
ZX-T Series

Cat. No. I139E-EN-02

YRC SCARA Robot Controller

PROGRAMMING MANUAL

SCARA Robot
YRC Series

Introduction

Our sincere thanks for your purchase of this OMRON YRC series robot controller.

This manual describes robot program commands and related information for using OMRON YRC series
robot controllers. Be sure to read this manual carefully as well as related manuals and comply with their
instructions for using the OMRON robot controllers safely and correctly.
For details on how to operate OMRON robot controllers, refer to the separate controller user's manual that
comes with the OMRON robot controller.

Applicable controllers: YRC (4-axis controller)

Safety precautions

Be sure to read before using

Before using the OMRON robot controller, be sure to read this manual and related manuals, and follow
their instructions to use the robot controller safely and correctly.
Warning and caution items listed in this manual relate to OMRON robot controllers.
When this robot controller is used in a robot controller system, please take appropriate safety measures as
required by the user’s individual system.
This manual classifies safety caution items and operating points into the following levels, along with
symbols for signal words “CAUTION” and “NOTE”.

CAUTION

"CAUTION" indicates a potentially hazardous situation which, if not avoided, could result in minor or
moderate injury or damage to the equipment or software.

 NOTE
Primarily explains function differences, etc., between software versions.

Explains robot operation procedures in a simple and clear manner.

Note that the items classified into “CAUTION” might result in serious injury depending on the situation
or environmental conditions. So always comply with CAUTION instructions since these are essential to
maintain safety.
Keep this manual carefully so that the operator can refer to it when needed. Also make sure that this manual
reaches the end user.

■ System design precautions

CAUTION

When the program execution stops before it is complete, the program re-executes the command that
has stopped. Keep this point in mind when re-executing the program, for example, when using an arch
motion with the MOVE command, a relative movement command such as the MOVEI or DRIVEI
command, or a communication command such as the SEND command.

MEMO

CONTENTS YRC Series
Programming Manual

T-1

Chapter 1 Writing Programs

 1 The OMRON Robot Language 1-1

 2 Characters 1-1

 3 Program Basics 1-1

 4 Program Names 1-2

	5	 Identifiers	 1-7

	6	 Comment	 1-7

	7	 Command	Statement	Format	 1-8

Chapter 2 Constants

 1 Outline 2-1

 2 Numeric constants 2-1

2.1 Integer constants 2-1

2.2 Real constants 2-1

 3 Character constants 2-2

Chapter 3 Variables

 1 Outline 3-1

 2 User Variables & System Variables 3-2

2.1 User Variables 3-2

2.2 System Variables 3-2

 3 Variable Names 3-3

3.1 Dynamic Variable Names 3-3

3.2 Static Variable Names 3-3

 4 Variable Types 3-4

4.1 Numeric variables 3-4

4.2 Character variables 3-4

 5 Array variables 3-5

 6 Value Assignments 3-5

CONTENTS YRC Series
Programming Manual

T-2

	7	 Type	Conversions	 3-6

	8	 Value	Pass-Along	&	Reference	Pass-Along	 3-6

	9	 System	Variables	 3-7

9.1 Point data variable 3-7

9.2 Shift coordinate variable 3-8

9.3 Point element variable 3-9

9.4 Shift element variable 3-10

9.5 Parallel input variable 3-10

9.6 Parallel output variable 3-11

9.7 Internal output variable 3-12

9.8 Arm lock output variable 3-13

9.9 Timer output variable 3-14

9.10 Serial input variable 3-15

9.11 Serial output variable 3-16

9.12 Serial word input 3-17

9.13 Serial double word input 3-17

9.14 Serial word output 3-18

9.15 Serial double word output 3-18

 10 Bit Settings 3-19

 11 Valid range of variables 3-20

11.1 Valid range of dynamic variables 3-20

11.2 Valid range of static variables 3-20

11.3 Valid range of dynamic array variables 3-20

 12 Clearing variables 3-21

12.1 Clearing dynamic variables 3-21

12.2 Clearing static variables 3-21

Chapter 4 Expressions and Operations

 1 Arithmetic operations 4-1

1.1 Arithmetic operators 4-1

1.2 Relational operators 4-1

1.3 Logic operations 4-2

1.4 Priority of arithmetic operation 4-3

1.5 Data format conversion 4-3

 2 Character string operations 4-4

2.1 Character string connection 4-4

2.2 Character string comparison 4-4

CONTENTS YRC Series
Programming Manual

T-3

 3 Point data format 4-5

 4 DI/DO conditional expressions 4-6

Chapter 5 Multi-tasking

 1 Outline 5-1

	2	 Task	definition	 5-1

 3 Task status and transition 5-2

3.1 Starting tasks 5-2

3.2 Task scheduling 5-3

3.3 Condition wait in task 5-4

3.4 Suspending tasks (SUSPEND) 5-5

3.5 Restarting tasks (RESTART) 5-5

3.6 Deleting tasks 5-6

3.7 Stopping tasks 5-7

	4	 Multi-task	program	example	 5-8

	5	 Sharing	the	data	 5-8

 6 Cautionary Items 5-9

Chapter 6 Sequence function

 1 Sequence function 6-1

 2 Creating a sequence program 6-1

2.1 Programming method 6-1

2.2 Compiling 6-2

 3 Executing a sequence program 6-4

3.1 Sequence program STEP execution 6-4

 4 Creating a sequence program 6-5

4.1 Assignment statements 6-5

4.2 Input/output variables 6-5

4.3 Timer definition statement 6-7

4.4 Logical operators 6-7

4.5 Priority of logic operations 6-8

4.6 Sequence program specifications 6-8

CONTENTS YRC Series
Programming Manual

T-4

Chapter	7	 Robot	Language	Lists

		How	to	read	the	robot	language	table	 7-1

		Command	list	in	alphabetic	order	 7-3

		Function	Specific	 7-7

		Functions:	in	alphabetic	order	 7-13

		Functions:	operation-specific	 7-15

 1 ABS Acquires absolute values 7-17

 2 ABSINIT Resets the current position of a specified axis 7-18

 3 ABSRPOS Acquires a machine reference 7-20

 4 ABSRST Absolute motor axis return-to-origin operation 7-21

 5 ACCEL Specifies/acquires the acceleration coefficient parameter 7-22

 6 ARCH Specifies/acquires the acceleration coefficient parameter 7-23

 7 ARMCND Arm status acquisition 7-25

 8 ARMTYPE SCARA robot hand system 7-26

 9 ATN Acquires the arctangent of the specified value 7-27

 10 ASPEED Sets the automatic movement speed 7-28

 11 AXWGHT Sets/acquires the axis tip weight 7-29

 12 CALL Calls a sub-procedure 7-30

 13 CHANGE Switches the hand 7-31

 14 CHGPRI Changes the priority ranking of a specified task 7-32

 15 CHR$ Acquires a character with the specified character code 7-33

 16 COS Acquires the cosine value of a specified value 7-34

 17 CURTRQ Acquires the current torque of the specified axis 7-34

 18 CUT Terminates another sub task which is currently being executed 7-35

 19 DATE$ Acquires the date 7-36

 20 DECEL Specifies/acquires the deceleration rate parameter 7-37

 21 DECLARE Declares that a sub-routine or sub-procedure is to be used within 7-38
the COMMON program

 22 DEF FN Defines functions which can be used by the user 7-40

 23 DEGRAD Angle conversion (angle → radian) 7-41

 24 DELAY Program execution waits for a specified period of time 7-42

 25 DI Acquires the input status from the parallel port 7-43

 26 DIST Acquires the distance between 2 specified points 7-44

CONTENTS YRC Series
Programming Manual

T-5

 27 DIM Declares array variable 7-45

 28 DO Outputs to parallel port 7-46

 29 DRIVE Executes absolute movement of specified axes 7-47

 30 DRIVEI Moves the specified robot axes in a relative manner 7-55

 31 END SELECT Ends the SELECT CASE statement 7-60

 32 END SUB Ends the sub-procedure definition 7-61

 33 ERR / ERL Acquires the error code / error line No 7-62

 34 EXIT FOR Terminates the FOR to NEXT statement loop 7-63

 35 EXIT SUB Terminates the sub-procedure defined by SUB to END 7-64

 36 EXIT TASK Terminates its own task which is in progress 7-65

 37 FOR to NEXT Performs loop processing until the variable-specified value is exceeded 7-66

 38 GOSUB to RETURN Jumps to a sub-routine 7-67

 39 GOTO Executes an unconditional jump to the specified line 7-68

 40 HALT Stops the program and performs a reset 7-69

 41 HAND Defines the hand 7-70

41.1 For SCARA Robots 7-70

 42 HOLD Temporarily stops the program 7-73

 43 IF Evaluates a conditional expression value, and executes the 7-74
command in accordance with the conditions

43.1 Simple IF statement 7-74

43.2 Block IF statement 7-75

 44 INPUT Assigns a value to a variable specified from the programming box 7-76

 45 INT Truncates decimal fractions 7-77

 46 JTOXY Performs axis unit system conversions (pulse → mm) 7-78

 47 LABEL Statement Defines labels at program lines 7-79

 48 LEFT$ Extracts character strings from the left end 7-80

 49 LEFTY Sets the SCARA robot hand system as a left-hand system 7-81

 50 LEN Acquires a character string length 7-82

 51 LET Assigns values to variables 7-83

 52 LO Arm lock output 7-86

 53 LOCx Specifies/acquires point data or shift data for a specified axis 7-87

 54 LSHIFT Left-shifts a bit 7-89

 55 MCHREF Acquires a machine reference 7-90

 56 MID$ Acquires a character string from a specified position 7-91

 57 MO Outputs a specified value to the MO port (internal output) 7-92

 58 MOVE Performs absolute movement of all robot axes 7-93

CONTENTS YRC Series
Programming Manual

T-6

 59 MOVEI Performs absolute movement of all robot axes 7-109

 60 OFFLINE Sets a specified communication port to the "offline" mode 7-114

 61 ORD Acquires a character code 7-115

 62 ON ERROR GOTO Jumps to a specified label when an error occurs 7-116

 63 ON to GOSUB Executes the subroutine specified by the <expression> value 7-117

 64 ON to GOTO Jumps to the label specified by the <expression> value 7-118

 65 ONLINE Sets the specified communication port to the "online" mode 7-119

 66 ORGORD Specifies/acquires the robot's return-to-origin sequence 7-120

 67 ORIGIN Performs an incremental mode axis return-to-origin 7-121

 68 OUT Turns ON the specified port output 7-122

 69 OUTPOS Specifies/acquires the OUT enable position parameter of the robot 7-123

 70 PATH Specifies the main robot axis PATH motion path 7-125

 71 PATH END Ends the movement path setting 7-131

 72 PATH SET Starts the movement path setting 7-132

 73 PATH START Starts the PATH motion 7-134

 74 PDEF Defines the pallet used to execute pallet movement commands 7-135

 75 PMOVE Executes a pallet movement command for the robot 7-136

 76 Pn Defines points within a program 7-140

 77 PPNT Creates pallet point data 7-142

 78 PRINT Displays the specified expression value at the programming box 7-143

 79 RADDEG Performs a unit conversion (radians → degrees) 7-144

 80 REM Inserts a comment 7-145

 81 RESET Turns OFF the bits of specified ports, or clears variables 7-146

 82 RESTART Restarts another task during a temporary stop 7-147

 83 RESUME Resumes program execution after error recovery processing 7-148

 84 RETURN Processing which was branched by GOSUB, is returned to the 7-149
next line after GOSUB

 85 RIGHT$ Extracts a character string from the right end of another character string 7-150

 86 RIGHTY Sets the SCARA robot hand system to "Right" 7-151

 87 RSHIFT Shifts a bit value to the right 7-152

 88 Sn Defines the shift coordinates in the program 7-153

 89 SELECT CASE Executes the specified command block in accordance with the 7-154
<expression> value

 90 SEND Sends <read file> data to the <write file> 7-155

 91 SERVO Controls the servo status 7-157

 92 SET Turns the bit at the specified output port ON 7-158

 93 SHARED Enables sub-procedure referencing without passing on the variable 7-159

CONTENTS YRC Series
Programming Manual

T-7

 94 SHIFT Sets the shift coordinates 7-160

 95 SIN Acquires the sine value for a specified value 7-161

 96 SO Outputs a specified value to the serial port 7-162

 97 SPEED Changes the program movement speed 7-163

 98 START Starts a new task 7-164

 99 STR$ Converts a numeric value to a character string 7-165

 100 SQR Acquires the square root of a specified value 7-166

 101 SUB to END SUB Defines a sub-procedure 7-167

 102 SUSPEND Temporarily stops another task which is being executed 7-169

 103 SWI Switches the program being executed 7-170

 104 TAN Acquires the tangent value for a specified value 7-171

 105 TCOUNTER Timer & counter 7-172

 106 TIME$ Acquires the current time 7-173

 107 TIMER Acquires the current time 7-174

 108 TO Outputs a specified value to the TO port 7-175

 109 TOLE Specifies/acquires the tolerance parameter 7-176

 110 TORQUE Specifies/acquires the maximum torque command value which 7-177
can be set for a specified axis

 111 TRQSTS Acquires the status when DRIVE statement ends 7-179

 112 TRQTIME Sets/acquires the time-out period for the torque limit setting option 7-180

 113 VAL Converts character strings to numeric values 7-182

 114 WAIT Waits until the conditions of the DI/DO conditional expression are met 7-183

 115 WAIT ARM Waits until the robot axis operation is completed 7-184

 116 WEIGHT Specifies/acquires the tip weight parameter 7-185

 117 WEND Ends the WHILE statement's command block 7-186

 118 WHERE Acquires the arm's current position (pulse coordinates) 7-187

 119 WHILE to WEND Repeats an operation for as long as a condition is met 7-188

 120 WHRXY Acquires the arm's current position in Cartesian coordinates 7-189

 121 XYTOJ Converts the main group axes Cartesian coordinate data ("mm") 7-190
to joint coordinate data ("pulse")

 122 _SYSFLG Axis status monitoring flag 7-190

Chapter	8	 PATH	Statements

	1	 Overview	 8-1

	2	 Features	 8-1

CONTENTS YRC Series
Programming Manual

T-8

	3	 How	to	use	 8-1

	4	 Cautions	when	using	this	function	 8-2

Chapter 9 Limitless motion

 1 Overview 9-1

 2 Operation Procedure 9-1

2.1 Parameters 9-1

2.2 Robot language 9-1

2.3 Sample program 9-2

 3 Restrictions 9-3

Chapter	10	 Data	file	description

 1 Overview 10-1

1.1 Data file types 10-1

1.2 Cautions 10-1

	2	 Program	file	 10-2

2.1 All programs 10-2

2.2 One program 10-3

	3	 Point	file	 10-4

3.1 All points 10-4

3.2 One point 10-6

	4	 Point	comment	file	 10-8

4.1 All point comments 10-8

4.2 One point comment 10-8

	5	 Parameter	file	 10-10

5.1 All parameters 10-10

5.2 One parameter 10-12

	6	 Shift	coordinate	definition	file	 10-13

6.1 All shift data 10-13

6.2 One shift definition 10-14

	7	 Hand	definition	file	 10-15

7.1 All hand data 10-15

7.2 One hand definition 10-16

CONTENTS YRC Series
Programming Manual

T-9

	8	 Pallet	definition	file	 10-17

8.1 All pallet definitions 10-17

8.2 One pallet definition 10-20

	9	 All	file	 10-23

9.1 All files 10-23

	10	 Program	directory	file	 10-24

10.1 Entire program directory 10-24

10.2 One program 10-25

	11	 Parameter	directory	file	 10-26

11.1 Entire parameter directory 10-26

	12	 Variable	file	 10-27

12.1 All variables 10-27

12.2 One variable 10-29

	13	 Constant	file	 10-30

13.1 One character string 10-30

	14	 Array	variable	file	 10-31

14.1 All array variables 10-31

14.2 One array variable 10-32

	15	 DI	file	 10-33

15.1 All DI information 10-33

15.2 One DI port 10-34

	16	 DO	file	 10-35

16.1 All DO information 10-35

16.2 One DO port 10-36

	17	 MO	file	 10-37

17.1 All MO information 10-37

17.2 One MO port 10-38

	18	 LO	file	 10-39

18.1 All LO information 10-39

18.2 One LO port 10-40

	19	 TO	file	 10-41

19.1 All TO information 10-41

19.2 One TO port 10-42

CONTENTS YRC Series
Programming Manual

T-10

	20	 SI	file	 10-43

20.1 All SI information 10-43

20.2 One SI port 10-44

	21	 SO	file	 10-45

21.1 All SO information 10-45

21.2 One SI port 10-46

	22	 Error	message	history	file	 10-47

22.1 All error message history 10-47

	23	 Error	Message	History	Details	File	 10-48

23.1 General error message history details 10-48

	24	 Machine	reference	file	 10-49

24.1 All machine reference file 10-49

	25	 EOF	file	 10-50

25.1 EOF data 10-50

	26	 Serial	port	communication	file	 10-51

26.1 Serial port communication file 10-51

	27	 SIW	file	 10-52

27.1 All SIW 10-52

27.2 One SIW data 10-53

	28	 SOW	file	 10-54

28.1 All SIW 10-54

28.2 One SOW data 10-55

	29	 Ethernet	port	communication	file	 10-56

29.1 Ethernet port communication file 10-56

Chapter 11 User program examples

 1 Basic operation 11-1

1.1 Directly writing point data in program 11-1

1.2 Using point numbers 11-2

1.3 Using shift coordinates 11-3

1.4 Palletizing 11-4
1.4.1 Calculating point coordinates 11-4

1.4.2 Utilizing pallet movement 11-6

1.5 DI/DO (digital input and output) operation 11-7

CONTENTS YRC Series
Programming Manual

T-11

	2	 Application	 11-8

2.1 Pick and place between 2 points 11-8

2.2 Palletizing 11-10

2.3 Pick and place of stacked parts 11-12

2.4 Parts inspection (Multi-tasking example) 11-14

2.5 Sealing 11-17

2.6 Connection to an external device through RS-232C (example 1) 11-18

2.7 Connection to an external device through RS-232C (example 2) 11-19

Chapter 12 Online commands

 1 Online Command List 12-1

1.1 Online command list: Function specific 12-1

1.2 Online command list: In alphabetic order 12-4

 2 Key operation 12-6

2.1 Changing the mode 12-6

2.2 AUTO mode operation 12-7

2.3 MANUAL mode operation 12-9

 3 Utility operation 12-12

3.1 Acquiring the program execution status 12-12

3.2 Copy 12-12

3.3 Erase 12-14

3.4 Rename program name 12-16

3.5 Changing the program attribute 12-16

3.6 Initialize 12-17

3.7 Setting the display language 12-18

3.8 Setting the coordinates and units in MANUAL mode 12-19

3.9 Clearing the programming box error message 12-19

3.10 Setting the UTILITY mode 12-20

3.11 Checking and setting the date 12-22

3.12 Checking and setting the time 12-23

 4 Data handling 12-24

4.1 Acquiring the display language 12-24

4.2 Acquiring the access level 12-24

4.3 Acquiring the arm status 12-25

4.4 Acquiring the break point status 12-25

4.5 Acquiring the controller configuration status 12-26

4.6 Acquiring the execution level 12-26

4.7 Acquiring the mode status 12-27

4.8 Acquiring the message 12-28

CONTENTS YRC Series
Programming Manual

T-12

4.9 Acquiring return-to-origin status 12-29

4.10 Acquiring the absolute reset status 12-29

4.11 Acquiring the servo status 12-30

4.12 Acquiring the sequence program execution status 12-30

4.13 Acquiring the speed setting status 12-31

4.14 Acquiring the point coordinates and units 12-31

4.15 Acquiring the version information 12-32

4.16 Acquiring the current positions 12-32

4.17 Acquiring the tasks in RUN or SUSPEND status 12-34

4.18 Acquiring the tasks operation status 12-35

4.19 Acquiring the shift status 12-35

4.20 Acquiring the hand status 12-36

4.21 Acquiring the remaining memory capacity 12-36

4.22 Acquiring the emergency stop status 12-37

4.23 Acquiring the error status by self-diagnosis 12-37

4.24 Acquiring the option slot status 12-38

4.25 Acquiring various values 12-39

4.26 Data readout processing 12-41

4.27 Data write processing 12-42

4.28 Current torque value acquisition 12-43

 5 Executing the robot language independently 12-44

5.1 Switching the program 12-44

5.2 Other robot language command processing 12-45

 6 Control codes 12-46

6.1 Interrupting the command execution 12-46

Chapter 13 IO commands

 1 Overview 13-1

 2 IO command format 13-1

 3 Sending and receiving IO commands 13-2

 4 IO command list 13-4

CONTENTS YRC Series
Programming Manual

T-13

 5 IO command description 13-5

5.1 MOVE command 13-5

5.2 MOVEI command 13-6

5.3 Pallet movement command 13-6

5.4 Jog movement command 13-7

5.5 Inching movement command 13-7

5.6 Point teaching command 13-8

5.7 Absolute reset movement command 13-8

5.8 Absolute reset command 13-9

5.9 Return-to-origin command 13-9

5.10 Servo command 13-10

5.11 Manual movement speed change command 13-11

5.12 Auto movement speed change command 13-11

5.13 Program speed change command 13-11

5.14 Shift designation change command 13-12

5.15 Hand designation change command 13-12

5.16 Arm designation change command 13-12

5.17 Point display unit designation command 13-12

Chapter 14 Appendix

 1 Reserved word list 15-1

	2	 Robot	Language	Lists:	Command	list	in	alphabetic	order	 15-3

	3	 Robot	Language	Lists:	Function	Specific	 7

	4	 Functions:	in	alphabetic	order	 13

	5	 Functions:	operation-specific	 15

	6	 Execution	Level	 17

Index

Chapter 1

Writing Programs

1 1 The OMRON Robot Language1-1

2 2 Characters ...1-1

3 3 Program Basics ...1-1

4 4 Program Names ...1-2

5 5 Identifiers ..1-7

6 6 Comment ...1-7

7 7 Command Statement Format1-8

1

2

3

4

5

6

7

The OMRON Robot Language 1-1

 1 The OMRON Robot Language

The OMRON robot language is similar to BASIC (Beginner’s All-purpose Symbolic Instruction Code) and
makes even complex robot movements easy to program. This manual explains how to write robot control
programs with the OMRON robot language, including actual examples on how its commands are used.

 2 Characters

The characters and symbols used in the OMRON robot language are shown below.
Only 1-byte characters can be used.

 • Alphabetic characters
 A to Z, a to z

 • Numbers
 0 to 9

 • Symbols
 () [] + - * / ^ = < > & | ~ _ % ! # $: ; , . " ' @ ?

 • katakana (Japanese phonetic characters)

• Katakana (Japanese phonetic characters) cannot be entered from a programming box. Katakana can be
used when communicating with a host computer (if it handles katakana).

• Spaces are also counted as characters (1 space = 1 character).

 3 Program Basics

Programs are written in a "1 line = 1 command" format, and every line must contain a command. Blank
lines (lines with no command) will cause an error when the program is compiled (creation of execution
objects). The program's final line, in particular, must not be blank.

To increase the program's efficiency, processes which are repeated within the program should be written
as subroutines or sub-procedures which can be called from the main routine. Moreover, same processing
items which occurs in multiple programs should be written as common routines within a program named
[COMMON], allowing those processing items to be called from multiple programs.

User functions can be defined for specific calculations. Defined user functions are easily called, allowing
even complex calculations to be easily performed.

Multi-task programs can also be used to execute multiple command statements simultaneously in a parallel
processing manner.

Using the above functions allows easy creation of programs which perform complex processing.

MEMO

NOTE
 • For sub-procedure details, refer
to the "CALL" and "SUB ~
END SUB" items.

NOTE
 • For details regarding user
defined functions, refer to the
"DEF FN" item.

1-2 Chapter 1 Writing Programs

1

2

3

4

5

6

7

 4 Program Names

Each program to be created in the robot controller must have its own name.
Programs can be named as desired provided that the following conditions are satisfied:

 ■ Program names may contain no more than 8 characters, comprising a combination of alphanumeric
characters and underscores (_).

 ■ Each program must have a unique name (no duplications).

The 4 program names shown below are reserved for system operations, and programs with these names
have a special meaning.

A) FUNCTION
B) SEQUENCE
C) _SELECT
D) COMMON

The functions of these programs are explained below.

A) FUNCTION

	Functions	 Pressing the USER key in “PROGRAM” mode or “MANUAL” mode allows the user function
to be used. When user functions are used in the "PROGRAM" mode, commands (MOVE,
GOTO, etc.) which are frequently used during program editing can be entered by function
keys. When used in “MANUAL” mode, DO output is available with the function keys without
running the program. The FUNCTION program defines function keys which are used to
execute user functions. The desired functions can be freely assigned to the function keys.

SAMPLE
’FOR MANUAL MODE

*M_F1:’DO(20)ALTERNATE

 DO(20)=~DO(20)････････････････････DO (20) ON/OFF highlighting occurs when the key is pressed.
*M_F2:’DO(21)ALTERNATE

 DO(21)=~DO(21)････････････････････DO (21) is highlighted.
 :
*M_F6:’DO(25)MOMENTARY
 DO(25)=1 DO (25) is set to "1" when the key is pressed.
 DO(25)=0 DO (25) is set to "0" when the key is released.

*M_F7:’MOTION

 MOVE P,P1･ ･･･････････････････････Movement to Point 1 occurs.
 MOVE P,P2･ ･･･････････････････････Movement to Point 2 occurs.
 :
’FOR PROGRAM MODE

*P_F1:’MOVE P,･ ･･･････････････････････ [MOVE P,] is written to the program when the key is pressed.
*P_F6:’MOVE L,････････････････････････ [MOVE L,] is written to the program when the key is pressed.
*P_F2:’GOTO *･････････････････････････ [GOTO *] is written to the program when the key is pressed.
 :

1

2

3

4

5

6

7

Program Names 1-3

 ● Registering editing function keys used in the PROGRAM mode

Format

*P_F <n>: ' <character string>

 Values <n> ..Denotes the No. of the function key being registered
 (n = 1 to 15).
 <character string>The character string which is registered and displayed
 for the function key.

• Although up to 65 characters can be entered for a <character string>, no more than 7 characters are
displayed on the Menu.

SAMPLE

*P_F2:’MOVE P,･････････････････････ Registers "MOVE P," at the [F2] key.
*P_F8:’DELAY･･････････････････････ Registers "DELAY" at the [F8] key.

 ● Registering output command function keys used in the MANUAL mode

Format

*M_F <n>:' <character string>
<Output statement 1>
<Output statement 2>

 Values <n> ...Denotes the No. of the function key being registered
 (n = 1 to 15).
 <character string>The character string which is displayed for the function
 key.
 <Input/output statement 1>Command statement which is executed when the key
 is pressed.
 <Input/output statement 2>Command statement which is executed when the key
 is released

• Although up to 65 characters can be entered for a <character string>, no more than 7 characters are
displayed on the Menu.

SAMPLE

*M_F2:'MOMENT･･･････････････････Displays "MOMENT" at the [F2] key.
DO(20)=1･ ･･･････････････････････DO (20) is turned ON when the [F2] key is pressed.
DO(20)=0 ･･･････････････････････DO (20) is turned OFF when the [F2] key is released.
*M_F14:'ALTER･････････････････････Displays "ALTER" at the [F14] key.
DO(20)=~DO(20)･ ･･･････････････････ The DO(20) ou tpu t s t a tu s i s h igh l igh t ed when the [F14] key i s

pressed.

	REFERENCE	 For details, refer to the relevant controller manual.

MEMO

MEMO

1-4 Chapter 1 Writing Programs

1

2

3

4

5

6

7

B) SEQUENCE

	Functions	 Unlike standard robot programs, the YRC Controller allows the execution of high-speed-
processing programs (sequence programs) in response to robot inputs and outputs (DI, DO,
MO, LO, TO, SI, SO). Specify a program name of "SEQUENCE" to use this function, thus
creating a pseudo PLC within the controller.

 When the controller is in the AUTO or MANUAL mode, a SEQUENCE program can be
executed in fixed cycles (regardless of the program execution status) in response to dedicated
DI10 (sequence control input) input signals, with the cycle being determined by the program
capacity. For details, see Chapter 7 "4.6 Sequence program specifications".

 This allows sensors, push-button switches, and solenoid valves, etc., to be monitored and
operated by input/output signals.

 Moreover, because the sequence programs are written in robot language, they can easily be
created without having to use a new and unfamiliar language.

SAMPLE
DO(20)=~DI(20)

DO(25)=DI(21) AND DI(22)

MO(26)=DO(26) OR DO(25)

 :

	REFERENCE	 For details, see Chapter 7 "Sequence function".

1

2

3

4

5

6

7

Program Names 1-5

C)_SELECT

	Functions	 This function allows the user to create a program which is always selected and executed when
the robot program is reset. Specify a program name of "_SELECT" to use this function. For
example, if multiple programs exist, and there is a need to switch between the programs by
using DI inputs, simply create a program-switching program named "_SELECT". Even if
another program is running, the system always returns to this program when a reset input
occurs after that program stops. The various reset types and their corresponding processing are
as follows (also refer to the program example shown below):

1. When a reset is executed from the Programming Box, a query displays, asking if a change
to "_SELECT" is desired. If "No" is pressed, a selection screen displays, allowing the user
to select whether or not a reset is to be executed.

2. When reset by the HALT command in a program, dedicated DI (reset signal) or online
command, the system switches to the "_SELECT" program.

3. The operation which occurs at power ON varies according to the "execution level". If
the execution level has been selected as "execute program reset at power ON", a reset is
executed at power ON, and "_SELECT" is then selected.

 A program is selected according to the value input from DI3().
 When DI3() is 0, the system repeatedly monitors the DI input.
 When DI3() is from 1 to 3, the matching program is selected.
 When DI3() is other than the above cases, the system quits the program that is currently

 running.

SAMPLE
ON ERROR GOTO *ER1
*ST:

 SELECT CASE DI3()･････････････････Branching occurs based on the DI3 "()" value.
 CASE 0

 GOTO *ST･････････････････ If "0", a return to "*ST" occurs, and the processing is repeated.
 CASE 1

 SWI <PART1>･ ･････････････ If "1"
 CASE 2

 SWI <PART2>･ ･････････････ If "2"
 CASE 3

 SWI <PART3>･ ･････････････ If "3"
 CASE ELSE

 GOTO *FIN････････････････For any other value, a jump to "*FIN" occurs, and processing ends.
 END SELECT
 GOTO *ST
*FIN:
HALT
*ER1:

 IF ERR=&H0303 THEN *NEXT_L････････････A return is executed if a "no program exists" error occurs.
 ON ERROR GOTO 0･ ････････････････For any other error, processing ends.
*NEXT_L:
RESUME NEXT

	REFERENCE	 For details, refer to the command explanations given in this manual.

NOTE
 • For deta i l s regarding the
"execution level", refer to the
controller manual.

NOTE
 • U s i n g a n O N E R R O R
statement allows running the
program in a loop not ending
in an error even without the
program name specified by a
SWI statement.

 • An error code issued during
execution of the program is
input into a variable ERR.
" E R R = & 0 3 0 3 " m e a n s
"Program doesn’t exist".

1-6 Chapter 1 Writing Programs

1

2

3

4

5

6

7

D) COMMON

	Functions	 A separate "COMMON" program can be created to perform the same processing in multiple
robot programs. The common processing routine which has been written in the COMMON
program can be called and executed as required from multiple programs. This enables efficient
use of the programming space.

 The sample COMMON program shown below contains two processing items (obtaining the
distance between 2 points (SUB *DISTANCE), and obtaining the area (*AREA)) which are
written as common routines, and these are called from separate programs (SAMPLE 1 and
SAMPLE 2).

 When SAMPLE1 or SAMPLE2 is executed, the SUB *DISTANCE (A!,B!,C!) and the
*AREA routine specified by the DECLARE statement are executed.

SAMPLE
Program name: SAMPLE1

 DECLARE SUB *DISTANCE(A!,B!,C!)

 DECLARE *AREA

 X!=2.5

 Y!=1.2

 CALL *DISTANCE(X!,Y!,REF C!)

 GOSUB *AREA

 PRINT C!,Z!

 HALT

Program name: SAMPLE2

 DECLARE SUB *DISTANCE(A!,B!,C!)

 DECLARE *AREA

 X!=5.5

 Y!=0.2

 CALL *DISTANCE(X!,Y!,REF C!)

 GOSUB *AREA

 PRINT C!,Z!

 HALT

Program name: COMMON･ ･･･････････････････Common routine
 SUB *DISTANCE(A!,B!,C!)

 C!=SQR(A!^2+B!^2)

 END SUB

 *AREA:

 Z!=X!*Y!

 RETURN

	REFERENCE	 For details, refer to the command explanations given in this manual.

1

2

3

4

5

6

7

Identifiers 1-7

 5	 Identifiers

"Identifiers" are a combination of characters and numerals used for label names, variable names, and
procedure names. Identifiers can be named as desired provided that the following conditions are satisfied:

 ■ Identifiers must consist only of alphanumeric characters and underscores (_). Special symbols cannot be
used, and the identifier must not begin with an underscore (_).

 ■ The identifier length must not exceed 16 characters (all characters beyond the 16th character are
ignored).

 ■ Up to 500 identifiers may be used.
 ■ Variable names must not be the same as a reserved word, or the same as a name defined as a system

variable. Moreover, variable name character strings must begin with an alphabetic character. For label
names, however, the "*" mark may be immediately followed by a numeric character.

SAMPLE
LOOP, SUBROUTINE, GET_DATA

	REFERENCE	 For details regarding reserved words, see Chapter 15 "1. Reserved word list".

 6 Comment

Characters which follow REM or an apostrophe mark (" ' ") are processed as a comment. Comment
statements are not executed. Moreover, comments may begin at any point in the line.

SAMPLE
REM *** MAIN PROGRAM ***

 (Main program)

’*** SUBROUTINE ***

 (Subroutine)

HALT ’HALT COMMAND････････････････This comment may begin at any point in the line.

1-8 Chapter 1 Writing Programs

1

2

3

4

5

6

7

 7 Command	Statement	Format

Format

[<label>:] <statement> [<operand>]

One robot language command must be written on a single line and arranged in the format shown below:

 • Items enclosed in [] can be omitted.
 • Items enclosed in < > must be written in a specific format.
 • Items not enclosed in < > should be written directly as shown.
 • Items surrounded by | | are selectable.
 • The label can be omitted. When using a label, it must always be preceded by an asterisk (*), and it must
end with a colon (:) (the colon is unnecessary when a label is used as a branching destination).

For details regarding labels, refer to Chapter 8 "45. LABEL Statement".
 • Operands may be unnecessary for some commands.
 • Programs are executed in order from top to bottom unless a branching instruction is given.

1 line may contain no more than 75 characters.

Chapter 2

Constants

1 1 Outline ...2-1

2 2 Numeric constants ...2-1

3 3 Character constants ...2-2

1

2

3

4

5

6

7

Outline 2-1

 1 Outline

Constants can be divided into two main categories: "numeric types" and "character types". These categories
are further divided as shown below.

Category Type Details/Range
Numeric
type

Integer
type

Decimal constants
-1,073,741,824 to 1,073,741,823

Binary constants
&B0 to &B11111111

Hexadecimal constants
&H80000000 to &H7FFFFFFF

Real type Single-precision real numbers
-999,999.9 to +999,999.9

Exponential format single-precision real numbers
-1.0*1038 to +1.0*1038

Character
type

Character
string

Alphabetic, numeric, special character, or katakana (Japanese) character
string of 75 bytes or less.

 2 Numeric constants

2.1 Integer constants

1. Decimal constants
 Integers from –1,073,741,824 to 1,073,741,823 may be used.
2. Binary constants
 Unsigned binary numbers of 8 bits or less may be used. The prefix "&B" is attached to the
 number to define it as a binary number.
 Range: &B0 (decimal: 0) to &B11111111 (decimal: 255)
3. Hexadecimal constants
 Signed hexadecimal numbers of 32 bits or less may be used. The prefix "&H" is attached to the
 number to define it as a hexadecimal number.
 Range: &H80000000 (decimal: -2,147,483,648) to &H7FFFFFFF (decimal: 2,147,483,647)

2.2 Real constants

1. Single-precision real numbers
 Real numbers from -999999.9 to +999999.9 may be used.
 • 7 digits including integers and decimals. (For example, ".0000001" may be used.)
2. Single-precision real numbers in exponent form
 Numbers from -1.0*1038 to +1.0*1038 may be used.
 • Mantissas should be 7 digits or less, including integers and decimals.

Examples: -1. 23456E-12
 3. 14E0
 1. E5

• An integer constant range of –1,073,741,824 to 1,073,741,823 is expressed in signed hexadecimal
number as &HC0000000 to &H3FFFFFFF.

MEMO

2-2 Chapter 2 Constants

1

2

3

4

5

6

7

 3 Character constants

Character type constants are character string data enclosed in quotation marks ("). The character string
must not exceed 75 bytes in length, and it may contain upper-case alphabetic characters, numerals, special
characters, or katakana (Japanese) characters.
To include a double quotation mark (") in a string, enter two double quotation marks in succession.

SAMPLE
"OMRON ROBOT"

"EXAMPLE OF""A"""･････････････EXAMPLE OF "A"
PRINT "COMPLETED"

"OMRON ROBOT"

Chapter 3

Variables

1 1 Outline ...3-1

2 2 User Variables & System Variables.....................3-2

3 3 Variable Names ...3-3

4 4 Variable Types ...3-4

5 5 Array variables ..3-5

6 6 Value Assignments ..3-5

7 7 Type Conversions ..3-6

8 8 Value Pass-Along & Reference Pass-Along3-6

9 9 System Variables ...3-7

10 10 Bit Settings ..3-19

11 11 Valid range of variables3-20

12 12 Clearing variables ...3-21

1

2

3

4

5

6

7

Outline 3-1

 1 Outline

There are "user variables" which can be freely defined, and "system variables" which have pre-defined
names and functions.

User variables consist of "dynamic variables" and "static variables". "Dynamic variables" are cleared at
program editing, compiling, program resets, and program switching. "Static variables" are not cleared
unless the memory is cleared. The names of dynamic variables can be freely defined, and array variables
can also be used.

Variables can be used simply by specifying the variable name and type in the program. A declaration is not
necessarily required. However, array variables must be pre-defined by a DIM statement.

Dynamic variables Numeric type

Numeric type

Character string variables

Integer variables

Real variables (single-precision)

Integer variables

Real variables (single-precision)

Static variables

Input-output variables

Point data variables

Shift coordinate variables

Element variables

Output variables

Input variables

Point element variables

Shift element variables

Character type

U
ser v

a
ria

b
les

S
y

stem
 v

a
ria

b
les

User variables & system variables

	REFERENCE	 For details regarding the above array, see Chapter 3 "5 Array variables".

1

2

3

4

5

6

7

3-2 Chapter 3 Variables

 2 User Variables & System Variables

2.1 User Variables

Numeric type variables consist of an "integer type" and a "real type", and these two types have different
usable numeric value ranges. Moreover, each of these types has different usable variables (character string
variables, array variables, etc.), and different data ranges, as shown below.

Category Variable Type Details/Range
Dynamic
variables

Numeric type Integer type variables
-1,073,741,824 to 1,073,741,823
(Signed hexadecimal constants: &HC0000000 to &H3FFFFFFF)

Real variables (single-precision)
-1.0*1038 to +1.0*1038

Character type Character string variables
Alphabetic, numeric, special character, or katakana (Japanese)
character string of 75 bytes or less.

Static
variables

Numeric type Integer type variables
-1,073,741,824 to 1,073,741,823

Real variables (single-precision)
-1.0*1038 to +1.0*1038

Array
variables

Numeric type Integer array variables
-1,073,741,824 to 1,073,741,823

Real number array variables (single-precision)
-1.0*1038 to +1.0*1038

Character type Character string array variables
Alphabetic, numeric, special character, or katakana (Japanese)
character string of 75 bytes or less.

2.2 System Variables

As shown below, system variables have pre-defined names which cannot be changed.

Category Type Details Specific	Examples
Inpu t /ou tpu t
variables

Input variable External signal / status inputs DI, SI, SIW, SID

Output variable External signal / status outputs DO, SO, SOW, SOD

Point variable Handles point data Pnnnn

Shift variable Specifies the shift coordinate No. as a
numeric constant or expression.

Sn

Element
variables

Point element
variable

Handles point data for each axis, hand
system flag, or for the X-arm or Y-arm
rotation information.

LOCx
(point expression)

Shift element
variable

Handles shift data in element units. LOCx
(shift expression)

	REFERENCE	 For details, see Section "9 System Variables".

NOTE
 • Array variables are dynamic
variables.

1

2

3

4

5

6

7

Variable Names 3-3

 3 Variable Names

3.1 Dynamic Variable Names

Dynamic variables can be named as desired, provided that the following conditions are satisfied:

 ■ The name must consist only of alphanumeric characters and underscores (_). Special symbols cannot be
used.

 ■ The name must not exceed 16 characters (all characters beyond the 16th character are ignored).
 ■ The name must begin with an alphabetic character.

SAMPLE

COUNT ･････････････････････････････ ○ Use is permitted

COUNT123 ･････････････････････････････ ○ Use is permitted

2COUNT ･････････････････････････････ × Use is not permitted

 ■ Variable names must not be the same as a reserved word.
 Variable names must not begin with characters used for system variable names (pre-defined
 variables). These characters include the following: FN, DIn, DOn, MOn, LOn, TOn, SIn, SOn, Pn,
 Sn, Hn ("n" denotes a numeric value).

SAMPLE

COUNT ･････････････････････････････ ○ Use is permitted

ABS ･････････････････････････････ × (Reserved word)

FNAME ･････････････････････････････ × (FN: pre-defined variable)

S91 ･････････････････････････････ × (Sn: pre-defined variable)

	REFERENCE	 For details regarding reserved words, see Chapter 15 "1 Reserved word list".

3.2 Static Variable Names

Static variable names are determined as shown below, and these names cannot be changed.

Variable Type Variable Name
Integer variable SGIn (n: 0 to 7)

Real variable SGRn (n: 0 to 7)

Static variables are cleared only when initializing is executed by a SYSTEM mode or online command.

	REFERENCE	 For details regarding the clearing of static variables, see Section "12 Clearing variables".

1

2

3

4

5

6

7

3-4 Chapter 3 Variables

 4 Variable Types

The type of variable is specified by the type declaration character attached at the end of the variable name.
However, because the names of static variables are determined based on their type, no type declaration
statement is required.

Type Declaration Character Variable Type Specific	Examples
$ Character type variables STR1$

% Integer type variables CONT0%, ACT%(1)

! Real type variables CNT1!, CNT1

• If no type declaration character is attached, the variable is viewed as a real type.
• Variables using the same identifier are recognized to be different from each other by the type of each

variable.
 • ASP_DEF%Integer variable) • ASP_DEFReal variable → ASP_DEF% and ASP_DEF are different variables.

 • ASP_DEF!Real variable) • ASP_DEFReal variable → ASP_DEF! and ASP_DEF are the same variables.

4.1 Numeric variables

Integer variables

Integer variables and integer array elements can handle an integer from –1,073,741,824 to 1,073,741,823 (in
signed hexadecimal, this range is expressed as &HC0000000 to &H3FFFFFFF).

Examples: R1% = 10
 R2%(2) = R1% + 10000

Real variables

Real variables and real array elements can handle a real number from –1.0*1038 to 1.0*1038.

Examples: R1! = 10.31
 R2!(2) = R1% + 1.98E3

4.2 Character variables

Character variables and character array elements can handle a character string of up to 75 characters.
Character strings may include alphabetic characters, numbers, symbols and katakana (Japanese phonetic
characters).

Examples: R1$ = "OMRON"
 R2$(2) = R1$ + "MOTOR" "OMRON MOTOR"

MEMO

NOTE
 • When a real number is assigned
to an integer type variable, the
decimal value is rounded off to
the nearest whole number. For
details, refer to Chapter 4 "1.5
Data format conversion".

NOTE
 • The "!" used in real variables
may be omitted .

1

2

3

4

5

6

7

Array variables 3-5

 5 Array variables

Both numeric and character type arrays can be used at dynamic variables.
Using an array allows multiple same-type continuous data to be handled together.
Each of the array elements is referenced in accordance with the parenthesized subscript which appears after
each variable name. Subscripts may include integers or <expressions> in up to 3 dimensions.
In order to use an array, a DIM statement must be declared in advance, and the maximum number of
elements which can be used is the declared subscripts + 1 (0 ~ number of declared subscripts).

• Array variables are all dynamic variables (for details regarding dynamic variables, see Chapter 3 "11
Valid range of variables".)

• The length of an array variable that can be declared with the DIM statement depends on the program
size.

Format

<variable name>[%](<expression>, [<expression>, [<expression>]])
 !
 $

SAMPLE

A%(1) ･････････････････････ Integer array variable

DATA!(1,10,3) ･････････････････････ Single-precision real number array variable (3-dimension array)

STRING$(10) ･････････････････････ Character array variable

 6 Value Assignments

An assignment statement (LET) can also be used to assign a value to a variable.

• "LET" directly specifies an assignment statement, and it can always be omitted.

Format

[LET] <variable> = <expression>

Write the value assignment target variable on the left side, and write the assignment value or the
<expression> on the right side. The <expression> may be a constant, a variable, or an arithmetic
expression, etc.

	REFERENCE	 For details, refer to Chapter 8 "49 LET (Assignment Statement)"

MEMO

MEMO

1

2

3

4

5

6

7

3-6 Chapter 3 Variables

 7 Type Conversions

When different-type values are assigned to variables, the data type is converted as described below.

 • When a real number is assigned to an integer type:
The decimal value is rounded off to the nearest whole number.

 • When an integer is assigned to a real type:
The integer is assigned as it is, and is handled as a real number.

 • When a numeric value is assigned to a character string type:
The numeric value is automatically converted to a character string which is then assigned.

 • When a character string is assigned to numeric type:
This assignment is not possible, and an error will occur at the compiling operation. Use the "VAL"
command to convert the character string to a numeric value, and that value is then assigned.

 8 Value Pass-Along & Reference Pass-Along

A variable can be passed along when a sub-procedure is called by a CALL statement. This pass-along can
occur in either of two ways: as a value pass-along, or as a reference pass-along.

Value pass-along

With this method, the variable's value is passed along to the sub-procedure. Even if this value is changed
within the sub-procedure, the content of the call source variable is not changed.
A value pass-along occurs when the CALL statement's actual argument specifies a constant, an expression,
a variable, or an array element (array name followed by (<subscript>)).

Reference pass-along

With this method, the variable's reference (address in memory) is passed along to the sub-procedure. If this
value is changed within the sub-procedure, the content of the call source variable is also changed.
A reference pass-along occurs when the CALL statement's actual argument specifies an entire array (an
array named followed by parenthetical content), or when the actual argument is preceded by "REF".

　　

X%=5

CALL *TEST(X%)

PRINT X%

HALT

’ SUB ROUTINE
SUB *TEST(A%)

 A%=A%*10

END SUB

X%=5

CALL *TEST(REF X%)

PRINT X%

HALT

’ SUB ROUTINE
SUB *TEST(A%)

 A%=A%*10

END SUB

the X% value remains as "5". the X% value becomes "50".

Value pass-along Reference pass-along

Execution result: Execution result:

Value pass-along & reference pass-along

1

2

3

4

5

6

7

System Variables 3-7

 9 System Variables

The following system variables are pre-defined, and other variable names must not begin with the
characters used for these system variable names.

Variable Type Format Meaning
Point variable Pnnn / P " ["<expression>"] " Specifies a point number.
Shift variable Sn / S " ["<expression>"] " Specifies the shift number as a constant or as

an expression.

Point element variable LOCx (<point expression>) Handles point data for each axis, hand
system flag, or for the X-arm or Y-arm
rotation information.

Shift element variable LOCx (<shift expression>) Handles shift data with the element range.

Parallel input variable DI(mb), DIm(b) Parallel input signal status.

Parallel output variable DO(mb), DOm(b) Parallel output signal setting and status.
Internal output variable MO(mb), MOm(b) Controller's internal output signal setting and

status

Arm lock output variable LO(mb), LOm(b) Axis-specific movement prohibit.

Timer output variable TO(mb), TOm(b) For sequence program's timer function.

Serial input variable SI(mb), SIm(b) Serial input signal status.

Serial output variable SO(mb), SOm(b) Serial output signal setting and status.

Serial word input SIW(m) Serial input's word information status
Serial double-word input SID(m) Serial input's double-word information

status.

Serial word output SOW(m) Serial output's word information status
Serial double-word output SOD(m) Serial output's double-word information

status.

9.1 Point data variable
 This variable specifies a point data number with a numeric constant or expression.

Format

Pnnnn or P" ["<expression>"]"

 Values n: Point number 0 to 9
 Each bracket in quotation marks ("[" "]") must be written. Brackets are not used to indicate

an item that may be omitted.

	Functions	 A point data number is expressed with a 'P' followed by a number of 4 digits or less, or an
expression surrounded by brackets ("[" <expression> "]").

 Point numbers from 0 to 9999 can be specified with point variables.

Examples: P0
 P110
 P [A]
 P [START_POINT]
 P [A(10)]

1

2

3

4

5

6

7

3-8 Chapter 3 Variables

9.2 Shift coordinate variable
 This variable specifies a shift coordinate number with a numeric constant or expression.

Format

Sn or S "["<expression>"]"

 Values n: Shift number 0 to 9
 Each bracket in quotation marks ("[" "]") must be written. Brackets are not used to indicate

an item that may be omitted.

	Functions	 A shift number is expressed with an 'S' followed by a 1-digit number or an expression
surrounded by brackets ("[" <expression> "]").

Examples: S1
 S [A]
 S [BASE]
 S [A(10)]

• The "shift coordinate range" for each shift number can be changed from the programming box.MEMO

1

2

3

4

5

6

7

System Variables 3-9

9.3 Point element variable
 Specifies point data for each axis, hand system flag, or for the X-arm or Y-arm rotation information.

Format

LOCx (<point expression>)

 Values x .. X,Y,Z,R,A,B (axis setting), F (hand system flag setting),
F1 (X-arm rotation information), F2 (Y-arm rotation
information).

	Functions	 Extracts the point-data-specified axis coordinates, hand system flag, X-arm rotation
information, and Y-arm rotation information, or changes the value.

Examples: A(1)=LOCX(P10)
 →The X-axis data of P10 is assigned to array variable A(1).
 LOCZ(P[A])=100.0
 →The Z-axis data of P[A] is set to 100.0.
 LOCF(P100)=1
 →Changing the P100 hand system flag to a right-handed system
 (The P100 point data must be in "mm" units)
 LOCF1(P100)=1
 →Changes the P100 X-arm rotation information to 1.
 (The P100 point data must be in "mm" units)
 LOCF2(P100)=1
 →Changes the P100 Y-arm rotation information to 1.
 (The P100 point data must be in "mm" units)
 B=LOCX(WHERE)
 →Assigns the current X-axis motor pulse value to array variable "B".
 C(3)=LOCX(WHRXY)
 →Assigns the current arm position's X-axis to array variable C(3).
 D=LOCX(JTOXY(WHERE))
 E=LOCX(XYTOJ(WHRXY))

• Because JTOXY is a command for handling a <point expression>, a "JTOXY(LOCx(WHERE))" or
"XYTOJ(LOCx(WHRXY))" command will result in an error.

NOTE
 • Hand system flags are only
valid on SCARA robots, and
the point data must be specified
in "mm" units.

 • The hand system flag value
may be 0 (no designation),
1 (right-handed system) or 2
(left-handed system).

 • X-arm and Y-arm rotation
information is only available in
software Ver.1.66M or higher.

 • X-arm and Y-arm rotation
information is only available
on a R6YXTW500 model
robot with "mm" units point
data. Attempting to use this
information on any other robot
model will result in the "5.37:
Specification mismatch" error,
and execution is stopped.

 • For deta i l s regarding the
X-arm and Y-arm rotation
information, see Chapter 4 "3.
Point data format".

MEMO

1

2

3

4

5

6

7

3-10 Chapter 3 Variables

9.4 Shift element variable
 This variable is used with shift data for each element.

Format

LOCx (<shift expression>)

 Values x: Axis setting X,Y,Z,R

	Functions	 Extracts the shift-data-specified axis coordinates, or changes the value.

Examples: A(1)=LOCX(S1)
 →The X data of S1 is assigned to array variable A(1).
 LOCR(S[A])=45.0
 →The R data of S[A] is set to 45.0º.

9.5 Parallel input variable
 This variable is used to indicate the status of parallel input signals.

Format 1

DIm ([b,････････････････････, b])

Format 2

DI (mb,････････････････････, mb)

 Values m : port number 0 to 7, 10 to 17, 20 to 27
 b : bit definition 0 to 7
 If the bit definition is omitted, bits 0 to 7 are all selected.

Examples: A%=DI1()
 →Input status of ports DI(17) to DI(10) is assigned to variable A%.
 A 0 to 255 integer can be assigned to A%.
 A%=DI5(7,4,0)
 →Input status of DI(57), DI(54) and DI(50) is assigned to variable A%.
 (If all above signals are 1(ON), then A%=7.)
 A%=DI(27,15,10)
 →Input status of DI(27), DI(15) and DI(10) is assigned to variable A%.
 (If all above signals except DI(10) are 1 (ON), then A%=6.)
 WAIT DI(21)=1
 →Waits for DI(21) to change to 1(ON).

• When specifying multiple bits, specify them from left to right in descending order (large to small).
• A '0' is entered if there is no actual input board.

MEMO

1

2

3

4

5

6

7

System Variables 3-11

9.6 Parallel output variable
 Specifies the parallel output signal or indicates the output status.

Format 1

DOm ([b,････････････････････, b])

Format 2

DO (mb,････････････････････, mb)

 Values m : port number 0 to 7, 10 to 17, 20 to 27
 b : bit definition 0 to 7
 If the bit definition is omitted, bits 0 to 7 are all selected.

Examples: A%=DO2()
 →Output status of DO(27) to DO(20) is assigned to variable A%.
 A%=DO5(7,4,0)
 →Output status of DO(57), DO(54) and DO(50) is assigned to variable A%.
 (If all above signals are 1(ON), then A%=7.)
 A%=DO(37,25,20)
 →Output status of DO(37), DO(25) and DO(20) is assigned to variable A%.
 (If all above signals except DO(20) are 1 (ON), then A%=6.)
 DO3()=B%
 →Changes to a status in which the DO(37) to DO(30) output can be indicated
 by B%.
 For example, if B% is "123": If a binary number is used, "123" will become
 "01111011", DO(37) and DO(32) will become "0", and the other bits will
 become "1".
 DO4(5,4,0)=&B101
 →DO(45) and DO(40) become "1", and DO(44) becomes "0".

• When specifying multiple bits, specify them from left to right in descending order (large to small).
• A '0' is entered if there is no actual input board.

MEMO

1

2

3

4

5

6

7

3-12 Chapter 3 Variables

9.7	 Internal output variable
 Specifies the controller's internal output signals and indicates the signal status.

Format 1

MOm ([b,････････････････････, b])

Format 2

MO (mb,････････････････････, mb)

 Values m : port number 0 to 7, 10 to 17, 20 to27
 b : bit definition 0 to 7
 • If the bit definition is omitted, bits 0 to 7 are all selected.

	Functions	 Internal output variables which are used only in the controller, can be changed and referenced.
 These variables are used for signal communications, etc., with the sequence program.
 Ports 0 and 1 are for dedicated internal output variables which can only be referenced (they

cannot be changed).

1. Port	0	indicates	the	status	of	origin	sensors	for	axes	1	to	8	(in	order	from	bit	0).
 Each bit sets to '1' when the origin sensor turns ON, and to '0' when OFF.
2. Port	1	indicates	the	HOLD	status	of	axes	1	to	8	(in	order	from	bit	0).
 Each bit sets to '1' when the axis is in HOLD status, and to '0' when not.

Bit 7 6 5 4 3 2 1 0
Port 0 Axis 8 Axis 7 Axis 6 Axis 5 Axis 4 Axis 3 Axis 2 Axis 1

Origin sensor statuses 0: OFF / 1: ON

Port 1 Axis 8 Axis 7 Axis 6 Axis 5 Axis 4 Axis 3 Axis 2 Axis 1

Hold status 0: RELEASE / 1: HOLD (Axis 1 is not used)

• Axes where no origin sensor is connected are always ON.
• Being in HOLD status means that the axis movement is stopped and positioned within the target point

tolerance while the servo is still turned ON.
• When the servo turns OFF, the HOLD status is released.
• Axes not being used are set to '1'.

Examples: A%=MO2 ()
 →Internal output status of MO(27) to MO(20) is assigned to variable A%.
 A%=MO5(7,4,0)
 → I n t e r n a l o u t p u t s t a t u s o f M O (5 7) , M O (5 4)
 and MO(50) is assigned to variable A%.
 (If all above signals are 1 (ON), then A%=7.)
 A%=MO(37,25,20)
 →Internal output status of MO(37), MO(25) and MO(20) is assigned to
 variable A%.
 (If all above signals except MO(25) are 1 (ON), then A%=5.)

• When specifying multiple bits, specify them from left to right in descending order (large to small).

MEMO

MEMO

1

2

3

4

5

6

7

System Variables 3-13

9.8	 Arm lock output variable
 Specifies axis-specific movement prohibit settings.

Format 1

LOm ([b,････････････････････, b])

Format 2

LO (mb,････････････････････, mb)

 Values m : port number 0
 b : bit definition 0 to 7
 • If the bit definition is omitted, bits 0 to 7 are all selected.

	Functions	 The contents of this variable can be output and referred to as needed.
 There is only 1 port, and bits 0 to 7 respectively correspond to axes 1 to 8.
 When this bit is ON, movement on the corresponding axis is prohibited.

Examples: A%=LO0()
 →Arm lock status of LO(07) to LO(00) is assigned to variable A%.
 A%=LO0(7,4,0)
 →Arm lock status of LO(07), LO(04) and LO(00) is assigned to variable A%.
 (If all above signals are 1 (ON), then A%=7.)
 A%=LO0(06,04,01)
 →Arm lock status of LO(06), LO(04) and LO(01) is assigned to variable A%.
 (If all above signals except LO(01) are 1 (ON), then A%=6.)

• When specifying multiple bits, specify them from left to right in descending order (large to small).
• Servo OFF to ON switching is disabled if an arm lock is in effect at even 1 axis.
• When performing JOG movement in the MANUAL mode, axis movement is possible at axes where an

arm lock status is not in effect, even if an arm lock status is in effect at another axis.
• When executing movement commands from the program, etc., the "12.3 XX.Arm lock" error will

occur if an arm lock status is in effect at the axis in question. (XX: arm lock enabled axis. Example:
M1 S1)

MEMO

1

2

3

4

5

6

7

3-14 Chapter 3 Variables

9.9 Timer output variable
 This variable is used in the timer function of a sequence program.

Format 1

TOm ([b,････････････････････, b])

Format 2

TO (mb,････････････････････, mb)

 Values m : port number 0
 b : bit definition 0 to 7
 • If the bit definition is omitted, bits 0 to 7 are all selected.

	Functions	 The contents of this variable can be changed and referred to as needed.
 Timer function can be used only in the sequence program. If this variable is output in a normal

program, it is an internal output.

For details regarding sequence program usage examples, refer to the timer usage examples given in Chapter
7 "4.2 Input/output variables".

Examples: A%=TO0()
 →Status of TO(07) to TO(00) is assigned to variable A%.
 A%=TO0(7,4,0)
 →Status of TO(07), TO(04) and TO(00) is assigned to variable A%.
 (If all above signals are 1 (ON), then A%=7.)
 A%=TO(06,04,01)
 →Status of TO(06), TO(04) and TO(01) is assigned to variable A%.
 (If all above signals except TO(01) are 1 (ON), then A%=6.)

• When specifying multiple bits, specify them from left to right in descending order (large to small).MEMO

1

2

3

4

5

6

7

System Variables 3-15

9.10 Serial input variable
 This variable is used to indicate the status of serial input signals.

Format 1

SIm ([b,････････････････････, b])

Format 2

SI (mb,････････････････････, mb

 Values m : port number 0 to 7, 10 to 17, 20 to 27
 b : bit definition 0 to 7
 • If the bit definition is omitted, bits 0 to 7 are all selected.

Examples: A%=SI1()
 →Input status of ports SI(17) to SI(10) is assigned to variable A%.
 A%=SI5(7,4,0)
 →Input status of SI(57), SI(54) and SI(50) is assigned to variable A%.
 (If all above signals are 1(ON), then A%=7.)
 A%=SI(27,15,10)
 →Input status of SI(27), SI(15) and SI(10) is assigned to variable A%.
 (If all above signals except SI(10) are 1 (ON), then A%=6.)
 WAIT SI(21)=1
 →Waits until SI(21) sets to 1 (ON).

• When specifying multiple bits, specify them from left to right in descending order (large to small).
• A '0' is entered if there is no actual serial board.

MEMO

1

2

3

4

5

6

7

3-16 Chapter 3 Variables

9.11 Serial output variable
 This variable is used to define the serial output signals and indicate the output status.

Format 1

SOm ([b,････････････････････, b])

Format 2

SO (mb,････････････････････, mb)

 Values m : port number 0 to 7, 10 to 17, 20 to 27
 b : bit definition 0 to 7
 • If the bit definition is omitted, bits 0 to 7 are all selected.

Examples: A%=SO2()
 →Output status of SO(27) to SO(20) is assigned to variable A%.
 A%=SO5(7,4,0)
 →Output status of SO(57), SO(54) and SO(50) is assigned to variable A%.
 (If all above signals are 1(ON), then A%=7.)
 A%=SO(37,25,20)
 →Output status of SO(37), SO(25) and SO(20) is assigned to variable A%.
 (If all above signals except SO(25) are 1 (ON), then A%=5.)
 SO3()=B%
 →Changes to a status in which the DO(37) to DO(30) output can be indicated
 by B%.
 For example, if B% is "123": If a binary number is used, "123" will become
 "01111011", DO(37) and DO(32) will become "0", and the other bits will
 become "1".
 SO4(5,4,0)=&B101
 →DO(45) and DO(40) become "1", and DO(44) becomes "0".

• When specifying multiple bits, specify them from left to right in descending order (large to small).
• External output is unavailable if the serial port does not actually exist.

MEMO

1

2

3

4

5

6

7

System Variables 3-17

9.12 Serial word input
 This variable indicates the status of the serial input word information.

Format

SIW(m)

 Values m : Port No. 2 to 15
 The acquisition range is 0 (&H0000) to 65535 (&HFFFF).

Examples: A%=SIW(2)
 →The input state from SIW (2) is assigned to variable A%.
 A%=SIW(15)
 →The input state from SIW (15) is assigned to variable A%.

• The information is handled as unsigned word data.
• '0' is input if the serial port does not actually exist.

9.13 Serial double word input
 This variable indicates the state of the serial input word information as a double word.

Format

SID(m)

 Values m : Port No. 2, 4, 6, 8, 10, 12, 14
 The acquisition range is -1073741824 (&HC0000000) to 1073741823 (&H3FFFFFFF).

Examples: A%=SID(2)
 →The input state from SIW (2) , SIW (3) is assigned to variable A%.
 A%=SID(14)
 →The input state from SIW (14), SIW (15) is assigned to variable A%.

• The information is handled as signed double word data.
• '0' is input if the serial port does not actually exist.
• An error will occur if the value is not within the acquisition range (&H80000000 to &HBFFFFFFF,

&H40000000 to &H7FFFFFFF.)
• The lower port number data is placed at the lower address.
 For example, if SIW(2) =&H2345,SIW(3) =&H0001, then SID(2) =&H000123245.

MEMO

MEMO

1

2

3

4

5

6

7

3-18 Chapter 3 Variables

9.14 Serial word output
 Outputs to the serial output word information or indicates the output status.

Format

SOW(m)

 Values m : Port No. 2 to 15
 The output range is 0 (&H0000) to 65535 (&HFFFF).
 Note that if a negative value is output, the low-order word information will be output after

being converted to hexadecimal.

Examples: A%=SOW(2)
 →The output status from SOW (2) is assigned to variable A%.
 SOW(15)=A%
 →The contents of variable A% are assigned in SOW (15).
 If the variable A% value exceeds the output range, the low-order word information will be
 assigned.
 SOW(15)=-255
 →The contents of -255 (&HFFFFFF01) are assigned to SOW (15).
 -255 is a negative value, so the low-order word information (&HFF01) will be
 assigned.

• The information is handled as unsigned word data.
• If a serial board does not actually exist, the information is not output externally.
• If a value exceeding the output range is assigned, the low-order 2-byte information is output.

9.15 Serial double word output
 Output the status of serial output word information in a double word, or indicates the output status.

Format

SOD(m)

 Values m : Port No. 2, 4, 6, 8, 10, 12, 14
 The output range is -1073741824 (&HC0000000) to 1073741823 (&H3FFFFFFF).

Examples: A%=SOD(2)
 →The input status from SOW (2) is assigned to variable A%.
 SOD(14)=A%
 →The contents of variable A% are assigned in SOD (14).

• The information is handled as signed double word data.
• If a serial board does not actually exist, the information is not output externally.
• An error will occur if the value is not within the output range (&H80000000 to &HBFFFFFFF,

&H40000000 to &H7FFFFFFF.)
• The lower port number data is placed at the lower address.
 For example, if SOW(2) =&H2345,SOW(3) =&H0001, then SOD(2) =&H000123245.

MEMO

1

2

3

4

5

6

7

Bit Settings 3-19

 10 Bit Settings

Bits can be specified for input/output variables by any of the following methods.

1. Single bit

To specify only 1 of the bits, the target port number and bit number are specified in parentheses.
The port number may also be specified outside the parentheses.

Programming	example:	DOm(b)DOm(b)
Example: DO(25) Specifies bit 5 of port 2.
 DO2(5)

2. Same-port multiple bits

To specify multiple bits at the same port, those bit numbers are specified in parentheses (separated by
commas) following the port number.
The port number may also be specified in parentheses.

Programming	example:	DOm(b,b,…,b)	DO(mb,mb,…,mb)
Example: DO2(7,5,3) Specifies DO(27), DO(25), DO(23)
 DO(27,25,23)

3. Different-port multiple bits

To specify multiple bits at different ports, the port number and the 2-digit bit number must be specified in
parentheses and must be separated by commas.

Programming	example:	DO(mb,mb,…,mb)
Example: DO(37,25,20) Specifies DO(37), DO(25), DO(20).

4. All bits of 1 port

To specify all bits of a single port, use parentheses after the port number. Methods 2 and 3 shown above
can also be used.

Programming	example:	DOm()
Example: DO2() Specifies all the DO(27) to DO(20) bits
 →The same result can be obtained by the following:
 DO(27,26,25,24,23,22,21,20)
 or,
 DO2(7,6,5,4,3,2,1,0)

1

2

3

4

5

6

7

3-20 Chapter 3 Variables

 11 Valid range of variables

Variable branching occurs as shown below.

11.1 Valid range of dynamic variables

Dynamic variables are divided into global variables and local variables, according to their declaration
position in the program. Global and local variables have different valid ranges.

Variable Type Explanation
Global variables Variables are declared outside of sub-procedures (outside of program areas

enclosed by a SUB statement and END SUB statement). These variables
are valid throughout the entire program.

Local variables Variables are declared within sub-procedures and are valid only in these
sub-procedures.

11.2 Valid range of static variables

Static variable data is not cleared when a program reset occurs. Moreover, variable data can be changed
and referenced from any program.
The variable names are determined as shown below (they cannot be named as desired).

Variable type Variable name
Integer variable SGIn (n: 0 to 7)

Real variable SGRn (n: 0 to 7)

11.3 Valid range of dynamic array variables

Dynamic array variables are classified into global array variables and local array variables according to
their declaration position in the program.

Variable Type Explanation
Global variables Variables are declared outside of sub-procedures (outside of program areas

enclosed by a SUB statement and END SUB statement). These variables
are valid throughout the entire program.

Local variables Variables are declared within sub-procedures and are valid only in these
sub-procedures.

• For details regarding arrays, refer to Chapter 3 "5 Array variables".
• A variable declared at the program level can be referenced from a sub-procedure without being passed

along as a dummy argument, by using the SHARED statement (for details, refer to Chapter 8 "91
SHARED").

MEMO

1

2

3

4

5

6

7

Clearing variables 3-21

 12 Clearing variables

12.1 Clearing dynamic variables

In the cases below, numeric variables are cleared to zero, and character variables are cleared to a null
string. The variable array is cleared in the same manner.

 ■ When a program is edited.
 ■ When program switching occurs (including SWI command execution).
 ■ When program compiling occurs.
 ■ When a program reset occurs.
 ■ When dedicated input signal DI15 (program reset input) was turned on while the program was stopped

in AUTO mode.
 ■ When either of the following was initialized in SYSTEM mode.

 1. Program memory (SYSTEM>INIT>MEMORY>PROGRAM)
 2. Entire memory (SYSTEM>INIT>MEMORY>ALL)

 ■ When any of the following online commands was executed.
 @RESET, @INIT PGM, @INIT MEM, @INIT ALL, @SWI

 ■ When the HALT statement was executed in the program.

12.2 Clearing static variables

In the cases below, integer variables and real variables are cleared to zero.

 ■ When the following was initialized in SYSTEM mode.
 Entire memory (SYSTEM>INIT>MEMORY>ALL)

 ■ When any of the following online commands was executed.
 @INIT MEM, @INIT ALL

• Static variable values are not cleared even if the program is edited.MEMO

Chapter 4

Expressions and Operations

1 1 Arithmetic operations ..4-1

2 2 Character string operations4-4

3 3 Point data format ...4-5

4 4 DI/DO conditional expressions4-6

1

2

3

4

5

6

7

Arithmetic operations 4-1

 1 Arithmetic operations

1.1 Arithmetic operators

Operators Usage Example Meaning
+ A+B Adds A to B

- A-B Subtracts B from A

* A*B Multiplies A by B

/ A/B Divides A by B

^ A^B Obtains the B exponent of A (exponent operation)

- -A Reverses the sign of A

MOD A MOD B Obtains the remainder A divided by B

When a "remainder" (MOD) operation involves real numbers, the decimal value is rounded off to the
nearest whole number which is then converted to an integer before the calculation is executed. The
result represents the remainder of an integer division operation.

Examples: A=15 MOD 2 → A=1(15/2=7....1)
 A=17.34 MOD 5.98 → A=2(17/5=3....2)

1.2 Relational operators

Relational operators are used to compare 2 values. If the result is "true", a "-1" is obtained. If it is "false", a
"0" is obtained.

Operators Usage Example Meaning
= A=B "-1" if A and B are equal, "0" if not.

<>, >< A<>B "-1" if A and B are unequal, "0" if not.

< A<B "-1" if A is smaller than B, "0" if not.

> A>B "-1" if A is larger than B, "0" if not.

<=, =< A<=B "-1" if A is equal to or smaller than B, "0" if not.

>=, => A>=B "-1" if A is equal to or larger than B, "0" if not.

Examples: A=10>5 → Since 10 > 5 is "true", A = -1.

• When using equivalence relational operators with real variables and real arrays, the desired result may
not be obtained due to the round-off error.

 Examples: A=2
 B=SQR(A!)
 IF A!=B!*B! THEN...
 → In this case, A! will be unequal to B!*B!.

MEMO

4-2 Chapter 4 Expressions and Operations

1

2

3

4

5

6

7

1.3 Logic operations

Logic operators are used to manipulate 1 or 2 values bit by bit. For example, the status of an I/O port can
be manipulated.

 ■ Depending on the logic operation performed, the results generated are either 0 or 1.
 ■ Logic operations with real numbers convert the values into integers before they are executed.

Operators Functions Meaning
NOT, ~ Logical NOT Reverses the bits.

AND, & Logical AND Becomes "1" when both bits are "1".

OR, | Logical OR Becomes "1" when either of the bits is "1".

XOR Exclusive OR Becomes "1" when both bits are different.

Examples: A%=NOT 13.05 → "-14" is assigned to A% (reversed after being rounded off to 13).

Bit 7 6 5 4 3 2 1 0
13 0 0 0 0 1 1 0 1

NOT 13=-14 1 1 1 1 0 0 1 0

Examples: A%=3 AND 10 → "2" is assigned to A%

Bit 7 6 5 4 3 2 1 0
3 0 0 0 0 0 0 1 1

10 0 0 0 0 1 0 1 0

3 AND 10 = 4 0 0 0 0 0 0 1 0

Examples: A%=3 OR 10 → "11" is assigned to A%

Bit 7 6 5 4 3 2 1 0
3 0 0 0 0 0 0 1 1

10 0 0 0 0 1 0 1 0
3 OR 10 = 11 0 0 0 0 1 0 1 1

Examples: A%=3 XOR 10 → "9" is assigned to A%

Bit 7 6 5 4 3 2 1 0
3 0 0 0 0 0 0 1 1

10 0 0 0 0 1 0 1 0
3 OR 10 = 11 0 0 0 0 1 0 0 1

1

2

3

4

5

6

7

Arithmetic operations 4-3

1.4 Priority of arithmetic operation

Operations are performed in the following order of priority. When two operations of equal priority appear
in the same statement, the operations are executed in order from left to right.

Priority Rank Arithmetic Operation
1 Expressions included in parentheses

2 Functions, variables

3 ^ (exponents)

4 Independent "+" and "-" signs (monominal operators)

5 * (multiplication), / (division)

6 MOD

7 + (addition), - (subtraction)

8 Relational operators

9 NOT, ~ (Logical NOT)

10 AND, & (logical AND)

11 OR, |, XOR (Logical OR, exclusive OR)

1.5 Data format conversion

Data format is converted in cases where two values of different formats are involved in the same operation.

1. When	a	real	number	is	assigned	to	an	integer,	decimal	places	are	rounded	off.

Examples: A%=125.67 → A%=126

2. When	integers	and	real	numbers	are	involved	in	the	same	operation,	the	result		 	 	
becomes a real number.

Examples: A(0)=125 * 0.25 → A(0)=31.25

3. When	an	integer	is	divided	by	an	integer,	the	result	is	an	integer	with	the	remainder		 	 	
discarded.

Examples: A(0)=100/3 → A(0)=33

4-4 Chapter 4 Expressions and Operations

1

2

3

4

5

6

7

 2 Character string operations

2.1 Character string connection

Character strings may be combined by using the "+" sign.

SAMPLE
A$="OMRON"

B$="ROBOT"

C$="LANGUAGE"

D$="MOUNTER"

E$=A$+" "+B$+" "+C$

F$=A$+" "+D$

PRINT E$

PRINT F$

Results: OMRON ROBOT LANGUAGE

 OMRON MOUNTER

2.2 Character string comparison

Characters can be compared with the same relational operators as used for numeric values. Character
string comparison can be used to find out the contents of character strings, or to sort character strings into
alphabetical order.

 ■ In the case of character strings, the comparison is performed from the beginning of each string, character
by character.

 ■ If all characters match in both strings, they are considered to be equal.
 ■ Even if only one character in the string differs from its corresponding character in the other string, then

the string with the larger (higher) character code is treated as the larger string.
 ■ When the character string lengths differ, the longer of the character strings is judged to be the greater

value string.

All examples below are "true".

Examples: "AA"<"AB"
 "X&">"X#"
 "DESK"<"DESKS"

1

2

3

4

5

6

7

Point data format 4-5

 3 Point data format

There are two types of point data formats: joint coordinate format and Cartesian coordinate format.
Point numbers are in the range of 0 to 9999.

Coordinate	Format	 Data	Format Explanation
Joint coordinate
format

± nnnnnnn This is a decimal integer constant of 7 digits
or less with a plus or minus sign, and can be
specified from –6144000 to 6144000.
Unit: [pulses]

Cartesian coordinate
format

± nnn.nn to ± nnnnnnn This is a decimal fraction of a total of 7 digits
including 2 or less decimal places.
Unit: [mm] or [degrees]

When setting an extended hand system flag for SCARA robots, set either 1 or 2 at the end of the data. If a
value other than 1 or 2 is set, or if no value is designated, 0 will be set to indicate that no hand system flag
is set.

Hand System Data Value
RIGHTY (right-handed system) 1

LEFTY (left-handed system) 2

On the R6YXTW500 model robot, the X-arm and Y-arm movement range is extended beyond 360 degrees
(The movable range for both the X-arm and Y-arm is -225° to +225°).
Therefore, attempts to convert Cartesian coordinate data ("mm" units) to joint coordinate data (pulse units)
will result in multiple solutions, making the position impossible to determine.
In order to obtain the correct robot position and arm posture when converting to joint coordinates, X-arm
and Y-arm rotation information is added after the "mm" units point data's extended hand system flag.
The Cartesian coordinate data ("mm" units) is then converted to joint coordinate data (pulse units)
according to the specified X-arm and Y-arm rotation information.

To set extended X-arm and Y-arm rotation information at the R6YXTW500 model robot, a "-1", "0", or "1"
value must be specified after the hand system flag. Any other value, or no value, will be processed as "0".

Arm rotation information Data Value
"mm" → pulse converted angle data x (*1) range: -180° < x <= 180° 0

"mm" → pulse converted angle data x (*1) range: 180° < x <= 540° 1

"mm" → pulse converted angle data x (*1) range: -540° < x <= -180° -1

*1: The joint-coordinates-converted pulse data represents each arm's distance (converted to angular
data) from its mechanical origin point.

NOTE
 • The XYZRAB data format
is used for both the joint
coordinate format and the
Cartesian coordinate format.

 • Plus (+) signs can be omitted.

 • X-arm and Y-arm rotation
information is only available in
software Ver.1.66M onwards.

 • X-arm and Y-arm rotation
information is not available
on any robot model except the
R6YXTW500.

4-6 Chapter 4 Expressions and Operations

1

2

3

4

5

6

7

 4 DI/DO conditional expressions

DI/DO conditional expressions may be used to set conditions for WAIT statements and STOPON options
in MOVE statements.
Numeric constants, variables and arithmetic operators that may be used with DI/DO conditional expressions
are shown below.

 • Constant
 Decimal integer constant, binary integer constant, hexadecimal integer constant

 • Variables
 Global integer type, global real number type, input/output type

 • Operators
 Relational operators, logic operators

 • Operation priority
 1. Relational operators
 2. NOT, ~
 3. AND, &
 4. OR, |, XOR

Examples: WAIT DI(31)=1 OR DI(34)=1
 → The program waits until either DI31 or DI34 turns ON.

Chapter 5

Multi-tasking

1 1 Outline ...5-1

2 2 Task definition ...5-1

3 3 Task status and transition5-2

4 4 Multi-task program example5-8

5 5 Sharing the data ...5-8

6 6 Cautionary Items ...5-9

1

2

3

4

5

6

7

Outline 5-1

 1 Outline

The multi-task function performs multiple processing simultaneously in a parallel manner, and can be
used to create programs of higher complexity. Before using the multi-tasking function, read this section
thoroughly and make sure that you fully understand its contents.
Multi-tasking allows executing two or more tasks in parallel. However, this does not mean that multiple
tasks are executed simultaneously because the controller has only one CPU to execute the tasks. In multi-
tasking, the CPU time is shared among multiple tasks by assigning a priority to each task so that they can
be executed efficiently.

 ■ A maximum of 8 tasks (task 1 to task 8) can be executed in one program.
 ■ Tasks can be prioritized and executed in their priority order (higher priority tasks are executed first).
 ■ The priority level of task 1 is fixed at 32, while the priority of task 2 to task 8 can be set to any level

between 17 and 47.
 ■ Smaller values have higher priority, and larger values have lower priority

(High priority: 17 to 47: low priority).

 2 Task	definition

A task is a set of instructions within a program which are executed as a single sequence. As explained
below, a task is defined by assigning a label to it.

1. Assign a label to the first line of the command block which is to be defined as a task.
2. At the Task 1 (main task) START statement, specify the label which was assigned at step 1 above.
 Task Nos. are then assigned, and the program starts.

The task definition may call for 2 to 8 subtasks. Task 1 (main task) is automatically defined.

• Although all tasks are written within a single program, parallel processing occurs at each of the tasks.

SAMPLE

’MAIN TASK(TASK1)

START *IOTASK,T2 ･････････････････*IOTASK is started as Task 2

*ST1:

MOVE P,P1,P0

 IF DI(20)= 1 THEN

 HALT

 ENDIF

GOTO *ST

HALT

’SUB TASK(TASK2)

*IOTASK: ･････････････････････････････Task 2 begins from here

 IF DI(21)=1 THEN

 DO(30)=1

 ELSE

 DO(30)=0

 ENDIF

GOTO *IOTASK ･･･････････････････････Task 2 processing ends here

EXIT TASK

MEMO

1

2

3

4

5

6

7

5-2 Chapter 5 Multi-tasking

 3 Task status and transition

There are 6 types of task status:

1. STOP status
 A task is present but the task processing is stopped.
2. RUN status
 A task is present and the task processing is being executed by the CPU.
3. READY status
 A task is present and ready to be allocated to the CPU for task processing.
4. WAIT status
 A task is present and waiting for an event to begin the task processing.
5. SUSPEND status
 A task is present but suspended while waiting to begin the task processing.
6. NON EXISTEN status
 No tasks exist in the program. (The START command is used to perform a call).

Task state transition

Delete Call

NON EXISTEN

Resume

Start

Suspend

Wait conditionCancel waiting

StopStop Stop Stop

CPU assignment

Wait for CPU assignment

STOP

RUNSUSPEND READY WAIT

3.1 Starting tasks

When the program is being executed in the AUTO mode, Task 1 (main task) is automatically selected and
placed in a RUN status when the program begins. Therefore, the delete, forced wait, forced end commands,
etc., cannot be executed for Task 1.
Other tasks (2 to 8 subtasks) will not be called simply by executing the program. The START command
must be used at Task 1 in order to call, start, and place these tasks in a READY status.

• The RESTART, SUSPEND, EXIT TASK and CUT commands cannot be executed at Task 1.MEMO

1

2

3

4

5

6

7

Task status and transition 5-3

3.2 Task scheduling

Task scheduling determines the priority to be used in allocating tasks in the READY(execution enabled)
status to the CPU and executing them.
When there are two or more tasks which are put in the READY status, ready queues for CPU allocation are
used to determine the priority for executing the tasks. One of these READY status tasks is then selected
and executed (RUN status).

Only tasks with the same priority ranking are assigned to a given ready queue. Therefore, where several
tasks with differing priority rankings exist, a corresponding number of ready queues are created. Tasks
within a given ready queue are handled on a first come first serve (FCFS) basis. The task where a READY
status is first established has priority. The smaller the number, the higher the task priority level.

Task 1 Task 3

Task 1

Task 4

Task 5

Task 2

Ready queue 1

Ready queue 2

Ready queue 3

Order in which tasks are put in READY status.

The head of the task with the highest priority
is put in RUN status.High

Low

32

33

34

Priority level

Task scheduling

A RUN status task will be moved to the end of the ready queue if placed in a READY status by any of the
following causes:
1) A WAIT status command was executed.
2) The CPU occupation time exceeds a specified time.
3) A task with a higher priority level is put in READY status.

Task 1

RUN status READY status

Moves to the end of the ready queue, and Task 3 is executed.

Task 3 Task 4

Execution sequence

1

Task 1 Task 3 Task 4 Task 1

2

Moves to the end of the ready queue, and Task 4 is executed.

Task 3 Task 4 Task 1 Task 3

3

Ready queue

NOTE
 • When the prescribed CPU
occupa t ion t ime e lapses ,
t h e a c t i v e c o m m a n d i s
e n d e d , a n d p r o c e s s i n g
m o v e s t o t h e n e x t t a s k .
However, if there are no other
tasks of the same or higher
priority (same or higher ready
queue), the same task will be
executed again.

1

2

3

4

5

6

7

5-4 Chapter 5 Multi-tasking

3.3 Condition wait in task

A task is put in the WAIT status (waiting for an event) when a command causing a wait status is executed
for that task. At this time, the transition to READY status does not take place until the wait condition is
canceled.

1. When	a	command	causing	a	wait	status	is	executed,	the	following	transition	happens.
 ■ Task for which a command causing a wait status is executed → WAIT status
 ■ Task at the head of the ready queue with higher priority → RUN status

• For example , when a MOVE sta tement (a command that es tabl ishes a WAIT s ta tus)
is executed, the CPU sends a "MOVE" instruction to the driver, and then waits for a
"MOVE COMPLETED" reply from the driver. This is a "waiting for an event" status.
In this case, a WAIT status is established at the task which executed the MOVE command, and that task
is moved to the end of the ready queue. A RUN status is then established at the next task.

2. When	an	event	waited	by	the	task	in	the	WAIT	status	occurs,	the	following	status	transition	 	
 takes place by task scheduling.

 ■ Task in the WAIT status for which the awaited event occurred → READY status
 However, if the task put in the READY status was at the head of the ready queue with the highest
 priority, the following transition takes place.
 1) Task that is currently in RUN status → READY status
 2) Task at the head of the ready queue with higher priority → RUN status

• In the above MOVE statement example, the task is moved to the end of the ready queue. Then, when a
"MOVE COMPLETED" reply is received, this task is placed in READY status.

Tasks are put in WAIT status by the following commands.

Event Command
Wait for axis
movement to
complete

Axis movement
command

MOVE
DRIVE
PMOVE
WAIT ARM

MOVEI
DRIVEI
SERVO

Parameter
command

ACCEL
AXWEIGHT
OUTPOS
ORGORD

ARCH
DECEL
TOLE
WEIGHT

Robot status change
command

CHANGE
LEFTY
ASPEED

SHIFT
RIGHTY
SPEED

Wait for time to elapse DELAY, SET (Time should be specified.), WAIT (Time
should be specified.)

Wait for condition to be met WAIT
Wait for data to send or to be received SEND
Wait for print buffer to become empty PRINT
Wait for key input INPUT

• The tasks are not put in WAIT status if the event has been established before the above commands are
executed.

MEMO

NOTE
 • If multiple tasks are in WAIT
s ta tus awai t ing the same
condition event, or different
c o n d i t i o n e v e n t s o c c u r
simultaneously, all tasks for
which the waited events occur
are put in READY status.

MEMO

MEMO

1

2

3

4

5

6

7

Task status and transition 5-5

3.4 Suspending tasks (SUSPEND)

The SUSPEND command temporarily stops tasks other than task 1 and places them in SUSPEND status.
The SUSPEND command cannot be used for task 1.
When the SUSPEND command is executed, the status transition takes place as follows.

 ■ Task that executed the SUSPEND command → RUN status
 ■ Specified task → SUSPEND status

Suspending tasks (SUSPEND)

Task 1 Task 2 Task 1

Task 2
RUN READY RUN

SUSPEND

SUSPEND

Task 3

READY

Task 3

READY

The task is placed in a SUSPEND status,
and is removed from the ready queue.

3.5 Restarting tasks (RESTART)

Tasks in the SUSPEND status can be restarted with the RESTART command. However, the RESTART
command cannot be used for task 1.
When the RESTART command is executed, the status transition takes place as follows.

 ■ Task for which the RESTART command was executed → RUN status
 ■ Specified task → READY status

Restarting tasks (RESTART)

Task 1

Task 2

Task 1 Task 3

RUN

SUSPEND

RUN READY

RESTART

Task 2

READY

Task 3

READY

The task is placed in a READY status,
and is assigned to a ready queue.

1

2

3

4

5

6

7

5-6 Chapter 5 Multi-tasking

3.6 Deleting tasks

Task self-delete (EXIT TASK)

Tasks can delete themselves by using the EXIT TASK command and set to the NON EXISTEN (no task
registration) status. The EXIT TASK command cannot be used for task 1.
When the EXIT TASK command is executed, the status transition takes place as follows.

 ■ Task that executed the EXIT TASK command → NON EXISTEN status
 ■ Task at the head of the ready queue with higher priority → RUN status

Task self-delete (EXIT TASK)

Task 2 Task 3

Task 2

Task 3

RUN READY

NOT EXISTEN

RUN

EXIT TASK

Task 4

READY

Task 4

READY

The task is placed in a NOT EXISTEN status,
and is removed from a ready queue.

Other-task delete (CUT)

A task can also be deleted and put in the NON EXISTEN (no task registration) status by the other tasks
using the CUT command. The CUT command cannot be used for task 1.
When the CUT command is executed, the status transition takes place as follows.

 ■ Task that executed the CUT command → RUN
 ■ Specified task → NON EXISTEN

Other-task delete (CUT)

Task 2 Task 3 Task 2

Task 3
RUN READY

Task 4

READY

Task 4

READY RUN

NOT EXISTEN

CUT

The task is placed in a NOT EXISTEN status,
and is removed from the ready queue.

• If a SUSPEND command is executed for a WAIT-status task, the commands being executed by that
task are ended.

• None of these commands can be executed for Task 1.

MEMO

1

2

3

4

5

6

7

Task status and transition 5-7

3.7	 Stopping tasks

All tasks stop if any of the following cases occurs.

1. HALT command is executed. (stop & reset)
 The program is reset and all tasks other than task 1 are put in the NON EXISTEN status.
 Task 1 is put in the STOP status.
2. HOLD command is executed. (temporary stop)
 All tasks are put in the STOP status. When the program is restarted, the tasks in the STOP
 status set to the READY or SUSPEND status.
3. STOP key on the programming box is pressed or the interlock signal is cut off.
 Just as in the case where the HOLD command is executed, all tasks are put in the STOP
 status. When the program is restarted, the tasks in the STOP status set to the READY status (or,
 the task is placed in a SUSPEND status after being placed in a READY status).
4. When the emergency stop switch on the programming box is pressed or the emergency stop
 signal is cut off.
 All tasks are put in STOP status. At this point, the power to the robot is shut off and the servo
 sets to the non-hold state.
 After the canceling emergency stop, when the program is restarted, the tasks in STOP status
 are set to the READY or SUSPEND status. However, a servo ON is required in order to restart the
 robot power supply.

• When the program is restarted without being reset after the tasks have been stopped by a cause other
than 1., then each task is processed from the status in which the task stopped. This holds true when the
power to the controller is turned off and then turned on.

MEMO

1

2

3

4

5

6

7

5-8 Chapter 5 Multi-tasking

 4 Multi-task program example

Tasks are executed in their scheduled order. An example of a multi-task program is shown below.

SAMPLE

’TASK1

START *ST2,T2

START *ST3,T3

*ST1:

DO(20) = 1

WAIT MO(20) = 1

MOVE P,P1,P2,Z=0

IF MO(21)=1 THEN *FIN

GOTO *ST1

*FIN:

CUT T2

HALT

’TASK2

*ST2: ･････････････････････････････Task 2 begins here.

IF DI(20) = 1

MO(20) = 1

DELAY 100

ELSE

MO(20) = 0

ENDIF

GOTO *ST2

EXIT TASK ････････････････････････････Ends here.

’TASK3 ･････････････････････････････Task 3 begins here.

*ST3:

IF DI(21) = 0 THEN *ST3

IF DI(30) = 0 THEN *ST3

IF DI(33) = 0 THEN *ST3

MO(21) = 1

EXIT TASK ････････････････････････････Ends here.

 5 Sharing the data

Point data, shift coordinate definition data, hand definition data, pallet definition data, all global variables
and other variables are shared between all tasks.
Execution of each task can be controlled while using the same variables and data shared with the other
tasks.

• In this case, however, use sufficient caution when rewriting the variable and data because improper
changes may cause trouble in the task processing.

MEMO

1

2

3

4

5

6

7

Cautionary Items 5-9

 6 Cautionary Items

A silence stop may occur if subtasks are continuously started (START command) and ended (EXIT TASK
command) by a main task in an alternating manner.
This occurs for the following reason: if the main task and subtask priority levels are the same, a task
transition to the main task occurs during subtask END processing, and an illegal task status then occurs
when the main task attempts to start a subtask.
Therefore, in order to properly execute the program, the subtask priority level must be set higher than that
of the main task. This prevents a task transition condition from occurring during execution of the EXIT
TASK command.
In the sample program shown below, the priority level of task 1 (main task) is set as 32, and the priority
level of task 2 is set as 31 (the lower the value, the higher the priority).

SAMPLE

FLAG1 = 0

*MAIN_TASK:

IF FLAG1=0 THEN

FLAG1 = 1

START *TASK2,T2,31 ･･････Task 2 (*TASK2) is started at the

priority level of 31.

ENDIF

GOTO *MAIN_TASK

'==============

' TASK2

'==============

*TASK2:

DRIVE(1,P1)

WAIT ARM(1)

DRIVE(1,P2)

WAIT ARM(1)

FLAG1 = 0

EXIT TASK

HALT

Chapter 6

Sequence function

1 1 Sequence function ...6-1

2 2 Creating a sequence program6-1

3 3 Executing a sequence program6-4

4 4 Creating a sequence program6-5

1

2

3

4

5

6

7

Sequence function 6-1

 1 Sequence function

Besides normal robot programs, this YRC controller can execute high-speed processing programs (sequence
programs) in response to the robot input/output (DI, DO, MO, LO TO, SI, SO) signals. This means that
when a sequence program is running, it is running simultaneously with the robot program (2 programs are
running).

When the dedicated "DI10: sequence control input" is ON, the sequence program runs according to its own
cycle in the AUTO or MANUAL mode, regardless of robot program starts and stops.
The sequence program starts running as soon as the controller is turned on (normally, the MANUAL
mode), so it can be used to monitor the status of sensors, push button switches, solenoid valves, etc.
The sequence program can be written in the same robot language used for robot programs. This eliminates
the need to learn a new language and making it easier to program.
General-purpose outputs are not reset while the sequence function is running, even if a program reset
is executed. However, a setting can be specified which allows these outputs to be reset at the sequence
program compiling operation. For details regarding settings required to execute a sequence program, see
section "3 Executing Sequence Programs".

 2 Creating a sequence program

2.1 Programming method

The following explains how to create a sequence program in order to make use of the sequence function.
First, enter "PROGRAM" mode and create a file with the file name "SEQUENCE". The controller
automatically recognizes that a file with this name is a sequence program.

ＰＲＯＧＲＡＭ＞ＤＩＲ　　　　　　　　　　　　　　　　　　　＜ＴＥＳＴ１０　　＞

　Ｎｏ．　　　　　　Ｎａｍｅ　　Ｌｉｎｅ　　　Ｂｙｔｅ　　ＲＷ／ＲＯ
　　１　　　ＴＥＳＴ１０　　　　　　１２　　　　１４５　　　　　ＲＷ
　　２　　　ＬＯＣＡＴＥ２０　　　　２５　　　　３２０　　　　　ＲＷ

　Ｅｎｔｅｒ　ｐｒｏｇｒａｍ　ｎａｍｅ　＞ＳＥＱＵＥＮＣＥ

Naming a sequence program file

Next, input a program. This is no different from the standard robot program creation method. Commands
which can be input are explained later in this manual.

ＰＲＯＧＲＡＭ＞ＥＤＩＴ　　　　　　　　　　　　　　　　　　＜ＳＥＱＵＥＮＣＥ＞
　　　　　　　　　　　　　　１　　　　　　　　　２　　　　　　　　　３　　
　　１　　ＤＯ（２０）＝ＤＩ（２１）　ＡＮＤ　ＤＩ（２２）
　　２　　ＭＯ（３０）＝ＤＯ（２３）　ＯＲ　ＤＩ（２２）
　　３　　ＭＯ（３１）＝～ＭＯ（３０）
　　４　　ＤＯ（２１）＝（ＤＩ（３６）　ＯＲ　ＤＩ（２５））ＡＮＤ　ＤＩ（２
　　５　　ＤＯ（３０）＝ＭＯ（３０）　ＯＲ　ＤＩ（２７）

　ＳＥＬＥＣＴ　　ＣＯＰＹ　　　　ＣＵＴ　　　　　ＰＡＳＴＥ　　　ＢＳ

Creating a sequence program

NOTE
 • The "DO12: Sequence program
running" dedicated signal
output occurs while a sequence
program is being executed.

1

2

3

4

5

6

7

6-2 Chapter 6 Sequence function

2.2 Compiling

After editing the program, it must be compiled as a sequence program. Compiling is performed in the same
way as for robot programs. Press the F5 key on the highest-level screen in "PROGRAM" mode.

ＰＲＯＧＲＡＭ＞ＥＤＩＴ　　　　　　　　　　　　　　　　　　＜ＳＥＱＵＥＮＣＥ＞
　　　　　　　　　　　　　　１　　　　　　　　　２　　　　　　　　　３　　　　　
　　１　　ＤＯ（２０）＝ＤＩ（２１）　ＡＮＤ　ＤＩ（２２）
　　２　　ＭＯ（３０）＝ＤＯ（２３）　ＯＲ　ＤＩ（２２）
　　３　　ＭＯ（３１）＝～ＭＯ（３０）
　　４　　ＤＯ（２１）＝（ＤＩ（３６）　ＯＲ　ＤＩ（２５））ＡＮＤ　ＤＩ（２
　　５　　ＤＯ（３０）＝ＭＯ（３０）　ＯＲ　ＤＩ（２７）

　ＳＥＬＥＣＴ　　　　　　　　　　ＤＩＲ　　　　　　　　　　　　　ＣＯＭＰＩＬＥ

Sequence program

A check message appears asking if you want to compile the sequence program. Press the F4 key to compile
the program. To cancel this compiling, press the F5 key. The display changes to the compiling screen for
normal robot programs.
Press the F4 key to compile the sequence program.
Compile the sequence program before compiling the main program.

ＰＲＯＧＲＡＭ＞ＣＯＭＰＩＬＥ　　　　　　　　　　　　　　　＜ＳＥＱＵＥＮＣＥ＞
　　　　　　　　　　　　　　１　　　　　　　　　２　　　　　　　　　３
　　１　　ＤＯ（２０）＝ＤＩ（２１）　ＡＮＤ　ＤＩ（２２）
　　２　　ＭＯ（３０）＝ＤＯ（２３）　ＯＲ　ＤＩ（２２）
　　３　　ＭＯ（３１）＝～ＭＯ（３０）
　　４　　ＤＯ（２１）＝（ＤＩ（３６）　ＯＲ　ＤＩ（２５））ＡＮＤ　ＤＩ（２
　　５　　ＤＯ（３０）＝ＭＯ（３０）　ＯＲ　ＤＩ（２７）

　Ｃｏｍｐｉｌｅ　ｆｏｒ　ＳＥＱＵＥＮＣＥ　ＯＫ？ＹＥＳ　　　　　ＮＯ

Compiling the sequence program

If there is a syntax error in the program, an error message appears and the program will be listed from the
line with the error When the compiling ends without any error, the program will be listed from its first line.

ＰＲＯＧＲＡＭ　　　　　　　　　　　　　　　　　　　　　　　＜ＳＥＱＵＥＮＣＥ＞
　　　　５．１：Ｓｙｎｔａｘ　ｅｒｒｏｒ　　　　２　　　　　　　　　３
　　３　　ＭＯ（３１）＝～ＭＯ（３０）’ＡＢ
　　４　　ＤＯ（２１）＝ＭＯ（３６）　ＯＲ　ＤＩ（２７）
　　５　　ＤＯ（３０）＝ＭＯ（３０）　ＯＲ　ＤＩ（２７）
　　６　　ＤＯ（２５）＝ＤＩ（２６）　ＡＮＤ　ＤＯ（３２）
　　７　　ＤＯ（３０）＝ＭＯ（３０）　ＯＲ　ＤＩ（２７）

　ＳＥＬＥＣＴ　　　　　　　　　　ＤＩＲ　　　　　　　　　　　　　ＣＯＭＰＩＬＥ

Compiling error

1

2

3

4

5

6

7

Creating a sequence program 6-3

• The sequence execution program is erased and the letter "s" disappears in the following cases. In these
cases the sequence function cannot be used in "UTILITY" mode.

 1. When the sequence program was erased
 2. When the sequence program was edited
 3. When normal robot program compiling was performed for the sequence program

 (The same processing occurs even if the mode is changed to AUTO while in the SEQUENCE
program is selected.)

 4. Program data was initialized.
 5. A "9.39: Sequence object destroyed.

 When you display the directory after the compiling the sequence program, a letter "s" appears to the
left of the program name "SEQUENCE". This means that the sequence program has been compiled
successfully and is ready for use.

ＰＲＯＧＲＡＭ＞ＤＩＲ　　　　　　　　　　　　　　　　　　　＜ＴＥＳＴ１０　　＞

Ｎｏ．　　　　　　Ｎａｍｅ　　Ｌｉｎｅ　　　Ｂｙｔｅ　　ＲＷ／ＲＯ
　　１　　ＴＥＳＴ１０　　　　　　１２　　　　１４５　　　　　ＲＷ
　　２　　ＬＯＣＡＴＥ２０　　　　２５　　　　３２０　　　　　ＲＷ
　　３　ｓＳＥＱＵＥＮＣＥ　　　　　８　　　　１４１　　　　　ＲＷ

　ＮＥＷ　　　　　　　　　　　　　　　　　　　　　　　　　　　　　ＩＮＦＯ

Sequence execution program after compiling

MEMO

1

2

3

4

5

6

7

6-4 Chapter 6 Sequence function

 3 Executing a sequence program

The following conditions must be satisfied to execute a sequence program. If any of these conditions is not
met, the sequence program cannot be executed.

1. The sequence execution program has been created by compiling.
2. The sequence function is enabled in "UTILITY" mode.
 (For details regarding the UTILITY mode, refer to the controller manual.)
3. The external sequence control input (DI10) contact is closed.
4. The current operation mode is "MANUAL" or "AUTO".

When all of the above conditions are met, the sequence program can now be executed. While the program
is running, the letter "s" will appear at the left end of the second line of the screen.

ＭＡＮＵＡＬ　　　　　　　　　　　　　　　　　　　５０％　［ＭＧ］［ＳＯＨＯＪ］
ｓ
Ｃｕｒｒｅｎｔ　ｐｏｓｉｔｉｏｎ
　Ｍ１＝　　　　　　　０　　Ｍ２＝　　　　　　　０　＊Ｍ３＝　　　　　　　０
＊Ｍ４＝　　　　　　　０

　ＰＯＩＮＴ　　　ＰＡＬＬＥＴ　　　　　　　　　　ＶＥＬ＋　　　　ＶＥＬー

Sequence program execution in progress

For details regarding the UTILITY mode setting procedure, refer to the controller manual.

3.1 Sequence program STEP execution

The sequence program may be executed line by line while checking one command line at a time.
To do this, press the F5 key on the compile screen. Sequence program compiling is canceled and the
normal robot compile screen then appears.
Press the F4 key to compile and create a normal execution program. Then, execute this program with the
STEP statement in "AUTO" mode to check the operation.

　　５　　ＤＯ（３０）＝ＭＯ（３０）　ＯＲ　ＤＩ（２７）

　Ｃｏｍｐｉｌｅ　ｆｏｒ　ＳＥＱＵＥＮＣＥ　ＯＫ？ＹＥＳ　　　　　ＮＯ

ＰＲＯＧＲＡＭ＞ＣＯＭＰＩＬＥ　　　　　　　　　　　　　　　＜ＳＥＱＵＥＮＣＥ＞
　　　　　　　　　　　　　　１　　　　　　　　　２　　　　　　　　　３
　　１　　ＤＯ（２０）＝ＤＩ（２１）　ＡＮＤ　ＤＩ（２２）
　　２　　ＭＯ（３０）＝ＤＯ（２３）　ＯＲ　ＤＩ（２２）
　　３　　ＭＯ（３１）＝～ＭＯ（３０）
　　４　　ＤＯ（２１）＝（ＤＩ（３６）　ＯＲ　ＤＩ（２５））ＡＮＤ　ＤＩ（２
　　５　　ＤＯ（３０）＝ＭＯ（３０）　ＯＲ　ＤＩ（２７）

　Ｃｏｍｐｉｌｅ　ｐｒｏｇｒａｍ　ＯＫ？　　　　　ＹＥＳ　　　　　ＮＯ

Sequence program STEP execution

Press the F5 key.

Press the F4 key.

1

2

3

4

5

6

7

Creating a sequence program 6-5

 4 Creating a sequence program

When creating a sequence program, you may use only assignment statements comprised of input/output
variables and logical operators. An error will occur during compiling if any statement other than assignment
statements is used in the program, and the compiling cannot be completed.

4.1 Assignment statements

Format

 <output variable =<expression>
 <internal auxiliary output variable>
 <arm lock output variable>
 <timer output variable>

 Values <expression> Any one of the following can be used.
 • Parallel input/output variables
 • Internal auxiliary output variables
 • Arm lock output variables
 • Timer output variables
 • Serial input/output variable
 • The logic operation expression shown above

4.2 Input/output variables

Each variable must be specified in a 1-bit format

• Correct examples DO(35)
 MO(24)
 DI(16)
• Incorrect examples DO(37, 24)
 DI3(4)
 MO3()

 ● Parallel input variables

Format

DI(mb) m: Port number･･･････････････････････ 0 to 7, 10 to 17, 20 to 27

 b: bit definition･･･････････････････････ 0 to 7

 These variables show the status of the parallel input signal.

 ● Parallel output variables

Format

DO(mb) m: Port number･･･････････････････････ 0 to 7, 10 to 17, 20 to 27

 b: bit definition･･･････････････････････ 0 to 7

 A parallel output is specified, or the output status is referenced. Ports 0 and 1 are for referencing
 only, and no outputs can occur there.

1

2

3

4

5

6

7

6-6 Chapter 6 Sequence function

 ● Internal output variables

Format

MO(mb) m: Port number･･･････････････････････ 0 to 7, 10 to 17, 20 to 27

 b: bit definition･･･････････････････････ 0 to 7

 These variables are used within the controller and are not output externally. Ports 0 and 1 are for
 referencing only, and no outputs can occur there.

 ● Arm lock output variables

Format

LO(mb) m: port number ･･････････････････････ 0

 b: bit definition･･･････････････････････ 0 to 7

 These variables are used to prohibit the arm movement. Movement is prohibited when ON. LO(00) to
 LO(07) corresponds to arm 1 to arm 8.

 ● Timer output variables

Format

TO(mb) m: port number ･･････････････････････ 0

 b: bit definition ･･･････････････････････ 0 to 7

 There are a total of 8 timer output variables: TO(00) to TO(07). The timer of each variable is defined by
 the timer definition statement TIM00 to 07.

 ● Serial input variables

Format

SI(mb) m: Port number･･･････････････････････ 0 to 7, 10 to 17, 20 to 27

 b: bit definition ･･･････････････････････ 0 to 7

 Indicates a serial input signal status. Only referencing can occur. No settings are possible.

 ● Serial output variables

Format

SO(mb) m: Port number･･･････････････････････ 0 to 7, 10 to 17, 20 to 27

 b: bit definition ･･･････････････････････ 0 to 7

 Sets or references a serial output signal status. Ports 0 and 1 are for referencing only, and no outputs can
 occur there.

1

2

3

4

5

6

7

Creating a sequence program 6-7

Timer example

SAMPLE

TIM02 = 2500 ･･･････････････････････････Timer 02 is set to 2.5 seconds.
TO(02) = DI(23) ･･････････････････････････Timer starts when DI(23) switches ON.

• When DI(23) is ON, after 2.5 seconds, TO(02) is set ON.
• When DI(23) is OFF, TO(02) is also OFF.
• When DI(23) isn’t ON after 2.5 second or more, TO(02) does not change to ON.

Timer usage example: Timing chart

DI(23)

2.5sec

TO(02)

1.6sec

4.3	 Timer	definition	statement

Format

TIMmb=<time> m: Port number･･･････････････････ 0
 b: bit definition･･･････････････････ 0 to 7

 Values <time> 100 to 999,900msec (0.1 to 999.9 second)

 Meaning The timer definition statement sets the timer value of the timer output variable. This definition
statement may be anywhere in the program.

 When the timer definition statement is omitted, the timer setting value of the variable is 0.
 TIM00 to 07 correspond to the timer output variables TO(00) to (07).
 However, since the units are set every 100msec, values less than 99msec are truncated.

4.4 Logical operators

Operators Functions Meaning
NOT, ~ Logical NOT Reverses the bits.

AND, & Logical AND Becomes "1" when both bits are "1".

OR, | Logical OR Becomes "1" when either of the bits is "1".

1

2

3

4

5

6

7

6-8 Chapter 6 Sequence function

4.5 Priority of logic operations

Priority Ranking Operation Content
1 Expressions in parentheses

2 NOT, ~ (Logical NOT)

3 AND, & (Logical AND)

4 OR, | (Logical OR)

 ● Example with a ladder statement substitution

SAMPLE
DO(23)=DI(16)&DO(35)
MO(34)=DO(25) | ~DI(24)
DO(31)=(DI(20) | DO(31))&~DI(21)

Ladder diagram

DI(16)

DO(25)

~DI(24)

DI(20)

DO(31)

DO(35)

~DI(21)

DO(23)

MO(34)

DO(32)

(Self-hold circuit)

• NOT cannot be used prior to the first parenthesis " (" or on the left of an expression. For example, the
following commands cannot be used.

 •DO(21)=~(DI(30) | DI(32))
 •~DO(30)=DI(22)&DI(27)
• Numeric values cannot be assigned on the right of an expression.
 •MO(35)=1
 •DO(26)=0
• There is no need to define a "HALT" or "HOLD" statement at the end of the program.
• The I/O and internal auxiliary output variables used in sequence programs are shared with robot

programs, so be careful not to make improper changes when using the same variables between them.

4.6 Sequence	program	specifications

Item Specification
Commands Logical NOT, AND, OR

I/O Same as robot language

Program capacity 4096 bytes (A maximum of 512 variables can be specified.)

Scan time 10 to 30ms depending on the number of steps (This changes automatically.)

MEMO

Chapter	7	

Robot Language Lists

 How to read the robot language table...........................7-1

 Command list in alphabetic order7-3

 Function Specific ..7-7

 Functions: in alphabetic order7-13

 Functions: operation-specific7-15

1 1 ABS ..7-17

2 2 ABSINIT ..7-18

3 3 ABSRPOS ..7-20

4 4 ABSRST...7-21

5 5 ACCEL ...7-22

6 6 ARCH ..7-23

7 7 ARMCND ..7-25

8 8 ARMTYPE ..7-26

9 9 ATN ..7-27

10 10 ASPEED ..7-28

11 11 AXWGHT ..7-29

12 12 CALL ...7-30

13 13 CHANGE ...7-31

14 14 CHGPRI ...7-32

15 15 CHR$...7-33

16 16 COS ..7-34

17 17 CURTRQ ..7-34

18 18 CUT ..7-35

19 19 DATE$...7-36

20 20 DECEL ...7-37

21 21 DECLARE ...7-38

22 22 DEF FN ..7-40

23 23 DEGRAD ...7-41

24 24 DELAY...7-42

25 25 DI ...7-43

26 26 DIST ...7-44

27 27 DIM ..7-45

28 28 DO ..7-46

29 29 DRIVE ...7-47

30 30 DRIVEI ..7-55

31 31 END SELECT ..7-60

32 32 END SUB ...7-61

33 33 ERR / ERL ...7-62

34 34 EXIT FOR ..7-63

35 35 EXIT SUB ..7-64

36 36 EXIT TASK ...7-65

37 37 FOR to NEXT ..7-66

38 38 GOSUB to RETURN7-67

39 39 GOTO...7-68

40 40 HALT ...7-69

41 41 HAND ..7-70

42 42 HOLD ..7-73

43 43 IF ..7-74

44 44 INPUT ..7-76

45 45 INT ...7-77

46 46 JTOXY ...7-78

47 47 LABEL Statement ..7-79

48 48 LEFT$..7-80

49 49 LEFTY ...7-81

50 50 LEN ..7-82

51 51 LET ..7-83

52 52 LO ..7-86

53 53 LOCx ..7-87

54 54 LSHIFT ..7-89

55 55 MCHREF ...7-90

56 56 MID$..7-91

57 57 MO ...7-92

58 58 MOVE ..7-93

59 59 MOVEI ..7-109

60 60 OFFLINE ...7-114

61 61 ORD ...7-115

62 62 ON ERROR GOTO7-116

63 63 ON to GOSUB ...7-117

64 64 ON to GOTO ..7-118

65 65 ONLINE ...7-119

66 66 ORGORD ...7-120

67 67 ORIGIN ..7-121

68 68 OUT ...7-122

69 69 OUTPOS ..7-123

70 70 PATH ..7-125

71 71 PATH END ...7-131

72 72 PATH SET ..7-132

73 73 PATH START ...7-134

74 74 PDEF ..7-135

75 75 PMOVE ..7-136

76 76 Pn ...7-140

77 77 PPNT ..7-142

78 78 PRINT ..7-143

79 79 RADDEG ...7-144

80 80 REM ...7-145

81 81 RESET ...7-146

82 82 RESTART ..7-147

83 83 RESUME ...7-148

84 84 RETURN ..7-149

85 85 RIGHT$...7-150

86 86 RIGHTY ...7-151

87 87 RSHIFT ..7-152

88 88 Sn ...7-153

89 89 SELECT CASE ..7-154

90 90 SEND ...7-155

91 91 SERVO ...7-157

92 92 SET...7-158

93 93 SHARED ..7-159

94 94 SHIFT...7-160

95 95 SIN ...7-161

96 96 SO ..7-162

97 97 SPEED ...7-163

98 98 START..7-164

99 99 STR$..7-165

100 100 SQR ..7-166

101 101 SUB to END SUB7-167

102 102 SUSPEND ..7-169

103 103 SWI ..7-170

104 104 TAN ..7-171

105 105 TCOUNTER ..7-172

106 106 TIME$..7-173

107 107 TIMER ...7-174

108 108 TO ..7-175

109 109 TOLE ...7-176

110 110 TORQUE ...7-177

111 111 TRQSTS ...7-179

112 112 TRQTIME ..7-180

113 113 VAL ..7-182

114 114 WAIT ..7-183

115 115 WAIT ARM ..7-184

116 116 WEIGHT ..7-185

117 117 WEND ..7-186

118 118 WHERE ...7-187

119 119 WHILE to WEND7-188

120 120 WHRXY ...7-189

121 121 XYTOJ ...7-190

122 122 _SYSFLG ...7-190

7

8

9

10

11

12

13

14

How to read the robot language table 7-1

 How to read the robot language table

The key to reading the following robot language table is explained below.

(1) (2) (3) (4) (5)
| | | | |

No. Function Conditions Direct Type

DIM 27 Declares the array variable name and the
number of elements. 6 × Command

(1) No.
 Indicates the Item No. where this robot language is explained in detail.

 27 DIM
Declares array variable

Format

DIM <array definition> [, <array definition>,…]

Format

<name> [%] (<constant> [, <constant> [, <constant>]])
 !
 $

 Values <constant> Array subscript: 0 to 32,767 (positive integer)

 Explanation Directly declares the name and length (number of elements) of an array variable. A

maximum of 3 dimensions may be used for the array subscripts. Multiple arrays can

be declared in a single line by using comma (,) breakpoints to separate the arrays.

• Array subscripts can be "0 to a specified value", with their total number being the <constant> + 1.

• A "9.31: Memory full" error may occur depending on the size of each dimension in an

array.

SAMPLE

DIM A%(10) ････････････････････････ Defines a integer array
variable A% (0) to A% (10).
(Number of elements: 11).

DIM B(2,3,4) ･････････････････････ Defines a real array variable
B (0, 0, 0) to B (2, 3, 4).
(Number of elements: 60).

DIM C%(2,2),D!(10) ････････････ Defines an integer array C%
(0,0) to C% (2,2) and a real
array D! (0) to D! (10).

MEMO

Example of "No." column

No.

(2) Function
 Explains the function of the robot language.
(3) Condition
 Lists the conditions under which command execution is enabled.

 Condition 1: Commands that can be executed by both direct commands and online commands.
 Condition 2: In addition to Condition 1, commands that execute task 1 (main task) only.
 Condition 3: In addition to condition 1, commands containing operands that cannot be executed by

direct commands or online commands.
 Condition 4: In addition to condition 1, commands which are executed after positioning is completed.
 Condition 5: MOVE L and MOVE C can be executed by both direct commands and online

commands, although they are executed after positioning is completed.
 The STOPON option cannot be executed by direct commands and online commands.
 Condition 6: Commands that cannot be executed by direct commands and online commands.

 Regarding robot languages which can be used as both commands and functions, the "execution
 enabled" conditions for a "command execution" may differ from those for a "function execution".
 In such cases, the respective conditions for the command and function are divided by a slash mark (/).
 For example, if condition 4 is applies for a "Command", but there are no conditions for the
 "Function", this would be expressed as follows: 4/-

7-2 Chapter 7 Robot Language Lists

7

8

9

10

11

12

13

14

(4) Direct
 If " " is indicated at this item, both direct commands and online commands can be used.

• Direct commands are input directly from the programming box while in the AUTO mode, and are used
to perform temporary operations. For details, refer to the controller manual.

(5) Type
 Indicates the robot language type as "Command" or "Function".
 When a command is used as both a "Command" and "Function", this is expressed as follows: Command/

Function

MEMO

7

8

9

10

11

12

13

14

Command list in alphabetic order 7-3

 Command list in alphabetic order

No. Command Function Condition Direct Type

A
1 ABS Acquires the absolute value of a specified value. - - Functions
2 ABSINIT Resets the current position of a specified main group axis. 4 Command Statements

3 ABSRPOS Acquires the machine reference of the specified main
group axis. (Valid only for axes where the return-to-origin
method is set as "mark method".)

- - Functions

4 ABSRST Executes a return-to-origin at the robot absolute motor
axes.

4 Command Statements

5 ACCEL Specifies/acquires the acceleration coefficient parameter
of the main group.

4/- Command Statements/
Functions

6 ARCH Specifies/acquires the arch position parameter of the main
group.

4/- Command Statements/
Functions

7 ARMCND Acquires the current arm status of the main robot. - - Functions
8 ARMTYPE Acquires the current "hand system" setting of the main robot. - - Functions
10 ASPEED Changes the AUTO movement speed of the main group. 4 Command Statements

9 ATN Acquires the arctangent of the specified value. - - Functions
11 AXWGHT Specifies/acquires the axis tip weight parameter of the

main group.
4/- Command Statements/

Functions

C
12 CALL Executes (calls) another program. 6 Command Statements

13 CHANGE Switches the main robot hand. 4 Command Statements

14 CHGPRI Changes the priority ranking of a specified task. 6 Command Statements

15 CHR$ Acquires a character with the specified character code. - - Functions
16 COS Acquires the cosine value of a specified value. - - Functions
17 CURTRQ Acquires the current torque value of the specified main

group axis.
- Functions

18 CUT Terminates a task currently being executed or temporarily
stopped.

6 Command Statements

D
19 DATE$ Acquires the date as a "yy/mm/dd" format character string. - - Functions

20 DECEL Specifies/acquires the deceleration rate parameter of the
main group.

4/- Command Statements/
Functions

23 DEGRAD Converts a specified value to radians (↔RADDEG). - - Functions
24 DELAY Waits for the specified period (units: ms). 6 Command Statements

27 DIM Declares the array variable name and the number of
elements.

6 Command Statements

26 DIST Acquires the distance between 2 specified points. - - Functions
28 DO Outputs a specified value to the DO port. 1 Command Statements

29 DRIVE Moves a specified main group axis to an absolute position. 4 Command Statements

29 DRIVE (With T-option) Executes an absolute movement
command for a specified axis.

4 Command Statements

30 DRIVEI Moves a specified main group axis to a relative position. 4 Command Statements

E
33 ERL Gives the line No. where an error occurred. - - Functions
33 ERR Gives the error code number of an error which has occurred. - - Functions
34 EXIT FOR Terminates the FOR to NEXT statement loop. 6 Command Statements

36 EXIT TASK Terminates its own task which is in progress. 6 Command Statements

7-4 Chapter 7 Robot Language Lists

7

8

9

10

11

12

13

14

No. Command Function Condition Direct Type

F
37 FOR to NEXT Controls repetitive operations. Executes the FOR to NEXT

statement repeatedly until a specified value is reached.
6 Command Statements

G
38 GOSUB to

RETURN
Jumps to a subroutine with the label specified by a
GOSUB statement, and executes that subroutine.

6 Command Statements

39 GOTO Unconditionally jumps to the line specified by a label. 6 Command Statements

H
40 HALT Stops the program and performs a reset. 6 Command Statements

41 HAND Defines the main robot hand. 4 Command Statements

42 HOLD Temporarily stops the program. 6 Command Statements

I
43 IF Allows control flow to branch according to conditions. 6 Command Statements

44 INPUT Assigns a value to a variable specified from the
programming box.

1 Command Statements

45 INT Acquires an integer for a specified value by truncating all
decimal fractions.

- - Functions

J
46 JTOXY Converts joint coordinate data to main group Cartesian

coordinate data. (↔XYTOJ)
- - Functions

L
48 LEFT$ Extracts a character string comprising a specified number

of digits from the left end of a specified character string.
- - Functions

49 LEFTY Sets the main robot hand system to "Left". 4 Command Statements

50 LEN Acquires the length (number of bytes) of a specified
character string.

- - Functions

51 LET Executes a specified assignment statement. 1 Command Statements

52 LO Outputs a specified value to the LO port to enable/disable
axis movement.

1 Command Statements

53 LOCx Specifies/acquires point data or shift data for a specified
axis.

- - Command Statements/
Functions

54 LSHIFT Shifts a value to the left by the specified number of bits.
(↔RSHIFT)

- - Functions

M
55 MCHREF Acquires the return-to-origin or absolute-search machine

reference for a specified main group axis.
- - Functions

56 MID$ Extracts a character string of a desired length from a
specified character string.

- - Functions

57 MO Outputs a specified value to the MO port. 1 Command Statements

58 MOVE Performs absolute movement of all main robot axes. 5 Command Statements

59 MOVEI Performs relative movement of all main robot axes. 4 Command Statements

O
60 OFFLINE Sets a specified communication port to the "offline" mode. 1 Command Statements

62 ON ERROR
GOTO

If an error occurs during program execution, this command
allows the program to jump to the error processing routine
specified by the label without stopping the program, or it stops
the program and displays the error message.

6 Command Statements

63 ON to GOSUB Jumps to a subroutine with labels specified by a GOSUB
statement in accordance with the conditions, and executes
that subroutine.

6 Command Statements

7

8

9

10

11

12

13

14

Command list in alphabetic order 7-5

No. Command Function Condition Direct Type

64 ON to GOTO Jumps to label-specified lines in accordance with the
conditions.

6 Command Statements

65 ONLINE Sets the specified communication port to the "online" mode. 1 Command Statements

61 ORD Acquires the character code of the first character in a
specified character string.

- - Functions

66 ORGORD Specifies/acquires the axis sequence parameter for
performing return-to-origin and absolute search operations
in the main group.

4/- Command Statements/
Functions

67 ORIGIN Executes a return-to-origin for incremental specs. axes. 4 Command Statements

68 OUT Turns ON the bits of the specified output ports and the
command statement ends.

6 Command Statements

69 OUTPOS Specifies/acquires the OUT enable position parameter of
the main group.

4/- Command Statements/
Functions

P
70 PATH Sets the movement path. 6 Command Statements

71 PATH END Ends the movement path setting. 6 Command Statements

72 PATH SET Starts the movement path setting. 6 Command Statements

73 PATH START Starts the PATH motion. 6 Command Statements

74 PDEF Defines the pallet used to execute pallet movement
commands.

1 Command Statements

75 PMOVE Executes the main robot pallet movement command. 4 Command Statements

76 Pn Defines points within a program. 1 Command Statements

77 PPNT Creates point data specified by a pallet definition number
and pallet position number.

- - Functions

78 PRINT Displays a character string at the programming box screen. 1 Command Statements

R
79 RADDEG Converts a specified value to degrees. (↔DEGRAD) - - Functions
80 REM Expresses a comment statement. 6 Command Statements

81 RESET Turns the bit of a specified output port OFF. 1 Command Statements

82 RESTART Restarts another task during a temporary stop. 6 Command Statements

83 RESUME Resumes program execution after error recovery
processing.

6 Command Statements

85 RIGHT$ Extracts a character string comprising a specified number
of digits from the right end of a specified character string.

- - Functions

86 RIGHTY Sets the main robot hand system to "Right". 4 Command Statements

87 RSHIFT Shifts a value to the right by the specified number of bits.
(↔LSHIFT)

- - Functions

S
88 Sn Defines the shift coordinates within the program. 4 Command Statements

89 SELECT CASE
to END SELECT

Allows control flow to branch according to conditions. 6 Command Statements

90 SEND Sends a file. 1 Command Statements

91 SERVO Controls the servo ON/OFF of specified main group axes
or all main group axes.

4 Command Statements

92 SET Turns the bit at the specified output port ON. 3 In part Command Statements

94 SHIFT Sets the shift coordinates for the main robot by using the
shift data specified by a shift variable.

4 Command Statements

95 SIN Acquires the sine value for a specified value. - - Functions
96 SO Outputs a specified value to the SO port. 1 Command Statements

97 SPEED Changes the main group's program movement speed. 4 Command Statements

7-6 Chapter 7 Robot Language Lists

7

8

9

10

11

12

13

14

No. Command Function Condition Direct Type

98 START Specifies the task number and priority ranking of a
specified task, and starts that task.

6 Command Statements

99 STR$ Converts a specified value to a character string (↔VAL) - - Functions
100 SQR Acquires the square root of a specified value. - - Functions
102 SUSPEND Temporarily stops another task which is being executed. 6 Command Statements

103 SWI Switches the program being executed, performs
compiling, then begins execution from the first line.

2 Command Statements

T
104 TAN Acquires the tangent value for a specified value. - - Functions
105 TCOUNTER Outputs count-up values at 10ms intervals starting from the

point when the TCOUNTER variable is reset.
- - Functions

106 TIME$ Acquires the current time as an "hh:mm:ss" format
character string.

- - Functions

107 TIMER Acquires the current time in seconds, counting from 12:00
midnight.

- - Functions

108 TO Outputs a specified value to the TO port. 1 Command Statements

109 TOLE Specifies/acquires the main group tolerance parameter. 4/- Command Statements/
Functions

110 TORQUE Specifies/acquires the maximum torque command value
which can be set for a specified main group axis.

4/- Command Statements/
Functions

111 TRQSTS Acquires the command end status for the DRIVE
command with torque limit option executed at the main
group.

- - Functions

112 TRQTIME Specifies/acquires the current limit time-out period at
the specified main group axis when using a torque limit
option in the DRIVE statement.

1/- Command Statements/
Functions

V
113 VAL Converts the numeric value of a specified character string

to an actual numeric value. (↔STR$)
- - Functions

W
114 WAIT Waits until the conditions of the DI/DO conditional

expression are met (with time-out).
6 Command Statements

115 WAIT ARM Waits until the main group robot axis operation is completed. 6 Command Statements

116 WEIGHT Specifies/acquires the main robot tip weight parameter. 4/- Command Statements/
Functions

118 WHERE Reads out the current position of the main group robot
arm in joint coordinates (pulses).

- - Functions

119 WHILE to WEND Controls repeated operations. 6 Command Statements

120 WHRXY Reads out the current position of the main group arm as
Cartesian coordinates (mm, degrees).

- - Functions

X
121 XYTOJ Converts the point variable Cartesian coordinate data to

the main group's joint coordinate data (↔JTOXY).
- - Functions

122 _SYSFLG Axis status monitoring flag. - - Functions

7

8

9

10

11

12

13

14

Function Specific 7-7

	 	 Function	Specific

Program commands

General commands

No. Command Function Condition Direct Type

27 DIM Declares the array variable name and the number of
elements.

6 Command Statements

51 LET Executes a specified assignment statement. 1 Command Statements

80 REM Expresses a comment statement. 6 Command Statements

Arithmetic commands

No. Command Function Condition Direct Type

1 ABS Acquires the absolute value of a specified value. - - Functions
2 ABSINIT Resets the current position of a specified main group axis. 4 Command Statements

9 ATN Acquires the arctangent of the specified value. - - Functions
16 COS Acquires the cosine value of a specified value. - - Functions
23 DEGRAD Converts a specified value to radians (↔RADDEG). - - Functions
26 DIST Acquires the distance between 2 specified points. - - Functions
45 INT Acquires an integer for a specified value by truncating all

decimal fractions.
- - Functions

54 LSHIFT Shifts a value to the left by the specified number of bits.
(↔RSHIFT)

- - Functions

79 RADDEG Converts a specified value to degrees. (↔DEGRAD) - - Functions
87 RSHIFT Shifts a value to the right by the specified number of bits.

(↔LSHIFT)
- - Functions

95 SIN Acquires the sine value for a specified value. - - Functions
100 SQR Acquires the square root of a specified value. - - Functions
104 TAN Acquires the tangent value for a specified value. - - Functions

Date / time

No. Command Function Condition Direct Type

19 DATE $ Acquires the date as a "yy/mm/dd" format character
string.

- - Functions

105 TCOUNTER Outputs count-up values at 10ms intervals starting from
the point when the TCOUNTER variable is reset.

- - Functions

106 TIME $ Acquires the current time as an "hh:mm:ss" format
character string.

- - Functions

107 TIMER Acquires the current time in seconds, counting from 12:00
midnight.

- - Functions

7-8 Chapter 7 Robot Language Lists

7

8

9

10

11

12

13

14

Character string operation

No. Command Function Condition Direct Type

15 CHR $ Acquires a character with the specified character code. - - Functions
48 LEFT $ Extracts a character string comprising a specified number

of digits from the left end of a specified character string.
- - Functions

50 LEN Acquires the length (number of bytes) of a specified
character string.

- - Functions

56 MID $ Extracts a character string of a desired length from a
specified character string.

- - Functions

61 ORD Acquires the character code of the first character in a
specified character string.

- - Functions

85 RIGHT $ Extracts a character string comprising a specified number
of digits from the right end of a specified character string.

- - Functions

99 STR $ Converts a specified value to a character string (↔VAL) - - Functions
113 VAL Converts the numeric value of a specified character string

to an actual numeric value. (↔STR$)
- - Functions

Point, coordinates, shift coordinates

No. Command Function Condition Direct Type

13 CHANGE Switches the main robot hand. 4 Command Statements

41 HAND Defines the main robot hand. 4 Command Statements

46 JTOXY Converts joint coordinate data to main group Cartesian
coordinate data. (↔XYTOJ)

- - Functions

49 LEFTY Sets the main robot hand system to "Left". 4 Command Statements

76 Pn Defines points within a program. 1 Command Statements

77 PPNT Creates point data specified by a pallet definition number
and pallet position number.

- - Functions

86 RIGHTY Sets the main robot hand system to "Right". 4 Command Statements

88 Sn Defines the shift coordinates in the program. 4 Command Statements

94 SHIFT Sets the shift coordinates for the main robot by using the
shift data specified by a shift variable.

4 Command Statements

121 XYTOJ Converts the point variable Cartesian coordinate data to
the main group's joint coordinate data (↔JTOXY).

- - Functions

53 LOCx Specifies/acquires point data or shift data for a specified
axis.

- - Command Statements/
Functions

7

8

9

10

11

12

13

14

Function Specific 7-9

Branching commands

No. Command Function Condition Direct Type

34 EXIT FOR Terminates the FOR to NEXT statement loop. 6 Command Statements

37 FOR to NEXT Controls repetitive operations. Executes the FOR to NEXT
statement repeatedly until a specified value is reached.

6 Command Statements

38 GOSUB to
RETURN

Jumps to a subroutine with the label specified by a
GOSUB statement, and executes that subroutine.

6 Command Statements

39 GOTO Unconditionally jumps to the line specified by a label. 6 Command Statements

43 IF Allows control flow to branch according to conditions. 6 Command Statements

63 ON to GOSUB Jumps to a subroutine with labels specified by a GOSUB
statement in accordance with the conditions, and executes
that subroutine.

6 Command Statements

64 ON to GOTO Jumps to label-specified lines in accordance with the
conditions.

6 Command Statements

89 SELECT CASE
to END SELECT

Allows control flow to branch according to conditions. 6 Command Statements

119 WHILE to WEND Controls repeated operations. 6 Command Statements

Error control

No. Command Function Condition Direct Type

62 ON ERROR
GOTO

If an error occurs during program execution, this
command allows the program to jump to the error
processing routine specified by the label without stopping
the program, or it stops the program and displays the error
message.

6 Command Statements

83 RESUME Resumes program execution after error recovery
processing.

6 Command Statements

33 ERL Gives the line No. where an error occurred. - - Functions
33 ERR Gives the error code number of an error which has

occurred.
- - Functions

Program & task control

Program control

No. Command Function Condition Direct Type

12 CALL Executes (calls) another program. 6 Command Statements

40 HALT Stops the program and performs a reset. 6 Command Statements

42 HOLD Temporarily stops the program. 6 Command Statements

103 SWI Switches the program being executed, performs
compiling, then begins execution from the first line.

2 Command Statements

Task control

No. Command Function Condition Direct Type

14 CHGPRI Changes the priority ranking of a specified task. 6 Command Statements

18 CUT Terminates a task currently being executed or temporarily
stopped.

6 Command Statements

36 EXIT TASK Terminates its own task which is in progress. 6 Command Statements

82 RESTART Restarts another task during a temporary stop. 6 Command Statements

7-10 Chapter 7 Robot Language Lists

7

8

9

10

11

12

13

14

No. Command Function Condition Direct Type

98 START Specifies the task number and priority ranking of a
specified task, and starts that task.

6 Command Statements

102 SUSPEND Temporarily stops another task which is being executed. 6 Command Statements

Robot control

Robot operations

No. Command Function Condition Direct Type

4 ABSRST Executes a return-to-origin at the robot absolute motor
axes.

4 Command Statements

13 CHANGE Switches the main robot hand. 4 Command Statements

29 DRIVE Moves a specified main group axis to an absolute position. 4 Command Statements

30 DRIVEI Moves a specified main group axis to a relative position. 4 Command Statements

41 HAND Defines the main robot hand. 4 Command Statements

49 LEFTY Sets the main robot hand system to "Left". 4 Command Statements

58 MOVE Performs absolute movement of all main robot axes. 5 Command Statements

59 MOVEI Performs relative movement of all main robot axes. 4 Command Statements

67 ORIGIN Executes a return-to-origin for incremental specs. axes. 4 Command Statements

75 PMOVE Executes the main robot pallet movement command. 4 Command Statements

86 RIGHTY Sets the main robot hand system to "Right". 4 Command Statements

91 SERVO Controls the servo ON/OFF of specified main group axes
or all main group axes.

4 Command Statements

Status acquisition

No. Command Function Condition Direct Type

3 ABSRPOS Acquires the machine reference of the specified main
group axis. (Valid only for axes where the return-to-origin
method is set as "mark method".)

- - Functions

7 ARMCND Acquires the current arm status of the main robot. - - Functions
8 ARMTYPE Acquires the current "hand system" setting of the main

robot.
- - Functions

55 MCHREF Acquires the return-to-origin or absolute-search machine
reference for a specified main group axis.

- - Functions

111 TRQSTS Acquires the command end status for the DRIVE
command with torque limit option executed at the main
group.

- - Functions

118 WHERE Reads out the current position of the main group robot
arm in joint coordinates (pulses).

- - Functions

120 WHRXY Reads out the current position of the main group arm as
Cartesian coordinates (mm, degrees).

- - Functions

115 WAIT ARM Waits until the main group robot axis operation is
completed.

7

8

9

10

11

12

13

14

Function Specific 7-11

Status change

No. Command Function Condition Direct Type

5 ACCEL Specifies/acquires the acceleration coefficient parameter
of the main group.

4/- Command Statements/
Functions

6 ARCH Specifies/acquires the arch position parameter of the main
group.

4/- Command Statements/
Functions

10 ASPEED Changes the AUTO movement speed of the main group. 4 Command Statements

11 AXWGHT Specifies/acquires the axis tip weight parameter of the
main group.

4/- Command Statements/
Functions

20 DECEL Specifies/acquires the deceleration rate parameter of the
main group.

4/- Command Statements/
Functions

66 ORGORD Specifies/acquires the axis sequence parameter for
performing return-to-origin and absolute search operations
in the main group.

4/- Command Statements/
Functions

69 OUTPOS Specifies/acquires the OUT enable position parameter of
the main group.

4/- Command Statements/
Functions

74 PDEF Defines the pallet used to execute pallet movement
commands.

1 Command Statements

97 SPEED Changes the main group's program movement speed. 4 Command Statements

109 TOLE Specifies/acquires the main group tolerance parameter. 4/- Command Statements/
Functions

116 WEIGHT Specifies/acquires the main robot tip weight parameter. 4/- Command Statements/
Functions

Path control

No. Command Function Condition Direct Type

70 PATH Sets the movement path. 6 Command Statements

71 PATH END Ends the movement path setting. 6 Command Statements

72 PATH SET Starts the movement path setting. 6 Command Statements

73 PATH START Starts the PATH motion. 6 Command Statements

Torque control

No. Command Function Condition Direct Type

17 CURTRQ Acquires the current torque value of the specified main
group axis.

- Functions

29 DRIVE (With T-option) Executes an absolute movement
command for a specified axis.

4 Command Statements

110 TORQUE Specifies/acquires the maximum torque command value
which can be set for a specified main group axis.

4/- Command Statements/
Functions

112 TRQTIME Specifies/acquires the current limit time-out period at
the specified main group axis when using a torque limit
option in the DRIVE statement.

1/- Command Statements/
Functions

7-12 Chapter 7 Robot Language Lists

7

8

9

10

11

12

13

14

Input/output & communication control

Input/output control

No. Command Function Condition Direct Type

24 DELAY Waits for the specified period (units: ms). 6 Command Statements

28 DO Outputs a specified value to the DO port. 1 Command Statements

52 LO Outputs a specified value to the LO port to enable/disable
axis movement.

1 Command Statements

57 MO Outputs a specified value to the MO port. 1 Command Statements

68 OUT Turns ON the bits of the specified output ports and the
command statement ends.

6 Command Statements

81 RESET Turns the bit of a specified output port OFF. 1 Command Statements

92 SET Turns the bit at the specified output port ON. 3 In part Command Statements

96 SO Outputs a specified value to the SO port. 1 Command Statements

108 TO Outputs a specified value to the TO port. 1 Command Statements

114 WAIT Waits until the conditions of the DI/DO conditional
expression are met (with time-out).

6 Command Statements

Programming box

No. Command Function Condition Direct Type

44 INPUT Assigns a value to a variable specified from the
programming box.

1 Command Statements

78 PRINT Displays a character string at the programming box
screen.

1 Command Statements

Communication control

No. Command Function Condition Direct Type

65 ONLINE Sets the specified communication port to the "online"
mode.

1 Command Statements

60 OFFLINE Sets a specified communication port to the "offline" mode. 1 Command Statements

90 SEND Sends a file. 1 Command Statements

Other

Other

No. Command Function Condition Direct Type

122 _SYSFLG Axis status monitoring flag. - - Functions

7

8

9

10

11

12

13

14

Functions: in alphabetic order 7-13

 Functions:	in	alphabetic	order

No. Function Type Function

A
1 ABS Arithmetic function Acquires the absolute value of a specified value.
3 ABSRPOS Arithmetic function Acquires the machine reference of the specified main group axis.

(Valid only for axes where the return-to-origin method is set as "mark
method".)

5 ACCEL Arithmetic function Acquires the acceleration coefficient parameter of the main group.
6 ARCH Arithmetic function Acquires the arch position parameter of the main group.
7 ARMCND Arithmetic function Acquires the current arm status of the main robot.
8 ARMTYPE Arithmetic function Acquires the current "hand system" setting of the main robot.
9 ATN Arithmetic function Acquires the arctangent of the specified value.
11 AXWGHT Arithmetic function Acquires the axis tip weight parameter of the main group.

C
15 CHR$ Character string

function
Acquires a character with the specified character code.

16 COS Arithmetic function Acquires the cosine value of a specified value.
17 CURTRQ Arithmetic function Acquires the current torque value of the specified main group axis.

D
19 DATE$ Character string

function
Acquires the date as a "yy/mm/dd" format character string.

20 DECEL Arithmetic function Acquires the deceleration rate parameter of the main group.
23 DEGRAD Arithmetic function Converts a specified value to radians (↔RADDEG).
26 DIST Arithmetic function Acquires the distance between 2 specified points.

E
33 ERL Arithmetic function Gives the line No. where an error occurred.
33 ERR Arithmetic function Gives the error code number of an error which has occurred.

I
45 INT Arithmetic function Acquires an integer for a specified value by truncating all decimal

fractions.

J
46 JTOXY Point function Converts joint coordinate data to main group Cartesian coordinate data.

(↔XYTOJ)

L
48 LEFT$ Character string

function
Extracts a character string comprising a specified number of digits
from the left end of a specified character string.

50 LEN Arithmetic function Acquires the length (number of bytes) of a specified character string.
53 LOCx Point function Acquires point data or shift data for a specified axis.
54 LSHIFT Arithmetic function Shifts a value to the left by the specified number of bits. (↔RSHIFT)

M
55 MCHREF Arithmetic function Acquires the return-to-origin or absolute-search machine reference for

a specified main group axis.
56 MID$ Character string

function
Extracts a character string of a desired length from a specified character
string.

7-14 Chapter 7 Robot Language Lists

7

8

9

10

11

12

13

14

No. Function Type Function

O
61 ORD Arithmetic function Acquires the character code of the first character in a specified

character string.
66 ORGORD Arithmetic function Acquires the axis sequence parameter for performing return-to-origin

and absolute search operations in the main group.
69 OUTPOS Arithmetic function Acquires the OUT enable position parameter of the main group.

P
77 PPNT Point function Creates point data specified by a pallet definition number and pallet

position number.

R
79 RADDEG Arithmetic function Converts a specified value to degrees. (↔DEGRAD)

85 RIGHT$ Character string
function

Extracts a character string comprising a specified number of digits
from the right end of a specified character string.

87 RSHIFT Arithmetic function Shifts a value to the right by the specified number of bits. (↔LSHIFT)

S
95 SIN Arithmetic function Acquires the sine value for a specified value.
100 SQR Arithmetic function Acquires the square root of a specified value.
99 STR$ Character string

function
Converts a specified value to a character string (↔VAL)

T
104 TAN Arithmetic function Acquires the tangent value for a specified value.
105 TCOUNTER Arithmetic function Outputs count-up values at 10ms intervals starting from the point when

the TCOUNTER variable is reset.
106 TIME$ Character string

function
Acquires the current time as an "hh:mm:ss" format character string.

107 TIMER Arithmetic function Acquires the current time in seconds, counting from 12:00 midnight.
109 TOLE Arithmetic function Acquires the main group tolerance parameter.
110 TORQUE Arithmetic function Acquires the maximum torque command value which can be set for a

specified main group axis.
111 TRQSTS Arithmetic function Acquires the command end status for the DRIVE command with

torque limit option executed at the main group.
112 TRQTIME Arithmetic function Acquires the current limit time-out period at the specified main group

axis when using a torque limit option in the DRIVE statement.

V
113 VAL Arithmetic function Converts the numeric value of a specified character string to an actual

numeric value. (↔STR$)

W
116 WEIGHT Arithmetic function Acquires the main robot tip weight parameter.
118 WHERE Point function Reads out the current position of the main group robot arm in joint

coordinates (pulses).
120 WHRXY Point function Reads out the current position of the main group arm as Cartesian

coordinates (mm, degrees).

X
121 XYTOJ Point function Converts the point variable Cartesian coordinate data to the main

group's joint coordinate data (↔JTOXY).
122 _SYSFLG Arithmetic function Axis status monitoring flag.

7

8

9

10

11

12

13

14

Functions: operation-specific 7-15

 Functions:	operation-specific

Point related functions

No. Function	name Function

46 JTOXY Converts joint coordinate data to main group Cartesian coordinate data. (↔XYTOJ)
53 LOCx Acquires point data or shift data for a specified axis.
77 PPNT Creates point data specified by a pallet definition number and pallet position number.
118 WHERE Reads out the current position of the main group robot arm in joint coordinates (pulses).
120 WHRXY Reads out the current position of the main group arm as Cartesian coordinates (mm, degrees).
121 XYTOJ Converts the point variable Cartesian coordinate data to the main group's joint coordinate

data (↔JTOXY).

Parameter related functions

No. Function	name Function

3 ABSRPOS Acquires the machine reference of the specified main group axis. (Valid only for axes
where the return-to-origin method is set as "mark method".)

5 ACCEL Acquires the acceleration coefficient parameter of the main group.
6 ARCH Acquires the arch position parameter of the main group.
7 ARMCND Acquires the current arm status of the main robot.
8 ARMTYPE Acquires the current "hand system" setting of the main robot.
11 AXWGHT Acquires the axis tip weight parameter of the main group.
17 CURTRQ Acquires the current torque value of the specified main group axis.
20 DECEL Acquires the deceleration rate parameter of the main group.
50 LEN Acquires the length (number of bytes) of a specified character string.
55 MCHREF Acquires the return-to-origin or absolute-search machine reference for a specified main group axis.
61 ORD Acquires the character code of the first character in a specified character string.
66 ORGORD Acquires the axis sequence parameter for performing return-to-origin and absolute search

operations in the main group.
69 OUTPOS Acquires the OUT enable position parameter of the main group.
109 TOLE Acquires the main group tolerance parameter.
110 TORQUE Acquires the maximum torque command value which can be set for a specified main group axis.
111 TRQSTS Acquires the command end status for the DRIVE command with torque limit option

executed at the main group.
112 TRQTIME Acquires the current limit time-out period at the specified main group axis when using a

torque limit option in the DRIVE statement.
116 WEIGHT Acquires the main robot tip weight parameter.

7-16 Chapter 7 Robot Language Lists

7

8

9

10

11

12

13

14

Numeric calculation related functions

No. Function	name Function

1 ABS Acquires the absolute value of a specified value.
9 ATN Acquires the arctangent of the specified value.
16 COS Acquires the cosine value of a specified value.
23 DEGRAD Converts a specified value to radians (↔RADDEG).
26 DIST Acquires the distance between 2 specified points.
45 INT Acquires an integer for a specified value by truncating all decimal fractions.
54 LSHIFT Shifts a value to the left by the specified number of bits. (↔RSHIFT)
79 RADDEG Converts a specified value to degrees. (↔DEGRAD)
87 RSHIFT Shifts a value to the right by the specified number of bits. (↔LSHIFT)
95 SIN Acquires the sine value for a specified value.
100 SQR Acquires the square root of a specified value.
104 TAN Acquires the tangent value for a specified value.
113 VAL Converts the numeric value of a specified character string to an actual numeric value. (↔STR$)

Character string calculation related functions

No. Function	name Function

15 CHR $ Acquires a character with the specified character code.
19 DATE $ Acquires the date as a "yy/mm/dd" format character string.
48 LEFT $ Extracts a character string comprising a specified number of digits from the left end of a

specified character string.
56 MID $ Extracts a character string of a desired length from a specified character string.
85 RIGHT $ Extracts a character string comprising a specified number of digits from the right end of a

specified character string.
99 STR $ Converts a specified value to a character string (↔VAL)

Parameter related functions

No. Function	name Function

122 _SYSFLG Axis status monitoring flag.
33 ERL Gives the line No. where an error occurred.
33 ERR Gives the error code number of an error which has occurred.
105 TCOUNTER Outputs count-up values at 10ms intervals starting from the point when the TCOUNTER

variable is reset.
106 TIME $ Acquires the current time as an "hh:mm:ss" format character string.
107 TIMER Acquires the current time in seconds, counting from 12:00 midnight.

A

B

C

D

E

F

G

H

I

J

K

L

M

7

ABS 7-17

 1 ABS
Acquires absolute values

Format

ABS (<expression>)

 Explanation Returns a value specified by an <expression> as an absolute value.

SAMPLE

A=ABS(-326.55)...The absolute value of -362.54 (=362.54) is assigned to
variable A.

7

A

B

C

D

E

F

G

H

I

J

K

L

M

7-18 Chapter 7 Robot Language Lists

 2 ABSINIT
Resets the current position of a specified axis

Format

1.ABSINIT (<axis number>)
2.ABSINIT (<axis number>)=<expression>

 Values <axis number>main group: 1 to 6
 <expression>0 to 1

 Explanation Resets the current position of the axis specified by <axis number>.
 If the <expression> is "0", a reset is possible only if the robot is positioned as shown in

the figure below. To perform multi-turn movement in the same direction, the command
statement must be executed after each 360° of movement, and the current position must be
reset.

 If the <expression> is "1", a reset occurs regardless of the robot's current coordinates. In
this case, the robot's absolute function is disabled.

 The format 1 operation is identical to a format 2 operation where the <expression> = 0.

0

Reset execution position

For a minus axis polarity: 257 to 1791 [pulse]

For a plus axis polarity: -1791 to -257 [pulse]

* When an origin point shift has been set in the
 axis parameters, that shift value is added to the
 above range.

"0" position determined by absolute reset

"Reset possible" range within a mechanical angle of 360° (16384 [pulse] × speed reduction ratio)

NOTE
 • ABSINIT i s ava i l ab le in
software version 1.66M or
higher.

 • The ABSINIT s ta tements
can be used only when the
"Limitless motion" parameter
is set to "VALID" in the robot
axis parameters. (For details,
refer to the User's Manual.)

CAUTION
 • When the <expression> is
0, the "17.42: Cannot reset
position" error will occur if
the robot's current position is
at a position where a reset is
impossible.

A

B

C

D

E

F

G

H

I

J

K

L

M

7

ABSINIT 7-19

 2 ABSINIT

SAMPLE

ABSINIT1..Resets the main group's 1st axis at the position

• Following the reset, the current position and target position values become values from which a
distance equivalent to the motor's number-of-turns has been subtracted.

• The reset time per axis is approximately 100ms.
• If a "Limitless motion INVALID" axis is specified, the "5.37: Specification mismatch" error message

displays, and execution is stopped.

 ● Restrictions
1. The ABSINIT statement cannot be used at YC-Link specification axes.
2. The ABSINIT statement cannot be used at electric gripper specification axes.

MEMO

7

A

B

C

D

E

F

G

H

I

J

K

L

M

7-20 Chapter 7 Robot Language Lists

 3 ABSRPOS
Acquires a machine reference

Format

ABSRPOS (<axis 1>)

 Values <axis 1>main group: 1 to 6

 Explanation The machine reference value for a specified <axis number> is acquired (units: %). This

function is valid only for axes where the return-to-origin method is set as "mark method". It
is not valid at axes where the return-to-origin method is set as "sensor" or "stroke end".

• At axes where return-to-origin method is set to "mark" method, absolute reset is possible when the
machine reference value is in a 44 to 56% range.

SAMPLE

A=ABSRPOS(4) The machine reference value for the main group's axis 4 is assigned to variable A.

MEMO

A

B

C

D

E

F

G

H

I

J

K

L

M

7

ABSRST 7-21

 4 ABSRST
Absolute motor axis return-to-origin operation

Format

ABSRST

 Explanation This statement executes a direct return-to-origin operation for the robot's absolute motor
axes (absolute reset).

 The return-to-origin will fail if the robot stops en route.

• This command is valid at axes where the return-to-origin method is set to other than "mark".
• This command cannot be executed if a return-to-origin is incomplete at an axis where the return-to-

origin method is set as "mark".
• In systems with both absolute motor axes and incremental motor axes, a return-to-origin will occur

only at the absolute motor axes when the ABSRST command is executed.
• The ORIGIN command must be used to perform a return-to-origin at incremental motor axes.

Moreover, the return-to-origin operations occur in the parameter-specified sequence, and the
incremental motor axes will not operate.

SAMPLE
*ABS_RST:
IF DI(20)=1 THEN...ABSRST executed when DI (20) is "1".
 ABSRST
ENDIF
*START:ABSRST...Absolute motor return-to-origin occurs.

Related commands ORIGIN, ORGORD, MCHREF

MEMO

7

A

B

C

D

E

F

G

H

I

J

K

L

M

7-22 Chapter 7 Robot Language Lists

 5 ACCEL
Specifies/acquires the acceleration coefficient parameter

Format

1. ACCEL <expression>
2. ACCEL (<axis number>)=<expression>

 Values <axis number>main group: 1 to 6
 <expression>1 to 100 (units: %)
 Explanation Directly changes the acceleration coefficient parameters to the value specified by the <expression>.
 In format 1, the change occurs at all the group axes.
 In format 2, the change occurs at the axis specified in <axis number>.

• If an axis that is set to "no axis" in the system generation is specified, a "5.37: Specification mismatch"
error message displays and command execution is stopped.

• Changes the value which has been set at SYSTEM > PARAMETER > AXIS > ACCEL. Program-
declared values have priority.

Functions

Format

ACCEL (<axis 1>)

 Values <axis 1>main group: 1 to 6
 Explanation The acceleration parameter value is acquired for the axis specified at <axis number>.

SAMPLE
A=50
ACCEL A ...The acceleration coefficient for all axes becomes 50%.
ACCEL(3)=100..Only axis 3 becomes 100%.
’CYCLE WITH INCREASING ACCELERATION
FOR A=10 TO 100 STEP 10...............................The acceleration coefficient parameter is increased from

10% to 100% in 10% increments.
 ACCEL A
 MOVE P,P0
 MOVE P,P1
NEXT A
A=ACCEL(3) ..The acceleration coefficient parameter for the main group's

axis 3 is assigned to variable A.
HALT "END TEST"

MEMO

A

B

C

D

E

F

G

H

I

J

K

L

M

7

ARCH 7-23

 6 ARCH
Specifies/acquires the acceleration coefficient parameter

Format

1. ARCH <expression>
2. ARCH (<axis number>)=<expression>

 Values <axis number>main group: 1 to 6
 <expression>1 to 6144000 (Unit: pulses)

 Explanation Changes the parameter's arch position to the value indicated in the <expression>.
 In format 1, the change occurs at all the group axes.
 In format 2, the change occurs at the arch position parameter for the axis specified in <axis

number> to the value specified in <expression>.

• If an axis that is set to "no axis" in the system generation is specified, a "5.37: Specification mismatch"
error message displays and command execution is stopped.

Functions

Format

ARCH (<axis 1>)

 Values <axis 1>main group: 1 to 6

 Explanation Acquires the arch position parameter value of the axis specified at <axis number>.

MEMO

7

A

B

C

D

E

F

G

H

I

J

K

L

M

7-24 Chapter 7 Robot Language Lists

 6 ARCH

SAMPLE
DIM SAV(3)
GOSUB *SAVE_ARCH
FOR A=1000 TO 10000 STEP 1000
 GOSUB *CHANGE_ARCH
 MOVE P,P0,Z=0
 DO3(0)=1 ..Chuck CLOSE
 MOVE P,P1,Z=0
 DO3(0)=0 ..Chuck OPEN
NEXT A
GOSUB *RESTORE_ARCH
HALT
*CHANGE_ARCH:
FOR B=1 TO 4 ..The arch position parameters ARCH (1) to (4) are assigned

to array variables SAV (0) to (3).
 ARCH(B)=A
NEXT B
RETURN
*SAVE_ARCH:
FOR B=1 TO 4
 SAV(B-1)=ARCH(B)
NEXT B
RETURN
*RESTORE_ARCH:
FOR B=1 TO 4
 ARCH(B)=SAV(B-1)
NEXT B
RETURN

A

B

C

D

E

F

G

H

I

J

K

L

M

7

ARMCND 7-25

 7 ARMCND
Arm status acquisition

Format

ARMCND

 Explanation This function acquires the current arm status of the SCARA robot. The arm status is "1" for
a left-handed system and "0" for a right-handed system.

 This function is enabled only when a SCARA robot is used.

SAMPLE

A=ARMCND ...The main robot's current arm status is assigned to variable A.
IF A=0 THEN ...Right-handed system status.
 MOVE P, P100, Z=0
ELSE ...Left-handed system status.
 MOVE P, P200, Z=0
ENDIF

7

A

B

C

D

E

F

G

H

I

J

K

L

M

7-26 Chapter 7 Robot Language Lists

 8 ARMTYPE
SCARA robot hand system

Format

ARMTYPE

 Explanation This function acquires the hand system currently selected for the SCARA robot.
 The arm type is "0" for a right-handed system, and "1" for a right-handed system. This

function is enabled only when a SCARA robot is used.

SAMPLE

A=ARMTYPEThe main robot's arm type value is assigned.
IF A=0 THENThe arm type is a right-handed system.
 MOVE P,P100,Z=0
ELSE The arm type is a left-handed system.
 MOVE P,P200,Z=0
ENDIF

A

B

C

D

E

F

G

H

I

J

K

L

M

7

ATN 7-27

 9 ATN
Acquires the arctangent of the specified value

Format

ATN (<expression>)

 Explanation ATN: Acquires the arctangent values of the specified <expression> values. The
 acquired values are radians within the following range: -π / 2 to +π / 2

SAMPLE

A(0)=A*ATN(Y/X)..The product of the expression (Y/X) arctangent value and
variable A is assigned to array A (0).

A(0)=ATN(0.5) ..The 0.5 arctangent value is assigned to array A (0).

Related commands COS, DEGRAD, RADDEG, SIN, TAN

7

A

B

C

D

E

F

G

H

I

J

K

L

M

7-28 Chapter 7 Robot Language Lists

 10 ASPEED
Sets the automatic movement speed

Format

ASPEED <expression>

 Values <expression>1 to 100 (units: %)

 Explanation Directly changes the automatic movement speed to the value indicated in the <expression>.
 This speed change applies to all the robot axes and auxiliary axes. The operation speed is

determined by the product of the automatic movement speed (specified by programming
box operation and by the ASPEED command), and the program movement speed (specified
by SPEED command, etc.).

 Operation speed = automatic movement speed x program movement speed.
 Example:
 Automatic movement speed 80%
 Program movement speed 50%
 Movement speed = 40% (80% × 50%)

SAMPLE
SPEED 70
ASPEED 100
MOVE P,P0Movement from the current position to P0 occurs at 70% speed (=100 * 70).
ASPEED 50
MOVE P,P1Movement from the current position to P1 occurs at 35% speed (=50 * 70).
MOVE P,P2,S=10......................Movement from the current position to P2 occurs at 5% speed (=50 * 10).
HALT

Related commands SPEED

NOTE
 • Automatic movement speed
specified by programming box
operation or by the ASPEED
command.

 • Program movement speed
specified by SPEED command
or MOVE, DRIVE speed
settings.

A

B

C

D

E

F

G

H

I

J

K

L

M

7

AXWGHT 7-29

 11 AXWGHT
Sets/acquires the axis tip weight

Format

AXWGHT (<axis number>)=<expression>

 Values <axis number>main group: 1 to 6
 <expression>Varies according to the specified robot.

 Explanation Directly changes the axis tip weight parameter for the group's axis specified by the <axis
number> to the <expression> value.

 This statement is valid in systems with "MULTI" axes and auxiliary axes (the robot type
and auxiliary axes are factory set prior to shipment).

Functions

Format

AXWGHT (<axis 1>)

 Values <axis 1>main group: 1 to 6

 Explanation Acquires the value axis tip weight parameter value for the axis specified by the
<expression>.

 This statement is valid in systems with "MULTI" axes and auxiliary axes.

SAMPLE
A=5
B=0
C=AXWGHT(1)...Axis tip weight value is acquired (the current value is saved

to variable C).
AXWGHT(1)=A
DRIVE(1,P0)
AXWGHT(1)=B
DRIVE(1,P1)
AXWGHT(1)=C..The axis tip weight value is set again.
HALT

Related commands WEIGHT

7

A

B

C

D

E

F

G

H

I

J

K

L

M

7-30 Chapter 7 Robot Language Lists

 12 CALL
Calls a sub-procedure

Format

CALL <label> [(<actual argument> [, <actual argument>…])]

 Explanation This statement calls up sub-procedures defined by the SUB to END SUB statements.
 The <label> specifies the same name as that defined by the SUB statement.

1. When a constant or expression is specified as an actual argument, its value is passed on
to the sub-procedure.

2. When a variable or array element is specified as an actual argument, its value is passed
on to the sub-procedure. It will be passed on as a reference if "REF" is added at the
head of the actual argument.

3. When an entire array (array name followed by parentheses) is specified as an actual
argument, it is passed along as a reference.

• CALL statements containing one actual argument can be used up to 15 times in succession. Note that
this number is reduced if commands which use stacks such as an IF statement or GOSUB statement
are used, or depending on the number of arguments in the CALL statement.

• Always use the END SUB statement to end a sub-procedure which has been called with the CALL
statement. If another statement such as GOTO is used to jump out of the sub- routine, a "5.12: Stack
overflow" error, etc., may occur.

SAMPLE 1
X%=4
Y%=5
CALL *COMPARE (REF X%, REF Y%)
HALT
’SUB ROUTINE: COMPARE
SUB *COMPARE (A%, B%)
 IF A% < B% THEN
 TEMP%=A%
 A%=B%
 B%=TEMP%
 ENDIF
END SUB

SAMPLE 2
I = 1
CALL *TEST(I)
HALT
’SUB ROUTINE: TEST
SUB *TEST
 X = X + 1
 IF X < 15 THEN
 CALL *TEST(X)
 ENDIF
END SUB

Related commands SUB, END SUB, CALL, DECLARE, EXIT SUB, SHARED

NOTE
 • When a value is passed on to
a sub-procedure, the original
value of the actual argument
will not be changed even if it is
changed in the sub-procedure.

 • When a reference is passed on
to a sub-procedure, the original
value of the actual argument
will also be changed if it is
changed in the sub-procedure.

 • For details, see Chapter 3 "8
Value Pass-Along & Reference
Pass-Along".

MEMO

7

CHANGE 7-31

A

B

C

D

E

F

G

H

I

J

K

L

M

 13 CHANGE
Switches the hand

Format

CHANGE Hn

 Values n: The range of hand Nos. which can specified for the main group.
 main group0 to 3

 Explanation CHANGE is used to switch the robot hand.
 Before hand switching can occur, the hands must be defined at the HAND statement. For

details, see section "39 HAND".

SAMPLE
HAND H1= 0 150.0 0.0
HAND H2= -5000 20.00 0.0
P1=150.00 300.00 0.00 0.00 0.00 0.00
CHANGE H2 ...Changes to hand 2.
MOVE P,P1 ...Moves the hand 2 tip to P1 (1).
CHANGE H1 ...Changes to hand 1.
MOVE P,P1 ...Moves the hand 1 tip to P1 (2).
HALT

7

A

B

C

D

E

F

G

H

I

J

K

L

M

7-32 Chapter 7 Robot Language Lists

 14 CHGPRI
Changes the priority ranking of a specified task

Format

CHGPRI Tn, p

 Values n: Task No 2 to 8
 p: Task priority ranking 17 to 47

 Explanation Directly changes the priority ranking of the specified task ("n") to "p".
 The priority ranking of the main task (Task 1) is fixed as 32. Even if a priority ranking is

not specified, "32" is adopted as the priority ranking for this task.
 The smaller the priority number, the higher the priority (high priority: 17 - low priority: 47).
 When a READY status occurs at a task with higher priority, all tasks with lower priority

also remain in a READY status.

SAMPLE
START *SUBTASK,T2,33
*ST:
 MOVE P,P0,P1
 IF DI(20) = 1 THEN
 CHGPRI T2,32
 ELSE
 CHGPRI T2,33
 ENDIF
GOTO *ST
HALT
’SUBTASK ROUTINE
*SUBTASK:
 IF LOCZ(WHERE) > 10000 THEN
 DO(20) = 1
 GOTO *SUBTASK
 ENDIF
 DO(20) = 0
GOTO *SUBTASK
EXIT TASK

Related commands CUT, EXIT TASK, RESTART, SUSPEND, START

7

CHR$ 7-33

A

B

C

D

E

F

G

H

I

J

K

L

M

 15 CHR$
Acquires a character with the specified character code

Format

CHR$ (<expression>)

 Values <expression>0 to 255

 Explanation Acquires a character with the specified character code. An error occurs if the <expression>
value is outside the 0 to 255 range.

SAMPLE
A$=CHR$(65) "A" is assigned to A$.

Related commands ORD

7

A

B

C

D

E

F

G

H

I

J

K

L

M

7-34 Chapter 7 Robot Language Lists

 16 COS
Acquires the cosine value of a specified value

Format

COS (<expression>)

 Values <expression>Angle (units: radians)

 Explanation Acquires a cosine value for the <expression> value.

SAMPLE

A(0)=B*COS(C)...The product of the C42 variable's cosine value and variable B
is assigned to array A (0).

A(1)=COS(DEGRAD(20)).....................................The 20.0° cosine value is assigned to array A (1).

Related commands ATN, DEGRAD, RADDEG, SIN, TAN

 17 CURTRQ
Acquires the current torque of the specified axis

Format

CURTRQ (<expression>)

 Values <expression>1 to 6

 Explanation Acquires the current torque value (-100 to 100) of the axis specified by the <expression>.
The current torque value is expressed as a percentage of the maximum torque command
value. Plus/minus signs indicate the direction.

SAMPLE

A = CURTRQ(3)..The current torque value of the main group's axis 3 is
assigned to variable "A".

7

CUT 7-35

A

B

C

D

E

F

G

H

I

J

K

L

M

 18 CUT
Terminates another sub task which is currently being executed

Format

CUT Tn

 Values n: Task No2 to 8

 Explanation Directly terminates another task which is currently being executed or which is temporarily
stopped.

 This statement cannot terminate its own task, nor can it terminate Task 1.

SAMPLE
’TASK1 ROUTINE
*ST:
 MO(20) = 0
 START *SUBTASK2,T2
 MOVE P,P0
 MOVE P,P1
 WAIT MO(20) = 1
 CUT T2
GOTO *ST
HALT
’TASK2 ROUTINE
*SUBTASK2:
 P100=JTOXY(WHERE)
 IF LOCZ(P100) >= 100.0 THEN
 MO(20) = 1
 ELSE
 DELAY 100
 ENDIF
GOTO *SUBTASK2
EXIT TASK

Related commands EXIT TASK, CUT, RESTART, START, SUSPEND

7

7-36 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 19 DATE$
Acquires the date

Format

DATE$

 Explanation Acquires the date as a "yy/mm/dd" format character string.
 "yy" indicates the year (last two digits), "mm" indicates the month, and "dd" indicates the

day.
 Date setting is performed at SYSTEM mode initial processing.

SAMPLE
A$=DATE$
PRINT DATE$
HALT

Related commands TIME$

7

DECEL 7-37

A

B

C

D

E

F

G

H

I

J

K

L

M

 20 DECEL
Specifies/acquires the deceleration rate parameter

Format

1. DECEL <expression>
2. DECEL (<axis number>)=<expression>

 Values <axis number>main group: 1 to 6
 <expression>1 to 100 (units: %)

 Explanation Changes the deceleration rate parameter to the <expression> value.
 In format 1, the change occurs at all the group axes.
 In format 2, the change occurs at the axis specified in <axis number>.

• If an axis that is set to "no axis" in the system generation is specified, a "5.37: Specification mismatch"
error message displays and command execution is stopped.

• Command statements DECEL can be used to change the acceleration parameter.

Functions

Format

DECEL (<axis 1>)

 Values <axis 1>main group: 1 to 6

 Explanation Acquires the deceleration rate parameter value for the axis specified by the <expression>.

SAMPLE
A =50
DECEL A
DECEL(3)=100
’CYCLE WITH INCREASING DECELERATION
FOR A =10 TO 100 STEP 10
 DECEL A
 MOVE P ,P0
 MOVE P ,P1
NEXT A
A=DECEL(3) ..The deceleration rate parameter for the main group's axis 3

is assigned to variable A.
HALT "END TEST "

MEMO

7

7-38 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 21 DECLARE
Declares that a sub-routine or sub-procedure is to be used within the COMMON program

Format

1. DECLARE <label> [, <label>…]
2. DECLARE SUB <name> [(<dummy argument> [, <dummy argument>]…)]

 Values <label> .. Label of the sub-routine defined in the COMMON
program.

 <name> Name of the sub-procedure defined in the COMMON
program.

 <dummy argument> Sub-procedure argument. Only the "number of arguments"
and the "data type" are significant.

 Explanation Directly declares that a label or sub-procedure exists in the COMMON program. If a sub-
procedure is declared, the argument's data type is also checked.

 This statement cannot be defined within a sub-procedure.
 Because the DECLARE statement declares the existence of a label or sub-procedure within

the COMMON program, it cannot be used within the COMMON program itself. The
DECLARE statement is valid throughout the entire program.

SAMPLE
COMMON program shared label
Program name: DIST1
’==
’ MAIN PROGRAM
’==
DECLARE *DISTANCE,*AREA
X!=2. 5
Y!=1. 2
GOSUB *DISTANCE
GOSUB *AREA
HALT

Program name: COMMON
’==
’ ’COMMON’PROGRAM
’==
*DISTANCE:
 PRINT SQR(X!^2+Y!^2)
RETURN
*AREA:
 PRINT X!*Y!
RETURN

CAUTION
 • Only the following external
labels can be used: GOSUB,
CALL, ON to GOSUB.

7

DECLARE 7-39

A

B

C

D

E

F

G

H

I

J

K

L

M

 21 DECLEAR

SAMPLE
External program shared sub-procedure
Program name: DIST2
’==
’ MAIN PROGRAM
’==
 DECLARE SUB *DISTANCE(X!,Y!,D!)
 DECLARE SUB *AREA(X!,Y!,A!)
 CALL *DISTANCE(2. 5,1. 2,REF D!)
 PRINT D!
 CALL *AREA(2. 5,1. 2,REF A!)
 PRINT A!
 HALT
 Program name: COMMON
’==
’ ’COMMON’ PROGRAM
’==
 SUB *DISTANCE(X!,Y!,D!)
 D!=SQR(X!^2+Y!^2)
 END SUB
 SUB *AREA(X!,Y!,A!)
 A!=X!*Y!
 END SUB

Related commands CALL, EXIT SUB, GOSUB, ON to GOSUB, SUB, END SUB

7

7-40 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 22 DEF FN
Defines functions which can be used by the user

Format

DEF FN <name> [%] [(<dummy argument>, [<dummy argument>…])] = <function definition expression>
 !
 $

 Values <name> Function name. Max. of 16 chars., including "FN".
 <dummy argument> Numeric or character string variable.

 Explanation Defines the functions which can be used by the user. Defined functions are called in the FN
<name> (<variable>) format.

• The <dummy argument> names are the same as the variable names used in the <function definition
expression>. The names of these variables are valid only when the <function definition expression> is
evaluated. There may be other variables with the same name in the program.

• When calling a function that uses a <dummy argument>, specify the constant, variable, or expression
type which is the same as the <dummy argument> type.

• If a variable used in the <function definition expression> is not included in the <dummy argument>
list, the current value of that particular variable is used for the calculation.

• A space must be entered between "DEF" and "FN". If no space is entered, DEFFN will be handled as a
variable.

• The DEF FN statement cannot be used in sub-procedures.
• Definition by the DEF FN statement must be declared before statements which use functions.

SAMPLE
DEF FNPAI=3.141592
DEF FNASIN(X)=ATN(X/SQR(-X^2+1))
 ...Both the <dummy argument> and <function definition

expression> use "X".
 .
 .
A=FNASIN(B)*10..."X" is not required for calling.

MEMO

7

DEGRAD 7-41

A

B

C

D

E

F

G

H

I

J

K

L

M

 23 DEGRAD
Angle conversion (angle → radian)

Format

DEGRAD (<expression>)

 Values <expression>Angle (units: degrees)

 Explanation The <expression> value is converted to radians.
 To convert radians to degrees, use RADDEG.

SAMPLE

A=COS(DEGRAD(30))...A 30° cosine value is assigned to variable A.

Related commands ATN, COS, RADDEG, SIN, TAN

7

7-42 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 24 DELAY
Program execution waits for a specified period of time

Format

DELAY <expression>

 Values <expression>1 to 3600000 (units: ms)

 Explanation A "program wait" status is established for the period of time specified by the <expression>.
The minimum wait period is 10ms.

SAMPLE
DELAY 3500 3,500ms (3.5 secs) wait
DELAY A*10

7

DI 7-43

A

B

C

D

E

F

G

H

I

J

K

L

M

 25 DI
Acquires the input status from the parallel port

Format

1. [LET] <expression> = DIm([b,........,b])
2. [LET] <expression> = DI(mb,.......,mb)

 Values m ...Port No.: 0 to 7, 10 to 17, 20 to 27
 b ..Bit definition: 0 to 7

 Explanation Indicates the parallel input signal status.
 If multiple bits are specified, they are expressed from the left in descending order (large to

small).
 Enter "0" if no input port exists.
 If the [b,…,b] data is omitted, all 8 bits are processed.

SAMPLE

A%=DI2() ...The input status from DI (27) to DI (20) is assigned to
variable A%.

A%=DI5(7,4,0) ...The DI (57), DI (54), DI (50) input status is assigned to
variable A% (when all the above signals are "1" (ON), A%
= 7).

A%=DI(37,25,20)..The DI (37), DI (25), DI (20) input status is assigned to variable
A% (when all the above signals except DI (20) are "1" (ON), A%
= 6).

 Reference For details, refer to Chapter 3 "9.5 Parallel input variable".

7

7-44 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 26 DIST
Acquires the distance between 2 specified points

Format

DIST (<point expression 1>,<point expression 2>)

 Values <point expression 1>Cartesian coordinate system point
 <point expression 2>Cartesian coordinate system point

 Explanation Acquires the distance (X,Y,Z)between the 2 points specified by <point expression 1> and
<point expression 2>. An error occurs if the 2 points specified by each <point expression>
do not have a Cartesian coordinates.

SAMPLE
A=DIST(P0,P1)..The distance between P0 and P1 is assigned to variable

A.

7

DIM 7-45

A

B

C

D

E

F

G

H

I

J

K

L

M

 27 DIM
Declares array variable

Format

DIM <array definition> [, <array definition>,…]

Format

<name> [%] (<constant> [, <constant> [, <constant>]])
 !
 $

 Values <constant> Array subscript: 0 to 32,767 (positive integer)

 Explanation Directly declares the name and length (number of elements) of an array variable. A
maximum of 3 dimensions may be used for the array subscripts. Multiple arrays can be
declared in a single line by using comma (,) breakpoints to separate the arrays.

• Array subscripts can be "0 to a specified value", with their total number being the <constant> + 1.
• A "9.31: Memory full" error may occur depending on the size of each dimension defined in an array.

SAMPLE

DIM A%(10) ..Defines a integer array variable A% (0) to A% (10).
(Number of elements: 11).

DIM B(2,3,4) ..Defines a real array variable B (0, 0, 0) to B (2, 3, 4).
(Number of elements: 60).

DIM C%(2,2),D!(10)..Defines an integer array C% (0,0) to C% (2,2) and a real
array D! (0) to D! (10).

MEMO

7

7-46 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 28 DO
Outputs to parallel port

Format

1. [LET] DOm ([b,.........,b]) = <expression>
2. [LET] DO (mb,........,mb) = <expression>

 Values m: Port No.2 to 7, 10 to 17, 20 to 27
 b: Bit definition...........................0 to 7
 The output value is the lower left-side bit of the integer-converted <expression> value.

 Explanation Directly outputs the specified value to the DO port.
 If multiple bits are specified, they are expressed from the left in descending order (large to

small).
 No output will occur if a nonexistent DO port is specified.
 If the [b,…,b] data is omitted, all 8 bits are processed.
 Outputs are not possible to DO0() and DO1(). These ports are for referencing only.

SAMPLE

DO2() = &B10111000..DO (27, 25, 24, 23) are turned ON, and DO (26, 22, 21,
20) are turned OFF.

DO2(6,5,1) = &B010..DO (25) are turned ON, and DO (26, 21) are turned OFF.
DO3() = 15 ..DO (33, 32, 31, 30) are turned ON, and DO (37, 36, 35,

34) are turned OFF.
DO(37,35,27,20) = A..The contents of the 4 lower bits acquired when variable A is converted

to an integer are output to DO (37, 35, 27, 20) respectively.

Related commands RESET, SET

7

DRIVE 7-47

A

B

C

D

E

F

G

H

I

J

K

L

M

 29 DRIVE
Executes absolute movement of specified axes

Format

DRIVE(<axis number>, <expression>)[,(<axis number>, <expression>)...] [, option]

 Values <axis number>main group: 1 to 6
 <expression> Motor position (mm, degrees, pulses) or point expression

 Explanation Executes absolute movement commands for specified axes within a group.
 This command is also used in the same way for the group's auxiliary axes.
 • Movement type: PTP movement of specified axis.
 • Point setting method: By direct numeric value input and point definition.
 • Options: Speed setting, STOPON conditions setting, torque limit setting, XY setting.

movement direction setting.

Movement type

 ● PTP (Point to Point) movement of specified axis:
PTP movement begins after positioning of all axes specified at <axis number> is complete (within the
tolerance range), and the command terminates when the specified axes enter the OUT position range.
When two or more axes are specified, they will reach their target positions simultaneously.
If the next command following the DRIVE command is an executable command such as a signal
output command, that next command will start when the movement axis enters the OUT position
range. In other words, that next command starts before the axis arrives within the target position
tolerance range.
Example:

Signal output (DO, etc.) Signal is output when axis enters within OUT position range.

DELAY DELAY command is executed and standby starts, when axis enters the OUT
position range.

HALT Program stops and is reset when axis enters the OUT position range. Therefore,
axis movement also stops.

 HOLD Program temporarily stops when axis enters the OUT position range. Therefore,
axis movement also stops.

WAIT WAIT command is executed when axis enters the OUT position range.

7

7-48 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 29 DRIVE

The WAIT ARM statement is used to execute the next command after the axis enters the tolerance
range.

P1

　　

DO(20) turns ON

DRIVE(1,P1)
WAIT ARM
DO(20)=1

DO(20) turns ON

DRIVE(1,P1)
DO(20)=1

Tolerance

Target position

OUT position

HOLD execution
(program temporarily stops)

DRIVE(1,P1)
WAIT ARM
HOLD

DRIVE(1,P1)
HOLD

Tolerance
OUT position

Target position

HOLD execution
(program temporarily stops)

DRIVE command

SAMPLE

DRIVE(1,P0) Axis 1 moves from its current position to the position specified by P0.

Point data setting types

 ● Direct numeric value input
The motor position is specified directly in <expression>.
If the motor position's numeric value is an integer, this is interpreted as a "pulse" units. If the motor
position's numeric value is a real number, this is interpreted as a "mm/degrees" units, and each axis
will move from the 0-pulse position to a pulse-converted position.
However, when using the optional XY setting, movement occurs from the coordinate origin position.

SAMPLE

DRIVE(1,10000) ..Main group's axis 1 moves from its current position to the
10000 pulses position.

7

DRIVE 7-49

A

B

C

D

E

F

G

H

I

J

K

L

M

 29 DRIVE

 ● Point definition
Point data is specified in <expressions>. The axis data specified by the <axis number> is used. If the
point expression is in "mm/degrees" units, movement for each axis occurs from the 0-pulse position to
the pulse-converted position.
However, when using the optional XY setting, movement occurs from the coordinate origin position.

SAMPLE
DRIVE(1,P1) ..Main group's axis 1 moves from its current position to the position specified by

P1.
DRIVE(4,P90)...Axis 4 moves from its current position to the position specified by P90 (deg) relative to the 0

pulse position. (When axis 4 is a rotating axis.)

Option types

 ● Speed setting

Format

1. SPEED =<expression>
2. S =<expression>

 Values <expression>1 to 100 (units: %)

 Explanation The program's movement speed is specified as an <expression>.
 The actual speed is determined as shown below.
 • Robot's max. speed (mm/sec, or deg/sec) × automatic movement speed (%) × program

movement speed (%).
 This option is enabled only for the specified DRIVE statement.

Format

1. DSPEED =<expression>
2. DS =<expression>

 Values <expression>0.01 to 100.00 (units: %)

 Explanation The axis movement speed is specified in <expression>.
 The actual speed is determined as shown below.
 • Robot's max. speed (mm/sec, or deg/sec) × axis movement speed (%).
 This option is enabled only for the specified DRIVE statement.
 • Movement always occurs at the DSPEED <expression> value (%) without being

affected by the automatic movement speed value (%).

NOTE
 • If point data is specified with
both integers and real numbers
in the same statement, all
values are handled in "mm/
degrees" units.

NOTE
 • This defines the maximum
speed, and does not guarantee
that all movement will occur at
specified speed.

NOTE
 • SPEED option and DSPEED
option cannot be used together

7

7-50 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 29 DRIVE

 ● STOPON conditions setting

Format

STOPON <conditional expression>

 Explanation Stops movement when the conditions specified by the conditional expression are met.
Because	this	 is	a	deceleration	type	stop,	 there	will	be	some	movement	(during	
deceleration) after the conditions are met.

 If the conditions are already met before movement begins, no movement occurs, and
the command is terminated.

 This option is enabled only by program execution.

SAMPLE

DRIVE(1,10000),STOPON DI(20)=1
 Axis 1 moves from its current position toward the "10000 pulses" position and stops at an

intermediate point if the "DI (20) = 1" condition is met. The next step is then executed.

• When the conditional expression used to designate the STOPON condition is a numeric expression,
the conditions for determining a TRUE or FALSE status can be changed at the controller's "TRUE
conditions" in the "Other parameters" mode.

 These conditions apply to all the IF, WHILE, WAIT, STOPON, etc., conditional expressions. For
details, refer to the controller manual.

 1) -1 (default setting) An expression value of "-1" indicates a TRUE status, and "0" indicates a
FALSE status. A "6.35: Incorrect condition expression" error occurs if the
expression value is other than "-1" or "0".

 2) not 0 Any expression value other than "0" indicates a TRUE status, and "0"
indicates a FALSE status.

 ● Torque limit setting

Format

1. T =<torque limit value>
2. T =(<torque limit value> [,<torque offset value>])

 Values <torque limit value>1 to 100 (units: %)
 <torque offset value>-100 to 100

 Explanation Moves the axis while under torque control.
 The maximum torque at this time is limited to a value calculated as follows: Rated

torque × <torque limit value> / 100.
 A <torque offset value> is specified to control the torque at vertical axes, etc., where a

fixed load is constantly applied. When the torque limit value setting is omitted, a setting
of "0" is adopted (the setting is also "0" in Format 1).

 Specify the torque offset value with reference to the value which displays at the current
command monitor while axis movement is stopped by servo HOLD.

 Note, however, that the value displayed at the current command monitor is the maximum
torque ratio. As a general guideline, the torque offset value should be set as approximately
1/3 of the displayed value in order to acquire the rated torque ratio.

• The current command monitor can be displayed by pressing the [DISPLAY] key at the programming
box. For details, refer to the controller manual.

MEMO

CAUTION
 • The torque limit setting cannot
be used at axes where YC-
Link is connected, or at axes
where a power gripper is being
used. Attempts to specify this
setting at these axes results in a
"5.37 Specification mismatch"
m e s s a g e , a n d c o m m a n d
execution is stopped.

 • The torque limit setting range
differs depending on the robot
model. Setting a torque limit
higher than the maximum level
may cause robot malfunctions
or failure.

 • If the specified torque limit
value is too small, the axis
movement may not occur.
Moreover, vertical axes may
fall.

MEMO

7

DRIVE 7-51

A

B

C

D

E

F

G

H

I

J

K

L

M

 29 DRIVE

When the DRIVE statement is executed with this option specified, the axis moves to the
target position while controlling the torque by changing the maximum torque for the axis
to the <torque limit value>.
The maximum movement speed at this time is 10% of the normal operating speed. No
errors will occur even if the axis strikes an obstacle during movement, and the axis torque
(thrust) will not exceed the limit value.

• Command END conditions

1. The command ends when the axis has reached the target position.
2. The command ends when the time (timeout period) specified by the TRQTIME

statement has elapsed while the axis torque (thrust) has reached the limit value.

• TRQSTS command value

1. 1 is set at the TRQSTS function when this command has ended due to a time-out
during which the axis torque has reached its limit value.

2. "0" is set if the command was ended for any other reason.

• Cautions

1. Maximum torque command value which have been changed by the TORQUE
statement do not immediately become effective. They become effective at the next
movement command (MOVE or DRIVE statement, etc.).

2. Even after this command ends, the maximum torque limit and torque control status
remain in effect. The same applies if a stop occurs due to an interlock, etc., while
this command is being executed.

3. Torque control is canceled when an axis related operation is executed. Such
operations include servo ON/OFF switching, and a MOVE command execution, etc.

4. To cancel the maximum torque limit, use the TORQUE statement to specify a new
maximum torque command value.

5. Maximum torque limit is cancelled at the following times regardless of whether or
not a TORQUE statement is used:

 • When the controller power is turned ON.
 • When the servo is turned OFF.
 • When a return-to-origin or an absolute reset (except by the mark method) is

executed.
 • When parameter data has been changed or initialized.

7

7-52 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 29 DRIVE

• Restrictions

1. Two or more axes cannot be specified with this option.
2. Maximum movement speed is set as 10% of the normal operating speed.
3. Manual movement is not possible at axes which are under torque control (axes

where this command has been executed).

SAMPLE

TRQTIME(3)=2500......................................Sets the axis 3 torque control time-out period as 2.5 seconds.
DRIVE(3,P1),T=(20,15)................................Sets the maximum torque value to 20% of the rated torque, and the torque offset to 15, and

moves the axis 3 from its current position to the point specified by P1 (pushing action).
IF TRQSTS(3)=1 THEN.................................Checks to see if a time-out has occurred.
 DO(21)=1...Time-out occurred (pushing is complete). (Result is output to DO(21) in this example.)
ELSE
 DO(21)=0..Time-out has not occurred. (Reached target position but failed to

complete pushing.) (Result is output to DO(21) in this example.)
ENDIF
TORQUE(3)=100...Maximum torque command value is returned to original value

(100%).
DRIVE(3,P0) ..Torque limit and torque control end, and movement to P0

occurs.

 ● XY setting

Format

XY

 Explanation Moves multiple specified axes to a position specified by Cartesian coordinates.
 All the specified axes arrive at the target position at the same time.
 If all axes which can be moved by MOVE statement has been specified, operation is

identical to that which occurs when using MOVE statement.
 The following restrictions apply to this command:

 1. Axes specified by <axis number> must include the axis 1 and 2.
 2. This command can be specified at SCARA robots.
 3. Point settings must be in "mm" or "deg" units (real number setting).

SAMPLE
DRIVE(1,P100),(2,P100),(4,P100),XY
 The axis 1, 2 and 4 move from their current positions to the Cartesian

coordinates position specified by P100.

7

DRIVE 7-53

A

B

C

D

E

F

G

H

I

J

K

L

M

 29 DRIVE

 ● Movement direction setting

Format

PLS
MNS

 Explanation <With a "movement direction setting">
 • Movement occurs in the specified direction. A PLS setting always results in

 plus-direction movement, and a MNS setting always results in minus-direction
 movement.

 • If the target position and the current position are the same, a 1-cycle movement
 mount occurs in the specified direction, then operation stops.

 <Without a "movement direction setting">
 • Movement occurs in the direction in which the movement distance is shortest.
 • If the target position and the current position are the same, no movement

 occurs.

• Cautions

1. When using this option, the maximum movement distance per operation is the
distance equivalent to 1 cycle (360°). If movement which exceeds the 1-cycle
distance is desired, the movement must be divided into 2 or more operations.

2. When using this option, the DRIVE statement's soft limit values are as shown
below.

 Plus-direction soft limit: 67,000,000 [pulse]
 Minus-direction soft limit: -67,000,000 [pulse]

•	Restrictions

1. Only the axis of a single-axis rotary type robot can be specified.
2. S i m u l t a n e o u s m o v e m e n t o f m u l t i p l e a x e s i s n o t p o s s i b l e w h e n a

movement direction has been specified. If such movement is attempted, the
"5.37: Specification mismatch" error will occur (see below).

 Example: DRIVE (3,P1), (4,P1), PLS
3. The PLS and MNS options cannot both be specified simultaneously.
4. Attempting to use this option for a "limitless motion INVALID" axis will result in

the "2.29: Cannot move without the limit" error.
5. If a stop is executed by pressing the [STOP] key, etc., during movement which uses

this option (including during a deceleration), the movement distance when restarted
will be equivalent to a 1-cycle distance (360°).

7

7-54 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 29 DRIVE

SAMPLE
DRIVE (4,270.00), PLS

When the robot current position is 260°:
Moves 10° in the plus direction from the current position.

 When the robot current position is 280°:
Moves 350° in the plus direction from the current position.

DRIVE (4,270.00), MNS
When the robot current position is 260°:

Moves 350° in the minus direction from the current position.
 When the robot current position is 280°:

Moves 10° in the minus direction from the current position.
DRIVE (4,270.00)

When the robot current position is 260°:
Moves 10° in the plus direction from the current position.

 When the robot current position is 280°:
Moves 10° in the minus direction from the current position.

Related commands TORQUE, TRQTIME, TRQSYS, CURTRQ

7

DRIVEI 7-55

A

B

C

D

E

F

G

H

I

J

K

L

M

 30 DRIVEI
Moves the specified robot axes in a relative manner

Format

DRIVEI(<axis number>, <expression>)[,(<axis number>, <expression>)...][,option]

 Values <axis number>1 to 4
 <expression>Motor position (mm, deg, pulses) or point expression.

 Explanation Directly executes relative movement of each axis of a group, including the group's auxiliary
axes.

 • Movement type : PTP movement of a specified axis
 • Point data setting : Direct coordinate data input, point definition
 • Options : Speed setting, STOPON conditions setting

• When DRIVEI motion to the original target position is interrupted and then restarted, the target
position for the resumed movement can be selected as the "MOVEI/DRIVEI start position" in the
controller's "other parameters". For details, refer to the controller manual.

 1) KEEP (default setting) Continues the previous (before interruption) movement. The original target
position remains unchanged.

 2) RESET Relative movement begins anew from the current position. The new target
position is different from the original one (before interruption). (Backward
compatibility)

Movement type

 ● PTP (point-to-point) of specified axis
PTP movement begins after positioning of all axes specified at <axis number> is complete (within the
tolerance range), and the command terminates when the specified axes enter the OUT position range.
When two or more axes are specified, they will reach their target positions simultaneously.
If the next command following the DRIVEI command is an executable command such as a signal
output command, that next command will start when the movement axis enters the OUT position
range. In other words, that next command starts before the axis arrives within the target position
tolerance range.
Example:

Signal output (DO, etc.) Signal is output when axis enters within OUT position range.

DELAY DELAY command is executed and standby starts, when axis enters the OUT
position range.

HALT Program stops and is reset when axis enters the OUT position range. Therefore,
axis movement also stops.

 HOLD Program temporarily stops when axis enters the OUT position range. Therefore,
axis movement also stops.

WAIT WAIT command is executed when axis enters the OUT position range.

MEMO

7

7-56 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 30 DRIVEI

The WAIT ARM statement is used to execute the next command after the axis enters the tolerance
range.

P1

DRIVEI command

WAIT ARM statement

DO(20) turns ON

DRIVEI(1,P1)
WAIT ARM
DO(20)=1

DO(20) turns ON

DRIVEI(1,P1)
DO(20)=1

Tolerance

Target position

OUT position

HOLD execution
(program temporarily stops)

DRIVEI(1,P1)
WAIT ARM
HOLD

DRIVEI(1,P1)
HOLD

Tolerance
OUT position

Target position

HOLD execution
(program temporarily stops)

Limitless motion related cautions

• When the " l imi t less mot ion" parameter i s enabled, the DRIVEI s ta tement sof t l imi t
check values are as follows:

 Plus-direction soft limit: 67,000,000 [pulse]
 Minus-direction soft limit: -67,000,000 [pulse]
• When using the DRIVEI statement, the above values represent the maximum movement distance per
operation.

SAMPLE

DRIVEI(1,P0) The axis 1 moves from its current position to the position specified by P0.

7

DRIVEI 7-57

A

B

C

D

E

F

G

H

I

J

K

L

M

 30 DRIVEI

Point data setting types

 ● Direct numeric value input
The motor position is specified directly in <expression>.
If the motor position's numeric value is a real number, this is interpreted as a "mm / deg" units, and
each axis will move from the 0-pulse position to a pulse-converted position.

 SAMPLE
DRIVEI(1,10000) ...The axis 1 moves from its current position to the "+10000

pulses" position.
DRIVEI(4,90.00) ..The axis 4 moves from its current position to the +90° position

(when axis 4 is a rotating axis).

 ● Point definition
Point data is specified in <expression>. The axis data specified by the <axis number> is used. The
motor position is determined in accordance with the point data defined by the point expression. If the
point expression is in "mm/degrees" units, movement for each axis occurs from the 0-pulse position to
the pulse-converted position.

SAMPLE
DRIVEI(1,P1) ...The axis 1 moves from its current position the distance

specified by P1.
DRIVEI(4,P90)..The axis 4 moves from its current position the number of

degrees specified by P90 (when axis 4 is a rotating axis).

NOTE
 • If point data is specified with
both integers and real numbers
in the same statement, all
values are handled in "mm/
degrees" units.

7

7-58 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 30 DRIVEI

Option types

 ● Speed setting

Format

1. SPEED=<expression>
2. S=<expression>

 Values <expression>1 to 100 (units: %)

 Explanation The program's movement speed is specified by the <expression>.
 The actual speed is as follows:
 • Robot's max. speed (mm/sec, or deg/sec) × automatic movement speed (%) × program

movement speed (%).
 This option is enabled only for the specified DRIVEI statement.

SAMPLE
DRIVEI(1,10000),S=10...................................The axis 1 moves from its current position to the +10000 pulses position at

10% of the automatic movement speed.

Format

1. DSPEED=<expression>
2. DS=<expression>

 Values <expression>0.01 to 100.00 (units: %)

 Explanation The axis movement speed is specified as an <expression>.
 The actual speed is determined as shown below.
 • Robot's max. speed (mm/sec, or deg/sec) × axis movement speed (%).
 This option is enabled only for the specified DRIVEI statement.
 • Movement always occurs at the DSPEED <expression> value (%) without being

affected by the automatic movement speed value (%).

SAMPLE
DRIVEI(1,10000),DS=0.1...............................The axis 1 moves from its current position to the +10000 pulses position at

0.1% of the automatic movement speed.

NOTE
 • This defines the maximum
speed, and does not guarantee
that all movement will occur at
specified speed.

NOTE
 • SPEED option and DSPEED
option cannot be used together.

7

DRIVEI 7-59

A

B

C

D

E

F

G

H

I

J

K

L

M

 30 DRIVEI

 ● STOPON conditions setting

Format

STOPON <conditional expression>

 Explanation Stops movement when the conditions specified by the conditional expression are met.
Because	this	 is	a	deceleration	type	stop,	 there	will	be	some	movement	(during	
deceleration)	after	the	conditions	are	satisfied.

 If the conditions are already satisfied before movement begins, no movement occurs,
and the command is terminated.

 This option is enabled only by program execution.

• When the conditional expression used to designate the STOPON condition is a numeric expression,
the conditions for determining a TRUE or FALSE status can be changed at the controller's "TRUE
conditions" in the "Other parameters" mode. These conditions apply to all the IF, WHILE, WAIT,
STOPON, etc., conditional expressions. For details, refer to the controller manual.

 1) -1 (default setting) An expression value of "-1" indicates a TRUE status, and "0" indicates a
FALSE status.

 A "6.35: Incorrect condition expression" error occurs if the expression
value is other than "-1" or "0".

 2) not 0 Any expression value other than "0" indicates a TRUE status, and "0"
indicates a FALSE status.

SAMPLE
DRIVEI(1,10000),STOPON DI(20)=1
 Axis 1 moves from its current position toward the "+10000 pulses" position and stops at

an intermediate point if the "DI (20) = 1" condition become satisfied. The next step is then
executed.

MEMO

7

A

B

C

D

E

F

G

H

I

J

K

L

M

7-60 Chapter 7 Robot Language Lists

 31 END SELECT
Ends the SELECT CASE statement

Format

SELECT [CASE] <expression>
 CASE <expression's list 1>
 [command block 1]
 CASE <expression's list 2>
 [command block 2]
 :
 [CASE ELSE
 [command block n]
END SELECT

 Explanation Directly ends the SELECT CASE command block.
 For details, see section "87 SELECT CASE".

SAMPLE
WHILE -1
SELECT CASE DI3()
 CASE 1,2,3
 CALL *EXEC(1,10)
 CASE 4,5,6,7,8,9,10
 CALL *EXEC(11,20)
 CASE ELSE
 CALL *EXEC(21,30)
END SELECT
WEND
HALT

Related commands SELECT CASE

7

END SUB 7-61

A

B

C

D

E

F

G

H

I

J

K

L

M

 32 END SUB
Ends the sub-procedure definition

Format

SUB <label> [(<dummy argument> [, <dummy argument>…])]
 <command block>
END SUB

 Explanation Ends the sub-procedure definition which begins at the SUB statement.
 For details, see section "99 SUB to ENDSUB".

SAMPLE 1
 I=1
 CALL *TEST
 PRINT I
 HALT
 ’SUB ROUTINE: TEST
 SUB *TEST
 I=50
 END SUB

Related commands CALL, EXIT SUB, SUB to END SUB

7

A

B

C

D

E

F

G

H

I

J

K

L

M

7-62 Chapter 7 Robot Language Lists

 33 ERR / ERL
Acquires the error code / error line No

Format

ERR
ERL

 Explanation Variables ERR and ERL are used in error processing routines specified by the ON ERROR
GOTO statement.

 ERR gives the error code of the error that has occurred, and ERL gives the line number in
which the error occurred.

SAMPLE 1
IF ERR <> &H604 THEN HALT
IF ERL=20 THEN RESUME NEXT

Related commands ON ERROR GOTO, RESUME

7

EXIT FOR 7-63

A

B

C

D

E

F

G

H

I

J

K

L

M

 34 EXIT FOR
Terminates the FOR to NEXT statement loop

Format

EXIT FOR

 Explanation Directly terminates the FOR to NEXT statement loop, then jumps to the command which
follows the NEXT statement.

 This statement is valid only between the FOR to NEXT statements.

• The FOR to NEXT statement loop will end when the FOR statement condition is satisfied or when the
EXIT FOR statement is executed. A "5.12: Stack overflow" error, etc., will occur if another statement
such as GOTO is used to jump out of the loop.

SAMPLE
*ST:
WAIT DI(20)=1
FOR A%=101 TO 109
 MOVE P,P100,Z=0
 DO(20)=1
 MOVE P,P[A%],Z=0
 DO(20)=0
 IF DI(20)=0 THEN EXIT FOR
NEXT A%
GOTO *ST
HALT

Related commands FOR, NEXT

MEMO

7

A

B

C

D

E

F

G

H

I

J

K

L

M

7-64 Chapter 7 Robot Language Lists

 35 EXIT SUB
Terminates the sub-procedure defined by SUB to END

Format

EXIT SUB

 Explanation The EXIT SUB statement terminates the sub-procedure defined by the SUB to END SUB
statements, then jumps to the next command in the CALL statement that called up the sub-
procedure.

 This statement is valid only within the sub-procedure defined by the SUB to END SUB
statements.

• To end the sub-procedure defined by the SUB to END SUB statements, use the END SUB statement
or EXIT SUB statement. A "5.12: Stack overflow" error, etc., will occur if another statement such as
GOTO is used to jump out of the loop.

SAMPLE
MAIN ROUTINE
CALL *SORT2(REF X%,REF Y%)
HALT
’SUB ROUTINE: SORT
SUB *SORT2(X%, Y%)
 IF X%>=Y% THEN EXIT SUB
 TMP%=Y%
 Y%=X%
 X%=TMP%
END SUB

Related commands CALL, SUB to END SUB, END SUB

MEMO

7

EXIT TASK 7-65

A

B

C

D

E

F

G

H

I

J

K

L

M

 36 EXIT TASK
Terminates its own task which is in progress

Format

EXIT TASK

 Explanation Terminates its own task which is currently being executed.
 This statement is valid for all tasks other than task 1 (Task 1 cannot be terminated).

• Even if a task that has started as a subtask jumps to another task processing routine with a statement
such as GO TO, that processing routine is then executed as this subtask processing.

SAMPLE
’TASK1 ROUTINE
*ST:
 MO(20)=0
 START *SUBTASK2,T2
 MOVE P,P0,P1
 WAIT MO(20)=1
 GOTO *ST
HALT
’TASK2 ROUTINE
*SUBTASK2:
 P100=JTOXY(WHERE)
 IF LOCZ(P100)>=100.0 THEN
 MO(20)=1
 EXIT TASK
 ENDIF
 DELAY 100
GOTO *SUBTASK2
EXIT TASK

Related commands CUT, RESTART, START, SUSPEND, CHGPRI

MEMO

7

A

B

C

D

E

F

G

H

I

J

K

L

M

7-66 Chapter 7 Robot Language Lists

 37 FOR to NEXT
Performs loop processing until the variable-specified value is exceeded

Format

FOR <control variable> = <start value> TO <end value> [STEP] <step>]
 <command block>
NEXT [<control variable>]

 Explanation These direct statements repeatedly execute commands between the FOR to NEXT
statements for the <start value> to <end value> number of times, while changing the
<control variable> value in steps specified by <STEP>. If <STEP> is omitted, its value
becomes "1".

 The <STEP> value may be either positive or negative.
 The <control variable> must be a numeric <simple variable> or <array variable>.
 The FOR and NEXT statements are always used as a set.

SAMPLE
'CYCLE WITH CYCLE NUMBER OUTPUT TO DISPLAY
FOR A=1 TO 10
 MOVE P,P0
 MOVE P,P1
 MOVE P,P2
 PRINT"CYCLE NUMBER=";A
NEXT A
HALT

Related commands EXIT FOR

7

GOSUB to RETURN 7-67

A

B

C

D

E

F

G

H

I

J

K

L

M

 38 GOSUB to RETURN
Jumps to a sub-routine

Format

GOSUB <label> * GOSUB can also be expressed as "GO SUB".
 :
<label>:
 :
RETURN

 Explanation Jumps to the <label> sub-routine specified by the GOSUB statement.
 A RETURN statement within the sub-routine causes a jump to the next line of the GOSUB

statement.

• The GOSUB statement can be used up to 29 times in succession. Note that this number of times is
reduced if commands containing a stack such as an IF statement or CALL statement are used.

• When a jump to a subroutine was made with the GOSUB statement, always use the RETURN
statement to end the subroutine. If another statement such as GOTO is used to jump out of the
subroutine, an error such as "5.12: Stack overflow" may occur.

SAMPLE
*ST:
MOVE P,P0
GOSUB *CLOSEHAND
MOVE P,P1
GOSUB *OPENHAND
GOTO *ST
HALT
’SUB ROUTINE
*CLOSEHAND:
 DO(20) = 1
RETURN
*OPENHAND:
 DO(20) = 0
RETURN

Related commands RETURN

MEMO

7

7-68 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 39 GOTO
Executes an unconditional jump to the specified line

Format

GOTO <label> * GOTO can also be expressed as "GO TO".

 Explanation Executes an unconditional jump to the line specified by <label>.
 To select a conditional jump destination, use the ON to GOTO, or IF statements.

SAMPLE
 ’MAIN ROUTINE
 *ST:
 MOVE P,P0,P1
 IF DI(20) = 1 THEN
 GOTO *FIN
 ENDIF
 GOTO *ST
 *FIN:
 HALT

7

HALT 7-69

A

B

C

D

E

F

G

H

I

J

K

L

M

 40 HALT
Stops the program and performs a reset

Format

HALT[<expression>]
 <character string>

 Explanation Directly stops the program and resets it. If restarted after a HALT, the program runs from
its beginning.

• If an <expression> or <character string> is written in the statement, the contents of the <expression>
or <character string> are displayed on the programming box screen.

• If a "_SELECT" program name exists, processing will switch to that "_SELECT" program after the
HALT command is executed.

SAMPLE
 ’MAIN ROUTINE
 *ST:
 MOVE P,P0,P1
 IF DI(20) = 1 THEN
 GOTO *FIN
 ENDIF
 GOTO *ST
 *FIN:
 HALT "PROGRAM FIN"

In PTP movement specified by movement commands such as MOVE and DRIVE, the next line's command
is executed when the axis enters the OUT position range.
Therefore, if a HALT command exists immediately after a PTP movement command, that HALT command
is executed before the axis arrives in the target position tolerance range.
Likewise, in interpolation movement during MOVE command, the next command is executed immediately
after movement starts. Therefore, if a HALT command exists immediately after the interpolation movement
command during MOVE, that HALT command is executed immediately after movement starts.
In either of the above cases, use the WAIT ARM command if desiring to execute the HALT command after
the axis arrives within the target position tolerance range.

　　

HALT execution

DRIVE(1,P1)
WAIT ARM
HALT

DRIVE(1,P1)
HALT

Tolerance
OUT position

Target position

HALT execution

HALT command

 Reference For details regarding "_SELECT", see Chapter 1 "4 Program Names".

MEMO

7

7-70 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 41 HAND
Defines the hand

Format

Definition statement:
 HAND Hn = <1st parameter> <2nd parameter> <3rd parameter> [R]
Selection statement:
 CHANGE Hn

 Values n: hand Nomain group: 0 to 3 → HAND is used.

 Explanation The HAND statement only defines the hand. To actually change hands, the CHANGE
statement must be used.

 For CHANGE statement details, see section "12 CHANGE".

• If a power OFF occurs during execution of the hand definition statement, the "9.7 Hand check-sum
error" may occur.

41.1	 For	SCARA	Robots

1.	When	the	<4th	parameter>	“R”	is	not	specified

Hands installed on the second arm tip are selected (see below).

<1st parameter> Number of offset pulses between the standard second arm position and the
virtual second arm position of hand "n". "+" indicates the counterclockwise
direction [pulse].

<2nd parameter> Difference between the hand "n" virtual second arm length and the standard
second arm length. [mm]

<3rd parameter> Z-axis offset value for hand "n". [mm]

　　

Hand 1 Hand 2

20.00mm

15
0.0

0m
m

Sta
nd

ard
 2n

d a
rm

-5000 pulses

When the <4th parameter> "R" is not specified:

MEMO

7

HAND 7-71

A

B

C

D

E

F

G

H

I

J

K

L

M

 41 HAND

SAMPLE
HAND H1= 0 150.0 0.0
HAND H2= -5000 20.00 0.0
P1= 150.00 300.00 0.00 0.00 0.00 0.00
CHANGE H2
MOVE P,P1 ...Tip of hand 2 moves to P1.
CHANGE H1
MOVE P,P1 ...Tip of hand 1 moves to P1.
HALT

　　

Y

X

Hand 2

(150.00, 300.00)
Hand 1

X

Y

(150.00, 300.00)

SAMPLE:HAND

7

7-72 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 41 HAND

2.	When	the	<4th	parameter>	"R"	is	specified

If the R-axis uses a servo motor, the hands that are offset from the R-axis rotating center are selected (see
below).

<1st parameter> When the current position of R-axis is 0.00, this parameter shows the angle
of hand "n" from the X-axis plus direction in a Cartesian coordinate system.
("+"indicates the counterclockwise direction.) [degree]

<2nd parameter> Length of hand "n". [mm] (>0)
<3rd parameter> Z-axis offset amount for hand "n". [mm]

When the <4th parameter> "R" is specified

Standard 2nd arm 150.00mm

100.00mm Hand 2

Hand 1
X

Y

-90.00 deg.

SAMPLE
HAND H1= 0.00 150.0 0.0 R
HAND H2= -90.00 100.00 0.0 R
P1= 150.00 300.00 0.00 0.00 0.00 0.00
CHANGE H1
MOVE P,P1 ..Tip of hand 1 moves to P1.
CHANGE H2
MOVE P,P1 ..Tip of hand 2 moves to P1.
HALT

SAMPLE:HAND

Y

X X

Y

Hand 1

(150.00, 300.00)

Hand 2

(150.00, 300.00)

7

HOLD 7-73

A

B

C

D

E

F

G

H

I

J

K

L

M

 42 HOLD
Temporarily stops the program

Format

HOLD[<expression>]
 <character string>

 Explanation Temporarily stops the program. When restarted, processing resumes from the next line after
the HOLD statement. If an <expression> or <character string> is written in the statement,
the contents of the <expression> or <character string> display on the programming box
screen.

SAMPLE
’MAIN ROUTINE
*ST:
 MOVE P,P0,P1
 IF DI(20)=1 THEN
 HOLD "PROGRAM STOP"
 ENDIF
GOTO *ST
HALT

In PTP movement specified by movement commands such as MOVE and DRIVE, the next line's command
is executed when the axis enters the effective OUT position range.
Therefore, if a HOLD command exists immediately after a PTP movement command, that HOLD
command is executed before the axis arrives in the target position tolerance range.
Likewise, in interpolation movement during MOVE command, the next command is executed immediately
after movement starts. Therefore, if a HOLD command exists immediately after the interpolation
movement command during MOVE, that HOLD command is executed immediately after movement starts.
In either of the above cases, use the WAIT ARM command if desiring to execute the HOLD command
after the axis arrives within the target position tolerance range.

HOLD command

HOLD execution

DRIVE(1,P1)
WAIT ARM
HOLD

DRIVE(1,P1)
HOLD

Tolerance
OUT position

Target position

HOLD execution

7

7-74 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 43 IF
Evaluates a conditional expression value, and executes the command in accordance with the conditions

• When the conditional expression used to designate the IF statement conditions is a numeric expression,
the conditions for determining a TRUE or FALSE status can be changed at the controller's "TRUE
conditions" in the "Other parameters" mode. These conditions apply to all the IF, WHILE, WAIT,
STOPON, etc., conditional expressions. For details, refer to the controller manual.

 1) -1 (default setting) An expression value of "-1" indicates a TRUE status, and "0" indicates a
FALSE status.

 A "6.35 Incorrect condition expression" error occurs if the expression
value is other than "-1" or "0".

 2) not 0 Any expression value other than "0" indicates a TRUE status, and "0"
indicates a FALSE status.

43.1 Simple	IF	statement

Format

IF <conditional expression> THEN <label 1> [ELSE <label 2>]
 <command statement 1> <command statement 2>

 Explanation If the condition specified by the <conditional expression> is met, processing jumps either
to the <label 1> which follows THEN, or to the next line after <command statement 1> is
executed.

 If the condition specified by the <conditional expression> is not met, the following
processing occurs:
1. Processing either jumps to the <label 2> specified after the ELSE statement, or to the

next line after <command statement 2> is executed.
2. If nothing is specified after the ELSE statement, no action is taken, and processing

simply jumps to the next line.

SAMPLE
’MAIN ROUTINE
*ST:
 MOVE P,P0,P1
 IF DI(20)=1 THEN *L1.................................If DI (20) is "1", a jump to *L1 occurs.
 DO(20)=1
 DELAY 100
*L1:
 IF DI(21)=1 THEN *ST ELSE *FIN
 ...If DI (21) is "1", a jump to *ST occurs. If other than "1",

a jump to *FIN occurs.
*FIN:
HALT

MEMO

A

B

C

D

E

F

G

H

I

J

K

L

M

7

IF 7-75

 43 IF

43.2 Block	IF	statement

Format

IF <conditional expression 1> THEN
 <command block 1>
[ELSEIF <conditional expression 2> THEN
 <command block 2>]
[ELSE
 <command block n>]
ENDIF

 Explanation If the condition specified by <conditional expression 1> is met, this statement executes the
instructions specified in <command block 1>, then jumps to the next line after ENDIF.

 When an ELSEIF statement is present and the condition specified by <conditional
expression 2> is met, the instructions specified in <command block 2> are executed.

 If all the conditions specified by the conditional expression are not met, <command block
n> is executed.

• The IF statement can be used up to 48 times in succession. Note that the maximum number of times is
reduced if commands containing a stack such as a GOSUB or CALL statement are used.

SAMPLE
’MAIN ROUTINE
*ST:
 MOVE P,P0,P1
 IF DI(21,20)=1 THEN
 DO(20)= 1
 DELAY 100
 WAIT DI(20)=0
 ELSEIF DI(21,20)=2 THEN
 DELAY 100
 ELSE
 GOTO *FIN
 ENDIF
GOTO *ST
*FIN:
HALT

MEMO

7

7-76 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 44 INPUT
Assigns a value to a variable specified from the programming box

Format

INPUT [<prompt statement> ;] <variable> [, <variable> ,...]
 , <point variable> <point variable>
 <shift variable> <shift variable>

 Explanation Assigns a value to the variable specified from the programming box.
 The input definitions are as follows:

1. When two or more variables are specified by separating them with a comma (,), the
specified input data items must also be separated with a comma (,).

2. At the <prompt statement>, enter a character string enclosed in quotation marks (" ")
that will appear as a message requiring data input. When a semicolon (;) is entered
following the prompt statement, a question mark (?) and a space will appear at the end
of the message. When a comma (,) is entered, nothing will be displayed following the
message.

3. When the <prompt statement> is omitted, only a question mark (?) and a space will be
displayed.

4. The input data type must match the type of the corresponding variables. When data is
input to a point variable or shift variable, insufficient elements are set to "0".

5. If only the ENTER key is pressed without making any entry, the program interprets this
as a "0" or "null string" input. However, if specifying two or more variables, a comma (
,) must be used to separate them.

6. If the specified variable is a character type and a significant space is to be entered before
and after a comma (,), double quotation mark (") or character string, the character
string must be enclosed in double quotation marks ("). Note that in this case, you
must enter two double quotation marks in succession so that they will be identified as a
double quotation mark input.

7. Pressing the ESC key skips this command.

• If the variable and the value to be assigned are different types, an "Input again" message displays and
a "waiting for input" status is established.

• When assigning alphanumeric characters to a character variable, it is not necessary to enclose the
character string in double quotation marks (").

SAMPLE
INPUT A
INPUT "INPUT POINT NUMBER";A1
INPUT "INPUT STRING",B$(0),B$(1)
INPUT P100
HALT

MEMO

A

B

C

D

E

F

G

H

I

J

K

L

M

7

INT 7-77

 45 INT
Truncates decimal fractions

Format

INT (<expression>)

 Explanation This function acquires an integer with decimal fractions truncated. The maximum integer
value which does not exceed the <expression> value is acquired.

SAMPLE
A=INT(A(0))
B=INT(-1. 233) "-2" is assigned to B.

7

7-78 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 46 JTOXY
Performs axis unit system conversions (pulse → mm)

Format

JTOXY (<point expression>)

 Explanation Converts the joint coordinate data (unit: pulses) specified by the <point expression> into
Cartesian coordinate data (unit: mm, deg.).

 On R6YXTW500 model robots, the X-arm and Y-arm rotation information is also set.

SAMPLE

P10=JTOXY(WHERE)...Current position data is converted to Cartesian coordinate
data.

Related commands XYTOJ

NOTE
 • X-arm and Y-arm rotation
information is only available in
software Ver.1.66M or higher.

7

LABEL Statement 7-79

A

B

C

D

E

F

G

H

I

J

K

L

M

 47 LABEL Statement
Defines labels at program lines

Format

*<label> :

 Explanation Defines a <label> on a program line. A <label> must always begin with an asterisk mark (*),
and it must be located at the beginning of the line.

 Although a colon mark (:) is required at the end of the <label> when defining it, this mark is
not required when specifying program jump destinations.

1. A <label> must begin with an alphabetic or numeric character.
2. Alphanumeric and underbars (_) can be used as the remaining <label> characters.

Special symbols, etc., cannot be used.
3. The <label> must not exceed 16 characters (all characters beyond the 16th character are

ignored).

SAMPLE
*ST: ...*ST label is defined.
 MOVE P,P0
 DO(20) = 1
 MOVE P,P1
 DO(20) = 0
GOTO ..*ST Jumps to *ST.
HALT

7

7-80 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 48 LEFT$
Extracts character strings from the left end

Format

LEFT$ (<character string expression> , <expression>)

 Values <expression>0 to 75

 Explanation This function extracts a character string with the digits specified by the <expression> from
the left end of the character string specified by <character string expression>.

 The <expression> value must be between 0 and 75, otherwise an error will occur.
 If the <expression> value is 0, then LEFT$ will be a null string (empty character string).
 If the <expression> value has more characters than the <character string expression>,

LEFT$ will become the same as the <character string expression>.

SAMPLE

B$=LEFT$(A$,4)..4 characters from the left end of A$ are assigned to B$.

Related commands MID$, RIGHT$

7

LEFTY 7-81

A

B

C

D

E

F

G

H

I

J

K

L

M

 49 LEFTY
Sets the SCARA robot hand system as a left-hand system

Format

LEFTY

 Explanation This statement specifies left-handed movement to a point specified in Cartesian coordinates.
 This	statement	only	selects	the	hand	system,	and	does	not	move	the	robot. If executed

while the robot arm is moving, execution waits until movement is complete (positioned
within tolerance range).

 This command is only valid for SCARA robots.

SAMPLE
RIGHTY
MOVE P,P1
LEFTY
MOVE P,P1
RIGHTY
HALT

SAMPLE: LEFTY/RIGHTY

P1

(1)(2)

Left-handed system Right-handed system

SCARA robot

Related commands RIGHTY

7

7-82 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 50 LEN
Acquires a character string length

Format

LEN(<character string expression>)

 Explanation Returns the length (number of bytes) of the <character string expression>.

SAMPLE
B=LEN(A$)

7

LET 7-83

A

B

C

D

E

F

G

H

I

J

K

L

M

 51 LET
Assigns values to variables

Format

[LET] <arithmetic assignment statement>
 <character string assignment statement>
 <point assignment statement>
 <shift assignment statement>

 Explanation Directly executes the specified assignment statement. The right-side value is assigned to the
left side. An assignment statement can also be directly written to the program without using
a LET statement.

• If the controller power is turned off during execution of a <point assignment statement> or <shift
assignment statement>, a memory-related error such as the "9.2: Point check-sum error" or the "9.6:
Shift check-sum error" may occur.

1. Arithmetic assignment statement

Format

[LET] <arithmetic variable> = <expression>
 <point element variable>
 <shift element variable>
 <parallel output variable>
 <internal output variable>
 <arm lock output variable>
 <timer output variable>
 <serial output variable>

 Values <expression>Variable, function, numeric value

 Explanation The <expression> value is assigned to the left-side variable.

SAMPLE
A!=B!+1
B%(1,2,3)=INT(10.88)
LOCZ(P0)=A!
LOCX(S1)=100.00
DO2()=&B00101101
MO(21,20)=2
LO(00)=1
TO(01)=0
SO12()=255

MEMO

7

7-84 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 51 LET

2. Character string assignment statement

Format

[LET] <character string variable> = <character string expression>

 Explanation The <character string expression> value is assigned to the character string variable.
 Only the plus (+) arithmetic operator can be used in the <character string expression>.

Other arithmetic operators and parentheses cannot be used.

SAMPLE
A$ ="OMRON"
B$ ="ROBOT"
D$ = A$ + "-" + B$

Execution result: OMRON-ROBOT

• The "+" arithmetic operator is used to link character strings.

3. Point assignment statement

Format

[LET] <point variable> = <point expression>

 Explanation Assigns <point expression> values to point variables.
 Only 4 arithmetic operators (+, - *, /) can be used in the <point expression>.

 Multiplication and division are performed only for constant or variable arithmetic
operations.

 • Addition/subtraction Addition/subtraction is performed for each element of
each axis.

 • Multiplication Multiplication by a constant or variable is performed for
each element of each axis.

 • Division Division by a constant or variable is performed for each
element of each axis.

 Multiplication results vary according to the point data type.
 • For pulse units Assigned after being converted to an integer.
 • For "mm" units Assigned after being converted to a real number down to

the 2nd decimal position.

MEMO

7

LET 7-85

A

B

C

D

E

F

G

H

I

J

K

L

M

 51 LET

SAMPLE
 P1 =P10 ...Point 10 is assigned to P1.
 P20=P20+P5..Each element of point 20 and point 5 is summed and

assigned to P20.
 P30=P30-P3..Each element of point 3 is subtracted from point 30 and

assigned to P30.
 P80=P70*4...Each element of point 70 is multiplied by 4 and assigned

to P80.
 P60=P5/3 ..Each element of point 5 is divided by 3 and assigned to

P60.

• Multiplication & division examples are shown below.
 • Permissible examples P15 * 5, P[E]/A, etc.
 • Prohibited examples P10 * P11, 3/P10, etc.

4. Shift assignment statement

Format

[LET] <shift variable> = <shift expression>

 Explanation Assigns <shift expression> values to shift variables.
 Only shift elements can be used in <shift expressions>, and only addition and

subtraction arithmetic operators are permitted. Parentheses cannot be used.
 • Addition/subtraction Addition/subtraction is performed for each element of

each axis.

SAMPLE
 S1=S0 .."shift 0" is assigned to "shift 1".
 S2=S1+S0 ..Each element of "shift 1" and "shift 0" is summed and

assigned to "shift 2".

• Examples of <shift expression> addition/subtraction:
 • Permissible examples S1 + S2
 • Prohibited examples S1 + 3

MEMO

MEMO

7

7-86 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 52 LO
Arm lock output

Format

1. LO0 ([b,.....,b]) = <expression>
2. LO (0b,.....,0b) = <expression>

 Values b: Bit definition0 to 7
 <expression> Converted to an integer. The lower bits corresponding to

the bits specified on the left side are valid.

 Explanation This statement outputs the specified value to the LO port to either prohibit or allow axis
movement.

 LO(00) to LO(07) respectively correspond to axes 1 to 8. An arm lock ON status occurs at
axes where bits are set, and axis movement is prohibited. Multiple bits must be specified in
descending order from left to right (large → small).

• This statement is valid at axes where movement is started.

SAMPLE
 LO0()=&B00001010..Prohibits movement at axes 2 and 4.
 LO0(2,1)=&B10...Prohibits movement at axis 3.

Related commands RESET, SET

MEMO

7

LOCx 7-87

A

B

C

D

E

F

G

H

I

J

K

L

M

 53 LOCx
Specifies/acquires point data or shift data for a specified axis

Format

1. LOCx (<point expression>) = <expression>
2. LOCx (<shift expression>) = <expression>

 Values Format 1: x X,Y,Z,R,A,B (axis setting), F (hand system flag setting),
F1 (X-arm rotation information), F2 (Y-arm rotation
information).

 Format 2: xX,Y,Z,R (axis setting)
 <expression>For axis setting: coordinate value.
 For hand system flag setting:
 1 (right-handed system) or 2 (left-handed system)
 0 (no setting)
 For specifies the X-arm rotation information and specifies

 the Y-arm rotation information:
 0, 1, -1
 *1: For details regarding the X-arm and Y-arm rotation information, refer to

Chapter 4 "3. Point data format".

 Explanation Direct format 1: Changes the value of the point data specified axis, the hand system flag,
and the X-arm and Y-arm rotation information.

 Format 2: Changes the value of a specified axis from the shift data value.

• Points where data is to be changed must be registered in advance. An error will occur if a value change
is attempted at an unregistered point (where there are no coordinate values).

NOTE
 • X-arm and Y-arm rotation
information is only available in
software Ver.1.66M or higher.

MEMO

7

7-88 Chapter 7 Robot Language Lists

A

B

C

D

E

F

G

H

I

J

K

L

M

 53 LOCx

Functions

Format

1. LOCx (<point expression>)
2. LOCx (<shift expression>)

 Values Format 1: x X,Y,Z,R,A,B (axis setting), F (hand system flag setting),
F1 (X-arm rotation information), F2 (Y-arm rotation
information).

 Format 2: xX,Y,Z,R (axis setting)

 Explanation Format 1: Acquires the value of the point data specified axis, the hand system flag, and the
X-arm and Y-arm rotation information.

 Format 2: Acquires a specified axis value from the shift data.

SAMPLE
LOCX(P10)=A(1)..The X-axis data of P10 is changed to the array A (1) value.
LOCY(S1)=B ..The Y-axis data of S1 is changed to the B value.

A(1)=LOCX(P10)...The X-axis data of P10 is assigned to array A (1).
B(2)=LOCX(S1)...The X-axis data of S1 is assigned to array B (2).

Related commands Point element variable, shift element variable

7

LSHIFT 7-89

A

B

C

D

E

F

G

H

I

J

K

L

M

 54 LSHIFT
Left-shifts a bit

Format

LSHIFT (<expression 1> ,<expression 2>)

 Explanation Shifts the <expression 1> bit value to the left by the amount of <expression 2>. Spaces left
blank by the shift are filled with zeros (0).

SAMPLE
A=LSHIFT(&B10111011,2)..................................The 2-bit-left-shifted &B10111011 value (&B11101100)

is assigned to A.

Related commands RSHIFT

7-90 Chapter 7 Robot Language Lists

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 55 MCHREF
Acquires a machine reference

Format

MCHREF (<axis 1>)

 Values <axis 1>main group: 1 to 6

 Explanation This function provides the return-to-origin or absolute-search machine reference (unit: %)
for the axis specified by <axis number>.

 This function can only be used for axes whose return-to-origin method is set to the sensor
or stroke end method.

SAMPLE

A=MCHREF(1)...The main group's axis 1 return-to-origin machine reference
is assigned to variable A.

MID$ 7-91

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 56 MID$
Acquires a character string from a specified position

Format

MID$ (<character string expression>,<expression 1>[,<expression 2>])

 Values <expression 1>1 to 75
 <expression 2>0 to 75

 Explanation This function extracts a character string of a desired length (number of characters) from
the character string specified by <character string expression>. <expression 1> specifies
the character where the extraction is to begin, and <expression 2> specifies the number of
characters to be extracted.

 An error will occur if the <expression 1> and <expression 2> values violate the permissible
value ranges.

 If <expression 2> is omitted, or if the number of characters to the right of the character of
<expression 1> is less than the value of <expression 2>, then all characters to the right of
the character specified by <expression 1> will be extracted.

 If <expression 1> is longer than the character string, MID$ will be a null string (empty
character string).

SAMPLE
B$=MID$(A$,2,4)..The 2nd to 4th characters (up to the 5th char.) of A$ are

assigned to B$.

Related commands LEFT$, RIGHT$

7-92 Chapter 7 Robot Language Lists

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 57 MO
Outputs a specified value to the MO port (internal output)

Format

1. MO0([b,.....,b]) = <expression>
2. MO(0b,.....,0b) = <expression>

 Values m: port number2 to 7, 10 to 17, 20 to 27
 b: bit definition0 to 7
 <expression> The integer-converted lower bits corresponding to the bit

definition specified at the left side are valid.

 Explanation Outputs a specified value to the MO port.
 In order to maintain the sensor status and axis HOLD status at each axis, ports "0" and "1"

cannot be used as output ports (these ports are for referencing only).
 If multiple bits are specified, they are expressed from the left in descending order (large to

small).
 If the [b,…,b] data is omitted, all 8 bits are processed.

• Ports "0" and "1" outputs

Bit 7 6 5 4 3 2 1 0
Port 0 Axis 8 Axis 7 Axis 6 Axis 5 Axis 4 Axis 3 Axis 2 Axis 1

Origin sensor status 0: OFF; 1: ON

Port 1 Axis 8 Axis 7 Axis 6 Axis 5 Axis 4 Axis 3 Axis 2 Axis 1

HOLD status 0: No HOLD / 1: HOLD (1 axis is not used)

• For details regarding MO ports "0" and "1", see Chapter 3 "9.7 Internal output variable".

SAMPLE
MO2()=&B10111000..MO (27, 25, 24, 23) are turned ON, and MO (26, 22, 21,

20) are turned OFF.
MO2(6,5,1)=&B010..MO (25) are turned ON, and MO (26, 21) are turned OFF.
MO3() = 15 ...MO (33, 32, 31, 30) are turned ON, and MO (37, 36, 35,

34) are turned OFF.
MO(37,35,27,20)=A...The contents of the 4 lower bits acquired when variable A is converted

to an integer are output to MO (37, 35, 27, 20), respectively.

Related commands RESET, SET

REFERENCE

 • For de ta i l s regard ing b i t
definitions, see Chapter 3 "10
Bit Settings".

MEMO

MOVE 7-93

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 58 MOVE
Performs absolute movement of all robot axes

Format

MOVE PTP , <point definition> [, option [, option] ...]
 P
 L
 C

 Explanation Executes direct absolute movement of a group's axes.
 The MOVE command is used for axes which have been specified as main robot axes. It is

not enabled for other groups, or for auxiliary axes.
 • Movement type : PTP, linear interpolation, circular interpolation.
 • Point data setting : Direct coordinate data input, point definition.
 • Options : Speed setting, arch motion setting, STOPON condition setting,

CONT setting, acceleration setting, deceleration setting, plane
coordinate setting, port output setting.

Options PTP Linear
interpolation

Arch
interpolation Remarks

Speed setting (SPEED) Enabled only for specified MOVE
statement

Speed setting (VEL) Enabled only for specified MOVE
statement

Arch motion Enabled only for specified MOVE
statement

STOPON condition setting E n a b l e d o n l y b y p r o g r a m
execution

CONT setting Enabled only for specified MOVE
statement

Acceleration setting Enabled only for specified MOVE
statement

Deceleration setting Enabled only for specified MOVE
statement

Plane coordinate setting Enabled only for specified MOVE
statement

Port output setting Enabled only for specified MOVE
statement

7-94 Chapter 7 Robot Language Lists

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 58 MOVE

Movement type

 ● PTP (point-to-point) movement
Execution START condition: Movement of all specified axes is complete (within the tolerance range).
Execution END condition: All specified axes have entered the OUT position range.
When two or more axes are specified, they will reach their target positions simultaneously. The
movement path of the axes is not guaranteed.

 ● Caution regarding commands which follow the MOVE P command:
If the next command following the MOVE P command is an executable command such as a signal
output command, that next command will start when the movement axis enters the OUT position
range. In other words, that next command starts before the axis arrives within the target position
tolerance range.
Example:

Signal output (DO, etc.) Signal is output when axis enters within OUT position range.

DELAY DELAY command is executed and standby starts, when axis enters the OUT
position range.

HALT Program stops and is reset when axis enters the OUT position range. Therefore,
axis movement also stops.

 HOLD Program temporarily stops when axis enters the OUT position range. Therefore,
axis movement also stops.

WAIT WAIT command is executed when axis enters the OUT position range.

The WAIT ARM statement is used to execute the next command after the axis enters the
tolerance range.

• The OUT position value is specified by parameter setting.
 This value can be changed from within the program by using the OUTPOS command.

P1

MOVE command

DO(20) turns ON

MOVE P,P1
WAIT ARM
DO(20)=1

DO(20) turns ON

MOVE P,P1
DO(20)=1

Tolerance

Target position

OUT position

HOLD execution
(program temporarily stops)

MOVE P,P1
WAIT ARM
HOLD

MOVE P,P1
HOLD

Tolerance
OUT position

Target position

HOLD execution
(program temporarily stops)

MEMO

MOVE 7-95

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 58 MOVE

SAMPLE
MOVE P,P0 ..The main robot axis moves from its current position to the

position specified by P0 (the same occurs for MOVE PTP,
P0).

• PTP movement is faster than interpolation movement, but when executing continuous movement to
multiple points, a positioning stop occurs at each point.

 ● Linear interpolation movement
Execution START condition: Movement of all specified axes is complete (within the tolerance range).
Execution END condition: Movement of all specified axes has begun.
Execution of the immediately following command occurs immediately after axis movement
begins.
When executing linear or circular interpolation in a continuous manner, the 2 movement paths are
linked by connecting the deceleration and acceleration sections, enabling continuous movement
without intermediate stops.
All movement axes arrive at the same time.
However, the following execution END condition applies if a STOPON condition has been specified:

Execution END condition: Movement of all specified axes is complete (within the tolerance range).
In this case, continuous movement for the 2 linked paths is not possible.

 ● Caution regarding commands which follow a MOVE L command:
If the next command following the MOVE L command is an executable command such as a signal
output command, that next command will start immediately after axis movement begins.
Example:

Signal output (DO, etc.) Signal is output immediately after movement begins.

DELAY DELAY command is executed and standby starts immediately after movement
begins.

HALT Program stops and is reset immediately after movement begins. Therefore, axis
movement also stops.

 HOLD Program temporarily stops immediately after movement begins. Therefore, axis
movement also stops.

WAIT WAIT command is executed immediately after movement begins.

The WAIT ARM statement is used to execute the next command after the axis enters the tolerance
range.

MEMO

7-96 Chapter 7 Robot Language Lists

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 58 MOVE

• Smooth travel paths and constant speeds between paths may not always be possible, depending on the
axis movement speed, acceleration, and distance between the target points.

• On robots with an R-axis, the R-axis speed may become too fast and cause an error depending on the
R-axis movement distance.

• If a DELAY statement is executed after a MOVE L command, a DELAY timer is activated after the
MOVE L command is executed. Therefore, if	a	DELAY	is	desired	after	reaching	the	target	point,	
use the WAIT ARM statement after the MOVE command.

 The same applies for other commands such as HALT, etc.
• If the direction changes at an acute angle during interpolation movement, the acceleration/deceleration

speed of the connection section may become too fast, causing an error. In this case, specify a slower
acceleration/deceleration speed at the connection section, or use the WAIT ARM command to revise
the operation pattern.

P1

MOVE command

DO(20) turns ON

MOVE L,P1
WAIT ARM
DO(20)=1

DO(20) turns ON

MOVE L,P1
DO(20)=1

Tolerance

Target position

HOLD execution
(program temporarily stops)

MOVE L,P1
WAIT ARM
HOLD

MOVE L,P1
HOLD

Tolerance

Target position

HOLD execution
(program temporarily stops)

SAMPLE
MOVE L,P0,P1..The main robot axis moves from its current position to the position

specified by P0, P1.

SAMPLE: MOVE L

P0

Current position

P1

Tolerance range

MEMO

MOVE 7-97

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 58 MOVE

 ● Circular interpolation movement
Execution START condition: Movement of all specified axes is complete (within the tolerance range).
Execution END condition: Movement of all specified axes has begun.
Execution of the immediately following command occurs immediately after axis movement
begins.
When executing linear or circular interpolation in a continuous manner, the 2 movement paths are
linked by connecting the deceleration and acceleration sections, enabling continuous movement
without intermediate stops.
All movement axes arrive at the same time.
In circular interpolation, an arc is generated based on 3 points: the current position, an intermediate
position, and the target position. Therefore,	circular	interpolation	must	be	specified	by	an	even	
number of points.

 ● Caution regarding commands which follow a MOVE C command:
If the next command following the MOVE C command is an executable command such as a signal
output command, that next command will start immediately after axis movement begins.
Example:

Signal output (DO, etc.) Signal is output immediately after movement begins.

DELAY DELAY command is executed and standby starts immediately after movement
begins.

HALT Program stops and is reset immediately after movement begins. Therefore, axis
movement also stops.

 HOLD Program temporarily stops immediately after movement begins. Therefore, axis
movement also stops.

WAIT WAIT command is executed immediately after movement begins.

The WAIT ARM statement is used to execute the next command after the axis enters the
tolerance range.

P1

MOVE command

DO(20) turns ON

MOVE C,P1,P2
WAIT ARM
DO(20)=1

DO(20) turns ON

MOVE C,P1,P2
DO(20)=1

Tolerance

Target position

HOLD execution
(program temporarily stops)

MOVE C,P1,P2
WAIT ARM
HOLD

MOVE C,P1,P2
HOLD

Tolerance

Target position

HOLD execution
(program temporarily stops)

7-98 Chapter 7 Robot Language Lists

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 58 MOVE

SAMPLE
MOVE L,P20 ..Linear movement occurs from the current position to P20.
MOVE C,P21,P22,P23,P20....................Arc movement occurs through points P21, P22, P23, P20.
MOVE L,P24 ..Linear movement occurs to P24.

SAMPLE: MOVE C

P23

Current position P24

P22

P21

P20

• In continuous interpolation operations, too, there are no stops at intermediate points. However, the
maximum speed is slower than the PTP speed.

• Circular interpolation is possible within the following range: radius 1.00mm to 5,000.00mm.
• Circle distortion may occur, depending on the speed, acceleration, and the distance between points.
• On robots with an R-axis, the R-axis speed may become too fast and cause an error, depending on the

R-axis movement distance.
• If a DELAY statement is executed after a MOVE L command, a DELAY timer is activated after the

MOVE L command is executed. Therefore, if	a	DELAY	is	desired	after	reaching	the	target	point,	
use the WAIT ARM statement after the MOVE statement.

 The same applies for other commands such as HALT, etc.
• If the direction changes at an acute angle during interpolation movement, the acceleration/deceleration

speed of the connection section may become too fast, causing an error. In this case, specify a slower
acceleration/deceleration speed at the connection section, or use the WAIT ARM command to revise
the operation pattern.

MEMO

MOVE 7-99

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 58 MOVE

Movement command types and the corresponding movement

Current position
Tolerance range

OUT position range
Target position

Current position
Tolerance range

OUT position range
Target position

Current position
Tolerance range

OUT position range
Target position

Current position
Tolerance range

OUT position range
Target position

Command ends when movement
enters the OUT position range, and
the next command is then executed.

The next command is executed when
movement arrives in the tolerance range.

The next command is executed when
movement arrives in the tolerance range2).

1) If a DELAY statement is executed after an interpolation operation, a DELAY timer is activated immediately
 after the movement starts. Therefore, if a DELAY is desired after reaching the target point, use the WAIT ARM
 statement after the MOVE command.
2) A deceleration and stop occurs at an intermediate point if the condition specified by the STOPON conditional
 expression is met (for details, see the "STOPON Condition Setting" item).

Command ends immediately after
movement begins, and the next
command is immediately executed1).

1. PTP movement

2. Interpolation movement

3. WAIT ARM

4. STOPON conditional expression

7-100 Chapter 7 Robot Language Lists

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 58 MOVE

Point data setting types

 ● Direct numeric value input PTP Linear interpolation Circular interpolation

Format

X Y Z R A B [F] [F1] [F2]

 Values X, Y, Z, R, A, BSpace-separated coordinate values for each axis.
 F ..Hand system flag
 F1 ..X-arm rotation information (R6YXTW500 model only).
 F2 ..Y-arm rotation information (R6YXTW500 model only).

 Explanation Directly specifies coordinate values by a numeric value. If an integer is used, this is
interpreted as "pulse" units, and if a real number (with decimal point) is used, this is
interpreted as "mm/deg" units, with movement occurring accordingly. If both integers
and real numbers are used together (mixed), all coordinate values will be handled in
"mm/deg" units.

 This setting method can be used only for PTP and linear interpolation movement types.
 Hand system flags can be specified for SCARA robots when directly specifying the

coordinate values in "mm" units.
 To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "F". If

a number other than 1 or 2 is set, or if no number is designated, 0 will be set to indicate
that there is no hand system flag.

 1: Right-handed system is used to move to a specified position.
 2: Left-handed system is used to move to a specified position.

 Direct numeric value inputs can be used to set the X-arm and Y-arm rotation
information (*1) only on R6YXTW500 model robots where the coordinate system-of-
units has been set as "mm".

 To set extended X-arm and Y-arm rotation information at the R6YXTW500 model
robot, a "-1", "0", or "1" value must be specified at F1 and F2. Any other value, or no
X-arm and Y-arm rotation information at all, will be processed as "0".

 0: Indicates arm rotation information where movement to the "0" position has
 been specified.

 1: Indicates arm rotation information where movement to the "1" position has
 been specified.

 -1: Indicates arm rotation information where movement to the "-1" position
 has been specified.

 *1: For details regarding the X-arm and Y-arm rotation information, refer to Chapter 4
"3. Point data format".

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the
specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE
MOVE P,10000 10000 1000 1000 0 0
 ..PTP movement occurs from current position to the

specified position.

NOTE
 • I f bo th in tegers and rea l
numbers are used together
(mixed), all coordinate values
will be handled in "mm/deg"
units.

 • X-arm and Y-arm rotation
information is only available in
software Ver.1.66M or higher.

CAUTION
 • W h e n p e r f o r m i n g l i n e a r
interpolat ion with a hand
system flag specified, be sure
that the same hand system is
used at the current position
and target position. If the
same hand system is not used,
an error will occur and robot
movement will be disabled.

 • When performing a linear
interpolat ion, the current
position's X-arm and Y-arm
rotation information must be
the same as the movement
destination's X-arm and Y-arm
rotation information. If the
two are different, an error will
occur and movement will be
disabled.

MEMO

MOVE 7-101

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 58 MOVE

 ● Point definition PTP linear interpolation Circular interpolation

Format

<point expression>[,<point expression>...]

 Explanation Specifies a <point expression>. Two or more data items can be designated by separating
them with a comma (,).

 Circular interpolation must be specified by an even number of points.

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the
specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE
MOVE P,P1 ..Moves from the current position to the position specified

by P1.
MOVE P,P20,P0,P100...................................Moves in sequence from the current position to positions

specified by P20, P0, P100.

CAUTION
 • When moving the robot by
linear or circular interpolation
to a point where a hand system
flag is specified, be sure that
the same hand system is used
at both the current and target
positions. If the same hand
system is not used, an error
will occur and robot movement
will be disabled.

MEMO

CAUTION
 • When performing a linear
and circular interpolation, the
current position's X-arm and
Y-arm rotation information
mus t be t he s ame a s t he
movement destination's X-arm
and Y-arm rotation information.
If the two are different, an error
will occur and movement will
be disabled.

7-102 Chapter 7 Robot Language Lists

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 58 MOVE

Option types

 ● Speed setting 1 PTP linear interpolation Circular interpolation

Format

1. SPEED = <expression>
2. S = <expression>

 Values <expression>1 to 100 (units: %)

 Explanation Specifies the program speed in an <expression>.
 The actual speed will be as follows:
 • [Robot max. speed (mm/sec)] × [automatic movement speed (%)] × [program

movement speed (%)].
 This option is enabled only for the specified MOVE statement.

SAMPLE

MOVE P,P10,S=10..Moves from the current position to the position specified
by P10, at 10% of the program movement speed.

 ● Speed setting 2 PTP linear interpolation Circular interpolation

Format

VEL = <expression>

 Values <expression>For SCARA robot: 1 to 750

 Explanation Specifies the maximum composite speed (in "mm/sec" units) of the XYZ axes in an
<expression>. This option can be used for linear interpolation and circular interpolation
movements of SCARA robots.

 This option is enabled only for the specified MOVE statement.

SAMPLE
MOVE L,P10,VEL=100..................................Moves from the current position to the position specified

by P10, at the XYZ maximum composite speed of 100mm/
sec.

NOTE
 • This option specifies only the
maximum speed and does not
guarantee movement at the
specified speed.

NOTE
 • This option specifies only the
maximum composite speed and
does not guarantee movement
at the specified speed.

MOVE 7-103

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 58 MOVE

 ● Arch motion setting PTP linear interpolation Circular interpolation

Format

x = <expression>

 Values x ..Specifies the X,Y,Z,R,A,B axis.
 <expression>An integer value is processed in "pulse" units.
 A real number (with decimal point) is process in "mm/deg"

units.

 Explanation 1. The "x" specified axis begins moving toward the position specified by the
<expression> (see "1" in the Fig. below).

 2. When the "x" specified axis enters the arch position range, all other axes move
toward the target position (see "2" in the Fig. below).

 3. When all axes other than the "x" specified axis enter the arch position range, the "x"
specified axis moves to the target position ("3" in the Fig. below).

 4. The command ends when all axis enter the OUT position range.

 This option can be used only for PTP movement.
 If the "x" specified axis is the X or Y axis, the target position and <expression> must be

specified as an integer (pulse units) for SCARA robots
 <expression> value: SCARA type robots.
 Target position value: SCARA type robot.
 The values are indicated as the motor position rather than the coordinate values.

SAMPLE

 MOVE P,P1,Z=0...Z-axis moves 0 pulses from its current position, then
other axes move to P1. Finally, the Z-axis moves to P1.

SAMPLE: MOVE Z

Target position: P1Current position

1. Z-axis movement 3. Z-axis movement

2. Other axes movement

Z-axis arch position range

Other axes' arch
position range

Z=0

7-104 Chapter 7 Robot Language Lists

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 58 MOVE

 ● STOPON condition setting PTP linear interpolation Circular interpolation

Format

STOPON <conditional expression>

 Explanation Stops movement when the conditions specified by the conditional expression are
met. Because this is a deceleration type stop, there will be some movement (during
deceleration) after the conditions are met.

 If the conditions are already met before movement begins, no movement occurs, and
the command is terminated.

 This option can only be used for PTP movement and linear interpolation movement.
 This option is only possible by program execution.

SAMPLE
MOVE P,P100,STOPON DI(20)=1
 Moves from the current position to the position specified by P100. If the "DI (20) = 1"

condition is met during movement, a deceleration and stop occurs, and the next step is then
executed.

• When the conditional expression used to designate the STOPON condition is a numeric expression,
the conditions for determining a TRUE or FALSE status can be changed at the controller's "TRUE
conditions" in the "Other parameters" mode. These conditions apply to all the IF, WHILE, WAIT,
STOPON, etc., conditional expressions. For details, refer to the controller user's manual.

 1) -1 (default setting) An expression value of "-1" indicates a TRUE status, and "0" indicates a
FALSE status.

 A "6.35 Incorrect condition expression" error occurs if the expression
value is other than "-1" or "0".

 2) not 0 Any expression value other than "0" indicates a TRUE status, and "0"
indicates a FALSE status.

MEMO

MOVE 7-105

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 58 MOVE

 ● CONT setting .. PTP linear interpolation Circular interpolation

Format

CONT

 Explanation When PTP movement is executed with the CONT setting option, the PTP movement
which begins immediately after all movable axes enter the OUT position range (with the
command being terminated at that point), will begin without waiting for the movable
axes to complete their movement into the tolerance range.

 This option can be used only for PTP movement and is enabled only for the specified
MOVE statement.

SAMPLE
MOVE P,P10,P11,CONT
 Moves from the current position to the position specified by P10, and then

moves to P11 without waiting for the moving axes to arrive in the tolerance
range.

SAMPLE: MOVE CONT

P10

Current position

P11

OUT position range

Next movement begins after
entering the OUT position range

P10

Current position

P11

OUT position range

Next movement begins after
entering the tolerance range

Tolerance range

With CONT setting:

Without CONT setting:

NOTE
 • The CONT setting can be used
to reduce the PTP movement
START positioning time.

 • The path to the target point is
not guaranteed.

7-106 Chapter 7 Robot Language Lists

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 58 MOVE

 ● Acceleration setting PTP linear interpolation Circular interpolation

Format

ACC = <expression>

 Values <expression>1 to 100 (units: %)

 Explanation Specifies the robot acceleration rate in an <expression>. The actual robot acceleration is
determined by the acceleration coefficient parameter setting.

 This option can be used only for linear interpolation movement and is enabled only for
the specified MOVE statement.

SAMPLE

MOVE L,P100,ACC=10...............................Moves at an acceleration rate of 10% from the current
position to the position specified by P100.

 ● Deceleration setting PTP linear interpolation Circular interpolation

Format

DEC = <expression>

 Values <expression>1 to 100 (units: %)

 Explanation Specifies the robot deceleration rate in an <expression>. The actual robot deceleration is
determined by the acceleration coefficient parameter setting (the setting is specified as a
percentage of the acceleration setting value (100%)).

 This option can be used only for linear interpolation movement and is enabled only for
the specified MOVE statement.

SAMPLE

 MOVE L,P100,DEC=20.........................Moves at a deceleration rate of 20% from the current
position to the position specified by P100.

MOVE 7-107

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 58 MOVE

 ● Coordinate plane setting PTP linear interpolation Circular interpolation

Format

 XY
 YZ
 ZX

 Values XY ..XY coordinate plane
 YZ...YZ coordinate plane
 ZX...ZX coordinate plane

 Explanation When circular interpolation is executed by setting coordinates, this option executes
circular interpolation so that the projection on the specified coordinate plane becomes a
circle.

 This option can be used for circular interpolation movement and is enabled only for the
specified MOVE statement.

SAMPLE
P10 = 100.00 100.00 20.00 0.00 0.00 0.00
P11 = 150.00 100.00 0.00 0.00 0.00 0.00
P12 = 150.00 150.00 20.00 0.00 0.00 0.00
P13 = 100.00 150.00 40.00 0.00 0.00 0.00
MOVE P,P10
MOVE C,P11,P12
MOVE C,P13,P10...Moves continuously along a 3-dimensional circle generated

at P10, P11, P12, and P12, P13, P10.
MOVE C,P11,P12,XY
MOVE C,P13,P10,XY.....................................Moves continuously along a circle on an XY plane generated at P10, P11, P12, and P12,

P13, P10. Z-axis moves to the position specified by P12 and P10 (the circle's target
position).

NOTE
 • I f no coordinate p lane is
specified, the robot moves
along a 3-dimensional circle.

 • When a 2-axis robot is used,
the robot moves along a circle
on the XY plane.

7-108 Chapter 7 Robot Language Lists

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 58 MOVE

 ● Port output setting PTP linear interpolation Circular interpolation

Format 1

 DO m([b,.....,b])=<expression 1>@<expression 2>
 MO
 SO

Format 2

 DO (mb,.....,mb)=<expression 1>@<expression 2>
 MO
 SO

 Values m: port number2 to 7, 10 to 17, 20 to 27
 b: bit definition0 to 7
 <expression 1> Value which is output to the specified port (only integers

are valid).
 <expression 2> Position where the port output occurs. This position can be

specified in "mm" units down to the 2nd decimal position.

 Explanation During linear interpolation or circular interpolation movement, this command option
outputs the value of <expression 1> to the specified port when the robot reaches the
<expression 2> distance (units: "mm") from the start position.

 The <expression 2> numeric value represents a circle radius centered on the movement
START point.

 This command option can only be used with linear or circular interpolation movement,
and it can be specified no more than 2 times per each MOVE statement.

 If multiple bits are specified, they are expressed from the left in descending order (large
to small).

 If the [b,…,b] data is omitted in format 1, all 8 bits are processed.
 If no hardware port exists, nothing is output.

SAMPLE 1
 MOVE P,P0
 MOVE L,P1,DO2()=105@25.85

 During linear interpolation movement to P1, 105 (&B01101001) is output to DO2()
when the robot reaches a distance of 25.85mm from P0.

SAMPLE 2
 A!=10
 B!=20
 MOVE L,P2,MO(22)=1@A!,MO(22)=0@B!

 After movement START toward P2, MO(22) switches ON when the robot
has moved a distance of 10mm, and switches OFF when the robot has
moved a distance of 20mm.

Related commands MOVEI, DRIVE, DRIVEI, WAIT ARM

CAUTION
 • Output to ports "0" and "1" is
not allowed at DO, MO, and
SO.

REFERENCE

 • For bit setting details, see
Chapter 3 "10 Bit Settings".

MOVEI 7-109

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 59 MOVEI
Performs absolute movement of all robot axes

Format

MOVEI PTP ,<point definition> [, option [, option]...]
 P

 Explanation Executes relative position movement commands for the robot.
 It is not enabled for other groups, or for auxiliary axes.
 • Movement type : PTP
 • Point data setting : Direct coordinate data input, point definition.
 • Options : Speed setting

Options PTP Linear
interpolation

Arch
interpolation Remarks

Speed setting (SPEED) Enabled only for specified MOVE
statement

• If the MOVEI statement is interrupted and then re-executed, the movement target position can be
selected at the "MOVEI/DRIVEI start position" setting at "Other parameters" in the controller. For
details, refer to the controller user's manual.

 1) KEEP (default setting) Continues the previous (before interruption) movement. The original target
position remains unchanged.

 2) RESET Relative movement begins anew from the current position. The new target
position is different from the original one (before interruption). (Backward
compatibility)

Movement type

 ● PTP (point-to-point) movement
Execution START condition: Movement of all specified axes is complete (within the tolerance range).
Execution END condition: All specified axes have entered the OUT position range.
When two or more axes are specified, they will reach their target positions simultaneously. The
movement path of the axes is not guaranteed.

 ● Caution regarding commands which follow the MOVEI command:
If the next command following the MOVEI command is an executable command such as a signal
output command, that next command will start when the movement axis enters the OUT position
range. In other words, that next command starts before the axis arrives within the target position
tolerance range.

MEMO

7-110 Chapter 7 Robot Language Lists

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 59 MOVEI

Example:

Signal output (DO, etc.) Signal is output when axis enters within OUT position range.

DELAY DELAY command is executed and standby starts, when axis enters the OUT
position range.

HALT Program stops and is reset when axis enters the OUT position range. Therefore,
axis movement also stops.

 HOLD Program temporarily stops when axis enters the OUT position range. Therefore,
axis movement also stops.

WAIT WAIT command is executed when axis enters the OUT position range.

The WAIT ARM statement is used to execute the next command after the axis enters the tolerance
range.

P1

MOVEI command

DO(20) turns ON

MOVEI P,P1
WAIT ARM
DO(20)=1

DO(20) turns ON

MOVEI P,P1
DO(20)=1

Tolerance

Target position

OUT position

HOLD execution
(program temporarily stops)

MOVEI P,P1
WAIT ARM
HOLD

MOVEI P,P1
HOLD

Tolerance
OUT position

Target position

HOLD execution
(program temporarily stops)

SAMPLE

MOVEI P,P0 ...From its current position, the main robot axis moves (PTP
movement) the amount specified by P0.

MOVEI 7-111

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 59 MOVEI

Point data setting types

 ● Direct numeric value input PTP

Format

X Y Z R A B [F] [F1] [F2]

 Values X, Y, Z, R, A, BSpace-separated coordinate values for each axis.
 F ..Hand system flag
 F1 ..X-arm rotation information (R6YXTW500 model only).
 F2 ..Y-arm rotation information (R6YXTW500 model only).

 Explanation Directly specifies coordinate values by a numeric value. If an integer is used, this is
interpreted as "pulse" units, and if a real number is used, this is interpreted as "mm/deg"
units, with movement occurring accordingly.

 Hand system flags can be specified for SCARA robots when directly specifying the
coordinate values in "mm" units.

 To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "F". If
a number other than 1 or 2 is set, or if no number is designated, 0 will be set to indicate
that there is no hand system flag.

 1: Right-handed system is used to move to a specified position.
 2: Left-handed system is used to move to a specified position.

 Direct numeric value inputs can be used to set the X-arm and Y-arm rotation
information (*1) only on R6YXTW500 model robots where the coordinate system-of-
units has been set as "mm".

 To set extended X-arm and Y-arm rotation information at the R6YXTW500 model
robot, a "-1", "0", or "1" value must be specified at F1 and F2. Any other value, or no
X-arm and Y-arm rotation information at all, will be processed as "0".

 0: Indicates arm rotation information where movement to the "0" position has
 been specified.

 1: Indicates arm rotation information where movement to the "1" position has
 been specified.

 -1: Indicates arm rotation information where movement to the "-1" position
 has been specified.

 *1: For details regarding the X-arm and Y-arm rotation information, refer to Chapter 4
"3. Point data format".

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the
specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE
MOVEI P, 10000 10000 1000 1000 0 0
 From its current position, the axis moves (PTP movement) the

specified amount (pulse units).

NOTE
 • I f bo th in tegers and rea l
numbers are used together
(mixed), all coordinate values
will be handled in "mm/deg"
units.

 • X-arm and Y-arm rotation
information is only available in
software Ver.1.66M or higher.

MEMO

7-112 Chapter 7 Robot Language Lists

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 59 MOVEI

 ● Point definition PTP

Format

<point expression>[,<point expression>...]

 Explanation Specifies a <point expression>. Two or more data items can be designated by separating
them with a comma (,).

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the
specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

MOVEI P,P1 From its current position, the axis moves (PTP movement) the amount specified by P1.

MEMO

MOVEI 7-113

7

A

B

C

D

E

F

G

H

I

J

K

L

M

 59 MOVEI

Option types

 ● Speed setting PTP

Format

1. SPEED = <expression>
2. S = <expression>

 Values <expression> 1 to 100 (units: %)

 Explanation Specifies the program speed in an <expression>.
 The actual speed will be as follows:
 • [Robot max. speed (mm/sec)] × [automatic movement speed (%)] × [program

movement speed (%)].
 This option is enabled only for the specified MOVEI statement.

SAMPLE
 MOVEI P,P10,S=10...................................From its current position, the axis moves (PTP movement)

the amount specified by P1, at 10% of the program
movement speed.

Related commands MOVE, DRIVE, DRIVEI, WAIT ARM

NOTE
 • This option specifies only the
maximum speed and does not
guarantee movement at the
specified speed.

7-114 Chapter 7 Robot Language Lists

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 60 OFFLINE
Sets a specified communication port to the "offline" mode

Format

OFFLINE [ETH]
 [CMU]

 Values <expression>ETH, CMU, or no setting

 Explanation Changes the communication mode parameter in order to switch the communication mode to
OFFLINE.

 ETH Changes the Ethernet communication mode parameter to
OFFLINE and clears the transmission and reception buffers.

 CMU or no setting Changes the RS-232C communication mode parameter to
OFFLINE, resets the communication error, and clears the
reception buffer.

SAMPLE
OFFLINE
SEND CMU TO A$
SEND CMU TO P10
ONLINE
HALT

ORD 7-115

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 61 ORD
Acquires a character code

Format

ORD (<character string expression>)

 Explanation Acquires the character code of the first character in a <character string expression>.

SAMPLE
A=ORD("B") 66 (=&H42) is assigned to A.

Related commands CHR$

7-116 Chapter 7 Robot Language Lists

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 62 ON ERROR GOTO
Jumps to a specified label when an error occurs

Format

1. ON ERROR GOTO <label>
2. ON ERROR GOTO 0

 Values Error output informationERR: Error code number
 ERL: Line number where error occurred

 Explanation Even if an error occurs during execution of the robot language, this statement allows the
program to jump to the error processing routine specified by the <label>, allowing the
program to continue without being stopped (this is not possible for some serious errors.)

 If "0" is specified instead of the <label>, the program stops when an error occurs, and an
error message displays.

 If ON ERROR GOTO "0" is executed at any place other than an error processing routine,
the ON ERROR GOTO command is canceled (interruption canceled).

 The error processing routine can process an error using the RESUME statement and the
error output information (ERR, ERL).

• If a serious error such as "17.4: Overload" occurs, the program execution stops.
• The most recently executed "ON ERROR GOTO <label>" statement is valid.
• If an error occurs during an error processing routine, the program will stop.
• "ON ERROR GOTO <label>" statements cannot be used within error processing routines.

SAMPLE
ON ERROR GOTO *ER1
FOR A = 0 TO 9
 P[A+10] = P[A]
NEXT A
*L99: HALT
’ERROR ROUTINE
*ER1:
IF ERR = &H0604 THEN *NEXT1..................... Checks to see if a "Point doesn't exist" error has occurred.
IF ERR = &H0606 THEN *NEXT2...................... Checks to see if a "Subscript out of range" error has

occurred.
ON ERROR GOTO 0...Displays the error message and stops the program.
*NEXT1:
 RESUME NEXT...Jumps to the next line after the error line and resumes

program execution.
*NEXT2:
 RESUME *L99...Jumps to label *L99 and resumes program execution.

Related commands RESUME

MEMO

ON to GOSUB 7-117

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 63 ON to GOSUB
Executes the subroutine specified by the <expression> value

Format

ON<expression>GOSUB<label 1>[,<label 2>...]
 * GOSUB can also be expressed as "GO SUB".

 Values <expression>0 or positive integer

 Explanation The <expression> value determines the program's jump destination.
 An <expression> value of "1" specifies a jump to <label 1>, "2" specifies a jump to <label

2>, etc.
 Likewise, (<expression> value "n" specifies a jump to <label n>.)
 If the <expression> value is "0" or if the <expression> value exceeds the number of existing

labels, no jump occurs, and the next command is executed.
 After executing a jump destination subroutine, the next command after the ON to GOSUB

statement is executed.

SAMPLE
’MAIN ROUTINE
*ST:
ON DI3() GOSUB *SUB1,*SUB2,*SUB3............ *SUB1 to *SUB3 are executed.
GOTO *ST ...Returns to *ST.
HALT
’SUB ROUTINE
*SUB1:
 MOVE P,P10,Z=0
 RETURN
*SUB2:
 DO(30) = 1
 RETURN
*SUB3:
 DO(30) = 0
 RETURN

Related commands GOSUB, RETURN, DECLARE

7-118 Chapter 7 Robot Language Lists

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 64 ON to GOTO
Jumps to the label specified by the <expression> value

Format

ON<expression>GOTO<label 1>[,<label 2>...]
 * GOTO can also be expressed as "GO TO".

 Values <expression>0 or positive integer

 Explanation The <expression> value determines the program's jump destination.
 An <expression> value of "1" specifies a jump to <label 1>, "2" specifies a jump to <label

2>, etc.
 Likewise, (<expression> value "n" specifies a jump to <label n>.)
 If the <expression> value is "0" or if the <expression> value exceeds the number of existing

labels, no jump occurs, and the next command is executed.

SAMPLE
’MAIN ROUTINE
*ST:
ON DI3() GOTO *L1,*L2,*L3.. Jumps to *L1 to *L3 in accordance

with the DI3() value.
GOTO *ST ..Returns to *ST.
HALT
’SUB ROUTINE
*L1:
 MOVE P,P10,Z=0
 GOTO *ST
*L2:
 DO(30) = 1
 GOTO *ST
*L3:
 DO(30) = 0
 GOTO *ST

Related commands GOTO, DECLARE

ONLINE 7-119

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 65 ONLINE
Sets the specified communication port to the "online" mode

Format

ONLINE [ETH]
 [CMU]

 Values <expression>ETH, CMU, or no setting

 Explanation Changes the communication mode parameter in order to switch the communication mode to
ONLINE.

 ETH Changes the Ethernet communication mode parameter to
ONLINE and clears the transmission and reception buffers.

 CMU or no setting Changes the RS-232C communication mode parameter to
ONLINE, resets the communication error, and clears the
reception buffer.

SAMPLE
OFFLINE
SEND CMU TO A$
SEND CMU TO P10
ONLINE
HALT

7-120 Chapter 7 Robot Language Lists

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 66 ORGORD
Specifies/acquires the robot's return-to-origin sequence

Format

ORGORD <expression>

 Values <expression>main group: n to nnnnnn (n : 0 to 6)

 Explanation Sets the axis sequence parameter for the robot's return-to-origin and absolute search
operations.

 The 1 to 6 axes are expressed as "1 to 6" values, respectively, and the <expression> value
must be 1-digit to 6-digit integer.

 The same axis cannot be specified twice.
 After the specified axes are returned to their origin points in sequence, from left to right, the

remaining axes return to their origin points simultaneously.
 If the <expression> value is "0", all axes will be returned to their origin points

simultaneously.

Functions

Format

ORGORD

 Explanation Acquires the axis sequence parameter for return-to-origin and absolute search operations.

SAMPLE
A=3
ORGORD A ...A return-to-origin is executed first for axis 3.
ABSRST ...After the main group's axis 3 return-to-origin is completed, a return-to-

origin is executed for the remaining axes, followed by an absolute reset.
MOVE P,P0
A=ORGORD ..The main group's return-to-origin sequence parameter is

assigned to variable A.
HALT

Related commands ABSRST, ORIGIN

ORIGIN 7-121

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 67 ORIGIN
Performs an incremental mode axis return-to-origin

Format

ORIGIN

 Explanation This statement performs a return-to-origin for an incremental mode axis, or an absolute
search for a semi-absolute axis.

 If the movement is stopped at an intermediate point, an "incomplete return-to-origin" status
will occur.

SAMPLE
ORIGIN ..Performs an incremental mode return-to-origin.

Related commands ABSRST, ORGORD, MCHREF

A value other than "0" must be set for the execution <level> in order to execute the ORIGIN command. For
details regarding how to check and change the execution <level> value, see section 13 "3.10 Setting the
UTILITY mode", and section 15 "6 Execution Level".

7-122 Chapter 7 Robot Language Lists

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 68 OUT
Turns ON the specified port output

Format

OUT DOm([b,.....,b]) [, <time>]
 DO(mb,.....,mb)
 MOm([b,.....,b])
 MO(mb,.....,mb)
 SOm([b,.....,b])
 SO(mb,.....,mb)
 LO0([b,.....,b])
 LO(0b,.....,0b)
 TO0([b,.....,b])
 TO(0b,.....,0b)

 Values m: port number2 to 7, 10 to 17, 20 to 27
 b: bit definition0 to 7
 <expression>1 to 3600000 (units: ms)

 Explanation This statement turns ON the specified port output and terminates the command. (The
program proceeds to the next line.) Output to that port is then turned OFF after the time
specified by the <expression> has elapsed. If the operation is stopped temporarily at an
intermediate point and then restarted, that port's output is turned OFF when the remaining
<expression> specified time has elapsed.

 <expression> values are rounded downward to the nearest even 10 (e.g., 113 → 110). Or, if
a value is less than 10, it becomes 10.

 If this <expression> is omitted, the specified port's output remains ON.
 Up to 16 OUT statements using <expressions> can be executed at the same time.

Attempting to execute 17 or more OUT statements will activate error "6.26: Insufficient
memory for OUT".

 If multiple bits are specified, they are expressed from the left in descending order (large to
small).

 If no hardware port exists, nothing is output.

SAMPLE
 OUT DO2(),200...Turns DO(27 to 20) ON, then turns them OFF 200ms

later.
 OUT DO(37,35,27,20)...Turns DO(37, 35, 27, 20) ON.

Related commands DO, MO, SO, TO, LO

CAUTION
 • Output to ports "0" and "1" are
not allowed at DO, MO, and
SO.

REFERENCE

 • For bit setting details, see
Chapter 3 "10 Bit Settings".

OUTPOS 7-123

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 69 OUTPOS
Specifies/acquires the OUT enable position parameter of the robot

Format

1. OUTPOS <expression>
2. OUTPOS (<axis number>)=<expression>

 Values <axis number>main group: 1 to 6
 <expression>1 to 6144000 (Unit: pulses)

 Explanation Changes the parameter's OUT position to the value indicated by the <expression>.
 Format 1: The change is applied to the group axes.
 Format 2: The change is applied only to the axis specified by <axis number>.

• If an axis that is set to "no axis" in the system generation is specified, a "5.37 : Specification mismatch"
error message displays and command execution is stopped.

Functions

Format

OUTPOS(<axis 1>)

 Values <axis 1>main group: 1 to 6

 Explanation Acquires the OUT position parameter value for the axis specified by the <expression>.

• If an axis that is set to "no axis" in the system generation is specified, a "5.37 : Specification mismatch"
error message displays and command execution is stopped.

MEMO

MEMO

7-124 Chapter 7 Robot Language Lists

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 69 OUTPOS

SAMPLE
’CYCLE WITH DECREASING OUTPOS
DIM SAV(3)
GOSUB *SAVE_OUTPOS
FOR A=1000 TO 10000 STEP 1000
 GOSUB *CHANGE_OUTPOS
 MOVE P,P0
 DO3(0)=1
 MOVE P,P1
 DO3(0)=0
NEXT A
GOSUB *RESTORE_OUTPOS
HALT
*CHANGE_OUTPOS:
 FOR B=1 TO 4
 OUTPOS(B)=A
 NEXT B
 RETURN
*SAVE_OUTPOS:
 FOR B=1 TO 4
 SAV(B-1)=OUTPOS(B)
 NEXT B
 RETURN
*RESTORE_OUTPOS:
 FOR B=1 TO 4
 OUTPOS(B)=SAV(B-1)
 NEXT B
 RETURN

PATH 7-125

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 70 PATH
Specifies the main robot axis PATH motion path

Format

PATH L ,<point definition> [, option [, option...]]
 C

 Explanation Sets the PATH motion path for the main robot axis. This command can only be executed
between the PATH SET and PATH END commands. If execution is attempted elsewhere,
an error will occur.

 • Movement type: Linear interpolation and circular interpolation.
 • Point setting: By direct numeric value input and by point definition.
 • Options: Speed setting, coordinate plane setting (for circular interpolation

 only), and port output setting.

PATH motion types

 ● Linear interpolation movement
"PATH L…" is set for linear interpolation movement.

 ● Circular interpolation movement
"PATH C…" is set for circular interpolation movement.

Only the X, Y and Z coordinate values of the specified points are valid for PATH motion. Any other
coordinates use the coordinate values of the PATH motion START point.
The motion path can be connected by repeated PATH commands ("PATH L", "PATH C") to allow
movement without stopping.

7-126 Chapter 7 Robot Language Lists

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 70 PATH

Point data setting types

 ● Direct numeric value input linear interpolation Circular interpolation

Format

X Y Z R A B [F] [F1] [F2]

 Values X, Y, Z, R, A, BSpace-separated coordinate values for each axis.
 F ..Hand system flag.
 F1 ..X-arm rotation information (R6YXTW500 model only).
 F2 ..Y-arm rotation information (R6YXTW500 model only).

 Explanation Directly specifies coordinate data by a numeric value. If	an	integer	 is	used,	this	 is	
interpreted	as	"pulse"	units,	and	if	a	real	number	(with	decimal	point)	is	used,	this	
is interpreted as "mm" units. If both integers and real numbers are used together
(mixed),	all	coordinate	values	will	be	handled	in	"mm"	units.

 With this format, only 1 point can be specified as the movement destination coordinates.
The only type of movement specified by this point data setting is linear interpolation.

 Hand system flags can be specified for SCARA robots when directly specifying the
coordinate data in "mm" units.

 To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "F". If a
number other than 1 or 2 is set, or if no number is set, 0 will be set to indicate that there
is no hand system flag.

 1 : Right-handed system is used to move to a specified position.
 2 : Left-handed system is used to move to a specified position.

 Direct numeric value inputs can be used to set the X-arm and Y-arm rotation
information (*1) only on R6YXTW500 model robots where the coordinate system-of-
units has been set as "mm".

 To set extended X-arm and Y-arm rotation information at the R6YXTW500 model
robot, a "-1", "0", or "1" value must be specified at "F1" and "F2". Any other value, or
no X-arm and Y-arm rotation information at all, will be processed as "0".

 0: Indicates arm rotation information where movement to the "0" position has
 been specified.

 1: Indicates arm rotation information where movement to the "1" position has
 been specified.

 -1: Indicates arm rotation information where movement to the "-1" position
 has been specified.

 *1: For details regarding the X-arm and Y-arm rotation information, refer to Chapter 4
"3. Point data format".

 The same hand system must always be used between a motion path's START and
END points. The hand system cannot be changed between these points.

NOTE
 • X-arm and Y-arm rotation
information is only available in
software Ver.1.66M or higher.

CAUTION
 • The hand system used during
PATH motion must be the
same as the hand system used
at the path motion route's start
point. The same applies if the
path is to pass through points
where hand system flags are
set. Differing hand systems
will cause an error and disable
motion.

 • The X-arm and Y-arm rotation
information during PATH
movement must be the same as
the X-arm and Y-arm rotation
in format ion a t the PATH
movement's START point. If the
two are different, an error will
occur and movement will be
disabled.

PATH 7-127

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 70 PATH

 Moreover, the X-arm and Y-arm rotation information must be the same throughout the
movement path, from the path's START to END points. The X-arm and Y-arm rotation
information cannot be changed at any point along the path.

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the
specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE
PATH L,10000 10000 1000 1000 0 0
 The target position is set in "pulse" units, and linear interpolation

movement occurs.
PATH L,150.00 250.00 10.00 30.00 0.00 0.00 1
 The target position is set in the coordinate values specified by the right-

handed system, and linear interpolation movement occurs.

 ● Point definition linear interpolation Circular interpolation

Format

<point definition> [,<point definition>...]

 Explanation Specifies the movement destination as <point expression> value. Two or more data
items can be designated by separating them with a comma (,).

 For circular interpolation movement, 2 points must be specified for each arc.

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the
specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE

PATH L,P1,P2,P3......................................Specifies sequential linear interpolation movement to
positions specified by P1, P2 and P3.

PATH C P5,P6,P7,P8.................................Specifies circular interpolation movement through the
following points: current position, P5, P6, and P6, P7, P8.

MEMO

CAUTION
 • The hand system used during
PATH motion must be the
same as the hand system used
at the path motion route's start
point. The same applies if the
path is to pass through points
where hand system flags are
set. Differing hand systems
will cause an error and disable
motion.

MEMO

CAUTION
 • The X-arm and Y-arm rotation
information during PATH
movement must be the same as
the X-arm and Y-arm rotation
in format ion a t the PATH
movement's START point. If
the two are different, an error
will occur and movement will
be disabled.

7-128 Chapter 7 Robot Language Lists

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 70 PATH

Option types

 ● Speed setting linear interpolation Circular interpolation

Format

1. SPEED = <expression>
2. S = <expression>

 Values <expression>1 to 100 (units: %)

 Explanation The program's movement speed is specified as the <expression> value (units: %).
 The actual speed is determined as shown below.
 • Robot's max. speed (mm/sec) × automatic movement speed (%)× program movement

speed (%).
 This option is enabled only for the specified PATH statement.

SAMPLE
PATH L,P5,S=40..Movement to the position specified by P5 occurs at 40%

of the program movement speed.

Format

VEL = <expression>

 Values <expression> The permissible setting range varies according to the robot
type (units: mm/sec).

 Explanation The movement speed is specified by the <expression> value (units: mm/sec). An error
will occur if the speed is too fast.

 This command is enabled only for the specified PATH statement.

SAMPLE
PATH L,P10,VEL=150..................................Movement to the position specified by P10 occurs at a

speed of 150mm/sec.

NOTE
 • This defines the maximum
speed, and does not guarantee
that all movement will occur at
specified speed.

NOTE
 • This option specifies only the
maximum composite speed and
does not guarantee movement
at the specified speed.

PATH 7-129

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 70 PATH

 ● Coordinate plane setting linear interpolation Circular interpolation

Format

 XY
 YZ
 ZX

 Values XY ..XY coordinate plane
 YZ...YZ coordinate plane
 ZX...ZX coordinate plane

 Explanation Specifies the coordinate plane on which to draw a circular arc for circular interpolation
movement. If no coordinate plane is specified, 3-dimensional circular interpolation
movement is used.

 Only circular interpolation movement can be specified by this coordinate plane setting.
 This command is enabled only for the specified PATH statement.

SAMPLE
PATH C,P1,P2,XY..Circular interpolation movement occurs within the XY

plane, with the Z-axis moving to the P2 Z-axis coordinates
position.

7-130 Chapter 7 Robot Language Lists

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 70 PATH

 ● Port output setting linear interpolation Circular interpolation

Format 1

 DO m ([b,.....,b])=<expression 1> @<expression 2>
 MO
 SO

Format 2

 DO (mb,.....,mb)=<expression 1> @<expression 2>
 MO
 SO

 Values m: port number2 to 7, 10 to 17, 20 to 27
 b: bit definition0 to 7
 <expression 1> Value which is output to the specified port (only integers

are valid).
 <expression 2> Position where the port output occurs. This position can be

specified in "mm" units down to the 2nd decimal position.

 Explanation During PATH motion, this command option outputs the value of <expression 1> to
the specified port when the robot reaches the <expression 2> distance from the start
position.

 The <expression 2> numeric value represents a circle radius centered on the movement
START point.

 If multiple bits are specified, they are expressed from the left in descending order (large
to small). If the [b,…,b] data is omitted in format 1, all 8 bits are processed.

 If no hardware port exists, nothing is output.

SAMPLE
PATH SET
PATH L,P1,DO(20)=1@10...................................During linear interpolation movement to P1, "1" is output to

DO(20) at a 10mm radius position from the START position.
PATH L,P2,DO(21)=1@12.5............................During linear interpolation movement to P2, "1" is

output to DO(21) at a 12.5mm radius position from
P1.

PATH END
PATH START

Related commands PATH SET, PATH END, PATH START

 Reference For PATH function details, see Chapter 9 "PATH Statements".

CAUTION
 • Output to ports "0" and "1" is
not allowed at DO, MO, and
SO.

REFERENCE

 • For de ta i l s regard ing b i t
definitions, see Chapter 3 "10
Bit Settings".

PATH END 7-131

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 71 PATH END
Ends the movement path setting

Format

PATH END

 Explanation Ends the path setting for PATH motion.
 The PATH END command must always be paired with a PATH SET command. The PATH

motion path end-point is the final point specified by the final PATH command (PATH L,
PATH C) which exists between the PATH SET and PATH END commands.

 Attempting to execute a PATH END command when no PATH SET command has been
executed will result in an error.

Related commands PATH, PATH SET, PATH START

 Reference For PATH function details, see Chapter 9 "PATH Statements".

7-132 Chapter 7 Robot Language Lists

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 72 PATH SET
Starts the movement path setting

Format

PATH SET [<point definition>]

 Explanation Starts the path setting for PATH motion.
 Specifies the <point definition> position as the PATH motion start-point. (This only sets

the PATH motion start point and does not actually begin robot motion.) If the <point
definition> value is omitted, the current robot position is set as the start point.

 However, if robot movement is in progress, the target position of that movement becomes
the start point. (Example: The OUT position range is wider for the MOVE command which
precedes the PATH SET command, so the robot is still moving when the PATH SET
command is executed.)

 The PATH SET command must always be paired with a PATH END.
 When a PATH SET command is executed, the previously set PATH motion path data is

deleted.

 • Point data setting : By direct numeric value input and by point definition

Point data setting types

 ● Direct numeric value input

Format

X Y Z R A B [F] [F1] [F2]

 Values X, Y, Z ,R, A, BSpace-separated coordinate values for each axis.

 F ..Hand system flag.
 F1 ..X-arm rotation information (R6YXTW500 model only).
 F2 ..Y-arm rotation information (R6YXTW500 model only).

 Explanation Directly specifies the path's start-point coordinates for PATH motion. If an integer is
used, this is interpreted as "pulse" units, and if a real number is used, this is interpreted
as "mm" units (valid down to the 2nd decimal position).

 Hand system flags can be specified for SCARA robots when directly specifying the
coordinate data in "mm" units.

 To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "F". If a
number other than 1 or 2 is set, or if no number is set, 0 will be set to indicate that there
is no hand system flag.

 1: Indicates that a right-handed system is specified for the PATH motion's start-point.
 2: Indicates that a left-handed system is specified for the PATH motion's start-point.

 Direct numeric value inputs can be used to set the X-arm and Y-arm rotation
information (*1) only on R6YXTW500 model robots where the coordinate system-of-
units has been set as "mm".

 To set extended X-arm and Y-arm rotation information at the R6YXTW500 model
robot, a "-1", "0", or "1" value must be specified at F1 and F2. Any other value, or no
X-arm and Y-arm rotation information at all, will be processed as "0".

NOTE
 • I f bo th in tegers and rea l
numbers are used together
(mixed), all coordinate values
will be handled in "mm/deg"
units.

 • X-arm and Y-arm rotation
information is only available in
software Ver.1.66M or higher.

CAUTION
 • The hand system used during
PATH motion must be the
same hand system as that at
the PATH motion's start-point.
An error will occur if the hand
systems are different.

 • The X-arm and Y-arm rotation
information during PATH
movement must be the same as
the X-arm and Y-arm rotation
in format ion a t the PATH
movement's START point. If the
two are different, an error will
occur and movement will be
disabled.

PATH SET 7-133

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 72 PATH SET

 0: Indicates that the PATH movement START point's arm rotation information
 has been set at the "0" position.

 1: Indicates that the PATH movement START point's arm rotation information
 has been set at the "1" position.

 -1: Indicates that the PATH movement START point's arm rotation information
 has been set at the "-1" position.

 *1: For details regarding the X-arm and Y-arm rotation information, refer to
Chapter 4 "3. Point data format".

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the
specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE
PATH SET 120 250.00 55.2 20.33 0 0
 PATH motion's start-point is specified in "mm" units as follows: (120.00

250.00 55.20 20.33 0.00 0.00).
PATH SET -51200 80521 7045 204410 0 0

 PATH motion's start-point is specified in "pulse" units.

 ● Point definition

Format

<point definition>

 Explanation The PATH motion's start-point is specified by the <point expression>.

• At SCARA robots with a hand system flag set in the movement destination's coordinate data, the
specified hand system will have priority over the current arm type or LEFTY/RIGHTY setting.

SAMPLE
PATH SET P10..The PATH motion's start-point is set as P10.
PATH SET WHERE..The PATH motion's start-point is set as the robot's current

position.

Related commands PATH, PATH END, PATH START

 Reference For PATH function details, see Chapter 9 "PATH Statements".

MEMO

CAUTION
 • The hand system used during
PATH motion must be the
same as the hand system used
at the path motion route's start
point.Differing hand systems
will cause an error and disable
motion.

MEMO

CAUTION
 • The X-arm and Y-arm rotation
information during PATH
movement must be the same as
the X-arm and Y-arm rotation
in format ion a t the PATH
movement's START point. If
the two are different, an error
will occur and movement will
be disabled.

7-134 Chapter 7 Robot Language Lists

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 73 PATH START
Starts the PATH motion

Format

PATH START

 Explanation Starts PATH motion.
 Before PATH START can be executed, the PATH motion path must be specified by

the PATH SET command, PATH commands (PATH L, PATH C) and the PATH END
command. The robot must also be positioned at the motion path's start-point which was
specified by the PATH SET command.

 The robot's PATH motion speed is the automatic movement speed (%) which was in effect
when the PATH START was executed, multiplied by the program movement speed (%)
specified by the SPEED command or the (SPEED or S) option of the PATH command. A
speed specified by the "VEL" option of the PATH command does not rely on the automatic
movement speed.

 After PATH motion begins, the PATH START command is terminated when the robot
reaches the PATH motion end-point, or when movement is stopped by an interlock, etc.

 This command can only be executed in Task 1 (main task).

Related commands PATH, PATH SET, PATH END

 Reference For PATH function details, see Chapter 9 "PATH Statements".

PDEF 7-135

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 74 PDEF
Defines the pallet used to execute pallet movement commands

Format

PDEF(<Pallet definition number>)=<expression 1>, <expression 2> [, <expression 3>]

 Values <Pallet definition number>0 to 19
 <expression 1>Number of points (NX) between P[1] and P[2].
 <expression 2>Number of points (NY) between P[1] and P[3].
 <expression 3>Number of points (NZ) between P[1] and P[5].
 Total number of points: <expression 1> × <expression 2>

× <expression 3> must be 32767 or less.
 Regarding the P[1] to P[5] definition, see the figure below.

 Explanation Defines the pallets to permit execution of the pallet movement command.
 Also changes the dividing conditions of previously defined pallet data.
 After specifying the number of points per axis, the equally-spaced points for each axis are

automatically calculated and defined in the sequence shown in the figure below.
 If <expression 3> (Z-axis direction) is omitted, the height direction value becomes "1".
 The total number of points defined for a single pallet must not exceed 32,767.

Automatic point calculation

P[5]

P[3] P[4]

P[2]P[1]
NX

NY

4

7
10

1

16

19
22

13

2

5

8
11

3

6

9
12

14

17

20
23

15

18

21
24

NZ

NY

The point data for pallet definition uses the following data areas.

Pallet	definition P[1] P[2} P[3} P[4] P[5]
Pallet 0 P3996 P3997 P3998 P3999 P4000
Pallet 1 P3991 P3992 P3993 P3994 P3995

: : : : : :
Pallet 19 P3901 P3902 P3903 P3904 P3905

SAMPLE
PDEF(1)=3,4,2 ...Pallet definition 1 is defined as 3 × 4 × 2.

7-136 Chapter 7 Robot Language Lists

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 75 PMOVE
Executes a pallet movement command for the robot

Format

PMOVE (<pallet definition number> , <pallet position number>)[,option[,option]...]

 Values <pallet definition number>0 to 19
 <pallet position number>1 to 32767

 Explanation Executes a robot axis "pallet move" command. (The specified pallet numbers must be
registered in advance.)

 The PMOVE command applies to all main robot axes. This command do not apply to any
other group axes, or to auxiliary axes.

 • Movement type: PTP
 • Pallet definition number: Numeric expression
 • Pallet position number: Numeric expression
 • Options: Speed setting, arch motion setting, STOPON condition

 setting

 The position numbers for each pallet definition are shown below.

NX*NY*(NZ-1)+1 NX*NY*(NZ-1)+NZ

Position numbers for each pallet definition

P[5]

1 2 NX

NX*2NX+1

NX*(NY-1)+1 NX*NY

NX*NY*NZ

...

P[3] P[4]

P[2]

P[1]

NZ

NX

NY

NX*NY*(NZ-1)+1 NX*NY*(NZ-1)+NZ

• Although the XYZ axes move to the positions determined by calculated values, the R-axis moves to
the position specified by pallet point data P[1].

Options PTP Remarks
Speed setting (SPEED) Enabled only for specified PMOVE statement
Arch motion Enabled only for specified PMOVE statement
STOPON condition setting Enabled only by program execution

SAMPLE

PMOVE(1,16) ..The main robot axis moves from its current position to the
position specified by pallet position number 16 of pallet definition
number 1.

MEMO

PMOVE 7-137

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 75 PMOVE

Movement type

 ● PTP (point-to-point) movement
PTP movement begins after positioning of all movement axes is complete (within the tolerance range),
and the command terminates when the movement axes enter the OUT position range. Although
the movement axes reach their target positions simultaneously, their paths are not guaranteed.

 ● Caution regarding commands which follow the PMOVE command:
If the next command following the PMOVE command is an executable command such as a signal
output command, that next command will start when the movement axis enters the OUT position
range. In other words, that next command starts before the axis arrives within the target position OUT
position range.
Example:

Signal output (DO, etc.) Signal is output when axis enters within OUT position range.

DELAY DELAY command is executed and standby starts, when axis enters the OUT
position range.

HALT Program stops and is reset when axis enters the OUT position range. Therefore,
axis movement also stops.

 HOLD Program temporarily stops when axis enters the OUT position range. Therefore,
axis movement also stops.

WAIT WAIT command is executed when axis enters the OUT position range.

The WAIT ARM statement is used to execute the next command after the axis enters the tolerance
range.

P1

PMOVE command

DO(20) turns ON

PMOVE(0,1)
WAIT ARM
DO(20)=1

DO(20) turns ON

PMOVE(0,1)
DO(20)=1

Tolerance

Target position

OUT position

HOLD execution
(program temporarily stops)

PMOVE(0,1)
WAIT ARM
HOLD

PMOVE(0,1)
HOLD

Tolerance
OUT position

Target position

HOLD execution
(program temporarily stops)

7-138 Chapter 7 Robot Language Lists

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 75 PMOVE

Option types

 ● Speed setting PTP

Format

1. SPEED = <expression>
2. S = <expression>

 Values <expression>1 to 100 (units: %)

 Explanation Specifies the program speed in an <expression>. The movement speed is the automatic
movement speed multiplied by the program movement speed.

 This option is enabled only for the specified PMOVE statement.

SAMPLE
PMOVE(1,3),S=10..

Movement occurs at 10% of the program speed, from the
current position to the position specified by pallet position
number 3 of pallet definition number 1.

 ● Arch motion setting PTP

Format

x = <expression>[, x = <expression>...]

 Values x ..Specifies the Z,R,A,B axis.
 <expression>An integer value is processed in "pulse" units.
 A real number (with decimal point) is process in "mm/deg"

units.

 Explanation 1. The "x" specified axis begins moving toward the position specified by the
<expression>.

 2. When the "x" specified axis enters the arch position range, all other axes move
toward the target position.

 3. When all axes other than the "x" specified axis enter the arch position range, and
the "x" specified axis enters the tolerance range of the position specified by the
<expression>, the "x" specified axis then moves to the target position.

 4. The command ends when all axis enter the OUT position range.

SAMPLE

PMOVE(1,A),Z=0........................... The Z-axis first moves from the current position to the "0 pulse" position. Then the
other axes move to the position specified by pallet position number A of pallet definition
number 1. Finally the Z-axis moves to the position specified by pallet position number A.

NOTE
 • This option specifies only the
maximum speed and does not
guarantee movement at the
specified speed.

PMOVE 7-139

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 75 PMOVE

SAMPLE: PMOVE Z

Target position: P1Current position

1. Z-axis movement 3. Z-axis movement

2. Other axes movement

Z-axis arch position range

Other axes' arch
position range

Z=0

 ● STOPON condition setting PTP

Format

STOPON <conditional expression>

 Explanation Stops movement when the conditions specified by the conditional expression are
met. Because this is a deceleration type stop, there will be some movement (during
deceleration) after the conditions are met.

 If the conditions are already met before movement begins, no movement occurs, and
the command is terminated.

 This option is only possible by program execution.

SAMPLE
PMOVE(A,16),STOPON DI(20)=1
 Moves from the current position to the position specified by pallet position number 16 of

pallet definition number A, then decelerates and stops when the condition "DI(20) = 1" is
met.

• When the conditional expression used to designate the STOPON condition is a numeric expression,
the conditions for determining a TRUE or FALSE status can be changed at the controller's "TRUE
conditions" in the "Other parameters" mode. These conditions apply to all the IF, WHILE, WAIT,
STOPON, etc., conditional expressions. For details, refer to the controller user's manual.

 1) -1 (default setting) An expression value of "-1" indicates a TRUE status, and "0" indicates a
FALSE status.

 A "6.35 Incorrect condition expression" error occurs if the expression
value is other than "-1" or "0".

 2) not 0 Any expression value other than "0" indicates a TRUE status, and "0"
indicates a FALSE status.

MEMO

7-140 Chapter 7 Robot Language Lists

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 76 Pn
Defines points within a program

Format

Pn = x y z r a b [f] [f1] [f2]

 Values n ..Point number: 0 to 9999.
 x, y, z, r, a, bPoint data: the range varies according to the format.
 f...Hand system flag: 1 or 2.
 f1... X-arm rotation information : -1, 0, 1 (R6YXTW500 model only).
 f2... Y-arm rotation information : -1, 0, 1 (R6YXTW500 model only).

 Explanation Defines the point data.

1. "n" indicates the point number.
2. Input data for "x" to "b" must be separated with a space (blank).
3. If all input data for "x" to "b" are integers (no decimal points), the movement units are

viewed as "pulses". "x" through "b" then correspond to axis 1 through axis 6.
4. If there is even 1 real number (with decimal point) in the input data for "x" through

"b", the movement units are recognized as "mm". In this case, "x" to "z" correspond
to the x, y and z coordinates of a Cartesian coordinate system, while "r" to "b"
correspond to axes 4 to 6.

5. The input data ranges are as follows:
 For "pulse" units: -6,144,000 to 6,144,000 range
 For "mm" units: -99,999.99 to 99,999.99 range

 Hand system flags can be specified for SCARA robots when specifying point definition data
in "mm" units.

 To specify an extended hand system flag for SCARA robots, set either 1 or 2 at "f". If a
number other than 1 or 2 is set, or if no number is designated, 0 will be set, indicating that
there is no hand system flag.

1: Indicates a right-handed system point setting.
2: Indicates a left-handed system point setting.

 X-arm and Y-arm rotation information (*1) can be specified on R6YXTW500 where point
data is defined in "mm" units.

 To set extended X-arm and Y-arm rotation information at the R6YXTW500 model robot,
a "-1", "0", or "1" value must be specified at f1 and f2. Any other value, or no X-arm and
Y-arm rotation information at all, will be processed as "0".

 0: Indicates arm rotation information where "0" has been specified.
 1: Indicates arm rotation information where "1" has been specified.
 -1: Indicates arm rotation information where "-1" has been specified.

 *1: For details regarding the X-arm and Y-arm rotation information, refer to
Chapter 4 "3. Point data format".

NOTE
 • I f bo th in tegers and rea l
numbers are used together
(mixed), all coordinate values
will be handled in "mm/deg"
units.

 • X-arm and Y-arm rotation
information is only available in
software Ver.1.66M or higher.

Pn 7-141

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 76 Pn

SAMPLE
P1 = 0 0 0 0 0 0
P2 = 100.00 200.00 50.00 0.00 0.00 0.00
P3 = 10.00 0.00 0.00 0.00 0.00 0.00
P10= P2
FOR A=10 TO 15
 P[A+1]=P[A]+P3
NEXT A
FOR A=10 TO 16
 MOVE P,P1,P[A]
NEXT A
HALT

Related commands Point assignment statement (LET)

NOTE
 • All input values are handled as
constants.

 • If controller power is turned
off during execution of a
point definition statement, a
memory-related error such as
"9.2: Point check-sum error"
may occur.

7-142 Chapter 7 Robot Language Lists

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 77 PPNT
Creates pallet point data

Format

PPNT(pallet definition number,pallet position number)

 Explanation Creates the point data specified by the pallet definition number and the pallet position
number.

SAMPLE

P10=PPNT(1,24)..Creates, at P10, the point data specified by pallet position
number 24 of pallet definition number 1.

Related commands PDEF, PMOVE

PRINT 7-143

87

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 78 PRINT
Displays the specified expression value at the programming box

Format

PRINT [<expression][, <expression>...][,]
 ; ;

 Values <expression>character string, numeric value, variable.

 Explanation Displays a specified variable on the programming box screen.
 Output definitions are as follows:

1. If numbers or character strings are specified in an <expression>, they display as they
are. If variables or arrays are specified, the values assigned to the specified variables or
arrays display.

2 If no <expression> is specified, only a line-feed occurs.
3. If the data length exceeds the screen width, a line-feed occurs, and the data wraps to the

next line.
4. If a comma (,) is used as a display delimiter, a space (blank) is inserted between the

displayed items.
5. If a semicolon (;) is used as a display delimiter, the displayed items appear in

succession without being separated.
6. If the data ends with a delimiter, the next PRINT statement is executed without a line-

feed. When not ended with a display delimiter, a line-feed occurs.

• Data communication to the programming box screen occurs in order for the PRINT statement to be
displayed there. Therefore, program execution may be delayed when several PRINT statements are
executed consecutively.

SAMPLE
PRINT A Displays the value of variable A.
PRINT "A1 =";A1 ...Displays the value of variable A1 after "A1 =".
PRINT "B(0),B(1) = ";B(0);",";B(1)
PRINT P100 ..Displays the P100 value.

Related commands INPUT

7

7-144 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 79 RADDEG
Performs a unit conversion (radians → degrees)

Format

RADDEG(<expression>)

 Values <expression>Angle (units: radians)

 Explanation Converts the <expression> value to degrees.

SAMPLE

LOCR(P0)=RADDEG(ATN(B))............................Converts the variable B arctangent value to degrees, and
assigns it to R-data of P0.

Related commands ATN, COS, DEGRAD, SIN, TAN

7

REM 7-145

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 80 REM
Inserts a comment

Format

1. REM <character string>
2. ' <character string>

 Explanation All characters which follow REM or an apostrophe (') are handled as a comment. This
comment statement is used only to insert comments in the program, and it does not execute
any command. The apostrophe (') can be entered at any point in the line.

SAMPLE
REM *** MAIN PROGRAM ***
 ’*** SUBROUTINE ***
HALT ’HALT COMMAND

7

7-146 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 81 RESET
Turns OFF the bits of specified ports, or clears variables

Format 1

RESET DOm([b,.....,b])
 DO(mb,.....,mb)
 MOm([b,.....,b])
 MO(mb,.....,mb)
 TO0([b,.....,b])
 TO(0b,.....,0b)
 LO0([b,.....,b])
 LO(0b,.....,0b)
 SOm([b,.....,b])
 SO(mb,.....,mb)

Format 2

RESET TCOUNTER

 Values m: port number2 to 7, 10 to 17, 20 to 27
 b: bit definition0 to 7

 Explanation Format 1: Turns the bits of specified ports OFF.
 Format 2: Clears the 10ms counter variables (10ms counter variables are used to measure

the time in 10ms units).

 If multiple bits are specified, they are expressed from the left in descending order (large to
small).

 If the [b,…,b] data is omitted, all 8 bits are processed.

SAMPLE
 RESET DO2() ...Turns OFF DO(27 to 20).
 RESET DO2(6,5,1) ...Turns OFF DO(26, 25, 21).
 RESET (37,35,27,20)...Turns OFF DO(37, 35, 27, 20).
 RESET TCOUNTER..Clears the 10ms counter variables.

Related commands SET, DO, MO, SO, TO, LO

CAUTION
 • Output to ports "0" and "1" is
not allowed at DO, MO, and
SO.

REFERENCE

 • For de ta i l s regard ing b i t
definitions, see Chapter 3 "10
Bit Settings".

7

RESTART 7-147

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 82 RESTART
Restarts another task during a temporary stop

Format

RESTART Tn

 Values n: Task number2 to 8

 Explanation Restarts another task that has been temporarily stopped (SUSPEND status).
 RESTART cannot be executed for Task 1.

SAMPLE
START *SUBTASK,T2
 FLAG=1
*L0:
 IF FLAG=1 AND DI2(0)=1 THEN
 SUSPEND T2
 FLAG=2
 WAIT DI2(0)=0
 ENDIF
 IF FLAG=2 AND DI2(0)=1 THEN
 RESTART T2
 FLAG=1
 WAIT DI2(1)=0
 ENDIF
 MOVE P,P0
 MOVE P,P1
 GOTO *L0
 HALT
’SUBTASK ROUTINE
*SUBTASK:
 DO2(0)=1
 DELAY 1000
 DO2(0)=0
 DELAY 1000
 GOTO *SUBTASK
 EXIT TASK

Related commands CUT, EXIT TASK, START, SUSPEND

 Reference For details, refer to the "Multi-Task" item.

7

7-148 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 83 RESUME
Resumes program execution after error recovery processing

Format

1. RESUME NEXT
2. RESUME <label>

 Explanation Resumes program execution after recovery from an error.
 Depending on its location, a program can be resumed in the following 3 ways:

1. RESUME The program resumes from the command which caused the error.
2. RESUME NEXT The program resumes from the next command after the command

which caused the error.
3. RESUME <label> The program resumes from the command specified by the <label>.

• The RESUME statement can also be executed in an error processing routine.
• "Error recovery processing is not possible for serious errors such as "17.4 : Overload", etc.

Related commands ON ERROR GOTO

REFERENCE

 • For details, see Chapter 8 "60
ON ERROR GOTO".

MEMO

7

RETURN 7-149

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 84 RETURN
Processing which was branched by GOSUB, is returned to the next line after GOSUB

Format

GOSUB <label> * GOSUB can also be expressed as "GO SUB".
 :
<label>:
 :
RETURN

 Explanation Ends the subroutine and returns to the next line after the jump source GOSUB statement.
 All subroutines (jump destinations) specified by a GOSUB statement must end with a

RETURN statement. Using the GOTO statement, etc., to jump from a subroutine will cause
an error such as the "5.12: Stack overflow", etc.

SAMPLE
*ST:
 MOVE P,P0
 GOSUB *CLOSEHAND
 MOVE P,P1
 GOSUB *OPENHAND
GOTO *ST
HALT
’SUB ROUTINE
*CLOSEHAND:
 DO(20) = 1
RETURN
*OPENHAND:
 DO(20) = 0
RETURN

Related commands GOSUB

7

7-150 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 85 RIGHT$
Extracts a character string from the right end of another character string

Format

RIGHT$(<character string expression>,<expression>)

 Values <expression>0 to 75

 Explanation This function extracts a character string with the digits specified by the <expression> from
the right end of the character string specified by <character string expression>.

 The <expression> value must be between 0 and 75, otherwise an error will occur.
 If the <expression> value is 0, then RIGHT$ will be a null string (empty character string).
 If the <expression> value has more characters than the <character string expression>,

RIGHT$ will become the same as the <character string expression>.

SAMPLE
B$=RIGHT$(A$,4)...4 characters from the right end of A$ are assigned to B$.

Related commands LEFT$, MID$

7

RIGHTY 7-151

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 86 RIGHTY
Sets the SCARA robot hand system to "Right"

Format

RIGHTY

 Explanation This statement specifies right-handed movement to a point specified in Cartesian
coordinates. This statement only selects the hand system, and does not move the robot.
If executed while the robot arm is moving, execution waits until movement is complete
(positioned within tolerance range).

SAMPLE

RIGHTY ...Specifies a robot "right-handed system" setting (see Fig.1
below).

MOVE P,P1
LEFTY ..Specifies a robot "left-handed system" setting (see Fig.2

below).
MOVE P,P1
RIGHTY
HALT

SAMPLE: LEFTY/RIGHTY

P1

(1)(2)

Left-handed system Right-handed system

SCARA robot

Related commands LEFTY

7

7-152 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 87 RSHIFT
Shifts a bit value to the right

Format

RSHIFT(<expression 1>,<expression 2>)

 Explanation Shifts the <expression 1> bit value to the right by the amount of <expression 2>. Spaces left
blank by the shift are filled with zeros (0).

SAMPLE
A=RSHIFT(&B10111011,2)..................................The 2-bit-right-shifted &B10111011 value (&B00101110)

is assigned to A.

Related commands LSHIFT

7

Sn 7-153

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 88 Sn
Defines the shift coordinates in the program

Format

Sn = x y z r

 Values n ..0 to 9
 x, y, z, r-99,999.99 to 99,999.99

 Explanation Defines shift coordinate values in order to shift the coordinates for robot movement. Only
"mm" units can be used for these coordinate values ("pulse" units cannot be used).

1. "n" indicates the shift number.
2. The "x" to "r" input data must be separated with spaces (blanks).
3. The "x" to "r" input data is recognized as "mm" unit data.
4. "x" to "z" correspond to the Cartesian coordinate system's x, y, z coordinate shift values,

and "r" corresponds to the xy coordinates' rotational shift values.

SAMPLE
S0 = 0.00 0.00 0.00 0.00
S1 = 100.00 200.00 50.00 90.00
P3 = 100.00 0.00 0.00 0.00 0.00 0.00
SHIFT S0
MOVE P,P3
SHIFT S1
MOVE P,P3
HALT

Related commands Shift assignment statement, SHIFT

NOTE
 • All input values are handled as
constants.

 • If the controller power is
turned off during execution of
a shift coordinate definition
statement, a memory-related
error such as "9.6: Shift check-
sum error" may occur.

7

7-154 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 89 SELECT CASE
Executes the specified command block in accordance with the <expression> value

Format

SELECT [CASE] <expression>
 CASE <expression list 1>
 [command block 1]
 [CASE <expression list 2>
 [command block 2]]
 :
 [CASE ELSE
 [command block n]]
END SELECT

 Explanation These statements execute multiple command blocks in accordance with the <expression>
value. The setting method is as follows.

1. The <expression list> following CASE statement comprises multiple numerical
expressions and character expressions separated from each other by a comma (,).

2. If the <expression> value matches one of expressions contained in the <expression
list>, the specified command block is executed. After executing the command block, the
program jumps to the next command which follows the END SELECT statement.

3. If the <expression> value does not match any of the expressions contained in the
<expression list>, the command block indicated after the CASE ELSE statement is
executed. After executing the command block, the program jumps to the next command
which follows the END SELECT statement.

4. If the <expression> value does not match any of the expressions contained in
<expression list> and no CASE ELSE statement exists, the program jumps to the next
command following the END SELECT statement.

SAMPLE
WHILE -1
SELECT CASE DI3()
 CASE 1,2,3
 CALL *EXEC(1,10)
 CASE 4,5,6,7,8,9,10
 CALL *EXEC(11,20)
 CASE ELSE
 CALL *EXEC(21,30)
END SELECT
WEND
HALT

7

SEND 7-155

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 90 SEND
Sends <read file> data to the <write file>

Format

SEND <read file> TO <write file>

 Explanation Sends <read file> data to the <write file>.
 An entire DO, MO, TO, LO, SO, or SOW port (DO(), MO(), etc.), cannot be specified as a

write file.
 Moreover, some individual files (DOn(), MOn(), etc.) cannot be specified as a write file. For

details, refer to Chapter 11 "Data file description".
 Writing to read-only files (indicated by a "×" in the "WRITE" column of the table shown

below) is not permitted.
 Even if the READ and WRITE files are specified correctly, it may not be possible to

execute them if there is a data format mismatch between the files.

NOTE
 • Examples of erroneous writing
to a read-only file:

 SEND CMU TO DIR

 SEND PNT TO SI()

 • Examples of da ta format
mismatches:

 SEND PGM TO PNT

 SEND SI() TO SFT

 User All files ALL

 Program PGM <bbbbbbbb>

 Point PNT Pn

 Point comment PCM PCn

 Parameter PRM /cccccc/

 Shift definition SFT Sn

 Hand definition HND Hn

 Pallet definition PLT PLn

 Variable, Variable VAR ab...by

 Constant Array variable ART ab...by(x)

 Constant “cc...c” ×

 Status Program directory DIR <<bbbbbbbb>> ×

 Parameter directory DPM ×

 Machine reference MRF ×

 Error log LOG ×

 Remaining memory size MEM ×

 Device DI port DI() DIn() ×

 DO port DO() DOn()

 MO port MO() MOn()

 TO port TO() TOn()

 LO port LO() LOn()

 SI port SI() SIn() ×

 SO port SO() SOn()

 SIW port SIW() SIWn() ×

 SOW port SOW() SOWn()

 RS-232C CMU

 Ethernet ETH

 Other File END code EOF ×

N: Number a: Alphabetic character b: Alphanumeric character or underscore (_)

c: Alphanumeric character or special symbol x: Expression (array argument) y: Variable type

 : Permitted

× : Not permitted

Type File Name

 Definition Format
READ WRITE

 All Individual File

7

7-156 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 90 SEND

• The following cautions apply when a restart is performed after a stop occurred during execution of the
SEND statement:

 1. When reading from RS-232C / Ethernet (SEND CMU TO XXX, SEND ETH TO XXX):
When the SEND statement is stopped during data reading from the reception buffer, the data
acquired up to that point is discarded.

 2. When writing to RS-232C / Ethernet (SEND XXX TO CMU, SEND XXX TO ETH):
When the SEND statement is stopped during data writing to the transmission buffer, the data is
written from the beginning.

SAMPLE

SEND PGM TO CMU..Outputs all user programs from the RS-232C port.
SEND <PRG1> TO CMU......................................Outputs the PRG1 program from the RS-232C port.
SEND CMU TO PNT...Inputs a point data file from the RS-232C port.
SEND "T1" TO CMU...Outputs the "T1" character string from the RS-232C port.
SEND CMU TO A$..Inputs character string data to variable A$ from the RS-

232C port.

 Reference For details, refer to Chapter 11 "Data file description".

MEMO

7

SERVO 7-157

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 91 SERVO
Controls the servo status

Format

SERVO ON [(<axis number>)]
 OFF
 FREE
 PWR

 Values <axis number>main group: 1 to 6

 Explanation This statement controls the servo ON/OFF at the specified axes or all axes. When the axes
have been specified by an <axis number> setting, this statement applies only to the specified
axes within the group. If no axes have been specified by an <axis number> setting, this
statement applies to all the main axes. In this case, motor power supply ON/OFF switching
occurs simultaneously with the servo ON/OFF operations.

• ON Turns the servo ON. If no axis is specified, the motor power supply also turns

ON.
• OFF Turns the servo OFF and applies the dynamic brake. Axes equipped with brakes

are all locked by the brake. If no axis is specified, the motor power supply also
turns OFF.

• FREE Turns the servo OFF and releases the dynamic brake. The brakes are released at
all axes with brakes. If no axis is specified, the motor power supply also turns
OFF.

• PWR Turns only the motor power supply ON.

• This statement is executed after positioning of all axes is complete (within the tolerance range).
• Individual axis servos cannot be turned ON as long as the motor power is OFF.

SAMPLE

SERVO ON ..Turns servos ON at all axes after turning the motor power ON.
SERVO OFF ..Turns the motor power OFF, then turns the servos at all axes OFF.

Brakes are applied, and a lock status is established at axes equipped
with brakes.

SERVO FREE(3)..The axis 3 (Z-axis) servo is turned OFF, and the brake is released.

CAUTION
 • K e e p o u t o f t h e r o b o t
m o v e m e n t r a n g e w h i l e
the motor power is turned
OFF by the SERVO OFF
statement. Always check that
the Emergency Stop is ON
when working within the robot
movement area.

MEMO

7

7-158 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 92 SET
Turns the bit at the specified output port ON

Format

SET DOm([b,.....,b]) [, <time>]
 DO (mb,.....,mb)
 MOm([b,.....,b])
 MO (mb,.....,mb)
 TO0([b,.....,b])
 TO (0b,.....,0b)
 LO0([b,.....,b])
 LO (0b,.....,0b)
 SOm([b,.....,b])
 SO (mb,.....,mb)

 Values m: port number2 to 7, 10 to 17, 20 to 27
 b: bit definition0 to 7
 <time> ..10 to 3600000 (units: ms)

 Explanation Turns ON the bits of specified ports.
 The pulse output time (unit: ms) is specified by the <time> value. When the specified time

elapses, the output is turned OFF, and command execution ends.

 If multiple bits are specified, they are expressed from the left in descending order (large to
small).

 If the [b,…,b] data is omitted, all 8 bits are processed.
 If no hardware port exists, nothing is output.

SAMPLE
SET DO2()..Turns ON DO(27 to 20).
SET DO2(6,5,1),200...DO(26,25,21) switches ON for 200ms.
SET DO(37,35,27,20)...Turns DO(37, 35, 27, 20) ON.

Related commands RESET, DO, MO, SO, TO, LO

CAUTION
 • Output to ports "0" and "1" are
not allowed at DO, MO, and
SO.

REFERENCE

 • For bit setting details, see
Chapter 3 "10 Bit Settings".

7

SHARED 7-159

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 93 SHARED
Enables sub-procedure referencing without passing on the variable

Format

SHARED <variable>[()][,<variable>[()]...]

 Explanation This statement allows variables declared with a program level code to be referenced with a
sub-procedure without passing on the variables as dummy arguments.

 The program level variable used by the sub-procedure is specified by the <variable> value.
 A simple variable or an array variable followed by parentheses is specified. If an array is

specified, that entire array is selected.

• Normally, a <dummy argument> passes along the variable to a sub-procedure, but the SHARED
statement allows referencing to occur without passing along the variable.

• The SHARED statement allows variables to be shared only between a program level code and sub-
procedure which are within the same program level.

SAMPLE
DIM Y!(10)
X!=2. 5
Y!(10)=1. 2
CALL *DISTANCE
CALL *AREA
HALT
SUB *DISTANCE
 SHARED X!,Y!()..Variable referencing is declared by SHARED.
 PRINT X!^2+Y!(10)^2...................................The variable is shared.
END SUB
SUB *AREA
 DIM Y!(10)
 PRINT X!*Y!(10)...The variable is not shared.
END SUB

Related commands SUB, END SUB

MEMO

7

7-160 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 94 SHIFT
Sets the shift coordinates

Format

SHIFT <shift variable>

 Explanation Sets the shift coordinates in accordance with the shift data specified by the <shift variable>.

• This statement is executed after axis positioning is complete (within the tolerance range).
• The default shift setting is S0 (no shift values).

SAMPLE
SHIFT S1
MOVE P,P10
SHIFT S[A]
MOVE P,P20
HALT

Related commands Shift definition statement, shift assignment statement

MEMO

7

SIN 7-161

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 95 SIN
Acquires the sine value for a specified value

Format

SIN(<expression>)

 Values <expression>Angle (units: radians)

 Explanation This function gives the sine value for the <expression> value.

SAMPLE

A(0)=SIN(B*2+C)..Assigns the expression B*2+C sine value to array A (0).
A(1)=SIN(DEGRAD(30))......................................Assigns a 30.0° sine value to array A (1).

Related commands ATN, COS, DEGRAD, RADDEG, TAN

7

7-162 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 96 SO
Outputs a specified value to the serial port

Format

1. [LET]SOm([b,.....,b]) = <expression>
2. [LET]SO (mb,.....,mb) = <expression>

 Values m: port number2 to 7, 10 to 17, 20 to 27
 b: bit definition0 to 7

 Explanation Outputs a specified value to the SO port.
 Only the <value> data's integer-converted lower bits corresponding to the bits defined at the

left side can be output.
 If multiple bits are specified, they are expressed from the left in descending order (large to

small).
 If the [b,…,b] data is omitted, all 8 bits are processed.
 If no hardware port exists, nothing is output.

SAMPLE

SO2()=&B10111000 ..SO (27, 25, 24, 23) are turned ON, and SO (26, 22, 21,
20) are turned OFF.

SO2(6,5,1)=&B010 ..SO (25) are turned ON, and SO (26, 21) are turned OFF.
SO3()=15 ...SO (33, 32, 31, 30) are turned ON, and SO (37, 36, 35,

34) are turned OFF.
SO(37,35,27,20)=A..The lower 4 bits of integer-converted variable A are output

to SO (37, 35, 27, 20).

Related commands RESET, SET

CAUTION
 • Outputs to SO0() and SO1()
are not possible.

REFERENCE

 • For bit setting details, see
Chapter 3 "10 Bit Settings".

7

SPEED 7-163

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 97 SPEED
Changes the program movement speed

Format

SPEED <expression>

 Values <expression>1 to 100 (units: %)

 Explanation Changes the program movement speed to the speed indicated by the <expression>.
 This speed change applies to all the robot axes.
 The operation speed is determined by multiplying the automatic movement speed (specified

from the programming box and by the ASPEED command), by the program movement
speed (specified by SPEED command, etc.).

 Operation speed = automatic movement speed x program movement speed.
 Example:
 Automatic movement speed ... 80%
 Program movement speed ... 50%
 Movement speed = 40% (80% × 50%)

SAMPLE
ASPEED 100
SPEED 70
MOVE P,P0...Moves from current position to P0 at a speed of 70% (=100 *

70).
SPEED 50
MOVE P, P1...Moves from current position to P1 at a speed of 50% (=100 *

50).
MOVE P,P2, S=10..Moves from current position to P2 at a speed of 10% (=100 *

10).
HALT

Related commands ASPEED

7

7-164 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 98 START
Starts a new task

Format

START <label>, Tn[, p]

 Values n: Task number2 to 8
 p: Task priority ranking17 to 47

 Explanation Starts task "n" specified by the <label> with the "p" priority ranking.
 If a priority ranking is not specified, "32" is adopted as the priority ranking for this task.
 The smaller the priority number, the higher the priority (high priority: 17 ↔ low priority:

47).
 When a READY status occurs at a task with higher priority, all tasks with lower priority

also remain in a READY status.

SAMPLE
START *SUBTASK,T2,33
*ST:
 MOVE P,P0,P1
GOTO *ST
HALT
‘SUBTASK ROUTINE
*SUBTASK:
 P100 = WHERE
 IF LOCZ(P100) > 10000 THEN
 DO(20) = 1
 ELSE
 DO(20) = 0
 ENDIF
GOTO *SUBTASK
EXIT TASK

Related commands CUT, EXIT TASK, RESTART, SUSPEND, CHGPRI

7

STR$ 7-165

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 99 STR$
Converts a numeric value to a character string

Format

STR$(<expression>)

 Explanation Converts the value specified by the <expression> to a character string. The <expression>
specifies an integer or real number value.

SAMPLE
B$=STR$(10.01)

Related commands VAL

7

7-166 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 100 SQR
Acquires the square root of a specified value

Format

SQR(<expression>)

 Values <expression>0 or positive number.

 Explanation Gives the square root of the <expression> value. An error occurs if the <expression> value
is a negative number.

SAMPLE

A=SQR(X^2+Y^2)..The square root of X^2+Y^2 is assigned to variable A.

7

SUB to END SUB 7-167

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 101 SUB to END SUB
Defines a sub-procedure

Format

SUB <label> [(<dummy argument> [, <dummy argument> ...])]
 <command block>
END SUB

 Explanation Defines a sub-procedure.
 The sub-procedure can be executed by a CALL statement. When the END SUB statement

is executed, the program jumps to the next command after the CALL statement that was
called. Definitions are as follows.

1. All variables declared within the sub-procedure are local variables, and these are
valid only within the sub-procedure. Local variables are initialized each time the sub-
procedure is called up.

2. Use a SHARED statement in order to use global variables (program level).
3. Use a <dummy argument> when variables are to be passed on. If two or more dummy

arguments are used, separate them by a comma (,).
4. A valid <dummy argument> consists of a name of variable and an entire array (array

name followed by parentheses). An error will occur if array elements (a <subscript>
following the array name) are specified.

• Sub-procedures cannot be defined within a sub-procedure.
• The DECLARE statement cannot be used within a sub-procedure.
• A label can be defined within a sub-procedure, but it cannot jump (by a GOTO or GOSUB statement)

to a label outside the sub-procedure.
• Local variables cannot be used with PRINT and SEND statements.

SAMPLE 1
A=1
CALL *TEST
PRINT A
HALT
’SUB ROUTINE: TEST
SUB *TEST
 A=50 ..Handled as a different variable than the "A" shown above.
END SUB

• In the above example, the program level variable "A" is unrelated to the variable "A" within the sub-
procedure. Therefore, the value indicated in the 3rd line PRINT statement becomes "1".

MEMO

MEMO

7

7-168 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 101 SUB to END SUB

SAMPLE 2
X% = 4
Y% = 5
CALL *COMPARE(REF X%, REF Y%)
PRINT X%,Y%
Z% = 7
W% = 2
CALL *COMPARE(REF Z%, REF W%)
PRINT Z%,W%
HALT
’SUB ROUTINE: COMPARE
SUB *COMPARE(A%, B%)
 IF A% < B% THEN
 TEMP% = A%
 A% = B%
 B% = TEMP%
 ENDIF
END SUB

• In the above example, different variables are passed along as arguments to call the sub-procedure 2
times.

Related commands CALL, DECLARE, EXIT SUB, SHARED

MEMO

7

SUSPEND 7-169

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 102 SUSPEND
Temporarily stops another task which is being executed

Format

SUSPEND Tn

 Values n: Task number2 to 8

 Explanation Temporarily stops (suspends) another task which is being executed.
 This statement can also be used for tasks with a higher priority ranking than this task itself.
 This statement cannot be specified for the main task (Task number 1).

SAMPLE
START *SUBTASK,T2
SUSFLG=0
*L0:
 MOVE P,P0
 MOVE P,P1
 WAIT SUSFLG=1
 SUSPEND T2
 SUSFLG=0
GOTO *L0
HALT
’SUBTASK ROUTINE
*SUBTASK:
 WAIT SUSFLG=0
 DO2(0)=1
 DELAY 1000
 DO2(0)=0
 DELAY 1000
 SUSFLG=1
 GOTO *SUBTASK
 EXIT TASK

Related commands CUT, EXIT TASK, RESTART, SUSPEND

7

7-170 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 103 SWI
Switches the program being executed

Format

SWI "<"<program name>">"

 Explanation This statement switches from the current program to the specified program, starting from
the first line after compiling is completed.

 Although the output variable status is not changed when the program is switched, the
dynamic variables and array variables are cleared. Operation stops if an error occurs during
compiling. The program name to be switched to must be enclosed in angular brackets (< >).

 This command can be executed only in Task 1 (main task).

• If the program specified as the switching target does not exist, message "3.3: Program doesn't exist"
(code: &H0303) displays and operation stops.

• Execution of a SWI statement is always accompanied by compiling, and the time required for this
compiling depends on the size of the switching target program.

• If an error occurs during compiling, an error message line displays and the program stops.
• The SWI statement can only be executed within task 1 (main task). If used within tasks 2 through 8,

the message "6.1: Illegal command" displays and operation stops.
• The STOP key is disabled during compiling.

SAMPLE

SWI <ABC> ..Switches the execution program to "ABC".

MEMO

7

TAN 7-171

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 104 TAN
Acquires the tangent value for a specified value

Format

TAN(<expression>)

 Values <expression>Angle (units: radians)

 Explanation Gives a tangent value for the <expression> value. An error will occur if the <expression>
value is a negative number.

SAMPLE

A(0)=B-TAN(C)...The difference between the tangent values of variable B
and variable C is assigned to array A (0).

A(1)=TAN(DEGRAD(20)).....................................The 20.0° tangent value is assigned to array A (1).

Related commands ATN, COS, DEGRAD, RADDEG, SIN

7

7-172 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 105 TCOUNTER
Timer & counter

Format

TCOUNTER

 Explanation Outputs count-up values at 10ms intervals starting from the point when the TCOUNTER
variable is reset (counter variable value 1 = 10ms).

 After counting up to 65,535, the count is reset to 0.

SAMPLE
MOVE P,P0
WAIT ARM
RESET TCOUNTER
MOVE P,P1
WAIT ARM
A = TCOUNTER
PRINT TCOUNTER..Displays the P0 to P1 movement time at the programming

box until movement enters the tolerance range.

Related commands RESET

7

TIME$ 7-173

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 106 TIME$
Acquires the current time

Format

TIME$

 Explanation Acquires the current time in an hh:mm:ss format character string. "hh" is the hour, "mm"
is the minutes, and "ss" is the seconds. The clock can be set in the SYSTEM mode's initial
processing.

SAMPLE
A$=TIME$
PRINT TIME$

Related commands DATE$, TIMER

7

7-174 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 107 TIMER
Acquires the current time

Format

TIMER

	Functions	 Acquires the current time in seconds, counting from 12:00 midnight. This function is used to
measure a program's run time, etc.

 The clock can be set in the SYSTEM mode's initial processing.

SAMPLE
A%=TIMER
FOR B=1 TO 10
MOVE P,P0
MOVE P,P1
NEXT
A%=TIMER-A%
PRINT A%/60;":";A% MOD 60
HALT

Related commands TIME$

CAUTION
 • The time indicated by the
internal c lock may differ
somewhat from the actual time.

7

TO 7-175

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 108 TO
Outputs a specified value to the TO port

Format

1. [LET]TO0([b,.....,b]) = <expression>
2. [LET]TO (0b,.....,0b) = <expression>

 Values b: bit definition0 to 7

 Explanation Outputs the specified value to the TO port. The output value is the expression's integer-
converted lower bits corresponding to the bit definition specified at the left side.

 If multiple bits are specified, they are expressed from the left in descending order (large to
small).

 If the [b,…,b] data is omitted, all 8 bits are processed.
 The OFF/ON settings for bits which are being used in a SEQUENCE program have priority

while the SEQUENCE program is running.

SAMPLE
TO0() = &B00000110

Related commands RESET, SET

7

7-176 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 109 TOLE
Specifies/acquires the tolerance parameter

Format

1. TOLE <expression>
2. TOLE (<axis number>) = <expression>

 Values <axis number>main group: 1 to 6
 <expression> Varies according to the motor which has been specified (units: pulse)

 Explanation Changes the tolerance parameter to the <expression> value.
 Format 1: The change is applied to all axes of each group.
 Format 2: The change is applies to only the group axes specified by <axis number>.

• If an axis that is set to "no axis" in the system generation is specified, a "5.37 : Specification mismatch"
error message displays and command execution is stopped.

• This statement is executed after positioning of the specified axes is complete (within the tolerance
range).

Functions

Format

TOLE(<axis 1>)

 Values <axis 1>main group: 1 to 6

 Explanation Acquires the tolerance parameter value for the axis specified by <axis number>.

SAMPLE
’CYCLE WITH DECREASING TOLERANCE
DIM TOLE(5)
FOR A=200 TO 80 STEP -20
 GOSUB *CHANGE_TOLE
 MOVE P,P0
 MOVE P,P1
NEXT A
C=TOLE(2)..The tolerance parameter of the main group's axis 2 is assigned to variable C.
HALT
*CHANGE_TOLE:
FOR B=1 TO 4
 TOLE(B)=A
NEXT B
RETURN

MEMO

7

TORQUE 7-177

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 110 TORQUE
Specifies/acquires the maximum torque command value which can be set for a specified axis

Format

TORQUE(<axis number>) = <expression>

 Values <axis number>main group: 1 to 6
 <expression>1 to 100 (units: %)

 Explanation Changes the maximum torque command value for each group's axes which have been
specified by <axis number>. The new value is enabled after the next movement command
(MOVE or DRIVE statement, etc.) is executed. The torque parameter value does not
change.

 The maximum torque specified by this statement remains valid until any of the following
operations occur.

 • Until another TORQUE command for the same axis is executed.
 • Until a torque limit option is executed in a DRIVE statement for the same axis.
 • Until controller power is turned off and then on again.
 • Until parameters are changed or initialized.
 • Until a return-to-origin or an absolute reset & return-to-origin is performed.
 • Until the servo is turned off.

• If an axis that is set to "no axis" in the system generation is specified, a "5.37 : Specification mismatch"
error message displays and command execution is stopped.

Functions

Format

TORQUE(<axis 1>)

 Values <axis 1>main group: 1 to 6

 Explanation Acquires the torque setting value for the axis specified by <axis number>.

CAUTION
 • If the specified torque limit
is too small, the axis may not
move. In this case, press the
emergency stop button before
proceeding with the operation.

 • If the specified value is less
than the rated torque, an error
may not occur even if the robot
strikes an obstacle.

MEMO

7

7-178 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 110 TORQUE

SAMPLE
TRQTIME(3) = 2500..Sets the torque control time-out period as 2.5 seconds for axis

3.
DRIVE(3,P1),T = (20,15)......................................Sets the maximum torque value to 20% of the rated torque, and the

torque offset to 15, then moves axis 3 from its current position to the
point specified by P1 (pushing action).

IF TRQSTS(3) = 1 THEN.......................................Checks if a time-out has occurred.
 DO(21) = 1..Time-out has occurred (pushing is complete). (Result is

output to DO(21) in this example.)
ELSE
 DO(21) = 0...Time-out has not occurred. (Reached target position but

failed to complete pushing.) (Result is output to DO(21)
in this example.)

ENDIF
TORQUE(3) = 100..Returns the max. torque command value to the original

value (100%).
DRIVE(3,P0)..Ends the torque limit and torque control, and moves to P0.
A=TORQUE(2)...The torque setting value for the main group's axis 2 is

assigned to variable A.

Related commands DRIVE, TRQTIME, TRQSTS, CURTRQ

7

TRQSTS 7-179

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 111 TRQSTS
Acquires the status when DRIVE statement ends

Format

TRQSTS (<axis 1>)

 Values <axis 1>main group: 1 to 6

 Explanation Acquires the status at the completion of a "DRIVE statement with torque limit option" that
was executed for the main group axis specified by <axis number>.

 0 The DRIVE statement was ended for a reason other than a torque limit time-out.
 1 The DRIVE statement was ended by torque limit time-out.

• If an axis that is set to "no axis" in the system generation is specified, a "5.37 : Specification mismatch"
error message displays and command execution is stopped.

SAMPLE

DRIVE(3,P1), T=20..Moves the main group's axis 3 under torque limit control.
IF TRQSTS(3)=1 THEN...Ended by a time-out with the torque limit value reached.
GOTO *OK
ELSE...Movement ended without a time-out occurring.
GOTO *NG
ENDIF

Related commands DRIVE, TRQTIME, CURTRQ

MEMO

7

7-180 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 112 TRQTIME
Sets/acquires the time-out period for the torque limit setting option

Format

TRQTIME(<axis number>) = <time-out period>

 Values <axis number>main group: 1 to 6
 <time-out period>1 to 10000 (units: ms)

 Explanation Specifies the torque control time-out period when using the DRIVE statement's torque limit
setting option. This command specifies the time-out period (<time-out period>) for the axis
specified by <axis number>.

 A DRIVE statement executed with a torque limit option ends when the axis has reached the
target position, or when the "specified toque limit reached" time has exceeded the time-out
period specified by the TRQTIME statement.

 A value is then set in the TRQSTS function, depending on whether or not the "specified
toque limit reached" period has exceeded the time-out period specified by the TRQTIME
statement and this command has ended.

 When the controller power is turned on, the time-out period is set to 1 second (1,000ms).

• Although the time-out period is specified in "ms" units, it actually operates in "10ms" units. Therefore,
settings are rounded upward to 10ms. For example, if the setting is a value from 1 to 9, this becomes
10ms. However, if "0" is specified, this becomes 1 second (1000ms).

• If an axis that is set to "no axis" in the system generation is specified, a "5.37 : Specification mismatch"
error message displays and command execution is stopped.

Functions

Format

TRQTIME(<axis 1>)

 Values <axis 1>main group: 1 to 6

 Explanation Acquires the torque limit time-out period for the axis specified by <axis number>.
The time-out period is specified in "ms" units.

MEMO

7

TRQTIME 7-181

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 112 TRQTIME

SAMPLE
TRQTIME(3)=2500..Sets the torque control time-out period as 2.5 seconds for axis

3.
DRIVE(3,P1),T=(20,15)..Sets the maximum torque value to 20% of the rated torque, and the

torque offset to 15, then moves axis 3 from its current position to the
point specified by P1 (pushing action).

IF TRQSTS(3)=1 THEN...Checks if a time-out has occurred.
 DO(21)=1..Time-out has occurred (pushing is complete). (Result is

output to DO(21) in this example.)
ELSE
 DO(21)=0...Time-out has not occurred. (Reached target position but

failed to complete pushing.) (Result is output to DO(21)
in this example.)

ENDIF
TORQUE(3)=100...Returns the max. torque command value to the original

value (100%).
DRIVE(3,P0)..Ends the torque limit and torque control, and moves to P0.
A%=TRQTIME(3)..The torque limit time-out period for the main group's axis 3

is assigned to variable A.

Related commands DRIVE, TRQSTS, CURTRQ

7

7-182 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 113 VAL
Converts character strings to numeric values

Format

VAL (<character string expression>)

 Explanation Converts the numeric value of the character string specified in the <character string
expression> into an actual numeric value.

 The value may be expressed in integer format (binary, decimal, hexadecimal), or real
number format (decimal point format, exponential format).

 The VAL value becomes "0" if the first character of the character string is "+", "-", "&" or
anything other than a numeric character.

 If there are non-numeric characters or spaces elsewhere in the character string, all
subsequent characters are ignored by this function.

 However, for hexadecimal expressions, A to F are considered numeric characters.

SAMPLE
A=VAL("&B100001")

7

WAIT 7-183

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 114 WAIT
Waits until the conditions of the DI/DO conditional expression are met

Format

WAIT <conditional expression> [,<expression>]

 Values <expression>10 to 3600000 (units: ms)

 Meaning Establishes a "wait" status until the condition specified by the <conditional expression> is
met. Specify the time-out period (unit: ms) in the <expression>.

 If a time-out period has been specified, this command terminates if the time-out period
elapses before the WAIT condition is met.

 The minimum wait time is 10 ms.

• When the conditional expression is a numeric expression, the conditions for determining a TRUE or
FALSE status can be changed at the controller's "TRUE conditions" in the "Other parameters" mode.
These conditions apply to all the IF, WHILE, WAIT, STOPON, etc., conditional expressions. For
details, refer to the controller's user manual.

 1) -1 (default setting) An expression value of "-1" indicates a TRUE status, and "0" indicates a
FALSE status. A "6.35: Incorrect condition expression" error occurs if the
expression value is other than "-1" or "0".

 2) not 0 Any expression value other than "0" indicates a TRUE status, and "0"
indicates a FALSE status.

SAMPLE

WAIT A=10...A wait status continues until variable A becomes 10.
WAIT DI2()=&B01010110.....Waits until DI(21),(22),(24),(26) are turned on, and

DI(20),(23),(25),(27) is turned off.
WAIT DI2(4,3,2)=&B101.......................................Waits until DI(22) and DI(24) are turned on, and DI(23)

is turned off.
WAIT DI(31)=1 OR DO(21)=1..............................A wait status continues until either DI (31) or DO(21) turns ON.
WAIT DI(20)=1,1000...A wait status continues until DI(20) turns ON. If DI(20) fails

to turn ON within 1 second, the command is terminated.

Related commands DRIVE, DRIVEI, MOVE, MOVEI

MEMO

7

7-184 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 115 WAIT ARM
Waits until the robot axis operation is completed

Format

WAIT ARM [(<axis number>)]

 Values <axis number>main group: 1 to 6

 Explanation Establishes a "wait" status until robot axis movement is completed (within the positioning
tolerance range).

 If a specific axis in a group has been specified by <axis number>, this command will apply
only to that axis. If there is no <axis number> setting, this command applies to all the group
axes.

SAMPLE

WAIT ARM..Waits for main robot movement completion.

Related commands DRIVE, DRIVEI, MOVE, MOVEI

7

WEIGHT 7-185

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 116 WEIGHT
Specifies/acquires the tip weight parameter

Format

WEIGHT <expression>

 Values <expression> The range varies according to the robot which has been
specified.

 Explanation Changes the tip weight parameter of the main robot to the <expression> value. This change
does not apply to auxiliary axes.

Functions

Format

WEIGHT

 Explanation Acquires the tip weight parameter of the robot.

SAMPLE
A=5
B=2
C=WEIGHT
WEIGHT A
MOVE P,P0
WEIGHT B
MOVE P,P1
WEIGHT C
D=WEIGHT...The main robot's tip weight parameter is assigned to

variable D.
HALT

7

7-186 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 117 WEND
Ends the WHILE statement's command block

Format

WHILE <conditional expression>
 <command block>
WEND

 Explanation Ends the command block which begins with the WHILE statement. A WEND statement
must always be paired with a WHILE statement.

 Jumping out of the WHILE to WEND loop is possible by using the GOTO statement, etc.

SAMPLE
A=0
WHILE DI3(0)=0
 A=A+1
 MOVE P,P0
 MOVE P,P1
 PRINT "COUNTER=";A
WEND
HALT

Related commands WHILE

7

WHERE 7-187

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 118 WHERE
Acquires the arm's current position (pulse coordinates)

Format

WHERE

 Explanation Acquires the arm's current position in joint coordinates.

SAMPLE

P10=WHERE ..The current position's pulse coordinate value is assigned
to P10.

Related commands WHRXY

7

7-188 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 119 WHILE to WEND
Repeats an operation for as long as a condition is met

Format

WHILE <conditional expression>
 <command block>
WEND

 Explanation Executes the command block between the WHILE and WEND statements when the
condition specified by the <conditional expression> is met, and then returns to the WHILE
statement to repeat the same operation.

 When the <conditional expression> condition is no longer met (becomes false), the program
jumps to the next command after the WEND statement.

 If the <conditional expression> condition is not met from the beginning (false), the
command block between the WHILE and WEND statements is not executed, and a jump
occurs to the next statement after the WEND statement.

 Jumping out of the WHILE to WEND loop is possible by using the GOTO statement, etc.

• When the conditional expression is a numeric expression, the conditions for determining a TRUE or
FALSE status can be changed at the controller's "TRUE conditions" in the "Other parameters" mode.
These conditions apply to all the IF, WHILE, WAIT, STOPON, etc., conditional expressions. For
details, refer to the controller's user manual.

 1) -1 (default setting) An expression value of "-1" indicates a TRUE status, and "0" indicates a
FALSE status. A "6.35: Incorrect condition expression" error occurs if the
expression value is other than "-1" or "0".

 2) not 0 Any expression value other than "0" indicates a TRUE status, and "0"
indicates a FALSE status.

SAMPLE 1
A=0
WHILE DI3(0)=0
 A=A+1
 MOVE P,P0
 MOVE P,P1
 PRINT "COUNTER=";A
WEND
HALT

SAMPLE 2
A=0
WHILE -1 ..Becomes an endless loop because the conditional expression is always TRUE (-1).
 A=A+1
 MOVE P,P0
 IF DI3(0)=1 THEN *END
 MOVE P,P1
 PRINT "COUNTER=";A
 IF DI3(0)=1 THEN *END
WEND
*END
HALT

MEMO

7

WHRXY 7-189

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 120 WHRXY
Acquires the arm's current position in Cartesian coordinates

Format

WHRXY

 Explanation Acquires the arm's current position in Cartesian coordinates.
 On R6YXTW500 model robots, the X-arm and Y-arm rotation information is also set.

SAMPLE

P10=WHRXY..The current position Cartesian coordinate value is assigned
to P10.

Related commands WHERE

NOTE
 • X-arm and Y-arm rotation
information is only available in
software Ver.1.66M or higher.

8

7-190 Chapter 7 Robot Language Lists

7

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

 121 XYTOJ
Converts the main group axes Cartesian coordinate data ("mm") to joint coordinate data ("pulse")

Format

XYTOJ (<point expression>)

 Explanation This function converts the Cartesian coordinate data (unit: mm, deg.) specified by the
<point expression> to joint coordinate data (unit: pulses).

 • When the command is executed, the data is converted based on the standard coordinates,
shift coordinates and hand definition that were set.

 • The converted result differs depending on whether right-handed or left-handed is specified.
 • On the R6YXTW500 model robot, the result varies, depending on the X-arm and Y-arm

rotation information settings.
 • To convert joint coordinate data to Cartesian coordinate data, use the JTOXY statement.

SAMPLE

P10=XYTOJ(P10).....................................P10 is converted to joint coordinate data.

 122 _SYSFLG
Axis status monitoring flag

Format

_SYSFLG

 Explanation Used as an axis status monitoring flag in accordance to the value specified by the _SYSFLG
variable.

SAMPLE
_SYSFLG = 1

Related commands RESET

NOTE
 • X-arm and Y-arm rotation
information is only available in
software Ver.1.66M or higher.

Chapter	8	

PATH Statements

1 1 Overview ...8-1

2 2 Features ...8-1

3 3 How to use ..8-1

4 4 Cautions when using this function8-2

Overview 8-1

8

9

10

11

12

13

14

 1 Overview

This function moves the robot at a specified speed along a path composed of linear and circular segments.
Because speed fluctuations during movement are minimal, the PATH function is ideal for applications such
as sealing, etc.

 2 Features

 ■ Moves the robot at a constant speed along the entire movement path (except during acceleration from a
stop, and during deceleration just prior to the operation end).

 ■ Permits easy point teaching because the robot speed is not affected by the point teaching positions' level
of precision.

 ■ Permits movement speed changes for the entire movement path, or speed changes for only one portion of
the path (using the speed option).

 ■ Using the DO option permits signal outputs to a specified port at any desired position during movement.

 3 How to use

The following robot language commands must be used as a set in order to use the PATH function.

 ■ PATH SET ... Start of path setting.
 ■ PATH (PATH L, PATCH C) Specifies the path to be used.
 ■ PATH END .. End of path setting.
 ■ PATH START .. Starts actual movement along the path.

As shown below, the motion path is specified between the PATH SET and PATH END statements. Simply
specifying a path, however, does not begin robot motion.
Robot motion only occurs when the PATH START statement is executed after the path setting procedure
has been completed.

SAMPLE
MOVE P,P0,Z=0

PATH SET ･････････････････････････ ･Start of path setting
PATH L,P1,DO(20)=1@10.0
PATH L,P2

 •
 •･
 •･
PATH C,P12,P13
PATH L,P14,DO(20)=0@20.0

PATH END ･････････････････････････ ･End of path setting
MOVE P,P1,Z=0

 •･
 •･
 •･
MOVE P,P0,Z=0
PATH START Path motion is executed
HALT

8-2 Chapter 8 PATH Statements

8

9

10

11

12

13

14

 4 Cautions when using this function

 ■ Paths may comprise no more than 300 (total) linear and circular segments.

 ■ The robot must be positioned at the path start point when PATH motion is executed (by PATH START
statement).

 ■ At points where circular and linear segments connect, the motion direction of the two connecting
segments should be a close match (as close as possible). An excessive difference in their motion
directions could cause vibration and robot errors.

Circular and linear segment connection point:

if there is a large difference between the motion directions of the connecting segments
Good example Poor example

 ■ Where a linear segment connects to another linear segment, the motion path passes to the inner side of
the connection point. Moreover, as shown in fig. (1) below, the faster the speed, the further to the inner
side the path becomes. To prevent significant speed-related path shifts, add more points as shown in
fig. (2). Note also, that in some cases, the speed may have to be reduced in order to prevent errors from
occurring.

Connection point of 2 linear segments:

suppressing the path shift
(1) (2)

Add more points
High-speed

Low-speed

 ■ If an error occurs due the robot's inability to move at the specified speed:
Robot acceleration/deceleration occurs if the speed setting is changed when PATH motion begins, stops, or
at some point along the path. At such times, an error may occur before motion begins if the distance between
points is too short for the specified speed to be reached. In such cases, a slower speed must be specified. If
the error still occurs after the speed is lowered, adjust the PATH points to increase the length of the linear or
circular segments which contain acceleration or deceleration zones.

 ■ The hand system used during PATH motion must be the same as the hand system used at the path's start
point. The same applies if the path is to pass through points where hand flags are set. Differing hand
systems will cause an error and disable motion.

 ■ The X-arm and Y-arm rotation information during PATH movement must be the same as the X-arm and
Y-arm rotation information at the PATH movement's START point. If the two are different, an error will
occur and movement will be disabled.

 ■ If the robot is stopped by an interlock function, etc., during PATH motion, this is interpreted as an execution
termination, and the remaining path motion will not be completed even if a restart is executed.

Be sure to read the cautions relating to each command.

Chapter 9

Limitless motion

1 1 Overview ...9-1

2 2 Operation Procedure ...9-1

3 3 Restrictions ...9-3

Overview 9-1

8

9

10

11

12

13

14

 1 Overview

Generally speaking, controllers have a soft limit function which allows the soft limits to be specified by
parameter settings, and operation beyond the soft limits is normally prohibited. However, the "limitless
motion" function permits multi-turn same-direction movement without that soft limit restriction.

 2 Operation Procedure

2.1 Parameters

The "limitless motion" parameter can be enabled in the robot axis parameters.
(For details, see the controller user's manual.)

2.2 Robot language

The robot language shown below is required in order to use the limitless motion function. For command
details, see Chapter 8 "Robot Language Lists".

Robot movement
DRIVE statement (PLS or MNS option specified)
DRIVEI statement

Current position reset ABSINIT statement

NOTE
 • The limitless motion function
is available in software version
1.66M or higher.

CAUTION
 • Limitless motion applies to the
axis which has been specified
as the additional axis in the
"system generation" settings
(robot factory settings).

 • Do not a t tempt to enable
limitless motion at an axis
which has not been specified
as an additional axis. Doing so
will result in the "2.29: Cannot
move without the limit" error
when movement is attempted
using the MOVE statement or
a point trace movement. This
error also disables movement.

9-2 Chapter 9 Limitless motion

8

9

10

11

12

13

14

2.3 Sample program

2.3.1	 For	Axis	4	limitless	motion

The following program executes limitless movement in the plus direction, in 180.0° increments.
(Settings: Resolver pulse: 16384, speed reduction ratio: 25, limitless motion specified for the main robot's
axis 4, minus axis polarity.)
P0 = 0.0 0.0 0.0 0.9 0.0 0.00.9°=1024[pulse]
P1 = 0.0 0.0 0.0 180.9 0.0 0.0
* It is recommended that point data be created so that the position to reset the current position is at the
middle of the resettable range.

Axis polarity Recommended reset range
For a "minus" setting Approximately 1024 ± 256 [pulse]
For a "plus" setting Approximately -1024 ± 256 [pulse]

SAMPLE

WHILE -

DRIVE(4,P1),PLS

WAIT ARM(4)

P100 = WHERE

A%=LOCR(P100) MOD 409600 ･････409600 [pulse] = Machine angle 360°.

IF(A%<257) OR (A%>1791) THEN ･･･Checks current position to see if

 it is the reset execution position.

DRIVE(4,P0),PLS ･････････････････Moves to the current position reset execution position.

WAIT ARM(4)

ENDIF

ABSINIT 4 ･･･････････････････････Resets the main robot's axis 4 current position.

WEND

HALT

Restrictions 9-3

8

9

10

11

12

13

14

2.3.2	 For	Axis	2	limitless	motion

The following program executes limitless movement in the plus direction, in 180.0° increments.
(Settings: Resolver pulse: 16384, speed reduction ratio: 25, limitless motion specified for the main robot's
axis 2, minus axis polarity.)
P0 = 0.0 0.9 0.0 0.0 0.0 0.00.9°=1024[pulse]
P1 = 0.0 180.0 0.0 0.0 0.0 0.0
* It is recommended that point data be created so that the position to reset the current position is at the
middle of the resettable range.

Axis polarity Recommended reset range
For a "minus" setting Approximately 1024 ± 256 [pulse]
For a "plus" setting Approximately -1024 ± 256 [pulse]

SAMPLE

WHILE -1

DRIVE(2,P1),PLS

WAIT ARM(2)

P100 = WHERE

A%=LOCY(P100) MOD 409600 ･････409600 [pulse] = Machine angle 360°.

IF(A%<257) OR (A%>1791) THEN ･･･Checks current position to see if

 it is the reset execution position.

DRIVE(2,P0),PLS ･････････････････Moves to the current position reset execution position.

WAIT ARM(2)

ENDIF

ABSINIT 2 ･･･････････････････････Resets the main robot's axis 2 current position.

WEND

HALT

 3 Restrictions

 ■ OMRON recommends that the return-to-origin method be specified as "sensor" in the axis parameters.
 ■ The limitless motion function cannot be used at YC-Link specification axes.
 ■ The limitless motion function cannot be used at electric gripper specification axes.
 ■ The limitless motion function cannot be used at SCARA robot X and Y axes.

Chapter 10

Data	file	description

1 1 Overview ...10-1

2 2 Program file ...10-2

3 3 Point file ..10-4

4 4 Point comment file ..10-8

5 5 Parameter file ..10-10

6 6 Shift coordinate definition file10-13

7 7 Hand definition file ...10-15

8 8 Pallet definition file ...10-17

9 9 All file ...10-23

10 10 Program directory file10-24

11 11 Parameter directory file10-26

12 12 Variable file ...10-27

13 13 Constant file ..10-30

14 14 Array variable file ...10-31

15 15 DI file ..10-33

16 16 DO file ...10-35

17 17 MO file ..10-37

18 18 LO file ...10-39

19 19 TO file ...10-41

20 20 SI file ...10-43

21 21 SO file ...10-45

22 22 Error message history file10-47

23 23 Error Message History Details File10-48

24 24 Machine reference file10-49

25 25 EOF file ...10-50

26 26 Serial port communication file10-51

27 27 SIW file ...10-52

28 28 SOW file ..10-54

29 29 Ethernet port communication file10-56

Overview 10-1

8

9

10

11

12

13

14

 1 Overview

1.1 Data	file	types

This section explains data files used with a SEND statement and READ/WRITE online commands. There
are 27 different types of data files.

1. Program file
2. Point file
3. Point comment file
4. Parameter file
5. Shift coordinate definition file
6. Hand definition file
7. Pallet definition file
8. All file
9. Program directory file
10. Parameter directory file
11. Variable file
12. Constant file
13. Array variable file
14. DI file
15. DO file
16. MO file
17. LO file
18. TO file
19. SI file
20. SO file
21. Error message history file
22. Machine reference file
23. EOF file
24. Serial port communication file
25. SIW file
26. SOW file
27. Ethernet port communication file

1.2 Cautions

Observe the following cautions when handling data files.

 ■ Only 1-byte characters can be used.
 ■ All data is handled as character strings conforming to ASCII character codes.
 ■ Only upper case alphabetic characters may be used in command statements (lower case characters are

prohibited).
 ■ Line lengths must not exceed 75 characters.
 ■ A [cr/lf] data format designation indicates CR code (0Dh) + LF code (0Ah).
 ■ The terms "reading" and "writing" used in this manual indicate the following data flow directions:

Reading: controller → external communication device
Writing: External communication device → controller

10-2 Chapter 10 Data file description

8

9

10

11

12

13

14

 2 Program	file

2.1 All programs

Format

PGM

 Meaning • Expresses all programs.
 • When used as a readout file, all programs currently stored are read out.
 • Write files are registered at the controller under the program name indicated at the NAME =

<program name> line.

DATA	FORMAT
NAME = <program name> [cr/lf]

aaaaa ...aaaaaaaaaaaaaa[cr/lf]

 :

aaaaa ...aaaaaaaaaaaaaa[cr/lf]

 :

NAME = <program name> [cr/lf]

aaaaa ...aaaaaaaaaaaaaa[cr/lf]

 :

aaaaa ...aaaaaaaaaaaaaa[cr/lf]

[cr/lf]

 Values a ..Character code

 ■ <Program names> are shown with 8 characters or less consisting of alphanumeric characters and
underscore (_).

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.
 ■ A TAB code (09H) is converted to a space.

SAMPLE

SEND PGM TO CMU･･･････････････Outputs all programs from communication port.
SENDCMU TO PGM ･･･････････････Inputs all programs from communication port.

Response:
NAME=TEST[cr/lf]
A=1[cr/lf]
RESET DO2()[cr/lf]
 :
HALT[cr/lf]
[cr/lf]

Program file 10-3

8

9

10

11

12

13

14

2.2 One program

Format

<program name>

 Meaning • Expresses a specified program.
 • Program name may be up to 8 characters consisting of alphanumeric characters and

underscore "_" and must be enclosed by "<" and ">".
 • If no program name is specified, the currently selected program is specified.
 • An error occurs if the specified program name differs from the program name on the data.

DATA	FORMAT
NAME=program name[cr/lf]
aaaaa ...aaaaaaaaaaaaaa[cr/lf]
 :
aaaaa ...aaaaaaaaaaaaaa[cr/lf]
[cr/lf]

 Values a ..Character code

 ■ <Program names> are shown with 8 characters or less consisting of alphanumeric characters and
underscore (_).

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.
 ■ A TAB code is converted to a space.

• At program writing operations, be sure to use the NAME statement to specify the program name.
Program writing cannot occur if the program name is not specified.

• When the current mode is "AUTO" or "PROGRAM" mode, and writing into the currently selected
program is not possible.

• When a sequence program is being executed, writing into the program name "SEQUENCE" is not
possible.

SAMPLE

SEND <TEST1> TO CMU････････････････Outputs the program "TEST1" from communication port.
SEND CMU TO <TEST1>････････････････Inputs the program "TEST1" from communication port

Response:
NAME=TEST1[cr/lf]
A=1[cr/lf]
RESET DO2()[cr/lf]
 :
HALT[cr/lf]
[cr/lf]

MEMO

10-4 Chapter 10 Data file description

8

9

10

11

12

13

14

 3 Point	file

3.1 All points

Format

PNT

 Meaning • Expresses all point data.
 • When used as a readout file, all points currently stored are read out.
 • When used as a write file, writing is performed with a point number.

DATA	FORMAT	(On	robots	other	than	R6YXTW500)
Pmmmm=fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t[cr/lf]

Pmmmm=fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t[cr/lf]

 :

Pmmmm=fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t[cr/lf]

Pmmmm=fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t[cr/lf]

[cr/lf]

DATA	FORMAT	(On	robot	R6YXTW500,	with	software	Ver.1.66M	or	higher)
Pmmmm= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr [cr/lf]

Pmmmm= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr [cr/lf]

 :

Pmmmm= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr [cr/lf]

Pmmmm= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr [cr/lf]

[cr/lf]

 Values mmmm Point No.: 0 to 9999
 f.................................. Coordinate sign: + / - / space
 xxxxxx/../bbbbbb Represent a numeric value of 8 digits or less. When a dot is included,

this is treated as point data in "mm" units. Each piece of data is
separated by one or more spaces.

 t Extended hand system flag setting for SCARA robots. 1: right hand
system; 2: left hand system.

 xr................................ Extended setting's X-arm rotation information.
 0 : The "mm → pulse" converted angle data x (*1) range is –180.00° < x < = 180.00°.
 1 : The "mm → pulse" converted angle data x (*1) range is 180.00° < x < = 540.00°.
 -1 : The "mm → pulse" converted angle data x (*1) range is -540.00° < x < = -180.00°.
 yr................................ Extended setting's Y-arm rotation information.
 0 : The "mm → pulse" converted angle data x (*1) range is –180.00° < y < = 180.00°.
 1 : The "mm → pulse" converted angle data x (*1) range is 180.00° < y < = 540.00°.
 -1 : The "mm → pulse" converted angle data x (*1) range is -540.00° < y < = -180.00°.

 *1: The joint-coordinates-converted pulse data represents each arm's distance (converted to angular data)
from its mechanical origin point.

 ■ Hand system flags are valid only for SCARA robots, with the coordinate data specified in "mm" units.
 ■ If a number other than "1" or "2" is specified for a hand system flag, or if no number is specified, this is

interpreted as "0" setting (no hand system flag).

NOTE
 • Integer point data is recognized
in pulse units, and real number
point data is recognized in
"mm" units.

 • The X-arm and Y-arm rotation
information is only available
in software version 1.66M or
higher.

Point file 10-5

8

9

10

11

12

13

14

 ■ X-arm and Y-arm rotation information settings are available only on the R6YXTW500 robot model
where a "mm" units coordinate system has been set.

 ■ X-arm and Y-arm rotation information is processed as "0" if a numeral other than 0, 1, -1 has been
specified, or if no numeral has been specified.

 ■ A line containing only [cr/lf] is added at the end of the file to indicate the end of the file.

SAMPLE (On robots other than R6YXTW500)

SEND PNT TO CMU････････････････Outputs all points from communication port.
SEND CMU TO PNT････････････････Inputs all points from communication port.

Response:
P0 = 1 2 3 4 5 6 [cr/lf]
P1 = 1.00 2.00 3.00 4.00 5.00 6.00 [cr/lf]
P2 = 1.00 0.00 0.00 0.00 0.00 0.00 [cr/lf]
 :
P9999= -1.00 0.00 0.00 0.00 0.00 0.00 [cr/lf]
[cr/lf]

SAMPLE	(On	robot	R6YXTW500,	with	software	Ver.1.66m	or	higher)

SEND PNT TO CMU････････････････Outputs all points from communication port.
SEND CMU TO PNT････････････････Inputs all points from communication port.

Response:
P0 = 1 2 3 4 5 6 [cr/lf]
P1 = 426.20 -160.77 0.01 337.21 0.00 0.00 0 1 0 [cr/lf]
P2 = -27.57 -377.84 0.36 193.22 0.00 0.00 0 -1 0 [cr/lf]
 :
P9999= -251.66 -419.51 0.00 -127.79 0.00 0.00 2 -1 -1 [cr/lf]
[cr/lf]

10-6 Chapter 10 Data file description

8

9

10

11

12

13

14

3.2 One point

Format

Pmmmm

 Meaning • Expresses a specified point.
 • "mmmm" must be from 0 to 9999

DATA	FORMAT	(On	robots	other	than	R6YXTW500)
Pmmmm=fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t[cr/lf]

DATA	FORMAT	(On	robot	R6YXTW500,	with	software	Ver.1.66M	or	higher)
Pmmmm= fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr [cr/lf]

 Values mmmm Point No.: 0 to 9999
 f.................................. Coordinate sign: + / - / space
 xxxxxx/../bbbbbb Represent a numeric value of 8 digits or less. When a dot is included,

this is treated as point data in "mm" units. Each piece of data is
separated by one or more spaces.

 t Extended hand system flag setting for SCARA robots. 1: right hand
system; 2: left hand system.

 xr................................ X-arm rotation information for the R6YXTW500 robot.
 0 : The "mm → pulse" converted pulse data x (*1) range is –180.00° < x < = 180.00°.
 1 : The "mm → pulse" converted pulse data x (*1) range is 180.00° < x < = 540.00°.
 -1 : The "mm → pulse" converted pulse data x (*1) range is –540.00° < x < = -180.00°.
 yr................................ Y-arm rotation information for the R6YXTW500 robot.
 0 : The "mm → pulse" converted pulse data x (*1) range is –180.00° < y < = 180.00°.
 1 : The "mm → pulse" converted pulse data x (*1) range is 180.00° < y < = 540.00°.
 -1 : The "mm → pulse" converted pulse data x (*1) range is –540.00° < y < = -180.00°.

 *1: The joint-coordinates-converted pulse data represents each arm's distance (converted to angular data)
from its mechanical origin point.

 ■ Hand system flags are valid only for SCARA robots, with the coordinate data specified in "mm" units.
 ■ If a number other than "1" or "2" is specified for a hand system flag, or if no number is specified, this is

interpreted as "0" setting (no hand system flag).
 ■ X-arm and Y-arm rotation information settings are available only on the R6YXTW500 robot model

where a "mm" units coordinate system has been set.
 ■ X-arm and Y-arm rotation information is processed as "0" if a numeral other than 0, 1, -1 has been

specified, or if no numeral has been specified.

NOTE
 • Integers indicate point data in
"pulse" units, and real numbers
in "mm" units.

 • The X-arm and Y-arm rotation
information is only available
in software version 1.66M or
higher.

Point file 10-7

8

9

10

11

12

13

14

SAMPLE (On robots other than R6YXTW500)

SEND P100 TO CMU････････････････Outputs the specified point from communication port.
SEND CMU TO P100････････････････Inputs the specified point from communication port.

Response:
P100= 1 2 3 4 5 6[cr/lf]

SAMPLE	(On	robot	R6YXTW500,	with	software	Ver.1.66M	or	higher)

SEND P100 TO CMU････････････････Outputs the specified point from communication port.
SEND CMU TO P100････････････････Inputs the specified point from communication port.

Response:
P100= 1 2 3 4 5 6 0 1 0 [cr/lf]

10-8 Chapter 10 Data file description

8

9

10

11

12

13

14

 4 Point	comment	file

4.1 All point comments

Format

PCM

 Meaning • Expresses all point comments.
 • When used as a readout file, all point comments currently stored are read out.
 • When used as a write file, writing is performed with a point comment number.

DATA	FORMAT
PCmmmm= sssssssssssssss[cr/lf]

PCmmmm= sssssssssssssss[cr/lf]

 :

PCmmmm= sssssssssssssss[cr/lf]

PCmmmm= sssssssssssssss[cr/lf]

[cr/lf]

 Values mmmmPoint comment number: a number from 0 to 9999
 ss...ss ... Comment data: which can be up to 15 one-byte characters.

If comment data exceeds 15 characters, then the 16th
character onwards will be deleted.

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND PCM TO CMU････････････････Outputs all point comments from communication port.
SEND CMU TO PCM････････････････Inputs all point comments from communication port.

Response:
PC1=ORIGIN POS[cr/lf]
PC3=WAIT POS[cr/lf]
 :
PC3999= WORK100[cr/lf]
[cr/lf]

4.2 One point comment

Format

PCmmmm

 Meaning • Expresses a specified point comment.
 • "mmmm" represents a number from 0 to 9999.

DATA	FORMAT
PCmmmm= sssssssssssssss[cr/lf]

Point comment file 10-9

8

9

10

11

12

13

14

 Values mmmmPoint comment number: a number from 0 to 9999
 ss...ss ... Comment data: which can be up to 15 one-byte characters.

If comment data exceeds 15 characters, then the 16th
character onwards will be deleted.

SAMPLE

SEND PC1 TO CMU････････････････Outputs the specified point comment from communication port.
SEND CMU TO PC1････････････････Inputs the specified point comment from communication port.

Response:
PC1=ORIGIN POS[cr/lf]

10-10 Chapter 10 Data file description

8

9

10

11

12

13

14

 5 Parameter	file

5.1 All parameters

Format

PRM

 Meaning • Expresses all parameters (including settings in "UTILITY" mode).
 • When used as a readout file, all parameters currently stored are read out.
 • When used as a write file, only the parameters specified by parameter labels are written.

DATA	FORMAT
/parameter label/ ’ <comment> [cr/lf]

RC= xxxxxx [cr/lf]

/parameter label/ ’<comment> [cr/lf]

R1= xxxxxx R2= yyyyyy [cr/lf]

/parameter label/ ’<comment> [cr/lf]

A1= xxxxxx A2= yyyyyy A3= zzzzzz A4= rrrrrr[cr/lf]

/parameter label/ ’<comment> [cr/lf]

 :

[cr/lf]

 Values RC...Indicates the entire controller.
 R? ...Robot setting: ? / 1: main robot
 A? ...Axis setting: ?: axis No.
 <Comment> Parameter name

 ■ Parameter labels are shown with 6 alphabetic characters.
 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

• When writing parameter data, be sure that the servo is off.
• Parameters are already compatible with upper versions. However, parameters might not always be

compatible with lower versions (upward compatibility).
• When you attempt to load a parameter file of new version into a controller of an earlier version, an

error "10.14 : Undefined parameter found" may appear. If this happens, you may load the parameter
by setting the "Skip undefined parameters" parameter to "VALID". For more details, refer to the
"SYSTEM mode" – "Other parameters" section in the robot controller user's manual.

MEMO

Parameter file 10-11

8

9

10

11

12

13

14

 5	 Parameter	file

SAMPLE

SEND PRM TO CMU････････････････Outputs all parameters from communication port.
SEND CMU TO PRM ････････････････Inputs all parameters from communication port.

Response:
/RBTNUM/ ’Robot number (V8.01/R1001)[cr/lf]
 R1= 3000 R2= 3010 [cr/lf]
/AXES / ’Number of axes[cr/lf]
 R1= 2 R2= 2 [cr/lf]
/AXSNUM/ ’Axis number (V1.01/V1.01/V1.01/V1.01/-----/-----/-----/-----/)[cr/lf]
 A1= 5000 A2= 5001 A3= 5010 A4= 5011 [cr/lf]
 A5= 0 A6= 0 A7= 0 A8= 0 [cr/lf]
/ATTRIB/ ’Axis attribute[cr/lf]
 A1= 33792 A2= 33792 A3= 33792 A4= 33792 [cr/lf]
 A5= 256 A6= 256 A7= 256 A8= 256 [cr/lf]
/WEIGHT/ ’Tip weight[kg][cr/lf]
 R1= 2 R2= 12 [cr/lf]
 :
/CURPNO/ ’Port number of output[cr/lf]
 RC= 20 [cr/lf]
/CURPT1/ ’Compare point number1[cr/lf]
 RC= 0 [cr/lf]
/CURPT2/ ’Compare point number2[cr/lf]
 RC= 0 [cr/lf]
[cr/lf]

10-12 Chapter 10 Data file description

8

9

10

11

12

13

14

5.2 One parameter

Format

/parameter label/

 Meaning • Parameter labels are shown with 6 alphabetic characters.
 • When used as a readout file, only the parameter specified by a parameter label is read out.
 • When used as a write file, only the parameter specified by a parameter label is written.

DATA	FORMAT	1
/parameter label/ ’<comment>[cr/lf]

RC= xxxxxx [cr/lf]

[cr/lf]

DATA	FORMAT	2
/parameter label/ ’<comment>[cr/lf]

R?= xxxxxx [cr/lf]

[cr/lf]

DATA	FORMAT	3
/parameter label/ ’<comment>[cr/lf]

A?= xxxxxx[cr/lf]

[cr/lf]

 Values RC...Indicates the entire controller.
 R? ...Robot setting: ? / 1: main robot
 A? ...Axis setting: ?: axis No.
 <Comment> Parameter name

 ■ Parameter labels are shown with 6 alphabetic characters.
 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

• When writing parameter data, be sure that the servo is off.
• Parameters are already compatible with upper versions. However, parameters might not always be

compatible with lower versions (upward compatibility).
• When you attempt to load a parameter file of new version into a controller of an earlier version, an

error "10.14 : Undefined parameter found" may appear.

SAMPLE

SEND /ACCEL / TO CMU････････････････Outputs the acceleration parameter from communication port.
SEND CMU TO /ACCEL /････････････････Inputs the acceleration parameter from communication port.

Response:
/ACCEL / ’Accel coefficient[%]
A1= 100 A2= 100 A3= 100 A4= 100[cr/lf]
[cr/lf]

MEMO

Shift coordinate definition file 10-13

8

9

10

11

12

13

14

 6 Shift	coordinate	definition	file

6.1 All shift data

Format

SFT

 Meaning • Expresses all shift data.
 • When used as a readout file, all shift data currently stored are read out.
 • When used as a write file, writing is performed with a shift number.

DATA	FORMAT
Sm = fxxxxxx fyyyyyy fzzzzzz frrrrrr [cr/lf]

SPm = fxxxxxx fyyyyyy fzzzzzz frrrrrr [cr/lf]

SMm = fxxxxxx fyyyyyy fzzzzzz frrrrrr [cr/lf]

 :

Sm = fxxxxxx fyyyyyy fzzzzzz frrrrrr [cr/lf]

SPm = fxxxxxx fyyyyyy fzzzzzz frrrrrr [cr/lf]

SMm = fxxxxxx fyyyyyy fzzzzzz frrrrrr [cr/lf]

[cr/lf]

 Values m ...Shift No.: 0 to 9
 f...Coordinate sign: + / - / space
 xxxxxx/yyyyyy/../rrrrrr............... Represent a numeric value of 8 digits or less, having 2 or

less places below the decimal point.

 ■ The SPm and SMm inputs are optional in writing files.
SPm: shift coordinate range plus-side; SMm: shift coordinate range minus-side

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND SFT TO CMU････････････････Outputs all shift data from communication port.
SEND CMU TO SFT････････････････Inputs all shift data from communication port.

Response:
S0 = 0.00 0.00 0.00 0.00 [cr/lf]
SP0= 0.00 0.00 0.00 0.00 [cr/lf]
SM0= 0.00 0.00 0.00 0.00 [cr/lf]
S1 = 1.00 1.00 1.00 1.00 [cr/lf]
 :
SM9= 9.00 9.00 9.00 9.00 [cr/lf]
[cr/lf]

10-14 Chapter 10 Data file description

8

9

10

11

12

13

14

6.2	 One	shift	definition

Format

Sm

 Meaning • Expresses a specified shift definition.

DATA	FORMAT
Sm = fxxxxxx fyyyyyy fzzzzzz frrrrrr[cr/lf]

 Values m ...Shift No.: 0 to 9
 f...Coordinate sign: + / - / space
 xxxxxx/yyyyyy/../rrrrrr............... Represent a numeric value of 8 digits or less, having 2 or

less places below the decimal point.

SAMPLE

SEND S0 TO CMU････････････････Outputs the specified shift coordinate from communication port.
SEND CMU TO S0････････････････Inputs the specified shift coordinate from communication port.

Response:
S0 = 0.00 0.00 0.00 0.00[cr/lf]
SP0= 0.00 0.00 0.00 0.00[cr/lf]
SM0= 0.00 0.00 0.00 0.00[cr/lf]
[cr/lf]

Hand definition file 10-15

8

9

10

11

12

13

14

 7 Hand	definition	file

7.1	 All	hand	data

Format

HND

 Meaning • Expresses all hand data.
 • When used as a readout file, all hand data currently stored are read out.
 • When used as a write file, writing is performed with a hand number.

DATA	FORMAT
Hm = fxxxxxx fyyyyyy fzzzzzz {R}[cr/lf]

 :

Hm = fxxxxxx fyyyyyy fzzzzzz {R}[cr/lf]

[cr/lf]

 Values m ... Hand number / 0 to 3: used for main robot
 f...Coordinate sign: + / - / space
 xxxxxx/yyyyyy/zzzzzz Represent a numeric value of 8 digits or less, having 2

or less places below the decimal point, or an integer of 7
digits or less. (This numeric format depends on the robot
type setting and hand definition type.)

 {R} ...Indicates whether a hand is attached to the R-axis.

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND HND TO CMU････････････････Outputs all hand data from communication port.
SEND CMU TO HND････････････････Inputs all hand data from communication port.

Response:
H0 = 0.00 0.00 0.00 [cr/lf]
H1 = 1.00 1.00 1.00 [cr/lf]
H2 = 2.00 2.00 2.00 [cr/lf]
H3 = 3.00 3.00 3.00 [cr/lf]
H4 = 4.00 4.00 4.00 [cr/lf]
H5 = 5.00 5.00 5.00 [cr/lf]
H6 = 6.00 6.00 6.00 [cr/lf]
H7 = 7.00 7.00 7.00 [cr/lf]
[cr/lf]

10-16 Chapter 10 Data file description

8

9

10

11

12

13

14

7.2	 One	hand	definition

Format

Hm

 Meaning • Expresses a specified hand definition.

DATA	FORMAT
Hm = fxxxxxx fyyyyyy fzzzzzz {R}[cr/lf]

 Values m ... Hand number / 0 to 3: used for main robot
 f...Coordinate sign: + / - / space
 xxxxxx/yyyyyy/zzzzzz Represent a numeric value of 8 digits or less, having 2

or less places below the decimal point, or an integer of 7
digits or less. (This numeric format depends on the robot
type setting and hand definition type.)

 {R} ...Indicates whether a hand is attached to the R-axis.

SAMPLE

SEND H3 TO CMU････････････････Outputs the specified hand definition data from communication port.
SEND CMU TO H3････････････････Inputs the specified hand definition data from communication port.

Response:
H3 = 3.00 3.00 3.00[cr/lf]

Pallet definition file 10-17

8

9

10

11

12

13

14

 8 Pallet	definition	file

8.1	 All	pallet	definitions

Format

PLT

 Meaning • Expresses all pallet definitions.
 • When used as a readout file, all pallet definitions currently stored are read out.
 • When used as a write file, writing is performed with a pallet number.

DATA	FORMAT	(On	robots	other	than	R6YXTW500)
PLm [cr/lf]

PLN = XY [cr/lf]

NX = nnn [cr/lf]

NY = nnn [cr/lf]

NZ = nnn [cr/lf]

P[1] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t[cr/lf]

 :

P[5] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t[cr/lf]

PLm [cr/lf]

 :

[cr/lf]

DATA	FORMAT	(On	robot	R6YXTW500,	with	software	Ver.1.66M	or	higher)
PLm [cr/lf]

PLN = XY [cr/lf]

NX = nnn [cr/lf]

NY = nnn [cr/lf]

NZ = nnn [cr/lf]

P[1] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr[cr/lf]

 :

P[5] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr[cr/lf]

PLm [cr/lf]

 :

[cr/lf]

 Values mPallet number: 0 to 19
 nnnNumber of axis points: positive integer
 f...........................Coordinate sign: + / - / space
 xxxxxx/yyyyyy/../bbbbbb............

 Represent a numeric value of 8 digits or less. When a dot is included, this
is treated as coordinate data in "mm" units. Each piece of data is separated
by one or more spaces.

 t An extended hand system flag setting for SCARA robots. 1: Right-handed
system, 2: Left-handed system

 xr.........................Extended setting for X-arm rotation information.
 0: "mm" → pulse converted angle data x (*1) range: -180.00°< x <= 180.00°
 1: "mm" → pulse converted angle data x (*1) range: 180.00° < x <= 540.00°
 -1: "mm" → pulse converted angle data x (*1) range: -540.00° < x <= -180.00°

10-18 Chapter 10 Data file description

8

9

10

11

12

13

14

 yr.........................Extended setting for Y-arm rotation information.
 0: "mm" → pulse converted angle data x (*1) range: -180.00° < y <= 180.00°
 1: "mm" → pulse converted angle data x (*1) range: 180.00° < y <= 540.00°
 -1: "mm" → pulse converted angle data x (*1) range: -540.00° < y <= -180.00°
*1: The joint-coordinates-converted pulse data represents each arm's distance (converted to angular
 data) from its mechanical origin point.

 ■ Hand system flags are enabled only when specifying the coordinate data in "mm" units for SCARA
robots.

 ■ Hand system flags and the X-arm and Y-arm rotation information are ignored during movement where
pallet definitions are used.

 ■ If a number other than 1 or 2 is set, or if no number is designated, then 0 will be set to indicate that there
is no hand system flag.

 ■ X-arm and Y-arm rotation information settings are available only on the R6YXTW500 robot model
where a "mm" units coordinate system has been set.

 ■ If a value other than "0", "1", "-1" is specified at the X-arm and Y-arm rotation information, or if no
value is specified, this will be processed as "0".

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

NOTE
 • X-arm and Y-arm rotation
information is only available in
software Ver.1.66M or higher.

Pallet definition file 10-19

8

9

10

11

12

13

14

 8	 Pallet	definition	file

SAMPLE

SEND PLT TO CMU････････････････Outputs all pallet definitions from communication port.
SEND CMU TO PLT････････････････Inputs all pallet definitions from communication port.
Response:
PL0[cr/lf]
PLN=XY[cr/lf]
NX = 3 [cr/lf]
NY = 4 [cr/lf]
NZ = 2 [cr/lf]
P[1]= 0.00 0.00 0.00 0.00 0.00 0.00 [cr/lf]
P[2]= 100.00 0.00 0.00 0.00 0.00 0.00 [cr/lf]
P[3]= 0.00 100.00 0.00 0.00 0.00 0.00 [cr/lf]
P[4]= 100.00 100.00 0.00 0.00 0.00 0.00 [cr/lf]
P[5]= 0.00 0.00 50.00 0.00 0.00 0.00 [cr/lf]
PL1[cr/lf]
PLN= XY[cr/lf]
NX = 3[cr/lf]
NY = 4[cr/lf]
NZ = 2[cr/lf]
P[1]= 0.00 0.00 0.00 0.00 0.00 0.00 [cr/lf]
P[2]= 100.00 100.00 0.00 0.00 0.00 0.00 [cr/lf]
P[3]= 0.00 200.00 0.00 0.00 0.00 0.00 [cr/lf]
P[4]= 100.00 200.00 0.00 0.00 0.00 0.00 [cr/lf]
P[5]= 0.00 0.00 100.00 0.00 0.00 0.00 [cr/lf]
[cr/lf]

10-20 Chapter 10 Data file description

8

9

10

11

12

13

14

8.2	 One	pallet	definition

Format

PLm

 Meaning • Expresses a specified pallet definition.
 • "m" must be from 0 to 19.

DATA	FORMAT	(On	robots	other	than	R6YXTW500)
PLm [cr/lf]

PLN = XY [cr/lf]

NX = nnn [cr/lf]

NY = nnn [cr/lf]

NZ = nnn [cr/lf]

P[1] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t[cr/lf]

 :

P[5] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t[cr/lf]

[cr/lf]

DATA	FORMAT	(On	robot	R6YXTW500,	with	software	Ver.1.66M	or	higher)
PLm [cr/lf]

PLN = XY [cr/lf]

NX = nnn [cr/lf]

NY = nnn [cr/lf]

NZ = nnn [cr/lf]

P[1] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr[cr/lf]

 :

P[5] = fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t xr yr[cr/lf]

[cr/lf]

 Values mPallet number: 0 to 19
 nnnNumber of points for each axis: positive integer
 f...........................Coordinate sign: + / - / space
 xxxxxx/yyyyyy/../bbbbbb............

 Represent a numeric value of 8 digits or less. When a dot is included, this
is treated as point data in "mm" units. Each piece of data is separated by
one or more spaces.

 t An extended hand system flag setting for SCARA robots. 1: Right-handed
system, 2: Left-handed system

 xr......................... Extended setting for X-arm rotation information.
 0: "mm" → pulse converted angle data x (*1) range: -180.00° < x <= 180.00°
 1: "mm" → pulse converted angle data x (*1) range: 180.00° < x <= 540.00°
 -1: "mm" → pulse converted angle data x (*1) range: -540.00° < x <= -180.00°
 yr.........................Extended setting for Y-arm rotation information.
 0: "mm" → pulse converted angle data x (*1) range: -180.00° < y <= 180.00°
 1: "mm" → pulse converted angle data x (*1) range: 180.00° < y <= 540.00°
 -1: "mm" → pulse converted angle data x (*1) range: -540.00° < y <= -180.00°
*1: The joint-coordinates-converted pulse data represents each arm's distance (converted to angular
 data) from its mechanical origin point.

NOTE
 • Integers indicate point data in
"pulse" units, and real numbers
in "mm" units.

Pallet definition file 10-21

8

9

10

11

12

13

14

 ■ Hand system flags are enabled only when specifying the coordinate data in "mm" units for SCARA
robots.

 ■ Hand system flags and the X-arm and Y-arm rotation information are ignored during movement where
pallet definitions are used.

 ■ If a number other than 1 or 2 is set, or if no number is designated, then 0 will be set to indicate that there
is no hand system flag.

 ■ X-arm and Y-arm rotation information settings are available only on the R6YXTW500 robot model
where a "mm" units coordinate system has been set.

 ■ If a value other than "0", "1", "-1" is specified at the X-arm and Y-arm rotation information, or if no
value is specified, this will be processed as "0".

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

NOTE
 • X-arm and Y-arm rotation
information is only available in
software Ver.1.66M or higher.

10-22 Chapter 10 Data file description

8

9

10

11

12

13

14

 8	 Pallet	definition	file

SAMPLE

SEND PL2 TO CMU････････････････Outputs the specified pallet definition from communication port as shown below.
SEND CMU TO PL2････････････････Inputs the specified pallet definition from communication port as shown below.
Response:
PL2[cr/lf]
PLN= XY[cr/lf]
NX= 3[cr/lf]
NY= 3[cr/lf]
NZ= 2[cr/lf]
P[1]= 100.00 100.00 50.00 90.00 0.00 0.00 [cr/lf]
P[2]= 200.00 100.00 50.00 90.00 0.00 0.00 [cr/lf]
P[3]= 100.00 200.00 50.00 90.00 0.00 0.00 [cr/lf]
P[4]= 200.00 200.00 50.00 90.00 0.00 0.00 [cr/lf]
P[5]= 100.00 10.00 100.00 90.00 0.00 0.00 [cr/lf]
[cr/lf]

All file 10-23

8

9

10

11

12

13

14

 9 All	file

9.1	 All	files

Format

ALL

 Meaning Expresses the minimum number of data files required to operate the robot system.

DATA	FORMAT
[PGM] All program format

NAME=< program name >

aaaaa....aaaaaaaaaaaaaa[cr/lf]

:

aaaaa....aaaaaaaaaaaaaa[cr/lf]

[cr/lf]

[PNT] All point format

Pmmmm=fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t[cr/lf]

:

Pmmmm=fxxxxxx fyyyyyy fzzzzzz frrrrrr faaaaaa fbbbbbb t[cr/lf]

[cr/lf]

[PCM] All point comment format

PCmmmm= sssssssssssssss[cr/lf]

:

PCmmmm= sssssssssssssss[cr/lf]

[cr/lf]

[PRM] All parameter format

/parameter label/'<comment> [cr/lf]

RC= xxxxxx [cr/lf]

/parameter label/'<comment> [cr/lf]

R1= xxxxxx R2= yyyyyy [cr/lf]

:

[cr/lf]

[END] ALL files end

• In writing files, [xxx] determines the data file's format, and this format is saved at the controller.
Example: [HND]…All text data up the next [xxx] is saved at the controller as "all hand" format data.

SAMPLE

SEND ALL TO CMU････････････････Outputs all files of the entire system from communication port.
SEND CMU TO ALL････････････････Inputs all files of the entire system from communication port.

NOTE
 • For details of each file, refer to
that file's explanation.

MEMO

10-24 Chapter 10 Data file description

8

9

10

11

12

13

14

 10 Program	directory	file

10.1 Entire program directory

Format

DIR

 Meaning • Expresses entire program directory.
 • When used as a readout file, information on entire program directory is read out.
 • Cannot be used as a write file.

DATA	FORMAT
No. Name Line Byte RW/RO Date Time[cr/lf]
nnnfgssssssss llll bbbbbb xx yy/mm/dd hh:mm[cr/lf]
 :
nnnfgssssssss llll bbbbbb xx yy/mm/dd hh:mm[cr/lf]
END[cr/lf]

 Values nnn ..Program directory number: 3 digits
 f... "o" at program compiling when a program object is created.

"s" at sequence program compiling when a sequence object
is created.

 g ..Shows an asterisk "*" for the currently selected program.
 ssssssssProgram name: 8 digits
 llll ...Number of program lines: 4 digits
 bbbbbb ..Byte size of program: 6 digits
 xx ..File attribute: 2-digit
 RW: Readable/writable
 RO: Not writable (read only)
 yy/mm/dd Date when the program was updated: 8 digits (including

the "/" marks)
 hh:mm ..Time when the program was updated: 5 digits

SAMPLE

SEND DIR TO CMU････････････････Outputs information on all program directory from communication port.
Response:
No. Name Line Byte RW/RO Date Time[cr/lf]
1o* 12345678 5 21 RW 01/06/20 10:35[cr/lf]
2 PGM1 5 66 RW 01/06/20 10:35[cr/lf]
3 PGM2 5 66 RW 01/06/20 10:35[cr/lf]
4 PGM3 5 66 RW 01/06/20 10:35[cr/lf]
5 PGM4 5 66 RW 01/06/20 10:35[cr/lf]
6 PGM5 5 66 RW 01/06/20 10:35[cr/lf]
7 PGM6 5 66 RW 01/06/20 10:35[cr/lf]
8s SEQUENCE 1 15 RW 01/06/20 10:35[cr/lf]
END[cr/lf]

Program directory file 10-25

8

9

10

11

12

13

14

10.2 One program

Format

“<<”<program name>”>>”

 Meaning • Expresses information on one program.
 • The program name is enclosed in <<>> double brackets.

DATA	FORMAT
No. Name Line Byte RW/RO Date Time[cr/lf]
nnnfgssssssss llll bbbbbb xx yy/mm/dd hh:mm[cr/lf]

 Values nnn ..Program directory number: 3 digits
 f... "o" at program compiling when a program object is created.

"s" at sequence program compiling when a sequence object
is created.

 g ..Shows an asterisk "*" for the currently selected program.
 ssssssssProgram name: 8 digits
 llll ...Number of program lines: 4 digits
 bbbbbb ..Byte size of program: 6 digits
 xx ..File attribute: 2-digit
 RW: Readable/writable
 RO: Not writable (read only)
 yy/mm/dd Date when the program was updated: 8 digits (including

the "/" marks)
 hh:mm ..Time when the program was updated: 5 digits

• Indicates the compiled execution program (program objects compiled for a robot program, or sequence
objects compiled for a sequence program).

SAMPLE

SEND <<TEST>> TO CMU･･･････････Outputs information on the specified program from communication port.

Response:
No. Name Line Byte RW/RO Date Time[cr/lf]
3o* PGM2 5 66 RW 01/06/20 10:35[cr/lf]

MEMO

10-26 Chapter 10 Data file description

8

9

10

11

12

13

14

 11 Parameter	directory	file

11.1 Entire parameter directory

Format

DPM

 Meaning • Expresses entire parameter directory.
 • When used as a readout file, information on entire parameter directory is read out.
 • Cannot be used as a write file.

DATA	FORMAT
/parameter label/ ’<comment>[cr/lf]

/parameter label/ ’<comment>[cr/lf]

 :

/parameter label/ ’<comment>[cr/lf]

 [cr/lf]

 Values <comment> Parameter name

 ■ Parameter labels are shown with 6 alphabetic characters.
 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND DPM TO CMU････････････････Outputs information on all parameter directory from communication port.
Response:
/RBTNUM/ ’Robot number (V8.01/R1001)[cr/lf]
/AXES / ’Number of axes[cr/lf]
/AXSNUM/ ’Axis number(V1.01/V1.01/V1.01/V1.01/-----/-----/-----/-----/)[cr/lf]
/ATTRIB/ ’Axis attribute[cr/lf]
/WEIGHT/ ’Tip weight[kg][cr/lf]
/ORIGIN/ ’Origin sequence[cr/lf]
/RORIEN/ ’R axis orientation[cr/lf]
 :
/CURPNO/ ’Output port number[cr/lf]
/CURPT1/ ’Number of compare point 1[cr/lf]
/CURPT2/ ’Number of compare point 2[cr/lf]
[cr/lf]

Variable file 10-27

8

9

10

11

12

13

14

 12 Variable	file

12.1 All variables

Format

VAR

 Meaning • Expresses all global variables.
 • When used as a readout file, all global variables currently stored are read out.
 • When used as a write file, a specified global variable is written.

DATA	FORMAT
<variable name>t = xxxxxx [cr/lf]

<variable name>t = xxxxxx [cr/lf]

 :

<variable name>t = xxxxxx [cr/lf]

 [cr/lf]

 Values <Variable name> Global variable defined in the program. Variable
name is shown with 16 characters or less consisting of
alphanumeric characters and underscore ("_").

 t ... Type of variable / !: real type, %: integer type, $: character
string type

 xxxxxx ..Differs depending on the type of variable:
 Integer type: integer of 8 digits or less
 Real type: real number of 7 digits or less including

decimal fractions
 Character type: character string of 70 characters or less

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

10-28 Chapter 10 Data file description

8

9

10

11

12

13

14

 12	 Variable	file

SAMPLE 1

SEND VAR TO CMU････････････････Outputs all global variables from communication port.

Response:
SGI0=0[cr/lf]
SGI1=1111[cr/lf]
SGI2=2222[cr/lf]
SGI3=3333[cr/lf]
SGI4=4444[cr/lf]
SGI5=5555[cr/lf]
SGI6=6666[cr/lf]
SGI7=7777[cr/lf]
SGR0=0[cr/lf]
SGR1=1.1111E3[cr/lf]
SGR2=2.2222E3[cr/lf]
SGR3=3.3333E3[cr/lf]
SGR4=4.4444E3[cr/lf]
SGR5=5.5555E3[cr/lf]
SGR6=6.6666E3[cr/lf]
SGR7=7.7777E3[cr/lf]
B1%=111[cr/lf]
B2%=222[cr/lf]
C1$="CNS_1"[cr/lf]
C2$="CNS_2"[cr/lf]
[cr/lf]

SAMPLE 2

SEND CMU TO VAR････････････････Inputs all global variables from communication port.

Variable file 10-29

8

9

10

11

12

13

14

12.2 One variable

Format

<variable name>t

 Meaning • Expressed one variable.

DATA	FORMAT
xxxxxx [cr/lf]

 Values <Variable name> Global variable defined in the program. Variable
name is shown with 16 characters or less consisting of
alphanumeric characters and underscore ("_").

 t ... Type of variable / !: real type, %: integer type, $: character
string type

 xxxxxx ..Differs depending on the type of variable:
 Integer type: integer of 8 digits or less
 Real type: real number of 7 digits or less including

decimal fractions
 Character type: character string of 70 characters or less

• Dynamic global variables are registered during compiling. Variables cannot be referred to unless they
are registered.

SAMPLE 1

SEND SGI6 TO CMU[cr/lf]････････････････Outputs the specified variable SGI6 from communication
port.

Response:
6666[cr/lf]

SAMPLE 2

SEND CMU TO SGI6[cr/lf] ･･･････････････Inputs the specified variable SGI6 from communication
port.

Response:
6666 [cr/lf] Data input to the controller.
OK [cr/lf] Result output from the controller.

NOTE
 • SGIx indicates an integer type
static variable.

 • SGRx indicates a real type
static variable.

MEMO

10-30 Chapter 10 Data file description

8

9

10

11

12

13

14

 13 Constant	file

13.1 One character string

Format

"<character string>"

 Meaning • Expresses a specified character string.
 • When used as a readout file, the specified character string is read out.
 • Cannot be used as a write file.

DATA	FORMAT
sssss...ssssss[cr/lf]

 Values sssss...ssssssCharacter string: 61 characters or less

 ■ Output of a double quotation (") is shown with two successive double quotations.

SAMPLE
SEND ""OMRON ROBOT"" TO CMU

 ････････････････Outputs the specified character string from communication port.
Response:
"OMRON ROBOT"[cr/lf]

Array variable file 10-31

8

9

10

11

12

13

14

 14 Array	variable	file

14.1 All array variables

Format

ARY

 Meaning • Expresses all array variables.
 • When used as a readout file, all array variables are read out.
 • When used as a write file, writing is performed with a specified array variable.

DATA	FORMAT
<variable name>t(l{,m{,n}}) = xxxxxx [cr/lf]

<variable name>t(l{,m{,n}}) = xxxxxx [cr/lf]

 :

<variable name>t(l{,m{,n}}) = xxxxxx [cr/lf]

[cr/lf]

 Values <Variable name> Global variable defined in the program. Variable
name is shown with 16 characters or less consisting of
alphanumeric characters and underscore ("_").

 t ... Type of variable / !: real type, %: integer type, $: character string type
 l, m, n ..Indicate array arguments.
 xxxxxx ..Differs depending on the type of array variable.
 Integer type: integer of 8 digits or less
 Real type: real number of 7 digits or less including decimal fractions
 Character type: character string of 70 characters or less

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE 1

SEND ARY TO CMU････････････････Outputs all global array variables from communication port.
Response:
A!(0)=0[cr/lf]
A!(1)=1.E2[cr/lf]
A!(2)=2.E2[cr/lf]
B%(0,0)=0[cr/lf]
B%(0,1)=1111[cr/lf]
B%(1,0)=2222[cr/lf]
B%(1,1)=3333[cr/lf]
C$(0,0,0)="ARY1"[cr/lf]
C$(0,0,1)="ARY2"[cr/lf]
C$(0,1,0)="ARY3"[cr/lf]
C$(0,1,1)="ARY4"[cr/lf]
C$(1,0,0)="ARY5"[cr/lf]
C$(1,0,1)="ARY6"[cr/lf]
C$(1,1,0)="ARY7"[cr/lf]
C$(1,1,1)="ARY8"[cr/lf]
[cr/lf]

SAMPLE 2
SEND CMU TO ARY････････････････Inputs all global array variables from communication port.

10-32 Chapter 10 Data file description

8

9

10

11

12

13

14

14.2 One array variable

Format

<variable name> t(l {,m {,n }})

 Meaning • Expresses one array variable.

DATA	FORMAT
xxxxxx [cr/lf]

 Values <Variable name> Global variable defined in the program. Variable
name is shown with 16 characters or less consisting of
alphanumeric characters and underscore ("_").

 t ... Type of variable / !: real type, %: integer type, $: character
string type

 l, m, n ..Indicate array arguments.
 xxxxxx ..Differs depending on the type of array variable.
 Integer type: integer of 8 digits or less
 Real type: real number of 7 digits or less including

decimal fractions
 Character type: character string of 70 characters or less

• Array variables defined by the DIM statement are registered during compiling. Array variables cannot
be referred to unless they are registered.

SAMPLE 1

SEND C1$(2) TO CMU[cr/lf]････････････････Outputs the specified array variable C1$(2) from communication
port.

Response:
OMRON ROBOT[cr/lf]

SAMPLE 2

SEND CMU TO C1$(2)[cr/lf]････････････････Inputs the specified array variable C1$(2) from communication
port.

Response:
OK[cr/lf]

MEMO

DI file 10-33

8

9

10

11

12

13

14

 15 DI	file

15.1 All DI information

Format

DI()

 Meaning • Expresses all DI (parallel input variable) information.
 • When used as a readout file, all DI information is read out.
 • Cannot be used as a write file.

DATA	FORMAT
DI0()=&Bnnnnnnnn [cr/lf]

DI1()=&Bnnnnnnnn [cr/lf]

 :

DI27()=&Bnnnnnnnn [cr/lf]

[cr/lf]

 Values n .. "0" or "1" (total of 8 digits). Corresponds to m7, m6, …,
m0, reading from the left ("m" is the port No.).

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND DI() TO CM････････････････Outputs all DI information from communication port.

Response:
DI0()=&B10001001[cr/lf]
DI1()=&B00000010[cr/lf]
DI2()=&B00000000[cr/lf]
 :
DI7()=&B00000000[cr/lf]
DI10()=&B00000000[cr/lf]
DI11()=&B00000000[cr/lf]
DI12()=&B00000000[cr/lf]
 :
DI17()=&B00000000[cr/lf]
DI20()=&B00000000[cr/lf]
 :
DI26()=&B00000000[cr/lf]
DI27()=&B00000000[cr/lf]
[cr/lf]

10-34 Chapter 10 Data file description

8

9

10

11

12

13

14

15.2 One DI port

Format

DIm()

 Meaning • Expresses the status of one DI port.
 • When used as a readout file, the specified DI port status is read out.
 • Cannot be used as a write file.

DATA	FORMAT
DIm()=&Bnnnnnnnn[cr/lf]

 Values m ...0 to 7, 10 to 17, 20 to 27
 n .. "0" or "1" (total of 8 digits). Corresponds to m7, m6, …,

m0, reading from the left ("m" is the port No.).

SAMPLE

SEND DI5() TO CMU････････････････Outputs the DI5 port status from communication port.

Response:
DI5()=&B00000000[cr/lf]

DO file 10-35

8

9

10

11

12

13

14

 16 DO	file

16.1 All DO information

Format

DO()

 Meaning • Expresses all DO (parallel output variable) information.
 • When used as a readout file, all DO information is read out.
 • Cannot be used as a write file.

DATA	FORMAT
DO0()=&Bnnnnnnnn [cr/lf]

DO1()=&Bnnnnnnnn [cr/lf]

 :

DO27()=&Bnnnnnnnn [cr/lf]

[cr/lf]

 Values n .. "0" or "1" (total of 8 digits). Corresponds to m7, m6, …,
m0, reading from the left ("m" is the port No.).

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND DO() TO CMU････････････････Outputs all DO information from communication port.

Response:
DO0()=&B10001001[cr/lf]
DO1()=&B00000010[cr/lf]
DO2()=&B00000000[cr/lf]
 :
DO7()=&B00000000[cr/lf]
DO10()=&B00000000[cr/lf]
DO11()=&B00000000[cr/lf]
DO12()=&B00000000[cr/lf]
 :
DO17()=&B00000000[cr/lf]
DO20()=&B00000000[cr/lf]
 :
DO26()=&B00000000[cr/lf]
DO27()=&B00000000[cr/lf]
[cr/lf]

10-36 Chapter 10 Data file description

8

9

10

11

12

13

14

16.2 One DO port

Format

DOm()

 Meaning • Expresses the status of one DO port.
 • When used as a readout file, the specified DO port status is read out.
 • When used as a write file, the value is written to the specified DO port. However, writing to

DO0() and DO1() is prohibited.

 • Readout file

DATA	FORMAT
DOm()=&Bnnnnnnnn[cr/lf]

 • Write file

DATA	FORMAT
&Bnnnnnnnn[cr/lf] or k[cr/lf]

 Values m ...Port number: 0 to 7, 10 to 17, 20 to 27
 n .. "0" or "1" (total of 8 digits). Corresponds to m7, m6, …,

m0, reading from the left ("m" is the port No.).
 k ..Integer from 0 to 255

• Writing to DO0() and DO1() is prohibited. Only referencing is permitted.

SAMPLE 1

SEND DO5() TO CMU････････････････Outputs the DO5 port status from communication port.

Response:
DO5()=&B00000000[cr/lf]

SAMPLE 2

SEND CMU TO DO5()････････････････Inputs the DO5 port status from communication port.
&B00000111

Response:
OK[cr/lf]

MEMO

MO file 10-37

8

9

10

11

12

13

14

 17 MO	file

17.1	 All	MO	information

Format

MO()

 Meaning • Expresses all MO (internal output variable) information.
 • When used as a readout file, all MO information is read out.
 • Cannot be used as a write file.

DATA	FORMAT
MO0()=&Bnnnnnnnn [cr/lf]

MO1()=&Bnnnnnnnn [cr/lf]

 :

MO27()=&Bnnnnnnnn [cr/lf]

[cr/lf]

 Values n .. "0" or "1" (total of 8 digits). Corresponds to m7, m6, …,
m0, reading from the left ("m" is the port No.).

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND MO() TO CMU････････････････Outputs all MO information from communication port.

Response:
MO0()=&B10001001[cr/lf]
MO1()=&B00000010[cr/lf]
MO2()=&B00000000[cr/lf]
:
MO7()=&B00000000[cr/lf]
MO10()=&B00000000[cr/lf]
MO11()=&B00000000[cr/lf]
MO12()=&B00000000[cr/lf]
:
MO17()=&B00000000[cr/lf]
MO20()=&B00000000[cr/lf]
:
MO26()=&B00000000[cr/lf]
MO27()=&B00000000[cr/lf]
[cr/lf]

10-38 Chapter 10 Data file description

8

9

10

11

12

13

14

17.2	 One	MO	port

Format

MOm()

 Meaning • Expresses the status of one MO port.
 • When used as a readout file, the specified MO port status is read out.
 • When used as a write file, the value is written to the specified MO port. However, writing to

MO0() and MO1() is prohibited.

 • Readout file

DATA	FORMAT
MOm()=&Bnnnnnnnn[cr/lf]

 • Write file

DATA	FORMAT
&Bnnnnnnnn[cr/lf] or k[cr/lf]

 Values m ...Port number: 0 to 7, 10 to 17, 20 to 27
 n .. "0" or "1" (total of 8 digits). Corresponds to m7, m6, …,

m0, reading from the left ("m" is the port No.).
 k ..Integer from 0 to 255

• Writing to MO0() and MO1() is prohibited. Only reference is permitted.

SAMPLE 1

SEND MO5() TO CMU････････････････Outputs the MO5 port status from communication port.

Response:
MO5()=&B00000000[cr/lf]

SAMPLE 2

SEND CMU TO MO5()････････････････Inputs the MO5 port status from communication port.
&B00000111

Response:
OK[cr/lf]

MEMO

LO file 10-39

8

9

10

11

12

13

14

 18 LO	file

18.1	 All	LO	information

Format

LO()

 Meaning • Expresses all LO (internal output variable) information.
 • When used as a readout file, all LO information is read out.
 • Cannot be used as a write file.

DATA	FOMAT
LO0()=&Bnnnnnnnn [cr/lf]

[cr/lf]

 Values n .. "0" or "1" (total of 8 digits). Corresponds to 07, 06, …, 00,
reading from the left.

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND LO() TO CMU････････････････Outputs all LO status from communication port.

Response:
LO0()=&B10001001[cr/lf]
[cr/lf]

10-40 Chapter 10 Data file description

8

9

10

11

12

13

14

18.2	 One	LO	port

Format

LO0()

 Meaning • Expresses the status of one LO port.
 • When used as a readout file, the specified LO port status is read out.
 • When used as a write file, the value is written to the specified LO port.

 • Readout file

DATA	FORMAT
LO0()=&Bnnnnnnnn[cr/lf]

 • Write file

DATA	FORMAT
&Bnnnnnnnn[cr/lf] or k[cr/lf]

 Values n .. "0" or "1" (total of 8 digits). Corresponds to 07, 06, …, 00,
reading from the left.

 k ..Integer from 0 to 255

SAMPLE 1

SEND LO0() TO CMU････････････････Outputs the LO0 port status from communication port.

Response:
LO0()=&B00000000[cr/lf]

SAMPLE 2

SEND CMU TO LO0()････････････････Inputs the LO0 port status from communication port.
&B00000111

Response:
OK[cr/lf]

TO file 10-41

8

9

10

11

12

13

14

 19 TO	file

19.1 All TO information

Format

TO()

 Meaning • Expresses all TO (timer output variable) information.
 • When used as a readout file, all TO information is read out.
 • Cannot be used as a write file.

DATA	FORMAT
TO0()=&Bnnnnnnnn [cr/lf]

[cr/lf]

 Values n .. "0" or "1" (total of 8 digits). Corresponds to 07, 06, …, 00,
reading from the left ("m" is the port No.).

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND TO() TO CMU････････････････Outputs all TO status from communication port.

Response:
TO0()=&B10001001[cr/lf]
[cr/lf]

10-42 Chapter 10 Data file description

8

9

10

11

12

13

14

19.2 One TO port

Format

TO()

 Meaning • Expresses the status of one TO port.
 • When used as a readout file, the specified TO port status is read out.
 • When used as a write file, the value is written to the specified TO port.

 • Readout file

DATA	FORMAT
TO0()=&Bnnnnnnnn[cr/lf]

 • Write file

DATA	FORMAT
&Bnnnnnnnn[cr/lf] or k[cr/lf]

 Values n .. "0" or "1" (total of 8 digits). Corresponds to 07, 06, …, 00,
reading from the left ("m" is the port No.).

 k ..Integer from 0 to 255

SAMPLE 1

SEND TO0() TO CMU････････････････Outputs the TO0 port status from communication port.

Response:
TO0()=&B00000000[cr/lf]

SAMPLE 2

SEND CMU TO TO0()････････････････Inputs the TO0 port status from communication port.
&B00000111

Response:
OK[cr/lf]

SI file 10-43

8

9

10

11

12

13

14

 20 SI	file

20.1 All SI information

Format

SI()

 Meaning • Expresses all SI (serial input variable) information.
 • When used as a readout file, all SI information is read out.
 • Cannot be used as a write file.

DATA	FORMAT
SI0()=&Bnnnnnnnn [cr/lf]

SI1()=&Bnnnnnnnn [cr/lf]

 :

SI27()=&Bnnnnnnnn [cr/lf]

[cr/lf]

 Values n .. "0" or "1" (total of 8 digits). Corresponds to m7, m6, …,
m0, reading from the left ("m" is the port No.).

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND SI() TO CMU････････････････Outputs all SI status from communication port.

Response:
SI0()=&B10001001[cr/lf]
SI1()=&B00000010[cr/lf]
SI2()=&B00000000[cr/lf]
:
SI7()=&B00000000[cr/lf]
SI10()=&B00000000[cr/lf]
SI11()=&B00000000[cr/lf]
SI12()=&B00000000[cr/lf]
:
SI17()=&B00000000[cr/lf]
SI20()=&B00000000[cr/lf]
:
SI26()=&B00000000[cr/lf]
SI27()=&B00000000[cr/lf]
[cr/lf]

10-44 Chapter 10 Data file description

8

9

10

11

12

13

14

20.2 One SI port

Format

SIm()

 Meaning • Expresses the status of one SI port.
 • When used as a readout file, the specified SI port status is read out.
 • Cannot be used as a write file.

DATA	FORMAT
SIm()=&Bnnnnnnnn[cr/lf]

 Values m ...Port number: 0 to 7, 10 to 17, 20 to 27
 n .. "0" or "1" (total of 8 digits). Corresponds to m7, m6, …,

m0, reading from the left ("m" is the port No.).

SAMPLE

SEND SI5() TO CMU････････････････Outputs the SI5 port status from communication port.

Response:
SI5()=&B00000000[cr/lf]

SO file 10-45

8

9

10

11

12

13

14

 21 SO	file

21.1 All SO information

Format

SO()

 Meaning • Expresses all SO (serial output variable) information.
 • When used as a readout file, all SO information is read out.
 • Cannot be used as a write file.

DATA	FORMAT
SO0()=&Bnnnnnnnn [cr/lf]

SO1()=&Bnnnnnnnn [cr/lf]

 :

SO27()=&Bnnnnnnnn [cr/lf]

[cr/lf]

 Values n .. "0" or "1" (total of 8 digits). Corresponds to m7, m6, …,
m0, reading from the left ("m" is the port No.).

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND SO() TO CMU････････････････Outputs all SO status from communication port.

Response:
SO0()=&B10001001[cr/lf]
SO1()=&B00000010[cr/lf]
SO2()=&B00000000[cr/lf]
:
SO7()=&B00000000[cr/lf]
SO10()=&B00000000[cr/lf]
SO11()=&B00000000[cr/lf]
SO12()=&B00000000[cr/lf]
:
SO17()=&B00000000[cr/lf]
SO20()=&B00000000[cr/lf]
:
SO26()=&B00000000[cr/lf]
SO27()=&B00000000[cr/lf]
[cr/lf]

10-46 Chapter 10 Data file description

8

9

10

11

12

13

14

21.2 One SI port

Format

SOm()

 Meaning • Expresses the status of one SO port.
 • When used as a readout file, the specified SO port status is read out.
 • When used as a write file, the value is written to the specified SO port. However, writing to

SO0() and SO1() is prohibited.

 • Readout file

DATA	FORMAT
SOm()=&Bnnnnnnnn[cr/lf]

 • Write file

DATA	FORMAT
&Bnnnnnnnn[cr/lf] or k[cr/lf]

 Values m ...Port number: 0 to 7, 10 to 17, 20 to 27
 n .. "0" or "1" (total of 8 digits). Corresponds to m7, m6, …,

m0, reading from the left ("m" is the port No.).
 k ..Integer from 0 to 255

• Writing to SO0() and SO1() is prohibited. Only reference is permitted.

SAMPLE 1

SEND SO5() TO CMU････････････････Outputs the SO5 port status from communication port.

Response:
SO5()=&B00000000[cr/lf]

SAMPLE 2

SEND CMU TO SO5()････････････････Inputs the SO5 port status from communication port.
&B00000111

Response:
OK[cr/lf]

MEMO

Error message history file 10-47

8

9

10

11

12

13

14

 22 Error	message	history	file

22.1 All error message history

Format

LOG

 Meaning • Expresses all error message history.
 • When used as a readout file, all error message history is read out.
 • Cannot be used as a write file.

DATA	FORMAT
nnn:yy/mm/dd,hh:mm:ss gg.bb:msg[cr/lf]

nnn:yy/mm/dd,hh:mm:ss gg.bb:msg[cr/lf]

 :

nnn:yy/mm/dd,hh:mm:ss gg.bb:msg[cr/lf]

[cr/lf]

 Values nnn .. Represents an error history serial number and may be up to
500.

 yy, mm ,ddYear/Month/Day
 hh, mm, ss...................................Hour, Minute, Second
 gg ..Error message group
 bb ..Error message category
 msg ...Error message

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND LOG TO CMU････････････････Outputs all error message history from communication port.

Response:
1 :01/06/14,13:19:20 14.22:No start code (@)[cr/lf]
2 :01/06/14,13:18:34 22.3: DC24V power low[cr/lf]
 :
498:01/06/12,21:49:54 5.39:Illegal identifier[cr/lf]
499:01/06/12,21:49:14 14.22:No start code (@)[cr/lf]
500:01/06/12,21:49:00 22.3: DC24V power low[cr/lf]
[cr/lf]

10-48 Chapter 10 Data file description

8

9

10

11

12

13

14

 23	 Error	Message	History	Details	File

23.1 General error message history details

Format

LEX

 Meaning • Displays the general error message history details.
 • This file cannot be specified as a WRITE file.

DATA	FORMAT
nnn.l:yy/mm/dd hh:mm:ss gg.bb:msg,A,N,L,P[cr/lf]

nnn.l:M=x,y,z,r,a,b[cr/lf]

nnn.l:S=x,y,z,r,a,b[cr/lf]

 Values nnn .. Represents an error history serial number and may be up to 500.
 l ...Output line number (max. of 3)
 yy, mm ,ddYear/Month/Day
 hh, mm, ss...................................Hour, Minute, Second
 gg ..Error message group
 bb ..Error message category
 msg ...Error message
 A ... AUTO operation execution status. 1: AUTO operation in

progress; 0: Other status.
 N ...Execution program name.
 L ...Program's execution line No.
 P ..No. of most recently referenced point.
 M= .. Indicates that all subsequent coordinates are main robot

coordinates.
 x,y,z,r,a,bCurrent position of each axis.
 [cr/lf]...CR code (0Dh) + LF code (0Ah).

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND LEX to CMU････････････････Outputs the following general error message history details from the communication port.
Response:
1 .1:01/06/14,13:19:20 14.22: No START code (@),0,TEST ,2,2500[cr/lf]
1 .2:M= 23.80 23.59 0.00 0.00 0.00 0.00[cr/lf]
1 .3:S= 48.20 47.99 0.00 0.00 0.00 0.00[cr/lf]
2 .1:01/06/12,13:18:34 22.3: 24VDC low voltage,0,TEST ,6,2500[cr/lf]
2 .2:M= 11568 23985 0.00 0.00 0.00 0.00[cr/lf]
2 .3:S= 35693 12582 0.00 0.00 0.00 0.00]cr/lf]
 :
500.1:01/06/12,21:49:00 22.3: 24VDC low voltage,0,TEST ,6,2500[cr/lf]
500.2:M= 38.71 38.50 0.00 0.00 0.00 0.00[cr/lf]
500.3:S= 51.48 51.27 0.00 0.00 0.00 0.00[cr/lf]
[cr/lf]

NOTE
 • Error information is output
only for the connected robot.

NOTE
 • Robot coordinates display in
pulse units for axes where an
"incomplete return-to-origin"
status exists. Robot coordinates
also display in pulse units on
SCARA robots where reference
coordinates have not been
specified.

 • Robot coordinates display in
mm/deg units for axes where
a "completed return-to-origin"
status exists.

Machine reference file 10-49

8

9

10

11

12

13

14

 24 Machine	reference	file

24.1	 All	machine	reference	file

Format

MRF

 Meaning • Expresses the machine reference data obtained after robots have performed return- to-origin
and absolute search.

 • Reads out all machine reference data when used as a readout file.
 • Cannot be used as a write file.

DATA	FORMAT
M1=nnn% M2=nnn% nnn%[cr/lf]

S1=nnn% S2=nnn% nnn%[cr/lf]

[cr/lf]

 Values nnn ..Integer from 0 to 100
 M?...Indicate the main robot group axes.

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND MRF TO CMU･･･Outputs all machine reference data from communication port.

Response:
M1= 55% M2= 23% M3= 33% M4= 26%[cr/lf]
[cr/lf]

10-50 Chapter 10 Data file description

8

9

10

11

12

13

14

 25 EOF	file

25.1	 EOF	data

Format

EOF

 Meaning • This file is a special file consisting only of a ^Z (=1Ah) code. When transmitting data to an
external device through the communication port, the EOF data can be used to add a ^Z code
at the end of file.

 • When used as a readout file, ^Z (=1Ah) is read out.
 • Cannot be used as a write file.

DATA	FORMAT
^Z (=1Ah)

SAMPLE
SEND PGM TO CMU

SEND EOF TO CMU････････････････Outputs EOF data from communication port.

NAME=TEST1[cr/lf]
A=1[cr/lf]
 :
HALT[cr/lf]
[cr/lf]
^Z

• A "^Z" code may be required at the end of the transmitted file, depending on the specifications of the
receiving device and application.

MEMO

Serial port communication file 10-51

8

9

10

11

12

13

14

 26 Serial	port	communication	file

26.1	 Serial	port	communication	file

Format

CMU

 Meaning • Expresses the serial communication port.
 • Depends on the various data formats.

SAMPLE

SEND PNT TO CMU････････････････Outputs all point data from communication port.
SEND CMU TO PNT ････････････････Inputs all point data from communication port.

10-52 Chapter 10 Data file description

8

9

10

11

12

13

14

 27	 SIW	file

27.1	 All	SIW

Format

SIW()

 Meaning • Expresses all SIW (serial word input) data.
 • Reads out all SIW information in hexadecimal digit when used as a readout file.
 • Cannot be used as a write file.

DATA	FORMAT
SIW(0)=&Hnnnn [cr/lf]

SIW(1)=&Hnnnn [cr/lf]

 :

SIW(15)=&Hnnnn [cr/lf]

[cr/lf]

 Values n ..0 to 9, A to F: 4 digits (hexadecimal)

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND SIW() TO CMU････････････････Outputs all SIW data from communication port.

Response:
SIW(0)=&H1001[cr/lf]
SIW(1)=&H0010[cr/lf]
SIW(2)=&H0000[cr/lf]
 :
SIW(15)=&H0000[cr/lf]
[cr/lf]

SIW file 10-53

8

9

10

11

12

13

14

27.2	 One	SIW	data

Format

SIW(m)

 Meaning • Expresses one SIW status.
 • Reads out all SIW information in hexadecimal digit when used as a readout file.
 • Cannot be used as a write file.

DATA	FORMAT
SIW(m)=&Hnnnn [cr/lf]

 Values m ...0 to 15
 n ..0 to 9, A to F: 4 digits (hexadecimal)

SAMPLE

SEND SIW(5) TO CMU････････････････Outputs SIW(5) from communication port.

Response:
SIW(5)=&H1001[cr/lf]

10-54 Chapter 10 Data file description

8

9

10

11

12

13

14

 28 SOW	file

28.1	 All	SIW

Format

SOW()

 Meaning • Expresses all SOW (serial word output) data.
 • Reads out all SOW information in hexadecimal digit when used as a readout file.
 • Cannot be used as a write file.

DATA	FORMAT
SOW(0)=&Hnnnn [cr/lf]

SOW(1)=&Hnnnn [cr/lf]

 :

SOW(15)=&Hnnnn [cr/lf]

[cr/lf]

 Values n ..0 to 9, A to F: 4 digits (hexadecimal)

 ■ A line containing only [cr/lf] is added at the end of the file, indicating the end of the file.

SAMPLE

SEND SOW() TO CMU････････････････Outputs all SOW data from communication port.

Response:
SOW(0)=&H1001[cr/lf]
SOW(1)=&H0010[cr/lf]
SOW(2)=&H0000[cr/lf]
 :
SOW(15)=&H0000[cr/lf]
[cr/lf]

SOW file 10-55

8

9

10

11

12

13

14

28.2	 One	SOW	data

Format

SOW(m)

 Meaning • Expresses one SOW status.
 • When used as a readout file, the specified SOW port status is read out.
 • When used as a write file, the value is written to the specified SOW. However, writing to

SOW0() and SOW1() is prohibited.

 • Readout file

DATA	FORMAT
SOW(m)=&Hnnnn [cr/lf]

 • Write file

DATA	FORMAT
&Hnnnn

 Values m ...2 to 15
 n ..0 to 9, A to F: 4 digits (hexadecimal)

SAMPLE 1

SEND SOW(5) TO CMU････････････････Outputs SOW(5) from communication port.

Response:
SOW(5)=&H1001[cr/lf]

SAMPLE 2

SEND CMU TO SOW(5)････････････････Input to SOW(5) from communication port.
&H1001

Response:
OK[cr/lf]

10-56 Chapter 10 Data file description

8

9

10

11

12

13

14

 29 Ethernet	port	communication	file

29.1	 Ethernet	port	communication	file

Format

ETH

 Meaning • Expresses the Ethernet port.
 • Depends on the various data formats.

SAMPLE

SEND PNT TO ETH････････････････Outputs all point data from the Ethernet port.
SEND ETH TO PNT････････････････Inputs all point data from the Ethernet port.

Chapter 11

User program examples

1 1 Basic operation ..11-1

2 2 Application ..11-8

Basic operation 11-1

8

9

10

11

12

13

14

 1 Basic operation

1.1 Directly writing point data in program

 ■ Overview
The robot arm can be moved by PTP (point-to-point) motion by directly specifying point data in the
program.

Processing flow

300.00 300.00 50.00 90.00 0.00 0.00 PTP movement

300.00 100.00 0.00 0.00 0.00 0.00 PTP movement

200.00 200.00 10.00 -90.00 0.00 0.00 PTP movement

START

STOP

SAMPLE
MOVE P, 300.00 300.00 50.00 90.00 0.00 0.00
MOVE P, 300.00 100.00 0.00 0.00 0.00 0.00
MOVE P, 200.00 200.00 10.00 -90.00 0.00 0.00
HALT

11-2 Chapter 11 User program examples

8

9

10

11

12

13

14

1.2 Using point numbers

 ■ Overview
Coordinate data can be specified by using point numbers in a program. Coordinate data should be entered
beforehand in "MANUAL>POINT" mode, for example as shown below.

POINT DATA
P0= 0.00 0.00 0.00 0.00 0.00 0.00
P1= 100.00 0.00 150.00 30.00 0.00 0.00
P2= 0.00 100.00 50.00 0.00 0.00 0.00
P3= 300.00 300.00 0.00 0.00 0.00 0.00
P4= 300.00 100.00 100.00 90.00 0.00 0.00
P5= 200.00 200.00 0.00 0.00 0.00 0.00

Processing flow

PTP movement to P0
PTP movement to P1
PTP movement to P2
PTP movement to P3
PTP movement to P4
PTP movement to P5

START

STOP

SAMPLE 1
MOVE P,P0
MOVE P,P1
MOVE P,P2
MOVE P,P3
MOVE P,P4
MOVE P,P5
HALT

SAMPLE 2
FOR J=0 TO 5
 MOVE P,P[J]
NEXT J
HALT

Although the same operation is executed by both SAMPLE 1 and SAMPLE 2, the program can be
shortened by using point Nos. and the FOR statement.

Basic operation 11-3

8

9

10

11

12

13

14

1.3 Using shift coordinates

 ■ Overview
In the example shown below, after PTP movement from P3 to P5, the coordinate system is shifted +140mm
along the X-axis and -100mm along the Y-axis, and the robot then moves from P3 to P5 again. The shift
coordinate data is set in S1 and P3, P4, P5 are set as described in the previous section ("1.2 Using point
numbers").

SHIFT	DATA
S0= 0.00 0.00 0.00 0.00
S1= 140.00 -100.00 0.00 0.00

Shift Coordinate

P3

X: 140mm shift, Y: -100mm shift

P5

P4

↑
Y+

X+→

Shift Coordinate
S0

Shift Coordinate
S1

0

140

100

SAMPLE

SHIFT S0 ････････････････Shift 0.
FOR J=3 TO 5 Repeated movement from P3 to P5.
 MOVE P, P[J]
NEXT J
SHIFT S1 Changed to "shift 1".

 FOR K=3 TO 5････････････････Repeated movement occurs in the same manner from P3 to P5.
 MOVE P,P[K]
NEXT K

11-4 Chapter 11 User program examples

8

9

10

11

12

13

14

1.4 Palletizing

1.4.1 Calculating point coordinates

 ■ Overview
Repetitive movement between a fixed work supply position P0 and each of the equally spaced points on a
pallet can be performed with the following program.
In the drawing below, points N1 to N20 are on Cartesian coordinates, consisting of 5 points positioned at
a 50mm pitch in the X-axis direction and 4 points at a 25mm pitch in the Y-axis direction. The robot arm
moves from point to point in the order of P0-N1-P0-N2...N5-P0-N6-P0... while repeatedly moving back
and forth between point P0 and each pallet.

POINT DATA
Work supply position:
 P0= 0.0 0.0 0.0 0.0 0.0 0.0
X-axis pitch:
 P10= 50.0 0.0 0.0 0.0 0.0 0.0
Y-axis pitch:
 P20= 0.0 25.0 0.0 0.0 0.0 0.0
N1 position:
 P1 = 100.0 50.0 0.0 0.0 0.0 0.0

Calculating point coordinates

X+
→

↑

N16 N17 N18 N19 N20

N11 N12 N13 N14 N15

N6 N7 N8 N9 N10

N1 N2 N3 N4 N5

50

25

P0

Y+

Processing flow

START

Movement to supply position.
Movement to P100
P100 is shifted by the pitch amount
in the X-direction.

P200=P1
P100=P1

Repeat 5 times

Repeat 4 times

Movement to P0
Movement to P100
P100=P100+P10

STOP

P200=P200+P20
P100=P200

P1 coordinates are input at P200.
P1 coordinates are input at P100.

Movement to P200
P200 is shifted by the pitch amount
in the Y-direction.

Basic operation 11-5

8

9

10

11

12

13

14

SAMPLE
P100=P1
P200=P1
FOR J=1 TO 4
 FOR K=1 TO 5
 MOVE P,P0
 MOVE P,P100
 P100=P100+P10
 NEXT K
 P200=P200+P20
 P100=P200
NEXT J

11-6 Chapter 11 User program examples

8

9

10

11

12

13

14

1.4.2 Utilizing pallet movement

 ■ Overview
Repetitive movement between a fixed work supply position P0 and each of the equally spaced points on
a pallet can be performed with the following program. In the drawing below, points N1 to N24 are on
Cartesian coordinates, consisting of 3 points positioned at a 50mm pitch in the X-axis direction, 4 points at
a 50mm pitch in the Y-axis direction, and 2 points at 100mm pitch in the Z-axis direction. The robot arm
moves from point to point in the order of P0-N1-P0-N2...-N5-P0-N6... while repeatedly moving back and
forth between point P0 and each pallet.

POINT DATA
Work supply position:
 P0= 0.00 0.00 100.00 0.00 0.00 0.00
Pallet definition:
 PL0 (P3996 to P4000 are used)
NX= 3
NY= 4
NZ= 2
P3996= 100.00 50.00 100.00 0.00 0.00 0.00
P3997= 200.00 50.00 100.00 0.00 0.00 0.00
P3998= 100.00 200.00 100.00 0.00 0.00 0.00
P3999= 200.00 200.00 100.00 0.00 0.00 0.00
P4000= 100.00 50.00 200.00 0.00 0.00 0.00

Utilizing pallet movement

P4000

P3998 P3999

P3997P3996

NZ

NX

NY

P0

Processing flow

START

Movement to P0
Pallet movement

Repeat 24 times

STOP

Movement to supply position (P0).
Repeated for points N1 to N24.

SAMPLE
FOR I=1 TO 24 Repeated for I = 1 to 24.

 MOVE P,P0,Z=0.00･･････････････････Movement to supply position.
 PMOVE (0,I),Z=0.00･･･････････････Movement to pallet point.
NEXT I
MOVE P,P0,Z=0.00

Basic operation 11-7

8

9

10

11

12

13

14

1.5 DI/DO (digital input and output) operation

 ■ Overview
The following example shows general-purpose signal input and output operations through the STD.

Processing flow

Wait until DI2() is all at "0".
Set all of DO2 () to "1".

Wait 1 second.
Wait until DI2 (0) is at "1".

END

N

DI2 (1)="1"?

N＝1

N＞20

Set all of DO2 () to “0”.
Wait 0.5 seconds

N=N+1

Set DO2 (7, 6, 1, 0) to "1".
Wait 2 seconds

Set all of DO2 () to "0".

Y

Y

N

START

Wait until DI20 to DI27 become "0".
DO20 to DO27 become "1".

Wait until DI20 becomes "1".

• DO processing ends if DI2(1) is "1".
• Repeated until N=20 if DI2(1) is "0".

"1" is assigned to "N".

SAMPLE
WAIT DI2()=0 Wait until DI20 to DI27 become "0".

DO2()=&B11111111････････････････DO20 to DO27 become "1".
DELAY 1000

WAIT DI2(0)=1････････････････････Wait until DI21 becomes "1".
N=1
*LOOP1:

IF DI2(1)=1 THEN *PROGEND･････････Jumps to *PROGEND if DI21 = 1.
IF N>20 THEN *ALLEND････････････Ended in N > 20 (jumps to *ALLEND).
DO2()=0 DO20 to DO27 become "0".
DELAY 500
N=N+1

GOTO *LOOP1････････････････････Loop is repeated.
’END ROUTINE
*PROGEND: End processing.

DO2(7,6,1,0)=&B1111･･･････････････Set DO27, 26, 21, 20 to "1".
DELAY 2000 Wait 2 seconds
DO2()=0 Set DO20 to "0".
*ALLEND:
HALT

11-8 Chapter 11 User program examples

8

9

10

11

12

13

14

 2 Application

2.1 Pick and place between 2 points

 ■ Overview
The following is an example for picking up a part at point A and placing it at point B.

Pick and place between 2 points

0

Z

P3

P1

P4

P2

Point A Point B

50mm

30mm

 ■ Precondition
1. Set the robot movement path.
 • Movement path: P3→P1→P3→P4→P2→P4
 • Locate P3 and P4 respectively at a position 50mm above P1 and P2 and set the P1 and P2 positions by
 teaching.

2. I/O signal
DO (20) Chuck (gripper) open/close = 0: open, 1: close

 • A 0.1 second wait time is set during chuck open and close.

SAMPLE:	When	calculating	to	find	P3	and	P4

 P3=P1 ･････････････････････････P1 coordinates are assigned to P3.
 P4=P2 ･････････････････････････P2 coordinates are assigned to P4.
 LOCZ(P3)=LOCZ(P3)-50.0･･･････････････P3 is shifted 50mm in Z UP direction.
 LOCZ(P4)=LOCZ(P4)-50.0･･･････････････P4 is shifted 50mm in Z UP direction.
 MOVE P,P3
 GOSUB *OPEN
 MOVE P,P1
 GOSUB *CLOSE
 MOVE P,P3
 MOVE P,P4
 MOVE P,P2
 GOSUB *OPEN
 MOVE P,P4
 HALT
*OPEN: Chuck OPEN routine.
 DO2(0)=0
 DELAY 100
 RETURN
*CLOSE: Chuck CLOSE routine.
 DO2(0)=1
 DELAY 100
 RETURN

Application 11-9

8

9

10

11

12

13

14

SAMPLE:	When	using	arch	motion

 P4=P2 ･････････････････････････P2 coordinates are assigned to P4.
 LOCZ(P4)=LOCZ(P4)-50.0･･･････････････P4 is shifted 50mm in Z UP direction.
 GOSUB *OPEN

 MOVE P,P1,Z=30.0･･････････････････Arch motion at Z = 30mm.
 GOSUB *CLOSE

 MOVE P,P2,Z=30.0･･････････････････Arch motion at Z = 30mm.
 GOSUB *OPEN
 MOVE P,P4
 HALT
*OPEN: Chuck OPEN routine.
 DO2(0)=0
 DELAY 100
 RETURN
*CLOSE: Chuck CLOSE routine.
 DO2(0)=1
 DELAY 100
 RETURN

11-10 Chapter 11 User program examples

8

9

10

11

12

13

14

2.2 Palletizing

 ■ Overview
The following is an example for picking up parts supplied from the parts feeder and placing them on a
pallet on the conveyor. The pallet is ejected when full.

Palletizing

P1: Pallet reference position

Robot

Z

0

50mm

P1 P0

P0: Part supply position

Parts feeder

 ■ Precondition
1. I/O signal

DI (30) Component detection sensor 1: Parts are supplied
DI (31) Pallet sensor 1: Pallet is loaded

DO (30) Robot hand open/close 0: Open / 1: Close
DO (31) Pallet eject 1: Eject

 Robot hand open/close time is 0.1 second and pallet eject time is 0.5 seconds.

2. The points below should be input beforehand as point data.
P0 Part supply position
P1 Pallet reference position
P10 X direction pitch
P11 Y direction pitch

3. Vertical movement is performed to a position Z=50mm above the pallet and parts feeder.

Application 11-11

8

9

10

11

12

13

14

SAMPLE	1:	When	point	is	calculated
WHILE -1 All repeated (-1 is always TRUE).
FOR A=0 TO 2
FOR B=0 TO 2

 WAIT DI(31)=1･ ････････････････････Wait until a pallet "present" status occurs.
 WAIT DI(30)=1･ ････････････････････Wait until the supplied component "present" status occurs.
 DO(30)=0 ･････････････････････････Robot hand OPENS.
 DELAY 100

 MOVE P,P0,Z=50.0･･･････････････････Movement to supply position.
 DO(30)=1 ･････････････････････････Robot hand CLOSES.
 DELAY 100

 P100=P1+P10*B+P11*A･･･････････････Next point is calculated.
 MOVE P,P100,Z=50.0･････････････････Movement to calculated point.
 DO(30)=0 ･････････････････････････Robot hand OPENS.
 DELAY 100
NEXT
NEXT

DRIVE (3,0) ･････････････････････････Only Z-axis moves to 0.
DO(31)=1 ･････････････････････････Pallet is ejected.
DELAY 500
DO(31)=0

WEND ･････････････････････････Loop is repeated.
HALT

SAMPLE	2:	When	using	the	palletizing	function
* Precondition: Must be defined at pallet "0".
WHILE -1 All repeated.
FOR A=1 TO 9

 WAIT DI(31)=1･ ････････････････････Wait until a pallet "present" status occurs.
 WAIT DI(30)=1･ ････････････････････Wait until the supplied component "present" status occurs.
 DO(30)=0 ･････････････････････････Robot hand OPENS.
 DELAY 100

 MOVE P,P0,Z=50.0･･･････････････････Movement to supply position.
 DO(30)=1 ･････････････････････････Robot hand CLOSES.
 DELAY 100

 PMOVE(0,A),Z=50.0･ ････････････････Movement to pallet point.
 DO(30)=0 ･････････････････････････Robot hand OPENS.
 DELAY 100
NEXT

DRIVE(3,0) ･････････････････････････Only Z-axis moves to 0.
DO(31)=1 ･ ･････････････････････････Pallet is ejected.
DELAY 500
DO(31)=0

WEND ･････････････････････････Loop is repeated.
HALT

11-12 Chapter 11 User program examples

8

9

10

11

12

13

14

2.3 Pick and place of stacked parts

 ■ Overview
The following is an example for picking up parts stacked in a maximum of 6 layers and 3 blocks and
placing them on the conveyor.
The number of parts per block may differ from others.
Parts are detected with a sensor installed on the robot hand.

Pick and place of stacked parts

Conveyor P5 P1
Block 1

P2
Block 2

P3
Block 3

Z=0.0

 ■ Precondition
1. I/O signal

DI (30) Component detection sensor 1: Parts are supplied
DI (31) Robot hand open/close 0: Open / 1: Close

• Robot hand open/close time is 0.1 seconds.

2. The points below should be input beforehand as point data.
P1 Bottom of block 1
P2 Bottom of block 2
P3 Bottom of block 3
P5 Position on conveyor

3. Movement proceeds at maximum speeds but slows down when in proximity to the part.

Processing flow

P5 P1

P5 P1

P4=WHERE

P4=WHERE

High speed

High speed
Slow

Set the current position
into point data (P4).

P4=WHERE

Set the speed at maximum

Load the part onto
conveyor position (P5).

Move to position (P4)
during parts detection.

Move to P1.

Slow down

4. Use a STOPON condition in the MOVE statement for sensor detection during movement.

Application 11-13

8

9

10

11

12

13

14

SAMPLE
FOR A=1 TO 3
SPEED 100
GOSUB *OPEN
P6=P[A]
LOCZ(P6)=0.00
MOVE P,P6,Z=0.0
WHILE -1
 SPEED 20
 MOVE P,P[A],STOPON DI3(0)=1
 IF DI3(0)=0 THEN *L1
 ’SENSOR ON
 P4=JTOXY(WHERE)
 GOSUB *CLOSE
 SPEED 100
 MOVE P,P5,Z=0.0
 GOSUB *OPEN
 MOVE P,P4,Z=0.0
WEND
*L1: ’SENSOR OFF
NEXT A
SPEED 100
DRIVE (3,0)
HALT
*OPEN:
DO3(0)=0
DELAY 100
RETURN
*CLOSE:
DO3(0)=1
DELAY 100
RETURN

11-14 Chapter 11 User program examples

8

9

10

11

12

13

14

2.4 Parts inspection (Multi-tasking example)

 ■ Overview
One robot is used to inspect two different parts and sort them according to the OK/NG results.
The robot picks up the part at point A and moves it to the testing device at point B. The testing device
checks the part and sends it to point C if OK or to point D if NG.
The part at point A’ is picked up and moved to the testing device at point B' in the same way. The testing
device checks the part and sends it to point C’ if OK or to point D’ if NG.
It is assumed that 10 to 15 seconds are required for the testing device to issue the OK/NG results.

Parts inspection (Multi-tasking example)

A

P1

B

P2

C

P3

D

P4

A’

P11

B’

P12

C’

P13

D’

P14

Parts supply Testing device OK NG

 ■ Precondition
1. I/O signal

I/O signal

Testing device 2 start (0.1 second)
DO3

1: Start *1

7 6 5 4 3 2 1 0

Testing device 1 test completed *3

Testing device 1 OK/NG signal
Part supply 1
Part 1 OK
Part 1 NG

DI2
7 6 5 4 3 2 1 0

DI3
7 6 5 4 3 2 1 0

Testing device 1 start (0.1 second)
Robot chuck open/close

DO2
1: Start *1

0: Open / 1: Close *2

7 6 5 4 3 2 1 0

Testing device 2 test completed *3

Testing device 2 OK/NG signal
Part supply 2
Part 2 OK
Part 2 NG

2. The main task (task 1) is used to test part 1 and the subtask (task 2) is used to test part 2.
3. An exclusive control flag is used to allow other tasks to run while waiting for the test completion

signal from the testing device.

FLAG1 0: Executing Task 1 (Task 2 execution enabled)
1: Task 1 standby (Task 2 execution disabled)

FLAG2 0: Executing Task 2 (Task 1 execution enabled)
1: Task 2 standby (Task 1 execution disabled)

NOTE
 • *1: As the start signal, supply
a 0.1 second pulse signal to the
testing device.

0.1 seconds

ON
OFF

 • *2: Chuck open and close time
is 0.1 seconds.

 • *3: Each time a test is finished,
the test completion signal and
OK/NG signal are sent from
the testing device. After testing,
the test completion signal turns
ON (=1), and the OK/ NG
signal turns ON (=1) when the
result is OK and turns OFF (=0)
when NG.

Application 11-15

8

9

10

11

12

13

14

4. Flow chart

Processing flow

Task 2 busy?

Exclusive control flag set

Task 2 busy?

START

Exclusive control flag reset

Subtask start

Part 1 supplied?

Chuck open

Move to parts supply position P1

Chuck close

Move to testing device 1

Chuck open

Move upward 10000 pulses

Exclusive control flag reset

Testing device 1 start

Test completed?

Exclusive control flag set

Move to testing device 1

Chuck close

Part OK?

OK parts?

Move to OK parts position

Chuck open

Move upward 10000 pulses

Exclusive control flag reset

NG parts?

FLAG1=0 FLAG2=0

Move to NG parts position

FLAG1=0

FLAG1=1

FLAG1=0

FLAG1=1

N

Y

Y

N

Y

N

Y

N

Y

Y

Y

N

Y

N

N

Task 2 (subtask) runs in the same flow.

11-16 Chapter 11 User program examples

8

9

10

11

12

13

14

 ■ Program example

SAMPLE
<Main task>
FLAG1=0
FLAG2=0
UPPOS=0.0
START *S1,T2
*L1:
WAIT DI2(2)=1
WAIT FLAG2=0
FLAG1=1
GOSUB *OPEN
MOVE P,P1,Z=UPPOS
GOSUB *CLOSE
MOVE P,P2,Z=UPPOS
GOSUB *OPEN
DRIVEI (3,-10000)
FLAG1=0
DO2(0)=1
DELAY 100
DO2(0)=0
WAIT DI2(0)=1
WAIT FLAG2=0
FLAG1=1
MOVE P,P2,Z=UPPOS
GOSUB *CLOSE
IF DI2(1)=1 THEN
'GOOD
WAIT DI4(2)=0
MOVE P,P3,Z=UPPOS
ELSE
'NG
WAIT DI2(4)=0
MOVE P,P4,Z=UPPOS
ENDIF
GOSUB *OPEN
DRIVEI (3,-10000)
FLAG1=0
GOTO *L1
*OPEN:
DO2(1)=0
DELAY 100
RETURN
*CLOSE:
DO2(1)=1
DELAY 100
RETURN

Subtask Start

Part supply standby
Other tasks waiting for standby status.
Exclusive control flag set
Chuck open
Move to part supply position
Chuck close
Move to testing device
Chuck open
Move Z-axis upward Z 10,000 pulses
Exclusive control flag reset
Testing device start

Test completion standby
Task completion standby
Exclusive control flag set
Move to testing device
Chuck close
Test

Part movement standby
Move to OK parts position

Part movement standby
Move to NG parts position

Chuck open
Move Z-axis upward Z 10,000 pulses
Exclusive control flag reset

<Subtask>

*S1
WAIT DI3(2)=1
WAIT FLAG1=0
FLAG2=1
GOSUB *OPEN
MOVE P,P11,Z=UPPOS
GOSUB *CLOSE
MOVE P,P12,Z=UPPOS
GOSUB *OPEN
DRIVEI (3,-10000)
FLAG2=0
DO3(0)=1
DELAY 100
DO3(0)=0
WAIT DI3(0)=1
WAIT FLAG1=0
FLAG2=1
MOVE P,P12,Z=UPPOS
GOSUB *CLOSE
IF DI3(1)=1 THEN
'GOOD
WAIT DI3(3)=0
MOVE P,P13,Z=UPPOS
ELSE
'NG
WAIT DI3(4)=0
MOVE P,P14,Z=UPPOS
ENDIF
GOSUB *OPEN
DRIVEI (3,-10000)
FLAG2=0
GOTO *S1

Application 11-17

8

9

10

11

12

13

14

2.5 Sealing

 ■ Overview
This section shows an example of the parts sealing operation.

Sealing

P0 P1

P2

P3

P4P5

P6 P7

10mm

20mm

 ■ Precondition
1. I/O signal

DO (20) Valve open/close 1: Open / 0: Close

2. Set P0 to P7 by teaching.

SAMPLE
MOVE P,P0,Z=0
SPEED 40
PATH SET ..Start of path setting
PATH L,P1,DO(20)=1@10.0.................................Start of coating

at 10 mm position

Path setting
(Robot does not operate.)

PATH L,P2
PATH C,P3,P4
PATH L,P5
PATH L,P6,S=30
PATH L,P7,DO(20)=0@20.0..................................End of coating at

20 mm position
PATH END ...End of path setting
PATH START ...Execute PATH motion (Robot starts from P0 and stops at P7.)
HALT

11-18 Chapter 11 User program examples

8

9

10

11

12

13

14

2.6 Connection to an external device through RS-232C (example 1)

 ■ Overview
Point data can be written in a program by using an external device connected to the YRC series controller
via the RS-232C port.

 ■ Precondition
1. Input to the external device from the controller
 SDATA/X/Y [cr/lf]

2. Output to the controller from the external device

POINT DATA
P10= 156.42 243.91 0.00 0.00 0.00 0.00 [cr/lf]

SAMPLE
’INIT
 VCMD$="SDATA/X/Y"
 P0= 0.00 0.00 0.00 0.00 0.00 0.00
’MAIN ROUTINE
 MOVE P, P0
*ST:
 SEND VCMD$ TO CMU
 SEND CMU TO P10
 MOVE P, P10
GOTO *ST

• "SEND xxx TO CMU" outputs the contents specified by "xxx" through the RS-232C.
• "SEND CMU TO xxx" sends data into the files specified by "xxx" through the RS-232C.

NOTE
 • [cr / l f] indicates CR code
(=0Dh) + LF code (=0Ah).

MEMO

Application 11-19

8

9

10

11

12

13

14

2.7	 Connection	to	an	external	device	through	RS-232C (example 2)

 ■ Overview
Point data can be created from the desired character strings and written in a program by using an external
device connected to the YRC series controller via the RS-232C port.

 ■ Precondition
1. Input to the external device from the controller
 SDATA/X/Y [cr/lf]

2. Output to the controller from the external device
 X=156.42, Y=243.91 [cr/lf]

• "SEND xxx TO CMU" outputs the contents specified by "xxx" through the RS-232C.
• "SEND CMU TO xxx" sends data into the files specified by "xxx" through the RS-232C.
• The LEN () function obtains the length of the character string.
• The MID$ () function obtains the specified character string from among the character strings.
• The VAL () function obtains the value from the character string.

NOTE
 • [cr / l f] indicates CR code
(=0Dh) + LF code (=0Ah).

MEMO

11-20 Chapter 11 User program examples

8

9

10

11

12

13

14

SAMPLE
’INT
 VCMD$="SDATA/X/Y"
 VIN$=""
 VX$=""
 VY$=""
 P0= 0.00 0.00 0.00 0.00 0.00 0.00
 P11= 100.00 100.00 0.00 0.00 0.00 0.00
’MAIN ROUTINE
 MOVE P, P0
*ST:
 SEND VCMD$ TO CMU
 SEND CMU TO VIN$
 I=1
 VMAX=LEN(VIN$)
*LOOP:
 IF I>VMAX THEN GOTO *E_LOOP
 C$=MID$(VIN$,I ,1)
 IF C$="X" THEN
 I=I+2
 J=I
*X_LOOP:
 C$=MID$(VIN$, J, 1)
 IF C$="," THEN
*X1_LP:
 L=J-I
 VX$=MID$(VIN$, I, L)
 I=J+1
 GOTO *LOOP
 ENDIF
 J=J+1
 IF J>VMAX THEN GOTO *X1_LP
 GOTO *X_LOOP
 ENDIF
 IF C$="Y" THEN
 I=I+2
 J=I
*Y_LOOP:
 C$=MID$(VIN$, J, 1)
 IF C$=","THEN
*Y1_LP:
 L=J-I
 VY$=MID$(VIN$, I, L)
 I=J+1
 GOTO *LOOP
 ENDIF
 J=J+1
 IF J>VMAX THEN GOTO *Y1_LP
 GOTO *Y_LOOP
 END IF
 I=I+1
 GOTO *LOOP
*E_LOOP:
 WX=VAL(VX$)
 WY=VAL(VY$)
 LOCX(P11)=WX
 LOCY(P11)=WY
 MOVE P, P11
GOTO *ST

Chapter 12

Online commands

1 1 Online Command List12-1

2 2 Key operation ..12-6

3 3 Utility operation ..12-12

4 4 Data handling ..12-24

5 5 Executing the robot language independently ..12-44

6 6 Control codes ..12-46

Online Command List 12-1

8

9

10

11

12

13

14

 1 Online Command List

Online commands can be used to operate the controller via an RS-232C interface or via an Ethernet (option).
This chapter explains the online commands which can be used. For details regarding the RS-232C
connection method, refer to the "YRC Controller User's Manual". For details regarding Ethernet, refer to
the "YRC Series Ethernet Manual".

About termination codes

During data transmission, the controller adds the following codes to the end of a line of transmission data.

 • RS-232C
 • CR (0Dh) and LF (0Ah) are added to the end of the line when the "Termination code" parameter
 of communication parameters is set to "CRLF".
 • CR (0Dh) is added to the end of the line when the "Termination code" parameter of communication
 parameters is set to "CR".

 • Ethernet (option)
 • CR (0Dh) and LF (0Ah) are added to the end of the line.

When data is received, then the data up to CR (0Dh) is treated as one line regardless of the "Termination
code" parameter setting, so LF (0Ah) is ignored.
The termination code is expressed as [cr/lf] in the detailed description of each online command in "12.2
Key operation" onwards.

1.1	 Online	command	list:	Function	specific

Key operation

Operation type Command Option Condition

Change mode AUTO mode
 PROGRAM mode
 MANUAL mode
 SYSTEM mode

AUTO

3
PROGRAM
MANUAL
SYSTEM

Program Reset program
 Execute program
 Execute one line
 Skip one line
 Execute to next line
 Stop program

RESET

4
RUN
STEP
SKIP
NEXT
STOP 2

Set break point BREAK m, n (m: break point No., n: line) 4
Switch execution task CHGTSK 3
Change manual speed Main robot MSPEED k (k : 1-100) 3
Move to absolute reset position Main robot ABSADJ k, 0 or k, 1 (k : 1-6) 3
Absolute reset on each axis Main robot ABSRESET k (k : 1-6)
Return-to-origin Main robot ORGRTN k (k : 1-6) 3
Manual movement (inching) Main robot INCH k+ or k- (k : X, Y, Z, R, A, B) 3
Manual movement (jog) Main robot JOG k+ or k- (k : X, Y, Z, R, A, B) 3
Point data teaching Main robot TEACH m (m : point No.) 3

12-2 Chapter 12 Online commands

8

9

10

11

12

13

14

Utility

Operation type Command Option Condition
Acquire program execution status PADDR 4
Copy program 1 to program 2

COPY
<program 1> TO <program 2>

3Copy points "m - n" to point "k" Pm-Pn TO Pk
Copy point comments "m - n" to point comment "k" PCm-PCn TO PCk
Delete program

ERA

<program>

3
Delete points "m - n" Pm-Pn
Delete point comments "m - n" PCm-PCn
Delete pallet "m" PLm
Rename "program 1" to "program 2" REN <program 1> TO <program 2> 3
Change program attribute ATTR <program> TO s (s : RW/RO) 3

Initialize data Program
 Point
 Shift
 Hand
 Pallet
 Point comment
 All data except parameters
 Parameter
 All data (MEM+PRM)

INIT

PGM

3

PNT
SFT
HND
PLT
PCM
MEM
PRM
ALL

Initialize data Communication parameter INIT CMU 3
Initialize data Error log INIT LOG 3
Setting Display language LANGUAGE k 3

Setting Point units
 Clear line message
 Setting Access level
 Setting Execution level
 Sequence execution flag

UNIT k 3
MSGCLR 1
ACCESS k 3
EXELVL k 3
SEQUENCE k 3

Setting Main hand system ARMTYP m, k 3
Reset internal emergency stop flag EMGRST 1
Check or set date DATE 2
Check or set time TIME 2

Conditions: 1. Always executable.
 2. Not executable during inputs from the programming box.
 3. Not executable during inputs from the programming box, and while the program is

running.
 4. Not executable during inputs from the programming box, while the program is running,

and when specific restrictions apply.

Online Command List 12-3

8

9

10

11

12

13

14

Data handling

Operation type Command Option Condition

Acquiring status

Display language

?

LANGUAGE

1

Access level ACCESS
Arm status ARM
Break point status BREAK
Controller configuration CONFIG
Execution level EXELVL
Mode indication MOD
Error message MSG [m, n]
Return-to-origin status ORIGIN
Absolute reset status ABSRST
Servo status SERVO
Sequence execution flag status SEQUENCE
AUTO/MANUAL speed status SPEED
Point unit status UNIT
Version information VER
Current main robot position (pulse coordinate) WHERE
Current main robot position (XY coordinate)

(including extended setting) WHRXY

Task number TASKS
Task operation status TSKMON
Selected shift status SHIFT
Selected hand status HAND
Remaining memory capacity MEM
Emergency stop status EMG
Error status by self-diagnosis SELFCHK
Option slot status OPSLOT
Main group current torque value CHKTRQ
Numerical data Numerical expression
Character string data Character string expression
Point data Point expression
Shift data Shift expression

Data readout READ 2
Data write WRITE 2

Robot language independent execution

Operation type Command Option Condition
Program switching

SWI <program>
4

Robot language executable independently 4

Control code

Operation type Command Option Condition
Execution language interruption ^C(=03H) 1

Conditions: 1. Always executable.
 2. Not executable during inputs from the programming box.
 3. Not executable during inputs from the programming box, and while the program is

running.
 4. Not executable during inputs from the programming box, while the program is running,

and when specific restrictions apply.

12-4 Chapter 12 Online commands

8

9

10

11

12

13

14

1.2	 Online	command	list:	In	alphabetic	order

Command Option Meaning Condition

?

ABSRST Acquire absolute reset status 1
ACCESS Acquire access level 1
ARM Acquire arm status 1
BREAK Acquire break point status 1
CHKTRQ Acquire main group current torque value 1
CONFIG Acquire controller configuration 1
EMG Acquire emergency stop status 1
EXELVL Acquire execution level 1
HAND Acquire selected hand status 1
LANGUAGE Acquire display language 1
MEM Acquire remaining memory capacity 1
MOD Acquire mode indication 1
MSG [m, n] Acquire error message 1
OPSLOT Acquire option slot status 1
ORIGIN Acquire return-to-origin status 1
SELFCHK Acquire error status by self-diagnosis 1
SEQUENCE Acquire sequence execution flag status 1
SERVO Acquire servo status 1
SHIFT Acquire selected shift status 1
SPEED Acquire AUTO/MANUAL speed status 1
TASKS Acquire task number 1
TSKMON Acquire task operation status 1
UNIT Acquire point position status 1
VER Acquire version 1
WHERE Acquire current main robot position (pulse coordinate) 1
WHRXY Acquire current main robot position (XY coordinate) 1
Shift expression Acquire shift data 1
Point expression Acquire point data 1
Numeric expression Acquire numeric data 1
Character string expression Acquire character string data 1

^C (=03H) Execution language interruption 1
ABSADJ k, 0 or k, 1 (k : 1-6) Move to absolute reset position Main robot 3
ABSRESET k (k : 1-6) Absolute reset on each axis Main robot 3
ACCESS k Set access level 3
ARMTYP m, k Set main hand system 3
ATTR <program> TO s (s : RW/RO) Change program attribute 3
AUTO Change mode: AUTO mode 3
BREAK m, n (m: break point No., n: line) Set break point 4
CHGTSK Switch execution task 3

COPY
<program1> to <program2> Copy program 1 to program 2 3
PCm-PCn TO PCk Copy point comments "m - n" to point comments "k" 3
Pm-Pn TO Pk Copy points "m - n" to points "k" 3

DATE Check or set the date 2
EMGRST Reset internal emergency stop flag 1

ERA

<program> Delete program 3
PCm-PCn Delete point comments "m" to "n" 3
PLm Delete pallet "m" 3
Pm-Pn Delete points "m" to "n" 3

EXELVL k Execution level 3
INCH k+ or k- (k : X, Y, Z, R, A, B) Manual movement (inching) Main robot 3

Online Command List 12-5

8

9

10

11

12

13

14

Command Option Meaning Condition

INIT

ALL Initialize all data (MEM+PRM) 3
CMU Initialize communication parameter 3
HND Initialize hand data 3
LOG Initialize error history 3
MEM Initialize all memory data except parameters 3
PCM Initialize point comment data 3
PGM Initialize program data 3
PLT Initialize pallet data 3
PNT Initialize point data 3
PRM Initialize parameter data 3
SFT Initialize shift data 3

JOG k+ or k- (k : X, Y, Z, R, A, B) Manual movement (jog) Main robot 3
LANGUAGE k Set display language 3
MANUAL Change mode: MANUAL mode 3
MSGCLR Setting Clear line message 1
MSPEED k (k : 1-100) Change manual speed Main robot 3
NEXT Execute program to next line 4
ORGRTN k (k : 1-6) Return-to-origin Main robot 3
PADDR Acquire program execution status 4
PROGRAM Change mode: PROGRAM mode 3
READ Read data 2
REN <program 1> TO <program 2> Change program name from "1" to "2" 3
RESET Reset program 4
RUN Execute program 4
SEQUENCE k Set sequence execution flag 3
SKIP Program: Skip one line 4
STEP Program: Execute one line 4
STOP Stop program 2
SWI <program> Switch programs 4
SYSTEM Change mode: SYSTEM mode 3
TEACH m (m: point number) Point data teaching Main robot 3
TIME Check or set time 2
UNIT k Set point unit system 3
WRITE Write data 2
 - Robot language executable independently 4

Conditions: 1. Always executable.
 2. Not executable during inputs from the programming box.
 3. Not executable during inputs from the programming box, and while the program is

running.
 4. Not executable during inputs from the programming box, while the program is running,

and when specific restrictions apply.

12-6 Chapter 12 Online commands

8

9

10

11

12

13

14

 2 Key operation

2.1 Changing the mode

Command format

@AUTO[cr/lf]
@PROGRAM[cr/lf]
@MANUAL[cr/lf]
@SYSTEM[cr/lf]

Response format

OK[cr/lf]

 Meaning Changes the mode.
 AUTO ...Changes to AUTO mode.
 PROGRAMChanges to PROGRAM mode.
 MANUALChanges to MANUAL mode.
 SYSTEMChanges to SYSTEM mode.

SAMPLE
Command: @AUTO[cr/lf]
Response: OK[cr/lf]

NOTE
 • Basically, a response "OK"
appears when an instruction
from key operation online
command is received.

 • An error message responds if
online commands cannot be
executed due to error.

Key operation 12-7

8

9

10

11

12

13

14

2.2 AUTO mode operation

1. Program execution

Command format

@RESET[cr/lf]
@RUN[cr/lf]
@STEP[cr/lf]
@SKIP[cr/lf]
@NEXT[cr/lf]
@STOP[cr/lf]

Response format

OK[cr/lf]

 Meaning Executes or stops the current program.
 RESET ..Resets the program.
 RUN ...Executes the program.
 STEP... Executes one line of the program. (Enters the subroutine.)
 SKIP ... Skips one line of program. (Skips one line of the

subroutine.)
 NEXT ... Executes to the next line. (Executes the subroutine as one

line.)
 STOP ..Stops the program.

SAMPLE
Command: @RUN[cr/lf]
Response: OK[cr/lf]

NOTE
 • Programs can be executed only
in AUTO mode.

12-8 Chapter 12 Online commands

8

9

10

11

12

13

14

2. Setting a break point

Command format

@BREAK m,n[cr/lf]

Response format

OK[cr/lf]

 Values m ...Break point number: 1 to 4
 n ..Line number to set a break point: 1 to 9999

 Meaning Sets a break point used to temporarily stop execution of the program.
 When setting a break point in the COMMON program, the line number should be +10000.
 Break point is cleared when 0 is specified as the line number.

SAMPLE
Command: @BREAK 1,28[cr/lf]
Response: OK[cr/lf]

3. Switching the execution task

Command format

@CHGTSK[cr/lf]

Response format

OK[cr/lf]

 Meaning Switches the selected task while program execution is stopped.
 The ongoing task is switched to another task not being executed in order from task 1 → 2 → ...

→ 8 → 1.

SAMPLE
Command: @CHGTSK[cr/lf]
Response: OK[cr/lf]

NOTE
 • Programs can be executed only
in AUTO mode.

NOTE
 • Programs can be executed only
in AUTO mode.

Key operation 12-9

8

9

10

11

12

13

14

2.3 MANUAL mode operation

1. Changing the MANUAL mode speed

Command format

@MSPEED k[cr/lf]

Response format

OK[cr/lf]

 Values k ..Manual movement speed: 1 to 100

 Meaning Changes the MANUAL mode movement speed.
 MSPEED: Changes manual movement speed for main robot.

SAMPLE
Command: @MSPEED 50[cr/lf]
Response: OK[cr/lf]

2. Absolute reset

Command format

@ABSADJ k,f[cr/lf]
@ABSRESET k[cr/lf]

Response format

OK[cr/lf]

 Values k ..Designated axis: 1 to 6
 f...Movement direction / 0: + direction, 1: - direction

 Meaning Performs absolute reset.
 ABSADJMoves the main robot axis to an absolute reset position.
 ABSRESETPerforms absolute reset on the main robot axis.

SAMPLE
Command: @ABSADJ 1,0[cr/lf]
Response: OK[cr/lf]

• ABSADJ can be used at mark format axes.

NOTE
 • The MANUAL mode speed
c a n b e c h a n g e d o n l y i n
MANUAL mode.

NOTE
 • The MANUAL mode speed
c a n b e c h a n g e d o n l y i n
MANUAL mode.

MEMO

12-10 Chapter 12 Online commands

8

9

10

11

12

13

14

3. Return-to-origin operation

Command format

@ORGRTN k[cr/lf]

Response format

OK[cr/lf]

 Values k ..Specified axis: 1 to 6

 Meaning Performs return-to-origin on the specified axis.
 Performs return-to-origin on an incremental mode axis when return-to-origin is executed.
 Performs absolute search on a semi-absolute mode axis when return-to-origin is executed.
 ORGRTNPerforms return-to-origin on the specified main robot axis.

SAMPLE
Command: @ORGRTN 1[cr/lf]
Response: OK[cr/lf]

4.	Manual	movement:	inching

Command format

@INCH km[cr/lf]

Response format

OK[cr/lf]

 Values k ..Specified axis: X, Y, Z, R, A, B
 m ...Movement direction / +, -

 Meaning Manually moves (inching motion) the specified axis. The robot performs the same motion as
when moved manually in inching mode with the programming box jog keys (moves a fixed
distance each time a jog key is pressed).

 INCH ..Moves the specified main robot axis in inching mode.

SAMPLE
Command: @INCH X+[cr/lf]
Response: OK[cr/lf]

NOTE
 • The MANUAL mode speed
c a n b e c h a n g e d o n l y i n
MANUAL mode.

NOTE
 • Response is transmitted after
movement is complete.

NOTE
 • The MANUAL mode speed
c a n b e c h a n g e d o n l y i n
MANUAL mode.

Key operation 12-11

8

9

10

11

12

13

14

5.	Manual	movement:	jog

Command format

@JOG km[cr/lf]

Response format

OK[cr/lf]

 Values k ..Specified axis: X, Y, Z, R, A, B
 m ...Movement direction / +, -

 Meaning Manually moves (jog motion) the specified axis. The robot performs the same motion as
when holding down the programming box jog keys in manual mode.

 After the robot has started moving, it will stop when any of the following occurs.
 • When software limit was reached.
 • When interlock signal was turned off.
 • When STOP key on the programming box was pressed.
 • When an online command (^C (=03H)) to interrupt execution was input.
 JOG...Moves the specified main robot axis in jog mode.

SAMPLE
Command: @JOG X+[cr/lf]
Response: OK[cr/lf]

6. Point data teaching

Command format

@TEACH mmmm[cr/lf]

Response format

OK[cr/lf]

 Values mmmmPoint number for registering point data: 0 to 9999

 Meaning Registers the current robot position as point data for the specified point number. If point data is
already registered in the specified point number, then that point data will be overwritten. Point
data is registered in the same format as the currently selected unit system.

 TEACH....................................... Registers the current position of the main group as point
data for the specified point number.

SAMPLE
Command: @TEACH 100[cr/lf]
Response: OK[cr/lf]

NOTE
 • Response is transmitted after
movement is complete.

NOTE
 • The MANUAL mode speed
c a n b e c h a n g e d o n l y i n
MANUAL mode.

12-12 Chapter 12 Online commands

8

9

10

11

12

13

14

 3 Utility operation

3.1 Acquiring the program execution status

Command format

@PADDR[cr/lf]

Response format

<program name> Tn, m, k[cr/lf]

 Values <program name> Currently selected program name
 Tn ...Current task number: 1 to 8
 m ...Current program line number: 1 to 9999
 k ..Current task priority level:17 to 47

 Meaning Acquires the current program execution status.

• If the COMMON program is used, the response format might become as follows.
 <COMMON>/<program name>, Tn,m,k[cr/lf]

SAMPLE
Command: @PADDR[cr/lf]
Response: <TEST>,T3,134,32[cr/lf]

3.2 Copy

1. Copying a program

Command format

COPY <program name 1> TO <program name 2> [cr/lf]

Response format

@COPY <program name 1> TO <program name 2> [cr/lf]

 Values <program name 1> Program name in copy source (8 characters or less
consisting of alphanumeric characters and underscore)

 <program name 2> Program name in copy destination (8 characters or less
consisting of alphanumeric characters and underscore)

 Meaning Copies the contents of program name 1 under program name 2.

SAMPLE
Command: @COPY <TEST1> TO <TEST2>[cr/lf]
Response: OK[cr/lf]

NOTE
 • The current program execution
status can be acquired only
when the program is stopped
during AUTO mode.

MEMO

Utility operation 12-13

8

9

10

11

12

13

14

2. Copying point data

Command format

@COPY Pmmmm-Pnnnn TO Pkkkk[cr/lf]

Response format

OK[cr/lf]

 Values mmmmTop point number in copy source: 0 to 9999
 nnnn ..Last point number in copy source: 0 to 9999
 kkkk ..Top point number in copy destination: 0 to 9999

 Meaning Copies the point data between Pmmmm and Pnnnn to Pkkkk.

SAMPLE
Command: @COPY P101-P200 TO P1101[cr/lf]
Response: OK[cr/lf]

3. Copying point comments

Command format

@COPY PCmmmm-PCnnnn TO PCkkkk[cr/lf]

Response format

OK[cr/lf]

 Values mmmmTop point comment number in copy source: 0 to 9999
 nnnn ..Last point comment number in copy source: 0 to 9999
 kkkk .. Top point comment number in copy destination: 0 to 9999

 Meaning Copies the point comments between PCmmmm and PCnnnn to PCkkkk.

SAMPLE
Command: @COPY PC101-PC200 TO PC1101[cr/lf]
Response: OK[cr/lf]

12-14 Chapter 12 Online commands

8

9

10

11

12

13

14

3.3 Erase

1. Erasing a program

Command format

@ERA <program name> [cr/lf]

Response format

OK[cr/lf]

 Values <program name> Program name to be erased (8 characters or less consisting
of alphanumeric characters and underscore)

 Meaning Erases the designated program.

SAMPLE
Command: @ERA <TEST1>[cr/lf]
Response: OK[cr/lf]

2. Erasing point data

Command format

@ERA Pmmmm-Pnnnn[cr/lf]

Response format

OK[cr/lf]

 Values mmmmTop point number to be erased: 0 to 9999
 nnnn ..Last point number to be erased: 0 to 9999

 Meaning Erases the point data between Pmmmm and Pnnnn.

SAMPLE
Command: @ERA P101-P200[cr/lf]
Response: OK[cr/lf]

Utility operation 12-15

8

9

10

11

12

13

14

3. Erasing point comments

Command format

@ERA PCmmmm-PCnnnn[cr/lf]

Response format

OK[cr/lf]

 Values mmmmTop point comment number to be erased: 0 to 9999
 nnnn ..Last point comment number to be erased: 0 to 9999

 Meaning Erases the point comments between PCmmmm and PCnnnn.

SAMPLE
Command: @ERA PC101-PC200[cr/lf]
Response: OK[cr/lf]

4. Erasing pallet data

Command format

@ERA PLm[cr/lf]

Response format

OK[cr/lf]

 Values m ...Pallet number to be erased: 0 to 19

 Meaning Erases the PLm pallet data.

SAMPLE
Command: @ERA PL1[cr/lf]
Response: OK[cr/lf]

12-16 Chapter 12 Online commands

8

9

10

11

12

13

14

3.4 Rename program name

Command format

@REN <program name 1> TO <program name 2> [cr/lf]

Response format

OK[cr/lf]

 Values <program name 1> Program name before renaming (8 characters or less
consisting of alphanumeric characters and underscore)

 <program name 2> Program name after renaming (8 characters or less
consisting of alphanumeric characters and underscore)

 Meaning Changes the name of the specified program.

SAMPLE
Command: @REN <TEST1> TO <TEST2>[cr/lf]
Response: OK[cr/lf]

3.5 Changing the program attribute

Command format

@ATTR <program name> TO s[cr/lf]

Response format

OK[cr/lf]

 Values <program name> Program name to change the attribute (8 characters or less
consisting of alphanumeric characters and underscore)

 s ..Attribute / RW: read & write, RO: read only

 Meaning Changes the attribute of the designated program.

SAMPLE
Command: @ATTR <TEST1> TO RO[cr/lf]
Response: OK[cr/lf]

Utility operation 12-17

8

9

10

11

12

13

14

3.6 Initialize

1. Initializing the memory

Command format

@INIT <memory area>[cr/lf]

Response format

OK[cr/lf]

 Values <memory area> One of the following memory areas is specified.
 PGM ...Initializes the program area.
 PNT ..Initializes the point data area.
 SFT ...Initializes the shift data area.
 HND ...Initializes the hand data area.
 PLT ...Initializes the pallet data area.
 PCM ...Initializes the point comment area.
 MEM ..Initializes the above areas (PGM ... all data up to PCM).
 PRM ...Initializes the parameter area.
 ALL ..Initializes all areas (MEM+PRM).

 Meaning Initializes the memory.

SAMPLE
Command: @INIT PGM[cr/lf]
Response: OK[cr/lf]

2. Initializing the communication port

Command format

@INIT CMU[cr/lf]

Response format

OK[cr/lf]

 Meaning Initializes the communication port parameters.
 For information about the communication port initial settings, refer to the Controller user's

manual.

SAMPLE
Command: @INIT CMU[cr/lf]
Response: OK[cr/lf]

12-18 Chapter 12 Online commands

8

9

10

11

12

13

14

3. Initializing the error log

Command format

@INIT LOG[cr/lf]

Response format

OK[cr/lf]

 Meaning Initializes the error log.

SAMPLE
Command: @INIT LOG[cr/lf]
Response: OK[cr/lf]

3.7	 Setting the display language

Command format

@LANGUAGE k[cr/lf]

Response format

OK[cr/lf]

 Values k ..Display language / 0: Japanese, 1: English

 Meaning Sets the controller display language.

SAMPLE
Command: @ LANGUAGE 1[cr/lf]
Response: OK[cr/lf]

Utility operation 12-19

8

9

10

11

12

13

14

3.8	 Setting the coordinates and units in MANUAL mode

Command format

@UNIT k[cr/lf]

Response format

OK[cr/lf]

 Values k .. Unit definition
 0 : pulses
 1 : mm or degrees
 2 : mm or degrees in tool coordinate mode

 Meaning Select the display unit to indicate current position.
 k=2 (tool coordinate mode) can be selected only when the hand attached to the R-axis of a

SCARA robot is selected.

SAMPLE
Command: @UNIT 1[cr/lf]
Response: OK[cr/lf]

3.9 Clearing the programming box error message

Command format

@MSGCLR[cr/lf]

Response format

OK[cr/lf]

 Meaning Clears the error messages displayed on the programming box.

SAMPLE
Command: @MSGCLR[cr/lf]
Response: OK[cr/lf]

12-20 Chapter 12 Online commands

8

9

10

11

12

13

14

3.10 Setting the UTILITY mode

1. Setting the access level

Command format

@ACCESS k[cr/lf]

Response format

OK[cr/lf]

 Values k ..Access level: 0 to 3

 Meaning Sets the access level.

SAMPLE
Command: @ ACCESS 1[cr/lf]
Response: OK[cr/lf]

2. Setting the execution level

Command format

@EXELVL k[cr/lf]

Response format

OK[cr/lf]

 Values k ..Execution level: 0 to 8

 Meaning Sets the execution level.

SAMPLE
Command: @ EXELVL 1[cr/lf]
Response: OK[cr/lf]

REFERENCE

 • For details regarding the access
level, refer to the Controller
user's manual.

REFERENCE

 • For deta i l s regarding the
execution level, refer to the
Controller user's manual.

Utility operation 12-21

8

9

10

11

12

13

14

3. Setting	the	sequence	program	execution	flag

Command format

@SEQUENCE k[cr/lf]

Response format

OK[cr/lf]

 Values k ..Execution flag / 0: disable, 1: enable, 3: enable (DO reset)

 Meaning Sets the sequence program execution flag.

SAMPLE
Command: @ SEQUENCE 1[cr/lf]
Response: OK[cr/lf]

4. Setting the SCARA robot hand system

Command format

@ARMTYP m,k[cr/lf]

Response format

OK[cr/lf]

 Values m Current hand system / 0: right-handed system, 1: left-handed system
 k Hand system at program reset / 0: right-handed system, 1: left-handed system
 Meaning Sets the SCARA robot hand system.
 ARMTYPChanges the main robot hand system.

SAMPLE
Command: @ ARMTYP 0, 0 [cr/lf]
Response: OK[cr/lf]

5. Resetting	the	internal	emergency	stop	flag

Command format

@EMGRST[cr/lf]

Response format

OK[cr/lf]

 Meaning Resets the internal emergency stop flag.

SAMPLE
Command: @ EMGRST[cr/lf]
Response: OK[cr/lf]

12-22 Chapter 12 Online commands

8

9

10

11

12

13

14

3.11 Checking and setting the date

Command format

@DATE[cr/lf]

Response format

current date: yy/mm/dd[cr/lf]
enter new date: (YY/MM/DD)[cr/lf]

 Values yy/mm/ddCurrent date (year, month, day)
 yy ..Lower 2 digits of the year (00 to 99)
 mm ..Month (01 to 12)
 dd ..Day (01 to 31)

 Meaning Acquires the current date in the controller and sets a new date.

Command format

aa/bb/cc[cr/lf]

Response format

OK[cr/lf] or "error message" [cr/lf]

 Values aa/bb/cc.......................................Date to be set. (year/month/day)
 aa .. Lower 2 digits of the year (00 to 99) *This can be omitted.
 bb ..Month (01 to 12) *This can be omitted.
 cc ..Day (01 to 31) *This can be omitted.

• The currently set values are used for the omitted items.
• If only [cr/lf] is transmitted, then the date remains unchanged.
• If an improbable date is entered, then "5.2: Data error" occurs.

SAMPLE 1
To change only the day,
 //15[cr/lf] Day is set to 15th.

SAMPLE 2
Command: @DATE[cr/lf]
Response: current date: 07/05/10[cr/lf]
 enter new date: (YY/MM/DD)[cr/lf]
Transmission: 07/05/11[cr/lf]
Response: OK[cr/lf]

NOTE
 • T o c h a n g e o n l y t h e
y e a r o r m o n t h , t h e s l a s h
(/) following it can be omitted.

 Example:

 To set the year to 2007, enter
 07[cr/lf].

 To set the month to June, enter
 /06[cr/lf].

MEMO

Utility operation 12-23

8

9

10

11

12

13

14

3.12 Checking and setting the time

Command format

@TIME[cr/lf]

Response format

current time: hh:mm:ss[cr/lf]
enter new time: (HH:MM:SS)[cr/lf]

 Values hh:mm:ssCurrent time
 hh ..hour (00 to 23)
 mm ..minute (00 to 59)
 ss ...second (00 to 59)

 Meaning Acquires the current time in the controller and sets a new time.

Command format

aa:bb:cc[cr/lf]

Response format

OK[cr/lf] or "error message" [cr/lf]

 Values aa:bb:cc.......................................Time to be set.
 aa ..hour (00 to 23) *This can be omitted.
 bb ..minute (00 to 59) *This can be omitted.
 cc ..second (00 to 59) *This can be omitted.

• The currently set values are used for the omitted items.
• If only [cr/lf] is transmitted, then the time remains unchanged.
• If an improbable time is entered, then "5.2: Data error" occurs.

SAMPLE 1
To change only the minute,
 :20:[cr/lf] Minute is set to 20 minutes.

SAMPLE 2
Command: @TIME[cr/lf]
Response: current time: 10:21:35[cr/lf]
 enter new time:(HH/MM/SS)[cr/lf]
Transmission: 10:25:00[cr/lf]
Response: OK[cr/lf]

MEMO

12-24 Chapter 12 Online commands

8

9

10

11

12

13

14

 4 Data handling

4.1 Acquiring the display language

Command format

@?LANGUAGE[cr/lf]

Response format

m[cr/lf]

 Values m ...Display language / JAPANESE or ENGLISH

 Meaning Acquires the language for displaying messages.

SAMPLE
Command @?LANGUAGE[cr/lf]
Response JAPANESE[cr/lf]

4.2 Acquiring the access level

Command format

@?ACCESS[cr/lf]

Response format

LEVELk[cr/lf]

 Values k ..Access level: 0 to 3

 Meaning Acquires the access level.

SAMPLE
Command @?ACCESS[cr/lf]
Response LEVEL2[cr/lf]

REFERENCE

 • For a detailed description of
the access level, refer to the
Controller user’s manual.

Data handling 12-25

8

9

10

11

12

13

14

4.3 Acquiring the arm status

Command format

@?ARM[cr/lf]

Response format

m1,m2[cr/lf]

 Values Main robot
 m1 ... Current arm setting status / RIGHTY: right-handed system,

LEFTY: left-handed system
 m2 ... Arm setting status at program reset / RIGHTY: right-

handed system, LEFTY: left-handed system

 Meaning Acquires the arm setting status.

SAMPLE
Command @?ARM[cr/lf]
Response RIGHTY,RIGHTY[cr/lf]

4.4 Acquiring the break point status

Command format

@?BREAK[cr/lf]

Response format

k1,k2,k3,k4[cr/lf]

 Values kn ..Line number on which break point "n" is set: 1 to 9999

 Meaning Acquires the break point status.
 When kn is 0, this means no break point is set.
 When a break point is set in the COMMON program, the line number shows +10000.

SAMPLE
Command @?BREAK[cr/lf]
Response 12,35,0,0[cr/lf]

12-26 Chapter 12 Online commands

8

9

10

11

12

13

14

4.5 Acquiring	the	controller	configuration	status

Command format

@?CONFIG[cr/lf]

Response format

mr-ma-r-o1-o2[cr/lf]

 Values mr ...Main robot name
 ma ... Main group axis setting (Auxiliary axes are shown

separated by "+".)
 r...Standard interface unit
 o1 ..Option unit
 o2 ..Other setting

 Meaning Acquires the controller configuration status.

SAMPLE
Command @?CONFIG[cr/lf]
Response R6YXH250-XYZR-SRAM/196kB,DIO_N-DIO_N(1/2)[cr/lf]

4.6 Acquiring the execution level

Command format

@?EXELVL[cr/lf]

Response format

LEVELk[cr/lf]

 Values k ..Execution level: 0 to 8

 Meaning Acquires the execution level.

SAMPLE
Command @?EXELVL[cr/lf]
Response LEVEL2[cr/lf]

REFERENCE

 • For a detailed description of
the execution level, refer to the
Controller user’s manual.

Data handling 12-27

8

9

10

11

12

13

14

4.7	 Acquiring the mode status

Command format

@?MOD[cr/lf]

Response format

s[cr/lf]

 Values s ..Mode status

s
Meaning

English Japanese

AUTO AUTO mode

PROGRAM PROGRAM mode

MANUAL MANUAL mode

SYSTEM SYSTEM mode

 Meaning Acquires the controller mode status.

SAMPLE
Command @?MOD[cr/lf]
Response AUTO[cr/lf]

12-28 Chapter 12 Online commands

8

9

10

11

12

13

14

4.8	 Acquiring the message

Command format 1

@?MSG[c/r]

Response format 1

gg,bb: msg[c/r]or OK[c/r]

Command format 2

@?MSG m,n[cr/lf]

Response format 2

yy/mm/dd,hh:mm:ss gg.bb:msg[cr/lf]
yy/mm/dd,hh:mm:ss gg.bb:msg[cr/lf]
:
OK[cr/lf]

 Values gg ..Error group
 bb ..Error category
 msg ...Error message
 m ...Top number to be acquired: 1 to 500
 n ..Last number to be acquired: 1 to 500
 yy/mm/ddDate (year/month/day) when error occurred
 hh:mm:ssTime (hour:minute:second) when error occurred

 Meaning Command format 1 acquires information on the message line displayed on the programming
box.

 Command format 2 acquires error history message.

SAMPLE 1
Command @?MSG[cr/lf]
Response 5.30: Undefined identifier[cr/lf] or OK[cr/lf]

SAMPLE 2
Command @?MSG 1,5[cr/lf]
Response 01/10/28,14:20:20 5.30: Undefined identifier[cr/lf]
01/10/28,14:18:34 5.1: Syntax error[cr/lf]
01/10/28,14:10:54 5.30: Undefined identifier[cr/lf]
01/10/28,14:05:40 14.22: No start code(@)[cr/lf]
01/10/28,14:05:00 5.52: Command doesn’t exist[cr/lf]
OK[cr/lf]

Data handling 12-29

8

9

10

11

12

13

14

4.9 Acquiring return-to-origin status

Command format

@?ORIGIN[cr/lf]

Response format

COMPLETE[cr/lf] or INCOMPLETE[cr/lf]

 Meaning Acquires return-to-origin status.
 Response format COMPLETE: Return-to-origin is complete.
 INCOMPLETE: Return-to-origin is incomplete.

SAMPLE
Command @?ORIGIN[cr/lf]
Response COMPLETE[cr/lf]

4.10 Acquiring the absolute reset status

Command format

@?ABSRST[cr/lf]

Response format

COMPLETE[cr/lf] or INCOMPLETE, xxxxxxxx[cr/lf]

 Values xxxxxxxx Absolute reset status of each axis (axis 8 to axis 1 from the
left)

 0: Incomplete
 1: Complete
 9: Not applicable

 Meaning Acquires the absolute reset status.
 Response format COMPLETE: Return-to-origin is complete.
 INCOMPLETE: Return-to-origin is incomplete.

SAMPLE
Command @?ABSRST[cr/lf]
Response INCOMPLETE,99991011[cr/lf]

12-30 Chapter 12 Online commands

8

9

10

11

12

13

14

4.11 Acquiring the servo status

Command format

@?SERVO[cr/lf]

Response format

OFF,xxxxxxxx [cr/lf] or ON,xxxxxxxx[cr/lf]

 Values xxxxxxxxStatus of each axis (axis 8 to axis 1 from the left)
 0: Mechanical break ON + dynamic break ON
 1: Servo ON
 2: Mechanical break OFF + dynamic break OFF
 9: Not applicable

 Meaning Acquires the servo status.
 Response outputs are defined as follows:
 ON ..Motor power is ON.
 OFF...Motor power is OFF.

SAMPLE
Command @?SERVO[cr/lf]
Response ON,99991011[cr/lf]

4.12 Acquiring the sequence program execution status

Command format

@?SEQUENCE[cr/lf]

Response format

1. ENABLE,s[cr/lf]
2. ENABLE(RST.DO),s[cr/lf]
3. DISABLE[cr/lf]

 Values s .. The sequence program's execution status is indicated as
"RUNNING" or "STOP".

 RUNNINGProgram execution is in progress.
 STOP ..Program execution is stopped.
 Meaning Acquires the sequence program execution status.
 Response output means as follows:
 ENABLEEnabled
 ENABLE(RST.DO) Enabled and output is cleared at emergency stop
 DISABLEDisabled

SAMPLE
Command @? SEQUENCE[cr/lf]
Response DISABLE[cr/lf]

Data handling 12-31

8

9

10

11

12

13

14

4.13 Acquiring the speed setting status

Command format

@?SPEED[cr/lf]

Response format

ma,mm[cr/lf]

 Values Main group
 ma ...Automatic movement speed setting status: 1 to 100
 mm ..Manual movement speed setting status: 1 to 100

 Meaning Acquires the speed setting status.

SAMPLE
Command @?SPEED[cr/lf]
Response 100,50[cr/lf]

4.14 Acquiring the point coordinates and units

Command format

@?UNIT[cr/lf]

Response format

s[cr/lf]

 Values s: Coordinates and units PULSE: joint coordinate in "pulse" units
 MM: Cartesian coordinate in "mm" or “deg.” units
 Meaning Acquires the coordinates and units for point data.

SAMPLE
Command @?UNIT[cr/lf]
Response PULSE[cr/lf]

12-32 Chapter 12 Online commands

8

9

10

11

12

13

14

4.15 Acquiring the version information

Command format

@?VER[cr/lf]

Response format

cv,cr-mv-d1/d2/d3/d4/d5/d6/d7/d8{-ov}[cr/lf]

 Values cv ..Host version number (YRC, RCX)
 cr ...Host revision number (Rxxxx)
 mv ...Programming box version number (Vx.xx)
 d?(?:1-8)Driver version number (Vx.xx)
 ov ..Option unit version number (Vx.xx)

 Meaning Acquires the version information.

SAMPLE
Command @?VER[cr/lf]
Response V8.02,R1021-V5.10-V1.01/V1.01/V1.01/V1.01/-----/-----/-----/-----/[cr/lf]

4.16 Acquiring the current positions

1. Acquiring the current positions on pulse unit coordinates

Command format

@?WHERE[cr/lf]

Response format

[POS]xxxxxx yyyyyy zzzzzz rrrrrr aaaaaa bbbbbb[cr/lf]

 Values xxxxxx ..Current position of axis 1 in "pulse" units
 yyyyyy ..Current position of axis 2 in "pulse" units
 :
 bbbbbb ..Current position of axis 6 in "pulse" units

 Meaning Acquires the current positions.
 WHERE: Acquires the current positions of main group axes.

SAMPLE
Command @?WHERE[cr/lf]
Response [POS] 1000 2000 3000 -40000 0 0[cr/lf]

Data handling 12-33

8

9

10

11

12

13

14

2. Acquiring the current positions on XY coordinates

Command format

@?WHRXY[cr/lf]

Response format

[POS]xxxxxx yyyyyy zzzzzz rrrrrr aaaaaa bbbbbb[cr/lf]

 Values xxxxxx ..Current position of axis 1 in "mm" or "deg" units
 yyyyyy ..Current position of axis 2 in "mm" or "deg" units
 :
 bbbbbb ..Current position of axis 6 in "mm" or "deg" units

 Meaning Acquires the current positions.
 WHRXY: Acquires the current positions of main group axes.

SAMPLE
Command @?WHRXY[cr/lf]
Response [POS] 100.00 200.00 300.00 -40.00 0.00 0.00[cr/lf]

3. XY coordinate system current position (including extended setting) acquisition

Command format

@?WHRXYEX[cr/lf]

Response format

[POS]xxxxxx yyyyyy zzzzzz rrrrrr aaaaaa bbbbbb n xr yr[cr/lf]

 Values xxxxxx Axis 1 current position in "mm" units.
 yyyyyy Axis 2 current position in "mm" units.
 :
 bbbbbb Axis 6 current position in "mm" units.
 n SCARA robot extended hand system flag (*1)

1: Right-handed system; 2: Left-handed system
 xr................................ Extended setting's X-arm rotation information (*2).
 0 : The "mm → pulse" converted angle data x (*3) range is –180.00° < x < = 180.00°.
 1 : The "mm → pulse" converted angle data x (*3) range is 180.00° < x < = 540.00°.
 -1 : The "mm → pulse" converted angle data x (*3) range is –540.00° < x < = -180.00°.
 yr................................ Extended setting's Y-arm rotation information (*2).
 0 : The "mm → pulse" converted angle data y (*3) range is –180.00° < y < = 180.00°.
 1 : The "mm → pulse" converted angle data y (*3) range is 180.00° < y < = 540.00°.
 -1 : The "mm → pulse" converted angle data y (*3) range is –540.00° < y < = -180.00°.

NOTE
 • The "XY coordinate system
current position (including
extended setting) acquisition"
function is only available in
software version 1.66M or
higher.

12-34 Chapter 12 Online commands

8

9

10

11

12

13

14

*1: The hand system flag is "0" on all robots other than the SCARA robot.
*2: The arm rotation information is "0" on all robots other than the R6YXTW500 robot.
*3: The joint-coordinates-converted pulse data represents each arm's distance (converted to angular data)

from its mechanical origin point.

 Meaning • The acquired current position data includes additional dedicated R6YXTW500 information.
 WHRXYEX: Acquires the current position of a main group axis.

SAMPLE
Command @?WHRXYEX
Response [POS] 13.44 206.06 0.00 83.24 0.00 0.00 1 0 -1[cr/lf]

4.17	 Acquiring the tasks in RUN or SUSPEND status

Command format

@?TASKS[cr/lf]

Response format

n{,n{,{...}}}[cr/lf]

 Values n: Task number1 to 8 (Task currently run or suspended)

 Meaning Acquires the tasks in RUN or SUSPEND status.

SAMPLE
Command @?TASKS[cr/lf]
Response 1,3,4,6[cr/lf]

NOTE
 • The "XY coordinate system
current position (including
extended setting) acquisition"
function is only available in
software version 1.66M or
higher.

Data handling 12-35

8

9

10

11

12

13

14

4.18	 Acquiring the tasks operation status

Command format

@?TSKMON[cr/lf]

Response format

nfp,{nfp},{nfp},{nfp},{nfp},{nfp},{nfp},{nfp}[cr/lf]

 Values n : Line number being executed in each task 1 to 9999
 f : Status of each task ... R: RUN
 U: SUSPEND
 S: STOP
 p : Priority level of each task 17 to 47

 Meaning Acquires the status of each task in order from Task 1 to Task 8.

SAMPLE
Command @?TSKMON[cr/lf]
Response 11R32,,43U32,,,,129R31,[cr/lf]

4.19 Acquiring the shift status

Command format

@?SHIFT[cr/lf]

Response format

m[cr/lf]

 Values m ...Shift number selected for main robot: 0 to 9

 Meaning Acquires the shift status.

SAMPLE
Command @?SHIFT[cr/lf]
Response 1[cr/lf]

12-36 Chapter 12 Online commands

8

9

10

11

12

13

14

4.20 Acquiring the hand status

Command format

@?HAND[cr/lf]

Response format

m[cr/lf]

 Values m ...Hand number selected for main robot: 0 to 3

 Meaning Acquires the hand status.

SAMPLE
Command @?HAND[cr/lf]
Response 1[cr/lf]

4.21 Acquiring the remaining memory capacity

Command format

@?MEM[cr/lf]

Response format

k/m[cr/lf]

 Values k ..Remaining source area (unit: bytes)
 m ...Remaining object area (unit: bytes)

 Meaning Acquires the remaining memory capacity.

SAMPLE
Command @?MEM[cr/lf]
Response 102543/1342[cr/lf]

Data handling 12-37

8

9

10

11

12

13

14

4.22 Acquiring the emergency stop status

Command format

@?EMG[cr/lf]

Response format

k[cr/lf]

 Values k .. Emergency stop status / 0: normal operation, 1: emergency
stop

 Meaning Acquires the emergency stop status by checking the internal emergency stop flag.

SAMPLE
Command @?EMG[cr/lf]
Response 1[cr/lf]

4.23 Acquiring the error status by self-diagnosis

Command format

@?SELFCHK[cr/lf]

 • When no error was found

Response format

OK[cr/lf]

 • If an error occurred

Response format

m.n: "message" [cr/lf]
:
END [cr/lf]

 Values m ...Error group
 n ..Error category
 "message"Show error message.

 Meaning Acquires the error status by self-diagnosis that checks for errors inside the controller.

SAMPLE
Command @?SELFCHK[cr/lf]
Response 12.1: Emg.stop on[cr/lf]
 END[cr/lf]

12-38 Chapter 12 Online commands

8

9

10

11

12

13

14

4.24 Acquiring the option slot status

Command format

@?OPSLOT[cr/lf]

Response format

OP.1 : <option board name> [cr/lf]
OP.2 : <option board name> [cr/lf]
OP.3 : <option board name> [cr/lf]
OP.4 : <option board name> [cr/lf]

 Values <option board name> Name of option board installed in the controller.
 DIO_NmDIO board with NPN specifications (m: board ID)
 DIO_Pm DIO board with PNP specifications (m: board ID)
 CCLnk .. CC-Link compatible board
 D_Net ... DeviceNet compatible board
 Profi .. Profibus compatible board
 E_Net .. Ethernet compatible board
 no board No option board is installed.
 illegal boardIncompatible board is installed.

 Meaning Acquires the option slot status by checking the option boards.

SAMPLE
Command: @?OPSLOT[cr/lf]
Response: OP.1: DIO_N2[cr/lf]
 OP.2: DIO_N1[cr/lf]
 OP.3: no board[cr/lf]
 OP.4: CCLnk [cr/lf]

Data handling 12-39

8

9

10

11

12

13

14

4.25 Acquiring various values

1. Acquiring the value of a numerical expression

Command format

@? "numerical expression" [cr/lf]

Response format

"numerical value" [cr/lf]

 Meaning Acquires the value of the specified numerical expression.
 The numerical expression's value format is "decimal" or "real number".

SAMPLE 1
Command: @?SQR(100*5)[cr/lf]
Response: 2.23606E01[c/lf]

SAMPLE 2
Command: @?LOCX(WHERE)[cr/lf]
Response: 102054[cr/lf]

2. Acquiring the value of a character string expression

Command format

@? "character string expression" [cr/lf]

Response format

"character string " [cr/lf]

 Meaning Acquires the value (character string) of the specified character string expression.

SAMPLE
If A$="ABC" and B$="DEF"
Command: @?A$+B$+"123"[cr/lf]
Response: ABCDEF123[cr/lf]

12-40 Chapter 12 Online commands

8

9

10

11

12

13

14

3. Acquiring the value of a point expression

Command format

@? "point data expression" [cr/lf]

Response format

"point data" [cr/lf]

 Meaning Acquires the value (point data) of the specified point expression.

SAMPLE
Command: @?P1+WHRXY[cr/lf]
Response: 10.41 -1.60 52.15 3.00 0.00 0.00 0[cr/lf]

4. Acquiring the value of a shift expression

Command format

@? "shift expression" [cr/lf]

Response format

"shift data" [cr/lf]

 Meaning Acquires the value (shift data) of the specified shift expression.

SAMPLE
Command: @?s1[cr/lf]
Response: 25.00 12.60 10.00 0.00[cr/lf]

Data handling 12-41

8

9

10

11

12

13

14

4.26 Data readout processing

Command format

@READ <readout file> [cr/lf]

Response format

Response output depends on the designated readout file.

 Values <readout file> Designate a readout file name.

 Meaning Reads out the data from the designated file.
 Online commands that are input through the RS-232C port have the same meaning as the

following command.
 • SEND <readout file> TO CMU
 Commands via Ethernet have the same meaning as the following command.
 • SEND <readout file> TO ETH

Type Readout file name
Definition format

All Separate file

User memory

All files ALL --------
Program PGM <bbbbbbbb>

Point data PNT Pn
Point comment PCM PCn

Parameter PRM /cccccc/
Shift definition SFT Sn
Hand definition HND Hn
Pallet definition PLT PLn

Variable, constant
Variable VAR ab...by

Array variable ARY ab...by(x)
Constant "cc...c"

Status

Program directory DIR <<bbbbbbbb>>
Parameter directory DPM --------
Machine reference MRF --------
Error history (log) LOG --------

Memory size MEM --------

Device

DI port DI() DIn()
DO port DO() DOn()
MO port MO() MOn()
TO port TO() TOn()
LO port LO() LOn()
SI port SI() SIn()
SO port SO() SOn()

SIW port SIW() SIWn()
SOW port SOW() SOWn()

Others File end code EOF --------
a: Alphabetic character n: Number
b: Alphanumeric character or underscore (_) x: Expression (Array argument)
c: Alphanumeric character or symbol y: variable type

SAMPLE
Command: @READ PGM[cr/lf]
 @READ P100[cr/lf]

NOTE
 • For more information about
files, refer to the earlier Chapter
11 "Data file description".

12-42 Chapter 12 Online commands

8

9

10

11

12

13

14

4.27	 Data write processing

Command format

@WRITE <write file> [cr/lf]

Response format

Input request display ***Input the data! [cr/lf]
After input is completed OK [cr/lf]

 Values <write file> Designate a write file name.

 Meaning Writes the data in the designated file.
 Online commands that are input through the RS-232C port have the same meaning as the

following command.
 • SEND CMU TO <write file>
 Commands via Ethernet have the same meaning as the following command.
 • SEND ETH TO <write file>

• At the DO, MO, TO, LO, SO, SOW ports, an entire port (DO(), MO(), etc.) cannot be designated as a
WRITE file.

• Some separate files (DOn(), MOn(), etc.) cannot be designated as a WRITE file. For details, see
Chapter 11 "Data File Details".

Type Write file name
Definition format

All Separate file

User memory

All files ALL --------
Program PGM <bbbbbbbb>

Point data PNT Pn
Point comment PCM PCn

Parameter PRM /cccccc/
Shift definition SFT Sn
Hand definition HND Hn
Pallet definition PLT PLn

Variable, constant
Variable VAR ab...by

Array variable ARY ab...by(x)

Device

DO port -------- DOn()
MO port -------- MOn()
TO port -------- TOn()
LO port -------- LOn()
SO port -------- SOn()

SOW port -------- SOWn()

a: Alphabetic character n: Number
b: Alphanumeric character or underscore (_) x: Expression (Array argument)
c: Alphanumeric character or symbol y: variable type

SAMPLE 1
Command: @WRITE PRM[cr/lf]
 @WRITE P100[cr/lf]

NOTE
 • For more information about
files, refer to the earlier Chapter
10 "Data file description".

MEMO

Data handling 12-43

8

9

10

11

12

13

14

4.28	 Current	torque	value	acquisition

Command format

@?CHKTRQ k[cr/lf]

 Values k ... Axis setting (k = 1 to 6).

Response format

n[cr/lf]

 Values n ..Current torque value (n = -100 to 100) of the specified axis.
 * The plus/minus sign indicates the direction.

 Meaning • Acquires the current torque value of the specified axis.
 CHKTRQ: Acquires the current torque value of a main group axis.

SAMPLE
Command:
Response:

NOTE
 • If the specified axis has been
set to "no axis" in the system
generation, or if that axis
uses the YC-Link or a power
gripper, a "5.37: Specification
mismatch" error message
d i s p l a y s a n d c o m m a n d
execution is stopped.

12-44 Chapter 12 Online commands

8

9

10

11

12

13

14

 5 Executing the robot language independently

5.1 Switching the program

Command format

@SWI <program name>[cr/lf]

Response format

OK[cr/lf] or LINEx,m,n: "message"

 Values OK ..Program was switched correctly.
 LINEx,m,n : "message"Error occurred during compiling.
 x ..Line number on which error occurred
 m ...Error group
 n ..Error category
 "message"Error message

 Meaning Switches the program.
 • In AUTO mode, the program that is switched to will be compiled.
 • In other modes, the program is only switched.
 However, when "SEQUENCE" program is designated, a sequence object is created.

SAMPLE 1
In AUTO mode:
Command @SWI <TEST1>[cr/lf]
Response Line2,5.39:Illegal identifier[cr/lf]

SAMPLE 2
In other modes:
Command @SWI <TEST1>[cr/lf]
Response OK[cr/lf]

Executing the robot language independently 12-45

8

9

10

11

12

13

14

5.2 Other robot language command processing

Command format

@"robot language"[cr/lf]

Response format

OK[cr/lf] or ***Aborted

 Values OK ..Command ended correctly.
 ***AbortedAn error occurred.

 Meaning Robot language commands can be executed.
 • Independently executable commands can only be executed.
 • Command format depends on each command to be executed.

SAMPLE 1
Command @SET DO(20) [cr/lf]
Response OK[cr/lf]

SAMPLE 2
Command @MOVE P,P100,S=20[cr/lf]
Response OK[cr/lf]

12-46 Chapter 12 Online commands

8

9

10

11

12

13

14

 6 Control codes

6.1 Interrupting the command execution

Command format

^C (=03H)

Response format

***Aborted

 Meaning Interrupts execution of the current command.

SAMPLE
Command: @MOVE P,P100,S=20[cr/lf]
 ^C
Response: ***Aborted[cr/lf]

Chapter 13

IO commands

1 1 Overview ...13-1

2 2 IO command format ..13-1

3 3 Sending and receiving IO commands13-2

4 4 IO command list ..13-4

5 5 IO command description13-5

Overview 13-1

8

9

10

11

12

13

14

 1 Overview

Using bit information (DI/DO port) for general-purpose input/output allows issuing commands directly
from the PLC. It is now possible to execute commands such as the MOVE command that were impossible
to execute up until now without using the robot program or RS-232C port.

 2 IO command format

When using the IO command, the following functions are assigned to each IO.
Output:	Controller	→ PLC

Output port Contents

YRC
DO26 Execution check output
DO27 Execution in-progress output

Input:	PLC	→ Controller

Input port Contents
DI05 IO command execution trigger input
DI2 () Command code
DI3 ()

Command data
DI4 ()

 ■ IO commands can be executed by using part of the general-purpose input and output. When no
connection is made to the option DIO, then DI4() is always recognized as being OFF.

 ■ IO commands cannot be executed while program execution is in progress (DO13 is ON).
 ■ IO commands cannot be executed simultaneously with online commands.
 ■ IO commands assign	command	codes	to	be	executed	to	DI2(),	and	command	data	to	DI3()	and	
DI4().	These	are	executed	when	the	DI05	is	changed	from	OFF	to	ON. The controller processes
the IO commands when they are received and sends execution check results and execution in-progress
information to the PLC via DO26 and DO27.

 ■ Command data added to the IO commands will differ according to the IO command.
For details, refer to Chapter 14 "5 IO command description".

 ■ Data is set in binary code. If the data size is greater than 8 bits, set the upper bit data into the higher
address. (little endian)

 • For example, to set 0x0F9F [hexadecimal] (=3999) in the DI3 () and DI4 () ports, set 0x0F [hexadecimal]
in DI4 () and set 0x9F [hexadecimal] in DI3 ().

 ■ The IO command execution trigger input is not accepted when the execution in-progress output is ON.
 ■ The execution in-progress output is ON in the following cases.

 • When an IO command is running after receiving an IO command execution trigger input.
 • When an IO command is terminated after receiving an IO command execution trigger input yet a

maximum of 100ms state is maintained when IO command trigger input is ON.
 ■ The IO command trigger input pulse must always be maintained for 100ms or more during input.

Commands cannot be accepted unless this statement is maintained.
 ■ Sometimes 20ms or more is needed for the execution in-progress output to turn ON after startup (rising

edge) of the IO command trigger input pulse. The IO command trigger input might not be accepted
during this period.

 ■ After inputting the IO command trigger input pulse and the in-progress output turns OFF, at least a
100ms time period must always elapse before executing the next command. If this elapsed time period is
too small, the IO command execution trigger input might not be accepted.

 ■ The execution check output turns OFF when an IO command is received.
 ■ The execution check output turns ON when an IO command ends normally, but it remains OFF if the IO

command ends abnormally.

13-2 Chapter 13 IO commands

8

9

10

11

12

13

14

 3 Sending and receiving IO commands

Sending and receiving is performed in the IO register as shown below.

Sending and receiving IO commands

DI05

DI2 ()

DI3 ()
to DI4 ()

Command execution trigger

Command code

Command data

Execution in-progress output

Execution check output

Input port

Output port

Execution end

100ms or more

30ms or more

DO27
(DO17)

DO26
(DO16)

(1)

(1)

(2)

(3)

(4)

(4)

(4)

(5)

(5)

(1) Set command code and command data (Time interval between (1) and (2): 30ms or more)
(2) Set IO command execution trigger input (Pulse width: 100ms or more)
(3) Transition to execute
(4) Clear the IO command execution trigger input and command code and command data
(5) Set termination of IO command and execution check output

Sending and receiving IO commands 13-3

8

9

10

11

12

13

14

Example:	Follow	these	steps	when	sending	and	receiving	IO	commands	to	execute	the	PTP	movement	command	to	point	19.

(1) Set the following values in the register to execute the PTP movement command by designating a
point.

 • DI2(): Command code (0x01)
 • DI3(): Lower point setting (0x13= point 19)
 • DI4(): Upper point setting (0x00=point 19)
(2) Set DI05 from ON to OFF.
(3) The controller receives the IO command and executes it if the command and command data are

acceptable. The execution in-progress output turns ON and the execution check output turns OFF at
this time. The robot moves to the position specified by point 19.

(4) Clear DI2() through DI4() after checking that execution in-progress output is ON.
(5) When the command ends, the output being executed turns OFF, and if execution ended normally,

the execution judgment output turns ON. If execution ended in error, the execution judgment output
remains OFF.

• If DI05 was not set to OFF in (4), the execution in-progress output remains ON for a maximum of
100ms from the timing in (5).

Sending and receiving IO commands (2)

Command execution trigger

Command code

Command data

Execution in-progress output

Execution check output

Input port

Output port

Execution end

100ms

DI05

DI2 ()

DI3 ()
to DI4 ()

DO27
(DO17)

DO26
(DO16)

(1)

(1)

(2)

(3)

(4)

(4)

(4)

(5)

(5)

MEMO

NOTE
 • When a SCARA robot is used
and a hand system flag is set
for the point data you specify,
that hand system has priority
over the current arm type.

13-4 Chapter 13 IO commands

8

9

10

11

12

13

14

 4 IO command list

IO commands are expressed with hexadecimal codes.

No. Command contents
Command code (DI2())

Main robot

1 MOVE command
PTP designation 0x01
Linear interpolation 0x03

2 MOVEI command PTP designation 0x09
3 Pallet movement command PTP designation at pallet 0 0x18
4 Jog movement command 0x20
5 Inching movement command 0x24
6 Point teaching command 0x28
7 Absolute reset movement command 0x30
8 Absolute reset command 0x31
9 Return-to-origin command 0x32

10 Servo command

On 0x34
Off 0x35
Free 0x36
Power-on 0x37

11 Manual movement speed change command 0x38
12 Auto movement speed change command 0x39
13 Program speed change command 0x3A
14 Shift designation change command 0x3B
15 Hand designation change command 0x3C
16 Arm designation change command 0x3D
17 Point display unit designation command 0x3E

Remarks
*3 The pallet movement command is only valid for pallet 0.
*4 The movement methods for the JOG, INCHING, and POINT TEACHING commands differ according

to the point units that were specified.
*6 The point teaching command uses different point units according to the point units that were specified.
*8 If no axis is specified, the absolute reset command is executed on all axes in either case of command

code 0x31.
*9 If no axis is specified, the return-to-origin command is executed on all axes in either case of command

code 0x32.
*17 The point display unit designation command is for use on the controller.

IO command description 13-5

8

9

10

11

12

13

14

 5 IO command description

5.1 MOVE command
 Moves the robot by the absolute position method

1. PTP designation

This command moves the robot to a target position in PTP motion by specifying the point number.

 Command

DI port Contents Value
DI2 () Command code For main robot 0x01
DI3 ()

Point number 0xpppp
DI4 ()

 Values pppp: Point numberSpecify in 16 bits.
 Specified range0 (=0x0000) to 9999(=0x270F)

• The point number setting range is 0 to 255 when there is no DI4().
• When a SCARA robot is used and a hand system flag is set for the point data you specify, that hand

system has priority over the current arm type.

2. Linear interpolation

This command moves the robot to a target position by linear interpolation by specifying the point number.

 Command

DI port Contents Value
DI2 () Command code For main robot 0x03
DI3 () Point number 0xpppp
DI4 ()

 Values pppp: Point numberSpecify in 16 bits.
 Specified range0 (=0x0000) to 9999(=0x270F)

• The point number setting range is 0 to 255 when there is no DI4().
• When a SCARA robot is used and a hand system flag is set for the point data you specify, that hand

system has priority over the current arm type.

CAUTION
 • W h e n p e r f o r m i n g l i n e a r
interpolat ion with a hand
system flag specified, be sure
that the same hand system is
used at the current position
and target position. If the
same hand system is not used,
an error will occur and robot
movement will be disabled.

 • When performing a linear
interpolat ion, the current
position's X-arm and Y-arm
rotation information must be
the same as the movement
destination's X-arm and Y-arm
rotation information. If the
two are different, an error will
occur and movement will be
disabled.

NOTE
 • X-arm and Y-arm rotation
information is only available in
software Ver.1.66M or higher.

13-6 Chapter 13 IO commands

8

9

10

11

12

13

14

5.2 MOVEI command
 Moves the robot by the relative position method

1. PTP designation

This command moves the robot a specified distance in PTP motion by specifying the point number.

 Command

DI port Contents Value
DI2 () Command code For main robot 0x09
DI3 ()

Point number 0xpppp
DI4 ()

 Values ppppp ..Specify the point number in 16 bits.
 Specified range: 0 (=0x0000) to 9999 (=0x270F)

• When MOVEI motion to the original target position is interrupted and then restarted, the target
position for the resumed movement can be selected as the "MOVEI/DRIVEI start position" in the
controller's "other parameters". For details, refer to the controller user's manual.

 1) KEEP (default setting) Continues the previous (before interruption) movement. The original
target position remains unchanged.

 2) RESET Relative movement begins anew from the current position. The new
target position is different from the original one (before interruption).
(Backward compatibility)

• The point number setting range is 0 to 255 when there is no DI4().
• When a SCARA robot is used and a hand system flag is set for the point data you specify, that hand

system has priority over the current arm type.

5.3 Pallet movement command
 Moves the robot to a position relative to pallet 0

1. PTP designation

This command moves the robot to a target position in PTP motion by specifying the work position number.

 Command

DI port Contents Value
DI2 () Command code For main robot 0x18
DI3 () Work position number 0xwwww
DI4 ()

 Values wwww ..Specify the work position number in 16 bits.
 Specified range: 1 (=0x0001) to 32767 (=0x7FFF)

• The work position number setting range is 0 to 255 when there is no DI4().

NOTE
 • In versions prior to those
shown above, a "RESET" must
be performed at the controller.

MEMO

MEMO

IO command description 13-7

8

9

10

11

12

13

14

5.4 Jog movement command
 Performs robot JOG movement in the MANUAL mode.

This command is only valid in MANUAL mode.
This command is linked with the controller point display units. The robot axis moves in PTP motion when
display units are in pulses, and moves by linear interpolation on Cartesian coordinates when units are in
millimeters.
Jog speed is determined by the manual movement speed.
To stop the jog movement command, set the dedicated input interlock signal to OFF. After checking that
jog movement has stopped, set the interlock signal back to ON.

 Command

DI port Contents Value
DI2 () Command code For main robot 0x20

DI3 () Axis to move and direction

bit 0 Axis 1 tt
bit 1 Axis 2
bit 2 Axis 3
bit 3 Axis 4
bit 4 Axis 5
bit 5 Axis 6
bit 6 (0:Fixed) 0
bit 7 Direction d

DI4 () Not used 0x00
 Values tt: Axis settingBits 0 to 3 select 1 axis
 d: Movement directionBit 1 / 0: plus direction; 1: minus direction

5.5 Inching movement command
 Performs robot INCHING movement in the MANUAL mode.

Inching movement distance is linked to the manual movement speed. The inching command can only be
executed in MANUAL mode.
This command is linked with the controller’s point display unit system. So when display units are in
pulses, the axis moves a certain number of pulses at the manual speed setting. When display units are in
millimeters, the axis moves on Cartesian coordinates by linear interpolation at the manual speed setting
divided by 100.

 Command

DI port Contents Value
DI2 () Command code For main robot 0x24

DI3 () Axis to move and direction

bit 0 Axis 1 tt
bit 1 Axis 2
bit 2 Axis 3
bit 3 Axis 4
bit 4 Axis 5
bit 5 Axis 6
bit 6 (0:Fixed) 0
bit 7 Direction d

DI4 () Not used 0x00

 Values tt: Axis settingBits 0 to 3 select 1 axis
 d: Movement directionBit 1 / 0: plus direction; 1: minus direction

13-8 Chapter 13 IO commands

8

9

10

11

12

13

14

5.6 Point teaching command
 Teaches the robot's current position to a specified point No.

Point data units of this command are linked to the controller's point display unit system.

 Command

DI port Contents Value
DI2 () Command code For main robot 0x28
DI3 ()

Point number 0xpppp
DI4 ()

 Values pppp: Point numberSpecify in 16 bits.
 Specified range0 (=0x0000) to 9999(=0x270F)

• The point number setting range is 0 to 255 when there is no DI4().

5.7	 Absolute reset movement command
 Moves the nearest position where an absolute reset is possible

When absolute reset of the specified axis uses the mark method, this command moves the axis to the
nearest position where absolute reset can be executed.
Positions capable of absolute reset are located at every 1/4 rotation of the motor.

 Command

DI port Contents Value
DI2 () Command code For main robot 0x30

DI3 () Axis to move and direction

bit 0 Axis 1 tt
bit 1 Axis 2
bit 2 Axis 3
bit 3 Axis 4
bit 4 Axis 5
bit 5 Axis 6
bit 6 (0:Fixed) 0
bit 7 Direction d

DI4 () Not used 0x00

 Values tt: Axis settingBits 0 to 3 select 1 axis
 d: Movement directionBit 1 / 0: plus direction; 1: minus direction

IO command description 13-9

8

9

10

11

12

13

14

5.8	 Absolute reset command
 Executes absolute reset of the specified axis.

If no axis is specified, the absolute reset command is executed on all axes in either case of command code
0x31.
However, this command cannot be executed if return-to-origin is not yet complete on the axis using the
mark method. In this case, perform absolute reset individually on each axis.

 Command

DI port Contents Value
DI2 () Command code For main robot 0x31

DI3 () Axis specification

bit 0 Axis 1 tt
bit 1 Axis 2
bit 2 Axis 3
bit 3 Axis 4
bit 4 Axis 5
bit 5 Axis 6
bit 7 - bit 6 (0:Fixed) 0

DI4 () Not used 0x00

 Values tt: Axis specification Bits 0 to 3 select 1 axis

5.9 Return-to-origin command
 Executes an incremental axis return-to-origin

When this command is executed on an incremental mode axis, that axis returns to its origin. When executed
on a semi-absolute mode axis, an absolute search is performed on that axis.
If no axis is specified (DI3() is 0), this command is executed on all axes in either case of 0x32.

 Command

DI port Contents Value
DI2 () Command code For main robot 0x32

DI3 () Axis specification

bit 0 Axis 1 tt
bit 1 Axis 2
bit 2 Axis 3
bit 3 Axis 4
bit 4 Axis 5
bit 5 Axis 6
bit 7 - bit 6 (0:Fixed) 0

DI4 () Not used 0x00

 Values tt: Axis specification Bits 0 to 3 select 1 axis

13-10 Chapter 13 IO commands

8

9

10

11

12

13

14

5.10 Servo command
 Operates the robot servo

These commands operate the robot servos, and switch the servos between their ON, OFF, and FREE
settings in an axis-specific manner.

Operation Contents

Servo ON Execute this command to turn on the servo of a specified axis. The motor power
must be turned on when specifying the axis.
All controller servos are turned on if no axis is specified.

Servo OFF Execute this command to turn off the servo of a specified axis.
All controller servos are turned off if no axis is specified.

Servo Free Execute this command to turn off the mechanical brake and dynamic brake after
turning off the servo of a specified axis. Servo OFF and Free are repeated when
this command is consecutively executed.
All controller servos will be free if no axis is specified.

Power ON Execute this command to turn on the motor power.
No axis can be specified.

 Command

DI port Contents Value

DI2 () Command code

Servo ON For main robot 0x34
Servo OFF For main robot 0x35
Servo Free For main robot 0x36
Power ON All controller servos 0x37

DI3 () Axis specification

bit 0 Axis 1 tt
bit 1 Axis 2
bit 2 Axis 3
bit 3 Axis 4
bit 4 Axis 5
bit 5 Axis 6
bit 7 - bit 6 (0:Fixed) 0

DI4 () Not used 0x00

 Values tt: Axis specification................... Bits 0 to 3 select 1 axis (if not specified, the command
applies to all controller processing).

 No axis can be specified when executing Power ON.

IO command description 13-11

8

9

10

11

12

13

14

5.11 Manual movement speed change command
 Changes the MANUAL mode's manual movement speed

This command can only be executed in MANUAL mode.

 Command

DI port Contents Value
DI2 () Command code For main robot 0x38
DI3 () Specified speed 0xss
DI4 () Not used 0x00

 Values ss: Manual movement speedSpecify in 8 bits.
 Specified range1 (=0x01) to 100 (=0x64)

5.12 Auto movement speed change command
 Changes the AUTO mode's automatic movement speed

This command can only be executed in AUTO mode.

 Command

DI port Contents Value
DI2 () Command code For main robot 0x39
DI3 () Specified speed 0xss
DI4 () Not used 0x00

 Values ss: Auto movement speedSpecify in 8 bits.
 Specified range1 (=0x01) to 100 (=0x64)

5.13 Program speed change command
 Changes the AUTO mode's program movement speed

The program speed changed with this command is reset to 100% when the program is reset or changed.

 Command

DI port Contents Value
DI2 () Command code For main robot 0x3A
DI3 () Specified speed 0xss
DI4 () Not used 0x00

 Values ss: Program speedSpecify in 8 bits.
 Specified range1 (=0x01) to 100 (=0x64)

13-12 Chapter 13 IO commands

8

9

10

11

12

13

14

5.14 Shift designation change command
 Changes a selected shift to the specified shift No.

 Command

DI port Contents Value
DI2 () Command code For main robot 0x3B
DI3 () Specified shift number 0xss
DI4 () Not used 0x00

 Values ss: Shift numberSpecify in 8 bits.
 Specified range0 (=0x00) to 9 (=0x09)

5.15 Hand designation change command
 Changes a selected hand to the specified hand No.

 Command

DI port Contents Value
DI2 () Command code For main robot 0x3C
DI3 () Specified hand number 0xss
DI4 () Not used 0x00

 Values ss: Hand numberSpecify in 8 bits.
 Specified rangeFor main robot: 0 (=0x00) to 3 (=0x03)

5.16 Arm designation change command
 Changes the arm setting status

 Command

DI port Contents Value
DI2 () Command code For main robot 0x3D
DI3 () Status of specified arm 0xss
DI4 () Not used 0x00

 Values ss: Arm designation status Specify in 8 bits / 0x00: Right-handed system, 0x01: Left-
handed system

5.17	 Point display unit designation command
 Changes the point display unit system

This command is for the controller.

 Command

DI port Contents Value
DI2 () Command code For controller 0x3E
DI3 () Display units for specified point 0xss
DI4 () Not used 0x00

 Values ss: Point display unit Specify in 8 bits / 0x00: Pulse units, 0x01: Millimeter units

Chapter 14

Appendix

1 1 Reserved word list ...15-1

2 2 Robot Language Lists: Command list in alphabetic order....15-3

3 3 Robot Language Lists: Function Specific7

4 4 Functions: in alphabetic order13

5 5 Functions: operation-specific15

6 6 Execution Level ...17

Reserved word list 14-1

8

9

10

11

12

13

14

 1 Reserved word list

The words shown below are reserved for robot language and cannot be used as identifiers (variables, etc.).

A
ABSADJ
ABSRESET
ABSRPOS
ABSRST
ABOVE
ABS
ABSINIT
ACC
ACCEL
ACCESS
ALL
AND
ARCH
ARM
ARMTYPE
ARY
ASPEED
ATN
ATTR
AUTO
AXWGHT
B
BELOW
BIN
BIT
BREAK
BYTE
C
CALL
CASE
CHANGE
CHGPRI
CHGTSK
CHKTRQ
CHR
CMU
CMU1
CONFIG
CONT
COO
COPY
COS
CURTRQ
CUT
D
DATE

DEC
DECEL
DECLARE
DEF
DEFIO
DEFPOS
DEGRAD
DELAY
DI
DIM
DIR
DIST
DO
DPM
DRIVE
DRIVEI
DS
DSPEED
E
ELSE
ELSEIF
EMGRST
EMG
END
ENDIF
EOF
ERA
ERL
ERR
ERROR
ETH
EXELVL
EXIT
EXITTASK
F
FDD
FLIP
FN
FOR
FREE
FUNCTION
G
GASP
GEN
GO
GOHOME
GOSUB

GOTO
H
HALT
HAND
HND
HEX
HOME
HOLD
I
IF
IN
INCH
INIT
INPUT
INT
INTEGER
IRET
J
JTOXY
JOG
L
LANGUAGE
LEFT
LEFTY
LEN
LET
LOCA
LOCB
LOCF
LOCR
LOCX
LOCY
LOCZ
LOG
LOOP
LSHIFT
M
MANUAL
MCHREF
MEM
MID
MIRROR
MOD
MOVE
MOVEI
MRF
MSG

MSGCLR
MSPEED
N
NAME
NEXT
NONFLIP
NOT
O
OFFLINE
ON
ONLINE
OR
ORD
ORGORD
ORGRTN
ORIGIN
OUT
OUTPOS
P
P
PASS
PADDR
PATH
PC
PCM
PDEF
PLN

PLT
PMOVE
PRINT
PROGRAM
PGM
PNT
POS
PPNT
PRM
PTP
PWR
R
RADDEG
READ
REF
REN
RELESE
REM
REMOTE
RESET

14-2 Chapter 14 Appendix

8

9

10

11

12

13

14

Because the following names are used as system variable names, they cannot be used at the beginning of other variable
names (n: numeric value).

DIn Hn Pn SOn
DOn LOn SIn TOn
FN MOn Sn

Variable name usage examples

 ■ Although keywords which are reserved as robot language words cannot be used as they are, they can be used as
variable names if alphanumeric characters are added to them.

 Example: "ABS" cannot be used, but "ABS1" or "ABSX" can be used.

 ■ Keywords reserved as system variables cannot be used at the beginning of other variable names, even if alphanumeric
characters are added to them.

 Example: "FN" cannot be used. "FNA" and "FN123" also cannot be used.

RESTART
RESUME
RETURN
RIGHT
RIGHTY
RO
ROTATE
RSHIFT
RUN
RW
S
S
SELECT
SEND
SEQUENCE
SERVO
SET
SFT
SGI
SGR
SHARED
SHIFT
SI
SID
SIN
SIW
SKIP
SO
SOD
SOW
SPEED
SQR
START

STEP
STOP
STOPON
STR
SUB
SUSPEND
SWI
SYS
SYSTEM
T
TAN
TASK
TASKS
TCOUNTER
TEACH
THEN
TIME
TIMER
TO
TOLE
TORQUE
TRQSTS
TRQTIME
TSKMON
U
UNIT
UNTIL
V
VAL
VAR
VER
VEL
W

WAIT
WEIGHT
WEND
WHERE
WHILE
WHRXY
WHRXYEX
WORD
WRITE
X
XOR
XY
XYTOJ
Y
YZ
Z
ZX
SYMBOL
_SYSFLG

Robot Language Lists: Command list in alphabetic order 14-3

8

9

10

11

12

13

14

 2 Robot	Language	Lists:	Command	list	in	alphabetic	order

No. Command Function Condition Direct Type

A
1 ABS Acquires the absolute value of a specified value. - - Functions
2 ABSINIT Resets the current position of a specified main group axis. 4 Command Statements

3 ABSRPOS Acquires the machine reference of the specified main
group axis. (Valid only for axes where the return-to-origin
method is set as "mark method".)

- - Functions

4 ABSRST Executes a return-to-origin at the robot absolute motor
axes.

4 Command Statements

5 ACCEL Specifies/acquires the acceleration coefficient parameter
of the main group.

4/- Command Statements/
Functions

6 ARCH Specifies/acquires the arch position parameter of the main
group.

4/- Command Statements/
Functions

7 ARMCND Acquires the current arm status of the main robot. - - Functions
8 ARMTYPE Acquires the current "hand system" setting of the main robot. - - Functions
10 ASPEED Changes the AUTO movement speed of the main group. 4 Command Statements

9 ATN Acquires the arctangent of the specified value. - - Functions
11 AXWGHT Specifies/acquires the axis tip weight parameter of the

main group.
4/- Command Statements/

Functions

C
12 CALL Executes (calls) another program. 6 Command Statements

13 CHANGE Switches the main robot hand. 4 Command Statements

14 CHGPRI Changes the priority ranking of a specified task. 6 Command Statements

15 CHR$ Acquires a character with the specified character code. - - Functions
16 COS Acquires the cosine value of a specified value. - - Functions
17 CURTRQ Acquires the current torque value of the specified main

group axis.
- Functions

18 CUT Terminates a task currently being executed or temporarily
stopped.

6 Command Statements

D
19 DATE$ Acquires the date as a "yy/mm/dd" format character string. - - Functions
20 DECEL Specifies/acquires the deceleration rate parameter of the

main group.
4/- Command Statements/

Functions

23 DEGRAD Converts a specified value to radians (↔RADDEG). - - Functions
24 DELAY Waits for the specified period (units: ms). 6 Command Statements

27 DIM Declares the array variable name and the number of
elements.

6 Command Statements

26 DIST Acquires the distance between 2 specified points. - - Functions
28 DO Outputs a specified value to the DO port. 1 Command Statements

29 DRIVE Moves a specified main group axis to an absolute position. 4 Command Statements

29 DRIVE (With T-option) Executes an absolute movement
command for a specified axis.

4 Command Statements

30 DRIVEI Moves a specified main group axis to a relative position. 4 Command Statements

E
33 ERL Gives the line No. where an error occurred. - - Functions
33 ERR Gives the error code number of an error which has occurred. - - Functions
34 EXIT FOR Terminates the FOR to NEXT statement loop. 6 Command Statements

36 EXIT TASK Terminates its own task which is in progress. 6 Command Statements

14-4 Chapter 14 Appendix

8

9

10

11

12

13

14

No. Command Function Condition Direct Type

F
37 FOR to NEXT Controls repetitive operations. Executes the FOR to NEXT

statement repeatedly until a specified value is reached.
6 Command Statements

G
38 GOSUB to

RETURN
Jumps to a subroutine with the label specified by a
GOSUB statement, and executes that subroutine.

6 Command Statements

39 GOTO Unconditionally jumps to the line specified by a label. 6 Command Statements

H
40 HALT Stops the program and performs a reset. 6 Command Statements

41 HAND Defines the main robot hand. 4 Command Statements

42 HOLD Temporarily stops the program. 6 Command Statements

I
43 IF Allows control flow to branch according to conditions. 6 Command Statements

44 INPUT Assigns a value to a variable specified from the
programming box.

1 Command Statements

45 INT Acquires an integer for a specified value by truncating all
decimal fractions.

- - Functions

J
46 JTOXY Converts joint coordinate data to main group Cartesian

coordinate data. (↔XYTOJ)
- - Functions

L
48 LEFT$ Extracts a character string comprising a specified number

of digits from the left end of a specified character string.
- - Functions

49 LEFTY Sets the main robot hand system to "Left". 4 Command Statements

50 LEN Acquires the length (number of bytes) of a specified
character string.

- - Functions

51 LET Executes a specified assignment statement. 1 Command Statements

52 LO Outputs a specified value to the LO port to enable/disable
axis movement.

1 Command Statements

53 LOCx Specifies/acquires point data or shift data for a specified
axis.

- - Command Statements/
Functions

54 LSHIFT Shifts a value to the left by the specified number of bits.
(↔RSHIFT)

- - Functions

M
55 MCHREF Acquires the return-to-origin or absolute-search machine

reference for a specified main group axis.
- - Functions

56 MID$ Extracts a character string of a desired length from a
specified character string.

- - Functions

57 MO Outputs a specified value to the MO port. 1 Command Statements

58 MOVE Performs absolute movement of all main robot axes. 5 Command Statements

59 MOVEI Performs relative movement of all main robot axes. 4 Command Statements

O
60 OFFLINE Sets a specified communication port to the "offline" mode. 1 Command Statements

62 ON ERROR
GOTO

If an error occurs during program execution, this command
allows the program to jump to the error processing routine
specified by the label without stopping the program, or it stops
the program and displays the error message.

6 Command Statements

63 ON to GOSUB Jumps to a subroutine with labels specified by a GOSUB
statement in accordance with the conditions, and executes
that subroutine.

6 Command Statements

Robot Language Lists: Command list in alphabetic order 14-5

8

9

10

11

12

13

14

No. Command Function Condition Direct Type

64 ON to GOTO Jumps to label-specified lines in accordance with the
conditions.

6 Command Statements

65 ONLINE Sets the specified communication port to the "online" mode. 1 Command Statements

61 ORD Acquires the character code of the first character in a
specified character string.

- - Functions

66 ORGORD Specifies/acquires the axis sequence parameter for
performing return-to-origin and absolute search operations
in the main group.

4/- Command Statements/
Functions

67 ORIGIN Executes a return-to-origin for incremental specs. axes. 4 Command Statements

68 OUT Turns ON the bits of the specified output ports and the
command statement ends.

6 Command Statements

69 OUTPOS Specifies/acquires the OUT enable position parameter of
the main group.

4/- Command Statements/
Functions

P
70 PATH Sets the movement path. 6 Command Statements

71 PATH END Ends the movement path setting. 6 Command Statements

72 PATH SET Starts the movement path setting. 6 Command Statements

73 PATH START Starts the PATH motion. 6 Command Statements

74 PDEF Defines the pallet used to execute pallet movement
commands.

1 Command Statements

75 PMOVE Executes the main robot pallet movement command. 4 Command Statements

76 Pn Defines points within a program. 1 Command Statements

77 PPNT Creates point data specified by a pallet definition number
and pallet position number.

- - Functions

78 PRINT Displays a character string at the programming box screen. 1 Command Statements

R
79 RADDEG Converts a specified value to degrees. (↔DEGRAD) - - Functions
80 REM Expresses a comment statement. 6 Command Statements

81 RESET Turns the bit of a specified output port OFF. 1 Command Statements

82 RESTART Restarts another task during a temporary stop. 6 Command Statements

83 RESUME Resumes program execution after error recovery
processing.

6 Command Statements

85 RIGHT$ Extracts a character string comprising a specified number
of digits from the right end of a specified character string.

- - Functions

86 RIGHTY Sets the main robot hand system to "Right". 4 Command Statements

87 RSHIFT Shifts a value to the right by the specified number of bits.
(↔LSHIFT)

- - Functions

S
88 Sn Defines the shift coordinates within the program. 4 Command Statements

89 SELECT CASE
to END SELECT

Allows control flow to branch according to conditions. 6 Command Statements

90 SEND Sends a file. 1 Command Statements

91 SERVO Controls the servo ON/OFF of specified main group axes
or all main group axes.

4 Command Statements

92 SET Turns the bit at the specified output port ON. 3 In part Command Statements

94 SHIFT Sets the shift coordinates for the main robot by using the
shift data specified by a shift variable.

4 Command Statements

95 SIN Acquires the sine value for a specified value. - - Functions
96 SO Outputs a specified value to the SO port. 1 Command Statements

97 SPEED Changes the main group's program movement speed. 4 Command Statements

14-6 Chapter 14 Appendix

8

9

10

11

12

13

14

No. Command Function Condition Direct Type

98 START Specifies the task number and priority ranking of a
specified task, and starts that task.

6 Command Statements

99 STR$ Converts a specified value to a character string (↔VAL) - - Functions
100 SQR Acquires the square root of a specified value. - - Functions
102 SUSPEND Temporarily stops another task which is being executed. 6 Command Statements

103 SWI Switches the program being executed, performs
compiling, then begins execution from the first line.

2 Command Statements

T
104 TAN Acquires the tangent value for a specified value. - - Functions
105 TCOUNTER Outputs count-up values at 10ms intervals starting from the

point when the TCOUNTER variable is reset.
- - Functions

106 TIME$ Acquires the current time as an "hh:mm:ss" format
character string.

- - Functions

107 TIMER Acquires the current time in seconds, counting from 12:00
midnight.

- - Functions

108 TO Outputs a specified value to the TO port. 1 Command Statements

109 TOLE Specifies/acquires the main group tolerance parameter. 4/- Command Statements/
Functions

110 TORQUE Specifies/acquires the maximum torque command value
which can be set for a specified main group axis.

4/- Command Statements/
Functions

111 TRQSTS Acquires the command end status for the DRIVE
command with torque limit option executed at the main
group.

- - Functions

112 TRQTIME Specifies/acquires the current limit time-out period at
the specified main group axis when using a torque limit
option in the DRIVE statement.

1/- Command Statements/
Functions

V
113 VAL Converts the numeric value of a specified character string

to an actual numeric value. (↔STR$)
- - Functions

W
114 WAIT Waits until the conditions of the DI/DO conditional

expression are met (with time-out).
6 Command Statements

115 WAIT ARM Waits until the main group robot axis operation is completed. 6 Command Statements

116 WEIGHT Specifies/acquires the main robot tip weight parameter. 4/- Command Statements/
Functions

118 WHERE Reads out the current position of the main group robot
arm in joint coordinates (pulses).

- - Functions

119 WHILE to WEND Controls repeated operations. 6 Command Statements

120 WHRXY Reads out the current position of the main group arm as
Cartesian coordinates (mm, degrees).

- - Functions

X
121 XYTOJ Converts the point variable Cartesian coordinate data to

the main group's joint coordinate data (↔JTOXY).
- - Functions

122 _SYSFLG Axis status monitoring flag. - - Functions

Robot Language Lists: Function Specific 14-7

8

9

10

11

12

13

14

 3 Robot	Language	Lists:	Function	Specific

Program commands

General commands

No. Command Function Condition Direct Type

27 DIM Declares the array variable name and the number of
elements.

6 Command Statements

51 LET Executes a specified assignment statement. 1 Command Statements

80 REM Expresses a comment statement. 6 Command Statements

Arithmetic commands

No. Command Function Condition Direct Type

1 ABS Acquires the absolute value of a specified value. - - Functions
2 ABSINIT Resets the current position of a specified main group axis. 4 Command Statements

9 ATN Acquires the arctangent of the specified value. - - Functions
16 COS Acquires the cosine value of a specified value. - - Functions
23 DEGRAD Converts a specified value to radians (↔RADDEG). - - Functions
26 DIST Acquires the distance between 2 specified points. - - Functions
45 INT Acquires an integer for a specified value by truncating all

decimal fractions.
- - Functions

54 LSHIFT Shifts a value to the left by the specified number of bits.
(↔RSHIFT)

- - Functions

79 RADDEG Converts a specified value to degrees. (↔DEGRAD) - - Functions
87 RSHIFT Shifts a value to the right by the specified number of bits.

(↔LSHIFT)
- - Functions

95 SIN Acquires the sine value for a specified value. - - Functions
100 SQR Acquires the square root of a specified value. - - Functions
104 TAN Acquires the tangent value for a specified value. - - Functions

Date / time

No. Command Function Condition Direct Type

19 DATE $ Acquires the date as a "yy/mm/dd" format character
string.

- - Functions

105 TCOUNTER Outputs count-up values at 10ms intervals starting from
the point when the TCOUNTER variable is reset.

- - Functions

106 TIME $ Acquires the current time as an "hh:mm:ss" format
character string.

- - Functions

107 TIMER Acquires the current time in seconds, counting from 12:00
midnight.

- - Functions

14-8 Chapter 14 Appendix

8

9

10

11

12

13

14

Character string operation

No. Command Function Condition Direct Type

15 CHR $ Acquires a character with the specified character code. - - Functions
48 LEFT $ Extracts a character string comprising a specified number

of digits from the left end of a specified character string.
- - Functions

50 LEN Acquires the length (number of bytes) of a specified
character string.

- - Functions

56 MID $ Extracts a character string of a desired length from a
specified character string.

- - Functions

61 ORD Acquires the character code of the first character in a
specified character string.

- - Functions

85 RIGHT $ Extracts a character string comprising a specified number
of digits from the right end of a specified character string.

- - Functions

99 STR $ Converts a specified value to a character string (↔VAL) - - Functions
113 VAL Converts the numeric value of a specified character string

to an actual numeric value. (↔STR$)
- - Functions

Point, coordinates, shift coordinates

No. Command Function Condition Direct Type

13 CHANGE Switches the main robot hand. 4 Command Statements

41 HAND Defines the main robot hand. 4 Command Statements

46 JTOXY Converts joint coordinate data to main group Cartesian
coordinate data. (↔XYTOJ)

- - Functions

49 LEFTY Sets the main robot hand system to "Left". 4 Command Statements

76 Pn Defines points within a program. 1 Command Statements

77 PPNT Creates point data specified by a pallet definition number
and pallet position number.

- - Functions

86 RIGHTY Sets the main robot hand system to "Right". 4 Command Statements

88 Sn Defines the shift coordinates in the program. 4 Command Statements

94 SHIFT Sets the shift coordinates for the main robot by using the
shift data specified by a shift variable.

4 Command Statements

121 XYTOJ Converts the point variable Cartesian coordinate data to
the main group's joint coordinate data (↔JTOXY).

- - Functions

53 LOCx Specifies/acquires point data or shift data for a specified
axis.

- - Command Statements/
Functions

Robot Language Lists: Function Specific 14-9

8

9

10

11

12

13

14

Branching commands

No. Command Function Condition Direct Type

34 EXIT FOR Terminates the FOR to NEXT statement loop. 6 Command Statements

37 FOR to NEXT Controls repetitive operations. Executes the FOR to NEXT
statement repeatedly until a specified value is reached.

6 Command Statements

38 GOSUB to
RETURN

Jumps to a subroutine with the label specified by a
GOSUB statement, and executes that subroutine.

6 Command Statements

39 GOTO Unconditionally jumps to the line specified by a label. 6 Command Statements

43 IF Allows control flow to branch according to conditions. 6 Command Statements

63 ON to GOSUB Jumps to a subroutine with labels specified by a GOSUB
statement in accordance with the conditions, and executes
that subroutine.

6 Command Statements

64 ON to GOTO Jumps to label-specified lines in accordance with the
conditions.

6 Command Statements

89 SELECT CASE
to END SELECT

Allows control flow to branch according to conditions. 6 Command Statements

119 WHILE to WEND Controls repeated operations. 6 Command Statements

Error control

No. Command Function Condition Direct Type

62 ON ERROR
GOTO

If an error occurs during program execution, this
command allows the program to jump to the error
processing routine specified by the label without stopping
the program, or it stops the program and displays the error
message.

6 Command Statements

83 RESUME Resumes program execution after error recovery
processing.

6 Command Statements

33 ERL Gives the line No. where an error occurred. - - Functions
33 ERR Gives the error code number of an error which has

occurred.
- - Functions

Program & task control

Program control

No. Command Function Condition Direct Type

12 CALL Executes (calls) another program. 6 Command Statements

40 HALT Stops the program and performs a reset. 6 Command Statements

42 HOLD Temporarily stops the program. 6 Command Statements

103 SWI Switches the program being executed, performs
compiling, then begins execution from the first line.

2 Command Statements

Task control

No. Command Function Condition Direct Type

14 CHGPRI Changes the priority ranking of a specified task. 6 Command Statements

18 CUT Terminates a task currently being executed or temporarily
stopped.

6 Command Statements

36 EXIT TASK Terminates its own task which is in progress. 6 Command Statements

82 RESTART Restarts another task during a temporary stop. 6 Command Statements

98 START Specifies the task number and priority ranking of a
specified task, and starts that task.

6 Command Statements

102 SUSPEND Temporarily stops another task which is being executed. 6 Command Statements

14-10 Chapter 14 Appendix

8

9

10

11

12

13

14

Robot control

Robot operations

No. Command Function Condition Direct Type

4 ABSRST Executes a return-to-origin at the robot absolute motor
axes.

4 Command Statements

13 CHANGE Switches the main robot hand. 4 Command Statements

29 DRIVE Moves a specified main group axis to an absolute position. 4 Command Statements

30 DRIVEI Moves a specified main group axis to a relative position. 4 Command Statements

41 HAND Defines the main robot hand. 4 Command Statements

49 LEFTY Sets the main robot hand system to "Left". 4 Command Statements

58 MOVE Performs absolute movement of all main robot axes. 5 Command Statements

59 MOVEI Performs relative movement of all main robot axes. 4 Command Statements

67 ORIGIN Executes a return-to-origin for incremental specs. axes. 4 Command Statements

75 PMOVE Executes the main robot pallet movement command. 4 Command Statements

86 RIGHTY Sets the main robot hand system to "Right". 4 Command Statements

91 SERVO Controls the servo ON/OFF of specified main group axes
or all main group axes.

4 Command Statements

Status acquisition

No. Command Function Condition Direct Type

3 ABSRPOS Acquires the machine reference of the specified main
group axis. (Valid only for axes where the return-to-origin
method is set as "mark method".)

- - Functions

7 ARMCND Acquires the current arm status of the main robot. - - Functions
8 ARMTYPE Acquires the current "hand system" setting of the main

robot.
- - Functions

55 MCHREF Acquires the return-to-origin or absolute-search machine
reference for a specified main group axis.

- - Functions

111 TRQSTS Acquires the command end status for the DRIVE
command with torque limit option executed at the main
group.

- - Functions

118 WHERE Reads out the current position of the main group robot
arm in joint coordinates (pulses).

- - Functions

120 WHRXY Reads out the current position of the main group arm as
Cartesian coordinates (mm, degrees).

- - Functions

115 WAIT ARM Waits until the main group robot axis operation is
completed.

Robot Language Lists: Function Specific 14-11

8

9

10

11

12

13

14

Status change

No. Command Function Condition Direct Type

5 ACCEL Specifies/acquires the acceleration coefficient parameter
of the main group.

4/- Command Statements/
Functions

6 ARCH Specifies/acquires the arch position parameter of the main
group.

4/- Command Statements/
Functions

10 ASPEED Changes the AUTO movement speed of the main group. 4 Command Statements

11 AXWGHT Specifies/acquires the axis tip weight parameter of the
main group.

4/- Command Statements/
Functions

20 DECEL Specifies/acquires the deceleration rate parameter of the
main group.

4/- Command Statements/
Functions

66 ORGORD Specifies/acquires the axis sequence parameter for
performing return-to-origin and absolute search operations
in the main group.

4/- Command Statements/
Functions

69 OUTPOS Specifies/acquires the OUT enable position parameter of
the main group.

4/- Command Statements/
Functions

74 PDEF Defines the pallet used to execute pallet movement
commands.

1 Command Statements

97 SPEED Changes the main group's program movement speed. 4 Command Statements

109 TOLE Specifies/acquires the main group tolerance parameter. 4/- Command Statements/
Functions

116 WEIGHT Specifies/acquires the main robot tip weight parameter. 4/- Command Statements/
Functions

Path control

No. Command Function Condition Direct Type

70 PATH Sets the movement path. 6 Command Statements

71 PATH END Ends the movement path setting. 6 Command Statements

72 PATH SET Starts the movement path setting. 6 Command Statements

73 PATH START Starts the PATH motion. 6 Command Statements

Torque control

No. Command Function Condition Direct Type

17 CURTRQ Acquires the current torque value of the specified main
group axis.

- Functions

29 DRIVE (With T-option) Executes an absolute movement
command for a specified axis.

4 Command Statements

110 TORQUE Specifies/acquires the maximum torque command value
which can be set for a specified main group axis.

4/- Command Statements/
Functions

112 TRQTIME Specifies/acquires the current limit time-out period at
the specified main group axis when using a torque limit
option in the DRIVE statement.

1/- Command Statements/
Functions

14-12 Chapter 14 Appendix

8

9

10

11

12

13

14

Input/output & communication control

Input/output control

No. Command Function Condition Direct Type

24 DELAY Waits for the specified period (units: ms). 6 Command Statements

28 DO Outputs a specified value to the DO port. 1 Command Statements

52 LO Outputs a specified value to the LO port to enable/disable
axis movement.

1 Command Statements

57 MO Outputs a specified value to the MO port. 1 Command Statements

68 OUT Turns ON the bits of the specified output ports and the
command statement ends.

6 Command Statements

81 RESET Turns the bit of a specified output port OFF. 1 Command Statements

92 SET Turns the bit at the specified output port ON. 3 In part Command Statements

96 SO Outputs a specified value to the SO port. 1 Command Statements

108 TO Outputs a specified value to the TO port. 1 Command Statements

114 WAIT Waits until the conditions of the DI/DO conditional
expression are met (with time-out).

6 Command Statements

Programming box

No. Command Function Condition Direct Type

44 INPUT Assigns a value to a variable specified from the
programming box.

1 Command Statements

78 PRINT Displays a character string at the programming box
screen.

1 Command Statements

Communication control

No. Command Function Condition Direct Type

65 ONLINE Sets the specified communication port to the "online"
mode.

1 Command Statements

60 OFFLINE Sets a specified communication port to the "offline" mode. 1 Command Statements

90 SEND Sends a file. 1 Command Statements

Other

Other

No. Command Function Condition Direct Type

122 _SYSFLG Axis status monitoring flag. - - Functions

Functions: in alphabetic order 14-13

8

9

10

11

12

13

14

 4 Functions:	in	alphabetic	order

No. Function Type Function

A
1 ABS Arithmetic function Acquires the absolute value of a specified value.
3 ABSRPOS Arithmetic function Acquires the machine reference of the specified main group axis.

(Valid only for axes where the return-to-origin method is set as "mark
method".)

5 ACCEL Arithmetic function Acquires the acceleration coefficient parameter of the main group.
6 ARCH Arithmetic function Acquires the arch position parameter of the main group.
7 ARMCND Arithmetic function Acquires the current arm status of the main robot.
8 ARMTYPE Arithmetic function Acquires the current "hand system" setting of the main robot.
9 ATN Arithmetic function Acquires the arctangent of the specified value.
11 AXWGHT Arithmetic function Acquires the axis tip weight parameter of the main group.

C
15 CHR$ Character string

function
Acquires a character with the specified character code.

16 COS Arithmetic function Acquires the cosine value of a specified value.
17 CURTRQ Arithmetic function Acquires the current torque value of the specified main group axis.

D
19 DATE$ Character string

function
Acquires the date as a "yy/mm/dd" format character string.

20 DECEL Arithmetic function Acquires the deceleration rate parameter of the main group.
23 DEGRAD Arithmetic function Converts a specified value to radians (↔RADDEG).
26 DIST Arithmetic function Acquires the distance between 2 specified points.

E
33 ERL Arithmetic function Gives the line No. where an error occurred.
33 ERR Arithmetic function Gives the error code number of an error which has occurred.

I
45 INT Arithmetic function Acquires an integer for a specified value by truncating all decimal

fractions.

J
46 JTOXY Point function Converts joint coordinate data to main group Cartesian coordinate data.

(↔XYTOJ)

L
48 LEFT$ Character string

function
Extracts a character string comprising a specified number of digits
from the left end of a specified character string.

50 LEN Arithmetic function Acquires the length (number of bytes) of a specified character string.
53 LOCx Point function Acquires point data or shift data for a specified axis.
54 LSHIFT Arithmetic function Shifts a value to the left by the specified number of bits. (↔RSHIFT)

M
55 MCHREF Arithmetic function Acquires the return-to-origin or absolute-search machine reference for

a specified main group axis.
56 MID$ Character string

function
Extracts a character string of a desired length from a specified character
string.

O
61 ORD Arithmetic function Acquires the character code of the first character in a specified

character string.

14-14 Chapter 14 Appendix

8

9

10

11

12

13

14

No. Function Type Function

66 ORGORD Arithmetic function Acquires the axis sequence parameter for performing return-to-origin
and absolute search operations in the main group.

69 OUTPOS Arithmetic function Acquires the OUT enable position parameter of the main group.

P
77 PPNT Point function Creates point data specified by a pallet definition number and pallet

position number.

R
79 RADDEG Arithmetic function Converts a specified value to degrees. (↔DEGRAD)

85 RIGHT$ Character string
function

Extracts a character string comprising a specified number of digits
from the right end of a specified character string.

87 RSHIFT Arithmetic function Shifts a value to the right by the specified number of bits. (↔LSHIFT)

S
95 SIN Arithmetic function Acquires the sine value for a specified value.
100 SQR Arithmetic function Acquires the square root of a specified value.
99 STR$ Character string

function
Converts a specified value to a character string (↔VAL)

T
104 TAN Arithmetic function Acquires the tangent value for a specified value.
105 TCOUNTER Arithmetic function Outputs count-up values at 10ms intervals starting from the point when

the TCOUNTER variable is reset.
106 TIME$ Character string

function
Acquires the current time as an "hh:mm:ss" format character string.

107 TIMER Arithmetic function Acquires the current time in seconds, counting from 12:00 midnight.
109 TOLE Arithmetic function Acquires the main group tolerance parameter.
110 TORQUE Arithmetic function Acquires the maximum torque command value which can be set for a

specified main group axis.
111 TRQSTS Arithmetic function Acquires the command end status for the DRIVE command with

torque limit option executed at the main group.
112 TRQTIME Arithmetic function Acquires the current limit time-out period at the specified main group

axis when using a torque limit option in the DRIVE statement.

V
113 VAL Arithmetic function Converts the numeric value of a specified character string to an actual

numeric value. (↔STR$)

W
116 WEIGHT Arithmetic function Acquires the main robot tip weight parameter.
118 WHERE Point function Reads out the current position of the main group robot arm in joint

coordinates (pulses).
120 WHRXY Point function Reads out the current position of the main group arm as Cartesian

coordinates (mm, degrees).

X
121 XYTOJ Point function Converts the point variable Cartesian coordinate data to the main

group's joint coordinate data (↔JTOXY).
122 _SYSFLG Arithmetic function Axis status monitoring flag.

Functions: operation-specific 14-15

8

9

10

11

12

13

14

 5 Functions:	operation-specific

Point related functions

No. Function	name Function

46 JTOXY Converts joint coordinate data to main group Cartesian coordinate data. (↔XYTOJ)
53 LOCx Acquires point data or shift data for a specified axis.
77 PPNT Creates point data specified by a pallet definition number and pallet position number.
118 WHERE Reads out the current position of the main group robot arm in joint coordinates (pulses).
120 WHRXY Reads out the current position of the main group arm as Cartesian coordinates (mm, degrees).
121 XYTOJ Converts the point variable Cartesian coordinate data to the main group's joint coordinate

data (↔JTOXY).

Parameter related functions

No. Function	name Function

3 ABSRPOS Acquires the machine reference of the specified main group axis. (Valid only for axes
where the return-to-origin method is set as "mark method".)

5 ACCEL Acquires the acceleration coefficient parameter of the main group.
6 ARCH Acquires the arch position parameter of the main group.
7 ARMCND Acquires the current arm status of the main robot.
8 ARMTYPE Acquires the current "hand system" setting of the main robot.
11 AXWGHT Acquires the axis tip weight parameter of the main group.
17 CURTRQ Acquires the current torque value of the specified main group axis.
20 DECEL Acquires the deceleration rate parameter of the main group.
50 LEN Acquires the length (number of bytes) of a specified character string.
55 MCHREF Acquires the return-to-origin or absolute-search machine reference for a specified main group axis.
61 ORD Acquires the character code of the first character in a specified character string.
66 ORGORD Acquires the axis sequence parameter for performing return-to-origin and absolute search

operations in the main group.
69 OUTPOS Acquires the OUT enable position parameter of the main group.
109 TOLE Acquires the main group tolerance parameter.
110 TORQUE Acquires the maximum torque command value which can be set for a specified main group axis.
111 TRQSTS Acquires the command end status for the DRIVE command with torque limit option

executed at the main group.
112 TRQTIME Acquires the current limit time-out period at the specified main group axis when using a

torque limit option in the DRIVE statement.
116 WEIGHT Acquires the main robot tip weight parameter.

14-16 Chapter 14 Appendix

8

9

10

11

12

13

14

Numeric calculation related functions

No. Function	name Function

1 ABS Acquires the absolute value of a specified value.
9 ATN Acquires the arctangent of the specified value.
16 COS Acquires the cosine value of a specified value.
23 DEGRAD Converts a specified value to radians (↔RADDEG).
26 DIST Acquires the distance between 2 specified points.
45 INT Acquires an integer for a specified value by truncating all decimal fractions.
54 LSHIFT Shifts a value to the left by the specified number of bits. (↔RSHIFT)
79 RADDEG Converts a specified value to degrees. (↔DEGRAD)
87 RSHIFT Shifts a value to the right by the specified number of bits. (↔LSHIFT)
95 SIN Acquires the sine value for a specified value.
100 SQR Acquires the square root of a specified value.
104 TAN Acquires the tangent value for a specified value.
113 VAL Converts the numeric value of a specified character string to an actual numeric value. (↔STR$)

Character string calculation related functions

No. Function	name Function

15 CHR $ Acquires a character with the specified character code.
19 DATE $ Acquires the date as a "yy/mm/dd" format character string.
48 LEFT $ Extracts a character string comprising a specified number of digits from the left end of a

specified character string.
56 MID $ Extracts a character string of a desired length from a specified character string.
85 RIGHT $ Extracts a character string comprising a specified number of digits from the right end of a

specified character string.
99 STR $ Converts a specified value to a character string (↔VAL)

Parameter related functions

No. Function	name Function

122 _SYSFLG Axis status monitoring flag.
33 ERL Gives the line No. where an error occurred.
33 ERR Gives the error code number of an error which has occurred.
105 TCOUNTER Outputs count-up values at 10ms intervals starting from the point when the TCOUNTER

variable is reset.
106 TIME $ Acquires the current time as an "hh:mm:ss" format character string.
107 TIMER Acquires the current time in seconds, counting from 12:00 midnight.

Execution Level 14-17

8

9

10

11

12

13

14

 6 Execution Level

The level used to execute a program can be set as shown below.
However, the following commands can be executed only when in a "return-to-origin completion" condition.

Movement	commands: MOVE, MOVEI, DRIVE, DRIVEI, PMOVE, PATH START
Position	acquisition	commands: WHERE, WHRXY

Level

Content

Program execution at return-
to-origin incompletion

At power ON Program reset at
program START

Return-to-origin signal
input in AUTO modeMode Program reset

Possible Not possible MANUAL AUTO Yes No Yes No Enabled Disabled
0

1

2

3

4

5

6

7 *1

8 *1

*1: When the AUTO mode absolute reset signal input (DI17) is enabled, the "robot program running" (DO13) signal
switches ON during the processing operation executed by the AUTO mode absolute reset signal input.

	REFERENCE	 For execution level details, refer the user's manuals for each controller.

Index

Index 1

Index

Symbole

_SELECT …………………………………………………… 1-5

A

Absolute reset ………………………………………………… 12-9
Absolute reset command ……………………………………… 13-9
Absolute reset movement command ………………………… 13-8
Acceleration coefficient …………………………………7-22, 7-23
Acceleration setting ……………………………………… 7-106
Acquiring return-to-origin status ………………………… 12-29
Acquiring the absolute reset status ………………………… 12-29
Acquiring the access level ………………………………… 12-24
Acquiring the arm status …………………………………… 12-25
Acquiring the break point status …………………………… 12-25
Acquiring the controller configuration status ……………… 12-26
Acquiring the current positions …………………………… 12-32
Acquiring the current positions on pulse unit coordinates … 12-32
Acquiring the current positions on XY coordinates ……… 12-33
Acquiring the display language …………………………… 12-24
Acquiring the emergency stop status ……………………… 12-37
Acquiring the error status by self-diagnosis ……………… 12-37
Acquiring the execution level ……………………………… 12-26
Acquiring the message …………………………………… 12-28
Acquiring the mode status ………………………………… 12-27
Acquiring the option slot status …………………………… 12-38
Acquiring the point coordinates and units ………………… 12-31
Acquiring the program execution status …………………… 12-12
Acquiring the remaining memory capacity ………………… 12-36
Acquiring the servo status ………………………………… 12-30
Acquiring the shift status ………………………………… 12-35
Acquiring the speed setting status ………………………… 12-31
Acquiring the tasks in RUN status ………………………… 12-34
Acquiring the tasks in SUSPEND status ………………… 12-34
Acquiring the tasks operation status ……………………… 12-35
Acquiring the version information ………………………… 12-32
All file ……………………………………………………… 10-23
Arch motion setting ……………………………………7-103, 7-138
Arithmetic assignment statement …………………………… 7-83
Arithmetic operations ………………………………………… 4-1
Arm designation change command ………………………… 13-12
Arm lock output ……………………………………………… 7-86
Arm lock output variable …………………………………… 3-13
Arm lock output variables …………………………………… 6-6
Array subscript ……………………………………………… 7-45
Array variable file ………………………………………… 10-31
Array variables ……………………………………………… 3-5

Assignment statement ………………………………………… 7-83
Automatic movement speed ………………………………… 7-28
AUTO mode operation ……………………………………… 12-7
Auto movement speed change command ………………… 13-11
Axis tip weight ……………………………………………… 7-29

B

Bit Settings …………………………………………………… 3-19

C

Cartesian coordinate format ………………………………… 4-5
CASE ……………………………………………………… 7-154
Changing the MANUAL mode speed ………………………… 12-9
Changing the mode …………………………………………… 12-6
Changing the program attribute …………………………… 12-16
Character constants …………………………………………… 2-2
Character string

Comparison ………………………………………………… 4-4
Connection ………………………………………………… 4-4
Link ………………………………………………………… 7-84
Operations ………………………………………………… 4-4

Character string assignment statement ……………………… 7-84
Circular interpolation ………………………………… 7-97, 7-125
Clearing the error message ………………………………… 12-19
Command Statement Format ………………………………… 1-8
Comment …………………………………………………1-7, 7-145
COMMON …………………………………………………… 1-6
Communication port ………………………………… 7-114, 7-119
Compiling ………………………………………………… 7-170
Constant file ……………………………………………… 10-30
Control codes ……………………………………………… 12-46
CONT setting ………………………………………… 7-93, 7-105
Coordinate plane setting ………………………………7-107, 7-129
Copying point comments ………………………………… 12-13
Copying point data ………………………………………… 12-13

D

Data file ……………………………………………………… 10-1
Data file types ……………………………………………… 10-1

Data format conversion ……………………………………… 4-3
Data handling ……………………………………………… 12-24
Data readout processing …………………………………… 12-41
Data write processing ……………………………………… 12-42
Deceleration rate ……………………………………………… 7-37
Deceleration setting ……………………………………… 7-106
Declares array variable ……………………………………… 7-45
Define point ………………………………………………… 7-140
Defines functions which can be used by the user …………… 7-40
DI/DO conditional expressions ……………………………… 4-6
DI file ……………………………………………………… 10-33

2 Index

DO file ……………………………………………………… 10-35
Dummy argument ………………………………………… 7-167
Dynamic variables …………………………………………… 3-20

E

EOF file …………………………………………………… 10-50
Erasing point comments …………………………………… 12-15
Erasing point data ………………………………………… 12-14
Error code number ………………………………………… 7-116
Error message history file ………………………………… 10-47
Error processing ………………………………………7-116, 7-148
Error recovery processing ………………………………… 7-148
Ethernet port communication file ………………………… 10-56
Executes absolute movement of specified axes ……………… 7-47
Execution level ……………………………………………… 1-5
Execution Level …………………………………………… 14-17
External program …………………………………………… 7-39

F

FUNCTION ………………………………………………… 1-2
Functions: in alphabetic order ………………………… 7-13, 14-13
Functions: operation-specific ………………………… 7-15, 14-15

G

Global variable …………………………………………… 10-27
Global variables ……………………………………………… 3-20

H

Hand
Acquiring the status …………………………………… 12-36
Define ……………………………………………………… 7-70
Definition file …………………………………………… 10-15
Designation change command ………………………… 13-12
Switche …………………………………………………… 7-31

Hand system flag …………… 4-5, 7-100, 7-111, 7-140, 10-4, 10-18
Hand system to "Right" …………………………………… 7-151

I

IF ……………………………………………………………… 7-74
Block IF statement ………………………………………… 7-75
Simple IF statement ……………………………………… 7-74

Inching movement command ………………………………… 13-7
Incremental mode ………………………………………… 7-121
Initialize …………………………………………………… 12-17

Communication port …………………………………… 12-17
Memory ………………………………………………… 12-17

Integer constants ……………………………………………… 2-1
Internal output ………………………………………………… 7-92

Internal output variable ……………………………………… 3-12
Interrupting the command execution ……………………… 12-46
IO command

Description ………………………………………………… 13-5
Execution trigger input ………………………………13-1, 13-2
Format ……………………………………………………… 13-1
List ………………………………………………………… 13-4
Sending and receiving ……………………………………… 13-2

IO register …………………………………………………… 13-2

J

Jog movement command …………………………………… 13-7
Joint coordinate format ……………………………………… 4-5

L

Label ………………………………………………………… 7-79
LABEL Statement …………………………………………… 7-79
Left-hand system ……………………………………………… 7-81
Linear interpolation ………………………………………… 7-125
Linear interpolation movement ……………………………… 7-95
Line number where error occurred ………………………… 7-116
Local variable ……………………………………………… 7-167
Local variables ……………………………………………… 3-20
LO file ……………………………………………………… 10-39
Logic operations ……………………………………………… 4-2

M

Machine reference file ……………………………………… 10-49
Main task ……………………………………………………… 7-32
MANUAL mode operation …………………………………… 12-9
Manual movement speed change command ……………… 13-11
MO file …………………………………………………… 10-37
Motor power ……………………………………………… 7-157
MOVE command …………………………………………… 13-5
MOVEI command …………………………………………… 13-6
Movement direction setting. ………………………………… 7-53
Movement speed …………………………………………… 7-163
Moves the specified robot axes in a relative manner ………… 7-55
Multi-task …………………………………………………… 5-1

N

Numeric constants …………………………………………… 2-1

O

Online Command List ………………………………………… 12-1
Online commands

Acquiring the value of a character string expression …… 12-39
Acquiring the value of a numerical expression ………… 12-39

Index 3

Acquiring the value of a point expression ……………… 12-40
Acquiring the value of a shift expression ……………… 12-40

Operation speed ……………………………………………… 7-28
OUT enable position ……………………………………… 7-123

P

Pallet
Define …………………………………………………… 7-135
Definition file …………………………………………… 10-17
Definition number …………………………………7-135, 7-136
Erasing ………………………………………………… 12-15
Movement ……………………………………………… 7-136
Movement command ……………………………………… 13-6
Position number ………………………………………… 7-136

Palletizing …………………………………………… 11-4, 11-10
Parallel input variable ………………………………………… 3-10
Parallel output variable ……………………………………… 3-11
Parallel port ………………………………………………7-43, 7-46
Parameter directory file …………………………………… 10-26
Parameter file ……………………………………………… 10-10
PATH ……………………………………………………7-125, 8-1

Cautions when using this function ………………………… 8-2
Ends the movement setting ……………………………… 7-131
Features …………………………………………………… 8-1
How to use ………………………………………………… 8-1
Specifies the motion path ……………………………… 7-125
Starts the movement setting …………………………… 7-132
Starts the PATH motion ………………………………… 7-134

Performs absolute movement ………………………… 7-93, 7-109
Pick and place ……………………………………………… 11-12
Point assignment statement …………………………………… 7-84
Point comment file …………………………………………… 10-8
Point data

For a specified axis ………………………………………… 7-87
Format ……………………………………………………… 4-5

Point data variable …………………………………………… 3-7
Point display unit designation command ………………… 13-12
Point element variable ………………………………………… 3-9
Point file ……………………………………………………… 10-4
Point teaching command ……………………………………… 13-8
Port output setting ……………………………………7-108, 7-130
Priority of arithmetic operation ……………………………… 4-3
Program

Copy …………………………………………………… 12-12
Erase …………………………………………………… 12-14
Selected …………………………………………………… 1-5
Stop ………………………………………………………… 7-69
Switch between the programs ……………………………… 1-5
Switche ………………………………………………… 7-170
Temporarily stop …………………………………………… 7-73

Program directory file ……………………………………… 10-24
Program execution wait ……………………………………… 7-42

Program file …………………………………………………… 10-2
Program level ……………………………………………… 7-159
Programming box ………………………………………… 12-19
Program Names ……………………………………………… 1-2
Program speed change command ………………………… 13-11
PTP movement of specified axis ……………………………… 7-47

R

Read file …………………………………………………… 7-155
Ready queues ………………………………………………… 5-3
Real constants ………………………………………………… 2-1
Registering function keys …………………………………… 1-3
Relational operators ………………………………………… 4-1
Rename program name …………………………………… 12-16
Reserved word list …………………………………………… 14-1
Resetting the internal emergency stop flag ………………… 12-21
Return-to-origin ……………………………………………… 7-21
Return-to-origin command …………………………………… 13-9
Return-to-origin sequence ………………………………… 7-120
Robot Language Lists: Command list in alphabetic order …… 14-3
Robot Language Lists: Function Specific …………………… 14-7
RS-232C ……………………………………………… 11-18, 11-19

S

Sealing ……………………………………………………… 11-17
Sequence function …………………………………………… 6-1
Sequence program …………………………………………… 6-1

Acquiring the execution status ………………………… 12-30
Cannot be used …………………………………………… 6-3
Compiling ………………………………………………… 6-2
Creating …………………………………………………… 6-5
Executing ………………………………………………… 6-4
Priority of logic operations ………………………………… 6-8
Program capacity ………………………………………… 6-8
Programming method ……………………………………… 6-1
Scan time …………………………………………………… 6-8
Setting the execution flag ……………………………… 12-21
Specifications ……………………………………………… 6-8
STEP execution …………………………………………… 6-4

SEQUENCE program ………………………………………… 1-4
Serial double word input ……………………………………… 3-17
Serial double word output …………………………………… 3-18
Serial input variable ………………………………………… 3-15
Serial output variable ………………………………………… 3-16
Serial port ………………………………………………… 7-162
Serial port communication file …………………………… 10-51
Serial word input ……………………………………………… 3-17
Serial word output …………………………………………… 3-18
Servo

FREE …………………………………………………… 7-157
OFF ……………………………………………………… 7-157

4 Index

ON ……………………………………………………… 7-157
Servo command …………………………………………… 13-10
Servo status ………………………………………………… 7-157
Setting a break point ………………………………………… 12-8
Setting the coordinates and units in MANUAL mode …… 12-19
Setting the display language ……………………………… 12-18
Setting the execution level ………………………………… 12-20
Setting the hand system …………………………………… 12-21
Setting the SCARA robot hand system …………………… 12-21
Setting the sequence program execution flag ……………… 12-21
Setting the UTILITY mode ………………………………… 12-20
Shift assignment statement …………………………………… 7-85
Shift coordinate ………………………………………7-153, 7-160

Definition file …………………………………………… 10-13
Shift coordinate variable ……………………………………… 3-8
Shift designation change command ……………………… 13-12
Shift element variable ………………………………………… 3-10
SI file ……………………………………………………… 10-43
SO file ……………………………………………………… 10-45
SOW file …………………………………………………… 10-54
Static variables ……………………………………………… 3-20
STOPON condition setting ………………………………… 7-139
STOPON conditions setting ……………………………7-50, 7-59
Sub-procedure ………………………………… 7-30, 7-159, 7-167
Sub-routine …………………………………………………… 7-67
Subroutine ………………………………………………… 7-117
Switching the execution task ………………………………… 12-8
Switching the program …………………………………… 12-44
System Variables ……………………………………………3-2, 3-7

T

Task
Condition wait ……………………………………………… 5-4
Definition ………………………………………………… 5-1
Deleting …………………………………………………… 5-6
Directly terminate ………………………………………… 7-35
Number ………………………………………………… 7-164
Priority order ……………………………………………… 5-1
Priority ranking …………………………………… 7-32, 7-164
Program example ………………………………………… 5-8
Restart …………………………………………………… 7-147
Restarting ………………………………………………… 5-5
Scheduling ………………………………………………… 5-3
Sharing the data …………………………………………… 5-8
Start ……………………………………………………… 7-164
Starting …………………………………………………… 5-2
Status and transition ……………………………………… 5-2
Stopping …………………………………………………… 5-7
Suspending ………………………………………………… 5-5
Temporarily stop ………………………………………… 7-169
Terminate ………………………………………………… 7-65

Task status
NON EXISTEN …………………………………………… 5-2
READY …………………………………………………… 5-2
RUN ……………………………………………………… 5-2
STOP ……………………………………………………… 5-2
SUSPEND ………………………………………………… 5-2
WAIT ……………………………………………………… 5-2

Timer output variable ………………………………………… 3-14
Tip weight ………………………………………………… 7-185
TO file ……………………………………………………… 10-41
Tolerance …………………………………………………… 7-176
TO port …………………………………………………… 7-175
Torque command value …………………………………… 7-177
Torque limit setting …………………………………… 7-50, 7-180
Torque limit value …………………………………………… 7-50
Torque offset value …………………………………………… 7-50
Type Conversions …………………………………………… 3-6

U

User program examples
Application ………………………………………………… 11-8
Basic operation …………………………………………… 11-1

User Variables ………………………………………………… 3-2
Using point numbers ………………………………………… 11-2
Using shift coordinates ……………………………………… 11-3
Utility operation …………………………………………… 12-12

V

Valid range of dynamic array variables ……………………… 3-20
Valid range of variables ……………………………………… 3-20
Value Pass-Along & Reference Pass-Along ………………… 3-6
Variable file ………………………………………………… 10-27
Variable Names ……………………………………………… 3-3
Variable Types ………………………………………………… 3-4

W

WAIT status…………………………………………………… 5-4
Write file …………………………………………………… 7-155

X

XY setting …………………………………………………… 7-52

Revision history

A manual revision code appears as a suffix to the catalog number on the front cover manual.

Cat. No. I139E-EN-02

Revision code

The following table outlines the changes made to the manual during each revision.

Revision code Date Description

01 February 2010 Original production

02 February 2014 ABSINIT and CURTRQ commands were added.
Chapter 9 "Limitless motion" was added.
Parameters related to R6YXTW500 model were added.

ZX-T Series

Cat. No. I139E-EN-02

YRC SCARA Robot Controller

PROGRAMMING MANUAL

Cat. No. I139E-EN-02 Note: Specifications subject to change without notice.

Authorized Distributor:

Printed in Europe

C
at. N

o
. I139E

-E
N

-02
S

C
A

R
A R

obots, Y
R

C
 S

C
A

R
A R

obot C
ontroller

P
R

O
G

R
A

M
M

IN
G

 M
A

N
U

A
L

SCARA Robot
YRC Series

	Introduction
	Safety precautions
	Contents
	Chapter 1	
Writing Programs
		1	The OMRON Robot Language
		2	Characters
		3	Program Basics
		4	Program Names
		5	Identifiers
		6	Comment
		7	Command Statement Format

	Chapter 2	
Constants
		1	Outline
		2	Numeric constants
	2.1	Integer constants
	2.2	Real constants

		3	Character constants

	Chapter 3	
Variables
	 1 Outline
		2	User Variables & System Variables
	2.1	User Variables
	2.2	System Variables

		3	Variable Names
	3.1	Dynamic Variable Names
	3.2	Static Variable Names

		4	Variable Types
	4.1	Numeric variables
	4.2	Character variables

		5	Array variables
		6	Value Assignments
		7	Type Conversions
		8	Value Pass-Along & Reference Pass-Along
		9	System Variables
	9.1	Point data variable
	9.2	Shift coordinate variable
	9.3	Point element variable
	9.4	Shift element variable
	9.5	Parallel input variable
	9.6	Parallel output variable
	9.7	Internal output variable
	9.8	Arm lock output variable
	9.9	Timer output variable
	9.10	Serial input variable
	9.11	Serial output variable
	9.12	Serial word input
	9.13	Serial double word input
	9.14	Serial word output
	9.15	Serial double word output

		10	Bit Settings
		11	Valid range of variables
	11.1	Valid range of dynamic variables
	11.2 	Valid range of static variables
	11.3	Valid range of dynamic array variables

		12	Clearing variables
	12.1	Clearing dynamic variables
	12.2	Clearing static variables

	Chapter 4	
Expressions and Operations
		1	Arithmetic operations
	1.1	Arithmetic operators
	1.2	Relational operators
	1.3	Logic operations
	1.4	Priority of arithmetic operation
	1.5	Data format conversion

		2	Character string operations
	2.1	Character string connection
	2.2	Character string comparison

		3	Point data format
		4	DI/DO conditional expressions

	Chapter 5	
Multi-tasking
		1	Outline
		2	Task definition
		3	Task status and transition
	3.1	Starting tasks
	3.2	Task scheduling
	3.3	Condition wait in task
	3.4	Suspending tasks (SUSPEND)
	3.5	Restarting tasks (RESTART)
	3.6	Deleting tasks
	3.7	Stopping tasks

		4	Multi-task program example
		5	Sharing the data
		6	Cautionary Items

	Chapter 6	
Sequence function
		1	Sequence function
		2	Creating a sequence program
	2.1	Programming method
	2.2	Compiling

		3	Executing a sequence program
	3.1	Sequence program STEP execution

		4	Creating a sequence program
	4.1	Assignment statements
	4.2	Input/output variables
	4.3	Timer definition statement
	4.4	Logical operators
	4.5	Priority of logic operations
	4.6	Sequence program specifications

	Chapter 7	
Robot Language Lists
			How to read the robot language table
			Command list in alphabetic order
			Function Specific
			Functions: in alphabetic order
			Functions: operation-specific
		1	ABS
	Acquires absolute values

		2	ABSINIT
	Resets the current position of a specified axis

		3	ABSRPOS
	Acquires a machine reference

		4	ABSRST
	Absolute motor axis return-to-origin operation

		5	ACCEL
	Specifies/acquires the acceleration coefficient parameter

		6	ARCH
	Specifies/acquires the acceleration coefficient parameter

		7	ARMCND
	Arm status acquisition

		8	ARMTYPE
	SCARA robot hand system

		9	ATN
	Acquires the arctangent of the specified value

		10	ASPEED
	Sets the automatic movement speed

		11	AXWGHT
	Sets/acquires the axis tip weight

		12	CALL
	Calls a sub-procedure

		13	CHANGE
	Switches the hand

		14	CHGPRI
	Changes the priority ranking of a specified task

		15	CHR$
	Acquires a character with the specified character code

		16	COS
	Acquires the cosine value of a specified value

		17	CURTRQ
	Acquires the current torque of the specified axis

		18	CUT
	Terminates another sub task which is currently being executed

		19	DATE$
	Acquires the date

		20	DECEL
	Specifies/acquires the deceleration rate parameter

		21	DECLARE
	Declares that a sub-routine or sub-procedure is to be used within the COMMON program

		22	DEF FN
	Defines functions which can be used by the user

		23	DEGRAD
	Angle conversion (angle → radian)

		24	DELAY
	Program execution waits for a specified period of time

		25	DI
	Acquires the input status from the parallel port

		26	DIST
	Acquires the distance between 2 specified points

		27	DIM
	Declares array variable

		28	DO
	Outputs to parallel port

		29	DRIVE
	Executes absolute movement of specified axes

		30	DRIVEI
	Moves the specified robot axes in a relative manner

		31	END SELECT
	Ends the SELECT CASE statement

		32	END SUB
	Ends the sub-procedure definition

		33	ERR / ERL
	Acquires the error code / error line No

		34	EXIT FOR
	Terminates the FOR to NEXT statement loop

		35	EXIT SUB
	Terminates the sub-procedure defined by SUB to END

		36	EXIT TASK
	Terminates its own task which is in progress

		37	FOR to NEXT
	Performs loop processing until the variable-specified value is exceeded

		38	GOSUB to RETURN
	Jumps to a sub-routine

		39	GOTO
	Executes an unconditional jump to the specified line

		40	HALT
	Stops the program and performs a reset

		41	HAND
	Defines the hand
	41.1	For SCARA Robots

		42	HOLD
	Temporarily stops the program

		43	IF
	Evaluates a conditional expression value, and executes the command in accordance with the conditions
	43.1	Simple IF statement
	43.2	Block IF statement

		44	INPUT
	Assigns a value to a variable specified from the programming box

		45	INT
	Truncates decimal fractions

		46	JTOXY
	Performs axis unit system conversions (pulse → mm)

		47	LABEL Statement
	Defines labels at program lines

		48	LEFT$
	Extracts character strings from the left end

		49	LEFTY
	Sets the SCARA robot hand system as a left-hand system

		50	LEN
	Acquires a character string length

		51	LET
	Assigns values to variables

		52	LO
	Arm lock output

		53	LOCx
	Specifies/acquires point data or shift data for a specified axis

		54	LSHIFT
	Left-shifts a bit

		55	MCHREF
	Acquires a machine reference

		56	MID$
	Acquires a character string from a specified position

		57	MO
	Outputs a specified value to the MO port (internal output)

		58	MOVE
	Performs absolute movement of all robot axes

		59	MOVEI
	Performs absolute movement of all robot axes

		60	OFFLINE
	Sets a specified communication port to the "offline" mode

		61	ORD
	Acquires a character code

		62	ON ERROR GOTO
	Jumps to a specified label when an error occurs

		63	ON to GOSUB
	Executes the subroutine specified by the <expression> value

		64	ON to GOTO
	Jumps to the label specified by the <expression> value

		65	ONLINE
	Sets the specified communication port to the "online" mode

		66	ORGORD
	Specifies/acquires the robot's return-to-origin sequence

		67	ORIGIN
	Performs an incremental mode axis return-to-origin

		68	OUT
	Turns ON the specified port output

		69	OUTPOS
	Specifies/acquires the OUT enable position parameter of the robot

		70	PATH
	Specifies the main robot axis PATH motion path

		71	PATH END
	Ends the movement path setting

		72	PATH SET
	Starts the movement path setting

		73	PATH START
	Starts the PATH motion

		74	PDEF
	Defines the pallet used to execute pallet movement commands

		75	PMOVE
	Executes a pallet movement command for the robot

		76	Pn
	Defines points within a program

		77	PPNT
	Creates pallet point data

		78	PRINT
	Displays the specified expression value at the programming box

		79	RADDEG
	Performs a unit conversion (radians → degrees)

		80	REM
	Inserts a comment

		81	RESET
	Turns OFF the bits of specified ports, or clears variables

		82	RESTART
	Restarts another task during a temporary stop

		83	RESUME
	Resumes program execution after error recovery processing

		84	RETURN
	Processing which was branched by GOSUB, is returned to the next line after GOSUB

		85	RIGHT$
	Extracts a character string from the right end of another character string

		86	RIGHTY
	Sets the SCARA robot hand system to "Right"

		87	RSHIFT
	Shifts a bit value to the right

		88	Sn
	Defines the shift coordinates in the program

		89	SELECT CASE
	Executes the specified command block in accordance with the <expression> value

		90	SEND
	Sends <read file> data to the <write file>

		91	SERVO
	Controls the servo status

		92	SET
	Turns the bit at the specified output port ON

		93	SHARED
	Enables sub-procedure referencing without passing on the variable

		94	SHIFT
	Sets the shift coordinates

		95	SIN
	Acquires the sine value for a specified value

		96	SO
	Outputs a specified value to the serial port

		97	SPEED
	Changes the program movement speed

		98	START
	Starts a new task

		99	STR$
	Converts a numeric value to a character string

		100	SQR
	Acquires the square root of a specified value

		101	SUB to END SUB
	Defines a sub-procedure

		102	SUSPEND
	Temporarily stops another task which is being executed

		103	SWI
	Switches the program being executed

		104	TAN
	Acquires the tangent value for a specified value

		105	TCOUNTER
	Timer & counter

		106	TIME$
	Acquires the current time

		107	TIMER
	Acquires the current time

		108	TO
	Outputs a specified value to the TO port

		109	TOLE
	Specifies/acquires the tolerance parameter

		110	TORQUE
	Specifies/acquires the maximum torque command value which can be set for a specified axis

		111	TRQSTS
	Acquires the status when DRIVE statement ends

		112	TRQTIME
	Sets/acquires the time-out period for the torque limit setting option

		113	VAL
	Converts character strings to numeric values

		114	WAIT
	Waits until the conditions of the DI/DO conditional expression are met

		115	WAIT ARM
	Waits until the robot axis operation is completed

		116	WEIGHT
	Specifies/acquires the tip weight parameter

		117	WEND
	Ends the WHILE statement's command block

		118	WHERE
	Acquires the arm's current position (pulse coordinates)

		119	WHILE to WEND
	Repeats an operation for as long as a condition is met

		120	WHRXY
	Acquires the arm's current position in Cartesian coordinates

		121	XYTOJ
	Converts the main group axes Cartesian coordinate data ("mm") to joint coordinate data ("pulse")

		122	_SYSFLG
	Axis status monitoring flag

	Chapter 8	
PATH Statements
		1	Overview
		2	Features
		3	How to use
		4	Cautions when using this function

	Chapter 9	
Limitless motion
		1	Overview
		2	Operation Procedure
	2.1	Parameters
	2.2	Robot language
	2.3	Sample program

		3	Restrictions

	Chapter 10	
Data file description
		1	Overview
	1.1	Data file types
	1.2	Cautions

		2	Program file
	2.1	All programs
	2.2	One program

		3	Point file
	3.1	All points
	3.2	One point

		4	Point comment file
	4.1	All point comments
	4.2	One point comment

		5	Parameter file
	5.1	All parameters
	5.2	One parameter

		6	Shift coordinate definition file
	6.1	All shift data
	6.2	One shift definition

		7	Hand definition file
	7.1	All hand data
	7.2	One hand definition

		8	Pallet definition file
	8.1	All pallet definitions
	8.2	One pallet definition

		9	All file
	9.1	All files

		10	Program directory file
	10.1	Entire program directory
	10.2	One program

		11	Parameter directory file
	11.1	Entire parameter directory

		12	Variable file
	12.1	All variables
	12.2	One variable

		13	Constant file
	13.1	One character string

		14	Array variable file
	14.1	All array variables
	14.2	One array variable

		15	DI file
	15.1	All DI information
	15.2	One DI port

		16	DO file
	16.1	All DO information
	16.2	One DO port

		17	MO file
	17.1	All MO information
	17.2	One MO port

		18	LO file
	18.1	All LO information
	18.2	One LO port

		19	TO file
	19.1	All TO information
	19.2	One TO port

		20	SI file
	20.1	All SI information
	20.2	One SI port

		21	SO file
	21.1	All SO information
	21.2	One SI port

		22	Error message history file
	22.1	All error message history

		23	Error Message History Details File
	23.1	General error message history details

		24	Machine reference file
	24.1	All machine reference file

		25	EOF file
	25.1	EOF data

		26	Serial port communication file
	26.1	Serial port communication file

		27	SIW file
	27.1	All SIW
	27.2	One SIW data

		28	SOW file
	28.1	All SIW
	28.2	One SOW data

		29	Ethernet port communication file
	29.1	Ethernet port communication file

	Chapter 11	
User program examples
		1	Basic operation
	1.1	Directly writing point data in program
	1.2	Using point numbers
	1.3	Using shift coordinates
	1.4	Palletizing
	1.4.1	Calculating point coordinates
	1.4.2	Utilizing pallet movement

	1.5	DI/DO (digital input and output) operation

		2	Application
	2.1	Pick and place between 2 points
	2.2	Palletizing
	2.3	Pick and place of stacked parts
	2.4	Parts inspection (Multi-tasking example)
	2.5	Sealing
	2.6	Connection to an external device through RS-232C (example 1)
	2.7	Connection to an external device through RS-232C (example 2)

	Chapter 12	
Online commands
		1	Online Command List
	1.1	Online command list: Function specific
	1.2	Online command list: In alphabetic order

		2	Key operation
	2.1	Changing the mode
	2.2	AUTO mode operation
	2.3	MANUAL mode operation

		3	Utility operation
	3.1	Acquiring the program execution status
	3.2	Copy
	3.3	Erase
	3.4	Rename program name
	3.5 	Changing the program attribute
	3.6	Initialize
	3.7	Setting the display language
	3.8	Setting the coordinates and units in MANUAL mode
	3.9	Clearing the programming box error message
	3.10	Setting the UTILITY mode
	3.11	Checking and setting the date
	3.12	Checking and setting the time

		4	Data handling
	4.1	Acquiring the display language
	4.2	Acquiring the access level
	4.3	Acquiring the arm status
	4.4	Acquiring the break point status
	4.5	Acquiring the controller configuration status
	4.6	Acquiring the execution level
	4.7	Acquiring the mode status
	4.8	Acquiring the message
	4.9 	Acquiring return-to-origin status
	4.10	Acquiring the absolute reset status
	4.11	Acquiring the servo status
	4.12	Acquiring the sequence program execution status
	4.13	Acquiring the speed setting status
	4.14	Acquiring the point coordinates and units
	4.15	Acquiring the version information
	4.16	Acquiring the current positions
	4.17	Acquiring the tasks in RUN or SUSPEND status
	4.18	Acquiring the tasks operation status
	4.19	Acquiring the shift status
	4.20	Acquiring the hand status
	4.21	Acquiring the remaining memory capacity
	4.22	Acquiring the emergency stop status
	4.23	Acquiring the error status by self-diagnosis
	4.24	Acquiring the option slot status
	4.25	Acquiring various values
	4.26	Data readout processing
	4.27	Data write processing
	4.28	Current torque value acquisition

		5	Executing the robot language independently
	5.1	Switching the program
	5.2	Other robot language command processing

		6	Control codes
	6.1	Interrupting the command execution

	Chapter 13	
IO commands
		1	Overview
		2	IO command format
		3	Sending and receiving IO commands
		4	IO command list
		5	IO command description
	5.1	MOVE command
	5.2	MOVEI command
	5.3	Pallet movement command
	5.4	Jog movement command
	5.5	Inching movement command
	5.6	Point teaching command
	5.7	Absolute reset movement command
	5.8	Absolute reset command
	5.9	Return-to-origin command
	5.10	Servo command
	5.11	Manual movement speed change command
	5.12	Auto movement speed change command
	5.13	Program speed change command
	5.14	Shift designation change command
	5.15	Hand designation change command
	5.16	Arm designation change command
	5.17	Point display unit designation command

	Chapter 14	
Appendix
		1	Reserved word list
		2	Robot Language Lists: Command list in alphabetic order
		3	Robot Language Lists: Function Specific
		4	Functions: in alphabetic order
		5	Functions: operation-specific
		6	Execution Level

	Index

