Command List @ 12-3 I

1.2 I Online command list: In alphabetic order
Command Option Meaning Condition
ABSRST Acquire absolute reset status 1
ACCESS Acquire access level 1
ARM Acquire arm status 1
BREAK Acquire break point status 1
CHKTRQ Acquire main group current torque value 1
CONFIG Acquire controller configuration 1
EMG Acquire emergency stop status 1
EXELVL Acquire execution level 1
HAND Acquire selected hand status 1
LANGUAGE Acquire display language 1
MEM Acquire remaining memory capacity 1
MOD Acquire mode indication 1
MSG [m, n] Acquire error message 1
OPSLOT Acquire option slot status 1
0 ORIGIN Acquire return-to-origin status 1
' SELFCHK Acquire error status by self-diagnosis 1
SEQUENCE Acquire sequence execution flag status 1
SERVO Acquire servo status 1
SHIFT Acquire selected shift status 1
SPEED Acquire AUTO/MANUAL speed status 1
TASKS Acquire task number 1
TSKMON Acquire task operation status 1
UNIT Acquire point position status 1
VER Acquire version 1
WHERE Acquire current main robot position (pulse coordinate) 1
WHRXY Acquire current main robot position (XY coordinate) 1
Shift expression Acquire shift data 1
Point expression Acquire point data 1
Numeric expression Acquire numeric data 1
Character string expression Acquire character string data 1
~C (=03H) Execution language interruption 1
ABSADJ k,0 ork, 1 (k:1-6) Move to absolute reset position Main robot 3
ABSRESET k(k: 1-6) Absolute reset on each axis Main robot 3
ACCESS k Set access level 3
ARMTYP m, k Set main hand system 3
ATTR <program>TO s (s : RW/RO) Change program attribute 3
AUTO Change mode: AUTO mode 3
BREAK m, n (m: break point No., n: line) | Set break point 4
CHGTSK Switch execution task 3
<programl1> to <program2> Copy program 1 to program 2 3
COPY PCm-PCn TO PCk Copy point comments "m - n" to point comments "k" 3
Pm-Pn TO Pk Copy points "m - n" to points "k" 3
DATE Check or set the date 2
EMGRST Reset internal emergency stop flag 1
<program> Delete program 3
ERA PCm-PCn Delete point comments "m" to "n" 3
PLm Delete pallet "m" 3
Pm-Pn Delete points "m" to "n" 3
EXELVL k Execution level 3
INCH ktork-(k:X,Y,Z, R, A, B) |Manual movement (inching) Main robot 3

I 12-4 @ Chapter 12 Online commands

Command Option Meaning Condition

ALL Initialize all data (MEM+PRM) 3

CMU Initialize communication parameter 3

HND Initialize hand data 3

LOG Initialize error history 3

MEM Initialize all memory data except parameters 3

INIT PCM Initialize point comment data 3

PGM Initialize program data 3

PLT Initialize pallet data 3

PNT Initialize point data 3

PRM Initialize parameter data 3

SFT Initialize shift data 3

JOG ktork-(k:X,Y,Z,R, A, B) |Manual movement (jog) Main robot 3

LANGUAGE [k Set display language 3

MANUAL Change mode: MANUAL mode 3

MSGCLR Setting Clear line message 1

MSPEED k (k: 1-100) Change manual speed Main robot 3

NEXT Execute program to next line 4

ORGRTN k(k:1-6) Return-to-origin ~ Main robot 3

PADDR Acquire program execution status 4

PROGRAM Change mode: PROGRAM mode 3

READ Read data 2

REN <program 1> TO <program 2> [Change program name from "1" to "2" 3

RESET Reset program 4

RUN Execute program 4

SEQUENCE |k Set sequence execution flag 3

SKIP Program: Skip one line 4

STEP Program: Execute one line 4

STOP Stop program 2

SWI <program> Switch programs 4

SYSTEM Change mode: SYSTEM mode 3

TEACH m (m: point number) Point data teaching Main robot 3

TIME Check or set time 2

UNIT k Set point unit system 3

WRITE Write data 2

- Robot language executable independently 4
Conditions: 1. Always executable.

2. Not executable during inputs from the programming box.

3. Not executable during inputs from the programming box, and while the program is

4. Not executable during inputs from the programming box, while the program is running,

running.

and when specific restrictions apply.

Online Command List @ 12-5 I

Key operation

2.1 I Changing the mode

Command format

@AUTO[cr/If]
@PROGRAM[cr/If]
@MANUAL[cr/If]
@SYSTEM][cr/If]

Response format

OK[cr/If]

M NOTE Changes the mode.

e Basically, a response "OK" AUTO
appears when an instruction

Changes to AUTO mode.
Changes to PROGRAM mode.
Changes to MANUAL mode.
Changes to SYSTEM mode.

. . PROGRAMcccovieiiieieee
from key operation online
command is received. MANUALoociiiiiiiiieieeeen
® An error message responds if SYSTEMccooiiiiiiiiiiiii
online commands cannot be
executed due to error. SAMPLE
Command: @AUTO[cr/1f]
Response: OKJcr/If]

I 12-6 @ Chapter 12 Online commands

2.2 I AUTO mode operation

I 1. Program execution

Command format

@RESET(cr/If]
@RUNT[cr/If]
@STEP[cr/If]
@SKIP[cr/lf]
@NEXT[cr/If]
@STOP[cr/If]

Response format

OK[cr/If]
M NOTE Executes or stops the current program.
* Programs can be executed only RESET....coovivieieeeeeeeeeeenna Resets the program.
in AUTO mode. RUN Lo Executes the program.
STEP..oiiieieieieeeeee e Executes one line of the program. (Enters the subroutine.)
SKIP ..ot Skips one line of program. (Skips one line of the
subroutine.)
NEXT oo Executes to the next line. (Executes the subroutine as one
line.)
STOP ..ot Stops the program.
SAMPLE
Command: @RUN][cr/If]
Response: OK[cr/If]

Key operation @ 12-7 I

I 2. Setting a break point

Command format

@BREAK m,n[cr/If]

Response format

OK{[cr/If]

M NOTE 31 OO Break point number: 1 to 4
© Programs can be executed only Dttt Line number to set a break point: 1 to 9999
in AUTO mode.
Sets a break point used to temporarily stop execution of the program.
When setting a break point in the COMMON program, the line number should be +10000.

Break point is cleared when 0 is specified as the line number.

SAMPLE

Command: @BREAK 1,28[cr/1f]
Response: OK[cr/If]

I 3. Switching the execution task

Command format

@CHGTSK [cr/If]

Response format

OK[cr/If]

M NOTE Switches the selected task while program execution is stopped.
® Programs can be executed only The ongoing task is switched to another task not being executed in order from task 1 — 2 — ...
in AUTO mode.

—8—1.

SAMPLE

Command: @CHGTSK[cr/If]
Response: OK[cr/If]

I 12-8 @ Chapter 12 Online commands

23 I MANUAL mode operation

1. Changing the MANUAL mode speed

Command format

@MSPEED k[cr/If]

Response format

OK[cr/If]

M NOTE K oo Manual movement speed: 1 to 100
e The MANUAL mode speed

can be changed only in 5
MANUAL mode. Changes the MANUAL mode movement speed.

MSPEED: Changes manual movement speed for main robot.

SAMPLE
Command: @MSPEED 50[cr/1f]
Response: OK[cr/If]

I 2. Absolute reset

Command format

@ABSADIJ kK flct/If]
@ABSRESET k[cr/If]

Response format

OK{[cr/If]
M NOTE Koot Designated axis: 1 to 6
* The MANUAL mode speed L e Movement direction / 0: + direction, 1: - direction
can be changed only in
MANUAL mode.
Performs absolute reset.
ABSADJ ... Moves the main robot axis to an absolute reset position.
ABSRESET.....cccooviiiieieiieine Performs absolute reset on the main robot axis.
SAMPLE
Command: @ABSADIJ 1,0[cr/If]
Response: OK{[cr/If]

e ABSADJ can be used at mark format axes.

Key operation @ 12-9

I 3. Return-to-origin operation

Command format

@ORGRTN Kk[cr/If]

Response format

OK{[cr/If]

K Specified axis: 1 to 6

M NOTE

e The MANUAL mode speed Performs return-to-origin on the specified axis.

can be changed only in L
g y Performs return-to-origin on an incremental mode axis when return-to-origin is executed.

MANUAL mode.
Performs absolute search on a semi-absolute mode axis when return-to-origin is executed.
ORGRTN ..ot Performs return-to-origin on the specified main robot axis.
~ote SAMPLE
e Response is transmitted after Cammimigk @ORGRTN 1[cr/lf]

movement is complete.
Response: OK[cr/If]

I 4. Manual movement: inching

Command format

@INCH km[cr/If]

Response format

OK{[cr/If]
M NOTE Ko Specified axis: X, Y, Z,R, A, B
e The MANUAL mode speed Moo Movement direction / +, -
can be changed only in
MANUAL mode.

Manually moves (inching motion) the specified axis. The robot performs the same motion as
when moved manually in inching mode with the programming box jog keys (moves a fixed

distance each time a jog key is pressed).

INCH ..o Moves the specified main robot axis in inching mode.
SAMPLE
Command: @INCH X+ cr/1f]
Response: OK[cr/If]

I 12-10 @ Chapter 12 Online commands

I 5. Manual movement: jog

Command format

@JOG km[cr/If]

Response format

OK[cr/If]

M NOTE Specified axis: X, Y, Z, R, A, B

* Response is transmitted after Tt Movement direction / +, -
movement is complete.

Manually moves (jog motion) the specified axis. The robot performs the same motion as
when holding down the programming box jog keys in manual mode.
After the robot has started moving, it will stop when any of the following occurs.
* When software limit was reached.
* When interlock signal was turned off.

* When STOP key on the programming box was pressed.

* When an online command (*C (=03H)) to interrupt execution was input.

JOG..iiiiiieieteee Moves the specified main robot axis in jog mode.
SAMPLE
Command: @JOG X+{cr/lf]
Response: OK[cr/If]

I 6. Point data teaching

M NOTE Command format

e The MANUAL mode speed
can be changed only in
MANUAL mode.

@TEACH mmmm[cr/1f]

Response format

OKJcr/If]

TN <o Point number for registering point data: 0 to 9999

Registers the current robot position as point data for the specified point number. If point data is
already registered in the specified point number, then that point data will be overwritten. Point
data is registered in the same format as the currently selected unit system.
TEACH.....ccoiiiiieieee Registers the current position of the main group as point

data for the specified point number.

SAMPLE
Command: @TEACH 100[cr/1f]
Response: OK[cr/If]

Key operation @ 12-11 I

Utility operation

3.1 I Acquiring the program execution status

Command format

@PADDR([cr/If]

Response format

<program name> Tn, m, k[cr/If]

M NOTE <program Name> Currently selected program name
e The current program execution T i Current task number: 1 to 8
i 1 .
status can be acqu.lred ony Mttt Current program line number: 1 to 9999
when the program is stopped
during AUTO mode. Ko Current task priority level:17 to 47

Acquires the current program execution status.

 If the COMMON program is used, the response format might become as follows.

<COMMON>/<program name>, Tn,m,k[cr/1f]

SAMPLE
Command: @PADDR [cr/If]
Response: <TEST>,T3,134,32[ct/If]

3.2 I Copy
I 1. Copying a program

Command format

COPY <program name 1> TO <program name 2> [cr/1f]

Response format

@COPY <program name 1> TO <program name 2> [cr/If]

Values <program name 1>c....... Program name in copy source (8 characters or less
consisting of alphanumeric characters and underscore)
<program name 2> Program name in copy destination (8 characters or less

consisting of alphanumeric characters and underscore)

Copies the contents of program name 1 under program name 2.

SAMPLE
Command: @COPY <TEST1> TO <TEST2>[cr/If]
Response: OKJcr/If]

I 12-12 @ Chapter 12 Online commands

I 2. Copying point data

Command format

@COPY Pmmmm-Pnnnn TO Pkkkk[cr/If]

Response format

OK[cr/If]
TN <o Top point number in copy source: 0 to 9999
NN .o Last point number in copy source: 0 to 9999
KKKK .o Top point number in copy destination: 0 to 9999

W/ F 0ty Copies the point data between Pmmmm and Pnnnn to Pkkkk.

SAMPLE

Command: @COPY P101-P200 TO P1101[cr/If]
Response: OK[cr/If]

I 3. Copying point comments

Command format

@COPY PCmmmm-PCnnnn TO PCkkkk[cr/If]

Response format

OK[cr/If]
TN <o Top point comment number in copy source: 0 to 9999
DNNN e Last point comment number in copy source: 0 to 9999
KKKK oo Top point comment number in copy destination: 0 to 9999

Copies the point comments between PCmmmm and PCnnnn to PCkkkk.

SAMPLE
Command: @COPY PC101-PC200 TO PC1101[cr/If]
Response: OK{[cr/If]

Utility operation @ 12-13 I

3.3 I Erase

I 1. Erasing a program

Command format

@ERA <program name> [cr/If]

Response format

OK{[cr/If]

Values <program Name> Program name to be erased (8 characters or less consisting

of alphanumeric characters and underscore)

Erases the designated program.

SAMPLE
Command: @ERA <TEST1>[cr/If]
Response: OK[cr/If]

I 2. Erasing point data

Command format

@ERA Pmmmm-Pnnnn[cr/If]

Response format

OK{[ecr/If]
MMM <o Top point number to be erased: 0 to 9999
1111101 1 DSOS Last point number to be erased: 0 to 9999

Erases the point data between Pmmmm and Pnnnn.

SAMPLE
Command: @ERA P101-P200[cr/If]
Response: OK[cr/If]

I 12-14 @ Chapter 12 Online commands

I 3. Erasing point comments

Command format

@ERA PCmmmm-PCnnnn[cr/If]

Response format

OK[cr/If]
TN <o Top point comment number to be erased: 0 to 9999
NN .o Last point comment number to be erased: 0 to 9999

Erases the point comments between PCmmmm and PCnnnn.

SAMPLE

Command: @ERA PC101-PC200[cr/If]
Response: OK{[cr/If]

I 4. Erasing pallet data

Command format

@ERA PLm[cr/If]

Response format

OK[cr/If]

MMt Pallet number to be erased: 0 to 19

Erases the PLm pallet data.

SAMPLE
Command: @ERA PL1[cr/If]
Response: OK{[cr/If]

Utility operation @ 12-15 I

34 I Rename program name

Command format

@REN <program name 1> TO <program name 2> [cr/1f]

Response format

OK{[cr/If]
<program name 1> Program name before renaming (8 characters or less
consisting of alphanumeric characters and underscore)
<program name 2> Program name after renaming (8 characters or less

consisting of alphanumeric characters and underscore)

Changes the name of the specified program.

SAMPLE

Command: @REN <TEST1> TO <TEST2>[cr/If]
Response: OK[cr/If]

3.5 I Changing the program attribute

Command format

@ATTR <program name> TO s[cr/If]

Response format

OK{[cr/If]
<program Name™c.ceceeeeuene Program name to change the attribute (8 characters or less
consisting of alphanumeric characters and underscore)
S ettt Attribute / RW: read & write, RO: read only

Changes the attribute of the designated program.

SAMPLE
Command: @ATTR <TEST1> TO RO[cr/If]
Response: OK[cr/If]

I 12-16 @ Chapter 12 Online commands

3.6 B Initialize

I 1. Initializing the memory

Command format

@INIT <memory area>[cr/If]

Response format

OK[cr/If]

<MEMOTY area™ccoceververveanenn One of the following memory areas is specified.
PGM .t Initializes the program area.
PNT .o Initializes the point data area.
SET o Initializes the shift data area.
HND .o Initializes the hand data area.
PLT i Initializes the pallet data area.
PCM .o Initializes the point comment area.
MEM ..o Initializes the above areas (PGM ... all data up to PCM).
PRM oo Initializes the parameter area.
ALL ot Initializes all areas (MEM+PRM).

Initializes the memory.

SAMPLE

Command: @INIT PGM[cr/If]
Response: OK{[cr/If]

I 2. Initializing the communication port

Command format

@INIT CMU[cr/If]

Response format

OK{[cr/If]

Initializes the communication port parameters.
For information about the communication port initial settings, refer to the Controller user's

manual.

SAMPLE

Command: @INIT CMU[cr/If]
Response: OK[cr/If]

Utility operation @ 12-17 I

I 3. Initializing the error log

Command format

@INIT LOG(cr/1f]

Response format

OK{[cr/If]

Initializes the error log.
SAMPLE

Command: @INIT LOG[cr/If]
Response: OKJer/If]

3.7 I Setting the display language

Command format

@LANGUAGE k[cr/If]

Response format

OK{[cr/If]

Ko Display language / 0: Japanese, 1: English

Sets the controller display language.

SAMPLE
Command: @ LANGUAGE 1[cr/1f]
Response: OKJer/If]

I 12-18 @ Chapter 12 Online commands

3.8 I Setting the coordinates and units in MANUAL mode

Command format

@UNIT k[cr/If]

Response format

OK[cr/If]

Ko Unit definition

0 : pulses
1 : mm or degrees

2 : mm or degrees in tool coordinate mode

Select the display unit to indicate current position.
k=2 (tool coordinate mode) can be selected only when the hand attached to the R-axis of a
SCARA robot is selected.

SAMPLE

Command: @UNIT 1[cr/If]
Response: OK[cr/If]

3.9 I Clearing the programming box error message

Command format

@MSGCLR[cr/If]

Response format

OK[cr/If]

Clears the error messages displayed on the programming box.

SAMPLE
Command: @MSGCLR[cr/If]
Response: OK[cr/If]

Utility operation @ 12-19 I

3.10 I Setting the UTILITY mode

I 1. Setting the access level

Command format

@ACCESS K[cr/If]

Response format

OK{[cr/If]
REQICE
Ko Access level: 0 to 3
e For details regarding the access
level, refer to the Controller
user's manual. \I(ENNITY Sets the access level.
SAMPLE
Command: @ ACCESS 1[cr/If]
Response: OK[cr/If]

I 2. Setting the execution level

Command format

@EXELVL k[cr/If]

Response format

OK{[cr/If]
REFg?Q\ICE
Ko Execution level: 0 to 8
e For details regarding the
execution level, refer to the
Controller user's manual. W/ E 0T Sets the execution level.
SAMPLE
Command: @ EXELVL 1[cr/If]
Response: OK[cr/If]

I 12-20 @ Chapter 12 Online commands

I 3. Setting the sequence program execution flag

Command format

@SEQUENCE K[cr/If]

Response format

OK[cr/If]

Values K e Execution flag / 0: disable, 1: enable, 3: enable (DO reset)

NI F 00T Sets the sequence program execution flag.

SAMPLE
Command: @ SEQUENCE 1[cr/If]
Response: OK[cr/If]

I 4. Setting the SCARA robot hand system

Command format

@ARMTYP m,k[cr/If]

Response format

OK[cr/1f]
1 DU Current hand system / 0: right-handed system, 1: left-handed system
Koo Hand system at program reset / 0: right-handed system, 1: left-handed system
Sets the SCARA robot hand system.
ARMTYP ..cocoviiis Changes the main robot hand system.
SAMPLE
Command: @ ARMTYP 0, 0 [cr/1f]
Response: OK{[cr/If]

I 5. Resetting the internal emergency stop flag

Command format

@EMGRST][cr/1f]

Response format

OK[cr/If]

Resets the internal emergency stop flag.

SAMPLE
Command: @ EMGRST([cr/If]
Response: OK{[cr/If]

Utility operation @ 12-21

3.11 I Checking and setting the date

Command format

@DATE[cr/1f]

Response format

current date: yy/mm/dd[cr/1f]
enter new date: (YY/MM/DD)|cr/If]

yy/mm/ddooooviiiiie, Current date (year, month, day)
VY cetententennenie ettt Lower 2 digits of the year (00 to 99)
11704 DRSSP Month (01 to 12)
Ad.ee Day (01 to 31)

Acquires the current date in the controller and sets a new date.

Command format

aa/bb/cc[cr/1f]
M NOTE
*To change only the OK{[cr/If] or "error message" [cr/If]

year or month, the slash
(/) following it can be omitted.

Example: A2/DD/CC..cuiiiiieee Date to be set. (year/month/day)

To set the year to 2007, enter QA et Lower 2 digits of the year (00 to 99) *This can be omitted.
07[cr/If]. DD Month (01 to 12) *This can be omitted.

To set the month to June, enter CC aterterrerereeresreereeteeteereessesaeneenaens Day (01 to 31) *This can be omitted.

/06[cr/1f].

» The currently set values are used for the omitted items.

 If only [cr/lf] is transmitted, then the date remains unchanged.
 If an improbable date is entered, then "5.2: Data error" occurs.

SAMPLE 1

To change only the day,
//15[cr/1f] Day is set to 15th.

SAMPLE 2

Command: @DATE[cr/1f]
Response: current date: 07/05/10[cr/If]
enter new date: (YY/MM/DD)|[cr/If]
Transmission: 07/05/11[cr/If]
Response: OK[cr/If]

I 12-22 @ Chapter 12 Online commands

3.12 I Checking and setting the time

Command format

@TIME[cr/1f]

Response format

current time: hh:mm:ss[cr/If]
enter new time: (HH:MM:SS)[cr/If]

hh:immiss ..cooooveiniiiniiice Current time
BB hour (00 to 23)
111704 DO minute (00 to 59)
SS ettt second (00 to 59)

Acquires the current time in the controller and sets a new time.

Command format

aa:bb:cc[er/If]

Response format

OK{[cr/If] or "error message" [cr/1f]

A2:DDICC. i Time to be set.
A 1eveereeereneetere e ere e hour (00 to 23) *This can be omitted.
BB minute (00 to 59) *This can be omitted.
CC ttrrrerreteeteete et e s e saesresreeaeeneeneas second (00 to 59) *This can be omitted.

* The currently set values are used for the omitted items.

* If only [cr/If] is transmitted, then the time remains unchanged.
 Ifan improbable time is entered, then "5.2: Data error" occurs.

SAMPLE 1

To change only the minute,
:20:[cr/If] Minute is set to 20 minutes.

SAMPLE 2

Command: @TIME][cr/If]
Response: current time: 10:21:35[cr/If]
enter new time:(HH/MM/SS)[cr/1f]
Transmission: 10:25:00[cr/If]
Response: OK[cr/If]

Utility operation @ 12-23 I

“ Data handling

4.1

I Acquiring the display language

4.2

Command format

@?LANGUAGE]cr/If]

Response format

m[cr/1f]

Moo Display language / JAPANESE or ENGLISH

Acquires the language for displaying messages.

SAMPLE

Command @?LANGUAGE][cr/If]
Response JAPANESE[cr/If]

I Acquiring the access level

@
REFERENCE

e For a detailed description of
the access level, refer to the
Controller user’s manual.

Command format

@?ACCESS[cr/If]

Response format

LEVELK[cr/If]

Koo Access level: 0to 3

Acquires the access level.

SAMPLE

Command @?ACCESS[cr/If]
Response LEVEL2[cr/If]

I 12-24 @ Chapter 12 Online commands

4.3 I Acquiring the arm status

Command format

@?ARM[cr/1f]

Response format

m1,m2[cr/If]
Values Main robot
M Current arm setting status / RIGHTY: right-handed system,
LEFTY: left-handed system
M2 i Arm setting status at program reset / RIGHTY: right-

handed system, LEFTY: left-handed system

Acquires the arm setting status.

SAMPLE

Command @?ARM[cr/If]
Response RIGHTY,RIGHTY [cr/If]

4.4 I Acquiring the break point status

Command format

@?BREAK[cr/If]

Response format

k1,k2,k3 k4[cr/If]

Values KO Line number on which break point "n" is set: 1 to 9999

Acquires the break point status.
When kn is 0, this means no break point is set.
When a break point is set in the COMMON program, the line number shows +10000.

SAMPLE
Command @?BREAK[cr/If]
Response 12,35,0,0[cr/1f]

Data handling @ 12-25 I

4.5 I Acquiring the controller configuration status

Command format

@?CONFIG[cr/If]

Response format

mr-ma-r-01-02[cr/If]

Values INT et Main robot name
10T H USSR Main group axis setting (Auxiliary axes are shown

separated by "+".)

Tttt ettt et Standard interface unit
Ol i Option unit
02 ittt Other setting

Acquires the controller configuration status.

SAMPLE

Command @?CONFIG[cr/1f]
Response R6YXH250-XYZR-SRAM/196kB,DIO N-DIO N(1/2)[ct/If]

4.6 I Acquiring the execution level

Command format

@?EXELVL[cr/If]

Response format

LEVELK[cr/If]
Koo Execution level: 0 to 8

@ Acquires the execution level.
REFERENCE

e For a detailed description of SAMPLE

the execution level, refer to the
’ 2
Controller user’s manual. Gommand IR L
Response LEVEL2[cr/If]

I 12-26 @ Chapter 12 Online commands

4.7 I Acquiring the mode status

Command format

@?MOD[cr/If]

Response format

s[cr/If]

S ettt ere e Mode status

S
English Japanese Meaning
AUTO AN, AUTO mode
PROGRAM pA=EZA N PROGRAM mode
MANUAL Ta ko MANUAL mode
SYSTEM SRT A SYSTEM mode

Acquires the controller mode status.

SAMPLE

Command @?MOD|cr/1f]
Response AUTO[cr/If]

Data handling @ 12-27 I

4.8 I Acquiring the message

Command format 1

@?MSG][c/r]

Response format 1

gg,bb: msg[c/r]or OK[c/r]

Command format 2

@MSG m,n[cr/If]

Response format 2

yy/mm/dd,hh:mm:ss gg.bb:msg[cr/If]
yy/mm/dd,hh:mm:ss gg.bb:msg[cr/If]

OK{[cr/If]

8 i Error group

DD Error category

IS vttt Error message

1 DO Top number to be acquired: 1 to 500

Thaiieiieiee et neas Last number to be acquired: 1 to 500

yy/mm/dd ..o Date (year/month/day) when error occurred
hh:mmess ..o, Time (hour:minute:second) when error occurred

Command format 1 acquires information on the message line displayed on the programming
box.

Command format 2 acquires error history message.

SAMPLE 1

Command @?MSGcr/1f]
Response 5.30: Undefined identifier[ct/If] or OK[cr/If]

SAMPLE 2

Command @?MSG 1,5[cr/If]

Response 01/10/28,14:20:20 5.30: Undefined identifier[cr/If]
01/10/28,14:18:34 5.1: Syntax error[ct/If]
01/10/28,14:10:54 5.30: Undefined identifier[cr/If]
01/10/28,14:05:40 14.22: No start code(@)[cr/1f]
01/10/28,14:05:00 5.52: Command doesn’t exist[cr/1f]
OK[cr/If]

I 12-28 @ Chapter 12 Online commands

4.9 I Acquiring return-to-origin status

Command format

@?ORIGIN[cr/1f]

Response format

COMPLETE][cr/If] or INCOMPLETE][cr/If]

Acquires return-to-origin status.
Response formatc........ COMPLETE: Return-to-origin is complete.

INCOMPLETE: Return-to-origin is incomplete.

SAMPLE

Command @?0RIGIN[cr/If]
Response COMPLETE[cr/If]

4.10 I Acquiring the absolute reset status

Command format

@?ABSRST[cr/If]

Response format

COMPLETE][cr/If] or INCOMPLETE, xxxxxxxx[cr/1f]

XXXXXXXX cvvevverrerversessensesseeseeseeneas Absolute reset status of each axis (axis 8 to axis 1 from the
left)
0: Incomplete
1: Complete
9: Not applicable

Acquires the absolute reset status.
Response formatccccceeeee COMPLETE: Return-to-origin is complete.
INCOMPLETE: Return-to-origin is incomplete.

SAMPLE

Command @?ABSRST[cr/If]
Response INCOMPLETE,99991011[cr/1f]

Data handling @ 12-29 I

4.11 I Acquiring the servo status
@?SERVO[cr/If]
OFF xxxxxxxx [cr/If] or ON,xxxxxxxx[cr/If]
XXXXXXXX c1verveveereereeneeseersessensennes Status of each axis (axis 8 to axis 1 from the left)
0: Mechanical break ON + dynamic break ON
1: Servo ON
2: Mechanical break OFF + dynamic break OFF
9: Not applicable
Acquires the servo status.
Response outputs are defined as follows:
ON oo Motor power is ON.
OFF ..t Motor power is OFF.
SAMPLE
Command @?SERVO[cr/If]
Response ON,99991011[cr/If]
4.12 I Acquiring the sequence program execution status

Command format

@?SEQUENCE[cr/If]

Response format

1. ENABLE,s[cr/If]
2. ENABLE(RST.DO),s[cr/If]
3. DISABLE[cr/If]

S ettt The sequence program's execution status is indicated as
"RUNNING" or "STOP".
RUNNING ...t Program execution is in progress.
STOP ..o Program execution is stopped.

WIEEINTY Acquires the sequence program execution status.

Response output means as follows:

ENABLE......ccoooviiiiiciie. Enabled
ENABLE(RST.DO)cccceeueee Enabled and output is cleared at emergency stop
DISABLEccovviiiiciie. Disabled

SAMPLE

Command @? SEQUENCE]cr/If]
Response DISABLE(cr/If]

I 12-30 @ Chapter 12 Online commands

4.13 I Acquiring the speed setting status

Command format

@?SPEED][cr/1f]

Response format

ma,mm][cr/1f]

Main group

M@ etietieeieiieieeeeesee e sre e eeeeeeeneas Automatic movement speed setting status: 1 to 100

TN Manual movement speed setting status: 1 to 100

Acquires the speed setting status.

SAMPLE

Command @?SPEED(cr/If]
Response 100,50[cr/If]

4.14 I Acquiring the point coordinates and units

Command format

@?UNIT[cr/If]

Response format

s[cr/If]

s: Coordinates and units PULSE: joint coordinate in "pulse" units
MM: Cartesian coordinate in "mm" or “deg.” units
Acquires the coordinates and units for point data.

SAMPLE

Command @?UNIT|cr/If]
Response PULSE[cr/If]

Data handling @ 12-31 I

4.15 I Acquiring the version information

Command format

@?VER[cr/If]

Response format

cv,cr-mv-d1/d2/d3/d4/d5/d6/d7/d8 {-ov} [cr/1f]

CV ettt Host version number (YRC, RCX)
Cl eutentenieteteete et ete e eee e e eneeaeneeaens Host revision number (Rxxxx)
TNV et Programming box version number (Vx.xX)
A2(2:1-8) e, Driver version number (VX.XX)
OV ettt Option unit version number (VX.xx)

WIEEINITY Acquires the version information.

SAMPLE

Command @?VER[cr/1f]
Response ~ V8.02,R1021-V5.10-V1.01/V1.01/V1.01/V1.01/-===~/=====/===-/-=/[ct/If]

4.16 I Acquiring the current positions

I 1. Acquiring the current positions on pulse unit coordinates

Command format

@?WHERE][cr/If]

Response format

[POSIxXXXXX yyyyyy zzzzzz rrrrrr aaaaaa bbbbbb[cr/If]

XXXXXXK 1vvenvenvesensesneeneeseeneensensenses Current position of axis 1 in "pulse" units
VYYYYY cerrertavaneaneneenenieeaeeneeseneenens Current position of axis 2 in "pulse" units
bbbbbb....c.oeiii Current position of axis 6 in "pulse" units

Acquires the current positions.
WHERE: Acquires the current positions of main group axes.
SAMPLE

Command @?WHERE][cr/If]
Response [POS] 1000 2000 3000 -40000 0 Ofcr/If]

I 12-32 @ Chapter 12 Online commands

M NOTE

e The "XY coordinate system
current position (including
extended setting) acquisition"
function is only available in
software version 1.66M or
higher.

I 2. Acquiring the current positions on XY coordinates

Command format

@?WHRXY cr/If]

Response format

[POSIxxxxXX Yyyyyy zzzzzz rrrrrr aaaaaa bbbbbb[cr/If]

XXXXXX covvvrenrenrensensensensensessesesens Current position of axis 1 in "mm" or "deg" units
VYYYYY tevverrenrevenrensensensessesseeseeneas Current position of axis 2 in "mm" or "deg" units
bbbbbD ... Current position of axis 6 in "mm" or "deg" units

Acquires the current positions.
WHRXY: Acquires the current positions of main group axes.

SAMPLE

Command @?WHRXY [cr/If]
Response [POS] 100.00 200.00 300.00 -40.00 0.00 0.00[ct/If]

I 3. XY coordinate system current position (including extended setting) acquisition

Command format

@?YWHRXYEX[cr/If]

Response format

[POS]xXxXXXX Yyyyyyy zzzzzz rrrrrr aaaaaa bbbbbb n xr yr[cr/If]

XXXXXX covrveneeneneenennens Axis 1 current position in "mm" units.
VYYYYY terveavenrennenenes Axis 2 current position in "mm" units.
bbbbbb........ccevvennee Axis 6 current position in "mm" units.
| DR SCARA robot extended hand system flag (*1)

1: Right-handed system; 2: Left-handed system
D' FRUTURTRRRPRTRTO Extended setting's X-arm rotation information (*2).
0: The "mm — pulse" converted angle data x (*3) range is —180.00° <x <= 180.00°.
1: The "mm — pulse" converted angle data x (*3) range is 180.00° <x <= 540.00°.
-1: The "mm — pulse" converted angle data x (*3) range is —540.00° < x <=-180.00°.
) ST Extended setting's Y-arm rotation information (*2).
0: The "mm — pulse" converted angle data y (*3) range is —180.00° <y <=180.00°.
1: The "mm — pulse" converted angle data y (*3) range is 180.00° <y <= 540.00°.
-1: The "mm — pulse" converted angle data y (*3) range is -540.00° <y <=-180.00°.

Data handling @ 12-33

*1: The hand system flag is "0" on all robots other than the SCARA robot.
*2: The arm rotation information is "0" on all robots other than the R6YXTWS500 robot.
*3: The joint-coordinates-converted pulse data represents each arm's distance (converted to angular data)

from its mechanical origin point.

* The acquired current position data includes additional dedicated R6YXTWS500 information.
WHRXYEX: Acquires the current position of a main group axis.

M NOTE SAMPLE

* The "XY coordinate system (04 @YWHRXYEX
current position (including

extended setting) acquisition” Response ~ [POS] 13.44 206.06 0.00 83.24 0.00 0.0010-1[cr/If]
function is only available in
software version 1.66M or
higher.

4.17 I Acquiring the tasks in RUN or SUSPEND status

Command format

@?TASKS[cr/1f]

Response format

n{,n{,{...} } }[cr/If]

n: Task number...........cccceveneen. 1 to 8 (Task currently run or suspended)

Acquires the tasks in RUN or SUSPEND status.

SAMPLE

Command @?TASKS[cr/If]
Response 1,3,4,6[cr/If]

I 12-34 @ Chapter 12 Online commands

4.18 I Acquiring the tasks operation status

Command format

@?TSKMONT[cr/If]

Response format

nfp, {nfp}, {nfp}, {nfp}, {nfp}, {nfp}, {nfp}, {nfp} [cr/If]

n : Line number being executed in each task 1 to 9999
f: Status of each taskccoceivviiiiiiiiic R: RUN
U: SUSPEND
S: STOP
p : Priority level of each taskc.cccoeoineniinccnnne 17 to 47

Acquires the status of each task in order from Task 1 to Task 8.

SAMPLE

Command @?TSKMON[cr/If]
Response 11R32,,43U32,,,,129R31,[cr/If]

4.19 I Acquiring the shift status

Command format

@?SHIFT[cr/If]

Response format

m|[cr/1f]

Mttt eaeeeaeenns Shift number selected for main robot: 0 to 9

Acquires the shift status.

SAMPLE

Command @?SHIFT[cr/1f]
Response 1[cr/If]

Data handling @ 12-35 I

4.20 I Acquiring the hand status

Command format

@?HANDJ[cr/If]

Response format

m[cr/1f]

It Hand number selected for main robot: 0 to 3

Acquires the hand status.

SAMPLE

Command @?HANDJcr/If]
Response 1[cr/If]

4.21 I Acquiring the remaining memory capacity

Command format

@?MEM[cr/If]

Response format

k/m[cr/1f]
K Remaining source area (unit: bytes)
11 DRSS Remaining object area (unit: bytes)

Acquires the remaining memory capacity.

SAMPLE

Command @?MEM][cr/If]
Response 102543/1342[cr/If]

I 12-36 @ Chapter 12 Online commands

4.22 I Acquiring the emergency stop status

Command format

@?EMGcr/If]

Response format

k[cr/1f]

Values Ko Emergency stop status / 0: normal operation, 1: emergency

stop

WIEEVNTY Acquires the emergency stop status by checking the internal emergency stop flag.

SAMPLE

Command @?EMG[cr/If]
Response 1[cr/If]

4.23 I Acquiring the error status by self-diagnosis

Command format

@?SELFCHK[cr/If]

e When no error was found
Response format

OK[cr/If]

e [f an error occurred

Response format

m.n: "message" [cr/1f]

END [cr/1f]

Values Mot Error group

| OO PO P TP PPNt Error category

"MESSAZE" .t Show error message.

Acquires the error status by self-diagnosis that checks for errors inside the controller.

SAMPLE

Command @?SELFCHK[cr/If]
Response 12.1: Emg.stop on[cr/If]
ENDJ[cr/If]

Data handling @ 12-37 I

4.24 I Acquiring the option slot status

Command format

@?0PSLOT[cr/If]

Response format

OP.1 : <option board name> [cr/If]
OP.2 : <option board name> [cr/If]
OP.3 : <option board name> [cr/If]
OP.4 : <option board name> [cr/If]

Values

Name of option board installed in the controller.
DIO board with NPN specifications (m: board ID)
DIO board with PNP specifications (m: board ID)
CC-Link compatible board

DeviceNet compatible board

Profibus compatible board

Ethernet compatible board

No option board is installed.

Incompatible board is installed.

Acquires the option slot status by checking the option boards.

SAMPLE

Command: @?0PSLOT[cr/If]

Response: OP.1: DIO_N2[cr/If]
OP.2: DIO_Nl[cr/If]
OP.3: no board[cr/If]
OP.4: CCLnk [cr/If]

I 12-38 @ Chapter 12 Online commands

4.25 I Acquiring various values

I 1. Acquiring the value of a numerical expression

Command format

@? "numerical expression" [cr/1f]

Response format

"numerical value" [cr/1f]

Acquires the value of the specified numerical expression.
The numerical expression's value format is "decimal" or "real number".
SAMPLE 1

Command: @?SQR(100*5)[cr/1f]
Response: 2.23606E01[c/1f]

SAMPLE 2
Command: @?LOCX(WHERE)[cr/1f]
Response: 102054 cr/1f]

I 2. Acquiring the value of a character string expression

Command format

@? "character string expression" [cr/1f]

Response format

"character string " [cr/1f]

Acquires the value (character string) of the specified character string expression.

SAMPLE

If AS="ABC" and B$="DEF"
Command: @?A$+B$+"123"[cr/If]
Response: ABCDEF123[cr/If]

Data handling @ 12-39

I 3. Acquiring the value of a point expression

Command format

@? "point data expression" [cr/If]

Response format

"point data" [cr/1f]

Acquires the value (point data) of the specified point expression.

SAMPLE
Command: @?P1+WHRXY [cr/If]
Response: 10.41 -1.60 52.15 3.00 0.00 0.00 O[cr/lf]

I 4. Acquiring the value of a shift expression

Command format

@? "shift expression" [cr/If]

Response format

"shift data" [cr/If]

Acquires the value (shift data) of the specified shift expression.

SAMPLE
Command: @?s1[cr/lf]
Response: 25.00 12.60 10.00 0.00[cr/If]

I 12-40 @ Chapter 12 Online commands

M NOTE

e For more information about
files, refer to the earlier Chapter
11 "Data file description".

I Data readout processing

Command format

@READ <readout file> [cr/If]

Response format

Response output depends on the designated readout file.

Values
Meaning

<readout file>cccooeiieinne Designate a readout file name.

Reads out the data from the designated file.

Online commands that are input through the RS-232C port have the same meaning as the
following command.

* SEND <readout file> TO CMU

Commands via Ethernet have the same meaning as the following command.

* SEND <readout file> TO ETH

Type Readout file name Definition format
All Separate file
All files ALL
Program PGM <bbbbbbbb>
Point data PNT Pn
Point comment PCM PCn
User memory
Parameter PRM /ececcee/
Shift definition SFT Sn
Hand definition HND Hn
Pallet definition PLT PLn
Variable VAR ab...by
Variable, constant Array variable ARY ab...by(x)
Constant "cc...c"
Program directory DIR <<bbbbbbbb>>
Parameter directory DPM
Status Machine reference MRF
Error history (log) LOG
Memory size MEM
DI port DI() DIn()
DO port DO() DOn()
MO port MO() MOn()
TO port TO() TOn()
Device LO port LO() LOn()
SI port SI() SIn()
SO port SO() SOn()
SIW port SIW() STWn()
SOW port SOW() SOWn()
Others File end code EOF

a: Alphabetic character
b: Alphanumeric character or underscore ()

¢: Alphanumeric character or symbol

n: Number
x: Expression (Array argument)

y: variable type

SAMPLE

Command:

@READ PGM[cr/If]
@READ P100[cr/If]

Data handling @ 12-41 I

4.27 I Data write processing

Command format

@WRITE <write file> [cr/1f]

Response format

Input request display » ***Input the data! [cr/If]

After input is completed p OK [cr/1f]

M NOTE <write file> .o, Designate a write file name.

e For more information about

files, refer to the earlier Chapter B . . .
10 "Data file description". Writes the data in the designated file.

Online commands that are input through the RS-232C port have the same meaning as the

following command.
* SEND CMU TO <write file>

Commands via Ethernet have the same meaning as the following command.

* SEND ETH TO <write file>

» At the DO, MO, TO, LO, SO, SOW ports, an entire port (DO(), MO(), etc.) cannot be designated as a

WRITE file.

» Some separate files (DOn(), MOn(), etc.) cannot be designated as a WRITE file. For details, see

Chapter 11 "Data File Details".

. Definition format
Type Write file name
All Separate file
All files ALL
Program PGM <bbbbbbbb>
Point data PNT Pn
Point comment PCM PCn
User memory
Parameter PRM /ceceee/
Shift definition SFT Sn
Hand definition HND Hn
Pallet definition PLT PLn
. Variable VAR ab...by
Variable, constant]
Array variable ARY ab...by(x)
DO port DOn()
MO port MOn()
. TO port TOn()
Device
LO port LOn()
SO port SOn()
SOW port SOWn()

a: Alphabetic character
b: Alphanumeric character or underscore ()

c¢: Alphanumeric character or symbol

SAMPLE 1

Command: @WRITE PRM[cr/If]
@WRITE P100[cr/If]

n: Number

x: Expression (Array argument)

y: variable type

I 12-42 @ Chapter 12 Online commands

4.28 I Current torque value acquisition

Command format

@?CHKTRQ k[cr/If]

k ... Axis setting (k=1 to 6).

Response format

n[cr/If]

Dt Current torque value (n =-100 to 100) of the specified axis.

* The plus/minus sign indicates the direction.

* Acquires the current torque value of the specified axis.
M NOTE CHKTRQ: Acquires the current torque value of a main group axis.

e If the specified axis has been
set to "no axis" in the system
generation, or if that axis SAMPLE
uses the YC-Link or a power
gripper, a "5.37: Specification Command:
mismatch" error message Response:
displays and command
execution is stopped.

Data handling @ 12-43 I

Executing the robot language independently

5.1 I Switching the program

Command format

@SWI <program name>[cr/If]

Response format

OK[cr/1f] or LINEx,m,n: "message"

OK ot Program was switched correctly.
LINEx,m,n : "message".............. Error occurred during compiling.
X eeuteteneeneneenee et b ettt Line number on which error occurred
11 ORI Error group
Tttt Error category
"MESSAZE" .o Error message

Switches the program.
* In AUTO mode, the program that is switched to will be compiled.

* In other modes, the program is only switched.

However, when "SEQUENCE" program is designated, a sequence object is created.

SAMPLE 1

In AUTO mode:
Command @SWI <TEST1>[cr/If]
Response Line2,5.39:1llegal identifier[cr/If]

SAMPLE 2

In other modes:
Command @SWI <TEST1>[cr/If]
Response OK[cr/If]

I 12-44 @ Chapter 12 Online commands

5.2 I Other robot language command processing

Command format

@'"robot language"[cr/1f]

Response format

OK[cr/1f] or ***Aborted

OK et Command ended correctly.
**%Aborted

An error occurred.

Robot language commands can be executed.
* Independently executable commands can only be executed.

* Command format depends on each command to be executed.

SAMPLE 1

Command @SET DO(20) [cr/If]
Response OK[cr/If]

SAMPLE 2

Command @MOVE P,P100,S=20[cr/1f]
Response OK[cr/If]

Executing the robot language independently @ 12-45 I

“ Control codes

6.1 I Interrupting the command execution

Command format

AC (=03H)

Response format

*** Aborted

Interrupts execution of the current command.

SAMPLE

Command: @MOVE P,P100,S=20[cr/If]
AC

Response: *** Aborted[cr/If]

I 12-46 @ Chapter 12 Online commands

Chapter 13

10 commands

1 OVETIVIEW ..ttt 13-1
2 10 command format........ccccooerveriininnienienenn 13-1
3 Sending and receiving IO commands................ 13-2
4 JO command list.......ccoceeverieniininiiinienenicnee 13-4
5 10 command description...........cccceeveerueeeennenne 13-5

Using bit information (DI/DO port) for general-purpose input/output allows issuing commands directly

from the PLC. It is now possible to execute commands such as the MOVE command that were impossible

to execute up until now without using the robot program or RS-232C port.

10 command format

When using the IO command, the following functions are assigned to each 10.

I Output: Controller — PLC

Output port Contents
YRC DO26 Execution check output
DO27 Execution in-progress output

I Input: PLC — Controller

Input port Contents
DIO5 10 command execution trigger input
DI2 () Command code
DI3
DI E ; Command data

= |O commands can be executed by using part of the general-purpose input and output. When no
connection is made to the option DIO, then DI4() is always recognized as being OFF.

= |O commands cannot be executed while program execution is in progress (DO13 is ON).

=]O commands cannot be executed simultaneously with online commands.

= O commands assign command codes to be executed to DI2(), and command data to DI3() and
DI4(). These are executed when the DIOS is changed from OFF to ON. The controller processes
the IO commands when they are received and sends execution check results and execution in-progress
information to the PLC via DO26 and DO27.

= Command data added to the IO commands will differ according to the IO command.
For details, refer to Chapter 14 "5 IO command description".

= Data is set in binary code. If the data size is greater than 8 bits, set the upper bit data into the higher
address. (little endian)
* For example, to set 0xOF9F [hexadecimal] (=3999) in the DI3 () and DI4 () ports, set 0xOF [hexadecimal]
in DI4 () and set 0x9F [hexadecimal] in DI3 ().

= The IO command execution trigger input is not accepted when the execution in-progress output is ON.

= The execution in-progress output is ON in the following cases.
* When an IO command is running after receiving an IO command execution trigger input.
* When an 10 command is terminated after receiving an IO command execution trigger input yet a
maximum of 100ms state is maintained when 10 command trigger input is ON.

= The IO command trigger input pulse must always be maintained for 100ms or more during input.
Commands cannot be accepted unless this statement is maintained.

= Sometimes 20ms or more is needed for the execution in-progress output to turn ON after startup (rising
edge) of the IO command trigger input pulse. The IO command trigger input might not be accepted
during this period.

= After inputting the IO command trigger input pulse and the in-progress output turns OFF, at least a
100ms time period must always elapse before executing the next command. If this elapsed time period is
too small, the IO command execution trigger input might not be accepted.

= The execution check output turns OFF when an IO command is received.

= The execution check output turns ON when an IO command ends normally, but it remains OFF if the IO

command ends abnormally.

Overview @ 13-1 I

Sending and receiving IO commands

Sending and receiving is performed in the IO register as shown below.

Sending and receiving 10 commands

1
DIOS Command execution trigger (2) “4) X |
\ 100ms or more X
!
1 1
Input port DI2 () Command code !) , |
: I
!
DB O Command data X (4) |
to DI4 () X |
30ms or more | |
R |
DO27 E tion i out ! 3 s
X 10N 1IN-Progr
DO17) ecution in-progress outpu '((5)
Output port
po2 . TTEEEEsEsseseeT
(DO16) Execution check ouput , |)

Execution end

(1) Set command code and command data (Time interval between (1) and (2): 30ms or more)
(2) Set IO command execution trigger input (Pulse width: 100ms or more)
(3) Transition to execute

(4) Clear the IO command execution trigger input and command code and command data

(5) Set termination of IO command and execution check output

I 13-2 @ Chapter 13 10 commands

M NOTE

e When a SCARA robot is used
and a hand system flag is set
for the point data you specify,
that hand system has priority
over the current arm type.

I Example: Follow these steps when sending and receiving 10 commands to execute the PTP movement command to point 19.

(M

@

©)

“4)
®)

Set the following values in the register to execute the PTP movement command by designating a
point.

* DI2(): Command code (0x01)

 DI3(): Lower point setting (0x13= point 19)

* DI4(): Upper point setting (0x00=point 19)

Set DIOS from ON to OFF.

The controller receives the IO command and executes it if the command and command data are

acceptable. The execution in-progress output turns ON and the execution check output turns OFF at
this time. The robot moves to the position specified by point 19.

Clear DI2() through DI4() after checking that execution in-progress output is ON.

When the command ends, the output being executed turns OFF, and if execution ended normally,
the execution judgment output turns ON. If execution ended in error, the execution judgment output

remains OFF.

Sending and receiving 10 commands (2)

DIO5 Command execution trigger I 2) “4)
Input port DI2 () Command code 1) (4)

DI3 () Command data (1) “)

to DI4 ()

DO27 T

(DO17) Execution in-progress output | 3) : (5) |
Output port v 100ms

D026 L mmmmmmemmeees H '

(DO16) Execution check outpui H | ®)

Execution end

Sending and receiving |0 commands @ 13-3 I

- 10 command list

10 commands are expressed with hexadecimal codes.

Command code (DI2())
No. Command contents -
Main robot

PTP designation 0x01
1 | MOVE command - - -

Linear interpolation 0x03
2 | MOVEI command PTP designation 0x09
3 | Pallet movement command PTP designation at pallet 0 0x18
4 | Jog movement command 0x20
5 | Inching movement command 0x24
6 | Point teaching command 0x28
7 | Absolute reset movement command 0x30
8 | Absolute reset command 0x31
9 | Return-to-origin command 0x32

On 0x34
10 | Servo command off 0x35

Free 0x36

Power-on 0x37
11 | Manual movement speed change command 0x38
12 | Auto movement speed change command 0x39
13 | Program speed change command 0x3A
14 | Shift designation change command 0x3B
15 | Hand designation change command 0x3C
16 | Arm designation change command 0x3D
17 | Point display unit designation command 0x3E

Remarks

*3 The pallet movement command is only valid for pallet 0.

*4 The movement methods for the JOG, INCHING, and POINT TEACHING commands differ according
to the point units that were specified.

*6 The point teaching command uses different point units according to the point units that were specified.

*8 If no axis is specified, the absolute reset command is executed on all axes in either case of command
code 0x31.

*9 Ifno axis is specified, the return-to-origin command is executed on all axes in either case of command
code 0x32.

*17 The point display unit designation command is for use on the controller.

I 13-4 @ Chapter 13 10 commands

“ 10 command description

5.1

I MOVE command

A CAUTION

e When performing linear
interpolation with a hand
system flag specified, be sure
that the same hand system is
used at the current position
and target position. If the
same hand system is not used,
an error will occur and robot
movement will be disabled.

When performing a linear
interpolation, the current
position's X-arm and Y-arm
rotation information must be
the same as the movement
destination's X-arm and Y-arm
rotation information. If the
two are different, an error will
occur and movement will be
disabled.

[~ote

e X-arm and Y-arm rotation
information is only available in
software Ver.1.66M or higher.

Moves the robot by the absolute position method

I 1. PTP designation

This command moves the robot to a target position in PTP motion by specifying the point number.

DI port Contents Value
DI2 () Command code For main robot 0x01
DI3 () .
Point number 0x
DI4 () pPpPPP
pppp: Point number-.................... Specify in 16 bits.

Specified range 0 (=0x0000) to 9999(=0x270F)

 The point number setting range is 0 to 255 when there is no DI4().
* When a SCARA robot is used and a hand system flag is set for the point data you specify, that hand
system has priority over the current arm type.

I 2. Linear interpolation

This command moves the robot to a target position by linear interpolation by specifying the point number.

DI port Contents Value
DI2 () Command code For main robot 0x03
DI3 () .
Point number 0
DI4 () ul Xpppp
pppp: Point number.................... Specify in 16 bits.
Specified range.........ccocceeeveenens 0 (=0x0000) to 9999(=0x270F)

» The point number setting range is 0 to 255 when there is no DI4().
* When a SCARA robot is used and a hand system flag is set for the point data you specify, that hand
system has priority over the current arm type.

10 command description @ 13-5 I

5.2 | MOVEI command

Moves the robot by the relative position method

I 1. PTP designation

This command moves the robot a specified distance in PTP motion by specifying the point number.

DI port Contents Value
DI2 () Command code For main robot 0x09
DI3 () .
Point number 0x
DI4 () pPPpPP
J070)1) 0o FORSU USRS Specify the point number in 16 bits.

Specified range: 0 (=0x0000) to 9999 (=0x270F)

* When MOVEI motion to the original target position is interrupted and then restarted, the target

position for the resumed movement can be selected as the "MOVEI/DRIVEI start position" in the
M NOTE controller's "other parameters". For details, refer to the controller user's manual.
eIn versions prior to those 1) KEEP (default setting) Continues the previous (before interruption) movement. The original

shown above, a "RESET" must

target position remains unchanged.
be performed at the controller.

2) RESET...cooiiiiiininiiiieee Relative movement begins anew from the current position. The new
target position is different from the original one (before interruption).
(Backward compatibility)
» The point number setting range is 0 to 255 when there is no DI4().
When a SCARA robot is used and a hand system flag is set for the point data you specify, that hand

5.3 I Pallet movement command

Moves the robot to a position relative to pallet 0

I 1. PTP designation

This command moves the robot to a target position in PTP motion by specifying the work position number.

DI port Contents Value
DI2 () Command code For main robot 0x18
DI
30 Work position number Oxwwww
DI4 ()
WWWW oiinieiesiesieeeeeneeseeneeneeneenees Specify the work position number in 16 bits.

Specified range: 1 (=0

I 13-6 @ Chapter 13 10 commands

5.4 I Jog movement command

Performs robot JOG movement in the MANUAL mode.

This command is only valid in MANUAL mode.

This command is linked with the controller point display units. The robot axis moves in PTP motion when
display units are in pulses, and moves by linear interpolation on Cartesian coordinates when units are in
millimeters.

Jog speed is determined by the manual movement speed.

To stop the jog movement command, set the dedicated input interlock signal to OFF. After checking that

jog movement has stopped, set the interlock signal back to ON.

DI port Contents Value
DI2 () Command code For main robot 0x20
bit 0 Axis 1 tt
bit 1 Axis 2
bit 2 Axis 3
. o bit 3 Axis 4
DI3 () Axis to move and direction - -
bit 4 Axis 5
bit 5 Axis 6
bit 6 (0:Fixed) 0
bit 7 Direction d
DI4 () Not used 0x00
tt: AXIS SEttNG .ovevvevveeeeeeeeeeenenen. Bits 0 to 3 select 1 axis

d: Movement direction Bit 1/ 0: plus direction; 1: minus direction

5.5 I Inching movement command

Performs robot INCHING movement in the MANUAL mode.

Inching movement distance is linked to the manual movement speed. The inching command can only be
executed in MANUAL mode.

This command is linked with the controller’s point display unit system. So when display units are in
pulses, the axis moves a certain number of pulses at the manual speed setting. When display units are in
millimeters, the axis moves on Cartesian coordinates by linear interpolation at the manual speed setting
divided by 100.

DI port Contents Value

DI2 () Command code For main robot 0x24
bit 0 Axis 1 tt
bit 1 Axis 2
bit 2 Axis 3

) o bit 3 Axis 4

DI3 () Axis to move and direction : -
bit 4 Axis 5
bit 5 Axis 6
bit 6 (0:Fixed) 0
bit 7 Direction d

DI4 () Not used 0x00

tt: AXIS SEtHNG .ovvvenieeiieiiienee Bits 0 to 3 select 1 axis
d: Movement direction Bit 1/ 0: plus direction; 1: minus direction

10 command description @ 13-7 I

5.6 I Point teaching command

Teaches the robot's current position to a specified point No.

Point data units of this command are linked to the controller's point display unit system.

DI port Contents Value
DI2 () Command code For main robot 0x28
DI3 () .
Point number 0x
DI4 () pPpPpPP
pppp: Point number Specify in 16 bits.
Specified range........c.cceceveeeeneee 0 (=0x0000) to 9999(=0x270F)

5.7 I Absolute reset movement command

Moves the nearest position where an absolute reset is possible

When absolute reset of the specified axis uses the mark method, this command moves the axis to the
nearest position where absolute reset can be executed.

Positions capable of absolute reset are located at every 1/4 rotation of the motor.

DI port Contents Value
DI2 () Command code For main robot 0x30
bit 0 Axis 1 tt
bit 1 Axis 2
bit 2 Axis 3
bit 3 Axis 4
DI3 () Axis to move and direction - :
bit 4 Axis 5
bit 5 Axis 6
bit 6 (0:Fixed) 0
bit 7 Direction d
DI4 () Not used 0x00
tt: AXIS SEtNG ..oveveveiiiieeinne Bits 0 to 3 select 1 axis
d: Movement direction................ Bit 1/ 0: plus direction; 1: minus direction

I 13-8 @ Chapter 13 10 commands

5.8 I Absolute reset command

Executes absolute reset of the specified axis.

If no axis is specified, the absolute reset command is executed on all axes in either case of command code
0x31.
However, this command cannot be executed if return-to-origin is not yet complete on the axis using the

mark method. In this case, perform absolute reset individually on each axis.

DI port Contents Value
DI2 () Command code For main robot 0x31
bit 0 Axis 1 tt
bit 1 Axis 2
bit 2 Axis 3
DI3 () Axis specification bit 3 Axis 4
bit 4 Axis 5
bit 5 Axis 6
bit 7-bit 6 = (0:Fixed) 0
DI4 () Not used 0x00
tt: Axis specification................... Bits 0 to 3 select 1 axis
5.9 I Return-to-origin command

Executes an incremental axis return-to-origin

When this command is executed on an incremental mode axis, that axis returns to its origin. When executed
on a semi-absolute mode axis, an absolute search is performed on that axis.

If no axis is specified (DI3() is 0), this command is executed on all axes in either case of 0x32.

Command

DI port Contents Value
DI2 () Command code For main robot 0x32
bit 0 Axis 1 tt
bit 1 Axis 2
bit 2 Axis 3
DI3 () Axis specification bit 3 Axis 4
bit 4 Axis 5
bit 5 Axis 6
bit 7 - bit 6 | (0:Fixed) 0
DI4 () Not used 0x00
tt: Axis specification................... Bits 0 to 3 select 1 axis

10 command description @ 13-9 I

5.10 I Servo command

Operates the robot servo

These commands operate the robot servos, and switch the servos between their ON, OFF, and FREE

settings in an axis-specific manner.

Operation Contents

Servo ON Execute this command to turn on the servo of a specified axis. The motor power
must be turned on when specifying the axis.
All controller servos are turned on if no axis is specified.

Servo OFF Execute this command to turn off the servo of a specified axis.
All controller servos are turned off if no axis is specified.

Servo Free Execute this command to turn off the mechanical brake and dynamic brake after
turning off the servo of a specified axis. Servo OFF and Free are repeated when
this command is consecutively executed.

All controller servos will be free if no axis is specified.

Power ON Execute this command to turn on the motor power.
No axis can be specified.

DI port Contents Value
Servo ON For main robot 0x34
Servo OFF For main robot 0x35
D20 Command code Servo Free For main robot 0x36
Power ON All controller servos 0x37
bit 0 Axis 1 tt
bit 1 Axis 2
bit 2 Axis 3
DI3 () Axis specification bit 3 Axis 4
bit 4 Axis 5
bit 5 Axis 6
bit 7 - bit 6 (0:Fixed) 0
DI4 () Not used 0x00
tt: Axis specification................... Bits 0 to 3 select 1 axis (if not specified, the command

applies to all controller processing).

No axis can be specified when executing Power ON.

I 13-10 @ Chapter 13 10 commands

5.11 I Manual movement speed change command
Changes the MANUAL mode's manual movement speed
This command can only be executed in MANUAL mode.
DI port Contents Value
DI2 () Command code For main robot 0x38
DI3 () Specified speed 0Oxss
DI4 () Not used 0x00
ss: Manual movement speedSpecify in 8 bits.
Specified range..........cccceverenene 1 (=0x01) to 100 (=0x64)
5.12 I Auto movement speed change command
Changes the AUTO mode's automatic movement speed
This command can only be executed in AUTO mode.
DI port Contents Value
DI2 () Command code For main robot 0x39
DI3 () Specified speed 0xss
DI4 () Not used 0x00
ss: Auto movement speed........... Specify in 8 bits.
Specified rangeccceceveneneee. 1 (=0x01) to 100 (=0x64)
5.13 I Program speed change command

Changes the AUTO mode's program movement speed

The program speed changed with this command is reset to 100% when the program is reset or changed.

DI port Contents Value
DI2 () Command code For main robot 0x3A
DI3 () Specified speed 0xss
DI4 () Not used 0x00
ss: Program speed.........ccccvenne Specify in 8 bits.
Specified range..........ccceveveeenene 1 (=0x01) to 100 (=0x64)

10 command description @ 13-11 I

5.14 I Shift designation change command
Changes a selected shift to the specified shift No.
DI port Contents Value
DI2 () Command code For main robot 0x3B
DI3 () Specified shift number 0xss
DI4 () Not used 0x00
ss: Shift number...........ccceoveeenee Specity in § bits.
Specified range........c.cceeveeeennee 0 (=0x00) to 9 (=0x09)
5.15 I Hand designation change command
Changes a selected hand to the specified hand No.

DI port Contents Value
DI2 () Command code For main robot 0x3C
DI3 () Specified hand number 0xss
DI4 () Not used 0x00

ss: Hand number.........c..cccocceeeee Specify in 8 bits.
Specified rangecccoveerenee For main robot: 0 (=0x00) to 3 (=0x03)
5.16 I Arm designation change command
Changes the arm setting status

DI port Contents Value
DI2 () Command code For main robot 0x3D

DI3 () Status of specified arm Oxss

DI4 () Not used 0x00

ss: Arm designation status.......... Specify in 8 bits / 0x00: Right-handed system, 0x01: Left-
handed system
5.17 I Point display unit designation command

Changes the point display unit system

This command is for the controller.

DI port Contents Value
DI2 () Command code For controller 0x3E
DI3 () Display units for specified point 0xss
DI4 () Not used 0x00
ss: Point display unit Specity in 8§ bits / 0x00: Pulse units, 0x01: Millimeter units

I 13-12 @ Chapter 13 10 commands

Chapter 14

Appendix

oo G A WON =

Reserved word LiSt......eeeeeeeeeeeeeeeeeeeeeeenn. 15-1

Robot Language Lists: Command list in alphabetic order....15-3

Robot Language Lists: Function Specific.............. 7
Functions: in alphabetic order.............ccccuvennnnnn. 13
Functions: operation-specific.........ccceevveerrureennne 15

Execution Levelueeeeeeeeeeeeeeeeeeeeeeee 17

Reserved word list

The words shown below are reserved for robot language and cannot be used as identifiers (variables, etc.).

MSGCLR

ABSAD)J DECEL MSPEED
ABSRESET DECLARE HALT
ABSRPOS DEF HAND NAME
ABSRST DEFIO HND NEXT
ABOVE DEFPOS HEX NONFLIP
ABS DEGRAD HOME NOT
ABSINIT DELAY HOLD
ACCEL DIM IF ON
ACCESS DIR IN ONLINE
ALL DIST INCH OR
AND DO INIT ORD
ARCH DPM INPUT ORGORD
ARM DRIVE INT ORGRTN
ARMTYPE DRIVEI INTEGER ORIGIN
ARY DS IRET OuUT
ASPEED DSPEED OUTPOS
ATN JTOXY p
ATTR ELSE JOG P
AUTO ELSEIF PASS
AXWGHT EMGRST LANGUAGE PADDR
3 EMG LEFT PATH
BELOW END LEFTY PC
BIN ENDIF LEN PCM
BIT EOF LET PDEF
BREAK ERA LOCA PLN
BYTE ERL LOCB PLT

ERR LOCF PMOVE
CALL ERROR LOCR PRINT
CASE ETH LOCX PROGRAM
CHANGE EXELVL LOCY PGM
CHGPRI EXIT LOCZ PNT
CHGTSK EXITTASK LOG POS
CHKTRQ LOOP PPNT
CHR FDD LSHIFT PRM
CMU FLIP PTP
CMUI FN MANUAL PWR
CONFIG FOR MCHREF
CONT FREE MEM RADDEG
€00 FUNCTION MID READ
COPY MIRROR REF
COos GASP MOD REN
CURTRQ GEN MOVE RELESE
CUT GO MOVEI REM
D GOHOME MRF REMOTE
DATE GOSUB MSG RESET

Reserved word list @ 14-1 I

RESTART STEP WAIT
RESUME STOP WEIGHT
RETURN STOPON WEND
RIGHT STR WHERE
RIGHTY SUB WHILE
RO SUSPEND WHRXY
ROTATE SWI WHRXYEX
RSHIFT SYS WORD
RUN SYSTEM WRITE
RW

TAN XOR
S TASK XY
SELECT TASKS XYTOJ
SEND TCOUNTER Y
SEQUENCE TEACH
SERVO THEN z
e
SFT TIMER SYMBOL
SGI TO SYSFLG
SGR TOLE
SHARED TORQUE
SHIFT TRQSTS
SI TRQTIME
SID TSKMON
N
SIW UNIT
SKIP UNTIL
-
SOD VAL
SOW VAR
SPEED VER
SQR VEL

Because the following names are used as system variable names, they cannot be used at the beginning of other variable
names (n: numeric value).

DIn Hn Pn SOn
DOn LOn SIn TOn
FN MOn Sn

Variable name usage examples

= Although keywords which are reserved as robot language words cannot be used as they are, they can be used as

variable names if alphanumeric characters are added to them.
Example: "ABS" cannot be used, but "ABS1" or "ABSX" can be used.

= Keywords reserved as system variables cannot be used at the beginning of other variable names, even if alphanumeric

characters are added to them.

Example: "FN" cannot be used. "FNA" and "FN123" also cannot be used.

I 14-2 @ Chapter 14 Appendix

Robot Language Lists: Command list in alphabetic order

No. Command Function Condition Direct Type
A
1 ABS Acquires the absolute value of a specified value. - - Functions
2 | ABSINIT Resets the current position of a specified main group axis. 4 O Command Statements
ABSRPOS Acquires the machine reference of the specified main - - Functions
group axis. (Valid only for axes where the return-to-origin
method is set as "mark method".)
4 ABSRST Executes a return-to-origin at the robot absolute motor 4 Command Statements
axes.
5 ACCEL Specifies/acquires the acceleration coefficient parameter | 4/- Command Statements/
of the main group. Functions
6 | ARCH Specifies/acquires the arch position parameter of the main | 4/- Command Statements/
group. Functions
7 | ARMCND Acquires the current arm status of the main robot. - - Functions
ARMTYPE Acquires the current "hand system" setting of the main robot. - - Functions
10 | ASPEED Changes the AUTO movement speed of the main group. 4 O Command Statements
9 ATN Acquires the arctangent of the specified value. - - Functions
11 | AXWGHT Specifies/acquires the axis tip weight parameter of the | 4/- @) Command Statements/
main group. Functions
C
12 | CALL Executes (calls) another program. X Command Statements
13 | CHANGE Switches the main robot hand. O Command Statements
14 | CHGPRI Changes the priority ranking of a specified task. X Command Statements
15 | CHRS Acquires a character with the specified character code. - - Functions
16 | COS Acquires the cosine value of a specified value. - - Functions
17 | CURTRQ Acquires the current torque value of the specified main - X Functions
group axis.
18 | CUT Terminates a task currently being executed or temporarily 6 X Command Statements
stopped.
D
19 | DATES$ Acquires the date as a "yy/mm/dd" format character string. - - Functions
20 | DECEL Specifies/acquires the deceleration rate parameter of the | 4/- O Command Statements/
main group. Functions
23 | DEGRAD Converts a specified value to radians («+RADDEG). - Functions
24 | DELAY Waits for the specified period (units: ms). X Command Statements
27 | DIM Declares the array variable name and the number of 6 Command Statements
elements.
26 | DIST Acquires the distance between 2 specified points. - - Functions
28 | DO Outputs a specified value to the DO port. O Command Statements
29 | DRIVE Moves a specified main group axis to an absolute position. O Command Statements
29 | DRIVE (With T-option) Executes an absolute movement O Command Statements
command for a specified axis.
30 | DRIVEI Moves a specified main group axis to a relative position. 4 O Command Statements
E
33 | ERL Gives the line No. where an error occurred. - - Functions
33 | ERR Gives the error code number of an error which has occurred. - - Functions
34 | EXIT FOR Terminates the FOR to NEXT statement loop. X Command Statements
36 | EXIT TASK Terminates its own task which is in progress. X Command Statements

Robot Language Lists: Command list in alphabetic order @ 14-3 I

No. Command Function Condition Direct Type
F
37 | FOR to NEXT Controls repetitive operations. Executes the FOR to NEXT 6 X Command Statements
statement repeatedly until a specified value is reached.
G
38 | GOSUB to Jumps to a subroutine with the label specified by a 6 X Command Statements
RETURN GOSUB statement, and executes that subroutine.
39 | GOTO Unconditionally jumps to the line specified by a label. 6 X Command Statements
H
40 | HALT Stops the program and performs a reset. X Command Statements
41 | HAND Defines the main robot hand. 4 O Command Statements
42 | HOLD Temporarily stops the program. X Command Statements
I
43 | IF Allows control flow to branch according to conditions. 6 X Command Statements
44 | INPUT Assigns a value to a variable specified from the 1 O Command Statements
programming box.
45 | INT Acquires an integer for a specified value by truncating all - - Functions
decimal fractions.
J
46 | JTOXY Converts joint coordinate data to main group Cartesian - - Functions
coordinate data. («<>XYTOJ)
L
48 | LEFTS Extracts a character string comprising a specified number - - Functions
of digits from the left end of a specified character string.
49 | LEFTY Sets the main robot hand system to "Left". 4 O Command Statements
50 | LEN Acquires the length (number of bytes) of a specified - - Functions
character string.
51 | LET Executes a specified assignment statement. 1 O Command Statements
52 | LO Outputs a specified value to the LO port to enable/disable 1 O Command Statements
axis movement.
53 | LOCx Specifies/acquires point data or shift data for a specified - - Command Statements/
axis. Functions
54 | LSHIFT Shifts a value to the left by the specified number of bits. - - Functions
(—RSHIFT)
M
55 | MCHREF Acquires the return-to-origin or absolute-search machine - - Functions
reference for a specified main group axis.
56 | MID$ Extracts a character string of a desired length from a - - Functions
specified character string.
57 | MO Outputs a specified value to the MO port. 1 O Command Statements
58 | MOVE Performs absolute movement of all main robot axes. O Command Statements
59 | MOVEI Performs relative movement of all main robot axes. 4 O Command Statements
(0}
60 | OFFLINE Sets a specified communication port to the "offline" mode. 1 O Command Statements
62 | ON ERROR If an error occurs during program execution, this command 6 X Command Statements
GOTO allows the program to jump to the error processing routine
specified by the label without stopping the program, or it stops
the program and displays the error message.
63 | ONto GOSUB Jumps to a subroutine with labels specified by a GOSUB 6 X Command Statements
statement in accordance with the conditions, and executes
that subroutine.

I 14-4 @ Chapter 14 Appendix

No. Command Function Condition Direct Type

64 | ON to GOTO Jumps to label-specified lines in accordance with the 6 X Command Statements
conditions.

65 | ONLINE Sets the specified communication port to the "online" mode. 1 O Command Statements

61 | ORD Acquires the character code of the first character in a - - Functions
specified character string.

66 | ORGORD Specifies/acquires the axis sequence parameter for | 4/- O Command Statements/
performing return-to-origin and absolute search operations Functions
in the main group.

67 | ORIGIN Executes a return-to-origin for incremental specs. axes. O Command Statements

68 | OUT Turns ON the bits of the specified output ports and the X Command Statements
command statement ends.

69 | OUTPOS Specifies/acquires the OUT enable position parameter of | 4/- @) Command Statements/
the main group. Functions

P

70 | PATH Sets the movement path. 6 X Command Statements

71 | PATH END Ends the movement path setting. 6 X Command Statements

72 | PATH SET Starts the movement path setting. 6 X Command Statements

73 | PATH START Starts the PATH motion. 6 X Command Statements

74 | PDEF Defines the pallet used to execute pallet movement 1 O Command Statements
commands.

75 | PMOVE Executes the main robot pallet movement command. 4 O Command Statements

76 | Pn Defines points within a program. O Command Statements

77 | PPNT Creates point data specified by a pallet definition number - - Functions
and pallet position number.

78 | PRINT Displays a character string at the programming box screen. 1 O Command Statements

R

79 | RADDEG Converts a specified value to degrees. («DEGRAD) - - Functions

80 | REM Expresses a comment statement. 6 X Command Statements

81 | RESET Turns the bit of a specified output port OFF. 1 O Command Statements

82 | RESTART Restarts another task during a temporary stop. 6 X Command Statements

83 | RESUME Resumes program execution after error recovery 6 X Command Statements
processing.

85 | RIGHTS Extracts a character string comprising a specified number - - Functions
of digits from the right end of a specified character string.

86 | RIGHTY Sets the main robot hand system to "Right". 4 O Command Statements

87 | RSHIFT Shifts a value to the right by the specified number of bits. - - Functions
(—LSHIFT)

S

88 | Sn Defines the shift coordinates within the program. O Command Statements

89 | SELECT CASE | Allows control flow to branch according to conditions. X Command Statements

to END SELECT

90 | SEND Sends a file. 1 O Command Statements

91 | SERVO Controls the servo ON/OFF of specified main group axes 4 O Command Statements
or all main group axes.

92 | SET Turns the bit at the specified output port ON. 3 In part | Command Statements

X

94 | SHIFT Sets the shift coordinates for the main robot by using the 4 O Command Statements
shift data specified by a shift variable.

95 | SIN Acquires the sine value for a specified value. - - Functions

9 | SO Outputs a specified value to the SO port. 1 O Command Statements

97 | SPEED Changes the main group's program movement speed. 4 O Command Statements

Robot Language Lists: Command list in alphabetic order @ 14-5 I

No. Command Function Condition = Direct Type

98 | START Specifies the task number and priority ranking of a 6 X Command Statements
specified task, and starts that task.

99 | STRS Converts a specified value to a character string («VAL) - - Functions

100 | SQR Acquires the square root of a specified value. - - Functions

102 [SUSPEND Temporarily stops another task which is being executed. X Command Statements

103 | SWI Switches the program being executed, performs O Command Statements
compiling, then begins execution from the first line.

T

104 | TAN Acquires the tangent value for a specified value. - - Functions

105 | TCOUNTER Outputs count-up values at 10ms intervals starting from the - - Functions
point when the TCOUNTER variable is reset.

106 | TIMES Acquires the current time as an "hh:mm:ss" format - - Functions
character string.

107 | TIMER Acquires the current time in seconds, counting from 12:00 - - Functions
midnight.

108 | TO Outputs a specified value to the TO port. 1 O Command Statements

109 | TOLE Specifies/acquires the main group tolerance parameter. 4/- O Command Statements/

Functions

110 | TORQUE Specifies/acquires the maximum torque command value | 4/- Command Statements/
which can be set for a specified main group axis. Functions

111 | TRQSTS Acquires the command end status for the DRIVE - - Functions
command with torque limit option executed at the main
group.

112 | TRQTIME Specifies/acquires the current limit time-out period at | 1/- O Command Statements/
the specified main group axis when using a torque limit Functions
option in the DRIVE statement.

\%

113 | VAL Converts the numeric value of a specified character string - - Functions
to an actual numeric value. (<>STRS)

\W4

114 | WAIT Waits until the conditions of the DI/DO conditional 6 X Command Statements
expression are met (with time-out).

115 | WAIT ARM Waits until the main group robot axis operation is completed. 6 X Command Statements

116 | WEIGHT Specifies/acquires the main robot tip weight parameter. 4/- O Command Statements/

Functions

118 | WHERE Reads out the current position of the main group robot - - Functions
arm in joint coordinates (pulses).

119 | WHILE to WEND [Controls repeated operations. 6 X Command Statements

120 [WHRXY Reads out the current position of the main group arm as - - Functions
Cartesian coordinates (mm, degrees).

X

121 | XYTOJ Converts the point variable Cartesian coordinate data to - - Functions
the main group's joint coordinate data («<>JTOXY).

122 | SYSFLG Axis status monitoring flag. - - Functions

I 14-6 @ Chapter 14 Appendix

Robot Language Lists: Function Specific

Program commands

General commands

No. Command Function Condition Direct Type

27 | DIM Declares the array variable name and the number of 6 X Command Statements
elements.

51 | LET Executes a specified assignment statement. 1 O Command Statements

80 | REM Expresses a comment statement. 6 X Command Statements

Arithmetic commands

No. Command Function Condition Direct Type
ABS Acquires the absolute value of a specified value. - - Functions
2 | ABSINIT Resets the current position of a specified main group axis. 4 @) Command Statements
9 ATN Acquires the arctangent of the specified value. - - Functions
16 | COS Acquires the cosine value of a specified value. - - Functions
23 | DEGRAD Converts a specified value to radians («+RADDEG). - - Functions
26 | DIST Acquires the distance between 2 specified points. - - Functions
45 | INT Acquires an integer for a specified value by truncating all - - Functions
decimal fractions.
54 | LSHIFT Shifts a value to the left by the specified number of bits. - - Functions
(<~>RSHIFT)
79 | RADDEG Converts a specified value to degrees. («—DEGRAD) - - Functions
87 | RSHIFT Shifts a value to the right by the specified number of bits. - - Functions
(«~>LSHIFT)
95 | SIN Acquires the sine value for a specified value. - - Functions
100 | SQR Acquires the square root of a specified value. - - Functions
104 | TAN Acquires the tangent value for a specified value. - - Functions
Date / time
No. Command Function Condition Direct Type
19 | DATE $ Acquires the date as a "yy/mm/dd" format character - - Functions
string.
105 | TCOUNTER Outputs count-up values at 10ms intervals starting from - - Functions
the point when the TCOUNTER variable is reset.
106 | TIME $ Acquires the current time as an "hh:mm:ss" format - - Functions
character string.
107 | TIMER Acquires the current time in seconds, counting from 12:00 - - Functions
midnight.

Robot Language Lists: Function Specific @ 14-7 I

Character string operation

No. Command Function Condition Direct Type

15 | CHR S Acquires a character with the specified character code. - - Functions

48 | LEFT$ Extracts a character string comprising a specified number - - Functions
of digits from the left end of a specified character string.

50 | LEN Acquires the length (number of bytes) of a specified - - Functions
character string.

56 | MID $ Extracts a character string of a desired length from a - - Functions
specified character string.

61 | ORD Acquires the character code of the first character in a - - Functions
specified character string.

85 | RIGHT $ Extracts a character string comprising a specified number - - Functions
of digits from the right end of a specified character string.

99 | STR$ Converts a specified value to a character string («<>VAL) - - Functions

113 | VAL Converts the numeric value of a specified character string - - Functions
to an actual numeric value. («<>STR$)

Point, coordinates, shift coordinates

No. Command Function Condition = Direct Type

13 | CHANGE Switches the main robot hand. 4 O Command Statements

41 | HAND Defines the main robot hand. 4 O Command Statements

46 | JTOXY Converts joint coordinate data to main group Cartesian - - Functions
coordinate data. («>XYTOJ)

49 | LEFTY Sets the main robot hand system to "Left". 4 O Command Statements

76 | Pn Defines points within a program. O Command Statements

77 | PPNT Creates point data specified by a pallet definition number - - Functions
and pallet position number.

86 | RIGHTY Sets the main robot hand system to "Right". 4 O Command Statements

88 | Sn Defines the shift coordinates in the program. 4 O Command Statements

94 | SHIFT Sets the shift coordinates for the main robot by using the 4 O | Command Statements
shift data specified by a shift variable.

121 | XYTOJ Converts the point variable Cartesian coordinate data to - - Functions
the main group's joint coordinate data («>JTOXY).

53 | LOCx Specifies/acquires point data or shift data for a specified - - Command Statements/
axis. Functions

I 14-8 @ Chapter 14 Appendix

Branching commands

No. Command Function Condition Direct Type
34 | EXIT FOR Terminates the FOR to NEXT statement loop. 6 X Command Statements
37 | FOR to NEXT Controls repetitive operations. Executes the FOR to NEXT 6 X Command Statements
statement repeatedly until a specified value is reached.
38 | GOSUB to Jumps to a subroutine with the label specified by a 6 X Command Statements
RETURN GOSUB statement, and executes that subroutine.
39 | GOTO Unconditionally jumps to the line specified by a label. X Command Statements
43 | IF Allows control flow to branch according to conditions. X Command Statements
63 | ONto GOSUB Jumps to a subroutine with labels specified by a GOSUB X Command Statements
statement in accordance with the conditions, and executes
that subroutine.
64 | ON to GOTO Jumps to label-specified lines in accordance with the 6 X Command Statements
conditions.
89 | SELECT CASE | Allows control flow to branch according to conditions. 6 X Command Statements
to END SELECT
119 | WHILE to WEND | Controls repeated operations. 6 X Command Statements
Error control
No. Command Function Condition Direct Type
62 | ON ERROR If an error occurs during program execution, this 6 X Command Statements
GOTO command allows the program to jump to the error
processing routine specified by the label without stopping
the program, or it stops the program and displays the error
message.
83 | RESUME Resumes program execution after error recovery 6 X Command Statements
processing.
33 | ERL Gives the line No. where an error occurred. - - Functions
33 | ERR Gives the error code number of an error which has - - Functions
occurred.
Program & task control
Program control
No. Command Function Condition Direct Type
12 | CALL Executes (calls) another program. 6 X Command Statements
40 | HALT Stops the program and performs a reset. 6 X Command Statements
42 | HOLD Temporarily stops the program. 6 X Command Statements
103 | SWI Switches the program being executed, performs 2 O Command Statements
compiling, then begins execution from the first line.
Task control
No. Command Function Condition Direct Type
14 | CHGPRI Changes the priority ranking of a specified task. 6 X Command Statements
18 | CUT Terminates a task currently being executed or temporarily 6 X Command Statements
stopped.
36 | EXIT TASK Terminates its own task which is in progress. X Command Statements
82 | RESTART Restarts another task during a temporary stop. X Command Statements
98 | START Specifies the task number and priority ranking of a X Command Statements
specified task, and starts that task.
102 | SUSPEND Temporarily stops another task which is being executed. 6 X Command Statements

Robot Language Lists: Function Specific @ 14-9 I

Robot control

Robot operations

Command Function Condition = Direct Type
4 ABSRST Executes a return-to-origin at the robot absolute motor 4 O Command Statements
axes.
13 | CHANGE Switches the main robot hand. 4 O Command Statements
29 | DRIVE Moves a specified main group axis to an absolute position. 4 O Command Statements
30 | DRIVEI Moves a specified main group axis to a relative position. 4 O Command Statements
41 | HAND Defines the main robot hand. 4 O Command Statements
49 | LEFTY Sets the main robot hand system to "Left". 4 O Command Statements
58 | MOVE Performs absolute movement of all main robot axes. 5 O Command Statements
59 | MOVEI Performs relative movement of all main robot axes. 4 O Command Statements
67 | ORIGIN Executes a return-to-origin for incremental specs. axes. 4 O Command Statements
75 | PMOVE Executes the main robot pallet movement command. 4 O Command Statements
86 | RIGHTY Sets the main robot hand system to "Right". 4 O Command Statements
91 | SERVO Controls the servo ON/OFF of specified main group axes 4 O Command Statements
or all main group axes.
Status acquisition
No. Command Function Condition Direct Type
3 ABSRPOS Acquires the machine reference of the specified main - - Functions
group axis. (Valid only for axes where the return-to-origin
method is set as "mark method".)
7 ARMCND Acquires the current arm status of the main robot. - - Functions
8 ARMTYPE Acquires the current "hand system" setting of the main - - Functions
robot.
55 | MCHREF Acquires the return-to-origin or absolute-search machine - - Functions
reference for a specified main group axis.
111 | TRQSTS Acquires the command end status for the DRIVE - - Functions
command with torque limit option executed at the main
group.
118 | WHERE Reads out the current position of the main group robot - - Functions
arm in joint coordinates (pulses).
120 | WHRXY Reads out the current position of the main group arm as - - Functions
Cartesian coordinates (mm, degrees).
115 | WAIT ARM Waits until the main group robot axis operation is
completed.

I 14-10 @ Chapter 14 Appendix

Status change

No. Command Function Condition Direct Type
5 ACCEL Specifies/acquires the acceleration coefficient parameter | 4/- O Command Statements/
of the main group. Functions
6 ARCH Specifies/acquires the arch position parameter of the main | 4/- @) Command Statements/
group. Functions
10 | ASPEED Changes the AUTO movement speed of the main group. 4 @) Command Statements
11 | AXWGHT Specifies/acquires the axis tip weight parameter of the | 4/- O Command Statements/
main group. Functions
20 | DECEL Specifies/acquires the deceleration rate parameter of the | 4/- O Command Statements/
main group. Functions
66 | ORGORD Specifies/acquires the axis sequence parameter for | 4/- O Command Statements/
performing return-to-origin and absolute search operations Functions
in the main group.
69 | OUTPOS Specifies/acquires the OUT enable position parameter of | 4/- O Command Statements/
the main group. Functions
74 | PDEF Defines the pallet used to execute pallet movement 1 O Command Statements
commands.
97 | SPEED Changes the main group's program movement speed. 4 O Command Statements
109 | TOLE Specifies/acquires the main group tolerance parameter. 4/- O Command Statements/
Functions
116 | WEIGHT Specifies/acquires the main robot tip weight parameter. 4/- O Command Statements/
Functions
Path control
No. Command Function Condition Direct Type
70 | PATH Sets the movement path. 6 X Command Statements
71 | PATH END Ends the movement path setting. 6 X Command Statements
72 | PATH SET Starts the movement path setting. 6 X Command Statements
73 | PATH START Starts the PATH motion. 6 X Command Statements
Torque control
No. Command Function Condition = Direct Type
17 | CURTRQ Acquires the current torque value of the specified main - X Functions
group axis.
29 | DRIVE (With T-option) Executes an absolute movement 4 O Command Statements
command for a specified axis.
110 | TORQUE Specifies/acquires the maximum torque command value | 4/- @) Command Statements/
which can be set for a specified main group axis. Functions
112 | TRQTIME Specifies/acquires the current limit time-out period at | 1/- @) Command Statements/
the specified main group axis when using a torque limit Functions
option in the DRIVE statement.

Robot Language Lists: Function Specific @ 14-11 I

Input/output & communication control

Input/output control

No. Command Function Condition = Direct Type

24 | DELAY Waits for the specified period (units: ms). 6 X Command Statements

28 | DO Outputs a specified value to the DO port. 1 O Command Statements

52 | LO Outputs a specified value to the LO port to enable/disable 1 O Command Statements
axis movement.

57 | MO Outputs a specified value to the MO port. O Command Statements

68 | OUT Turns ON the bits of the specified output ports and the 6 X Command Statements
command statement ends.

81 | RESET Turns the bit of a specified output port OFF. 1 O Command Statements

92 | SET Turns the bit at the specified output port ON. 3 In part | Command Statements

X

9 | SO Outputs a specified value to the SO port. 1 O Command Statements

108 | TO Outputs a specified value to the TO port. O Command Statements

114 | WAIT Waits until the conditions of the DI/DO conditional 6 X Command Statements
expression are met (with time-out).

Programming box

No. Command Function Condition = Direct Type

44 | INPUT Assigns a value to a variable specified from the 1 O Command Statements
programming box.

78 | PRINT Displays a character string at the programming box 1 O Command Statements
screen.

Communication control

No. Command Function Condition = Direct Type
65 | ONLINE Sets the specified communication port to the "online" 1 O Command Statements
mode.
60 | OFFLINE Sets a specified communication port to the "offline" mode. 1 O Command Statements
90 | SEND Sends a file. 1 O Command Statements
Other
Other

Command

Function

Condition Direct

122

SYSFLG

Axis status monitoring flag.

Type

Functions

I 14-12 @ Chapter 14 Appendix

“ Functions: in alphabetic order

No. Function Type Function

A

1 ABS Arithmetic function | Acquires the absolute value of a specified value.

3 ABSRPOS Arithmetic function | Acquires the machine reference of the specified main group axis.
(Valid only for axes where the return-to-origin method is set as "mark
method".)

5 ACCEL Arithmetic function | Acquires the acceleration coefficient parameter of the main group.

6 ARCH Arithmetic function | Acquires the arch position parameter of the main group.

7 ARMCND Arithmetic function | Acquires the current arm status of the main robot.

8 ARMTYPE Arithmetic function | Acquires the current "hand system" setting of the main robot.

9 ATN Arithmetic function | Acquires the arctangent of the specified value.

11 | AXWGHT Arithmetic function | Acquires the axis tip weight parameter of the main group.

C

15 | CHRS Character string | Acquires a character with the specified character code.

function

16 | COS Arithmetic function | Acquires the cosine value of a specified value.

17 | CURTRQ Arithmetic function | Acquires the current torque value of the specified main group axis.

D

19 | DATES Character string | Acquires the date as a "yy/mm/dd" format character string.

function

20 | DECEL Arithmetic function | Acquires the deceleration rate parameter of the main group.

23 DEGRAD Arithmetic function | Converts a specified value to radians (<RADDEG).

26 | DIST Arithmetic function | Acquires the distance between 2 specified points.

E

33 | ERL Arithmetic function | Gives the line No. where an error occurred.

33 | ERR Arithmetic function | Gives the error code number of an error which has occurred.

I

45 | INT Arithmetic function | Acquires an integer for a specified value by truncating all decimal
fractions.

J

46 | JTOXY Point function Converts joint coordinate data to main group Cartesian coordinate data.
(XYTO))
L
48 | LEFT$ Character string | Extracts a character string comprising a specified number of digits
function from the left end of a specified character string.
50 | LEN Arithmetic function | Acquires the length (number of bytes) of a specified character string.
53 | LOCx Point function Acquires point data or shift data for a specified axis.
54 | LSHIFT Arithmetic function | Shifts a value to the left by the specified number of bits. («<+RSHIFT)
M
55 MCHREF Arithmetic function | Acquires the return-to-origin or absolute-search machine reference for
a specified main group axis.
56 | MID$ Character string | Extracts a character string of a desired length from a specified character
function string.

(0}

61 | ORD Arithmetic function | Acquires the character code of the first character in a specified

character string.

Functions: in alphabetic order @ 14-13 I

No. Function Type Function
66 | ORGORD Arithmetic function | Acquires the axis sequence parameter for performing return-to-origin
and absolute search operations in the main group.
69 | OUTPOS Arithmetic function | Acquires the OUT enable position parameter of the main group.
P
77 | PPNT Point function Creates point data specified by a pallet definition number and pallet
position number.
R
79 | RADDEG Arithmetic function | Converts a specified value to degrees. («+*DEGRAD)
85 | RIGHTS Character string | Extracts a character string comprising a specified number of digits
function from the right end of a specified character string.
87 | RSHIFT Arithmetic function | Shifts a value to the right by the specified number of bits. (<»LSHIFT)
S
95 | SIN Arithmetic function | Acquires the sine value for a specified value.
100 | SQR Arithmetic function | Acquires the square root of a specified value.
99 | STR$ Character string | Converts a specified value to a character string («>VAL)
function
T
104 | TAN Arithmetic function | Acquires the tangent value for a specified value.
105 | TCOUNTER Arithmetic function | Outputs count-up values at 10ms intervals starting from the point when
the TCOUNTER variable is reset.
106 | TIMES$ Character string | Acquires the current time as an "hh:mm:ss" format character string.
function
107 | TIMER Arithmetic function | Acquires the current time in seconds, counting from 12:00 midnight.
109 | TOLE Arithmetic function | Acquires the main group tolerance parameter.
110 | TORQUE Arithmetic function | Acquires the maximum torque command value which can be set for a
specified main group axis.
111 | TRQSTS Arithmetic function | Acquires the command end status for the DRIVE command with
torque limit option executed at the main group.
112 | TRQTIME Arithmetic function | Acquires the current limit time-out period at the specified main group
axis when using a torque limit option in the DRIVE statement.
A\
113 | VAL Arithmetic function | Converts the numeric value of a specified character string to an actual
numeric value. («+>STRS)
W
116 | WEIGHT Arithmetic function | Acquires the main robot tip weight parameter.
118 | WHERE Point function Reads out the current position of the main group robot arm in joint
coordinates (pulses).
120 | WHRXY Point function Reads out the current position of the main group arm as Cartesian
coordinates (mm, degrees).
X
121 | XYTOJ Point function Converts the point variable Cartesian coordinate data to the main
group's joint coordinate data («—>JTOXY).
122 | SYSFLG Arithmetic function | Axis status monitoring flag.

I 14-14 @ Chapter 14 Appendix

Functions: operation-specific

Point related functions

No. Function name Function

46 JTOXY Converts joint coordinate data to main group Cartesian coordinate data. («>XYTOJ)

53 LOCx Acquires point data or shift data for a specified axis.

77 PPNT Creates point data specified by a pallet definition number and pallet position number.

118 | WHERE Reads out the current position of the main group robot arm in joint coordinates (pulses).

120 | WHRXY Reads out the current position of the main group arm as Cartesian coordinates (mm, degrees).

121 | XYTOJ Converts the point variable Cartesian coordinate data to the main group's joint coordinate
data («>JTOXY).

Parameter related functions

No. Function name Function
3 ABSRPOS Acquires the machine reference of the specified main group axis. (Valid only for axes
where the return-to-origin method is set as "mark method".)
5 ACCEL Acquires the acceleration coefficient parameter of the main group.
6 ARCH Acquires the arch position parameter of the main group.
7 ARMCND Acquires the current arm status of the main robot.
8 ARMTYPE Acquires the current "hand system" setting of the main robot.
11 | AXWGHT Acquires the axis tip weight parameter of the main group.
17 | CURTRQ Acquires the current torque value of the specified main group axis.
20 | DECEL Acquires the deceleration rate parameter of the main group.
50 | LEN Acquires the length (number of bytes) of a specified character string.
55 MCHREF Acquires the return-to-origin or absolute-search machine reference for a specified main group axis.
61 ORD Acquires the character code of the first character in a specified character string.
66 | ORGORD Acquires the axis sequence parameter for performing return-to-origin and absolute search
operations in the main group.
69 | OUTPOS Acquires the OUT enable position parameter of the main group.
109 | TOLE Acquires the main group tolerance parameter.
110 | TORQUE Acquires the maximum torque command value which can be set for a specified main group axis.
111 | TRQSTS Acquires the command end status for the DRIVE command with torque limit option
executed at the main group.
112 | TRQTIME Acquires the current limit time-out period at the specified main group axis when using a
torque limit option in the DRIVE statement.
116 | WEIGHT Acquires the main robot tip weight parameter.

Functions: operation-specific @ 14-15

Numeric calculation related functions

No. Function name Function
1 ABS Acquires the absolute value of a specified value.
9 ATN Acquires the arctangent of the specified value.
16 | COS Acquires the cosine value of a specified value.
23 | DEGRAD Converts a specified value to radians («+RADDEG).
26 | DIST Acquires the distance between 2 specified points.
45 | INT Acquires an integer for a specified value by truncating all decimal fractions.
54 | LSHIFT Shifts a value to the left by the specified number of bits. («>RSHIFT)
79 | RADDEG Converts a specified value to degrees. (+DEGRAD)
87 | RSHIFT Shifts a value to the right by the specified number of bits. («+LSHIFT)
95 | SIN Acquires the sine value for a specified value.
100 | SQR Acquires the square root of a specified value.
104 | TAN Acquires the tangent value for a specified value.
113 | VAL Converts the numeric value of a specified character string to an actual numeric value. (-STR$)

Character string calculation related functions

No. Function name Function
15 | CHR$ Acquires a character with the specified character code.
19 | DATE$ Acquires the date as a "yy/mm/dd" format character string.
48 | LEFTS Extracts a character string comprising a specified number of digits from the left end of a
specified character string.
56 | MID $ Extracts a character string of a desired length from a specified character string.
85 | RIGHT $ Extracts a character string comprising a specified number of digits from the right end of a
specified character string.
99 | STR$ Converts a specified value to a character string (<>VAL)

Parameter related functions

No Function name Function

122 | _SYSFLG Axis status monitoring flag.

33 [ERL Gives the line No. where an error occurred.

33 | ERR Gives the error code number of an error which has occurred.

105 | TCOUNTER Outputs count-up values at 10ms intervals starting from the point when the TCOUNTER
variable is reset.

106 | TIME $§ Acquires the current time as an "hh:mm:ss" format character string.

107 | TIMER Acquires the current time in seconds, counting from 12:00 midnight.

I 14-16 @ Chapter 14 Appendix

n Execution Level

The level used to execute a program can be set as shown below.

However, the following commands can be executed only when in a "return-to-origin completion" condition.

Movement commands: MOVE, MOVEI, DRIVE, DRIVEI, PMOVE, PATH START
Position acquisition commands: WHERE, WHRXY
Content
Level | Frogram execution at return- At power ON Program reset at | Return-to-origin signal
to-origin incompletion Mode Program reset program START | inputin AUTO mode
Possible Not possible | MANUAL : AUTO Yes No Yes No Enabled Disabled
0 O O O O O
1 O O O O O
2 O O O O O
3 O O O O O
4 O O O O O
5 O O O O O
6 O O O O O
7 O O O O O*1
8 O O O O O*1

*1: When the AUTO mode absolute reset signal input (DI17) is enabled, the "robot program running" (DO13) signal
switches ON during the processing operation executed by the AUTO mode absolute reset signal input.

1NN UNNMNLGY For execution level details, refer the user's manuals for each controller.

Execution Level @ 14-17 I

Index

Index

Symbole

CSELECT oo 1-5
ADSOIULE TESCT ...uttitiiie i 12-9
Absolute reset command.............cocoiiiiiiii 13-9
Absolute reset movement commandcooiL. 13-8
Acceleration coefficientcooiiiiiiiiiiii 7-22,7-23
Acceleration Settingcooiiiiiiiiiiiiieeaas 7-106
Acquiring return-to-origin statusoiiiiiiiiinn. 12-29
Acquiring the absolute reset statusccceoveieeninnn. 12-29
Acquiring the access levelcooiii 12-24
Acquiring the arm statusc.coveiiiiiiiiiiiiiiiinn, 12-25
Acquiring the break point statusc.oeieiiiii.. 12-25
Acquiring the controller configuration status 12-26
Acquiring the current positionsc.cccoeeuiuininnnn. 12-32
Acquiring the current positions on pulse unit coordinates ... 12-32
Acquiring the current positions on XY coordinates 12-33
Acquiring the display languagecoooiiiiiil. 12-24
Acquiring the emergency stop Statuscccevvennnns 12-37
Acquiring the error status by self-diagnosis 12-37
Acquiring the execution levelc.co. 12-26
Acquiring the messagecoeoeiiiiiiiiiiiiiiiiiininnn. 12-28
Acquiring the mode statuscccoeiiiiiiiiiiiiiiiin. 12-27
Acquiring the option slot Statusc.ccooeiiiiiininnn. 12-38
Acquiring the point coordinates and units 12-31
Acquiring the program execution status 12-12
Acquiring the remaining memory capacity..................... 12-36
Acquiring the servo Statuscocoeoiiiiiiiiinininnn. 12-30
Acquiring the shift status ... 12-35
Acquiring the speed setting statuscccoeoeuienn. 12-31
Acquiring the tasks in RUN statusc.cocoeiiinnn. 12-34
Acquiring the tasks in SUSPEND status 12-34
Acquiring the tasks operation statusoo..o.. 12-35
Acquiring the version information 12-32
Allfile oo 10-23
Arch motion Setting...........oevuiiiviiiiiiiiiniaenn.. 7-103, 7-138
Arithmetic assignment statementc.coooeoiininn... 7-83
Arithmetic OPerationsocvviuiiniuinininininininannnn. 4-1
Arm designation change command.............................. 13-12
Arm 1ock outputo.oveiii 7-86
Arm lock output variable ... 3-13
Arm lock output variablesooiiii 6-6
ATTay SUDSCIIPE eoeinieit i 7-45
Array variable file ... 10-31
Array variables ... 3-5

Assignment Statementooeiiiiiiiiii 7-83
Automatic movement Speedoiiiiiiiiiiii 7-28
AUTO mode 0perationccoeeeueuiuininininiiieienenane. 12-7
Auto movement speed change command 13-11
AXIS P WeIght ..o 7-29
Bit Settingsocveiiiiiii 3-19
Cartesian coordinate formatcocoiiiiii. 4-5
CASE o 7-154
Changing the MANUAL mode speed............c.coveieieenne. 12-9
Changing the modeoooeiiiiiiiiii e, 12-6
Changing the program attributeccoooiiiiin. 12-16
Character CONSTANTSvuieiniiieitiiiit e 2-2

Character string

(010 111071 4 1) H N 4-4

(0] 17 1<Te1 1) | E PN 4-4

LAnK o 7-84

(0315 -1 10) 1 N 4-4
Character string assignment statement 7-84
Circular interpolationccocvviviiiiiiiniinan... 7-97, 7-125
Clearing the error messageoceueueuiuiuiuininiiinnean, 12-19
Command Statement Formatc.cooi. 1-8
COMMENT. ..\ttt aenaes 1-7,7-145
COMMON ..o 1-6
Communication POrtc.coeoeueueuininienennnnns 7-114,7-119
Compiling ... 7-170
Constant file ooooiiiiiiii 10-30
Control COAESnvniiiii 12-46
CONT SEHHNE ..eueneniiiiie e 7-93, 7-105
Coordinate plane settingcocveiieviiineinenn.. 7-107, 7-129
Copying point COMMENS o.vueuerininininiraiieieeanans 12-13
Copying point datacoooeiiiiiiiiiiiiiiiiiiiin, 12-13
.o
Datafileooiieiii 10-1

Data file tYPeS . vveneeeiieee e 10-1
Data format conversionc.c.cooeveviiiiiiiiiiiniiiienn... 4-3
Datahandlingccooiiiiiiiiiii e 12-24
Data readout proCessSingeoeeeerenineerinineaneninnanns 12-41
Data WIite ProCeSSINGuvuinininiieneiatateieiatataiaeaeaenans 12-42
Deceleration rateouieveiniiiiiiiieee e 7-37
Deceleration Settingcocoiiiiiiiiiiiiiians 7-106
Declares array variablecocooiiiiiiiiiiii 7-45
Define POint........oveiiiiii e 7-140
Defines functions which can be used by the user 7-40
DI/DO conditional eXpressionso.e.eeeeeveenineeeenennn.. 4-6
DIAIle oo 10-33

DO fIle. .o 10-35
Dummy argumentcoooiiiiiiiiiii 7-167
Dynamic variablesc.oooiiiiiiiiiiiii 3-20
EOF file ..ooiniiiii 10-50
Erasing point COMMENtScoeuvueuiuininiiiiiinineanans 12-15
Erasing point datacooeiiiiiiiiiiiiiiiens 12-14
Error code numberooiiiiiiiiiiii 7-116
Error message history filecccooiiiiiiiii 10-47
EITOr Processingo.euveveieiiiiiiiiiiniiineianne, 7-116, 7-148
EIror reCovery processingc.o.eeieeereeneenaninnannns 7-148
Ethernet port communication fileoo 10-56
Executes absolute movement of specified axes 7-47
Execution level ... 1-5
Execution Level ... 14-17
External programcooiiiiiiiii e 7-39
FUNCTION e 1-2
Functions: in alphabetic order....................c..ce.e. 7-13, 14-13
Functions: operation-specificc.coviiiiiniint 7-15, 14-15
Global variable ... 10-27
Global variablescocoiiiiiiiiii 3-20
H
Hand
Acquiring the status oooeiiiiiiiiis 12-36
DefiNe ...oneniii i 7-70
Definition file ..o 10-15
Designation change commandccoeeeennn 13-12
SWItChe ..o 7-31
Hand system flag............... 4-5,7-100, 7-111, 7-140, 10-4, 10-18
Hand system to "Right" 7-151
.
T 7-74
Block IF statementccoovvieiiiiiiiiniiiiiieennn. 7-75
Simple IF statementcoooooiiiiiiiiiiiiiiin. 7-74
Inching movement commandc.ccoeiiiiiiiiiin.... 13-7
Incremental modeooiiiiiii 7-121
INItializeoeieiii 12-17
Communication POTeveeuiueiueniniieiiiieiieieiaeans 12-17
MEMOTY e 12-17
Integer CONSLaNtSo.euiniieitiiiiiiie e 2-1
Internal outPUL.......ooviiiiii 7-92

I 2 @ Index

Internal output variableoo 3-12
Interrupting the command executiono.....

10 command

DeSCIIPtionoviiiii e 13-5

Execution trigger inputcoceiiiiiiiiiiiiinin.. 13-1, 13-2

Format........cooiiiiii 13-1

LSt ettt 13-4

Sending and receiving............ccvuvuiuiiiiiiiiiiniiininiins 13-2
TO Te@ISter .ovvinitii i 13-2
Jog movement command ... 13-7
Joint coordinate format ... 4-5
Label .o 7-79
LABEL Statementocooiiiviiiiiiiiiiiiniiaiaaenns 7-79
Left-hand system............cocouiiiiiiiiiii 7-81
Linear interpolation..............oooviiiiiiiiiiiiiiiiieans 7-125
Linear interpolation movementc.ccooeovinininnn... 7-95
Line number where error occurredcoooeiiniin.. 7-116
Local variableooiiiii 7-167
Local variablesooiiiiiiiiii 3-20
LO Il et 10-39
LogiC OPerationsoeveieeiiiiiiiie e 4-2
Machine reference file............coooiiiiiiiiii 10-49
Main task.....o.ouieiii 7-32
MANUAL mode operationcccoeeeiiiiniiinininnnnn. 12-9
Manual movement speed change command 13-11
MO ile ..o 10-37
MOLOT POWET .ottt et 7-157
MOVE commandcoiiiiiiiiiiiiiii 13-5
MOVEI commandoooiiiiiiiiiiiiiiiiiiiieiaens 13-6
Movement direction SEtting.cocoeoeiiiiiiiiiiiiiiinn.. 7-53
Movement SPeedoeiiiiiiiiiiii e 7-163
Moves the specified robot axes in a relative manner 7-55
Multi-task ... 5-1
NUumeric ConStantscocoeuiuiniuiuiuiniiaiiiiiiieaenans 2-1
Online Command List...........cooooiiiiiiiiiiiiiie, 12-1

Online commands
Acquiring the value of a character string expression

Acquiring the value of a numerical expression

Acquiring the value of a point expression 12-40
Acquiring the value of a shift expression 12-40
Operation SPEedc.ouvuiuiriuiiiii e 7-28
OUT enable positioncceeveveveiiiininininiiiienen. 7-123
I
Pallet
Define ..ooovei 7-135
Definition file ... 10-17
Definition number ... 7-135,7-136
Erasingcooiiiii 12-15
Movement ...l 7-136
Movement commandoooiiiiiiiiii 13-6
Position number ... 7-136
Palletizingcooviiiiiiiiii e 11-4, 11-10
Parallel input variable ... 3-10
Parallel output variable ... 3-11
Parallel port.........coviiiiiii 7-43, 7-46
Parameter directory fileoiiiiiiiiiii 10-26
Parameter file ... 10-10
PATH o 7-125, 8-1
Cautions when using this function 8-2
Ends the movement setting.............c.cocoeiiiiiininnn. 7-131
Features ... 8-1
HOW tO USE .eviniieiii 8-1
Specifies the motion path ooiiiiiiiiin... 7-125
Starts the movement settingcoveeiieiiinen.... 7-132
Starts the PATH motionc.c.cooiiiiiiiiiiiiii.. 7-134
Performs absolute movement 7-93, 7-109
Pick and placecoovvviriiiiiii 11-12
Point assignment statement..............c.cooeeiiiiiiiiiiiiiiiianna. 7-84
Point comment file ... 10-8
Point data
For a specified aXiSccvvveiiiiiiiiii 7-87
Format........cooiiii 4-5
Point data variable ... 3-7
Point display unit designation command 13-12
Point element variable................oooii 3-9
Point file ..o 10-4
Point teaching command................c.oooiiiiiiiii 13-8
Port output SEtNgoeieiiiiiii e 7-108, 7-130
Priority of arithmetic operationc.c.cooiiiiiinnnn. 4-3
Program
Oy ettt et e 12-12
Erase ...oooiuiiiii 12-14
Selected ..o 1-5
I) N 7-69
Switch between the programs................cocoeviiinn.. 1-5
SWItChE .ovt 7-170
Temporarily StOpovveeiniiiiiii 7-73
Program directory filecoovviiiiiiiiii 10-24
Program execution Waitccoeiiiiiiiiiiiiiiiiiien, 7-42

Program file...........ooooiiiii 10-2
Program level ... 7-159
Programming bOXcoiiiiiiiiiiii 12-19
Program Namesccooiiiiiiiiiiiiiii i 1-2
Program speed change commando.o 13-11
PTP movement of specified axiS...........coeiviiniiinieninnnn... 7-47
R
Read fileoooiiiiii 7-155
Ready queueso.oviniiiiii 5-3
Real constantsooeiueeiiiiiiii e 2-1
Registering function keyscoovviiiiiniiiiiiiiiin... 1-3
Relational Operatorsccoeieieiiiiiiiiiniiiiiieeenenn, 4-1
Rename program nameoooeveviiiiiiiiiiniiinn.. 12-16
Reserved word listc.cooiiiiiiiiiiiiiiiii 14-1
Resetting the internal emergency stop flag 12-21
Return-to-originccoovevriiiiiiiiiiiiin e, 7-21
Return-to-origin commandoooviiiiiiiiiiii. 13-9
Return-to-origin SEqUENCEccovereniveerienninanennannns 7-120
Robot Language Lists: Command list in alphabetic order 14-3
Robot Language Lists: Function Specific 14-7
RS-232C ..ottt 11-18, 11-19
SEAlING. ..ottt 11-17
Sequence functioncoooeviiiiiiiiiiie 6-1
SequUeNCe Programo.eeeueieirinineeniineeieieiienenenanne. 6-1
Acquiring the execution statuscceeiiinnnn. 12-30
Cannotbe usedooooviiiiiiii 6-3
ComPiling ..ovieiiiei e 6-2
(3 (T 1511V PN 6-5
EXCCUtING ooenininiiii e 6-4
Priority of logic operationsccoeveveiiiiieiinenn... 6-8
Program capacityoooeiiiiiiiii 6-8
Programming methodcoooiiiiii 6-1
SCAN HIME. .ttt 6-8
Setting the execution flagc.coooiiiiiiiiiiin.L. 12-21
SPecificationso.iuiiiitiiii i 6-8
STEP €XECULION ...vitititititiiieie e 6-4
SEQUENCE programcocveveiiiiiiiiiiiiiiiiiiiiannn. 1-4
Serial double word input.............cooveiiiiiiiiiiii 3-17
Serial double word outputccoiiiiiiiiiii 3-18
Serial input variable ... 3-15
Serial output variablecoiiiiii 3-16
Serial POrt ..o 7-162
Serial port communication fileo 10-51
Serial WOrd INPUL......o.ouiiiiiii 3-17
Serial Word OUtPULoviiieii e 3-18
Servo
FREE .o 7-157
OFF .. 7-157

Index @ 3 I

ON 7-157
Servo command ... 13-10
SETVO STATUS .. eeneeet i 7-157
Setting a break pointoooiiiiiiii 12-8
Setting the coordinates and units in MANUAL mode 12-19
Setting the display languagecoviviiiiiiininn.. 12-18
Setting the execution level ... 12-20
Setting the hand systemc.cocoiiiiiiiiiin.. 12-21
Setting the SCARA robot hand system 12-21
Setting the sequence program execution flag 12-21
Setting the UTILITY mode........oevvviviiniiiiiiiniinninnns 12-20
Shift assignment statementc.coooeiiiiiiiiiiiiiaan. 7-85
Shift coordinate ... 7-153,7-160

Definition fileoooiiiiiiiii 10-13
Shift coordinate variable.................cocoiiiii 3-8
Shift designation change command 13-12
Shift element variable ... 3-10
STAle oo 10-43
SOIE .o 10-45
SOW Ile .t 10-54
Static variablescooiiiiii 3-20
STOPON condition Settingcccevevreriinrenenennannn.. 7-139
STOPON conditions settingc.cccoeeuiuiuininnn. 7-50, 7-59
Sub-procedureooooiiiiiiii 7-30, 7-159, 7-167
SUD-TOULING ...uevititieii e 7-67
SUDIOULING ...oeeieiei i 7-117
Switching the execution taskccooviiiiiiiiiiinnn.. 12-8
Switching the program ... 12-44
System Variablesoooiviiiiiiiiii 3-2,3-7
Task

Condition Wait..........oiuiuitiiiii i 5-4

Definitionc.coiiiiiiiiii 5-1

Deleting ...vvneeiii e 5-6

Directly terminateccoovvriiiiiiiiiniiiiiiaiaen.n. 7-35

NUMDET et 7-164

Priority order ..o 5-1

Priority rankingcoooiiiiiiiii 7-32,7-164

Program examplecooiiiiiiiiiiii 5-8

REStArt ..o 7-147

ReStartingo.oouieiiiii e 5-5

Schedulingooviiiriiii e 5-3

Sharing the data ... 5-8

SHEATT .. 7-164

SEArtiNG oo 5-2

Status and transitioncoiiiiiii 5-2

SEOPPING e 5-7

SUSPENAING . ..eeieiit e 5-5

Temporarily StOPvvieiiie i 7-169

Terminate o.ouiuinieinitit e 7-65

I 4 @ Index

Task status

NON EXISTEN ..ot 5-2
READY o 5-2
RUN 5-2
STOP o 5-2
SUSPEND ..ot 5-2
WAL o 5-2
Timer output variable ... 3-14
Tip Weight ..o 7-185
TO e .o 10-41
TOLEIaNCEttt 7-176
TO POIT et 7-175
Torque command valuecooviiiiiiiiiiiiniininn. 7-177
Torque limit Settingo.vviiiiiniiiiiiiiiiaees 7-50, 7-180
Torque limit valueccooviiiiiiiiiiiiiiiiiieieeans 7-50
Torque offset valuecoooeiiiiiiiiii 7-50
Type CONVEISIONSueeeiii e 3-6

User program examples

APPIICAtION ..o 11-8

Basic operationoiiiiiiiiiii 11-1
User Variableso.oveiuiiiii i 3-2
Using point NUMDETSouvrerinietitititiiieieieneeianeeaenans 11-2
Using shift coordinatescccocoiiiiiiiiiiii... 11-3
Utility Operationcoveveriiiiiiiiiiaaiananans 12-12
Valid range of dynamic array variables 3-20
Valid range of variablescocociiiiiiiii, 3-20
Value Pass-Along & Reference Pass-Along 3-6
Variable file 10-27
Variable Namesccoooiiiiiiiiiiiiiiiiiiiieeieeans 3-3
Variable TYPESuueeie i 3-4
WAIT SATUS. . c.ceeeieieitie e 5-4
Write file ... 7-155
XY SCHINE oenitieitititit e 7-52

Revision history

A manual revision code appears as a suffix to the catalog number on the front cover manual.

Cat. No. [139E-EN-02

L

The following table outlines the changes made to the manual during each revision.

Revision code

Revision code Date Description
01 February 2010 Original production
02 February 2014 ABSINIT and CURTRQ commands were added.

Chapter 9 "Limitless motion" was added.
Parameters related to R6YXTWS500 model were added.

OmRoON

/Authorized Distributor: \

N J

Cat. No. I139E-EN-02 Note: Specifications subject to change without notice. Printed in Europe

	Introduction
	Safety precautions
	Contents
	Chapter 1	
Writing Programs
		1	The OMRON Robot Language
		2	Characters
		3	Program Basics
		4	Program Names
		5	Identifiers
		6	Comment
		7	Command Statement Format

	Chapter 2	
Constants
		1	Outline
		2	Numeric constants
	2.1	Integer constants
	2.2	Real constants

		3	Character constants

	Chapter 3	
Variables
	 1 Outline
		2	User Variables & System Variables
	2.1	User Variables
	2.2	System Variables

		3	Variable Names
	3.1	Dynamic Variable Names
	3.2	Static Variable Names

		4	Variable Types
	4.1	Numeric variables
	4.2	Character variables

		5	Array variables
		6	Value Assignments
		7	Type Conversions
		8	Value Pass-Along & Reference Pass-Along
		9	System Variables
	9.1	Point data variable
	9.2	Shift coordinate variable
	9.3	Point element variable
	9.4	Shift element variable
	9.5	Parallel input variable
	9.6	Parallel output variable
	9.7	Internal output variable
	9.8	Arm lock output variable
	9.9	Timer output variable
	9.10	Serial input variable
	9.11	Serial output variable
	9.12	Serial word input
	9.13	Serial double word input
	9.14	Serial word output
	9.15	Serial double word output

		10	Bit Settings
		11	Valid range of variables
	11.1	Valid range of dynamic variables
	11.2 	Valid range of static variables
	11.3	Valid range of dynamic array variables

		12	Clearing variables
	12.1	Clearing dynamic variables
	12.2	Clearing static variables

	Chapter 4	
Expressions and Operations
		1	Arithmetic operations
	1.1	Arithmetic operators
	1.2	Relational operators
	1.3	Logic operations
	1.4	Priority of arithmetic operation
	1.5	Data format conversion

		2	Character string operations
	2.1	Character string connection
	2.2	Character string comparison

		3	Point data format
		4	DI/DO conditional expressions

	Chapter 5	
Multi-tasking
		1	Outline
		2	Task definition
		3	Task status and transition
	3.1	Starting tasks
	3.2	Task scheduling
	3.3	Condition wait in task
	3.4	Suspending tasks (SUSPEND)
	3.5	Restarting tasks (RESTART)
	3.6	Deleting tasks
	3.7	Stopping tasks

		4	Multi-task program example
		5	Sharing the data
		6	Cautionary Items

	Chapter 6	
Sequence function
		1	Sequence function
		2	Creating a sequence program
	2.1	Programming method
	2.2	Compiling

		3	Executing a sequence program
	3.1	Sequence program STEP execution

		4	Creating a sequence program
	4.1	Assignment statements
	4.2	Input/output variables
	4.3	Timer definition statement
	4.4	Logical operators
	4.5	Priority of logic operations
	4.6	Sequence program specifications

	Chapter 7	
Robot Language Lists
			How to read the robot language table
			Command list in alphabetic order
			Function Specific
			Functions: in alphabetic order
			Functions: operation-specific
		1	ABS
	Acquires absolute values

		2	ABSINIT
	Resets the current position of a specified axis

		3	ABSRPOS
	Acquires a machine reference

		4	ABSRST
	Absolute motor axis return-to-origin operation

		5	ACCEL
	Specifies/acquires the acceleration coefficient parameter

		6	ARCH
	Specifies/acquires the acceleration coefficient parameter

		7	ARMCND
	Arm status acquisition

		8	ARMTYPE
	SCARA robot hand system

		9	ATN
	Acquires the arctangent of the specified value

		10	ASPEED
	Sets the automatic movement speed

		11	AXWGHT
	Sets/acquires the axis tip weight

		12	CALL
	Calls a sub-procedure

		13	CHANGE
	Switches the hand

		14	CHGPRI
	Changes the priority ranking of a specified task

		15	CHR$
	Acquires a character with the specified character code

		16	COS
	Acquires the cosine value of a specified value

		17	CURTRQ
	Acquires the current torque of the specified axis

		18	CUT
	Terminates another sub task which is currently being executed

		19	DATE$
	Acquires the date

		20	DECEL
	Specifies/acquires the deceleration rate parameter

		21	DECLARE
	Declares that a sub-routine or sub-procedure is to be used within the COMMON program

		22	DEF FN
	Defines functions which can be used by the user

		23	DEGRAD
	Angle conversion (angle → radian)

		24	DELAY
	Program execution waits for a specified period of time

		25	DI
	Acquires the input status from the parallel port

		26	DIST
	Acquires the distance between 2 specified points

		27	DIM
	Declares array variable

		28	DO
	Outputs to parallel port

		29	DRIVE
	Executes absolute movement of specified axes

		30	DRIVEI
	Moves the specified robot axes in a relative manner

		31	END SELECT
	Ends the SELECT CASE statement

		32	END SUB
	Ends the sub-procedure definition

		33	ERR / ERL
	Acquires the error code / error line No

		34	EXIT FOR
	Terminates the FOR to NEXT statement loop

		35	EXIT SUB
	Terminates the sub-procedure defined by SUB to END

		36	EXIT TASK
	Terminates its own task which is in progress

		37	FOR to NEXT
	Performs loop processing until the variable-specified value is exceeded

		38	GOSUB to RETURN
	Jumps to a sub-routine

		39	GOTO
	Executes an unconditional jump to the specified line

		40	HALT
	Stops the program and performs a reset

		41	HAND
	Defines the hand
	41.1	For SCARA Robots

		42	HOLD
	Temporarily stops the program

		43	IF
	Evaluates a conditional expression value, and executes the command in accordance with the conditions
	43.1	Simple IF statement
	43.2	Block IF statement

		44	INPUT
	Assigns a value to a variable specified from the programming box

		45	INT
	Truncates decimal fractions

		46	JTOXY
	Performs axis unit system conversions (pulse → mm)

		47	LABEL Statement
	Defines labels at program lines

		48	LEFT$
	Extracts character strings from the left end

		49	LEFTY
	Sets the SCARA robot hand system as a left-hand system

		50	LEN
	Acquires a character string length

		51	LET
	Assigns values to variables

		52	LO
	Arm lock output

		53	LOCx
	Specifies/acquires point data or shift data for a specified axis

		54	LSHIFT
	Left-shifts a bit

		55	MCHREF
	Acquires a machine reference

		56	MID$
	Acquires a character string from a specified position

		57	MO
	Outputs a specified value to the MO port (internal output)

		58	MOVE
	Performs absolute movement of all robot axes

		59	MOVEI
	Performs absolute movement of all robot axes

		60	OFFLINE
	Sets a specified communication port to the "offline" mode

		61	ORD
	Acquires a character code

		62	ON ERROR GOTO
	Jumps to a specified label when an error occurs

		63	ON to GOSUB
	Executes the subroutine specified by the <expression> value

		64	ON to GOTO
	Jumps to the label specified by the <expression> value

		65	ONLINE
	Sets the specified communication port to the "online" mode

		66	ORGORD
	Specifies/acquires the robot's return-to-origin sequence

		67	ORIGIN
	Performs an incremental mode axis return-to-origin

		68	OUT
	Turns ON the specified port output

		69	OUTPOS
	Specifies/acquires the OUT enable position parameter of the robot

		70	PATH
	Specifies the main robot axis PATH motion path

		71	PATH END
	Ends the movement path setting

		72	PATH SET
	Starts the movement path setting

		73	PATH START
	Starts the PATH motion

		74	PDEF
	Defines the pallet used to execute pallet movement commands

		75	PMOVE
	Executes a pallet movement command for the robot

		76	Pn
	Defines points within a program

		77	PPNT
	Creates pallet point data

		78	PRINT
	Displays the specified expression value at the programming box

		79	RADDEG
	Performs a unit conversion (radians → degrees)

		80	REM
	Inserts a comment

		81	RESET
	Turns OFF the bits of specified ports, or clears variables

		82	RESTART
	Restarts another task during a temporary stop

		83	RESUME
	Resumes program execution after error recovery processing

		84	RETURN
	Processing which was branched by GOSUB, is returned to the next line after GOSUB

		85	RIGHT$
	Extracts a character string from the right end of another character string

		86	RIGHTY
	Sets the SCARA robot hand system to "Right"

		87	RSHIFT
	Shifts a bit value to the right

		88	Sn
	Defines the shift coordinates in the program

		89	SELECT CASE
	Executes the specified command block in accordance with the <expression> value

		90	SEND
	Sends <read file> data to the <write file>

		91	SERVO
	Controls the servo status

		92	SET
	Turns the bit at the specified output port ON

		93	SHARED
	Enables sub-procedure referencing without passing on the variable

		94	SHIFT
	Sets the shift coordinates

		95	SIN
	Acquires the sine value for a specified value

		96	SO
	Outputs a specified value to the serial port

		97	SPEED
	Changes the program movement speed

		98	START
	Starts a new task

		99	STR$
	Converts a numeric value to a character string

		100	SQR
	Acquires the square root of a specified value

		101	SUB to END SUB
	Defines a sub-procedure

		102	SUSPEND
	Temporarily stops another task which is being executed

		103	SWI
	Switches the program being executed

		104	TAN
	Acquires the tangent value for a specified value

		105	TCOUNTER
	Timer & counter

		106	TIME$
	Acquires the current time

		107	TIMER
	Acquires the current time

		108	TO
	Outputs a specified value to the TO port

		109	TOLE
	Specifies/acquires the tolerance parameter

		110	TORQUE
	Specifies/acquires the maximum torque command value which can be set for a specified axis

		111	TRQSTS
	Acquires the status when DRIVE statement ends

		112	TRQTIME
	Sets/acquires the time-out period for the torque limit setting option

		113	VAL
	Converts character strings to numeric values

		114	WAIT
	Waits until the conditions of the DI/DO conditional expression are met

		115	WAIT ARM
	Waits until the robot axis operation is completed

		116	WEIGHT
	Specifies/acquires the tip weight parameter

		117	WEND
	Ends the WHILE statement's command block

		118	WHERE
	Acquires the arm's current position (pulse coordinates)

		119	WHILE to WEND
	Repeats an operation for as long as a condition is met

		120	WHRXY
	Acquires the arm's current position in Cartesian coordinates

		121	XYTOJ
	Converts the main group axes Cartesian coordinate data ("mm") to joint coordinate data ("pulse")

		122	_SYSFLG
	Axis status monitoring flag

	Chapter 8	
PATH Statements
		1	Overview
		2	Features
		3	How to use
		4	Cautions when using this function

	Chapter 9	
Limitless motion
		1	Overview
		2	Operation Procedure
	2.1	Parameters
	2.2	Robot language
	2.3	Sample program

		3	Restrictions

	Chapter 10	
Data file description
		1	Overview
	1.1	Data file types
	1.2	Cautions

		2	Program file
	2.1	All programs
	2.2	One program

		3	Point file
	3.1	All points
	3.2	One point

		4	Point comment file
	4.1	All point comments
	4.2	One point comment

		5	Parameter file
	5.1	All parameters
	5.2	One parameter

		6	Shift coordinate definition file
	6.1	All shift data
	6.2	One shift definition

		7	Hand definition file
	7.1	All hand data
	7.2	One hand definition

		8	Pallet definition file
	8.1	All pallet definitions
	8.2	One pallet definition

		9	All file
	9.1	All files

		10	Program directory file
	10.1	Entire program directory
	10.2	One program

		11	Parameter directory file
	11.1	Entire parameter directory

		12	Variable file
	12.1	All variables
	12.2	One variable

		13	Constant file
	13.1	One character string

		14	Array variable file
	14.1	All array variables
	14.2	One array variable

		15	DI file
	15.1	All DI information
	15.2	One DI port

		16	DO file
	16.1	All DO information
	16.2	One DO port

		17	MO file
	17.1	All MO information
	17.2	One MO port

		18	LO file
	18.1	All LO information
	18.2	One LO port

		19	TO file
	19.1	All TO information
	19.2	One TO port

		20	SI file
	20.1	All SI information
	20.2	One SI port

		21	SO file
	21.1	All SO information
	21.2	One SI port

		22	Error message history file
	22.1	All error message history

		23	Error Message History Details File
	23.1	General error message history details

		24	Machine reference file
	24.1	All machine reference file

		25	EOF file
	25.1	EOF data

		26	Serial port communication file
	26.1	Serial port communication file

		27	SIW file
	27.1	All SIW
	27.2	One SIW data

		28	SOW file
	28.1	All SIW
	28.2	One SOW data

		29	Ethernet port communication file
	29.1	Ethernet port communication file

	Chapter 11	
User program examples
		1	Basic operation
	1.1	Directly writing point data in program
	1.2	Using point numbers
	1.3	Using shift coordinates
	1.4	Palletizing
	1.4.1	Calculating point coordinates
	1.4.2	Utilizing pallet movement

	1.5	DI/DO (digital input and output) operation

		2	Application
	2.1	Pick and place between 2 points
	2.2	Palletizing
	2.3	Pick and place of stacked parts
	2.4	Parts inspection (Multi-tasking example)
	2.5	Sealing
	2.6	Connection to an external device through RS-232C (example 1)
	2.7	Connection to an external device through RS-232C (example 2)

	Chapter 12	
Online commands
		1	Online Command List
	1.1	Online command list: Function specific
	1.2	Online command list: In alphabetic order

		2	Key operation
	2.1	Changing the mode
	2.2	AUTO mode operation
	2.3	MANUAL mode operation

		3	Utility operation
	3.1	Acquiring the program execution status
	3.2	Copy
	3.3	Erase
	3.4	Rename program name
	3.5 	Changing the program attribute
	3.6	Initialize
	3.7	Setting the display language
	3.8	Setting the coordinates and units in MANUAL mode
	3.9	Clearing the programming box error message
	3.10	Setting the UTILITY mode
	3.11	Checking and setting the date
	3.12	Checking and setting the time

		4	Data handling
	4.1	Acquiring the display language
	4.2	Acquiring the access level
	4.3	Acquiring the arm status
	4.4	Acquiring the break point status
	4.5	Acquiring the controller configuration status
	4.6	Acquiring the execution level
	4.7	Acquiring the mode status
	4.8	Acquiring the message
	4.9 	Acquiring return-to-origin status
	4.10	Acquiring the absolute reset status
	4.11	Acquiring the servo status
	4.12	Acquiring the sequence program execution status
	4.13	Acquiring the speed setting status
	4.14	Acquiring the point coordinates and units
	4.15	Acquiring the version information
	4.16	Acquiring the current positions
	4.17	Acquiring the tasks in RUN or SUSPEND status
	4.18	Acquiring the tasks operation status
	4.19	Acquiring the shift status
	4.20	Acquiring the hand status
	4.21	Acquiring the remaining memory capacity
	4.22	Acquiring the emergency stop status
	4.23	Acquiring the error status by self-diagnosis
	4.24	Acquiring the option slot status
	4.25	Acquiring various values
	4.26	Data readout processing
	4.27	Data write processing
	4.28	Current torque value acquisition

		5	Executing the robot language independently
	5.1	Switching the program
	5.2	Other robot language command processing

		6	Control codes
	6.1	Interrupting the command execution

	Chapter 13	
IO commands
		1	Overview
		2	IO command format
		3	Sending and receiving IO commands
		4	IO command list
		5	IO command description
	5.1	MOVE command
	5.2	MOVEI command
	5.3	Pallet movement command
	5.4	Jog movement command
	5.5	Inching movement command
	5.6	Point teaching command
	5.7	Absolute reset movement command
	5.8	Absolute reset command
	5.9	Return-to-origin command
	5.10	Servo command
	5.11	Manual movement speed change command
	5.12	Auto movement speed change command
	5.13	Program speed change command
	5.14	Shift designation change command
	5.15	Hand designation change command
	5.16	Arm designation change command
	5.17	Point display unit designation command

	Chapter 14	
Appendix
		1	Reserved word list
		2	Robot Language Lists: Command list in alphabetic order
		3	Robot Language Lists: Function Specific
		4	Functions: in alphabetic order
		5	Functions: operation-specific
		6	Execution Level

	Index

